• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/Utils/Local.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include <cstdint>
36 #include <limits>
37 
38 namespace llvm {
39 
40 class AllocaInst;
41 class AssumptionCache;
42 class BasicBlock;
43 class BranchInst;
44 class CallInst;
45 class DbgVariableIntrinsic;
46 class DbgValueInst;
47 class DIBuilder;
48 class Function;
49 class Instruction;
50 class LazyValueInfo;
51 class LoadInst;
52 class MDNode;
53 class MemorySSAUpdater;
54 class PHINode;
55 class StoreInst;
56 class TargetLibraryInfo;
57 class TargetTransformInfo;
58 
59 /// A set of parameters used to control the transforms in the SimplifyCFG pass.
60 /// Options may change depending on the position in the optimization pipeline.
61 /// For example, canonical form that includes switches and branches may later be
62 /// replaced by lookup tables and selects.
63 struct SimplifyCFGOptions {
64   int BonusInstThreshold;
65   bool ForwardSwitchCondToPhi;
66   bool ConvertSwitchToLookupTable;
67   bool NeedCanonicalLoop;
68   bool SinkCommonInsts;
69   AssumptionCache *AC;
70 
71   SimplifyCFGOptions(unsigned BonusThreshold = 1,
72                      bool ForwardSwitchCond = false,
73                      bool SwitchToLookup = false, bool CanonicalLoops = true,
74                      bool SinkCommon = false,
75                      AssumptionCache *AssumpCache = nullptr)
BonusInstThresholdSimplifyCFGOptions76       : BonusInstThreshold(BonusThreshold),
77         ForwardSwitchCondToPhi(ForwardSwitchCond),
78         ConvertSwitchToLookupTable(SwitchToLookup),
79         NeedCanonicalLoop(CanonicalLoops),
80         SinkCommonInsts(SinkCommon),
81         AC(AssumpCache) {}
82 
83   // Support 'builder' pattern to set members by name at construction time.
bonusInstThresholdSimplifyCFGOptions84   SimplifyCFGOptions &bonusInstThreshold(int I) {
85     BonusInstThreshold = I;
86     return *this;
87   }
forwardSwitchCondToPhiSimplifyCFGOptions88   SimplifyCFGOptions &forwardSwitchCondToPhi(bool B) {
89     ForwardSwitchCondToPhi = B;
90     return *this;
91   }
convertSwitchToLookupTableSimplifyCFGOptions92   SimplifyCFGOptions &convertSwitchToLookupTable(bool B) {
93     ConvertSwitchToLookupTable = B;
94     return *this;
95   }
needCanonicalLoopsSimplifyCFGOptions96   SimplifyCFGOptions &needCanonicalLoops(bool B) {
97     NeedCanonicalLoop = B;
98     return *this;
99   }
sinkCommonInstsSimplifyCFGOptions100   SimplifyCFGOptions &sinkCommonInsts(bool B) {
101     SinkCommonInsts = B;
102     return *this;
103   }
setAssumptionCacheSimplifyCFGOptions104   SimplifyCFGOptions &setAssumptionCache(AssumptionCache *Cache) {
105     AC = Cache;
106     return *this;
107   }
108 };
109 
110 //===----------------------------------------------------------------------===//
111 //  Local constant propagation.
112 //
113 
114 /// If a terminator instruction is predicated on a constant value, convert it
115 /// into an unconditional branch to the constant destination.
116 /// This is a nontrivial operation because the successors of this basic block
117 /// must have their PHI nodes updated.
118 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
119 /// conditions and indirectbr addresses this might make dead if
120 /// DeleteDeadConditions is true.
121 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
122                             const TargetLibraryInfo *TLI = nullptr,
123                             DomTreeUpdater *DTU = nullptr);
124 
125 //===----------------------------------------------------------------------===//
126 //  Local dead code elimination.
127 //
128 
129 /// Return true if the result produced by the instruction is not used, and the
130 /// instruction has no side effects.
