1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32 #include <sys/stat.h>
33 #include <fcntl.h>
34
35 #include "brw_eu_defines.h"
36 #include "brw_eu.h"
37 #include "brw_shader.h"
38 #include "brw_gfx_ver_enum.h"
39 #include "dev/intel_debug.h"
40
41 #include "util/ralloc.h"
42
43 /* Returns a conditional modifier that negates the condition. */
44 enum brw_conditional_mod
brw_negate_cmod(enum brw_conditional_mod cmod)45 brw_negate_cmod(enum brw_conditional_mod cmod)
46 {
47 switch (cmod) {
48 case BRW_CONDITIONAL_Z:
49 return BRW_CONDITIONAL_NZ;
50 case BRW_CONDITIONAL_NZ:
51 return BRW_CONDITIONAL_Z;
52 case BRW_CONDITIONAL_G:
53 return BRW_CONDITIONAL_LE;
54 case BRW_CONDITIONAL_GE:
55 return BRW_CONDITIONAL_L;
56 case BRW_CONDITIONAL_L:
57 return BRW_CONDITIONAL_GE;
58 case BRW_CONDITIONAL_LE:
59 return BRW_CONDITIONAL_G;
60 default:
61 unreachable("Can't negate this cmod");
62 }
63 }
64
65 /* Returns the corresponding conditional mod for swapping src0 and
66 * src1 in e.g. CMP.
67 */
68 enum brw_conditional_mod
brw_swap_cmod(enum brw_conditional_mod cmod)69 brw_swap_cmod(enum brw_conditional_mod cmod)
70 {
71 switch (cmod) {
72 case BRW_CONDITIONAL_Z:
73 case BRW_CONDITIONAL_NZ:
74 return cmod;
75 case BRW_CONDITIONAL_G:
76 return BRW_CONDITIONAL_L;
77 case BRW_CONDITIONAL_GE:
78 return BRW_CONDITIONAL_LE;
79 case BRW_CONDITIONAL_L:
80 return BRW_CONDITIONAL_G;
81 case BRW_CONDITIONAL_LE:
82 return BRW_CONDITIONAL_GE;
83 default:
84 return BRW_CONDITIONAL_NONE;
85 }
86 }
87
88 /**
89 * Get the least significant bit offset of the i+1-th component of immediate
90 * type \p type. For \p i equal to the two's complement of j, return the
91 * offset of the j-th component starting from the end of the vector. For
92 * scalar register types return zero.
93 */
94 static unsigned
imm_shift(enum brw_reg_type type,unsigned i)95 imm_shift(enum brw_reg_type type, unsigned i)
96 {
97 assert(type != BRW_REGISTER_TYPE_UV && type != BRW_REGISTER_TYPE_V &&
98 "Not implemented.");
99
100 if (type == BRW_REGISTER_TYPE_VF)
101 return 8 * (i & 3);
102 else
103 return 0;
104 }
105
106 /**
107 * Swizzle an arbitrary immediate \p x of the given type according to the
108 * permutation specified as \p swz.
109 */
110 uint32_t
brw_swizzle_immediate(enum brw_reg_type type,uint32_t x,unsigned swz)111 brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz)
112 {
113 if (imm_shift(type, 1)) {
114 const unsigned n = 32 / imm_shift(type, 1);
115 uint32_t y = 0;
116
117 for (unsigned i = 0; i < n; i++) {
118 /* Shift the specified component all the way to the right and left to
119 * discard any undesired L/MSBs, then shift it right into component i.
