• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/ralloc.h"
25 
26 #include "util/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29 
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32 #include "dev/intel_debug.h"
33 
34 #include "blorp_nir_builder.h"
35 
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37 
38 #pragma pack(push, 1)
39 struct brw_blorp_const_color_prog_key
40 {
41    struct brw_blorp_base_key base;
42    bool use_simd16_replicated_data;
43    bool clear_rgb_as_red;
44    uint8_t local_y;
45 };
46 #pragma pack(pop)
47 
48 static bool
blorp_params_get_clear_kernel_fs(struct blorp_batch * batch,struct blorp_params * params,bool use_replicated_data,bool clear_rgb_as_red)49 blorp_params_get_clear_kernel_fs(struct blorp_batch *batch,
50                                  struct blorp_params *params,
51                                  bool use_replicated_data,
52                                  bool clear_rgb_as_red)
53 {
54    struct blorp_context *blorp = batch->blorp;
55 
56    const struct brw_blorp_const_color_prog_key blorp_key = {
57       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
58       .base.shader_pipeline = BLORP_SHADER_PIPELINE_RENDER,
59       .use_simd16_replicated_data = use_replicated_data,
60       .clear_rgb_as_red = clear_rgb_as_red,
61       .local_y = 0,
62    };
63 
64    params->shader_type = blorp_key.base.shader_type;
65    params->shader_pipeline = blorp_key.base.shader_pipeline;
66 
67    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
68                             &params->wm_prog_kernel, &params->wm_prog_data))
69       return true;
70 
71    void *mem_ctx = ralloc_context(NULL);
72 
73    nir_builder b;
74    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
75                          blorp_shader_type_to_name(blorp_key.base.shader_type));
76 
77    nir_variable *v_color =
78       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
79    nir_ssa_def *color = nir_load_var(&b, v_color);
80 
81    if (clear_rgb_as_red) {
82       nir_ssa_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b));
83       nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
84                                        nir_imm_int(&b, 3));
85       color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
86    }
87 
88    nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
89                                                   glsl_vec4_type(),
90                                                   "gl_FragColor");
91    frag_color->data.location = FRAG_RESULT_COLOR;
92    nir_store_var(&b, frag_color, color, 0xf);
93 
94    struct brw_wm_prog_key wm_key;
95    brw_blorp_init_wm_prog_key(&wm_key);
96 
97    struct brw_wm_prog_data prog_data;
98    const unsigned *program =
99       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
100                        &prog_data);
101 
102    bool result =
103       blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
104                            &blorp_key, sizeof(blorp_key),
105                            program, prog_data.base.program_size,
106                            &prog_data.base, sizeof(prog_data),
107                            &params->wm_prog_kernel, &params->wm_prog_data);
108 
109    ralloc_free(mem_ctx);
110    return result;
111 }
112 
113 static bool
blorp_params_get_clear_kernel_cs(struct blorp_batch * batch,struct blorp_params * params,bool clear_rgb_as_red)114 blorp_params_get_clear_kernel_cs(struct blorp_batch *batch,
115                                  struct blorp_params *params,
116                                  bool clear_rgb_as_red)
117 {
118    struct blorp_context *blorp = batch->blorp;
119 
120    const struct brw_blorp_const_color_prog_key blorp_key = {
121       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
122       .base.shader_pipeline = BLORP_SHADER_PIPELINE_COMPUTE,
123       .use_simd16_replicated_data = false,
124       .clear_rgb_as_red = clear_rgb_as_red,
125       .local_y = blorp_get_cs_local_y(params),
126    };
127 
128    params->shader_type = blorp_key.base.shader_type;
129    params->shader_pipeline = blorp_key.base.shader_pipeline;
130 
131    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
132                             &params->cs_prog_kernel, &params->cs_prog_data))
133       return true;
134 
135    void *mem_ctx = ralloc_context(NULL);
136 
137    nir_builder b;
138    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_COMPUTE, "BLORP-gpgpu-clear");
139    blorp_set_cs_dims(b.shader, blorp_key.local_y);
140 
141    nir_ssa_def *dst_pos = nir_load_global_invocation_id(&b, 32);
142 
143    nir_variable *v_color =
144       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
145    nir_ssa_def *color = nir_load_var(&b, v_color);
146 
147    nir_variable *v_bounds_rect =
148       BLORP_CREATE_NIR_INPUT(b.shader, bounds_rect, glsl_vec4_type());
149    nir_ssa_def *bounds_rect = nir_load_var(&b, v_bounds_rect);
150    nir_ssa_def *in_bounds = blorp_check_in_bounds(&b, bounds_rect, dst_pos);
151 
152    if (clear_rgb_as_red) {
153       nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, dst_pos, 0),
154                                        nir_imm_int(&b, 3));
155       color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
156    }
157 
158    nir_push_if(&b, in_bounds);
159 
160    nir_image_store(&b, nir_imm_int(&b, 0),
161                    nir_pad_vector_imm_int(&b, dst_pos, 0, 4),
162                    nir_imm_int(&b, 0),
163                    nir_pad_vector_imm_int(&b, color, 0, 4),
164                    nir_imm_int(&b, 0),
165                    .image_dim = GLSL_SAMPLER_DIM_2D,
166                    .image_array = true,
167                    .access = ACCESS_NON_READABLE);
168 
169    nir_pop_if(&b, NULL);
170 
171    struct brw_cs_prog_key cs_key;
172    brw_blorp_init_cs_prog_key(&cs_key);
173 
174    struct brw_cs_prog_data prog_data;
175    const unsigned *program =
176       blorp_compile_cs(blorp, mem_ctx, b.shader, &cs_key, &prog_data);
177 
178    bool result =
179       blorp->upload_shader(batch, MESA_SHADER_COMPUTE,
180                            &blorp_key, sizeof(blorp_key),
181                            program, prog_data.base.program_size,
182                            &prog_data.base, sizeof(prog_data),
183                            &params->cs_prog_kernel, &params->cs_prog_data);
184 
185    ralloc_free(mem_ctx);
186    return result;
187 }
188 
189 static bool
blorp_params_get_clear_kernel(struct blorp_batch * batch,struct blorp_params * params,bool use_replicated_data,bool clear_rgb_as_red)190 blorp_params_get_clear_kernel(struct blorp_batch *batch,
191                               struct blorp_params *params,
192                               bool use_replicated_data,
193                               bool clear_rgb_as_red)
194 {
195    if (batch->flags & BLORP_BATCH_USE_COMPUTE) {
196       assert(!use_replicated_data);
197       return blorp_params_get_clear_kernel_cs(batch, params, clear_rgb_as_red);
198    } else {
199       return blorp_params_get_clear_kernel_fs(batch, params,
200                                               use_replicated_data,
201                                               clear_rgb_as_red);
202    }
203 }
204 
205 #pragma pack(push, 1)
206 struct layer_offset_vs_key {
207    struct brw_blorp_base_key base;
208    unsigned num_inputs;
209 };
210 #pragma pack(pop)
211 
212 /* In the case of doing attachment clears, we are using a surface state that
213  * is handed to us so we can't set (and don't even know) the base array layer.
214  * In order to do a layered clear in this scenario, we need some way of adding
215  * the base array layer to the instance id.  Unfortunately, our hardware has
216  * no real concept of "base instance", so we have to do it manually in a
217  * vertex shader.
