1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54
55 static const struct super_operations btrfs_super_ops;
56
57 /*
58 * Types for mounting the default subvolume and a subvolume explicitly
59 * requested by subvol=/path. That way the callchain is straightforward and we
60 * don't have to play tricks with the mount options and recursive calls to
61 * btrfs_mount.
62 *
63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69
70 /*
71 * Generally the error codes correspond to their respective errors, but there
72 * are a few special cases.
73 *
74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for
75 * instance will return EUCLEAN if any of the blocks are corrupted in
76 * a way that is problematic. We want to reserve EUCLEAN for these
77 * sort of corruptions.
78 *
79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80 * need to use EROFS for this case. We will have no idea of the
81 * original failure, that will have been reported at the time we tripped
82 * over the error. Each subsequent error that doesn't have any context
83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84 */
btrfs_decode_error(int errno)85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 char *errstr = "unknown";
88
89 switch (errno) {
90 case -ENOENT: /* -2 */
91 errstr = "No such entry";
92 break;
93 case -EIO: /* -5 */
94 errstr = "IO failure";
95 break;
96 case -ENOMEM: /* -12*/
97 errstr = "Out of memory";
98 break;
99 case -EEXIST: /* -17 */
100 errstr = "Object already exists";
101 break;
102 case -ENOSPC: /* -28 */
103 errstr = "No space left";
104 break;
105 case -EROFS: /* -30 */
106 errstr = "Readonly filesystem";
107 break;
108 case -EOPNOTSUPP: /* -95 */
109 errstr = "Operation not supported";
110 break;
111 case -EUCLEAN: /* -117 */
112 errstr = "Filesystem corrupted";
113 break;
114 case -EDQUOT: /* -122 */
115 errstr = "Quota exceeded";
116 break;
117 }
118
119 return errstr;
120 }
121
122 /*
123 * __btrfs_handle_fs_error decodes expected errors from the caller and
124 * invokes the appropriate error response.
125 */
126 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 unsigned int line, int errno, const char *fmt, ...)
129 {
130 struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 const char *errstr;
133 #endif
134
135 /*
136 * Special case: if the error is EROFS, and we're already
137 * under SB_RDONLY, then it is safe here.
138 */
139 if (errno == -EROFS && sb_rdonly(sb))
140 return;
141
142 #ifdef CONFIG_PRINTK
143 errstr = btrfs_decode_error(errno);
144 if (fmt) {
145 struct va_format vaf;
146 va_list args;
147
148 va_start(args, fmt);
149 vaf.fmt = fmt;
150 vaf.va = &args;
151
152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 sb->s_id, function, line, errno, errstr, &vaf);
154 va_end(args);
155 } else {
156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 sb->s_id, function, line, errno, errstr);
158 }
159 #endif
160
161 /*
162 * Today we only save the error info to memory. Long term we'll
163 * also send it down to the disk
164 */
165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166
167 /* Don't go through full error handling during mount */
168 if (!(sb->s_flags & SB_BORN))
169 return;
170
171 if (sb_rdonly(sb))
172 return;
173
174 btrfs_discard_stop(fs_info);
175
176 /* btrfs handle error by forcing the filesystem readonly */
177 sb->s_flags |= SB_RDONLY;
178 btrfs_info(fs_info, "forced readonly");
179 /*
180 * Note that a running device replace operation is not canceled here
181 * although there is no way to update the progress. It would add the
182 * risk of a deadlock, therefore the canceling is omitted. The only
183 * penalty is that some I/O remains active until the procedure
184 * completes. The next time when the filesystem is mounted writable
185 * again, the device replace operation continues.
186 */
187 }
188
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 "emergency",
192 "alert",
193 "critical",
194 "error",
195 "warning",
196 "notice",
197 "info",
198 "debug",
199 };
200
201
202 /*
203 * Use one ratelimit state per log level so that a flood of less important
204 * messages doesn't cause more important ones to be dropped.
205 */
206 static struct ratelimit_state printk_limits[] = {
207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 struct va_format vaf;
221 va_list args;
222 int kern_level;
223 const char *type = logtypes[4];
224 struct ratelimit_state *ratelimit = &printk_limits[4];
225
226 va_start(args, fmt);
227
228 while ((kern_level = printk_get_level(fmt)) != 0) {
229 size_t size = printk_skip_level(fmt) - fmt;
230
231 if (kern_level >= '0' && kern_level <= '7') {
232 memcpy(lvl, fmt, size);
233 lvl[size] = '\0';
234 type = logtypes[kern_level - '0'];
235 ratelimit = &printk_limits[kern_level - '0'];
236 }
237 fmt += size;
238 }
239
240 vaf.fmt = fmt;
241 vaf.va = &args;
242
243 if (__ratelimit(ratelimit))
244 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
245 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
246
247 va_end(args);
248 }
249 #endif
250
251 /*
252 * We only mark the transaction aborted and then set the file system read-only.
253 * This will prevent new transactions from starting or trying to join this
254 * one.
255 *
256 * This means that error recovery at the call site is limited to freeing
257 * any local memory allocations and passing the error code up without
258 * further cleanup. The transaction should complete as it normally would
259 * in the call path but will return -EIO.
260 *
261 * We'll complete the cleanup in btrfs_end_transaction and
262 * btrfs_commit_transaction.
263 */
264 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
266 const char *function,
267 unsigned int line, int errno)
268 {
269 struct btrfs_fs_info *fs_info = trans->fs_info;
270
271 WRITE_ONCE(trans->aborted, errno);
272 /* Nothing used. The other threads that have joined this
273 * transaction may be able to continue. */
274 if (!trans->dirty && list_empty(&trans->new_bgs)) {
275 const char *errstr;
276
277 errstr = btrfs_decode_error(errno);
278 btrfs_warn(fs_info,
279 "%s:%d: Aborting unused transaction(%s).",
280 function, line, errstr);
281 return;
282 }
283 WRITE_ONCE(trans->transaction->aborted, errno);
284 /* Wake up anybody who may be waiting on this transaction */
285 wake_up(&fs_info->transaction_wait);
286 wake_up(&fs_info->transaction_blocked_wait);
287 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
288 }
289 /*
290 * __btrfs_panic decodes unexpected, fatal errors from the caller,
291 * issues an alert, and either panics or BUGs, depending on mount options.
292 */
293 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
295 unsigned int line, int errno, const char *fmt, ...)
296 {
297 char *s_id = "<unknown>";
298 const char *errstr;
299 struct va_format vaf = { .fmt = fmt };
300 va_list args;
301
302 if (fs_info)
303 s_id = fs_info->sb->s_id;
304
305 va_start(args, fmt);
306 vaf.va = &args;
307
308 errstr = btrfs_decode_error(errno);
309 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
310 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
311 s_id, function, line, &vaf, errno, errstr);
312
313 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
314 function, line, &vaf, errno, errstr);
315 va_end(args);
316 /* Caller calls BUG() */
317 }
318
btrfs_put_super(struct super_block * sb)319 static void btrfs_put_super(struct super_block *sb)
320 {
321 close_ctree(btrfs_sb(sb));
322 }
323
324 enum {
325 Opt_acl, Opt_noacl,
326 Opt_clear_cache,
327 Opt_commit_interval,
328 Opt_compress,
329 Opt_compress_force,
330 Opt_compress_force_type,
331 Opt_compress_type,
332 Opt_degraded,
333 Opt_device,
334 Opt_fatal_errors,
335 Opt_flushoncommit, Opt_noflushoncommit,
336 Opt_inode_cache, Opt_noinode_cache,
337 Opt_max_inline,
338 Opt_barrier, Opt_nobarrier,
339 Opt_datacow, Opt_nodatacow,
340 Opt_datasum, Opt_nodatasum,
341 Opt_defrag, Opt_nodefrag,
342 Opt_discard, Opt_nodiscard,
343 Opt_discard_mode,
344 Opt_norecovery,
345 Opt_ratio,
346 Opt_rescan_uuid_tree,
347 Opt_skip_balance,
348 Opt_space_cache, Opt_no_space_cache,
349 Opt_space_cache_version,
350 Opt_ssd, Opt_nossd,
351 Opt_ssd_spread, Opt_nossd_spread,
352 Opt_subvol,
353 Opt_subvol_empty,
354 Opt_subvolid,
355 Opt_thread_pool,
356 Opt_treelog, Opt_notreelog,
357 Opt_user_subvol_rm_allowed,
358
359 /* Rescue options */
360 Opt_rescue,
361 Opt_usebackuproot,
362 Opt_nologreplay,
363
364 /* Deprecated options */
365 Opt_recovery,
366
367 /* Debugging options */
368 Opt_check_integrity,
369 Opt_check_integrity_including_extent_data,
370 Opt_check_integrity_print_mask,
371 Opt_enospc_debug, Opt_noenospc_debug,
372 #ifdef CONFIG_BTRFS_DEBUG
373 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
374 #endif
375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
376 Opt_ref_verify,
377 #endif
378 Opt_err,
379 };
380
381 static const match_table_t tokens = {