120 */
121 y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3))
122 << imm_shift(type, ~0u)
123 >> imm_shift(type, ~0u - i);
124 }
125
126 return y;
127 } else {
128 return x;
129 }
130 }
131
132 unsigned
brw_get_default_exec_size(struct brw_codegen * p)133 brw_get_default_exec_size(struct brw_codegen *p)
134 {
135 return p->current->exec_size;
136 }
137
138 unsigned
brw_get_default_group(struct brw_codegen * p)139 brw_get_default_group(struct brw_codegen *p)
140 {
141 return p->current->group;
142 }
143
144 unsigned
brw_get_default_access_mode(struct brw_codegen * p)145 brw_get_default_access_mode(struct brw_codegen *p)
146 {
147 return p->current->access_mode;
148 }
149
150 struct tgl_swsb
brw_get_default_swsb(struct brw_codegen * p)151 brw_get_default_swsb(struct brw_codegen *p)
152 {
153 return p->current->swsb;
154 }
155
156 void
brw_set_default_exec_size(struct brw_codegen * p,unsigned value)157 brw_set_default_exec_size(struct brw_codegen *p, unsigned value)
158 {
159 p->current->exec_size = value;
160 }
161
brw_set_default_predicate_control(struct brw_codegen * p,enum brw_predicate pc)162 void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc)
163 {
164 p->current->predicate = pc;
165 }
166
brw_set_default_predicate_inverse(struct brw_codegen * p,bool predicate_inverse)167 void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse)
168 {
169 p->current->pred_inv = predicate_inverse;
170 }
171
brw_set_default_flag_reg(struct brw_codegen * p,int reg,int subreg)172 void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg)
173 {
174 assert(subreg < 2);
175 p->current->flag_subreg = reg * 2 + subreg;
176 }
177
brw_set_default_access_mode(struct brw_codegen * p,unsigned access_mode)178 void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode )
179 {
180 p->current->access_mode = access_mode;
181 }
182
183 void
brw_set_default_compression_control(struct brw_codegen * p,enum brw_compression compression_control)184 brw_set_default_compression_control(struct brw_codegen *p,
185 enum brw_compression compression_control)
186 {
187 switch (compression_control) {
188 case BRW_COMPRESSION_NONE:
189 /* This is the "use the first set of bits of dmask/vmask/arf
190 * according to execsize" option.
191 */
192 p->current->group = 0;
193 break;
194 case BRW_COMPRESSION_2NDHALF:
195 /* For SIMD8, this is "use the second set of 8 bits." */
196 p->current->group = 8;
197 break;
198 case BRW_COMPRESSION_COMPRESSED:
199 /* For SIMD16 instruction compression, use the first set of 16 bits
200 * since we don't do SIMD32 dispatch.
201 */
202 p->current->group = 0;
203 break;
204 default:
205 unreachable("not reached");
206 }
207
208 if (p->devinfo->ver <= 6) {
209 p->current->compressed =
210 (compression_control == BRW_COMPRESSION_COMPRESSED);
211 }
212 }
213
214 /**
215 * Enable or disable instruction compression on the given instruction leaving
216 * the currently selected channel enable group untouched.
217 */
218 void
brw_inst_set_compression(const struct intel_device_info * devinfo,brw_inst * inst,bool on)219 brw_inst_set_compression(const struct intel_device_info *devinfo,
220 brw_inst *inst, bool on)
221 {
222 if (devinfo->ver >= 6) {
223 /* No-op, the EU will figure out for us whether the instruction needs to
224 * be compressed.
225 */
226 } else {
227 /* The channel group and compression controls are non-orthogonal, there
228 * are two possible representations for uncompressed instructions and we
229 * may need to preserve the current one to avoid changing the selected
230 * channel group inadvertently.
231 */
232 if (on)
233 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_COMPRESSED);
234 else if (brw_inst_qtr_control(devinfo, inst)
235 == BRW_COMPRESSION_COMPRESSED)
236 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
237 }
238 }
239
240 void
brw_set_default_compression(struct brw_codegen * p,bool on)241 brw_set_default_compression(struct brw_codegen *p, bool on)
242 {
243 p->current->compressed = on;
244 }
245
246 /**
247 * Apply the range of channel enable signals given by
248 * [group, group + exec_size) to the instruction passed as argument.
249 */
250 void
brw_inst_set_group(const struct intel_device_info * devinfo,brw_inst * inst,unsigned group)251 brw_inst_set_group(const struct intel_device_info *devinfo,
252 brw_inst *inst, unsigned group)
253 {
254 if (devinfo->ver >= 7) {
255 assert(group % 4 == 0 && group < 32);
256 brw_inst_set_qtr_control(devinfo, inst, group / 8);
257 brw_inst_set_nib_control(devinfo, inst, (group / 4) % 2);
258
259 } else if (devinfo->ver == 6) {
260 assert(group % 8 == 0 && group < 32);
261 brw_inst_set_qtr_control(devinfo, inst, group / 8);
262
263 } else {
264 assert(group % 8 == 0 && group < 16);
265 /* The channel group and compression controls are non-orthogonal, there
266 * are two possible representations for group zero and we may need to
267 * preserve the current one to avoid changing the selected compression
268 * enable inadvertently.
