1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 loff_t length;
63 ssize_t submitted;
64 struct extent_changeset *data_reserved;
65 bool sync;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->vfs_inode.i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
144 struct inode *inode, struct inode *dir,
145 const struct qstr *qstr)
146 {
147 int err;
148
149 err = btrfs_init_acl(trans, inode, dir);
150 if (!err)
151 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
152 return err;
153 }
154
155 /*
156 * this does all the hard work for inserting an inline extent into
157 * the btree. The caller should have done a btrfs_drop_extents so that
158 * no overlapping inline items exist in the btree
159 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)160 static int insert_inline_extent(struct btrfs_trans_handle *trans,
161 struct btrfs_path *path, int extent_inserted,
162 struct btrfs_root *root, struct inode *inode,
163 u64 start, size_t size, size_t compressed_size,
164 int compress_type,
165 struct page **compressed_pages)
166 {
167 struct extent_buffer *leaf;
168 struct page *page = NULL;
169 char *kaddr;
170 unsigned long ptr;
171 struct btrfs_file_extent_item *ei;
172 int ret;
173 size_t cur_size = size;
174 unsigned long offset;
175
176 ASSERT((compressed_size > 0 && compressed_pages) ||
177 (compressed_size == 0 && !compressed_pages));
178
179 if (compressed_size && compressed_pages)
180 cur_size = compressed_size;
181
182 inode_add_bytes(inode, size);
183
184 if (!extent_inserted) {
185 struct btrfs_key key;
186 size_t datasize;
187
188 key.objectid = btrfs_ino(BTRFS_I(inode));
189 key.offset = start;
190 key.type = BTRFS_EXTENT_DATA_KEY;
191
192 datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 path->leave_spinning = 1;
194 ret = btrfs_insert_empty_item(trans, root, path, &key,
195 datasize);
196 if (ret)
197 goto fail;
198 }
199 leaf = path->nodes[0];
200 ei = btrfs_item_ptr(leaf, path->slots[0],
201 struct btrfs_file_extent_item);
202 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 btrfs_set_file_extent_encryption(leaf, ei, 0);
205 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 ptr = btrfs_file_extent_inline_start(ei);
208
209 if (compress_type != BTRFS_COMPRESS_NONE) {
210 struct page *cpage;
211 int i = 0;
212 while (compressed_size > 0) {
213 cpage = compressed_pages[i];
214 cur_size = min_t(unsigned long, compressed_size,
215 PAGE_SIZE);
216
217 kaddr = kmap_atomic(cpage);
218 write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 kunmap_atomic(kaddr);
220
221 i++;
222 ptr += cur_size;
223 compressed_size -= cur_size;
224 }
225 btrfs_set_file_extent_compression(leaf, ei,
226 compress_type);
227 } else {
228 page = find_get_page(inode->i_mapping,
229 start >> PAGE_SHIFT);
230 btrfs_set_file_extent_compression(leaf, ei, 0);
231 kaddr = kmap_atomic(page);
232 offset = offset_in_page(start);
233 write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 kunmap_atomic(kaddr);
235 put_page(page);
236 }
237 btrfs_mark_buffer_dirty(leaf);
238 btrfs_release_path(path);
239
240 /*
241 * We align size to sectorsize for inline extents just for simplicity
242 * sake.
243 */
244 size = ALIGN(size, root->fs_info->sectorsize);
245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 if (ret)
247 goto fail;
248
249 /*
250 * we're an inline extent, so nobody can
251 * extend the file past i_size without locking
252 * a page we already have locked.
253 *
254 * We must do any isize and inode updates
255 * before we unlock the pages. Otherwise we
256 * could end up racing with unlink.
257 */
258 BTRFS_I(inode)->disk_i_size = inode->i_size;
259 ret = btrfs_update_inode(trans, root, inode);
260
261 fail:
262 return ret;
263 }
264
265
266 /*
267 * conditionally insert an inline extent into the file. This
268 * does the checks required to make sure the data is small enough
269 * to fit as an inline extent.