382 {Opt_acl, "acl"},
383 {Opt_noacl, "noacl"},
384 {Opt_clear_cache, "clear_cache"},
385 {Opt_commit_interval, "commit=%u"},
386 {Opt_compress, "compress"},
387 {Opt_compress_type, "compress=%s"},
388 {Opt_compress_force, "compress-force"},
389 {Opt_compress_force_type, "compress-force=%s"},
390 {Opt_degraded, "degraded"},
391 {Opt_device, "device=%s"},
392 {Opt_fatal_errors, "fatal_errors=%s"},
393 {Opt_flushoncommit, "flushoncommit"},
394 {Opt_noflushoncommit, "noflushoncommit"},
395 {Opt_inode_cache, "inode_cache"},
396 {Opt_noinode_cache, "noinode_cache"},
397 {Opt_max_inline, "max_inline=%s"},
398 {Opt_barrier, "barrier"},
399 {Opt_nobarrier, "nobarrier"},
400 {Opt_datacow, "datacow"},
401 {Opt_nodatacow, "nodatacow"},
402 {Opt_datasum, "datasum"},
403 {Opt_nodatasum, "nodatasum"},
404 {Opt_defrag, "autodefrag"},
405 {Opt_nodefrag, "noautodefrag"},
406 {Opt_discard, "discard"},
407 {Opt_discard_mode, "discard=%s"},
408 {Opt_nodiscard, "nodiscard"},
409 {Opt_norecovery, "norecovery"},
410 {Opt_ratio, "metadata_ratio=%u"},
411 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
412 {Opt_skip_balance, "skip_balance"},
413 {Opt_space_cache, "space_cache"},
414 {Opt_no_space_cache, "nospace_cache"},
415 {Opt_space_cache_version, "space_cache=%s"},
416 {Opt_ssd, "ssd"},
417 {Opt_nossd, "nossd"},
418 {Opt_ssd_spread, "ssd_spread"},
419 {Opt_nossd_spread, "nossd_spread"},
420 {Opt_subvol, "subvol=%s"},
421 {Opt_subvol_empty, "subvol="},
422 {Opt_subvolid, "subvolid=%s"},
423 {Opt_thread_pool, "thread_pool=%u"},
424 {Opt_treelog, "treelog"},
425 {Opt_notreelog, "notreelog"},
426 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
427
428 /* Rescue options */
429 {Opt_rescue, "rescue=%s"},
430 /* Deprecated, with alias rescue=nologreplay */
431 {Opt_nologreplay, "nologreplay"},
432 /* Deprecated, with alias rescue=usebackuproot */
433 {Opt_usebackuproot, "usebackuproot"},
434
435 /* Deprecated options */
436 {Opt_recovery, "recovery"},
437
438 /* Debugging options */
439 {Opt_check_integrity, "check_int"},
440 {Opt_check_integrity_including_extent_data, "check_int_data"},
441 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
442 {Opt_enospc_debug, "enospc_debug"},
443 {Opt_noenospc_debug, "noenospc_debug"},
444 #ifdef CONFIG_BTRFS_DEBUG
445 {Opt_fragment_data, "fragment=data"},
446 {Opt_fragment_metadata, "fragment=metadata"},
447 {Opt_fragment_all, "fragment=all"},
448 #endif
449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
450 {Opt_ref_verify, "ref_verify"},
451 #endif
452 {Opt_err, NULL},
453 };
454
455 static const match_table_t rescue_tokens = {
456 {Opt_usebackuproot, "usebackuproot"},
457 {Opt_nologreplay, "nologreplay"},
458 {Opt_err, NULL},
459 };
460
parse_rescue_options(struct btrfs_fs_info * info,const char * options)461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
462 {
463 char *opts;
464 char *orig;
465 char *p;
466 substring_t args[MAX_OPT_ARGS];
467 int ret = 0;
468
469 opts = kstrdup(options, GFP_KERNEL);
470 if (!opts)
471 return -ENOMEM;
472 orig = opts;
473
474 while ((p = strsep(&opts, ":")) != NULL) {
475 int token;
476
477 if (!*p)
478 continue;
479 token = match_token(p, rescue_tokens, args);
480 switch (token){
481 case Opt_usebackuproot:
482 btrfs_info(info,
483 "trying to use backup root at mount time");
484 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
485 break;
486 case Opt_nologreplay:
487 btrfs_set_and_info(info, NOLOGREPLAY,
488 "disabling log replay at mount time");
489 break;
490 case Opt_err:
491 btrfs_info(info, "unrecognized rescue option '%s'", p);
492 ret = -EINVAL;
493 goto out;
494 default:
495 break;
496 }
497
498 }
499 out:
500 kfree(orig);
501 return ret;
502 }
503
504 /*
505 * Regular mount options parser. Everything that is needed only when
506 * reading in a new superblock is parsed here.
507 * XXX JDM: This needs to be cleaned up for remount.
508 */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
510 unsigned long new_flags)
511 {
512 substring_t args[MAX_OPT_ARGS];
513 char *p, *num;
514 u64 cache_gen;
515 int intarg;
516 int ret = 0;
517 char *compress_type;
518 bool compress_force = false;
519 enum btrfs_compression_type saved_compress_type;
520 int saved_compress_level;
521 bool saved_compress_force;
522 int no_compress = 0;
523
524 cache_gen = btrfs_super_cache_generation(info->super_copy);
525 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
526 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
527 else if (cache_gen)
528 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
529
530 /*
531 * Even the options are empty, we still need to do extra check
532 * against new flags
533 */
534 if (!options)
535 goto check;
536
537 while ((p = strsep(&options, ",")) != NULL) {
538 int token;
539 if (!*p)
540 continue;
541
542 token = match_token(p, tokens, args);
543 switch (token) {
544 case Opt_degraded:
545 btrfs_info(info, "allowing degraded mounts");
546 btrfs_set_opt(info->mount_opt, DEGRADED);
547 break;
548 case Opt_subvol:
549 case Opt_subvol_empty:
550 case Opt_subvolid:
551 case Opt_device:
552 /*
553 * These are parsed by btrfs_parse_subvol_options or
554 * btrfs_parse_device_options and can be ignored here.
555 */
556 break;
557 case Opt_nodatasum:
558 btrfs_set_and_info(info, NODATASUM,
559 "setting nodatasum");
560 break;
561 case Opt_datasum:
562 if (btrfs_test_opt(info, NODATASUM)) {
563 if (btrfs_test_opt(info, NODATACOW))
564 btrfs_info(info,
565 "setting datasum, datacow enabled");
566 else
567 btrfs_info(info, "setting datasum");
568 }
569 btrfs_clear_opt(info->mount_opt, NODATACOW);
570 btrfs_clear_opt(info->mount_opt, NODATASUM);
571 break;
572 case Opt_nodatacow:
573 if (!btrfs_test_opt(info, NODATACOW)) {
574 if (!btrfs_test_opt(info, COMPRESS) ||
575 !btrfs_test_opt(info, FORCE_COMPRESS)) {
576 btrfs_info(info,
577 "setting nodatacow, compression disabled");
578 } else {
579 btrfs_info(info, "setting nodatacow");
580 }
581 }
582 btrfs_clear_opt(info->mount_opt, COMPRESS);
583 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
584 btrfs_set_opt(info->mount_opt, NODATACOW);
585 btrfs_set_opt(info->mount_opt, NODATASUM);
586 break;
587 case Opt_datacow:
588 btrfs_clear_and_info(info, NODATACOW,
589 "setting datacow");
590 break;
591 case Opt_compress_force:
592 case Opt_compress_force_type:
593 compress_force = true;
594 fallthrough;
595 case Opt_compress:
596 case Opt_compress_type:
597 saved_compress_type = btrfs_test_opt(info,
598 COMPRESS) ?
599 info->compress_type : BTRFS_COMPRESS_NONE;
600 saved_compress_force =
601 btrfs_test_opt(info, FORCE_COMPRESS);
602 saved_compress_level = info->compress_level;
603 if (token == Opt_compress ||
604 token == Opt_compress_force ||
605 strncmp(args[0].from, "zlib", 4) == 0) {
606 compress_type = "zlib";
607
608 info->compress_type = BTRFS_COMPRESS_ZLIB;
609 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
610 /*
611 * args[0] contains uninitialized data since
612 * for these tokens we don't expect any
613 * parameter.
614 */
615 if (token != Opt_compress &&
616 token != Opt_compress_force)
617 info->compress_level =
618 btrfs_compress_str2level(
619 BTRFS_COMPRESS_ZLIB,
620 args[0].from + 4);
621 btrfs_set_opt(info->mount_opt, COMPRESS);
622 btrfs_clear_opt(info->mount_opt, NODATACOW);
623 btrfs_clear_opt(info->mount_opt, NODATASUM);
624 no_compress = 0;
625 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
626 compress_type = "lzo";
627 info->compress_type = BTRFS_COMPRESS_LZO;
628 info->compress_level = 0;
629 btrfs_set_opt(info->mount_opt, COMPRESS);
630 btrfs_clear_opt(info->mount_opt, NODATACOW);
631 btrfs_clear_opt(info->mount_opt, NODATASUM);
632 btrfs_set_fs_incompat(info, COMPRESS_LZO);
633 no_compress = 0;
634 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
635 compress_type = "zstd";
636 info->compress_type = BTRFS_COMPRESS_ZSTD;
637 info->compress_level =
638 btrfs_compress_str2level(
639 BTRFS_COMPRESS_ZSTD,
640 args[0].from + 4);
641 btrfs_set_opt(info->mount_opt, COMPRESS);
642 btrfs_clear_opt(info->mount_opt, NODATACOW);
643 btrfs_clear_opt(info->mount_opt, NODATASUM);
644 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
645 no_compress = 0;
646 } else if (strncmp(args[0].from, "no", 2) == 0) {
647 compress_type = "no";
648 info->compress_level = 0;
649 info->compress_type = 0;
650 btrfs_clear_opt(info->mount_opt, COMPRESS);
651 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
652 compress_force = false;
653 no_compress++;
654 } else {
655 btrfs_err(info, "unrecognized compression value %s",
656 args[0].from);
657 ret = -EINVAL;
658 goto out;
659 }
660
661 if (compress_force) {
662 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
663 } else {
664 /*
665 * If we remount from compress-force=xxx to
666 * compress=xxx, we need clear FORCE_COMPRESS
667 * flag, otherwise, there is no way for users
668 * to disable forcible compression separately.