131 bool isInstructionTriviallyDead(Instruction *I,
132                                 const TargetLibraryInfo *TLI = nullptr);
133 
134 /// Return true if the result produced by the instruction would have no side
135 /// effects if it was not used. This is equivalent to checking whether
136 /// isInstructionTriviallyDead would be true if the use count was 0.
137 bool wouldInstructionBeTriviallyDead(Instruction *I,
138                                      const TargetLibraryInfo *TLI = nullptr);
139 
140 /// If the specified value is a trivially dead instruction, delete it.
141 /// If that makes any of its operands trivially dead, delete them too,
142 /// recursively. Return true if any instructions were deleted.
143 bool RecursivelyDeleteTriviallyDeadInstructions(
144     Value *V, const TargetLibraryInfo *TLI = nullptr,
145     MemorySSAUpdater *MSSAU = nullptr);
146 
147 /// Delete all of the instructions in `DeadInsts`, and all other instructions
148 /// that deleting these in turn causes to be trivially dead.
149 ///
150 /// The initial instructions in the provided vector must all have empty use
151 /// lists and satisfy `isInstructionTriviallyDead`.
152 ///
153 /// `DeadInsts` will be used as scratch storage for this routine and will be
154 /// empty afterward.
155 void RecursivelyDeleteTriviallyDeadInstructions(
156     SmallVectorImpl<Instruction *> &DeadInsts,
157     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr);
158 
159 /// If the specified value is an effectively dead PHI node, due to being a
160 /// def-use chain of single-use nodes that either forms a cycle or is terminated
161 /// by a trivially dead instruction, delete it. If that makes any of its
162 /// operands trivially dead, delete them too, recursively. Return true if a
163 /// change was made.
164 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
165                                   const TargetLibraryInfo *TLI = nullptr);
166 
167 /// Scan the specified basic block and try to simplify any instructions in it
168 /// and recursively delete dead instructions.
169 ///
170 /// This returns true if it changed the code, note that it can delete
171 /// instructions in other blocks as well in this block.
172 bool SimplifyInstructionsInBlock(BasicBlock *BB,
173                                  const TargetLibraryInfo *TLI = nullptr);
174 
175 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
176 /// undef. This is useful for signaling that a variable, e.g. has been
177 /// found dead and hence it's unavailable at a given program point.
178 /// Returns true if the dbg values have been changed.
179 bool replaceDbgUsesWithUndef(Instruction *I);
180 
181 //===----------------------------------------------------------------------===//
182 //  Control Flow Graph Restructuring.
183 //
184 
185 /// Like BasicBlock::removePredecessor, this method is called when we're about
186 /// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
187 /// drops the entries in the PHI nodes for Pred.
188 ///
189 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
190 /// nodes that collapse into identity values.  For example, if we have:
191 ///   x = phi(1, 0, 0, 0)
192 ///   y = and x, z
193 ///
194 /// .. and delete the predecessor corresponding to the '1', this will attempt to
195 /// recursively fold the 'and' to 0.
196 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
197                                   DomTreeUpdater *DTU = nullptr);
198 
199 /// BB is a block with one predecessor and its predecessor is known to have one
200 /// successor (BB!). Eliminate the edge between them, moving the instructions in
201 /// the predecessor into BB. This deletes the predecessor block.
202 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
203 
204 /// BB is known to contain an unconditional branch, and contains no instructions
205 /// other than PHI nodes, potential debug intrinsics and the branch. If
206 /// possible, eliminate BB by rewriting all the predecessors to branch to the
207 /// successor block and return true. If we can't transform, return false.
208 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
209                                              DomTreeUpdater *DTU = nullptr);
210 
211 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
212 /// to be clever about PHI nodes which differ only in the order of the incoming
213 /// values, but instcombine orders them so it usually won't matter.
214 bool EliminateDuplicatePHINodes(BasicBlock *BB);
215 
216 /// This function is used to do simplification of a CFG.  For example, it
217 /// adjusts branches to branches to eliminate the extra hop, it eliminates
218 /// unreachable basic blocks, and does other peephole optimization of the CFG.