270 */
cow_file_range_inline(struct btrfs_inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
272 u64 end, size_t compressed_size,
273 int compress_type,
274 struct page **compressed_pages)
275 {
276 struct btrfs_root *root = inode->root;
277 struct btrfs_fs_info *fs_info = root->fs_info;
278 struct btrfs_trans_handle *trans;
279 u64 isize = i_size_read(&inode->vfs_inode);
280 u64 actual_end = min(end + 1, isize);
281 u64 inline_len = actual_end - start;
282 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
283 u64 data_len = inline_len;
284 int ret;
285 struct btrfs_path *path;
286 int extent_inserted = 0;
287 u32 extent_item_size;
288
289 if (compressed_size)
290 data_len = compressed_size;
291
292 if (start > 0 ||
293 actual_end > fs_info->sectorsize ||
294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
295 (!compressed_size &&
296 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
297 end + 1 < isize ||
298 data_len > fs_info->max_inline) {
299 return 1;
300 }
301
302 path = btrfs_alloc_path();
303 if (!path)
304 return -ENOMEM;
305
306 trans = btrfs_join_transaction(root);
307 if (IS_ERR(trans)) {
308 btrfs_free_path(path);
309 return PTR_ERR(trans);
310 }
311 trans->block_rsv = &inode->block_rsv;
312
313 if (compressed_size && compressed_pages)
314 extent_item_size = btrfs_file_extent_calc_inline_size(
315 compressed_size);
316 else
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 inline_len);
319
320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 NULL, 1, 1, extent_item_size,
322 &extent_inserted);
323 if (ret) {
324 btrfs_abort_transaction(trans, ret);
325 goto out;
326 }
327
328 if (isize > actual_end)
329 inline_len = min_t(u64, isize, actual_end);
330 ret = insert_inline_extent(trans, path, extent_inserted,
331 root, &inode->vfs_inode, start,
332 inline_len, compressed_size,
333 compress_type, compressed_pages);
334 if (ret && ret != -ENOSPC) {
335 btrfs_abort_transaction(trans, ret);
336 goto out;
337 } else if (ret == -ENOSPC) {
338 ret = 1;
339 goto out;
340 }
341
342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
344 out:
345 /*
346 * Don't forget to free the reserved space, as for inlined extent
347 * it won't count as data extent, free them directly here.
348 * And at reserve time, it's always aligned to page size, so
349 * just free one page here.
350 */
351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
352 btrfs_free_path(path);
353 btrfs_end_transaction(trans);
354 return ret;
355 }
356
357 struct async_extent {
358 u64 start;
359 u64 ram_size;
360 u64 compressed_size;
361 struct page **pages;
362 unsigned long nr_pages;
363 int compress_type;
364 struct list_head list;
365 };
366
367 struct async_chunk {
368 struct inode *inode;
369 struct page *locked_page;
370 u64 start;
371 u64 end;
372 unsigned int write_flags;
373 struct list_head extents;
374 struct cgroup_subsys_state *blkcg_css;
375 struct btrfs_work work;
376 atomic_t *pending;
377 };
378
379 struct async_cow {
380 /* Number of chunks in flight; must be first in the structure */
381 atomic_t num_chunks;
382 struct async_chunk chunks[];
383 };
384
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)385 static noinline int add_async_extent(struct async_chunk *cow,
386 u64 start, u64 ram_size,
387 u64 compressed_size,
388 struct page **pages,
389 unsigned long nr_pages,
390 int compress_type)
391 {
392 struct async_extent *async_extent;
393
394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
395 BUG_ON(!async_extent); /* -ENOMEM */
396 async_extent->start = start;
397 async_extent->ram_size = ram_size;
398 async_extent->compressed_size = compressed_size;
399 async_extent->pages = pages;
400 async_extent->nr_pages = nr_pages;
401 async_extent->compress_type = compress_type;
402 list_add_tail(&async_extent->list, &cow->extents);
403 return 0;
404 }
405
406 /*
407 * Check if the inode has flags compatible with compression
408 */
inode_can_compress(struct btrfs_inode * inode)409 static inline bool inode_can_compress(struct btrfs_inode *inode)
410 {
411 if (inode->flags & BTRFS_INODE_NODATACOW ||
412 inode->flags & BTRFS_INODE_NODATASUM)
413 return false;
414 return true;
415 }
416
417 /*
418 * Check if the inode needs to be submitted to compression, based on mount
419 * options, defragmentation, properties or heuristics.