669 */
670 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
671 }
672 if (no_compress == 1) {
673 btrfs_info(info, "use no compression");
674 } else if ((info->compress_type != saved_compress_type) ||
675 (compress_force != saved_compress_force) ||
676 (info->compress_level != saved_compress_level)) {
677 btrfs_info(info, "%s %s compression, level %d",
678 (compress_force) ? "force" : "use",
679 compress_type, info->compress_level);
680 }
681 compress_force = false;
682 break;
683 case Opt_ssd:
684 btrfs_set_and_info(info, SSD,
685 "enabling ssd optimizations");
686 btrfs_clear_opt(info->mount_opt, NOSSD);
687 break;
688 case Opt_ssd_spread:
689 btrfs_set_and_info(info, SSD,
690 "enabling ssd optimizations");
691 btrfs_set_and_info(info, SSD_SPREAD,
692 "using spread ssd allocation scheme");
693 btrfs_clear_opt(info->mount_opt, NOSSD);
694 break;
695 case Opt_nossd:
696 btrfs_set_opt(info->mount_opt, NOSSD);
697 btrfs_clear_and_info(info, SSD,
698 "not using ssd optimizations");
699 fallthrough;
700 case Opt_nossd_spread:
701 btrfs_clear_and_info(info, SSD_SPREAD,
702 "not using spread ssd allocation scheme");
703 break;
704 case Opt_barrier:
705 btrfs_clear_and_info(info, NOBARRIER,
706 "turning on barriers");
707 break;
708 case Opt_nobarrier:
709 btrfs_set_and_info(info, NOBARRIER,
710 "turning off barriers");
711 break;
712 case Opt_thread_pool:
713 ret = match_int(&args[0], &intarg);
714 if (ret) {
715 btrfs_err(info, "unrecognized thread_pool value %s",
716 args[0].from);
717 goto out;
718 } else if (intarg == 0) {
719 btrfs_err(info, "invalid value 0 for thread_pool");
720 ret = -EINVAL;
721 goto out;
722 }
723 info->thread_pool_size = intarg;
724 break;
725 case Opt_max_inline:
726 num = match_strdup(&args[0]);
727 if (num) {
728 info->max_inline = memparse(num, NULL);
729 kfree(num);
730
731 if (info->max_inline) {
732 info->max_inline = min_t(u64,
733 info->max_inline,
734 info->sectorsize);
735 }
736 btrfs_info(info, "max_inline at %llu",
737 info->max_inline);
738 } else {
739 ret = -ENOMEM;
740 goto out;
741 }
742 break;
743 case Opt_acl:
744 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
745 info->sb->s_flags |= SB_POSIXACL;
746 break;
747 #else
748 btrfs_err(info, "support for ACL not compiled in!");
749 ret = -EINVAL;
750 goto out;
751 #endif
752 case Opt_noacl:
753 info->sb->s_flags &= ~SB_POSIXACL;
754 break;
755 case Opt_notreelog:
756 btrfs_set_and_info(info, NOTREELOG,
757 "disabling tree log");
758 break;
759 case Opt_treelog:
760 btrfs_clear_and_info(info, NOTREELOG,
761 "enabling tree log");
762 break;
763 case Opt_norecovery:
764 case Opt_nologreplay:
765 btrfs_warn(info,
766 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
767 btrfs_set_and_info(info, NOLOGREPLAY,
768 "disabling log replay at mount time");
769 break;
770 case Opt_flushoncommit:
771 btrfs_set_and_info(info, FLUSHONCOMMIT,
772 "turning on flush-on-commit");
773 break;
774 case Opt_noflushoncommit:
775 btrfs_clear_and_info(info, FLUSHONCOMMIT,
776 "turning off flush-on-commit");
777 break;
778 case Opt_ratio:
779 ret = match_int(&args[0], &intarg);
780 if (ret) {
781 btrfs_err(info, "unrecognized metadata_ratio value %s",
782 args[0].from);
783 goto out;
784 }
785 info->metadata_ratio = intarg;
786 btrfs_info(info, "metadata ratio %u",
787 info->metadata_ratio);
788 break;
789 case Opt_discard:
790 case Opt_discard_mode:
791 if (token == Opt_discard ||
792 strcmp(args[0].from, "sync") == 0) {
793 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
794 btrfs_set_and_info(info, DISCARD_SYNC,
795 "turning on sync discard");
796 } else if (strcmp(args[0].from, "async") == 0) {
797 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
798 btrfs_set_and_info(info, DISCARD_ASYNC,
799 "turning on async discard");
800 } else {
801 btrfs_err(info, "unrecognized discard mode value %s",
802 args[0].from);
803 ret = -EINVAL;
804 goto out;
805 }
806 break;
807 case Opt_nodiscard:
808 btrfs_clear_and_info(info, DISCARD_SYNC,
809 "turning off discard");
810 btrfs_clear_and_info(info, DISCARD_ASYNC,
811 "turning off async discard");
812 break;
813 case Opt_space_cache:
814 case Opt_space_cache_version:
815 if (token == Opt_space_cache ||
816 strcmp(args[0].from, "v1") == 0) {
817 btrfs_clear_opt(info->mount_opt,
818 FREE_SPACE_TREE);
819 btrfs_set_and_info(info, SPACE_CACHE,
820 "enabling disk space caching");
821 } else if (strcmp(args[0].from, "v2") == 0) {
822 btrfs_clear_opt(info->mount_opt,
823 SPACE_CACHE);
824 btrfs_set_and_info(info, FREE_SPACE_TREE,
825 "enabling free space tree");
826 } else {
827 btrfs_err(info, "unrecognized space_cache value %s",
828 args[0].from);
829 ret = -EINVAL;
830 goto out;
831 }
832 break;
833 case Opt_rescan_uuid_tree:
834 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
835 break;
836 case Opt_no_space_cache:
837 if (btrfs_test_opt(info, SPACE_CACHE)) {
838 btrfs_clear_and_info(info, SPACE_CACHE,
839 "disabling disk space caching");
840 }
841 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
842 btrfs_clear_and_info(info, FREE_SPACE_TREE,
843 "disabling free space tree");
844 }
845 break;
846 case Opt_inode_cache:
847 btrfs_warn(info,
848 "the 'inode_cache' option is deprecated and will have no effect from 5.11");
849 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
850 "enabling inode map caching");
851 break;
852 case Opt_noinode_cache:
853 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
854 "disabling inode map caching");
855 break;
856 case Opt_clear_cache:
857 btrfs_set_and_info(info, CLEAR_CACHE,
858 "force clearing of disk cache");
859 break;
860 case Opt_user_subvol_rm_allowed:
861 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
862 break;
863 case Opt_enospc_debug:
864 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
865 break;
866 case Opt_noenospc_debug:
867 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
868 break;
869 case Opt_defrag:
870 btrfs_set_and_info(info, AUTO_DEFRAG,
871 "enabling auto defrag");
872 break;
873 case Opt_nodefrag:
874 btrfs_clear_and_info(info, AUTO_DEFRAG,
875 "disabling auto defrag");
876 break;
877 case Opt_recovery:
878 case Opt_usebackuproot:
879 btrfs_warn(info,
880 "'%s' is deprecated, use 'rescue=usebackuproot' instead",
881 token == Opt_recovery ? "recovery" :
882 "usebackuproot");
883 btrfs_info(info,
884 "trying to use backup root at mount time");
885 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
886 break;
887 case Opt_skip_balance:
888 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
889 break;
890 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
891 case Opt_check_integrity_including_extent_data:
892 btrfs_info(info,
893 "enabling check integrity including extent data");
894 btrfs_set_opt(info->mount_opt,
895 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
896 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
897 break;
898 case Opt_check_integrity:
899 btrfs_info(info, "enabling check integrity");
900 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
901 break;
902 case Opt_check_integrity_print_mask:
903 ret = match_int(&args[0], &intarg);
904 if (ret) {
905 btrfs_err(info,
906 "unrecognized check_integrity_print_mask value %s",
907 args[0].from);
908 goto out;
909 }
910 info->check_integrity_print_mask = intarg;
911 btrfs_info(info, "check_integrity_print_mask 0x%x",
912 info->check_integrity_print_mask);
913 break;
914 #else
915 case Opt_check_integrity_including_extent_data:
916 case Opt_check_integrity:
917 case Opt_check_integrity_print_mask:
918 btrfs_err(info,
919 "support for check_integrity* not compiled in!");
920 ret = -EINVAL;
921 goto out;
922 #endif
923 case Opt_fatal_errors:
924 if (strcmp(args[0].from, "panic") == 0) {
925 btrfs_set_opt(info->mount_opt,
926 PANIC_ON_FATAL_ERROR);
927 } else if (strcmp(args[0].from, "bug") == 0) {
928 btrfs_clear_opt(info->mount_opt,
929 PANIC_ON_FATAL_ERROR);
930 } else {
931 btrfs_err(info, "unrecognized fatal_errors value %s",
932 args[0].from);
933 ret = -EINVAL;
934 goto out;
935 }
936 break;
937 case Opt_commit_interval:
938 intarg = 0;
939 ret = match_int(&args[0], &intarg);
940 if (ret) {
941 btrfs_err(info, "unrecognized commit_interval value %s",
942 args[0].from);
943 ret = -EINVAL;
944 goto out;
945 }
946 if (intarg == 0) {
947 btrfs_info(info,
948 "using default commit interval %us",
949 BTRFS_DEFAULT_COMMIT_INTERVAL);
950 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
951 } else if (intarg > 300) {
952 btrfs_warn(info, "excessive commit interval %d",
953 intarg);
954 }
955 info->commit_interval = intarg;
956 break;
957 case Opt_rescue:
958 ret = parse_rescue_options(info, args[0].from);
959 if (ret < 0) {
960 btrfs_err(info, "unrecognized rescue value %s",
961 args[0].from);
962 goto out;
963 }
964 break;
965 #ifdef CONFIG_BTRFS_DEBUG
966 case Opt_fragment_all:
967 btrfs_info(info, "fragmenting all space");
968 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
969 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
970 break;
971 case Opt_fragment_metadata:
972 btrfs_info(info, "fragmenting metadata");
973 btrfs_set_opt(info->mount_opt,
974 FRAGMENT_METADATA);
975 break;
976 case Opt_fragment_data:
977 btrfs_info(info, "fragmenting data");
978 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
979 break;
980 #endif
981 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
982 case Opt_ref_verify:
983 btrfs_info(info, "doing ref verification");
984 btrfs_set_opt(info->mount_opt, REF_VERIFY);
985 break;
986 #endif
987 case Opt_err:
988 btrfs_err(info, "unrecognized mount option '%s'", p);
989 ret = -EINVAL;
990 goto out;
991 default:
992 break;
993 }
994 }
995 check:
996 /*
997 * Extra check for current option against current flag
998 */
999 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
1000 btrfs_err(info,
1001 "nologreplay must be used with ro mount option");
1002 ret = -EINVAL;
1003 }
1004 out:
1005 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1006 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1007 !btrfs_test_opt(info, CLEAR_CACHE)) {
1008 btrfs_err(info, "cannot disable free space tree");
1009 ret = -EINVAL;
1010
1011 }
1012 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1013 btrfs_info(info, "disk space caching is enabled");
1014 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1015 btrfs_info(info, "using free space tree");
1016 return ret;
1017 }
1018
1019 /*
1020 * Parse mount options that are required early in the mount process.
