• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 #include <sys/stat.h>
33 #include <fcntl.h>
34 
35 #include "brw_eu_defines.h"
36 #include "brw_eu.h"
37 #include "brw_shader.h"
38 #include "brw_gfx_ver_enum.h"
39 #include "dev/intel_debug.h"
40 
41 #include "util/ralloc.h"
42 
43 /* Returns a conditional modifier that negates the condition. */
44 enum brw_conditional_mod
brw_negate_cmod(enum brw_conditional_mod cmod)45 brw_negate_cmod(enum brw_conditional_mod cmod)
46 {
47    switch (cmod) {
48    case BRW_CONDITIONAL_Z:
49       return BRW_CONDITIONAL_NZ;
50    case BRW_CONDITIONAL_NZ:
51       return BRW_CONDITIONAL_Z;
52    case BRW_CONDITIONAL_G:
53       return BRW_CONDITIONAL_LE;
54    case BRW_CONDITIONAL_GE:
55       return BRW_CONDITIONAL_L;
56    case BRW_CONDITIONAL_L:
57       return BRW_CONDITIONAL_GE;
58    case BRW_CONDITIONAL_LE:
59       return BRW_CONDITIONAL_G;
60    default:
61       unreachable("Can't negate this cmod");
62    }
63 }
64 
65 /* Returns the corresponding conditional mod for swapping src0 and
66  * src1 in e.g. CMP.
67  */
68 enum brw_conditional_mod
brw_swap_cmod(enum brw_conditional_mod cmod)69 brw_swap_cmod(enum brw_conditional_mod cmod)
70 {
71    switch (cmod) {
72    case BRW_CONDITIONAL_Z:
73    case BRW_CONDITIONAL_NZ:
74       return cmod;
75    case BRW_CONDITIONAL_G:
76       return BRW_CONDITIONAL_L;
77    case BRW_CONDITIONAL_GE:
78       return BRW_CONDITIONAL_LE;
79    case BRW_CONDITIONAL_L:
80       return BRW_CONDITIONAL_G;
81    case BRW_CONDITIONAL_LE:
82       return BRW_CONDITIONAL_GE;
83    default:
84       return BRW_CONDITIONAL_NONE;
85    }
86 }
87 
88 /**
89  * Get the least significant bit offset of the i+1-th component of immediate
90  * type \p type.  For \p i equal to the two's complement of j, return the
91  * offset of the j-th component starting from the end of the vector.  For
92  * scalar register types return zero.
93  */
94 static unsigned
imm_shift(enum brw_reg_type type,unsigned i)95 imm_shift(enum brw_reg_type type, unsigned i)
96 {
97    assert(type != BRW_REGISTER_TYPE_UV && type != BRW_REGISTER_TYPE_V &&
98           "Not implemented.");
99 
100    if (type == BRW_REGISTER_TYPE_VF)
101       return 8 * (i & 3);
102    else
103       return 0;
104 }
105 
106 /**
107  * Swizzle an arbitrary immediate \p x of the given type according to the
108  * permutation specified as \p swz.
109  */
110 uint32_t
brw_swizzle_immediate(enum brw_reg_type type,uint32_t x,unsigned swz)111 brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz)
112 {
113    if (imm_shift(type, 1)) {
114       const unsigned n = 32 / imm_shift(type, 1);
115       uint32_t y = 0;
116 
117       for (unsigned i = 0; i < n; i++) {
118          /* Shift the specified component all the way to the right and left to
119           * discard any undesired L/MSBs, then shift it right into component i.