420 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 u64 end)
423 {
424 struct btrfs_fs_info *fs_info = inode->root->fs_info;
425
426 if (!inode_can_compress(inode)) {
427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
429 btrfs_ino(inode));
430 return 0;
431 }
432 /* force compress */
433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
434 return 1;
435 /* defrag ioctl */
436 if (inode->defrag_compress)
437 return 1;
438 /* bad compression ratios */
439 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
440 return 0;
441 if (btrfs_test_opt(fs_info, COMPRESS) ||
442 inode->flags & BTRFS_INODE_COMPRESS ||
443 inode->prop_compress)
444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
445 return 0;
446 }
447
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)448 static inline void inode_should_defrag(struct btrfs_inode *inode,
449 u64 start, u64 end, u64 num_bytes, u64 small_write)
450 {
451 /* If this is a small write inside eof, kick off a defrag */
452 if (num_bytes < small_write &&
453 (start > 0 || end + 1 < inode->disk_i_size))
454 btrfs_add_inode_defrag(NULL, inode);
455 }
456
457 /*
458 * we create compressed extents in two phases. The first
459 * phase compresses a range of pages that have already been
460 * locked (both pages and state bits are locked).
461 *
462 * This is done inside an ordered work queue, and the compression
463 * is spread across many cpus. The actual IO submission is step
464 * two, and the ordered work queue takes care of making sure that
465 * happens in the same order things were put onto the queue by
466 * writepages and friends.
467 *
468 * If this code finds it can't get good compression, it puts an
469 * entry onto the work queue to write the uncompressed bytes. This
470 * makes sure that both compressed inodes and uncompressed inodes
471 * are written in the same order that the flusher thread sent them
472 * down.
473 */
compress_file_range(struct async_chunk * async_chunk)474 static noinline int compress_file_range(struct async_chunk *async_chunk)
475 {
476 struct inode *inode = async_chunk->inode;
477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
478 u64 blocksize = fs_info->sectorsize;
479 u64 start = async_chunk->start;
480 u64 end = async_chunk->end;
481 u64 actual_end;
482 u64 i_size;
483 int ret = 0;
484 struct page **pages = NULL;
485 unsigned long nr_pages;
486 unsigned long total_compressed = 0;
487 unsigned long total_in = 0;
488 int i;
489 int will_compress;
490 int compress_type = fs_info->compress_type;
491 int compressed_extents = 0;
492 int redirty = 0;
493
494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 SZ_16K);
496
497 /*
498 * We need to save i_size before now because it could change in between
499 * us evaluating the size and assigning it. This is because we lock and
500 * unlock the page in truncate and fallocate, and then modify the i_size
501 * later on.
502 *
503 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 * does that for us.
505 */
506 barrier();
507 i_size = i_size_read(inode);
508 barrier();
509 actual_end = min_t(u64, i_size, end + 1);
510 again:
511 will_compress = 0;
512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 nr_pages = min_t(unsigned long, nr_pages,
515 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
516
517 /*
518 * we don't want to send crud past the end of i_size through
519 * compression, that's just a waste of CPU time. So, if the
520 * end of the file is before the start of our current
521 * requested range of bytes, we bail out to the uncompressed
522 * cleanup code that can deal with all of this.
523 *
524 * It isn't really the fastest way to fix things, but this is a
525 * very uncommon corner.
526 */
527 if (actual_end <= start)
528 goto cleanup_and_bail_uncompressed;
529
530 total_compressed = actual_end - start;
531
532 /*
533 * skip compression for a small file range(<=blocksize) that
534 * isn't an inline extent, since it doesn't save disk space at all.
535 */
536 if (total_compressed <= blocksize &&
537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 goto cleanup_and_bail_uncompressed;
539
540 total_compressed = min_t(unsigned long, total_compressed,
541 BTRFS_MAX_UNCOMPRESSED);
542 total_in = 0;
543 ret = 0;
544
545 /*
546 * we do compression for mount -o compress and when the
547 * inode has not been flagged as nocompress. This flag can
548 * change at any time if we discover bad compression ratios.