218  */
219 static bool
blorp_params_get_layer_offset_vs(struct blorp_batch * batch,struct blorp_params * params)220 blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
221                                  struct blorp_params *params)
222 {
223    struct blorp_context *blorp = batch->blorp;
224    struct layer_offset_vs_key blorp_key = {
225       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_LAYER_OFFSET_VS),
226    };
227 
228    if (params->wm_prog_data)
229       blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
230 
231    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
232                             &params->vs_prog_kernel, &params->vs_prog_data))
233       return true;
234 
235    void *mem_ctx = ralloc_context(NULL);
236 
237    nir_builder b;
238    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX,
239                          blorp_shader_type_to_name(blorp_key.base.shader_type));
240 
241    const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
242 
243    /* First we deal with the header which has instance and base instance */
244    nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
245                                                 uvec4_type, "header");
246    a_header->data.location = VERT_ATTRIB_GENERIC0;
247 
248    nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
249                                                glsl_int_type(), "layer_id");
250    v_layer->data.location = VARYING_SLOT_LAYER;
251 
252    /* Compute the layer id */
253    nir_ssa_def *header = nir_load_var(&b, a_header);
254    nir_ssa_def *base_layer = nir_channel(&b, header, 0);
255    nir_ssa_def *instance = nir_channel(&b, header, 1);
256    nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
257 
258    /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
259    nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
260                                                 glsl_vec4_type(), "a_vertex");
261    a_vertex->data.location = VERT_ATTRIB_GENERIC1;
262 
263    nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
264                                              glsl_vec4_type(), "v_pos");
265    v_pos->data.location = VARYING_SLOT_POS;
266 
267    nir_copy_var(&b, v_pos, a_vertex);
268 
269    /* Then we copy everything else */
270    for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
271       nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
272                                                uvec4_type, "input");
273       a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
274 
275       nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
276                                                 uvec4_type, "output");
277       v_out->data.location = VARYING_SLOT_VAR0 + i;
278 
279       nir_copy_var(&b, v_out, a_in);
280    }
281 
282    struct brw_vs_prog_data vs_prog_data;
283    memset(&vs_prog_data, 0, sizeof(vs_prog_data));
284 
285    const unsigned *program =
286       blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
287 
288    bool result =
289       blorp->upload_shader(batch, MESA_SHADER_VERTEX,
290                            &blorp_key, sizeof(blorp_key),
291                            program, vs_prog_data.base.base.program_size,
292                            &vs_prog_data.base.base, sizeof(vs_prog_data),
293                            &params->vs_prog_kernel, &params->vs_prog_data);
294 
295    ralloc_free(mem_ctx);
296    return result;
297 }
298 
299 /* The x0, y0, x1, and y1 parameters must already be populated with the render
300  * area of the framebuffer to be cleared.
301  */
302 static void
get_fast_clear_rect(const struct isl_device * dev,const struct isl_surf * surf,const struct isl_surf * aux_surf,unsigned * x0,unsigned * y0,unsigned * x1,unsigned * y1)303 get_fast_clear_rect(const struct isl_device *dev,
304                     const struct isl_surf *surf,
305                     const struct isl_surf *aux_surf,
306                     unsigned *x0, unsigned *y0,
307                     unsigned *x1, unsigned *y1)
308 {
309    unsigned int x_align, y_align;
310    unsigned int x_scaledown, y_scaledown;
311 
312    /* Only single sampled surfaces need to (and actually can) be resolved. */
313    if (surf->samples == 1) {
314       if (dev->info->verx10 >= 125) {
315          assert(surf->tiling == ISL_TILING_4);
316          /* From Bspec 47709, "MCS/CCS Buffer for Render Target(s)":
317           *
318           *    SW must ensure that clearing rectangle dimensions cover the
319           *    entire area desired, to accomplish this task initial X/Y
320           *    dimensions need to be rounded up to next multiple of scaledown
321           *    factor before dividing by scale down factor:
322           *
323           * The X and Y scale down factors in the table that follows are used
324           * for both alignment and scaling down.
325           */
326          const uint32_t bs = isl_format_get_layout(surf->format)->bpb / 8;
327          x_align = x_scaledown = 1024 / bs;
328          y_align = y_scaledown = 16;
329       } else {
330          assert(aux_surf->usage == ISL_SURF_USAGE_CCS_BIT);
331          /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
332           * Target(s)", beneath the "Fast Color Clear" bullet (p327):
333           *
334           *     Clear pass must have a clear rectangle that must follow
335           *     alignment rules in terms of pixels and lines as shown in the
336           *     table below. Further, the clear-rectangle height and width
337           *     must be multiple of the following dimensions. If the height
338           *     and width of the render target being cleared do not meet these
339           *     requirements, an MCS buffer can be created such that it
340           *     follows the requirement and covers the RT.
341           *
342           * The alignment size in the table that follows is related to the
343           * alignment size that is baked into the CCS surface format but with X
344           * alignment multiplied by 16 and Y alignment multiplied by 32.
345           */
346          x_align = isl_format_get_layout(aux_surf->format)->bw;
347          y_align = isl_format_get_layout(aux_surf->format)->bh;
348 
349          x_align *= 16;
350 
351          /* The line alignment requirement for Y-tiled is halved at SKL and again
352           * at TGL.
353           */
354          if (dev->info->ver >= 12)
355             y_align *= 8;
356          else if (dev->info->ver >= 9)
357             y_align *= 16;
358          else
359             y_align *= 32;
360 
361          /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
362           * Target(s)", beneath the "Fast Color Clear" bullet (p327):
363           *
364           *     In order to optimize the performance MCS buffer (when bound to
365           *     1X RT) clear similarly to MCS buffer clear for MSRT case,
366           *     clear rect is required to be scaled by the following factors
367           *     in the horizontal and vertical directions:
368           *
369           * The X and Y scale down factors in the table that follows are each
370           * equal to half the alignment value computed above.
371           */
372          x_scaledown = x_align / 2;
373          y_scaledown = y_align / 2;
374       }
375 
376       if (ISL_DEV_IS_HASWELL(dev)) {
377          /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
378           * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
379           * Clear of Non-MultiSampled Render Target Restrictions":
380           *
381           *   Clear rectangle must be aligned to two times the number of
382           *   pixels in the table shown below due to 16x16 hashing across the
383           *   slice.
384           *
385           * This restriction is only documented to exist on HSW GT3 but
386           * empirical evidence suggests that it's also needed GT2.
387           */
388          x_align *= 2;
389          y_align *= 2;
390       }
391    } else {
392       assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
393 
394       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
395        * Target(s)", beneath the "MSAA Compression" bullet (p326):
396        *
397        *     Clear pass for this case requires that scaled down primitive
398        *     is sent down with upper left coordinate to coincide with
399        *     actual rectangle being cleared. For MSAA, clear rectangle’s
400        *     height and width need to as show in the following table in
401        *     terms of (width,height) of the RT.
402        *
403        *     MSAA  Width of Clear Rect  Height of Clear Rect
404        *      2X     Ceil(1/8*width)      Ceil(1/2*height)
405        *      4X     Ceil(1/8*width)      Ceil(1/2*height)
406        *      8X     Ceil(1/2*width)      Ceil(1/2*height)
407        *     16X         width            Ceil(1/2*height)
408        *
409        * The text "with upper left coordinate to coincide with actual
410        * rectangle being cleared" is a little confusing--it seems to imply
411        * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
412        * feed the pipeline using the rectangle (x,y) to
413        * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
414        * the number of samples.  Experiments indicate that this is not
415        * quite correct; actually, what the hardware appears to do is to
416        * align whatever rectangle is sent down the pipeline to the nearest
417        * multiple of 2x2 blocks, and then scale it up by a factor of N
418        * horizontally and 2 vertically.  So the resulting alignment is 4
419        * vertically and either 4 or 16 horizontally, and the scaledown
420        * factor is 2 vertically and either 2 or 8 horizontally.