120           */
121          y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3))
122                 << imm_shift(type, ~0u)
123                 >> imm_shift(type, ~0u - i);
124       }
125 
126       return y;
127    } else {
128       return x;
129    }
130 }
131 
132 unsigned
brw_get_default_exec_size(struct brw_codegen * p)133 brw_get_default_exec_size(struct brw_codegen *p)
134 {
135    return p->current->exec_size;
136 }
137 
138 unsigned
brw_get_default_group(struct brw_codegen * p)139 brw_get_default_group(struct brw_codegen *p)
140 {
141    return p->current->group;
142 }
143 
144 unsigned
brw_get_default_access_mode(struct brw_codegen * p)145 brw_get_default_access_mode(struct brw_codegen *p)
146 {
147    return p->current->access_mode;
148 }
149 
150 struct tgl_swsb
brw_get_default_swsb(struct brw_codegen * p)151 brw_get_default_swsb(struct brw_codegen *p)
152 {
153    return p->current->swsb;
154 }
155 
156 void
brw_set_default_exec_size(struct brw_codegen * p,unsigned value)157 brw_set_default_exec_size(struct brw_codegen *p, unsigned value)
158 {
159    p->current->exec_size = value;
160 }
161 
brw_set_default_predicate_control(struct brw_codegen * p,enum brw_predicate pc)162 void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc)
163 {
164    p->current->predicate = pc;
165 }
166 
brw_set_default_predicate_inverse(struct brw_codegen * p,bool predicate_inverse)167 void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse)
168 {
169    p->current->pred_inv = predicate_inverse;
170 }
171 
brw_set_default_flag_reg(struct brw_codegen * p,int reg,int subreg)172 void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg)
173 {
174    assert(subreg < 2);
175    p->current->flag_subreg = reg * 2 + subreg;
176 }
177 
brw_set_default_access_mode(struct brw_codegen * p,unsigned access_mode)178 void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode )
179 {
180    p->current->access_mode = access_mode;
181 }
182 
183 void
brw_set_default_compression_control(struct brw_codegen * p,enum brw_compression compression_control)184 brw_set_default_compression_control(struct brw_codegen *p,
185 			    enum brw_compression compression_control)
186 {
187    switch (compression_control) {
188    case BRW_COMPRESSION_NONE:
189       /* This is the "use the first set of bits of dmask/vmask/arf
190        * according to execsize" option.
191        */
192       p->current->group = 0;
193       break;
194    case BRW_COMPRESSION_2NDHALF:
195       /* For SIMD8, this is "use the second set of 8 bits." */
196       p->current->group = 8;
197       break;
198    case BRW_COMPRESSION_COMPRESSED:
199       /* For SIMD16 instruction compression, use the first set of 16 bits
200        * since we don't do SIMD32 dispatch.
201        */
202       p->current->group = 0;
203       break;
204    default:
205       unreachable("not reached");
206    }
207 
208    if (p->devinfo->ver <= 6) {
209       p->current->compressed =
210          (compression_control == BRW_COMPRESSION_COMPRESSED);
211    }
212 }
213 
214 /**
215  * Enable or disable instruction compression on the given instruction leaving
216  * the currently selected channel enable group untouched.
217  */
218 void
brw_inst_set_compression(const struct intel_device_info * devinfo,brw_inst * inst,bool on)219 brw_inst_set_compression(const struct intel_device_info *devinfo,
220                          brw_inst *inst, bool on)
221 {
222    if (devinfo->ver >= 6) {
223       /* No-op, the EU will figure out for us whether the instruction needs to
224        * be compressed.
225        */
226    } else {
227       /* The channel group and compression controls are non-orthogonal, there
228        * are two possible representations for uncompressed instructions and we
229        * may need to preserve the current one to avoid changing the selected
230        * channel group inadvertently.
231        */
232       if (on)
233          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_COMPRESSED);
234       else if (brw_inst_qtr_control(devinfo, inst)
235                == BRW_COMPRESSION_COMPRESSED)
236          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
237    }
238 }
239 
240 void
brw_set_default_compression(struct brw_codegen * p,bool on)241 brw_set_default_compression(struct brw_codegen *p, bool on)
242 {
243    p->current->compressed = on;
244 }
245 
246 /**
247  * Apply the range of channel enable signals given by
248  * [group, group + exec_size) to the instruction passed as argument.
249  */
250 void
brw_inst_set_group(const struct intel_device_info * devinfo,brw_inst * inst,unsigned group)251 brw_inst_set_group(const struct intel_device_info *devinfo,
252                    brw_inst *inst, unsigned group)
253 {
254    if (devinfo->ver >= 7) {
255       assert(group % 4 == 0 && group < 32);
256       brw_inst_set_qtr_control(devinfo, inst, group / 8);
257       brw_inst_set_nib_control(devinfo, inst, (group / 4) % 2);
258 
259    } else if (devinfo->ver == 6) {
260       assert(group % 8 == 0 && group < 32);
261       brw_inst_set_qtr_control(devinfo, inst, group / 8);
262 
263    } else {
264       assert(group % 8 == 0 && group < 16);
265       /* The channel group and compression controls are non-orthogonal, there
266        * are two possible representations for group zero and we may need to
267        * preserve the current one to avoid changing the selected compression
268        * enable inadvertently.