549 */
550 if (inode_need_compress(BTRFS_I(inode), start, end)) {
551 WARN_ON(pages);
552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
553 if (!pages) {
554 /* just bail out to the uncompressed code */
555 nr_pages = 0;
556 goto cont;
557 }
558
559 if (BTRFS_I(inode)->defrag_compress)
560 compress_type = BTRFS_I(inode)->defrag_compress;
561 else if (BTRFS_I(inode)->prop_compress)
562 compress_type = BTRFS_I(inode)->prop_compress;
563
564 /*
565 * we need to call clear_page_dirty_for_io on each
566 * page in the range. Otherwise applications with the file
567 * mmap'd can wander in and change the page contents while
568 * we are compressing them.
569 *
570 * If the compression fails for any reason, we set the pages
571 * dirty again later on.
572 *
573 * Note that the remaining part is redirtied, the start pointer
574 * has moved, the end is the original one.
575 */
576 if (!redirty) {
577 extent_range_clear_dirty_for_io(inode, start, end);
578 redirty = 1;
579 }
580
581 /* Compression level is applied here and only here */
582 ret = btrfs_compress_pages(
583 compress_type | (fs_info->compress_level << 4),
584 inode->i_mapping, start,
585 pages,
586 &nr_pages,
587 &total_in,
588 &total_compressed);
589
590 if (!ret) {
591 unsigned long offset = offset_in_page(total_compressed);
592 struct page *page = pages[nr_pages - 1];
593 char *kaddr;
594
595 /* zero the tail end of the last page, we might be
596 * sending it down to disk
597 */
598 if (offset) {
599 kaddr = kmap_atomic(page);
600 memset(kaddr + offset, 0,
601 PAGE_SIZE - offset);
602 kunmap_atomic(kaddr);
603 }
604 will_compress = 1;
605 }
606 }
607 cont:
608 if (start == 0) {
609 /* lets try to make an inline extent */
610 if (ret || total_in < actual_end) {
611 /* we didn't compress the entire range, try
612 * to make an uncompressed inline extent.
613 */
614 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 0, BTRFS_COMPRESS_NONE,
616 NULL);
617 } else {
618 /* try making a compressed inline extent */
619 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 total_compressed,
621 compress_type, pages);
622 }
623 if (ret <= 0) {
624 unsigned long clear_flags = EXTENT_DELALLOC |
625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 EXTENT_DO_ACCOUNTING;
627 unsigned long page_error_op;
628
629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
630
631 /*
632 * inline extent creation worked or returned error,
633 * we don't need to create any more async work items.
634 * Unlock and free up our temp pages.
635 *
636 * We use DO_ACCOUNTING here because we need the
637 * delalloc_release_metadata to be done _after_ we drop
638 * our outstanding extent for clearing delalloc for this
639 * range.
640 */
641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 NULL,
643 clear_flags,
644 PAGE_UNLOCK |
645 PAGE_CLEAR_DIRTY |
646 PAGE_SET_WRITEBACK |
647 page_error_op |
648 PAGE_END_WRITEBACK);
649
650 /*
651 * Ensure we only free the compressed pages if we have
652 * them allocated, as we can still reach here with
653 * inode_need_compress() == false.
654 */
655 if (pages) {
656 for (i = 0; i < nr_pages; i++) {
657 WARN_ON(pages[i]->mapping);
658 put_page(pages[i]);
659 }
660 kfree(pages);
661 }
662 return 0;
663 }
664 }
665
666 if (will_compress) {
667 /*
668 * we aren't doing an inline extent round the compressed size
669 * up to a block size boundary so the allocator does sane
670 * things
671 */
672 total_compressed = ALIGN(total_compressed, blocksize);
673
674 /*
675 * one last check to make sure the compression is really a
676 * win, compare the page count read with the blocks on disk,
677 * compression must free at least one sector size
678 */
679 total_in = ALIGN(total_in, PAGE_SIZE);
680 if (total_compressed + blocksize <= total_in) {
681 compressed_extents++;
682
683 /*
684 * The async work queues will take care of doing actual
685 * allocation on disk for these compressed pages, and
686 * will submit them to the elevator.