269 */
270 if (group == 8)
271 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_2NDHALF);
272 else if (brw_inst_qtr_control(devinfo, inst) == BRW_COMPRESSION_2NDHALF)
273 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
274 }
275 }
276
277 void
brw_set_default_group(struct brw_codegen * p,unsigned group)278 brw_set_default_group(struct brw_codegen *p, unsigned group)
279 {
280 p->current->group = group;
281 }
282
brw_set_default_mask_control(struct brw_codegen * p,unsigned value)283 void brw_set_default_mask_control( struct brw_codegen *p, unsigned value )
284 {
285 p->current->mask_control = value;
286 }
287
brw_set_default_saturate(struct brw_codegen * p,bool enable)288 void brw_set_default_saturate( struct brw_codegen *p, bool enable )
289 {
290 p->current->saturate = enable;
291 }
292
brw_set_default_acc_write_control(struct brw_codegen * p,unsigned value)293 void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value)
294 {
295 p->current->acc_wr_control = value;
296 }
297
brw_set_default_swsb(struct brw_codegen * p,struct tgl_swsb value)298 void brw_set_default_swsb(struct brw_codegen *p, struct tgl_swsb value)
299 {
300 p->current->swsb = value;
301 }
302
brw_push_insn_state(struct brw_codegen * p)303 void brw_push_insn_state( struct brw_codegen *p )
304 {
305 assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]);
306 *(p->current + 1) = *p->current;
307 p->current++;
308 }
309
brw_pop_insn_state(struct brw_codegen * p)310 void brw_pop_insn_state( struct brw_codegen *p )
311 {
312 assert(p->current != p->stack);
313 p->current--;
314 }
315
316
317 /***********************************************************************
318 */
319 void
brw_init_codegen(const struct brw_isa_info * isa,struct brw_codegen * p,void * mem_ctx)320 brw_init_codegen(const struct brw_isa_info *isa,
321 struct brw_codegen *p, void *mem_ctx)
322 {
323 memset(p, 0, sizeof(*p));
324
325 p->isa = isa;
326 p->devinfo = isa->devinfo;
327 p->automatic_exec_sizes = true;
328 /*
329 * Set the initial instruction store array size to 1024, if found that
330 * isn't enough, then it will double the store size at brw_next_insn()
331 * until out of memory.
332 */
333 p->store_size = 1024;
334 p->store = rzalloc_array(mem_ctx, brw_inst, p->store_size);
335 p->nr_insn = 0;
336 p->current = p->stack;
337 memset(p->current, 0, sizeof(p->current[0]));
338
339 p->mem_ctx = mem_ctx;
340
341 /* Some defaults?
342 */
343 brw_set_default_exec_size(p, BRW_EXECUTE_8);
344 brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */
345 brw_set_default_saturate(p, 0);
346 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
347
348 /* Set up control flow stack */
349 p->if_stack_depth = 0;
350 p->if_stack_array_size = 16;
351 p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size);
352
353 p->loop_stack_depth = 0;
354 p->loop_stack_array_size = 16;
355 p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
356 p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