269        */
270       if (group == 8)
271          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_2NDHALF);
272       else if (brw_inst_qtr_control(devinfo, inst) == BRW_COMPRESSION_2NDHALF)
273          brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE);
274    }
275 }
276 
277 void
brw_set_default_group(struct brw_codegen * p,unsigned group)278 brw_set_default_group(struct brw_codegen *p, unsigned group)
279 {
280    p->current->group = group;
281 }
282 
brw_set_default_mask_control(struct brw_codegen * p,unsigned value)283 void brw_set_default_mask_control( struct brw_codegen *p, unsigned value )
284 {
285    p->current->mask_control = value;
286 }
287 
brw_set_default_saturate(struct brw_codegen * p,bool enable)288 void brw_set_default_saturate( struct brw_codegen *p, bool enable )
289 {
290    p->current->saturate = enable;
291 }
292 
brw_set_default_acc_write_control(struct brw_codegen * p,unsigned value)293 void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value)
294 {
295    p->current->acc_wr_control = value;
296 }
297 
brw_set_default_swsb(struct brw_codegen * p,struct tgl_swsb value)298 void brw_set_default_swsb(struct brw_codegen *p, struct tgl_swsb value)
299 {
300    p->current->swsb = value;
301 }
302 
brw_push_insn_state(struct brw_codegen * p)303 void brw_push_insn_state( struct brw_codegen *p )
304 {
305    assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]);
306    *(p->current + 1) = *p->current;
307    p->current++;
308 }
309 
brw_pop_insn_state(struct brw_codegen * p)310 void brw_pop_insn_state( struct brw_codegen *p )
311 {
312    assert(p->current != p->stack);
313    p->current--;
314 }
315 
316 
317 /***********************************************************************
318  */
319 void
brw_init_codegen(const struct brw_isa_info * isa,struct brw_codegen * p,void * mem_ctx)320 brw_init_codegen(const struct brw_isa_info *isa,
321                  struct brw_codegen *p, void *mem_ctx)
322 {
323    memset(p, 0, sizeof(*p));
324 
325    p->isa = isa;
326    p->devinfo = isa->devinfo;
327    p->automatic_exec_sizes = true;
328    /*
329     * Set the initial instruction store array size to 1024, if found that
330     * isn't enough, then it will double the store size at brw_next_insn()
331     * until out of memory.
332     */
333    p->store_size = 1024;
334    p->store = rzalloc_array(mem_ctx, brw_inst, p->store_size);
335    p->nr_insn = 0;
336    p->current = p->stack;
337    memset(p->current, 0, sizeof(p->current[0]));
338 
339    p->mem_ctx = mem_ctx;
340 
341    /* Some defaults?
342     */
343    brw_set_default_exec_size(p, BRW_EXECUTE_8);
344    brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */
345    brw_set_default_saturate(p, 0);
346    brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
347 
348    /* Set up control flow stack */
349    p->if_stack_depth = 0;
350    p->if_stack_array_size = 16;
351    p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size);
352 
353    p->loop_stack_depth = 0;
354    p->loop_stack_array_size = 16;
355    p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
356    p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size);
357 }
358 
359 
brw_get_program(struct brw_codegen * p,unsigned * sz)360 const unsigned *brw_get_program( struct brw_codegen *p,
361 			       unsigned *sz )
362 {
363    *sz = p->next_insn_offset;
364    return (const unsigned *)p->store;
365 }
366 
367 const struct brw_shader_reloc *
brw_get_shader_relocs(struct brw_codegen * p,unsigned * num_relocs)368 brw_get_shader_relocs(struct brw_codegen *p, unsigned *num_relocs)