687 */
688 add_async_extent(async_chunk, start, total_in,
689 total_compressed, pages, nr_pages,
690 compress_type);
691
692 if (start + total_in < end) {
693 start += total_in;
694 pages = NULL;
695 cond_resched();
696 goto again;
697 }
698 return compressed_extents;
699 }
700 }
701 if (pages) {
702 /*
703 * the compression code ran but failed to make things smaller,
704 * free any pages it allocated and our page pointer array
705 */
706 for (i = 0; i < nr_pages; i++) {
707 WARN_ON(pages[i]->mapping);
708 put_page(pages[i]);
709 }
710 kfree(pages);
711 pages = NULL;
712 total_compressed = 0;
713 nr_pages = 0;
714
715 /* flag the file so we don't compress in the future */
716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
717 !(BTRFS_I(inode)->prop_compress)) {
718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
719 }
720 }
721 cleanup_and_bail_uncompressed:
722 /*
723 * No compression, but we still need to write the pages in the file
724 * we've been given so far. redirty the locked page if it corresponds
725 * to our extent and set things up for the async work queue to run
726 * cow_file_range to do the normal delalloc dance.
727 */
728 if (async_chunk->locked_page &&
729 (page_offset(async_chunk->locked_page) >= start &&
730 page_offset(async_chunk->locked_page)) <= end) {
731 __set_page_dirty_nobuffers(async_chunk->locked_page);
732 /* unlocked later on in the async handlers */
733 }
734
735 if (redirty)
736 extent_range_redirty_for_io(inode, start, end);
737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
738 BTRFS_COMPRESS_NONE);
739 compressed_extents++;
740
741 return compressed_extents;
742 }
743
free_async_extent_pages(struct async_extent * async_extent)744 static void free_async_extent_pages(struct async_extent *async_extent)
745 {
746 int i;
747
748 if (!async_extent->pages)
749 return;
750
751 for (i = 0; i < async_extent->nr_pages; i++) {
752 WARN_ON(async_extent->pages[i]->mapping);
753 put_page(async_extent->pages[i]);
754 }
755 kfree(async_extent->pages);
756 async_extent->nr_pages = 0;
757 async_extent->pages = NULL;
758 }
759
760 /*
761 * phase two of compressed writeback. This is the ordered portion
762 * of the code, which only gets called in the order the work was
763 * queued. We walk all the async extents created by compress_file_range
764 * and send them down to the disk.
765 */
submit_compressed_extents(struct async_chunk * async_chunk)766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
767 {
768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
770 struct async_extent *async_extent;
771 u64 alloc_hint = 0;
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct btrfs_root *root = inode->root;
775 struct extent_io_tree *io_tree = &inode->io_tree;
776 int ret = 0;
777
778 again:
779 while (!list_empty(&async_chunk->extents)) {
780 async_extent = list_entry(async_chunk->extents.next,
781 struct async_extent, list);
782 list_del(&async_extent->list);
783
784 retry:
785 lock_extent(io_tree, async_extent->start,
786 async_extent->start + async_extent->ram_size - 1);
787 /* did the compression code fall back to uncompressed IO? */
788 if (!async_extent->pages) {
789 int page_started = 0;
790 unsigned long nr_written = 0;
791
792 /* allocate blocks */
793 ret = cow_file_range(inode, async_chunk->locked_page,
794 async_extent->start,
795 async_extent->start +
796 async_extent->ram_size - 1,
797 &page_started, &nr_written, 0);
798
799 /* JDM XXX */
800
801 /*
802 * if page_started, cow_file_range inserted an
803 * inline extent and took care of all the unlocking
804 * and IO for us. Otherwise, we need to submit
805 * all those pages down to the drive.
806 */
807 if (!page_started && !ret)
808 extent_write_locked_range(&inode->vfs_inode,
809 async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1,
812 WB_SYNC_ALL);
813 else if (ret && async_chunk->locked_page)
814 unlock_page(async_chunk->locked_page);
815 kfree(async_extent);
816 cond_resched();
817 continue;
818 }
819
820 ret = btrfs_reserve_extent(root, async_extent->ram_size,
821 async_extent->compressed_size,
822 async_extent->compressed_size,
823 0, alloc_hint, &ins, 1, 1);
824 if (ret) {
825 free_async_extent_pages(async_extent);
826
827 if (ret == -ENOSPC) {
828 unlock_extent(io_tree, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1);
831
832 /*
833 * we need to redirty the pages if we decide to
834 * fallback to uncompressed IO, otherwise we
835 * will not submit these pages down to lower
836 * layers.