357 }
358
359
brw_get_program(struct brw_codegen * p,unsigned * sz)360 const unsigned *brw_get_program( struct brw_codegen *p,
361 unsigned *sz )
362 {
363 *sz = p->next_insn_offset;
364 return (const unsigned *)p->store;
365 }
366
367 const struct brw_shader_reloc *
brw_get_shader_relocs(struct brw_codegen * p,unsigned * num_relocs)368 brw_get_shader_relocs(struct brw_codegen *p, unsigned *num_relocs)
369 {
370 *num_relocs = p->num_relocs;
371 return p->relocs;
372 }
373
brw_try_override_assembly(struct brw_codegen * p,int start_offset,const char * identifier)374 bool brw_try_override_assembly(struct brw_codegen *p, int start_offset,
375 const char *identifier)
376 {
377 const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH");
378 if (!read_path) {
379 return false;
380 }
381
382 char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier);
383
384 int fd = open(name, O_RDONLY);
385 ralloc_free(name);
386
387 if (fd == -1) {
388 return false;
389 }
390
391 struct stat sb;
392 if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
393 close(fd);
394 return false;
395 }
396
397 p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_inst);
398 p->nr_insn += sb.st_size / sizeof(brw_inst);
399
400 p->next_insn_offset = start_offset + sb.st_size;
401 p->store_size = (start_offset + sb.st_size) / sizeof(brw_inst);
402 p->store = (brw_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset);
403 assert(p->store);
404
405 ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size);
406 close(fd);
407 if (ret != sb.st_size) {
408 return false;
409 }
410
411 ASSERTED bool valid =
412 brw_validate_instructions(p->isa, p->store,
413 start_offset, p->next_insn_offset,
414 NULL);
415 assert(valid);
416
417 return true;
418 }
419
420 const struct brw_label *
brw_find_label(const struct brw_label * root,int offset)421 brw_find_label(const struct brw_label *root, int offset)
422 {
423 const struct brw_label *curr = root;
424
425 if (curr != NULL)
426 {
427 do {
428 if (curr->offset == offset)
429 return curr;
430
431 curr = curr->next;
432 } while (curr != NULL);
433 }
434
435 return curr;
436 }
437
438 void
brw_create_label(struct brw_label ** labels,int offset,void * mem_ctx)439 brw_create_label(struct brw_label **labels, int offset, void *mem_ctx)
440 {
441 if (*labels != NULL) {
442 struct brw_label *curr = *labels;
443 struct brw_label *prev;
444
445 do {
446 prev = curr;
447
448 if (curr->offset == offset)
449 return;
450
451 curr = curr->next;
452 } while (curr != NULL);
453
454 curr = ralloc(mem_ctx, struct brw_label);
455 curr->offset = offset;
456 curr->number = prev->number + 1;
457 curr->next = NULL;
458 prev->next = curr;
459 } else {
460 struct brw_label *root = ralloc(mem_ctx, struct brw_label);
461 root->number = 0;
462 root->offset = offset;
463 root->next = NULL;
464 *labels = root;
465 }
466 }
467
468 const struct brw_label *
brw_label_assembly(const struct brw_isa_info * isa,const void * assembly,int start,int end,void * mem_ctx)469 brw_label_assembly(const struct brw_isa_info *isa,