369 {
370    *num_relocs = p->num_relocs;
371    return p->relocs;
372 }
373 
brw_try_override_assembly(struct brw_codegen * p,int start_offset,const char * identifier)374 bool brw_try_override_assembly(struct brw_codegen *p, int start_offset,
375                                const char *identifier)
376 {
377    const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH");
378    if (!read_path) {
379       return false;
380    }
381 
382    char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier);
383 
384    int fd = open(name, O_RDONLY);
385    ralloc_free(name);
386 
387    if (fd == -1) {
388       return false;
389    }
390 
391    struct stat sb;
392    if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) {
393       close(fd);
394       return false;
395    }
396 
397    p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_inst);
398    p->nr_insn += sb.st_size / sizeof(brw_inst);
399 
400    p->next_insn_offset = start_offset + sb.st_size;
401    p->store_size = (start_offset + sb.st_size) / sizeof(brw_inst);
402    p->store = (brw_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset);
403    assert(p->store);
404 
405    ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size);
406    close(fd);
407    if (ret != sb.st_size) {
408       return false;
409    }
410 
411    ASSERTED bool valid =
412       brw_validate_instructions(p->isa, p->store,
413                                 start_offset, p->next_insn_offset,
414                                 NULL);
415    assert(valid);
416 
417    return true;
418 }
419 
420 const struct brw_label *
brw_find_label(const struct brw_label * root,int offset)421 brw_find_label(const struct brw_label *root, int offset)
422 {
423    const struct brw_label *curr = root;
424 
425    if (curr != NULL)
426    {
427       do {
428          if (curr->offset == offset)
429             return curr;
430 
431          curr = curr->next;
432       } while (curr != NULL);
433    }
434 
435    return curr;
436 }
437 
438 void
brw_create_label(struct brw_label ** labels,int offset,void * mem_ctx)439 brw_create_label(struct brw_label **labels, int offset, void *mem_ctx)
440 {
441    if (*labels != NULL) {
442       struct brw_label *curr = *labels;
443       struct brw_label *prev;
444 
445       do {
446          prev = curr;
447 
448          if (curr->offset == offset)
449             return;
450 
451          curr = curr->next;
452       } while (curr != NULL);
453 
454       curr = ralloc(mem_ctx, struct brw_label);
455       curr->offset = offset;
456       curr->number = prev->number + 1;
457       curr->next = NULL;
458       prev->next = curr;
459    } else {
460       struct brw_label *root = ralloc(mem_ctx, struct brw_label);
461       root->number = 0;
462       root->offset = offset;
463       root->next = NULL;
464       *labels = root;
465    }
466 }
467 
468 const struct brw_label *
brw_label_assembly(const struct brw_isa_info * isa,const void * assembly,int start,int end,void * mem_ctx)469 brw_label_assembly(const struct brw_isa_info *isa,
470                    const void *assembly, int start, int end, void *mem_ctx)
471 {
472    const struct intel_device_info *const devinfo = isa->devinfo;
473 
474    struct brw_label *root_label = NULL;
475 
476    int to_bytes_scale = sizeof(brw_inst) / brw_jump_scale(devinfo);
477 
478    for (int offset = start; offset < end;) {
479       const brw_inst *inst = (const brw_inst *) ((const char *) assembly + offset);
480       brw_inst uncompacted;
481 