1021 *
1022 * All other options will be parsed on much later in the mount process and
1023 * only when we need to allocate a new super block.
1024 */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)1025 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1026 void *holder)
1027 {
1028 substring_t args[MAX_OPT_ARGS];
1029 char *device_name, *opts, *orig, *p;
1030 struct btrfs_device *device = NULL;
1031 int error = 0;
1032
1033 lockdep_assert_held(&uuid_mutex);
1034
1035 if (!options)
1036 return 0;
1037
1038 /*
1039 * strsep changes the string, duplicate it because btrfs_parse_options
1040 * gets called later
1041 */
1042 opts = kstrdup(options, GFP_KERNEL);
1043 if (!opts)
1044 return -ENOMEM;
1045 orig = opts;
1046
1047 while ((p = strsep(&opts, ",")) != NULL) {
1048 int token;
1049
1050 if (!*p)
1051 continue;
1052
1053 token = match_token(p, tokens, args);
1054 if (token == Opt_device) {
1055 device_name = match_strdup(&args[0]);
1056 if (!device_name) {
1057 error = -ENOMEM;
1058 goto out;
1059 }
1060 device = btrfs_scan_one_device(device_name, flags,
1061 holder);
1062 kfree(device_name);
1063 if (IS_ERR(device)) {
1064 error = PTR_ERR(device);
1065 goto out;
1066 }
1067 }
1068 }
1069
1070 out:
1071 kfree(orig);
1072 return error;
1073 }
1074
1075 /*
1076 * Parse mount options that are related to subvolume id
1077 *
1078 * The value is later passed to mount_subvol()
1079 */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)1080 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1081 u64 *subvol_objectid)
1082 {
1083 substring_t args[MAX_OPT_ARGS];
1084 char *opts, *orig, *p;
1085 int error = 0;
1086 u64 subvolid;
1087
1088 if (!options)
1089 return 0;
1090
1091 /*
1092 * strsep changes the string, duplicate it because
1093 * btrfs_parse_device_options gets called later
1094 */
1095 opts = kstrdup(options, GFP_KERNEL);
1096 if (!opts)
1097 return -ENOMEM;
1098 orig = opts;
1099
1100 while ((p = strsep(&opts, ",")) != NULL) {
1101 int token;
1102 if (!*p)
1103 continue;
1104
1105 token = match_token(p, tokens, args);
1106 switch (token) {
1107 case Opt_subvol:
1108 kfree(*subvol_name);
1109 *subvol_name = match_strdup(&args[0]);
1110 if (!*subvol_name) {
1111 error = -ENOMEM;
1112 goto out;
1113 }
1114 break;
1115 case Opt_subvolid:
1116 error = match_u64(&args[0], &subvolid);
1117 if (error)
1118 goto out;
1119
1120 /* we want the original fs_tree */
1121 if (subvolid == 0)
1122 subvolid = BTRFS_FS_TREE_OBJECTID;
1123
1124 *subvol_objectid = subvolid;
1125 break;
1126 default:
1127 break;
1128 }
1129 }
1130
1131 out:
1132 kfree(orig);
1133 return error;
1134 }
1135
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1136 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1137 u64 subvol_objectid)
1138 {
1139 struct btrfs_root *root = fs_info->tree_root;
1140 struct btrfs_root *fs_root = NULL;
1141 struct btrfs_root_ref *root_ref;
1142 struct btrfs_inode_ref *inode_ref;
1143 struct btrfs_key key;
1144 struct btrfs_path *path = NULL;
1145 char *name = NULL, *ptr;
1146 u64 dirid;
1147 int len;
1148 int ret;
1149
1150 path = btrfs_alloc_path();
1151 if (!path) {
1152 ret = -ENOMEM;
1153 goto err;
1154 }
1155 path->leave_spinning = 1;
1156
1157 name = kmalloc(PATH_MAX, GFP_KERNEL);
1158 if (!name) {
1159 ret = -ENOMEM;
1160 goto err;
1161 }
1162 ptr = name + PATH_MAX - 1;
1163 ptr[0] = '\0';
1164
1165 /*
1166 * Walk up the subvolume trees in the tree of tree roots by root
1167 * backrefs until we hit the top-level subvolume.
1168 */
1169 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1170 key.objectid = subvol_objectid;
1171 key.type = BTRFS_ROOT_BACKREF_KEY;
1172 key.offset = (u64)-1;
1173
1174 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1175 if (ret < 0) {
1176 goto err;
1177 } else if (ret > 0) {
1178 ret = btrfs_previous_item(root, path, subvol_objectid,
1179 BTRFS_ROOT_BACKREF_KEY);
1180 if (ret < 0) {
1181 goto err;
1182 } else if (ret > 0) {
1183 ret = -ENOENT;
1184 goto err;
1185 }
1186 }
1187
1188 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1189 subvol_objectid = key.offset;
1190
1191 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1192 struct btrfs_root_ref);
1193 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1194 ptr -= len + 1;
1195 if (ptr < name) {
1196 ret = -ENAMETOOLONG;
1197 goto err;
1198 }
1199 read_extent_buffer(path->nodes[0], ptr + 1,
1200 (unsigned long)(root_ref + 1), len);
1201 ptr[0] = '/';
1202 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1203 btrfs_release_path(path);
1204
1205 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1206 if (IS_ERR(fs_root)) {
1207 ret = PTR_ERR(fs_root);
1208 fs_root = NULL;
1209 goto err;
1210 }
1211
1212 /*
1213 * Walk up the filesystem tree by inode refs until we hit the
1214 * root directory.
1215 */
1216 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1217 key.objectid = dirid;
1218 key.type = BTRFS_INODE_REF_KEY;
1219 key.offset = (u64)-1;
1220
1221 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1222 if (ret < 0) {
1223 goto err;
1224 } else if (ret > 0) {
1225 ret = btrfs_previous_item(fs_root, path, dirid,
1226 BTRFS_INODE_REF_KEY);
1227 if (ret < 0) {
1228 goto err;
1229 } else if (ret > 0) {
1230 ret = -ENOENT;
1231 goto err;
1232 }
1233 }
1234
1235 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1236 dirid = key.offset;
1237
1238 inode_ref = btrfs_item_ptr(path->nodes[0],
1239 path->slots[0],
1240 struct btrfs_inode_ref);
1241 len = btrfs_inode_ref_name_len(path->nodes[0],
1242 inode_ref);
1243 ptr -= len + 1;
1244 if (ptr < name) {
1245 ret = -ENAMETOOLONG;
1246 goto err;
1247 }
1248 read_extent_buffer(path->nodes[0], ptr + 1,
1249 (unsigned long)(inode_ref + 1), len);
1250 ptr[0] = '/';
1251 btrfs_release_path(path);
1252 }
1253 btrfs_put_root(fs_root);
1254 fs_root = NULL;
1255 }
1256
1257 btrfs_free_path(path);
1258 if (ptr == name + PATH_MAX - 1) {
1259 name[0] = '/';
1260 name[1] = '\0';
1261 } else {
1262 memmove(name, ptr, name + PATH_MAX - ptr);
1263 }
1264 return name;
1265
1266 err:
1267 btrfs_put_root(fs_root);
1268 btrfs_free_path(path);
1269 kfree(name);
1270 return ERR_PTR(ret);
1271 }
1272
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1273 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1274 {
1275 struct btrfs_root *root = fs_info->tree_root;
1276 struct btrfs_dir_item *di;
1277 struct btrfs_path *path;
1278 struct btrfs_key location;
1279 u64 dir_id;
1280
1281 path = btrfs_alloc_path();
1282 if (!path)
1283 return -ENOMEM;
1284 path->leave_spinning = 1;
1285
1286 /*
1287 * Find the "default" dir item which points to the root item that we
1288 * will mount by default if we haven't been given a specific subvolume
1289 * to mount.
1290 */
1291 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1292 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1293 if (IS_ERR(di)) {
1294 btrfs_free_path(path);
1295 return PTR_ERR(di);
1296 }
1297 if (!di) {
1298 /*
1299 * Ok the default dir item isn't there. This is weird since
1300 * it's always been there, but don't freak out, just try and
1301 * mount the top-level subvolume.
1302 */
1303 btrfs_free_path(path);
1304 *objectid = BTRFS_FS_TREE_OBJECTID;
1305 return 0;
1306 }
1307
1308 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1309 btrfs_free_path(path);
1310 *objectid = location.objectid;
1311 return 0;
1312 }
1313
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1314 static int btrfs_fill_super(struct super_block *sb,
1315 struct btrfs_fs_devices *fs_devices,
1316 void *data)
1317 {
1318 struct inode *inode;
1319 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1320 int err;
1321
1322 sb->s_maxbytes = MAX_LFS_FILESIZE;
1323 sb->s_magic = BTRFS_SUPER_MAGIC;
1324 sb->s_op = &btrfs_super_ops;
1325 sb->s_d_op = &btrfs_dentry_operations;
1326 sb->s_export_op = &btrfs_export_ops;
1327 sb->s_xattr = btrfs_xattr_handlers;
1328 sb->s_time_gran = 1;
1329 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1330 sb->s_flags |= SB_POSIXACL;
1331 #endif
1332 sb->s_flags |= SB_I_VERSION;
1333 sb->s_iflags |= SB_I_CGROUPWB;
1334
1335 err = super_setup_bdi(sb);
1336 if (err) {
1337 btrfs_err(fs_info, "super_setup_bdi failed");
1338 return err;
1339 }
1340
1341 err = open_ctree(sb, fs_devices, (char *)data);
1342 if (err) {
1343 btrfs_err(fs_info, "open_ctree failed");
1344 return err;
1345 }
1346
1347 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1348 if (IS_ERR(inode)) {
1349 err = PTR_ERR(inode);
1350 goto fail_close;
1351 }
1352
1353 sb->s_root = d_make_root(inode);
1354 if (!sb->s_root) {
1355 err = -ENOMEM;
1356 goto fail_close;
1357 }
1358
1359 cleancache_init_fs(sb);
1360 sb->s_flags |= SB_ACTIVE;
1361 return 0;
1362
1363 fail_close:
1364 close_ctree(fs_info);
1365 return err;
1366 }
1367
btrfs_sync_fs(struct super_block * sb,int wait)1368 int btrfs_sync_fs(struct super_block *sb, int wait)
1369 {
1370 struct btrfs_trans_handle *trans;
1371 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1372 struct btrfs_root *root = fs_info->tree_root;
1373
1374 trace_btrfs_sync_fs(fs_info, wait);
1375
1376 if (!wait) {
1377 filemap_flush(fs_info->btree_inode->i_mapping);
1378 return 0;
1379 }
1380
1381 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1382
1383 trans = btrfs_attach_transaction_barrier(root);
1384 if (IS_ERR(trans)) {
1385 /* no transaction, don't bother */
1386 if (PTR_ERR(trans) == -ENOENT) {
1387 /*
1388 * Exit unless we have some pending changes
1389 * that need to go through commit
1390 */
1391 if (fs_info->pending_changes == 0)
1392 return 0;
1393 /*
1394 * A non-blocking test if the fs is frozen. We must not
1395 * start a new transaction here otherwise a deadlock
1396 * happens. The pending operations are delayed to the
1397 * next commit after thawing.