837 */
838 extent_range_redirty_for_io(&inode->vfs_inode,
839 async_extent->start,
840 async_extent->start +
841 async_extent->ram_size - 1);
842
843 goto retry;
844 }
845 goto out_free;
846 }
847 /*
848 * here we're doing allocation and writeback of the
849 * compressed pages
850 */
851 em = create_io_em(inode, async_extent->start,
852 async_extent->ram_size, /* len */
853 async_extent->start, /* orig_start */
854 ins.objectid, /* block_start */
855 ins.offset, /* block_len */
856 ins.offset, /* orig_block_len */
857 async_extent->ram_size, /* ram_bytes */
858 async_extent->compress_type,
859 BTRFS_ORDERED_COMPRESSED);
860 if (IS_ERR(em))
861 /* ret value is not necessary due to void function */
862 goto out_free_reserve;
863 free_extent_map(em);
864
865 ret = btrfs_add_ordered_extent_compress(inode,
866 async_extent->start,
867 ins.objectid,
868 async_extent->ram_size,
869 ins.offset,
870 BTRFS_ORDERED_COMPRESSED,
871 async_extent->compress_type);
872 if (ret) {
873 btrfs_drop_extent_cache(inode, async_extent->start,
874 async_extent->start +
875 async_extent->ram_size - 1, 0);
876 goto out_free_reserve;
877 }
878 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879
880 /*
881 * clear dirty, set writeback and unlock the pages.
882 */
883 extent_clear_unlock_delalloc(inode, async_extent->start,
884 async_extent->start +
885 async_extent->ram_size - 1,
886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
888 PAGE_SET_WRITEBACK);
889 if (btrfs_submit_compressed_write(inode, async_extent->start,
890 async_extent->ram_size,
891 ins.objectid,
892 ins.offset, async_extent->pages,
893 async_extent->nr_pages,
894 async_chunk->write_flags,
895 async_chunk->blkcg_css)) {
896 struct page *p = async_extent->pages[0];
897 const u64 start = async_extent->start;
898 const u64 end = start + async_extent->ram_size - 1;
899
900 p->mapping = inode->vfs_inode.i_mapping;
901 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
902
903 p->mapping = NULL;
904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
905 PAGE_END_WRITEBACK |
906 PAGE_SET_ERROR);
907 free_async_extent_pages(async_extent);
908 }
909 alloc_hint = ins.objectid + ins.offset;
910 kfree(async_extent);
911 cond_resched();
912 }
913 return;
914 out_free_reserve:
915 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918 extent_clear_unlock_delalloc(inode, async_extent->start,
919 async_extent->start +
920 async_extent->ram_size - 1,
921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922 EXTENT_DELALLOC_NEW |
923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 PAGE_SET_ERROR);
927 free_async_extent_pages(async_extent);
928 kfree(async_extent);
929 goto again;
930 }
931
get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
933 u64 num_bytes)
934 {
935 struct extent_map_tree *em_tree = &inode->extent_tree;
936 struct extent_map *em;
937 u64 alloc_hint = 0;
938
939 read_lock(&em_tree->lock);
940 em = search_extent_mapping(em_tree, start, num_bytes);
941 if (em) {
942 /*
943 * if block start isn't an actual block number then find the
944 * first block in this inode and use that as a hint. If that
945 * block is also bogus then just don't worry about it.
946 */
947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 free_extent_map(em);
949 em = search_extent_mapping(em_tree, 0, 0);
950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 alloc_hint = em->block_start;
952 if (em)
953 free_extent_map(em);
954 } else {
955 alloc_hint = em->block_start;
956 free_extent_map(em);
957 }
958 }
959 read_unlock(&em_tree->lock);
960
961 return alloc_hint;
962 }
963
964 /*
965 * when extent_io.c finds a delayed allocation range in the file,
966 * the call backs end up in this code. The basic idea is to
967 * allocate extents on disk for the range, and create ordered data structs
968 * in ram to track those extents.