482       bool is_compact = brw_inst_cmpt_control(devinfo, inst);
483 
484       if (is_compact) {
485          brw_compact_inst *compacted = (brw_compact_inst *)inst;
486          brw_uncompact_instruction(isa, &uncompacted, compacted);
487          inst = &uncompacted;
488       }
489 
490       if (brw_has_uip(devinfo, brw_inst_opcode(isa, inst))) {
491          /* Instructions that have UIP also have JIP. */
492          brw_create_label(&root_label,
493             offset + brw_inst_uip(devinfo, inst) * to_bytes_scale, mem_ctx);
494          brw_create_label(&root_label,
495             offset + brw_inst_jip(devinfo, inst) * to_bytes_scale, mem_ctx);
496       } else if (brw_has_jip(devinfo, brw_inst_opcode(isa, inst))) {
497          int jip;
498          if (devinfo->ver >= 7) {
499             jip = brw_inst_jip(devinfo, inst);
500          } else {
501             jip = brw_inst_gfx6_jump_count(devinfo, inst);
502          }
503 
504          brw_create_label(&root_label, offset + jip * to_bytes_scale, mem_ctx);
505       }
506 
507       if (is_compact) {
508          offset += sizeof(brw_compact_inst);
509       } else {
510          offset += sizeof(brw_inst);
511       }
512    }
513 
514    return root_label;
515 }
516 
517 void
brw_disassemble_with_labels(const struct brw_isa_info * isa,const void * assembly,int start,int end,FILE * out)518 brw_disassemble_with_labels(const struct brw_isa_info *isa,
519                             const void *assembly, int start, int end, FILE *out)
520 {
521    void *mem_ctx = ralloc_context(NULL);
522    const struct brw_label *root_label =
523       brw_label_assembly(isa, assembly, start, end, mem_ctx);
524 
525    brw_disassemble(isa, assembly, start, end, root_label, out);
526 
527    ralloc_free(mem_ctx);
528 }
529 
530 void
brw_disassemble(const struct brw_isa_info * isa,const void * assembly,int start,int end,const struct brw_label * root_label,FILE * out)531 brw_disassemble(const struct brw_isa_info *isa,
532                 const void *assembly, int start, int end,
533                 const struct brw_label *root_label, FILE *out)
534 {
535    const struct intel_device_info *devinfo = isa->devinfo;
536 
537    bool dump_hex = INTEL_DEBUG(DEBUG_HEX);
538 
539    for (int offset = start; offset < end;) {
540       const brw_inst *insn = (const brw_inst *)((char *)assembly + offset);
541       brw_inst uncompacted;
542 
543       if (root_label != NULL) {
544         const struct brw_label *label = brw_find_label(root_label, offset);
545         if (label != NULL) {
546            fprintf(out, "\nLABEL%d:\n", label->number);
547         }
548       }
549 
550       bool compacted = brw_inst_cmpt_control(devinfo, insn);
551       if (0)
552          fprintf(out, "0x%08x: ", offset);
553 
554       if (compacted) {
555          brw_compact_inst *compacted = (brw_compact_inst *)insn;
556          if (dump_hex) {
557             unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
558             const unsigned int blank_spaces = 24;
559             for (int i = 0 ; i < 8; i = i + 4) {
560                fprintf(out, "%02x %02x %02x %02x ",
561                        insn_ptr[i],
562                        insn_ptr[i + 1],
563                        insn_ptr[i + 2],
564                        insn_ptr[i + 3]);
565             }
566             /* Make compacted instructions hex value output vertically aligned
567              * with uncompacted instructions hex value
568              */
569             fprintf(out, "%*c", blank_spaces, ' ');
570          }
571 