470 const void *assembly, int start, int end, void *mem_ctx)
471 {
472 const struct intel_device_info *const devinfo = isa->devinfo;
473
474 struct brw_label *root_label = NULL;
475
476 int to_bytes_scale = sizeof(brw_inst) / brw_jump_scale(devinfo);
477
478 for (int offset = start; offset < end;) {
479 const brw_inst *inst = (const brw_inst *) ((const char *) assembly + offset);
480 brw_inst uncompacted;
481
482 bool is_compact = brw_inst_cmpt_control(devinfo, inst);
483
484 if (is_compact) {
485 brw_compact_inst *compacted = (brw_compact_inst *)inst;
486 brw_uncompact_instruction(isa, &uncompacted, compacted);
487 inst = &uncompacted;
488 }
489
490 if (brw_has_uip(devinfo, brw_inst_opcode(isa, inst))) {
491 /* Instructions that have UIP also have JIP. */
492 brw_create_label(&root_label,
493 offset + brw_inst_uip(devinfo, inst) * to_bytes_scale, mem_ctx);
494 brw_create_label(&root_label,
495 offset + brw_inst_jip(devinfo, inst) * to_bytes_scale, mem_ctx);
496 } else if (brw_has_jip(devinfo, brw_inst_opcode(isa, inst))) {
497 int jip;
498 if (devinfo->ver >= 7) {
499 jip = brw_inst_jip(devinfo, inst);
500 } else {
501 jip = brw_inst_gfx6_jump_count(devinfo, inst);
502 }
503
504 brw_create_label(&root_label, offset + jip * to_bytes_scale, mem_ctx);
505 }
506
507 if (is_compact) {
508 offset += sizeof(brw_compact_inst);
509 } else {
510 offset += sizeof(brw_inst);
511 }
512 }
513
514 return root_label;
515 }
516
517 void
brw_disassemble_with_labels(const struct brw_isa_info * isa,const void * assembly,int start,int end,FILE * out)518 brw_disassemble_with_labels(const struct brw_isa_info *isa,
519 const void *assembly, int start, int end, FILE *out)
520 {
521 void *mem_ctx = ralloc_context(NULL);
522 const struct brw_label *root_label =
523 brw_label_assembly(isa, assembly, start, end, mem_ctx);
524
525 brw_disassemble(isa, assembly, start, end, root_label, out);
526
527 ralloc_free(mem_ctx);
528 }
529
530 void
brw_disassemble(const struct brw_isa_info * isa,const void * assembly,int start,int end,const struct brw_label * root_label,FILE * out)531 brw_disassemble(const struct brw_isa_info *isa,
532 const void *assembly, int start, int end,
533 const struct brw_label *root_label, FILE *out)
534 {
535 const struct intel_device_info *devinfo = isa->devinfo;
536
537 bool dump_hex = INTEL_DEBUG(DEBUG_HEX);
538
539 for (int offset = start; offset < end;) {
540 const brw_inst *insn = (const brw_inst *)((char *)assembly + offset);
541 brw_inst uncompacted;
542
543 if (root_label != NULL) {
544 const struct brw_label *label = brw_find_label(root_label, offset);
545 if (label != NULL) {
546 fprintf(out, "\nLABEL%d:\n", label->number);
547 }
548 }
549
550 bool compacted = brw_inst_cmpt_control(devinfo, insn);
551 if (0)
552 fprintf(out, "0x%08x: ", offset);
553
554 if (compacted) {
555 brw_compact_inst *compacted = (brw_compact_inst *)insn;
556 if (dump_hex) {