219 /// It returns true if a modification was made, possibly deleting the basic
220 /// block that was pointed to. LoopHeaders is an optional input parameter
221 /// providing the set of loop headers that SimplifyCFG should not eliminate.
222 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
223                  const SimplifyCFGOptions &Options = {},
224                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);
225 
226 /// This function is used to flatten a CFG. For example, it uses parallel-and
227 /// and parallel-or mode to collapse if-conditions and merge if-regions with
228 /// identical statements.
229 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
230 
231 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
232 /// branches to us and one of our successors, fold the setcc into the
233 /// predecessor and use logical operations to pick the right destination.
234 bool FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU = nullptr,
235                             unsigned BonusInstThreshold = 1);
236 
237 /// This function takes a virtual register computed by an Instruction and
238 /// replaces it with a slot in the stack frame, allocated via alloca.
239 /// This allows the CFG to be changed around without fear of invalidating the
240 /// SSA information for the value. It returns the pointer to the alloca inserted
241 /// to create a stack slot for X.
242 AllocaInst *DemoteRegToStack(Instruction &X,
243                              bool VolatileLoads = false,
244                              Instruction *AllocaPoint = nullptr);
245 
246 /// This function takes a virtual register computed by a phi node and replaces
247 /// it with a slot in the stack frame, allocated via alloca. The phi node is
248 /// deleted and it returns the pointer to the alloca inserted.
249 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
250 
251 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
252 /// the owning object can be modified and has an alignment less than \p
253 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
254 /// cannot be increased, the known alignment of the value is returned.
255 ///
256 /// It is not always possible to modify the alignment of the underlying object,
257 /// so if alignment is important, a more reliable approach is to simply align
258 /// all global variables and allocation instructions to their preferred
259 /// alignment from the beginning.
260 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
261                                     const DataLayout &DL,
262                                     const Instruction *CxtI = nullptr,
263                                     AssumptionCache *AC = nullptr,
264                                     const DominatorTree *DT = nullptr);
265 
266 /// Try to infer an alignment for the specified pointer.
267 inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
268                                   const Instruction *CxtI = nullptr,
269                                   AssumptionCache *AC = nullptr,
270                                   const DominatorTree *DT = nullptr) {
271   return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
272 }
273 
274 /// Create a call that matches the invoke \p II in terms of arguments,
275 /// attributes, debug information, etc. The call is not placed in a block and it
276 /// will not have a name. The invoke instruction is not removed, nor are the
277 /// uses replaced by the new call.
278 CallInst *createCallMatchingInvoke(InvokeInst *II);
279 
280 /// This function converts the specified invoek into a normall call.
281 void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
282 
283 ///===---------------------------------------------------------------------===//
284 ///  Dbg Intrinsic utilities
285 ///
286 
287 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
288 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
289 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
290                                      StoreInst *SI, DIBuilder &Builder);
291 
292 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
293 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
294 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
295                                      LoadInst *LI, DIBuilder &Builder);
296 
297 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
298 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
299 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
300                                      PHINode *LI, DIBuilder &Builder);
301 
302 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
303 /// llvm.dbg.value intrinsics.
304 bool LowerDbgDeclare(Function &F);
305 
306 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
307 void insertDebugValuesForPHIs(BasicBlock *BB,
308                               SmallVectorImpl<PHINode *> &InsertedPHIs);
309 
310 /// Finds all intrinsics declaring local variables as living in the memory that
311 /// 'V' points to. This may include a mix of dbg.declare and
312 /// dbg.addr intrinsics.
313 TinyPtrVector<DbgVariableIntrinsic *> FindDbgAddrUses(Value *V);
314 
315 /// Finds the llvm.dbg.value intrinsics describing a value.
316 void findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V);
317 
318 /// Finds the debug info intrinsics describing a value.
319 void findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgInsts, Value *V);
320 
321 /// Replaces llvm.dbg.declare instruction when the address it
322 /// describes is replaced with a new value. If Deref is true, an
323 /// additional DW_OP_deref is prepended to the expression. If Offset
324 /// is non-zero, a constant displacement is added to the expression
325 /// (between the optional Deref operations). Offset can be negative.