1398 */
1399 if (sb_start_write_trylock(sb))
1400 sb_end_write(sb);
1401 else
1402 return 0;
1403 trans = btrfs_start_transaction(root, 0);
1404 }
1405 if (IS_ERR(trans))
1406 return PTR_ERR(trans);
1407 }
1408 return btrfs_commit_transaction(trans);
1409 }
1410
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1411 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1412 {
1413 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1414 const char *compress_type;
1415 const char *subvol_name;
1416
1417 if (btrfs_test_opt(info, DEGRADED))
1418 seq_puts(seq, ",degraded");
1419 if (btrfs_test_opt(info, NODATASUM))
1420 seq_puts(seq, ",nodatasum");
1421 if (btrfs_test_opt(info, NODATACOW))
1422 seq_puts(seq, ",nodatacow");
1423 if (btrfs_test_opt(info, NOBARRIER))
1424 seq_puts(seq, ",nobarrier");
1425 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1426 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1427 if (info->thread_pool_size != min_t(unsigned long,
1428 num_online_cpus() + 2, 8))
1429 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1430 if (btrfs_test_opt(info, COMPRESS)) {
1431 compress_type = btrfs_compress_type2str(info->compress_type);
1432 if (btrfs_test_opt(info, FORCE_COMPRESS))
1433 seq_printf(seq, ",compress-force=%s", compress_type);
1434 else
1435 seq_printf(seq, ",compress=%s", compress_type);
1436 if (info->compress_level)
1437 seq_printf(seq, ":%d", info->compress_level);
1438 }
1439 if (btrfs_test_opt(info, NOSSD))
1440 seq_puts(seq, ",nossd");
1441 if (btrfs_test_opt(info, SSD_SPREAD))
1442 seq_puts(seq, ",ssd_spread");
1443 else if (btrfs_test_opt(info, SSD))
1444 seq_puts(seq, ",ssd");
1445 if (btrfs_test_opt(info, NOTREELOG))
1446 seq_puts(seq, ",notreelog");
1447 if (btrfs_test_opt(info, NOLOGREPLAY))
1448 seq_puts(seq, ",rescue=nologreplay");
1449 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1450 seq_puts(seq, ",flushoncommit");
1451 if (btrfs_test_opt(info, DISCARD_SYNC))
1452 seq_puts(seq, ",discard");
1453 if (btrfs_test_opt(info, DISCARD_ASYNC))
1454 seq_puts(seq, ",discard=async");
1455 if (!(info->sb->s_flags & SB_POSIXACL))
1456 seq_puts(seq, ",noacl");
1457 if (btrfs_test_opt(info, SPACE_CACHE))
1458 seq_puts(seq, ",space_cache");
1459 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1460 seq_puts(seq, ",space_cache=v2");
1461 else
1462 seq_puts(seq, ",nospace_cache");
1463 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1464 seq_puts(seq, ",rescan_uuid_tree");
1465 if (btrfs_test_opt(info, CLEAR_CACHE))
1466 seq_puts(seq, ",clear_cache");
1467 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1468 seq_puts(seq, ",user_subvol_rm_allowed");
1469 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1470 seq_puts(seq, ",enospc_debug");
1471 if (btrfs_test_opt(info, AUTO_DEFRAG))
1472 seq_puts(seq, ",autodefrag");
1473 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1474 seq_puts(seq, ",inode_cache");
1475 if (btrfs_test_opt(info, SKIP_BALANCE))
1476 seq_puts(seq, ",skip_balance");
1477 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1478 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1479 seq_puts(seq, ",check_int_data");
1480 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1481 seq_puts(seq, ",check_int");
1482 if (info->check_integrity_print_mask)
1483 seq_printf(seq, ",check_int_print_mask=%d",
1484 info->check_integrity_print_mask);
1485 #endif
1486 if (info->metadata_ratio)
1487 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1488 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1489 seq_puts(seq, ",fatal_errors=panic");
1490 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1491 seq_printf(seq, ",commit=%u", info->commit_interval);
1492 #ifdef CONFIG_BTRFS_DEBUG
1493 if (btrfs_test_opt(info, FRAGMENT_DATA))
1494 seq_puts(seq, ",fragment=data");
1495 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1496 seq_puts(seq, ",fragment=metadata");
1497 #endif
1498 if (btrfs_test_opt(info, REF_VERIFY))
1499 seq_puts(seq, ",ref_verify");
1500 seq_printf(seq, ",subvolid=%llu",
1501 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1502 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1503 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1504 if (!IS_ERR(subvol_name)) {
1505 seq_puts(seq, ",subvol=");
1506 seq_escape(seq, subvol_name, " \t\n\\");
1507 kfree(subvol_name);
1508 }
1509 return 0;
1510 }
1511
btrfs_test_super(struct super_block * s,void * data)1512 static int btrfs_test_super(struct super_block *s, void *data)
1513 {
1514 struct btrfs_fs_info *p = data;
1515 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1516
1517 return fs_info->fs_devices == p->fs_devices;
1518 }
1519
btrfs_set_super(struct super_block * s,void * data)1520 static int btrfs_set_super(struct super_block *s, void *data)
1521 {
1522 int err = set_anon_super(s, data);
1523 if (!err)
1524 s->s_fs_info = data;
1525 return err;
1526 }
1527
1528 /*
1529 * subvolumes are identified by ino 256
1530 */
is_subvolume_inode(struct inode * inode)1531 static inline int is_subvolume_inode(struct inode *inode)
1532 {
1533 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1534 return 1;
1535 return 0;
1536 }
1537
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1538 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1539 struct vfsmount *mnt)
1540 {
1541 struct dentry *root;
1542 int ret;
1543
1544 if (!subvol_name) {
1545 if (!subvol_objectid) {
1546 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1547 &subvol_objectid);
1548 if (ret) {
1549 root = ERR_PTR(ret);
1550 goto out;
1551 }
1552 }
1553 subvol_name = btrfs_get_subvol_name_from_objectid(
1554 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1555 if (IS_ERR(subvol_name)) {
1556 root = ERR_CAST(subvol_name);
1557 subvol_name = NULL;
1558 goto out;
1559 }
1560
1561 }
1562
1563 root = mount_subtree(mnt, subvol_name);
1564 /* mount_subtree() drops our reference on the vfsmount. */
1565 mnt = NULL;
1566
1567 if (!IS_ERR(root)) {
1568 struct super_block *s = root->d_sb;
1569 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1570 struct inode *root_inode = d_inode(root);
1571 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1572
1573 ret = 0;
1574 if (!is_subvolume_inode(root_inode)) {
1575 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1576 subvol_name);
1577 ret = -EINVAL;
1578 }
1579 if (subvol_objectid && root_objectid != subvol_objectid) {
1580 /*
1581 * This will also catch a race condition where a
1582 * subvolume which was passed by ID is renamed and
1583 * another subvolume is renamed over the old location.
1584 */
1585 btrfs_err(fs_info,
1586 "subvol '%s' does not match subvolid %llu",
1587 subvol_name, subvol_objectid);
1588 ret = -EINVAL;
1589 }
1590 if (ret) {
1591 dput(root);
1592 root = ERR_PTR(ret);
1593 deactivate_locked_super(s);
1594 }
1595 }
1596
1597 out:
1598 mntput(mnt);
1599 kfree(subvol_name);
1600 return root;
1601 }
1602
1603 /*
1604 * Find a superblock for the given device / mount point.
1605 *
1606 * Note: This is based on mount_bdev from fs/super.c with a few additions
1607 * for multiple device setup. Make sure to keep it in sync.
1608 */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1609 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1610 int flags, const char *device_name, void *data)
1611 {
1612 struct block_device *bdev = NULL;
1613 struct super_block *s;
1614 struct btrfs_device *device = NULL;
1615 struct btrfs_fs_devices *fs_devices = NULL;
1616 struct btrfs_fs_info *fs_info = NULL;
1617 void *new_sec_opts = NULL;
1618 fmode_t mode = FMODE_READ;
1619 int error = 0;
1620
1621 if (!(flags & SB_RDONLY))
1622 mode |= FMODE_WRITE;
1623
1624 if (data) {
1625 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1626 if (error)
1627 return ERR_PTR(error);
1628 }
1629
1630 /*
1631 * Setup a dummy root and fs_info for test/set super. This is because
1632 * we don't actually fill this stuff out until open_ctree, but we need
1633 * then open_ctree will properly initialize the file system specific
1634 * settings later. btrfs_init_fs_info initializes the static elements
1635 * of the fs_info (locks and such) to make cleanup easier if we find a
1636 * superblock with our given fs_devices later on at sget() time.