421        */
422       switch (aux_surf->format) {
423       case ISL_FORMAT_MCS_2X:
424       case ISL_FORMAT_MCS_4X:
425          x_scaledown = 8;
426          break;
427       case ISL_FORMAT_MCS_8X:
428          x_scaledown = 2;
429          break;
430       case ISL_FORMAT_MCS_16X:
431          x_scaledown = 1;
432          break;
433       default:
434          unreachable("Unexpected MCS format for fast clear");
435       }
436       y_scaledown = 2;
437       x_align = x_scaledown * 2;
438       y_align = y_scaledown * 2;
439    }
440 
441    *x0 = ROUND_DOWN_TO(*x0,  x_align) / x_scaledown;
442    *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
443    *x1 = ALIGN(*x1, x_align) / x_scaledown;
444    *y1 = ALIGN(*y1, y_align) / y_scaledown;
445 }
446 
447 void
blorp_fast_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)448 blorp_fast_clear(struct blorp_batch *batch,
449                  const struct blorp_surf *surf,
450                  enum isl_format format, struct isl_swizzle swizzle,
451                  uint32_t level, uint32_t start_layer, uint32_t num_layers,
452                  uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
453 {
454    struct blorp_params params;
455    blorp_params_init(&params);
456    params.num_layers = num_layers;
457    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
458 
459    params.x0 = x0;
460    params.y0 = y0;
461    params.x1 = x1;
462    params.y1 = y1;
463 
464    memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
465    params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
466 
467    get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf,
468                        &params.x0, &params.y0, &params.x1, &params.y1);
469 
470    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
471       return;
472 
473    brw_blorp_surface_info_init(batch, &params.dst, surf, level,
474                                start_layer, format, true);
475    params.num_samples = params.dst.surf.samples;
476 
477    assert(params.num_samples != 0);
478    if (params.num_samples == 1)
479       params.snapshot_type = INTEL_SNAPSHOT_CCS_COLOR_CLEAR;
480    else
481       params.snapshot_type = INTEL_SNAPSHOT_MCS_COLOR_CLEAR;
482 
483    /* If a swizzle was provided, we need to swizzle the clear color so that
484     * the hardware color format conversion will work properly.
485     */
486    params.dst.clear_color =
487       isl_color_value_swizzle_inv(params.dst.clear_color, swizzle);
488 
489    batch->blorp->exec(batch, &params);
490 }
491 
492 bool
blorp_clear_supports_compute(struct blorp_context * blorp,uint8_t color_write_disable,bool blend_enabled,enum isl_aux_usage aux_usage)493 blorp_clear_supports_compute(struct blorp_context *blorp,
494                              uint8_t color_write_disable, bool blend_enabled,
495                              enum isl_aux_usage aux_usage)
496 {
497    if (blorp->isl_dev->info->ver < 7)
498       return false;
499    if (color_write_disable != 0 || blend_enabled)
500       return false;
501    if (blorp->isl_dev->info->ver >= 12) {
502       return aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
503              aux_usage == ISL_AUX_USAGE_CCS_E ||
504              aux_usage == ISL_AUX_USAGE_NONE;
505    } else {
506       return aux_usage == ISL_AUX_USAGE_NONE;
507    }
508 }
509 
510 void
blorp_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,union isl_color_value clear_color,uint8_t color_write_disable)511 blorp_clear(struct blorp_batch *batch,
512             const struct blorp_surf *surf,
513             enum isl_format format, struct isl_swizzle swizzle,
514             uint32_t level, uint32_t start_layer, uint32_t num_layers,
515             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
516             union isl_color_value clear_color,
517             uint8_t color_write_disable)
518 {
519    struct blorp_params params;
520    blorp_params_init(&params);
521    params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
522 
523    const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE;
524    if (compute)
525       assert(blorp_clear_supports_compute(batch->blorp, color_write_disable,
526                                           false, surf->aux_usage));
527 
528    /* Manually apply the clear destination swizzle.  This way swizzled clears
529     * will work for swizzles which we can't normally use for rendering and it
530     * also ensures that they work on pre-Haswell hardware which can't swizlle
531     * at all.
532     */
533    clear_color = isl_color_value_swizzle_inv(clear_color, swizzle);
534    swizzle = ISL_SWIZZLE_IDENTITY;
535 
536    bool clear_rgb_as_red = false;
537    if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
538       clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
539       format = ISL_FORMAT_R32_UINT;
540    } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
541       clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
542       format = ISL_FORMAT_R8_UNORM;
543    } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
544       /* Broadwell and earlier cannot render to this format so we need to work
545        * around it by swapping the colors around and using B4G4R4A4 instead.
546        */
547       const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
548       clear_color = isl_color_value_swizzle_inv(clear_color, ARGB);
549       format = ISL_FORMAT_B4G4R4A4_UNORM;
550    } else if (isl_format_get_layout(format)->bpb % 3 == 0) {
551       clear_rgb_as_red = true;
552       if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
553          clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
554          clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
555          clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
556       }
557    }
558 
559    memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
560 
561    bool use_simd16_replicated_data = true;
562 
563    /* From the SNB PRM (Vol4_Part1):
564     *
565     *     "Replicated data (Message Type = 111) is only supported when
566     *      accessing tiled memory.  Using this Message Type to access linear
567     *      (untiled) memory is UNDEFINED."
568     */
569    if (surf->surf->tiling == ISL_TILING_LINEAR)
570       use_simd16_replicated_data = false;
571 
572    /* Replicated clears don't work yet before gfx6 */
573    if (batch->blorp->isl_dev->info->ver < 6)
574       use_simd16_replicated_data = false;
575 
576    if (compute)
577       use_simd16_replicated_data = false;
578 
579    /* Constant color writes ignore everything in blend and color calculator
580     * state.  This is not documented.
581     */
582    params.color_write_disable = color_write_disable & BITFIELD_MASK(4);
583    if (color_write_disable)
584       use_simd16_replicated_data = false;
585 
586    if (!blorp_params_get_clear_kernel(batch, &params,
587                                       use_simd16_replicated_data,
588                                       clear_rgb_as_red))
589       return;
590 
591    if (!compute && !blorp_ensure_sf_program(batch, &params))
592       return;
593 
594    while (num_layers > 0) {
595       brw_blorp_surface_info_init(batch, &params.dst, surf, level,
596                                   start_layer, format, true);
597       params.dst.view.swizzle = swizzle;
598 
599       params.x0 = x0;
600       params.y0 = y0;
601       params.x1 = x1;
602       params.y1 = y1;
603 
604       if (compute) {
605          params.wm_inputs.bounds_rect.x0 = x0;
606          params.wm_inputs.bounds_rect.y0 = y0;
607          params.wm_inputs.bounds_rect.x1 = x1;
608          params.wm_inputs.bounds_rect.y1 = y1;
609       }
610 
611       if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
612          assert(params.dst.surf.samples == 1);
613          assert(num_layers == 1);
614          params.x0 += params.dst.tile_x_sa;
615          params.y0 += params.dst.tile_y_sa;
616          params.x1 += params.dst.tile_x_sa;
617          params.y1 += params.dst.tile_y_sa;
618       }
619 
620       /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
621        * Convert them to a single slice on gfx4.