572          brw_uncompact_instruction(isa, &uncompacted, compacted);
573          insn = &uncompacted;
574       } else {
575          if (dump_hex) {
576             unsigned char * insn_ptr = ((unsigned char *)&insn[0]);
577             for (int i = 0 ; i < 16; i = i + 4) {
578                fprintf(out, "%02x %02x %02x %02x ",
579                        insn_ptr[i],
580                        insn_ptr[i + 1],
581                        insn_ptr[i + 2],
582                        insn_ptr[i + 3]);
583             }
584          }
585       }
586 
587       brw_disassemble_inst(out, isa, insn, compacted, offset, root_label);
588 
589       if (compacted) {
590          offset += sizeof(brw_compact_inst);
591       } else {
592          offset += sizeof(brw_inst);
593       }
594    }
595 }
596 
597 static const struct opcode_desc opcode_descs[] = {
598    /* IR,                 HW,  name,      nsrc, ndst, gfx_vers */
599    { BRW_OPCODE_ILLEGAL,  0,   "illegal", 0,    0,    GFX_ALL },
600    { BRW_OPCODE_SYNC,     1,   "sync",    1,    0,    GFX_GE(GFX12) },
601    { BRW_OPCODE_MOV,      1,   "mov",     1,    1,    GFX_LT(GFX12) },
602    { BRW_OPCODE_MOV,      97,  "mov",     1,    1,    GFX_GE(GFX12) },
603    { BRW_OPCODE_SEL,      2,   "sel",     2,    1,    GFX_LT(GFX12) },
604    { BRW_OPCODE_SEL,      98,  "sel",     2,    1,    GFX_GE(GFX12) },
605    { BRW_OPCODE_MOVI,     3,   "movi",    2,    1,    GFX_GE(GFX45) & GFX_LT(GFX12) },
606    { BRW_OPCODE_MOVI,     99,  "movi",    2,    1,    GFX_GE(GFX12) },
607    { BRW_OPCODE_NOT,      4,   "not",     1,    1,    GFX_LT(GFX12) },
608    { BRW_OPCODE_NOT,      100, "not",     1,    1,    GFX_GE(GFX12) },
609    { BRW_OPCODE_AND,      5,   "and",     2,    1,    GFX_LT(GFX12) },
610    { BRW_OPCODE_AND,      101, "and",     2,    1,    GFX_GE(GFX12) },
611    { BRW_OPCODE_OR,       6,   "or",      2,    1,    GFX_LT(GFX12) },
612    { BRW_OPCODE_OR,       102, "or",      2,    1,    GFX_GE(GFX12) },
613    { BRW_OPCODE_XOR,      7,   "xor",     2,    1,    GFX_LT(GFX12) },
614    { BRW_OPCODE_XOR,      103, "xor",     2,    1,    GFX_GE(GFX12) },
615    { BRW_OPCODE_SHR,      8,   "shr",     2,    1,    GFX_LT(GFX12) },
616    { BRW_OPCODE_SHR,      104, "shr",     2,    1,    GFX_GE(GFX12) },
617    { BRW_OPCODE_SHL,      9,   "shl",     2,    1,    GFX_LT(GFX12) },
618    { BRW_OPCODE_SHL,      105, "shl",     2,    1,    GFX_GE(GFX12) },
619    { BRW_OPCODE_DIM,      10,  "dim",     1,    1,    GFX75 },
620    { BRW_OPCODE_SMOV,     10,  "smov",    0,    0,    GFX_GE(GFX8) & GFX_LT(GFX12) },
621    { BRW_OPCODE_SMOV,     106, "smov",    0,    0,    GFX_GE(GFX12) },
622    { BRW_OPCODE_ASR,      12,  "asr",     2,    1,    GFX_LT(GFX12) },
623    { BRW_OPCODE_ASR,      108, "asr",     2,    1,    GFX_GE(GFX12) },
624    { BRW_OPCODE_ROR,      14,  "ror",     2,    1,    GFX11 },
625    { BRW_OPCODE_ROR,      110, "ror",     2,    1,    GFX_GE(GFX12) },
626    { BRW_OPCODE_ROL,      15,  "rol",     2,    1,    GFX11 },
627    { BRW_OPCODE_ROL,      111, "rol",     2,    1,    GFX_GE(GFX12) },
628    { BRW_OPCODE_CMP,      16,  "cmp",     2,    1,    GFX_LT(GFX12) },
629    { BRW_OPCODE_CMP,      112, "cmp",     2,    1,    GFX_GE(GFX12) },
630    { BRW_OPCODE_CMPN,     17,  "cmpn",    2,    1,    GFX_LT(GFX12) },
631    { BRW_OPCODE_CMPN,     113, "cmpn",    2,    1,    GFX_GE(GFX12) },
632    { BRW_OPCODE_CSEL,     18,  "csel",    3,    1,    GFX_GE(GFX8) & GFX_LT(GFX12) },
633    { BRW_OPCODE_CSEL,     114, "csel",    3,    1,    GFX_GE(GFX12) },