1637 */
1638 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1639 if (!fs_info) {
1640 error = -ENOMEM;
1641 goto error_sec_opts;
1642 }
1643 btrfs_init_fs_info(fs_info);
1644
1645 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1646 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1647 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1648 error = -ENOMEM;
1649 goto error_fs_info;
1650 }
1651
1652 mutex_lock(&uuid_mutex);
1653 error = btrfs_parse_device_options(data, mode, fs_type);
1654 if (error) {
1655 mutex_unlock(&uuid_mutex);
1656 goto error_fs_info;
1657 }
1658
1659 device = btrfs_scan_one_device(device_name, mode, fs_type);
1660 if (IS_ERR(device)) {
1661 mutex_unlock(&uuid_mutex);
1662 error = PTR_ERR(device);
1663 goto error_fs_info;
1664 }
1665
1666 fs_devices = device->fs_devices;
1667 fs_info->fs_devices = fs_devices;
1668
1669 error = btrfs_open_devices(fs_devices, mode, fs_type);
1670 mutex_unlock(&uuid_mutex);
1671 if (error)
1672 goto error_fs_info;
1673
1674 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1675 error = -EACCES;
1676 goto error_close_devices;
1677 }
1678
1679 bdev = fs_devices->latest_bdev;
1680 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1681 fs_info);
1682 if (IS_ERR(s)) {
1683 error = PTR_ERR(s);
1684 goto error_close_devices;
1685 }
1686
1687 if (s->s_root) {
1688 btrfs_close_devices(fs_devices);
1689 btrfs_free_fs_info(fs_info);
1690 if ((flags ^ s->s_flags) & SB_RDONLY)
1691 error = -EBUSY;
1692 } else {
1693 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1694 btrfs_sb(s)->bdev_holder = fs_type;
1695 if (!strstr(crc32c_impl(), "generic"))
1696 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1697 error = btrfs_fill_super(s, fs_devices, data);
1698 }
1699 if (!error)
1700 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1701 security_free_mnt_opts(&new_sec_opts);
1702 if (error) {
1703 deactivate_locked_super(s);
1704 return ERR_PTR(error);
1705 }
1706
1707 return dget(s->s_root);
1708
1709 error_close_devices:
1710 btrfs_close_devices(fs_devices);
1711 error_fs_info:
1712 btrfs_free_fs_info(fs_info);
1713 error_sec_opts:
1714 security_free_mnt_opts(&new_sec_opts);
1715 return ERR_PTR(error);
1716 }
1717
1718 /*
1719 * Mount function which is called by VFS layer.
1720 *
1721 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1722 * which needs vfsmount* of device's root (/). This means device's root has to
1723 * be mounted internally in any case.
1724 *
1725 * Operation flow:
1726 * 1. Parse subvol id related options for later use in mount_subvol().
1727 *
1728 * 2. Mount device's root (/) by calling vfs_kern_mount().
1729 *
1730 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1731 * first place. In order to avoid calling btrfs_mount() again, we use
1732 * different file_system_type which is not registered to VFS by
1733 * register_filesystem() (btrfs_root_fs_type). As a result,
1734 * btrfs_mount_root() is called. The return value will be used by
1735 * mount_subtree() in mount_subvol().
1736 *
1737 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1738 * "btrfs subvolume set-default", mount_subvol() is called always.
1739 */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1740 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1741 const char *device_name, void *data)
1742 {
1743 struct vfsmount *mnt_root;
1744 struct dentry *root;
1745 char *subvol_name = NULL;
1746 u64 subvol_objectid = 0;
1747 int error = 0;
1748
1749 error = btrfs_parse_subvol_options(data, &subvol_name,
1750 &subvol_objectid);
1751 if (error) {
1752 kfree(subvol_name);
1753 return ERR_PTR(error);
1754 }
1755
1756 /* mount device's root (/) */
1757 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1758 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1759 if (flags & SB_RDONLY) {
1760 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1761 flags & ~SB_RDONLY, device_name, data);
1762 } else {
1763 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1764 flags | SB_RDONLY, device_name, data);
1765 if (IS_ERR(mnt_root)) {
1766 root = ERR_CAST(mnt_root);
1767 kfree(subvol_name);
1768 goto out;
1769 }
1770
1771 down_write(&mnt_root->mnt_sb->s_umount);
1772 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1773 up_write(&mnt_root->mnt_sb->s_umount);
1774 if (error < 0) {
1775 root = ERR_PTR(error);
1776 mntput(mnt_root);
1777 kfree(subvol_name);
1778 goto out;
1779 }
1780 }
1781 }
1782 if (IS_ERR(mnt_root)) {
1783 root = ERR_CAST(mnt_root);
1784 kfree(subvol_name);
1785 goto out;
1786 }
1787
1788 /* mount_subvol() will free subvol_name and mnt_root */
1789 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1790
1791 out:
1792 return root;
1793 }
1794
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1795 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1796 u32 new_pool_size, u32 old_pool_size)
1797 {
1798 if (new_pool_size == old_pool_size)
1799 return;
1800
1801 fs_info->thread_pool_size = new_pool_size;
1802
1803 btrfs_info(fs_info, "resize thread pool %d -> %d",
1804 old_pool_size, new_pool_size);
1805
1806 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1807 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1808 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1809 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1810 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1811 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1812 new_pool_size);
1813 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1814 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1815 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1816 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1817 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1818 new_pool_size);
1819 }
1820
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1821 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1822 unsigned long old_opts, int flags)
1823 {
1824 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1825 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1826 (flags & SB_RDONLY))) {
1827 /* wait for any defraggers to finish */
1828 wait_event(fs_info->transaction_wait,
1829 (atomic_read(&fs_info->defrag_running) == 0));
1830 if (flags & SB_RDONLY)
1831 sync_filesystem(fs_info->sb);
1832 }
1833 }
1834
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1835 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1836 unsigned long old_opts)
1837 {
1838 /*
1839 * We need to cleanup all defragable inodes if the autodefragment is
1840 * close or the filesystem is read only.
1841 */
1842 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1843 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1844 btrfs_cleanup_defrag_inodes(fs_info);
1845 }
1846
1847 /* If we toggled discard async */
1848 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1849 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1850 btrfs_discard_resume(fs_info);
1851 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1852 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1853 btrfs_discard_cleanup(fs_info);
1854 }
1855
btrfs_remount(struct super_block * sb,int * flags,char * data)1856 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1857 {
1858 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1859 struct btrfs_root *root = fs_info->tree_root;
1860 unsigned old_flags = sb->s_flags;
1861 unsigned long old_opts = fs_info->mount_opt;
1862 unsigned long old_compress_type = fs_info->compress_type;
1863 u64 old_max_inline = fs_info->max_inline;
1864 u32 old_thread_pool_size = fs_info->thread_pool_size;
1865 u32 old_metadata_ratio = fs_info->metadata_ratio;
1866 int ret;
1867
1868 sync_filesystem(sb);
1869 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1870
1871 if (data) {
1872 void *new_sec_opts = NULL;
1873
1874 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1875 if (!ret)
1876 ret = security_sb_remount(sb, new_sec_opts);
1877 security_free_mnt_opts(&new_sec_opts);
1878 if (ret)
1879 goto restore;
1880 }
1881
1882 ret = btrfs_parse_options(fs_info, data, *flags);
1883 if (ret)
1884 goto restore;
1885
1886 btrfs_remount_begin(fs_info, old_opts, *flags);
1887 btrfs_resize_thread_pool(fs_info,
1888 fs_info->thread_pool_size, old_thread_pool_size);
1889
1890 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1891 goto out;
1892
1893 if (*flags & SB_RDONLY) {
1894 /*
1895 * this also happens on 'umount -rf' or on shutdown, when
1896 * the filesystem is busy.
1897 */
1898 cancel_work_sync(&fs_info->async_reclaim_work);
1899 cancel_work_sync(&fs_info->async_data_reclaim_work);
1900
1901 btrfs_discard_cleanup(fs_info);
1902
1903 /* wait for the uuid_scan task to finish */
1904 down(&fs_info->uuid_tree_rescan_sem);
1905 /* avoid complains from lockdep et al. */
1906 up(&fs_info->uuid_tree_rescan_sem);
1907
1908 sb->s_flags |= SB_RDONLY;
1909
1910 /*
1911 * Setting SB_RDONLY will put the cleaner thread to
1912 * sleep at the next loop if it's already active.
1913 * If it's already asleep, we'll leave unused block
1914 * groups on disk until we're mounted read-write again
1915 * unless we clean them up here.
1916 */
1917 btrfs_delete_unused_bgs(fs_info);
1918
1919 btrfs_dev_replace_suspend_for_unmount(fs_info);
1920 btrfs_scrub_cancel(fs_info);
1921 btrfs_pause_balance(fs_info);
1922
1923 /*
1924 * Pause the qgroup rescan worker if it is running. We don't want
1925 * it to be still running after we are in RO mode, as after that,
1926 * by the time we unmount, it might have left a transaction open,
1927 * so we would leak the transaction and/or crash.
1928 */
1929 btrfs_qgroup_wait_for_completion(fs_info, false);
1930
1931 ret = btrfs_commit_super(fs_info);
1932 if (ret)
1933 goto restore;
1934 } else {
1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1936 btrfs_err(fs_info,
1937 "Remounting read-write after error is not allowed");
1938 ret = -EINVAL;
1939 goto restore;
1940 }
1941 if (fs_info->fs_devices->rw_devices == 0) {
1942 ret = -EACCES;
1943 goto restore;
1944 }
1945
1946 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1947 btrfs_warn(fs_info,
1948 "too many missing devices, writable remount is not allowed");
1949 ret = -EACCES;
1950 goto restore;
1951 }
1952
1953 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1954 btrfs_warn(fs_info,
1955 "mount required to replay tree-log, cannot remount read-write");
1956 ret = -EINVAL;
1957 goto restore;
1958 }
1959
1960 ret = btrfs_cleanup_fs_roots(fs_info);
1961 if (ret)
1962 goto restore;
1963
1964 /* recover relocation */
1965 mutex_lock(&fs_info->cleaner_mutex);
1966 ret = btrfs_recover_relocation(root);
1967 mutex_unlock(&fs_info->cleaner_mutex);
1968 if (ret)
1969 goto restore;
1970
1971 ret = btrfs_resume_balance_async(fs_info);
1972 if (ret)
1973 goto restore;
1974
1975 ret = btrfs_resume_dev_replace_async(fs_info);
1976 if (ret) {
1977 btrfs_warn(fs_info, "failed to resume dev_replace");
1978 goto restore;
1979 }
1980
1981 btrfs_qgroup_rescan_resume(fs_info);
1982
1983 if (!fs_info->uuid_root) {
1984 btrfs_info(fs_info, "creating UUID tree");
1985 ret = btrfs_create_uuid_tree(fs_info);
1986 if (ret) {
1987 btrfs_warn(fs_info,
1988 "failed to create the UUID tree %d",
1989 ret);
1990 goto restore;
1991 }
1992 }
1993 sb->s_flags &= ~SB_RDONLY;
1994
1995 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1996 }
1997 out:
1998 /*
1999 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2000 * since the absence of the flag means it can be toggled off by remount.