622        */
623       if (batch->blorp->isl_dev->info->ver == 4 &&
624           (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
625          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
626       }
627 
628       if (clear_rgb_as_red) {
629          surf_fake_rgb_with_red(batch->blorp->isl_dev, &params.dst);
630          params.x0 *= 3;
631          params.x1 *= 3;
632       }
633 
634       if (isl_format_is_compressed(params.dst.surf.format)) {
635          blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
636                                             NULL, NULL, NULL, NULL);
637                                             //&dst_x, &dst_y, &dst_w, &dst_h);
638       }
639 
640       if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
641          /* Either we're on gfx4 where there is no multisampling or the
642           * surface is compressed which also implies no multisampling.
643           * Therefore, sa == px and we don't need to do a conversion.
644           */
645          assert(params.dst.surf.samples == 1);
646          params.x0 += params.dst.tile_x_sa;
647          params.y0 += params.dst.tile_y_sa;
648          params.x1 += params.dst.tile_x_sa;
649          params.y1 += params.dst.tile_y_sa;
650       }
651 
652       params.num_samples = params.dst.surf.samples;
653 
654       /* We may be restricted on the number of layers we can bind at any one
655        * time.  In particular, Sandy Bridge has a maximum number of layers of
656        * 512 but a maximum 3D texture size is much larger.
657        */
658       params.num_layers = MIN2(params.dst.view.array_len, num_layers);
659 
660       const unsigned max_image_width = 16 * 1024;
661       if (params.dst.surf.logical_level0_px.width > max_image_width) {
662          /* Clearing an RGB image as red multiplies the surface width by 3
663           * so it may now be too wide for the hardware surface limits.  We
664           * have to break the clear up into pieces in order to clear wide
665           * images.
666           */
667          assert(clear_rgb_as_red);
668          assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
669          assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
670          assert(params.dst.surf.logical_level0_px.depth == 1);
671          assert(params.dst.surf.logical_level0_px.array_len == 1);
672          assert(params.dst.surf.levels == 1);
673          assert(params.dst.surf.samples == 1);
674          assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
675          assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
676 
677          /* max_image_width rounded down to a multiple of 3 */
678          const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
679          const unsigned cpp =
680             isl_format_get_layout(params.dst.surf.format)->bpb / 8;
681 
682          params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
683          params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
684 
685          uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
686          uint64_t orig_offset = params.dst.addr.offset;
687          for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
688             /* Offset to the surface.  It's easy because we're linear */
689             params.dst.addr.offset = orig_offset + x * cpp;
690 
691             params.x0 = 0;
692             params.x1 = MIN2(orig_x1 - x, max_image_width);
693 
694             batch->blorp->exec(batch, &params);
695          }
696       } else {
697          batch->blorp->exec(batch, &params);
698       }
699 
700       start_layer += params.num_layers;
701       num_layers -= params.num_layers;
702    }
703 }
704 
705 static bool
blorp_clear_stencil_as_rgba(struct blorp_batch * batch,const struct blorp_surf * surf,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,uint8_t stencil_mask,uint8_t stencil_value)706 blorp_clear_stencil_as_rgba(struct blorp_batch *batch,
707                             const struct blorp_surf *surf,
708                             uint32_t level, uint32_t start_layer,
709                             uint32_t num_layers,
710                             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
711                             uint8_t stencil_mask, uint8_t stencil_value)
712 {
713    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
714 
715    /* We only support separate W-tiled stencil for now */
716    if (surf->surf->format != ISL_FORMAT_R8_UINT ||
717        surf->surf->tiling != ISL_TILING_W)
718       return false;
719 
720    /* Stencil mask support would require piles of shader magic */
721    if (stencil_mask != 0xff)
722       return false;
723 
724    if (surf->surf->samples > 1) {
725       /* Adjust x0, y0, x1, and y1 to be in units of samples */
726       assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
727       struct isl_extent2d msaa_px_size_sa =
728          isl_get_interleaved_msaa_px_size_sa(surf->surf->samples);
729 
730       x0 *= msaa_px_size_sa.w;
731       y0 *= msaa_px_size_sa.h;
732       x1 *= msaa_px_size_sa.w;
733       y1 *= msaa_px_size_sa.h;
734    }
735 
736    /* W-tiles and Y-tiles have the same layout as far as cache lines are
737     * concerned: both are 8x8 cache lines laid out Y-major.  The difference is
738     * entirely in how the data is arranged within the cache line.  W-tiling
739     * is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows
740     * regardless of image format size.  As long as everything is aligned to 8,
741     * we can just treat the W-tiled image as Y-tiled, ignore the layout
742     * difference within a cache line, and blast out data.
743     */
744    if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0)
745       return false;
746 
747    struct blorp_params params;
748    blorp_params_init(&params);
749    params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
750 
751    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
752       return false;
753 
754    memset(&params.wm_inputs.clear_color, stencil_value,
755           sizeof(params.wm_inputs.clear_color));
756 
757    /* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the
758     * following footnote to the format table:
759     *
760     *    128 BPE Formats cannot be Tiled Y when used as render targets
761     *
762     * We have to use RGBA16_UINT on SNB.
763     */
764    enum isl_format wide_format;
765    if (ISL_GFX_VER(batch->blorp->isl_dev) <= 6) {
766       wide_format = ISL_FORMAT_R16G16B16A16_UINT;
767 
768       /* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk
769        * clamping giving us the wrong values
770        */
771       for (unsigned i = 0; i < 4; i++)
772          params.wm_inputs.clear_color[i] &= 0xffff;
773    } else {
774       wide_format = ISL_FORMAT_R32G32B32A32_UINT;
775    }
776 
777    for (uint32_t a = 0; a < num_layers; a++) {
778       uint32_t layer = start_layer + a;
779 
780       brw_blorp_surface_info_init(batch, &params.dst, surf, level,
781                                   layer, ISL_FORMAT_UNSUPPORTED, true);
782 
783       if (surf->surf->samples > 1)
784          blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
785 
786       /* Make it Y-tiled */
787       blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
788 
789       unsigned wide_Bpp =
790          isl_format_get_layout(wide_format)->bpb / 8;
791 
792       params.dst.view.format = params.dst.surf.format = wide_format;
793       assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0);
794       params.dst.surf.logical_level0_px.width /= wide_Bpp;
795       assert(params.dst.tile_x_sa % wide_Bpp == 0);
796       params.dst.tile_x_sa /= wide_Bpp;
797 
798       params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2);
799       params.y0 = params.dst.tile_y_sa + y0 / 2;
800       params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2);
801       params.y1 = params.dst.tile_y_sa + y1 / 2;
802 
803       batch->blorp->exec(batch, &params);
804    }
805 
806    return true;
807 }
808 
809 void
blorp_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)810 blorp_clear_depth_stencil(struct blorp_batch *batch,
811                           const struct blorp_surf *depth,
812                           const struct blorp_surf *stencil,
813                           uint32_t level, uint32_t start_layer,
814                           uint32_t num_layers,
815                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
816                           bool clear_depth, float depth_value,
817                           uint8_t stencil_mask, uint8_t stencil_value)
818 {
819    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
820 
821    if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level,
822                                                    start_layer, num_layers,
823                                                    x0, y0, x1, y1,
824                                                    stencil_mask,
825                                                    stencil_value))
826       return;
827 
828    struct blorp_params params;
829    blorp_params_init(&params);
830    params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
831 
832    params.x0 = x0;
833    params.y0 = y0;
834    params.x1 = x1;
835    params.y1 = y1;
836 
837    if (ISL_GFX_VER(batch->blorp->isl_dev) == 6) {
838       /* For some reason, Sandy Bridge gets occlusion queries wrong if we
839        * don't have a shader.  In particular, it records samples even though
840        * we disable statistics in 3DSTATE_WM.  Give it the usual clear shader
841        * to work around the issue.