634    { BRW_OPCODE_F32TO16,  19,  "f32to16", 1,    1,    GFX7 | GFX75 },
635    { BRW_OPCODE_F16TO32,  20,  "f16to32", 1,    1,    GFX7 | GFX75 },
636    { BRW_OPCODE_BFREV,    23,  "bfrev",   1,    1,    GFX_GE(GFX7) & GFX_LT(GFX12) },
637    { BRW_OPCODE_BFREV,    119, "bfrev",   1,    1,    GFX_GE(GFX12) },
638    { BRW_OPCODE_BFE,      24,  "bfe",     3,    1,    GFX_GE(GFX7) & GFX_LT(GFX12) },
639    { BRW_OPCODE_BFE,      120, "bfe",     3,    1,    GFX_GE(GFX12) },
640    { BRW_OPCODE_BFI1,     25,  "bfi1",    2,    1,    GFX_GE(GFX7) & GFX_LT(GFX12) },
641    { BRW_OPCODE_BFI1,     121, "bfi1",    2,    1,    GFX_GE(GFX12) },
642    { BRW_OPCODE_BFI2,     26,  "bfi2",    3,    1,    GFX_GE(GFX7) & GFX_LT(GFX12) },
643    { BRW_OPCODE_BFI2,     122, "bfi2",    3,    1,    GFX_GE(GFX12) },
644    { BRW_OPCODE_JMPI,     32,  "jmpi",    0,    0,    GFX_ALL },
645    { BRW_OPCODE_BRD,      33,  "brd",     0,    0,    GFX_GE(GFX7) },
646    { BRW_OPCODE_IF,       34,  "if",      0,    0,    GFX_ALL },
647    { BRW_OPCODE_IFF,      35,  "iff",     0,    0,    GFX_LE(GFX5) },
648    { BRW_OPCODE_BRC,      35,  "brc",     0,    0,    GFX_GE(GFX7) },
649    { BRW_OPCODE_ELSE,     36,  "else",    0,    0,    GFX_ALL },
650    { BRW_OPCODE_ENDIF,    37,  "endif",   0,    0,    GFX_ALL },
651    { BRW_OPCODE_DO,       38,  "do",      0,    0,    GFX_LE(GFX5) },
652    { BRW_OPCODE_CASE,     38,  "case",    0,    0,    GFX6 },
653    { BRW_OPCODE_WHILE,    39,  "while",   0,    0,    GFX_ALL },
654    { BRW_OPCODE_BREAK,    40,  "break",   0,    0,    GFX_ALL },
655    { BRW_OPCODE_CONTINUE, 41,  "cont",    0,    0,    GFX_ALL },
656    { BRW_OPCODE_HALT,     42,  "halt",    0,    0,    GFX_ALL },
657    { BRW_OPCODE_CALLA,    43,  "calla",   0,    0,    GFX_GE(GFX75) },
658    { BRW_OPCODE_MSAVE,    44,  "msave",   0,    0,    GFX_LE(GFX5) },
659    { BRW_OPCODE_CALL,     44,  "call",    0,    0,    GFX_GE(GFX6) },
660    { BRW_OPCODE_MREST,    45,  "mrest",   0,    0,    GFX_LE(GFX5) },
661    { BRW_OPCODE_RET,      45,  "ret",     0,    0,    GFX_GE(GFX6) },
662    { BRW_OPCODE_PUSH,     46,  "push",    0,    0,    GFX_LE(GFX5) },
663    { BRW_OPCODE_FORK,     46,  "fork",    0,    0,    GFX6 },
664    { BRW_OPCODE_GOTO,     46,  "goto",    0,    0,    GFX_GE(GFX8) },
665    { BRW_OPCODE_POP,      47,  "pop",     2,    0,    GFX_LE(GFX5) },
666    { BRW_OPCODE_WAIT,     48,  "wait",    0,    1,    GFX_LT(GFX12) },
667    { BRW_OPCODE_SEND,     49,  "send",    1,    1,    GFX_LT(GFX12) },
668    { BRW_OPCODE_SENDC,    50,  "sendc",   1,    1,    GFX_LT(GFX12) },
669    { BRW_OPCODE_SEND,     49,  "send",    2,    1,    GFX_GE(GFX12) },
670    { BRW_OPCODE_SENDC,    50,  "sendc",   2,    1,    GFX_GE(GFX12) },
671    { BRW_OPCODE_SENDS,    51,  "sends",   2,    1,    GFX_GE(GFX9) & GFX_LT(GFX12) },
672    { BRW_OPCODE_SENDSC,   52,  "sendsc",  2,    1,    GFX_GE(GFX9) & GFX_LT(GFX12) },
673    { BRW_OPCODE_MATH,     56,  "math",    2,    1,    GFX_GE(GFX6) },
674    { BRW_OPCODE_ADD,      64,  "add",     2,    1,    GFX_ALL },
675    { BRW_OPCODE_MUL,      65,  "mul",     2,    1,    GFX_ALL },
676    { BRW_OPCODE_AVG,      66,  "avg",     2,    1,    GFX_ALL },
677    { BRW_OPCODE_FRC,      67,  "frc",     1,    1,    GFX_ALL },
678    { BRW_OPCODE_RNDU,     68,  "rndu",    1,    1,    GFX_ALL },
679    { BRW_OPCODE_RNDD,     69,  "rndd",    1,    1,    GFX_ALL },
680    { BRW_OPCODE_RNDE,     70,  "rnde",    1,    1,    GFX_ALL },
681    { BRW_OPCODE_RNDZ,     71,  "rndz",    1,    1,    GFX_ALL },