2001 */
2002 *flags |= SB_I_VERSION;
2003
2004 wake_up_process(fs_info->transaction_kthread);
2005 btrfs_remount_cleanup(fs_info, old_opts);
2006 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2007
2008 return 0;
2009
2010 restore:
2011 /* We've hit an error - don't reset SB_RDONLY */
2012 if (sb_rdonly(sb))
2013 old_flags |= SB_RDONLY;
2014 sb->s_flags = old_flags;
2015 fs_info->mount_opt = old_opts;
2016 fs_info->compress_type = old_compress_type;
2017 fs_info->max_inline = old_max_inline;
2018 btrfs_resize_thread_pool(fs_info,
2019 old_thread_pool_size, fs_info->thread_pool_size);
2020 fs_info->metadata_ratio = old_metadata_ratio;
2021 btrfs_remount_cleanup(fs_info, old_opts);
2022 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2023
2024 return ret;
2025 }
2026
2027 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)2028 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
2029 const void *dev_info2)
2030 {
2031 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2032 ((struct btrfs_device_info *)dev_info2)->max_avail)
2033 return -1;
2034 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2035 ((struct btrfs_device_info *)dev_info2)->max_avail)
2036 return 1;
2037 else
2038 return 0;
2039 }
2040
2041 /*
2042 * sort the devices by max_avail, in which max free extent size of each device
2043 * is stored.(Descending Sort)
2044 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)2045 static inline void btrfs_descending_sort_devices(
2046 struct btrfs_device_info *devices,
2047 size_t nr_devices)
2048 {
2049 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2050 btrfs_cmp_device_free_bytes, NULL);
2051 }
2052
2053 /*
2054 * The helper to calc the free space on the devices that can be used to store
2055 * file data.
2056 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)2057 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2058 u64 *free_bytes)
2059 {
2060 struct btrfs_device_info *devices_info;
2061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2062 struct btrfs_device *device;
2063 u64 type;
2064 u64 avail_space;
2065 u64 min_stripe_size;
2066 int num_stripes = 1;
2067 int i = 0, nr_devices;
2068 const struct btrfs_raid_attr *rattr;
2069
2070 /*
2071 * We aren't under the device list lock, so this is racy-ish, but good
2072 * enough for our purposes.
2073 */
2074 nr_devices = fs_info->fs_devices->open_devices;
2075 if (!nr_devices) {
2076 smp_mb();
2077 nr_devices = fs_info->fs_devices->open_devices;
2078 ASSERT(nr_devices);
2079 if (!nr_devices) {
2080 *free_bytes = 0;
2081 return 0;
2082 }
2083 }
2084
2085 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2086 GFP_KERNEL);
2087 if (!devices_info)
2088 return -ENOMEM;
2089
2090 /* calc min stripe number for data space allocation */
2091 type = btrfs_data_alloc_profile(fs_info);
2092 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2093
2094 if (type & BTRFS_BLOCK_GROUP_RAID0)
2095 num_stripes = nr_devices;
2096 else if (type & BTRFS_BLOCK_GROUP_RAID1)
2097 num_stripes = 2;
2098 else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2099 num_stripes = 3;
2100 else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2101 num_stripes = 4;
2102 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2103 num_stripes = 4;
2104
2105 /* Adjust for more than 1 stripe per device */
2106 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2107
2108 rcu_read_lock();
2109 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2110 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2111 &device->dev_state) ||
2112 !device->bdev ||
2113 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2114 continue;
2115
2116 if (i >= nr_devices)
2117 break;
2118
2119 avail_space = device->total_bytes - device->bytes_used;
2120
2121 /* align with stripe_len */
2122 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2123
2124 /*
2125 * In order to avoid overwriting the superblock on the drive,
2126 * btrfs starts at an offset of at least 1MB when doing chunk
2127 * allocation.
2128 *
2129 * This ensures we have at least min_stripe_size free space
2130 * after excluding 1MB.
2131 */
2132 if (avail_space <= SZ_1M + min_stripe_size)
2133 continue;
2134
2135 avail_space -= SZ_1M;
2136
2137 devices_info[i].dev = device;
2138 devices_info[i].max_avail = avail_space;
2139
2140 i++;
2141 }
2142 rcu_read_unlock();
2143
2144 nr_devices = i;
2145
2146 btrfs_descending_sort_devices(devices_info, nr_devices);
2147
2148 i = nr_devices - 1;
2149 avail_space = 0;
2150 while (nr_devices >= rattr->devs_min) {
2151 num_stripes = min(num_stripes, nr_devices);
2152
2153 if (devices_info[i].max_avail >= min_stripe_size) {
2154 int j;
2155 u64 alloc_size;
2156
2157 avail_space += devices_info[i].max_avail * num_stripes;
2158 alloc_size = devices_info[i].max_avail;
2159 for (j = i + 1 - num_stripes; j <= i; j++)
2160 devices_info[j].max_avail -= alloc_size;
2161 }
2162 i--;
2163 nr_devices--;
2164 }
2165
2166 kfree(devices_info);
2167 *free_bytes = avail_space;
2168 return 0;
2169 }
2170
2171 /*
2172 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2173 *
2174 * If there's a redundant raid level at DATA block groups, use the respective
2175 * multiplier to scale the sizes.
2176 *
2177 * Unused device space usage is based on simulating the chunk allocator
2178 * algorithm that respects the device sizes and order of allocations. This is
2179 * a close approximation of the actual use but there are other factors that may
2180 * change the result (like a new metadata chunk).
2181 *
2182 * If metadata is exhausted, f_bavail will be 0.
2183 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2184 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2185 {
2186 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2187 struct btrfs_super_block *disk_super = fs_info->super_copy;
2188 struct btrfs_space_info *found;
2189 u64 total_used = 0;
2190 u64 total_free_data = 0;
2191 u64 total_free_meta = 0;
2192 int bits = dentry->d_sb->s_blocksize_bits;
2193 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2194 unsigned factor = 1;
2195 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2196 int ret;
2197 u64 thresh = 0;
2198 int mixed = 0;
2199
2200 list_for_each_entry(found, &fs_info->space_info, list) {
2201 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2202 int i;
2203
2204 total_free_data += found->disk_total - found->disk_used;
2205 total_free_data -=
2206 btrfs_account_ro_block_groups_free_space(found);
2207
2208 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2209 if (!list_empty(&found->block_groups[i]))
2210 factor = btrfs_bg_type_to_factor(
2211 btrfs_raid_array[i].bg_flag);
2212 }
2213 }
2214
2215 /*
2216 * Metadata in mixed block goup profiles are accounted in data
2217 */
2218 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2219 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2220 mixed = 1;
2221 else
2222 total_free_meta += found->disk_total -
2223 found->disk_used;
2224 }
2225
2226 total_used += found->disk_used;
2227 }
2228
2229 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2230 buf->f_blocks >>= bits;
2231 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2232
2233 /* Account global block reserve as used, it's in logical size already */
2234 spin_lock(&block_rsv->lock);
2235 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2236 if (buf->f_bfree >= block_rsv->size >> bits)
2237 buf->f_bfree -= block_rsv->size >> bits;
2238 else
2239 buf->f_bfree = 0;
2240 spin_unlock(&block_rsv->lock);
2241
2242 buf->f_bavail = div_u64(total_free_data, factor);
2243 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2244 if (ret)
2245 return ret;
2246 buf->f_bavail += div_u64(total_free_data, factor);
2247 buf->f_bavail = buf->f_bavail >> bits;
2248
2249 /*
2250 * We calculate the remaining metadata space minus global reserve. If
2251 * this is (supposedly) smaller than zero, there's no space. But this
2252 * does not hold in practice, the exhausted state happens where's still
2253 * some positive delta. So we apply some guesswork and compare the
2254 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2255 *
2256 * We probably cannot calculate the exact threshold value because this
2257 * depends on the internal reservations requested by various
2258 * operations, so some operations that consume a few metadata will
2259 * succeed even if the Avail is zero. But this is better than the other
2260 * way around.
2261 */
2262 thresh = SZ_4M;
2263
2264 /*
2265 * We only want to claim there's no available space if we can no longer
2266 * allocate chunks for our metadata profile and our global reserve will
2267 * not fit in the free metadata space. If we aren't ->full then we
2268 * still can allocate chunks and thus are fine using the currently
2269 * calculated f_bavail.
2270 */
2271 if (!mixed && block_rsv->space_info->full &&
2272 total_free_meta - thresh < block_rsv->size)
2273 buf->f_bavail = 0;
2274
2275 buf->f_type = BTRFS_SUPER_MAGIC;
2276 buf->f_bsize = dentry->d_sb->s_blocksize;
2277 buf->f_namelen = BTRFS_NAME_LEN;
2278
2279 /* We treat it as constant endianness (it doesn't matter _which_)
2280 because we want the fsid to come out the same whether mounted
2281 on a big-endian or little-endian host */
2282 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2283 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2284 /* Mask in the root object ID too, to disambiguate subvols */
2285 buf->f_fsid.val[0] ^=
2286 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2287 buf->f_fsid.val[1] ^=
2288 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2289
2290 return 0;
2291 }
2292
btrfs_kill_super(struct super_block * sb)2293 static void btrfs_kill_super(struct super_block *sb)
2294 {
2295 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2296 kill_anon_super(sb);
2297 btrfs_free_fs_info(fs_info);
2298 }
2299
2300 static struct file_system_type btrfs_fs_type = {
2301 .owner = THIS_MODULE,
2302 .name = "btrfs",
2303 .mount = btrfs_mount,
2304 .kill_sb = btrfs_kill_super,
2305 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2306 };
2307
2308 static struct file_system_type btrfs_root_fs_type = {
2309 .owner = THIS_MODULE,
2310 .name = "btrfs",
2311 .mount = btrfs_mount_root,
2312 .kill_sb = btrfs_kill_super,
2313 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2314 };
2315
2316 MODULE_ALIAS_FS("btrfs");
2317
btrfs_control_open(struct inode * inode,struct file * file)2318 static int btrfs_control_open(struct inode *inode, struct file *file)
2319 {
2320 /*
2321 * The control file's private_data is used to hold the
2322 * transaction when it is started and is used to keep
2323 * track of whether a transaction is already in progress.