842        */
843       if (!blorp_params_get_clear_kernel(batch, &params, false, false))
844          return;
845    }
846 
847    while (num_layers > 0) {
848       params.num_layers = num_layers;
849 
850       if (stencil_mask) {
851          brw_blorp_surface_info_init(batch, &params.stencil, stencil,
852                                      level, start_layer,
853                                      ISL_FORMAT_UNSUPPORTED, true);
854          params.stencil_mask = stencil_mask;
855          params.stencil_ref = stencil_value;
856 
857          params.dst.surf.samples = params.stencil.surf.samples;
858          params.dst.surf.logical_level0_px =
859             params.stencil.surf.logical_level0_px;
860          params.dst.view = params.stencil.view;
861 
862          params.num_samples = params.stencil.surf.samples;
863 
864          /* We may be restricted on the number of layers we can bind at any
865           * one time.  In particular, Sandy Bridge has a maximum number of
866           * layers of 512 but a maximum 3D texture size is much larger.
867           */
868          if (params.stencil.view.array_len < params.num_layers)
869             params.num_layers = params.stencil.view.array_len;
870       }
871 
872       if (clear_depth) {
873          brw_blorp_surface_info_init(batch, &params.depth, depth,
874                                      level, start_layer,
875                                      ISL_FORMAT_UNSUPPORTED, true);
876          params.z = depth_value;
877          params.depth_format =
878             isl_format_get_depth_format(depth->surf->format, false);
879 
880          params.dst.surf.samples = params.depth.surf.samples;
881          params.dst.surf.logical_level0_px =
882             params.depth.surf.logical_level0_px;
883          params.dst.view = params.depth.view;
884 
885          params.num_samples = params.depth.surf.samples;
886 
887          /* We may be restricted on the number of layers we can bind at any
888           * one time.  In particular, Sandy Bridge has a maximum number of
889           * layers of 512 but a maximum 3D texture size is much larger.
890           */
891          if (params.depth.view.array_len < params.num_layers)
892             params.num_layers = params.depth.view.array_len;
893       }
894 
895       batch->blorp->exec(batch, &params);
896 
897       start_layer += params.num_layers;
898       num_layers -= params.num_layers;
899    }
900 }
901 
902 bool
blorp_can_hiz_clear_depth(const struct intel_device_info * devinfo,const struct isl_surf * surf,enum isl_aux_usage aux_usage,uint32_t level,uint32_t layer,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)903 blorp_can_hiz_clear_depth(const struct intel_device_info *devinfo,
904                           const struct isl_surf *surf,
905                           enum isl_aux_usage aux_usage,
906                           uint32_t level, uint32_t layer,
907                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
908 {
909    /* This function currently doesn't support any gen prior to gfx8 */
910    assert(devinfo->ver >= 8);
911 
912    if (devinfo->ver == 8 && surf->format == ISL_FORMAT_R16_UNORM) {
913       /* From the BDW PRM, Vol 7, "Depth Buffer Clear":
914        *
915        *   The following restrictions apply only if the depth buffer surface
916        *   type is D16_UNORM and software does not use the “full surf clear”:
917        *
918        *   If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
919        *   aligned to an 8x4 pixel block relative to the upper left corner of
920        *   the depth buffer, and contain an integer number of these pixel
921        *   blocks, and all 8x4 pixels must be lit.
922        *
923        * Alignment requirements for other sample counts are listed, but they
924        * can all be satisfied by the one mentioned above.
925        */
926       if (x0 % 8 || y0 % 4 || x1 % 8 || y1 % 4)
927          return false;
928    } else if (aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
929       /* We have to set the WM_HZ_OP::FullSurfaceDepthandStencilClear bit
930        * whenever we clear an uninitialized HIZ buffer (as some drivers
931        * currently do). However, this bit seems liable to clear 16x8 pixels in
932        * the ZCS on Gfx12 - greater than the slice alignments for depth
933        * buffers.
934        */
935       assert(surf->image_alignment_el.w % 16 != 0 ||
936              surf->image_alignment_el.h % 8 != 0);
937 
938       /* This is the hypothesis behind some corruption that was seen with the
939        * amd_vertex_shader_layer-layered-depth-texture-render piglit test.
940        *
941        * From the Compressed Depth Buffers section of the Bspec, under the
942        * Gfx12 texture performant and ZCS columns:
943        *
944        *    Update with clear at either 16x8 or 8x4 granularity, based on
945        *    fs_clr or otherwise.
946        *
947        * There are a number of ways to avoid full surface CCS clears that
948        * overlap other slices, but for now we choose to disable fast-clears
949        * when an initializing clear could hit another miplevel.
950        *
951        * NOTE: Because the CCS compresses the depth buffer and not a version
952        * of it that has been rearranged with different alignments (like Gfx8+
953        * HIZ), we have to make sure that the x0 and y0 are at least 16x8
954        * aligned in the context of the entire surface.
955        */
956       uint32_t slice_x0, slice_y0, slice_z0, slice_a0;
957       isl_surf_get_image_offset_el(surf, level,
958                                    surf->dim == ISL_SURF_DIM_3D ? 0 : layer,
959                                    surf->dim == ISL_SURF_DIM_3D ? layer: 0,
960                                    &slice_x0, &slice_y0, &slice_z0, &slice_a0);
961       assert(slice_z0 == 0 && slice_a0 == 0);
962       const bool max_x1_y1 =
963          x1 == u_minify(surf->logical_level0_px.width, level) &&
964          y1 == u_minify(surf->logical_level0_px.height, level);
965       const uint32_t haligned_x1 = ALIGN(x1, surf->image_alignment_el.w);
966       const uint32_t valigned_y1 = ALIGN(y1, surf->image_alignment_el.h);
967       const bool unaligned = (slice_x0 + x0) % 16 || (slice_y0 + y0) % 8 ||
968                              (max_x1_y1 ? haligned_x1 % 16 || valigned_y1 % 8 :
969                               x1 % 16 || y1 % 8);
970       const bool partial_clear = x0 > 0 || y0 > 0 || !max_x1_y1;
971       const bool multislice_surf = surf->levels > 1 ||
972                                    surf->logical_level0_px.depth > 1 ||
973                                    surf->logical_level0_px.array_len > 1;
974 
975       if (unaligned && (partial_clear || multislice_surf))
976          return false;
977    }
978 
979    return isl_aux_usage_has_hiz(aux_usage);
980 }
981 
982 static bool
blorp_can_clear_full_surface(const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil)983 blorp_can_clear_full_surface(const struct blorp_surf *depth,
984                              const struct blorp_surf *stencil,
985                              uint32_t level,
986                              uint32_t x0, uint32_t y0,
987                              uint32_t x1, uint32_t y1,
988                              bool clear_depth,
989                              bool clear_stencil)
990 {
991    uint32_t width = 0, height = 0;
992    if (clear_stencil) {
993       width = u_minify(stencil->surf->logical_level0_px.width, level);
994       height = u_minify(stencil->surf->logical_level0_px.height, level);
995    }
996 
997    if (clear_depth && !(width || height)) {
998       width = u_minify(depth->surf->logical_level0_px.width, level);
999       height = u_minify(depth->surf->logical_level0_px.height, level);
1000    }
1001 
1002    return x0 == 0 && y0 == 0 && width == x1 && height == y1;
1003 }
1004 
1005 void
blorp_hiz_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,bool clear_stencil,uint8_t stencil_value)1006 blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
1007                               const struct blorp_surf *depth,
1008                               const struct blorp_surf *stencil,
1009                               uint32_t level,
1010                               uint32_t start_layer, uint32_t num_layers,
1011                               uint32_t x0, uint32_t y0,
1012                               uint32_t x1, uint32_t y1,
1013                               bool clear_depth, float depth_value,
1014                               bool clear_stencil, uint8_t stencil_value)
1015 {
1016    struct blorp_params params;
1017    blorp_params_init(&params);
1018    params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
1019 
1020    /* This requires WM_HZ_OP which only exists on gfx8+ */
1021    assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 8);
1022 
1023    params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
1024    /* From BSpec: 3DSTATE_WM_HZ_OP_BODY >> Full Surface Depth and Stencil Clear
1025     *
1026     *    "Software must set this only when the APP requires the entire Depth
1027     *    surface to be cleared."