557 unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
558 const unsigned int blank_spaces = 24;
559 for (int i = 0 ; i < 8; i = i + 4) {
560 fprintf(out, "%02x %02x %02x %02x ",
561 insn_ptr[i],
562 insn_ptr[i + 1],
563 insn_ptr[i + 2],
564 insn_ptr[i + 3]);
565 }
566 /* Make compacted instructions hex value output vertically aligned
567 * with uncompacted instructions hex value
568 */
569 fprintf(out, "%*c", blank_spaces, ' ');
570 }
571
572 brw_uncompact_instruction(isa, &uncompacted, compacted);
573 insn = &uncompacted;
574 } else {
575 if (dump_hex) {
576 unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
577 for (int i = 0 ; i < 16; i = i + 4) {
578 fprintf(out, "%02x %02x %02x %02x ",
579 insn_ptr[i],
580 insn_ptr[i + 1],
581 insn_ptr[i + 2],
582 insn_ptr[i + 3]);
583 }
584 }
585 }
586
587 brw_disassemble_inst(out, isa, insn, compacted, offset, root_label);
588
589 if (compacted) {
590 offset += sizeof(brw_compact_inst);
591 } else {
592 offset += sizeof(brw_inst);
593 }
594 }
595 }
596
597 static const struct opcode_desc opcode_descs[] = {
598 /* IR, HW, name, nsrc, ndst, gfx_vers */
599 { BRW_OPCODE_ILLEGAL, 0, "illegal", 0, 0, GFX_ALL },
600 { BRW_OPCODE_SYNC, 1, "sync", 1, 0, GFX_GE(GFX12) },
601 { BRW_OPCODE_MOV, 1, "mov", 1, 1, GFX_LT(GFX12) },
602 { BRW_OPCODE_MOV, 97, "mov", 1, 1, GFX_GE(GFX12) },
603 { BRW_OPCODE_SEL, 2, "sel", 2, 1, GFX_LT(GFX12) },
604 { BRW_OPCODE_SEL, 98, "sel", 2, 1, GFX_GE(GFX12) },
605 { BRW_OPCODE_MOVI, 3, "movi", 2, 1, GFX_GE(GFX45) & GFX_LT(GFX12) },
606 { BRW_OPCODE_MOVI, 99, "movi", 2, 1, GFX_GE(GFX12) },
607 { BRW_OPCODE_NOT, 4, "not", 1, 1, GFX_LT(GFX12) },
608 { BRW_OPCODE_NOT, 100, "not", 1, 1, GFX_GE(GFX12) },
609 { BRW_OPCODE_AND, 5, "and", 2, 1, GFX_LT(GFX12) },
610 { BRW_OPCODE_AND, 101, "and", 2, 1, GFX_GE(GFX12) },
611 { BRW_OPCODE_OR, 6, "or", 2, 1, GFX_LT(GFX12) },
612 { BRW_OPCODE_OR, 102, "or", 2, 1, GFX_GE(GFX12) },
613 { BRW_OPCODE_XOR, 7, "xor", 2, 1, GFX_LT(GFX12) },
614 { BRW_OPCODE_XOR, 103, "xor", 2, 1, GFX_GE(GFX12) },
615 { BRW_OPCODE_SHR, 8, "shr", 2, 1, GFX_LT(GFX12) },
616 { BRW_OPCODE_SHR, 104, "shr", 2, 1, GFX_GE(GFX12) },
617 { BRW_OPCODE_SHL, 9, "shl", 2, 1, GFX_LT(GFX12) },
618 { BRW_OPCODE_SHL, 105, "shl", 2, 1, GFX_GE(GFX12) },
619 { BRW_OPCODE_DIM, 10, "dim", 1, 1, GFX75 },
620 { BRW_OPCODE_SMOV, 10, "smov", 0, 0, GFX_GE(GFX8) & GFX_LT(GFX12) },
621 { BRW_OPCODE_SMOV, 106, "smov", 0, 0, GFX_GE(GFX12) },
622 { BRW_OPCODE_ASR, 12, "asr", 2, 1, GFX_LT(GFX12) },
623 { BRW_OPCODE_ASR, 108, "asr", 2, 1, GFX_GE(GFX12) },
624 { BRW_OPCODE_ROR, 14, "ror", 2, 1, GFX11 },
625 { BRW_OPCODE_ROR, 110, "ror", 2, 1, GFX_GE(GFX12) },
626 { BRW_OPCODE_ROL, 15, "rol", 2, 1, GFX11 },
627 { BRW_OPCODE_ROL, 111, "rol", 2, 1, GFX_GE(GFX12) },
628 { BRW_OPCODE_CMP, 16, "cmp", 2, 1, GFX_LT(GFX12) },
629 { BRW_OPCODE_CMP, 112, "cmp", 2, 1, GFX_GE(GFX12) },
630 { BRW_OPCODE_CMPN, 17, "cmpn", 2, 1, GFX_LT(GFX12) },
631 { BRW_OPCODE_CMPN, 113, "cmpn", 2, 1, GFX_GE(GFX12) },