2324 */
2325 file->private_data = NULL;
2326 return 0;
2327 }
2328
2329 /*
2330 * Used by /dev/btrfs-control for devices ioctls.
2331 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2332 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2333 unsigned long arg)
2334 {
2335 struct btrfs_ioctl_vol_args *vol;
2336 struct btrfs_device *device = NULL;
2337 int ret = -ENOTTY;
2338
2339 if (!capable(CAP_SYS_ADMIN))
2340 return -EPERM;
2341
2342 vol = memdup_user((void __user *)arg, sizeof(*vol));
2343 if (IS_ERR(vol))
2344 return PTR_ERR(vol);
2345 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2346
2347 switch (cmd) {
2348 case BTRFS_IOC_SCAN_DEV:
2349 mutex_lock(&uuid_mutex);
2350 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2351 &btrfs_root_fs_type);
2352 ret = PTR_ERR_OR_ZERO(device);
2353 mutex_unlock(&uuid_mutex);
2354 break;
2355 case BTRFS_IOC_FORGET_DEV:
2356 ret = btrfs_forget_devices(vol->name);
2357 break;
2358 case BTRFS_IOC_DEVICES_READY:
2359 mutex_lock(&uuid_mutex);
2360 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2361 &btrfs_root_fs_type);
2362 if (IS_ERR(device)) {
2363 mutex_unlock(&uuid_mutex);
2364 ret = PTR_ERR(device);
2365 break;
2366 }
2367 ret = !(device->fs_devices->num_devices ==
2368 device->fs_devices->total_devices);
2369 mutex_unlock(&uuid_mutex);
2370 break;
2371 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2372 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2373 break;
2374 }
2375
2376 kfree(vol);
2377 return ret;
2378 }
2379
btrfs_freeze(struct super_block * sb)2380 static int btrfs_freeze(struct super_block *sb)
2381 {
2382 struct btrfs_trans_handle *trans;
2383 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2384 struct btrfs_root *root = fs_info->tree_root;
2385
2386 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2387 /*
2388 * We don't need a barrier here, we'll wait for any transaction that
2389 * could be in progress on other threads (and do delayed iputs that
2390 * we want to avoid on a frozen filesystem), or do the commit
2391 * ourselves.
2392 */
2393 trans = btrfs_attach_transaction_barrier(root);
2394 if (IS_ERR(trans)) {
2395 /* no transaction, don't bother */
2396 if (PTR_ERR(trans) == -ENOENT)
2397 return 0;
2398 return PTR_ERR(trans);
2399 }
2400 return btrfs_commit_transaction(trans);
2401 }
2402
btrfs_unfreeze(struct super_block * sb)2403 static int btrfs_unfreeze(struct super_block *sb)
2404 {
2405 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2406
2407 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2408 return 0;
2409 }
2410
btrfs_show_devname(struct seq_file * m,struct dentry * root)2411 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2412 {
2413 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2414 struct btrfs_device *dev, *first_dev = NULL;
2415
2416 /*
2417 * Lightweight locking of the devices. We should not need
2418 * device_list_mutex here as we only read the device data and the list
2419 * is protected by RCU. Even if a device is deleted during the list
2420 * traversals, we'll get valid data, the freeing callback will wait at
2421 * least until the rcu_read_unlock.
2422 */
2423 rcu_read_lock();
2424 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2425 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2426 continue;
2427 if (!dev->name)
2428 continue;
2429 if (!first_dev || dev->devid < first_dev->devid)
2430 first_dev = dev;
2431 }
2432
2433 if (first_dev)
2434 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2435 else
2436 WARN_ON(1);
2437 rcu_read_unlock();
2438 return 0;
2439 }
2440
2441 static const struct super_operations btrfs_super_ops = {
2442 .drop_inode = btrfs_drop_inode,
2443 .evict_inode = btrfs_evict_inode,
2444 .put_super = btrfs_put_super,
2445 .sync_fs = btrfs_sync_fs,
2446 .show_options = btrfs_show_options,
2447 .show_devname = btrfs_show_devname,
2448 .alloc_inode = btrfs_alloc_inode,
2449 .destroy_inode = btrfs_destroy_inode,
2450 .free_inode = btrfs_free_inode,
2451 .statfs = btrfs_statfs,
2452 .remount_fs = btrfs_remount,
2453 .freeze_fs = btrfs_freeze,
2454 .unfreeze_fs = btrfs_unfreeze,
2455 };
2456
2457 static const struct file_operations btrfs_ctl_fops = {
2458 .open = btrfs_control_open,
2459 .unlocked_ioctl = btrfs_control_ioctl,
2460 .compat_ioctl = compat_ptr_ioctl,
2461 .owner = THIS_MODULE,
2462 .llseek = noop_llseek,
2463 };
2464
2465 static struct miscdevice btrfs_misc = {
2466 .minor = BTRFS_MINOR,
2467 .name = "btrfs-control",
2468 .fops = &btrfs_ctl_fops
2469 };
2470
2471 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2472 MODULE_ALIAS("devname:btrfs-control");
2473
btrfs_interface_init(void)2474 static int __init btrfs_interface_init(void)
2475 {
2476 return misc_register(&btrfs_misc);
2477 }
2478
btrfs_interface_exit(void)2479 static __cold void btrfs_interface_exit(void)
2480 {
2481 misc_deregister(&btrfs_misc);
2482 }
2483
btrfs_print_mod_info(void)2484 static void __init btrfs_print_mod_info(void)
2485 {
2486 static const char options[] = ""
2487 #ifdef CONFIG_BTRFS_DEBUG
2488 ", debug=on"
2489 #endif
2490 #ifdef CONFIG_BTRFS_ASSERT
2491 ", assert=on"
2492 #endif
2493 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2494 ", integrity-checker=on"
2495 #endif
2496 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2497 ", ref-verify=on"
2498 #endif
2499 ;
2500 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2501 }
2502
init_btrfs_fs(void)2503 static int __init init_btrfs_fs(void)
2504 {
2505 int err;
2506
2507 btrfs_props_init();
2508
2509 err = btrfs_init_sysfs();
2510 if (err)
2511 return err;
2512
2513 btrfs_init_compress();
2514
2515 err = btrfs_init_cachep();
2516 if (err)
2517 goto free_compress;
2518
2519 err = extent_io_init();
2520 if (err)
2521 goto free_cachep;
2522
2523 err = extent_state_cache_init();
2524 if (err)
2525 goto free_extent_io;
2526
2527 err = extent_map_init();
2528 if (err)
2529 goto free_extent_state_cache;
2530
2531 err = ordered_data_init();
2532 if (err)
2533 goto free_extent_map;
2534
2535 err = btrfs_delayed_inode_init();
2536 if (err)
2537 goto free_ordered_data;
2538
2539 err = btrfs_auto_defrag_init();
2540 if (err)
2541 goto free_delayed_inode;
2542
2543 err = btrfs_delayed_ref_init();
2544 if (err)
2545 goto free_auto_defrag;
2546
2547 err = btrfs_prelim_ref_init();
2548 if (err)
2549 goto free_delayed_ref;
2550
2551 err = btrfs_end_io_wq_init();
2552 if (err)
2553 goto free_prelim_ref;
2554
2555 err = btrfs_interface_init();
2556 if (err)
2557 goto free_end_io_wq;
2558
2559 btrfs_init_lockdep();
2560
2561 btrfs_print_mod_info();
2562
2563 err = btrfs_run_sanity_tests();
2564 if (err)
2565 goto unregister_ioctl;
2566
2567 err = register_filesystem(&btrfs_fs_type);
2568 if (err)
2569 goto unregister_ioctl;
2570
2571 return 0;
2572
2573 unregister_ioctl:
2574 btrfs_interface_exit();
2575 free_end_io_wq:
2576 btrfs_end_io_wq_exit();
2577 free_prelim_ref:
2578 btrfs_prelim_ref_exit();
2579 free_delayed_ref:
2580 btrfs_delayed_ref_exit();
2581 free_auto_defrag:
2582 btrfs_auto_defrag_exit();
2583 free_delayed_inode:
2584 btrfs_delayed_inode_exit();
2585 free_ordered_data:
2586 ordered_data_exit();
2587 free_extent_map:
2588 extent_map_exit();
2589 free_extent_state_cache:
2590 extent_state_cache_exit();
2591 free_extent_io:
2592 extent_io_exit();
2593 free_cachep:
2594 btrfs_destroy_cachep();
2595 free_compress:
2596 btrfs_exit_compress();
2597 btrfs_exit_sysfs();
2598
2599 return err;
2600 }
2601
exit_btrfs_fs(void)2602 static void __exit exit_btrfs_fs(void)
2603 {
2604 btrfs_destroy_cachep();
2605 btrfs_delayed_ref_exit();
2606 btrfs_auto_defrag_exit();
2607 btrfs_delayed_inode_exit();
2608 btrfs_prelim_ref_exit();
2609 ordered_data_exit();
2610 extent_map_exit();
2611 extent_state_cache_exit();
2612 extent_io_exit();
2613 btrfs_interface_exit();
2614 btrfs_end_io_wq_exit();
2615 unregister_filesystem(&btrfs_fs_type);
2616 btrfs_exit_sysfs();
2617 btrfs_cleanup_fs_uuids();
2618 btrfs_exit_compress();
2619 }
2620
2621 late_initcall(init_btrfs_fs);
2622 module_exit(exit_btrfs_fs)
2623
2624 MODULE_LICENSE("GPL");
2625 MODULE_SOFTDEP("pre: crc32c");
2626 MODULE_SOFTDEP("pre: xxhash64");
2627 MODULE_SOFTDEP("pre: sha256");
2628 MODULE_SOFTDEP("pre: blake2b-256");
2629