1028     */
1029    params.full_surface_hiz_op =
1030       blorp_can_clear_full_surface(depth, stencil, level, x0, y0, x1, y1,
1031                                    clear_depth, clear_stencil);
1032    params.num_layers = 1;
1033 
1034    params.x0 = x0;
1035    params.y0 = y0;
1036    params.x1 = x1;
1037    params.y1 = y1;
1038 
1039    for (uint32_t l = 0; l < num_layers; l++) {
1040       const uint32_t layer = start_layer + l;
1041       if (clear_stencil) {
1042          brw_blorp_surface_info_init(batch, &params.stencil, stencil,
1043                                      level, layer,
1044                                      ISL_FORMAT_UNSUPPORTED, true);
1045          params.stencil_mask = 0xff;
1046          params.stencil_ref = stencil_value;
1047          params.num_samples = params.stencil.surf.samples;
1048       }
1049 
1050       if (clear_depth) {
1051          /* If we're clearing depth, we must have HiZ */
1052          assert(depth && isl_aux_usage_has_hiz(depth->aux_usage));
1053 
1054          brw_blorp_surface_info_init(batch, &params.depth, depth,
1055                                      level, layer,
1056                                      ISL_FORMAT_UNSUPPORTED, true);
1057          params.depth.clear_color.f32[0] = depth_value;
1058          params.depth_format =
1059             isl_format_get_depth_format(depth->surf->format, false);
1060          params.num_samples = params.depth.surf.samples;
1061       }
1062 
1063       batch->blorp->exec(batch, &params);
1064    }
1065 }
1066 
1067 /* Given a depth stencil attachment, this function performs a fast depth clear
1068  * on a depth portion and a regular clear on the stencil portion. When
1069  * performing a fast depth clear on the depth portion, the HiZ buffer is simply
1070  * tagged as cleared so the depth clear value is not actually needed.
1071  */
1072 void
blorp_gfx8_hiz_clear_attachments(struct blorp_batch * batch,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil,uint8_t stencil_value)1073 blorp_gfx8_hiz_clear_attachments(struct blorp_batch *batch,
1074                                  uint32_t num_samples,
1075                                  uint32_t x0, uint32_t y0,
1076                                  uint32_t x1, uint32_t y1,
1077                                  bool clear_depth, bool clear_stencil,
1078                                  uint8_t stencil_value)
1079 {
1080    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
1081 
1082    struct blorp_params params;
1083    blorp_params_init(&params);
1084    params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
1085    params.num_layers = 1;
1086    params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
1087    params.x0 = x0;
1088    params.y0 = y0;
1089    params.x1 = x1;
1090    params.y1 = y1;
1091    params.num_samples = num_samples;
1092    params.depth.enabled = clear_depth;
1093    params.stencil.enabled = clear_stencil;
1094    params.stencil_ref = stencil_value;
1095    batch->blorp->exec(batch, &params);
1096 }
1097 
1098 /** Clear active color/depth/stencili attachments
1099  *
1100  * This function performs a clear operation on the currently bound
1101  * color/depth/stencil attachments.  It is assumed that any information passed
1102  * in here is valid, consistent, and in-bounds relative to the currently
1103  * attached depth/stencil.  The binding_table_offset parameter is the 32-bit
1104  * offset relative to surface state base address where pre-baked binding table
1105  * that we are to use lives.  If clear_color is false, binding_table_offset
1106  * must point to a binding table with one entry which is a valid null surface
1107  * that matches the currently bound depth and stencil.
1108  */
1109 void
blorp_clear_attachments(struct blorp_batch * batch,uint32_t binding_table_offset,enum isl_format depth_format,uint32_t num_samples,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_color,union isl_color_value color_value,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)1110 blorp_clear_attachments(struct blorp_batch *batch,
1111                         uint32_t binding_table_offset,
1112                         enum isl_format depth_format,
1113                         uint32_t num_samples,
1114                         uint32_t start_layer, uint32_t num_layers,
1115                         uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
1116                         bool clear_color, union isl_color_value color_value,
1117                         bool clear_depth, float depth_value,
1118                         uint8_t stencil_mask, uint8_t stencil_value)
1119 {
1120    struct blorp_params params;
1121    blorp_params_init(&params);
1122 
1123    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1124    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
1125 
1126    params.x0 = x0;
1127    params.y0 = y0;
1128    params.x1 = x1;
1129    params.y1 = y1;
1130 
1131    params.use_pre_baked_binding_table = true;
1132    params.pre_baked_binding_table_offset = binding_table_offset;
1133 
1134    params.num_layers = num_layers;
1135    params.num_samples = num_samples;
1136 
1137    if (clear_color) {
1138       params.dst.enabled = true;
1139       params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
1140 
1141       memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
1142 
1143       /* Unfortunately, without knowing whether or not our destination surface
1144        * is tiled or not, we have to assume it may be linear.  This means no
1145        * SIMD16_REPDATA for us. :-(
1146        */
1147       if (!blorp_params_get_clear_kernel(batch, &params, false, false))
1148          return;
1149    }
1150 
1151    if (clear_depth) {
1152       params.depth.enabled = true;
1153       params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
1154 
1155       params.z = depth_value;
1156       params.depth_format = isl_format_get_depth_format(depth_format, false);
1157    }
1158 
1159    if (stencil_mask) {
1160       params.stencil.enabled = true;
1161       params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
1162 
1163       params.stencil_mask = stencil_mask;
1164       params.stencil_ref = stencil_value;
1165    }
1166 
1167    if (!blorp_params_get_layer_offset_vs(batch, &params))
1168       return;
1169 
1170    params.vs_inputs.base_layer = start_layer;
1171 
1172    batch->blorp->exec(batch, &params);
1173 }
1174 
1175 void
blorp_ccs_resolve(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_format format,enum isl_aux_op resolve_op)1176 blorp_ccs_resolve(struct blorp_batch *batch,
1177                   struct blorp_surf *surf, uint32_t level,
1178                   uint32_t start_layer, uint32_t num_layers,
1179                   enum isl_format format,
1180                   enum isl_aux_op resolve_op)
1181 {
1182    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1183    struct blorp_params params;
1184 
1185    blorp_params_init(&params);
1186    switch(resolve_op) {
1187    case ISL_AUX_OP_AMBIGUATE:
1188       params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
1189       break;
1190    case ISL_AUX_OP_FULL_RESOLVE:
1191       params.snapshot_type = INTEL_SNAPSHOT_CCS_RESOLVE;
1192       break;
1193    case ISL_AUX_OP_PARTIAL_RESOLVE:
1194       params.snapshot_type = INTEL_SNAPSHOT_CCS_PARTIAL_RESOLVE;
1195       break;
1196    default:
1197       assert(false);
1198    }
1199    brw_blorp_surface_info_init(batch, &params.dst, surf,
1200                                level, start_layer, format, true);
1201 
1202    params.x0 = params.y0 = 0;
1203    params.x1 = u_minify(params.dst.surf.logical_level0_px.width, level);
1204    params.y1 = u_minify(params.dst.surf.logical_level0_px.height, level);
1205    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 9) {
1206       /* From Bspec 2424, "Render Target Resolve":
1207        *
1208        *    The Resolve Rectangle size is same as Clear Rectangle size from
1209        *    SKL+.