632 { BRW_OPCODE_CSEL, 18, "csel", 3, 1, GFX_GE(GFX8) & GFX_LT(GFX12) },
633 { BRW_OPCODE_CSEL, 114, "csel", 3, 1, GFX_GE(GFX12) },
634 { BRW_OPCODE_F32TO16, 19, "f32to16", 1, 1, GFX7 | GFX75 },
635 { BRW_OPCODE_F16TO32, 20, "f16to32", 1, 1, GFX7 | GFX75 },
636 { BRW_OPCODE_BFREV, 23, "bfrev", 1, 1, GFX_GE(GFX7) & GFX_LT(GFX12) },
637 { BRW_OPCODE_BFREV, 119, "bfrev", 1, 1, GFX_GE(GFX12) },
638 { BRW_OPCODE_BFE, 24, "bfe", 3, 1, GFX_GE(GFX7) & GFX_LT(GFX12) },
639 { BRW_OPCODE_BFE, 120, "bfe", 3, 1, GFX_GE(GFX12) },
640 { BRW_OPCODE_BFI1, 25, "bfi1", 2, 1, GFX_GE(GFX7) & GFX_LT(GFX12) },
641 { BRW_OPCODE_BFI1, 121, "bfi1", 2, 1, GFX_GE(GFX12) },
642 { BRW_OPCODE_BFI2, 26, "bfi2", 3, 1, GFX_GE(GFX7) & GFX_LT(GFX12) },
643 { BRW_OPCODE_BFI2, 122, "bfi2", 3, 1, GFX_GE(GFX12) },
644 { BRW_OPCODE_JMPI, 32, "jmpi", 0, 0, GFX_ALL },
645 { BRW_OPCODE_BRD, 33, "brd", 0, 0, GFX_GE(GFX7) },
646 { BRW_OPCODE_IF, 34, "if", 0, 0, GFX_ALL },
647 { BRW_OPCODE_IFF, 35, "iff", 0, 0, GFX_LE(GFX5) },
648 { BRW_OPCODE_BRC, 35, "brc", 0, 0, GFX_GE(GFX7) },
649 { BRW_OPCODE_ELSE, 36, "else", 0, 0, GFX_ALL },
650 { BRW_OPCODE_ENDIF, 37, "endif", 0, 0, GFX_ALL },
651 { BRW_OPCODE_DO, 38, "do", 0, 0, GFX_LE(GFX5) },
652 { BRW_OPCODE_CASE, 38, "case", 0, 0, GFX6 },
653 { BRW_OPCODE_WHILE, 39, "while", 0, 0, GFX_ALL },
654 { BRW_OPCODE_BREAK, 40, "break", 0, 0, GFX_ALL },
655 { BRW_OPCODE_CONTINUE, 41, "cont", 0, 0, GFX_ALL },
656 { BRW_OPCODE_HALT, 42, "halt", 0, 0, GFX_ALL },
657 { BRW_OPCODE_CALLA, 43, "calla", 0, 0, GFX_GE(GFX75) },
658 { BRW_OPCODE_MSAVE, 44, "msave", 0, 0, GFX_LE(GFX5) },
659 { BRW_OPCODE_CALL, 44, "call", 0, 0, GFX_GE(GFX6) },
660 { BRW_OPCODE_MREST, 45, "mrest", 0, 0, GFX_LE(GFX5) },
661 { BRW_OPCODE_RET, 45, "ret", 0, 0, GFX_GE(GFX6) },
662 { BRW_OPCODE_PUSH, 46, "push", 0, 0, GFX_LE(GFX5) },
663 { BRW_OPCODE_FORK, 46, "fork", 0, 0, GFX6 },
664 { BRW_OPCODE_GOTO, 46, "goto", 0, 0, GFX_GE(GFX8) },
665 { BRW_OPCODE_POP, 47, "pop", 2, 0, GFX_LE(GFX5) },
666 { BRW_OPCODE_WAIT, 48, "wait", 0, 1, GFX_LT(GFX12) },
667 { BRW_OPCODE_SEND, 49, "send", 1, 1, GFX_LT(GFX12) },
668 { BRW_OPCODE_SENDC, 50, "sendc", 1, 1, GFX_LT(GFX12) },
669 { BRW_OPCODE_SEND, 49, "send", 2, 1, GFX_GE(GFX12) },
670 { BRW_OPCODE_SENDC, 50, "sendc", 2, 1, GFX_GE(GFX12) },
671 { BRW_OPCODE_SENDS, 51, "sends", 2, 1, GFX_GE(GFX9) & GFX_LT(GFX12) },
672 { BRW_OPCODE_SENDSC, 52, "sendsc", 2, 1, GFX_GE(GFX9) & GFX_LT(GFX12) },
673 { BRW_OPCODE_MATH, 56, "math", 2, 1, GFX_GE(GFX6) },
674 { BRW_OPCODE_ADD, 64, "add", 2, 1, GFX_ALL },
675 { BRW_OPCODE_MUL, 65, "mul", 2, 1, GFX_ALL },
676 { BRW_OPCODE_AVG, 66, "avg", 2, 1, GFX_ALL },
677 { BRW_OPCODE_FRC, 67, "frc", 1, 1, GFX_ALL },
678 { BRW_OPCODE_RNDU, 68, "rndu", 1, 1, GFX_ALL },
679 { BRW_OPCODE_RNDD, 69, "rndd", 1, 1, GFX_ALL },
680 { BRW_OPCODE_RNDE, 70, "rnde", 1, 1, GFX_ALL },
681 { BRW_OPCODE_RNDZ, 71, "rndz", 1, 1, GFX_ALL },
682 { BRW_OPCODE_MAC, 72, "mac", 2, 1, GFX_ALL },
683 { BRW_OPCODE_MACH, 73, "mach", 2, 1, GFX_ALL },