682    { BRW_OPCODE_MAC,      72,  "mac",     2,    1,    GFX_ALL },
683    { BRW_OPCODE_MACH,     73,  "mach",    2,    1,    GFX_ALL },
684    { BRW_OPCODE_LZD,      74,  "lzd",     1,    1,    GFX_ALL },
685    { BRW_OPCODE_FBH,      75,  "fbh",     1,    1,    GFX_GE(GFX7) },
686    { BRW_OPCODE_FBL,      76,  "fbl",     1,    1,    GFX_GE(GFX7) },
687    { BRW_OPCODE_CBIT,     77,  "cbit",    1,    1,    GFX_GE(GFX7) },
688    { BRW_OPCODE_ADDC,     78,  "addc",    2,    1,    GFX_GE(GFX7) },
689    { BRW_OPCODE_SUBB,     79,  "subb",    2,    1,    GFX_GE(GFX7) },
690    { BRW_OPCODE_SAD2,     80,  "sad2",    2,    1,    GFX_ALL },
691    { BRW_OPCODE_SADA2,    81,  "sada2",   2,    1,    GFX_ALL },
692    { BRW_OPCODE_ADD3,     82,  "add3",    3,    1,    GFX_GE(GFX125) },
693    { BRW_OPCODE_DP4,      84,  "dp4",     2,    1,    GFX_LT(GFX11) },
694    { BRW_OPCODE_DPH,      85,  "dph",     2,    1,    GFX_LT(GFX11) },
695    { BRW_OPCODE_DP3,      86,  "dp3",     2,    1,    GFX_LT(GFX11) },
696    { BRW_OPCODE_DP2,      87,  "dp2",     2,    1,    GFX_LT(GFX11) },
697    { BRW_OPCODE_DP4A,     88,  "dp4a",    3,    1,    GFX_GE(GFX12) },
698    { BRW_OPCODE_LINE,     89,  "line",    2,    1,    GFX_LE(GFX10) },
699    { BRW_OPCODE_PLN,      90,  "pln",     2,    1,    GFX_GE(GFX45) & GFX_LE(GFX10) },
700    { BRW_OPCODE_MAD,      91,  "mad",     3,    1,    GFX_GE(GFX6) },
701    { BRW_OPCODE_LRP,      92,  "lrp",     3,    1,    GFX_GE(GFX6) & GFX_LE(GFX10) },
702    { BRW_OPCODE_MADM,     93,  "madm",    3,    1,    GFX_GE(GFX8) },
703    { BRW_OPCODE_NENOP,    125, "nenop",   0,    0,    GFX45 },
704    { BRW_OPCODE_NOP,      126, "nop",     0,    0,    GFX_LT(GFX12) },
705    { BRW_OPCODE_NOP,      96,  "nop",     0,    0,    GFX_GE(GFX12) }
706 };
707 
708 void
brw_init_isa_info(struct brw_isa_info * isa,const struct intel_device_info * devinfo)709 brw_init_isa_info(struct brw_isa_info *isa,
710                   const struct intel_device_info *devinfo)
711 {
712    isa->devinfo = devinfo;
713 
714    enum gfx_ver ver = gfx_ver_from_devinfo(devinfo);
715 
716    memset(isa->ir_to_descs, 0, sizeof(isa->ir_to_descs));
717    memset(isa->hw_to_descs, 0, sizeof(isa->hw_to_descs));
718 
719    for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) {
720       if (opcode_descs[i].gfx_vers & ver) {
721          const unsigned e = opcode_descs[i].ir;
722          const unsigned h = opcode_descs[i].hw;
723          assert(e < ARRAY_SIZE(isa->ir_to_descs) && !isa->ir_to_descs[e]);
724          assert(h < ARRAY_SIZE(isa->hw_to_descs) && !isa->hw_to_descs[h]);
725          isa->ir_to_descs[e] = &opcode_descs[i];
726          isa->hw_to_descs[h] = &opcode_descs[i];
727       }
728    }
729 }
730 
731 /**
732  * Return the matching opcode_desc for the specified IR opcode and hardware
733  * generation, or NULL if the opcode is not supported by the device.
734  */
735 const struct opcode_desc *
brw_opcode_desc(const struct brw_isa_info * isa,enum opcode op)736 brw_opcode_desc(const struct brw_isa_info *isa, enum opcode op)
737 {
738    return op < ARRAY_SIZE(isa->ir_to_descs) ? isa->ir_to_descs[op] : NULL;
739 }
740 
741 /**
742  * Return the matching opcode_desc for the specified HW opcode and hardware
743  * generation, or NULL if the opcode is not supported by the device.
744  */
745 const struct opcode_desc *
brw_opcode_desc_from_hw(const struct brw_isa_info * isa,unsigned hw)746 brw_opcode_desc_from_hw(const struct brw_isa_info *isa, unsigned hw)
747 {
748    return hw < ARRAY_SIZE(isa->hw_to_descs) ? isa->hw_to_descs[hw] : NULL;
749 }
750