326 bool replaceDbgDeclare(Value *Address, Value *NewAddress,
327                        Instruction *InsertBefore, DIBuilder &Builder,
328                        uint8_t DIExprFlags, int Offset);
329 
330 /// Replaces llvm.dbg.declare instruction when the alloca it describes
331 /// is replaced with a new value. If Deref is true, an additional
332 /// DW_OP_deref is prepended to the expression. If Offset is non-zero,
333 /// a constant displacement is added to the expression (between the
334 /// optional Deref operations). Offset can be negative. The new
335 /// llvm.dbg.declare is inserted immediately after AI.
336 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
337                                 DIBuilder &Builder, uint8_t DIExprFlags,
338                                 int Offset);
339 
340 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
341 /// is replaced with a new value. If Offset is non-zero, a constant displacement
342 /// is added to the expression (after the mandatory Deref). Offset can be
343 /// negative. New llvm.dbg.value instructions are inserted at the locations of
344 /// the instructions they replace.
345 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
346                               DIBuilder &Builder, int Offset = 0);
347 
348 /// Finds alloca where the value comes from.
349 AllocaInst *findAllocaForValue(Value *V,
350                                DenseMap<Value *, AllocaInst *> &AllocaForValue);
351 
352 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
353 /// debug users of \p I by writing the effect of \p I in a DIExpression.
354 /// Returns true if any debug users were updated.
355 bool salvageDebugInfo(Instruction &I);
356 
357 /// Salvage all debug users of the instruction \p I or mark it as undef if it
358 /// cannot be salvaged.
359 void salvageDebugInfoOrMarkUndef(Instruction &I);
360 
361 /// Implementation of salvageDebugInfo, applying only to instructions in
362 /// \p Insns, rather than all debug users of \p I.
363 bool salvageDebugInfoForDbgValues(Instruction &I,
364                                   ArrayRef<DbgVariableIntrinsic *> Insns);
365 
366 /// Given an instruction \p I and DIExpression \p DIExpr operating on it, write
367 /// the effects of \p I into the returned DIExpression, or return nullptr if
368 /// it cannot be salvaged. \p StackVal: whether DW_OP_stack_value should be
369 /// appended to the expression.
370 DIExpression *salvageDebugInfoImpl(Instruction &I, DIExpression *DIExpr,
371                                    bool StackVal);
372 
373 /// Point debug users of \p From to \p To or salvage them. Use this function
374 /// only when replacing all uses of \p From with \p To, with a guarantee that
375 /// \p From is going to be deleted.
376 ///
377 /// Follow these rules to prevent use-before-def of \p To:
378 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
379 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
380 ///     \p To will be inserted after.
381 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
382 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
383 ///
384 /// If a debug user cannot be preserved without reordering variable updates or
385 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
386 /// or deleted. Returns true if any debug users were updated.
387 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
388                            DominatorTree &DT);
389 
390 /// Remove all instructions from a basic block other than it's terminator
391 /// and any present EH pad instructions.
392 unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
393 
394 /// Insert an unreachable instruction before the specified
395 /// instruction, making it and the rest of the code in the block dead.
396 unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap,
397                              bool PreserveLCSSA = false,
398                              DomTreeUpdater *DTU = nullptr,
399                              MemorySSAUpdater *MSSAU = nullptr);
400 
401 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
402 /// block.  This also splits the basic block where CI is located, because
403 /// InvokeInst is a terminator instruction.  Returns the newly split basic
404 /// block.
405 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
406                                              BasicBlock *UnwindEdge);
407 
408 /// Replace 'BB's terminator with one that does not have an unwind successor
409 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
410 /// successor.
411 ///
412 /// \param BB  Block whose terminator will be replaced.  Its terminator must
413 ///            have an unwind successor.
414 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
415 
416 /// Remove all blocks that can not be reached from the function's entry.
417 ///
418 /// Returns true if any basic block was removed.