1210        *
1211        * Note that this differs from Vol7 of the Sky Lake PRM, which only
1212        * specifies aligning by the scaledown factors.
1213        */
1214       get_fast_clear_rect(batch->blorp->isl_dev, surf->surf, surf->aux_surf,
1215                           &params.x0, &params.y0, &params.x1, &params.y1);
1216    } else {
1217       /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
1218        *
1219        *    A rectangle primitive must be scaled down by the following factors
1220        *    with respect to render target being resolved.
1221        *
1222        * The scaledown factors in the table that follows are related to the
1223        * block size of the CCS format. For IVB and HSW, we divide by two, for
1224        * BDW we multiply by 8 and 16.
1225        */
1226       const struct isl_format_layout *aux_fmtl =
1227          isl_format_get_layout(params.dst.aux_surf.format);
1228       assert(aux_fmtl->txc == ISL_TXC_CCS);
1229 
1230       unsigned x_scaledown, y_scaledown;
1231       if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
1232          x_scaledown = aux_fmtl->bw * 8;
1233          y_scaledown = aux_fmtl->bh * 16;
1234       } else {
1235          x_scaledown = aux_fmtl->bw / 2;
1236          y_scaledown = aux_fmtl->bh / 2;
1237       }
1238       params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
1239       params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
1240    }
1241 
1242    if (batch->blorp->isl_dev->info->ver >= 10) {
1243       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1244              resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
1245              resolve_op == ISL_AUX_OP_AMBIGUATE);
1246    } else if (batch->blorp->isl_dev->info->ver >= 9) {
1247       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1248              resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1249    } else {
1250       /* Broadwell and earlier do not have a partial resolve */
1251       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
1252    }
1253    params.fast_clear_op = resolve_op;
1254    params.num_layers = num_layers;
1255 
1256    /* Note: there is no need to initialize push constants because it doesn't
1257     * matter what data gets dispatched to the render target.  However, we must
1258     * ensure that the fragment shader delivers the data using the "replicated
1259     * color" message.
1260     */
1261 
1262    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1263       return;
1264 
1265    batch->blorp->exec(batch, &params);
1266 }
1267 
1268 static nir_ssa_def *
blorp_nir_bit(nir_builder * b,nir_ssa_def * src,unsigned bit)1269 blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
1270 {
1271    return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
1272                       nir_imm_int(b, 1));
1273 }
1274 
1275 #pragma pack(push, 1)
1276 struct blorp_mcs_partial_resolve_key
1277 {
1278    struct brw_blorp_base_key base;
1279    bool indirect_clear_color;
1280    bool int_format;
1281    uint32_t num_samples;
1282 };
1283 #pragma pack(pop)
1284 
1285 static bool
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch * batch,struct blorp_params * params)1286 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
1287                                             struct blorp_params *params)
1288 {
1289    struct blorp_context *blorp = batch->blorp;
1290    const struct blorp_mcs_partial_resolve_key blorp_key = {
1291       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE),
1292       .indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
1293       .int_format = isl_format_has_int_channel(params->dst.view.format),
1294       .num_samples = params->num_samples,
1295    };
1296 
1297    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
1298                             &params->wm_prog_kernel, &params->wm_prog_data))
1299       return true;
1300 
1301    void *mem_ctx = ralloc_context(NULL);
1302 
1303    nir_builder b;
1304    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
1305                          blorp_shader_type_to_name(blorp_key.base.shader_type));
1306 
1307    nir_variable *v_color =
1308       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
1309 
1310    nir_variable *frag_color =
1311       nir_variable_create(b.shader, nir_var_shader_out,
1312                           glsl_vec4_type(), "gl_FragColor");
1313    frag_color->data.location = FRAG_RESULT_COLOR;
1314 
1315    /* Do an MCS fetch and check if it is equal to the magic clear value */
1316    nir_ssa_def *mcs =
1317       blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)),
1318                                nir_load_layer_id(&b));
1319    nir_ssa_def *is_clear =
1320       blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
1321 
1322    /* If we aren't the clear value, discard. */
1323    nir_discard_if(&b, nir_inot(&b, is_clear));
1324 
1325    nir_ssa_def *clear_color = nir_load_var(&b, v_color);
1326    if (blorp_key.indirect_clear_color && blorp->isl_dev->info->ver <= 8) {
1327       /* Gfx7-8 clear colors are stored as single 0/1 bits */
1328       clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
1329                                  blorp_nir_bit(&b, clear_color, 30),
1330                                  blorp_nir_bit(&b, clear_color, 29),
1331                                  blorp_nir_bit(&b, clear_color, 28));
1332 
1333       if (!blorp_key.int_format)
1334          clear_color = nir_i2f32(&b, clear_color);
1335    }
1336    nir_store_var(&b, frag_color, clear_color, 0xf);
1337 
1338    struct brw_wm_prog_key wm_key;
1339    brw_blorp_init_wm_prog_key(&wm_key);
1340    wm_key.base.tex.compressed_multisample_layout_mask = 1;
1341    wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
1342    wm_key.multisample_fbo = true;
1343 
1344    struct brw_wm_prog_data prog_data;
1345    const unsigned *program =
1346       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
1347                        &prog_data);
1348 
1349    bool result =
1350       blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
1351                            &blorp_key, sizeof(blorp_key),
1352                            program, prog_data.base.program_size,
1353                            &prog_data.base, sizeof(prog_data),
1354                            &params->wm_prog_kernel, &params->wm_prog_data);
1355 
1356    ralloc_free(mem_ctx);
1357    return result;
1358 }
1359 
1360 void
blorp_mcs_partial_resolve(struct blorp_batch * batch,struct blorp_surf * surf,enum isl_format format,uint32_t start_layer,uint32_t num_layers)1361 blorp_mcs_partial_resolve(struct blorp_batch *batch,
1362                           struct blorp_surf *surf,
1363                           enum isl_format format,
1364                           uint32_t start_layer, uint32_t num_layers)
1365 {
1366    struct blorp_params params;
1367    blorp_params_init(&params);
1368    params.snapshot_type = INTEL_SNAPSHOT_MCS_PARTIAL_RESOLVE;
1369 
1370    assert(batch->blorp->isl_dev->info->ver >= 7);
1371 
1372    params.x0 = 0;
1373    params.y0 = 0;
1374    params.x1 = surf->surf->logical_level0_px.width;
1375    params.y1 = surf->surf->logical_level0_px.height;
1376 
1377    brw_blorp_surface_info_init(batch, &params.src, surf, 0,
1378                                start_layer, format, false);
1379    brw_blorp_surface_info_init(batch, &params.dst, surf, 0,
1380                                start_layer, format, true);
1381 
1382    params.num_samples = params.dst.surf.samples;
1383    params.num_layers = num_layers;
1384    params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
1385 
1386    memcpy(&params.wm_inputs.clear_color,
1387           surf->clear_color.f32, sizeof(float) * 4);
1388 
1389    if (!blorp_params_get_mcs_partial_resolve_kernel(batch, &params))
1390       return;
1391 
1392    batch->blorp->exec(batch, &params);
1393 }
1394 
1395 /** Clear a CCS to the "uncompressed" state
1396  *
1397  * This pass is the CCS equivalent of a "HiZ resolve".  It sets the CCS values
1398  * for a given layer/level of a surface to 0x0 which is the "uncompressed"
1399  * state which tells the sampler to go look at the main surface.