684 { BRW_OPCODE_LZD, 74, "lzd", 1, 1, GFX_ALL },
685 { BRW_OPCODE_FBH, 75, "fbh", 1, 1, GFX_GE(GFX7) },
686 { BRW_OPCODE_FBL, 76, "fbl", 1, 1, GFX_GE(GFX7) },
687 { BRW_OPCODE_CBIT, 77, "cbit", 1, 1, GFX_GE(GFX7) },
688 { BRW_OPCODE_ADDC, 78, "addc", 2, 1, GFX_GE(GFX7) },
689 { BRW_OPCODE_SUBB, 79, "subb", 2, 1, GFX_GE(GFX7) },
690 { BRW_OPCODE_SAD2, 80, "sad2", 2, 1, GFX_ALL },
691 { BRW_OPCODE_SADA2, 81, "sada2", 2, 1, GFX_ALL },
692 { BRW_OPCODE_ADD3, 82, "add3", 3, 1, GFX_GE(GFX125) },
693 { BRW_OPCODE_DP4, 84, "dp4", 2, 1, GFX_LT(GFX11) },
694 { BRW_OPCODE_DPH, 85, "dph", 2, 1, GFX_LT(GFX11) },
695 { BRW_OPCODE_DP3, 86, "dp3", 2, 1, GFX_LT(GFX11) },
696 { BRW_OPCODE_DP2, 87, "dp2", 2, 1, GFX_LT(GFX11) },
697 { BRW_OPCODE_DP4A, 88, "dp4a", 3, 1, GFX_GE(GFX12) },
698 { BRW_OPCODE_LINE, 89, "line", 2, 1, GFX_LE(GFX10) },
699 { BRW_OPCODE_PLN, 90, "pln", 2, 1, GFX_GE(GFX45) & GFX_LE(GFX10) },
700 { BRW_OPCODE_MAD, 91, "mad", 3, 1, GFX_GE(GFX6) },
701 { BRW_OPCODE_LRP, 92, "lrp", 3, 1, GFX_GE(GFX6) & GFX_LE(GFX10) },
702 { BRW_OPCODE_MADM, 93, "madm", 3, 1, GFX_GE(GFX8) },
703 { BRW_OPCODE_NENOP, 125, "nenop", 0, 0, GFX45 },
704 { BRW_OPCODE_NOP, 126, "nop", 0, 0, GFX_LT(GFX12) },
705 { BRW_OPCODE_NOP, 96, "nop", 0, 0, GFX_GE(GFX12) }
706 };
707
708 void
brw_init_isa_info(struct brw_isa_info * isa,const struct intel_device_info * devinfo)709 brw_init_isa_info(struct brw_isa_info *isa,
710 const struct intel_device_info *devinfo)
711 {
712 isa->devinfo = devinfo;
713
714 enum gfx_ver ver = gfx_ver_from_devinfo(devinfo);
715
716 memset(isa->ir_to_descs, 0, sizeof(isa->ir_to_descs));
717 memset(isa->hw_to_descs, 0, sizeof(isa->hw_to_descs));
718
719 for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) {
720 if (opcode_descs[i].gfx_vers & ver) {
721 const unsigned e = opcode_descs[i].ir;
722 const unsigned h = opcode_descs[i].hw;
723 assert(e < ARRAY_SIZE(isa->ir_to_descs) && !isa->ir_to_descs[e]);
724 assert(h < ARRAY_SIZE(isa->hw_to_descs) && !isa->hw_to_descs[h]);
725 isa->ir_to_descs[e] = &opcode_descs[i];
726 isa->hw_to_descs[h] = &opcode_descs[i];
727 }
728 }
729 }
730
731 /**
732 * Return the matching opcode_desc for the specified IR opcode and hardware
733 * generation, or NULL if the opcode is not supported by the device.
734 */
735 const struct opcode_desc *
brw_opcode_desc(const struct brw_isa_info * isa,enum opcode op)736 brw_opcode_desc(const struct brw_isa_info *isa, enum opcode op)
737 {
738 return op < ARRAY_SIZE(isa->ir_to_descs) ? isa->ir_to_descs[op] : NULL;
739 }
740
741 /**
742 * Return the matching opcode_desc for the specified HW opcode and hardware
743 * generation, or NULL if the opcode is not supported by the device.
744 */
745 const struct opcode_desc *
brw_opcode_desc_from_hw(const struct brw_isa_info * isa,unsigned hw)746 brw_opcode_desc_from_hw(const struct brw_isa_info *isa, unsigned hw)
747 {
748 return hw < ARRAY_SIZE(isa->hw_to_descs) ? isa->hw_to_descs[hw] : NULL;
749 }
750