419 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
420                              MemorySSAUpdater *MSSAU = nullptr);
421 
422 /// Combine the metadata of two instructions so that K can replace J. Some
423 /// metadata kinds can only be kept if K does not move, meaning it dominated
424 /// J in the original IR.
425 ///
426 /// Metadata not listed as known via KnownIDs is removed
427 void combineMetadata(Instruction *K, const Instruction *J,
428                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
429 
430 /// Combine the metadata of two instructions so that K can replace J. This
431 /// specifically handles the case of CSE-like transformations. Some
432 /// metadata can only be kept if K dominates J. For this to be correct,
433 /// K cannot be hoisted.
434 ///
435 /// Unknown metadata is removed.
436 void combineMetadataForCSE(Instruction *K, const Instruction *J,
437                            bool DoesKMove);
438 
439 /// Copy the metadata from the source instruction to the destination (the
440 /// replacement for the source instruction).
441 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
442 
443 /// Patch the replacement so that it is not more restrictive than the value
444 /// being replaced. It assumes that the replacement does not get moved from
445 /// its original position.
446 void patchReplacementInstruction(Instruction *I, Value *Repl);
447 
448 // Replace each use of 'From' with 'To', if that use does not belong to basic
449 // block where 'From' is defined. Returns the number of replacements made.
450 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
451 
452 /// Replace each use of 'From' with 'To' if that use is dominated by
453 /// the given edge.  Returns the number of replacements made.
454 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
455                                   const BasicBlockEdge &Edge);
456 /// Replace each use of 'From' with 'To' if that use is dominated by
457 /// the end of the given BasicBlock. Returns the number of replacements made.
458 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
459                                   const BasicBlock *BB);
460 
461 /// Return true if this call calls a gc leaf function.
462 ///
463 /// A leaf function is a function that does not safepoint the thread during its
464 /// execution.  During a call or invoke to such a function, the callers stack
465 /// does not have to be made parseable.
466 ///
467 /// Most passes can and should ignore this information, and it is only used
468 /// during lowering by the GC infrastructure.
469 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
470 
471 /// Copy a nonnull metadata node to a new load instruction.
472 ///
473 /// This handles mapping it to range metadata if the new load is an integer
474 /// load instead of a pointer load.
475 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
476 
477 /// Copy a range metadata node to a new load instruction.
478 ///
479 /// This handles mapping it to nonnull metadata if the new load is a pointer
480 /// load instead of an integer load and the range doesn't cover null.
481 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
482                        LoadInst &NewLI);
483 
484 /// Remove the debug intrinsic instructions for the given instruction.
485 void dropDebugUsers(Instruction &I);
486 
487 /// Hoist all of the instructions in the \p IfBlock to the dominant block
488 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
489 ///
490 /// The moved instructions receive the insertion point debug location values
491 /// (DILocations) and their debug intrinsic instructions are removed.
492 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
493                               BasicBlock *BB);
494 
495 //===----------------------------------------------------------------------===//
496 //  Intrinsic pattern matching
497 //
498 
499 /// Try to match a bswap or bitreverse idiom.
500 ///
501 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
502 /// instructions are returned in \c InsertedInsts. They will all have been added
503 /// to a basic block.
504 ///
505 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
506 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
507 /// to BW / 4 nodes to be searched, so is significantly faster.
508 ///
509 /// This function returns true on a successful match or false otherwise.
510 bool recognizeBSwapOrBitReverseIdiom(
511     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
512     SmallVectorImpl<Instruction *> &InsertedInsts);
513 
514 //===----------------------------------------------------------------------===//
515 //  Sanitizer utilities
516 //
517 
518 /// Given a CallInst, check if it calls a string function known to CodeGen,
519 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
520 /// to intercept string functions and want to avoid converting them to target
521 /// specific instructions.
522 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
523                                             const TargetLibraryInfo *TLI);
524 
525 //===----------------------------------------------------------------------===//
526 //  Transform predicates
527 //
528 
529 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
530 /// value?
531 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
532 
533 } // end namespace llvm
534 
535 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
536