1400  */
1401 void
blorp_ccs_ambiguate(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t layer)1402 blorp_ccs_ambiguate(struct blorp_batch *batch,
1403                     struct blorp_surf *surf,
1404                     uint32_t level, uint32_t layer)
1405 {
1406    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1407 
1408    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 10) {
1409       /* On gfx10 and above, we have a hardware resolve op for this */
1410       return blorp_ccs_resolve(batch, surf, level, layer, 1,
1411                                surf->surf->format, ISL_AUX_OP_AMBIGUATE);
1412    }
1413 
1414    struct blorp_params params;
1415    blorp_params_init(&params);
1416    params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
1417 
1418    assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 7);
1419 
1420    const struct isl_format_layout *aux_fmtl =
1421       isl_format_get_layout(surf->aux_surf->format);
1422    assert(aux_fmtl->txc == ISL_TXC_CCS);
1423 
1424    params.dst = (struct brw_blorp_surface_info) {
1425       .enabled = true,
1426       .addr = surf->aux_addr,
1427       .view = {
1428          .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1429          .format = ISL_FORMAT_R32G32B32A32_UINT,
1430          .base_level = 0,
1431          .base_array_layer = 0,
1432          .levels = 1,
1433          .array_len = 1,
1434          .swizzle = ISL_SWIZZLE_IDENTITY,
1435       },
1436    };
1437 
1438    uint32_t z = 0;
1439    if (surf->surf->dim == ISL_SURF_DIM_3D) {
1440       z = layer;
1441       layer = 0;
1442    }
1443 
1444    uint64_t offset_B;
1445    uint32_t x_offset_el, y_offset_el;
1446    isl_surf_get_image_offset_B_tile_el(surf->aux_surf, level, layer, z,
1447                                        &offset_B, &x_offset_el, &y_offset_el);
1448    params.dst.addr.offset += offset_B;
1449 
1450    const uint32_t width_px =
1451       u_minify(surf->aux_surf->logical_level0_px.width, level);
1452    const uint32_t height_px =
1453       u_minify(surf->aux_surf->logical_level0_px.height, level);
1454    const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
1455    const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
1456 
1457    struct isl_tile_info ccs_tile_info;
1458    isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
1459 
1460    /* We're going to map it as a regular RGBA32_UINT surface.  We need to
1461     * downscale a good deal.  We start by computing the area on the CCS to
1462     * clear in units of Y-tiled cache lines.
1463     */
1464    uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
1465    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
1466       /* From the Sky Lake PRM Vol. 12 in the section on planes:
1467        *
1468        *    "The Color Control Surface (CCS) contains the compression status
1469        *    of the cache-line pairs. The compression state of the cache-line
1470        *    pair is specified by 2 bits in the CCS.  Each CCS cache-line
1471        *    represents an area on the main surface of 16x16 sets of 128 byte
1472        *    Y-tiled cache-line-pairs. CCS is always Y tiled."
1473        *
1474        * Each 2-bit surface element in the CCS corresponds to a single
1475        * cache-line pair in the main surface.  This means that 16x16 el block
1476        * in the CCS maps to a Y-tiled cache line.  Fortunately, CCS layouts
1477        * are calculated with a very large alignment so we can round up to a
1478        * whole cache line without worrying about overdraw.
1479        */
1480 
1481       /* On Broadwell and above, a CCS tile is the same as a Y tile when
1482        * viewed at the cache-line granularity.  Fortunately, the horizontal
1483        * and vertical alignment requirements of the CCS are such that we can
1484        * align to an entire cache line without worrying about crossing over
1485        * from one LOD to another.
1486        */
1487       const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
1488       const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
1489       assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
1490       assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
1491 
1492       assert(x_offset_el % x_el_per_cl == 0);
1493       assert(y_offset_el % y_el_per_cl == 0);
1494       x_offset_cl = x_offset_el / x_el_per_cl;
1495       y_offset_cl = y_offset_el / y_el_per_cl;
1496       width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
1497       height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
1498    } else {
1499       /* On gfx7, the CCS tiling is not so nice.  However, there we are
1500        * guaranteed that we only have a single level and slice so we don't
1501        * have to worry about it and can just align to a whole tile.
1502        */
1503       assert(surf->aux_surf->logical_level0_px.depth == 1);
1504       assert(surf->aux_surf->logical_level0_px.array_len == 1);
1505       assert(x_offset_el == 0 && y_offset_el == 0);
1506       const uint32_t width_tl =
1507          DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
1508       const uint32_t height_tl =
1509          DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
1510       x_offset_cl = 0;
1511       y_offset_cl = 0;
1512       width_cl = width_tl * 8;
1513       height_cl = height_tl * 8;
1514    }
1515 
1516    /* We're going to use a RGBA32 format so as to write data as quickly as
1517     * possible.  A y-tiled cache line will then be 1x4 px.
1518     */
1519    const uint32_t x_offset_rgba_px = x_offset_cl;
1520    const uint32_t y_offset_rgba_px = y_offset_cl * 4;
1521    const uint32_t width_rgba_px = width_cl;
1522    const uint32_t height_rgba_px = height_cl * 4;
1523 
1524    ASSERTED bool ok =
1525       isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
1526                     .dim = ISL_SURF_DIM_2D,
1527                     .format = ISL_FORMAT_R32G32B32A32_UINT,
1528                     .width = width_rgba_px + x_offset_rgba_px,
1529                     .height = height_rgba_px + y_offset_rgba_px,
1530                     .depth = 1,
1531                     .levels = 1,
1532                     .array_len = 1,
1533                     .samples = 1,
1534                     .row_pitch_B = surf->aux_surf->row_pitch_B,
1535                     .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1536                     .tiling_flags = ISL_TILING_Y0_BIT);
1537    assert(ok);
1538 
1539    params.x0 = x_offset_rgba_px;
1540    params.y0 = y_offset_rgba_px;
1541    params.x1 = x_offset_rgba_px + width_rgba_px;
1542    params.y1 = y_offset_rgba_px + height_rgba_px;
1543 
1544    /* A CCS value of 0 means "uncompressed." */
1545    memset(&params.wm_inputs.clear_color, 0,
1546           sizeof(params.wm_inputs.clear_color));
1547 
1548    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1549       return;
1550 
1551    batch->blorp->exec(batch, &params);
1552 }
1553