969 *
970 * locked_page is the page that writepage had locked already. We use
971 * it to make sure we don't do extra locks or unlocks.
972 *
973 * *page_started is set to one if we unlock locked_page and do everything
974 * required to start IO on it. It may be clean and already done with
975 * IO when we return.
976 */
cow_file_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)977 static noinline int cow_file_range(struct btrfs_inode *inode,
978 struct page *locked_page,
979 u64 start, u64 end, int *page_started,
980 unsigned long *nr_written, int unlock)
981 {
982 struct btrfs_root *root = inode->root;
983 struct btrfs_fs_info *fs_info = root->fs_info;
984 u64 alloc_hint = 0;
985 u64 num_bytes;
986 unsigned long ram_size;
987 u64 cur_alloc_size = 0;
988 u64 min_alloc_size;
989 u64 blocksize = fs_info->sectorsize;
990 struct btrfs_key ins;
991 struct extent_map *em;
992 unsigned clear_bits;
993 unsigned long page_ops;
994 bool extent_reserved = false;
995 int ret = 0;
996
997 if (btrfs_is_free_space_inode(inode)) {
998 ret = -EINVAL;
999 goto out_unlock;
1000 }
1001
1002 num_bytes = ALIGN(end - start + 1, blocksize);
1003 num_bytes = max(blocksize, num_bytes);
1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005
1006 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1007
1008 if (start == 0) {
1009 /* lets try to make an inline extent */
1010 ret = cow_file_range_inline(inode, start, end, 0,
1011 BTRFS_COMPRESS_NONE, NULL);
1012 if (ret == 0) {
1013 /*
1014 * We use DO_ACCOUNTING here because we need the
1015 * delalloc_release_metadata to be run _after_ we drop
1016 * our outstanding extent for clearing delalloc for this
1017 * range.
1018 */
1019 extent_clear_unlock_delalloc(inode, start, end, NULL,
1020 EXTENT_LOCKED | EXTENT_DELALLOC |
1021 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1022 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1023 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1024 PAGE_END_WRITEBACK);
1025 *nr_written = *nr_written +
1026 (end - start + PAGE_SIZE) / PAGE_SIZE;
1027 *page_started = 1;
1028 goto out;
1029 } else if (ret < 0) {
1030 goto out_unlock;
1031 }
1032 }
1033
1034 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1035 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1036
1037 /*
1038 * Relocation relies on the relocated extents to have exactly the same
1039 * size as the original extents. Normally writeback for relocation data
1040 * extents follows a NOCOW path because relocation preallocates the
1041 * extents. However, due to an operation such as scrub turning a block
1042 * group to RO mode, it may fallback to COW mode, so we must make sure
1043 * an extent allocated during COW has exactly the requested size and can
1044 * not be split into smaller extents, otherwise relocation breaks and
1045 * fails during the stage where it updates the bytenr of file extent
1046 * items.
1047 */
1048 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1049 min_alloc_size = num_bytes;
1050 else
1051 min_alloc_size = fs_info->sectorsize;
1052
1053 while (num_bytes > 0) {
1054 cur_alloc_size = num_bytes;
1055 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1056 min_alloc_size, 0, alloc_hint,
1057 &ins, 1, 1);
1058 if (ret < 0)
1059 goto out_unlock;
1060 cur_alloc_size = ins.offset;
1061 extent_reserved = true;
1062
1063 ram_size = ins.offset;
1064 em = create_io_em(inode, start, ins.offset, /* len */
1065 start, /* orig_start */
1066 ins.objectid, /* block_start */
1067 ins.offset, /* block_len */
1068 ins.offset, /* orig_block_len */
1069 ram_size, /* ram_bytes */
1070 BTRFS_COMPRESS_NONE, /* compress_type */
1071 BTRFS_ORDERED_REGULAR /* type */);
1072 if (IS_ERR(em)) {
1073 ret = PTR_ERR(em);
1074 goto out_reserve;
1075 }
1076 free_extent_map(em);
1077
1078 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1079 ram_size, cur_alloc_size, 0);
1080 if (ret)
1081 goto out_drop_extent_cache;
1082
1083 if (root->root_key.objectid ==
1084 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1085 ret = btrfs_reloc_clone_csums(inode, start,
1086 cur_alloc_size);
1087 /*
1088 * Only drop cache here, and process as normal.
1089 *
1090 * We must not allow extent_clear_unlock_delalloc()
1091 * at out_unlock label to free meta of this ordered
1092 * extent, as its meta should be freed by
1093 * btrfs_finish_ordered_io().
1094 *
1095 * So we must continue until @start is increased to
1096 * skip current ordered extent.
1097 */
1098 if (ret)
1099 btrfs_drop_extent_cache(inode, start,
1100 start + ram_size - 1, 0);
1101 }
1102
1103 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1104
1105 /* we're not doing compressed IO, don't unlock the first
1106 * page (which the caller expects to stay locked), don't
1107 * clear any dirty bits and don't set any writeback bits
1108 *
1109 * Do set the Private2 bit so we know this page was properly
1110 * setup for writepage
1111 */
1112 page_ops = unlock ? PAGE_UNLOCK : 0;
1113 page_ops |= PAGE_SET_PRIVATE2;
1114
1115 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1116 locked_page,
1117 EXTENT_LOCKED | EXTENT_DELALLOC,
1118 page_ops);
1119 if (num_bytes < cur_alloc_size)
1120 num_bytes = 0;
1121 else
1122 num_bytes -= cur_alloc_size;
1123 alloc_hint = ins.objectid + ins.offset;
1124 start += cur_alloc_size;
1125 extent_reserved = false;
1126
1127 /*
1128 * btrfs_reloc_clone_csums() error, since start is increased
1129 * extent_clear_unlock_delalloc() at out_unlock label won't
1130 * free metadata of current ordered extent, we're OK to exit.
1131 */
1132 if (ret)
1133 goto out_unlock;
1134 }
1135 out:
1136 return ret;
1137
1138 out_drop_extent_cache:
1139 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1140 out_reserve:
1141 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1142 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1143 out_unlock:
1144 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1145 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1146 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1147 PAGE_END_WRITEBACK;
1148 /*
1149 * If we reserved an extent for our delalloc range (or a subrange) and
1150 * failed to create the respective ordered extent, then it means that
1151 * when we reserved the extent we decremented the extent's size from
1152 * the data space_info's bytes_may_use counter and incremented the
1153 * space_info's bytes_reserved counter by the same amount. We must make
1154 * sure extent_clear_unlock_delalloc() does not try to decrement again
1155 * the data space_info's bytes_may_use counter, therefore we do not pass
1156 * it the flag EXTENT_CLEAR_DATA_RESV.
1157 */
1158 if (extent_reserved) {
1159 extent_clear_unlock_delalloc(inode, start,
1160 start + cur_alloc_size - 1,
1161 locked_page,
1162 clear_bits,
1163 page_ops);
1164 start += cur_alloc_size;
1165 if (start >= end)
1166 goto out;
1167 }
1168 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1169 clear_bits | EXTENT_CLEAR_DATA_RESV,
1170 page_ops);
1171 goto out;
1172 }
1173
1174 /*
1175 * work queue call back to started compression on a file and pages
1176 */
async_cow_start(struct btrfs_work * work)1177 static noinline void async_cow_start(struct btrfs_work *work)
1178 {
1179 struct async_chunk *async_chunk;
1180 int compressed_extents;
1181
1182 async_chunk = container_of(work, struct async_chunk, work);
1183
1184 compressed_extents = compress_file_range(async_chunk);
1185 if (compressed_extents == 0) {
1186 btrfs_add_delayed_iput(async_chunk->inode);
1187 async_chunk->inode = NULL;
1188 }
1189 }
1190
1191 /*
1192 * work queue call back to submit previously compressed pages
1193 */
async_cow_submit(struct btrfs_work * work)1194 static noinline void async_cow_submit(struct btrfs_work *work)
1195 {
1196 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1197 work);
1198 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1199 unsigned long nr_pages;
1200
1201 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1202 PAGE_SHIFT;
1203
1204 /*
1205 * ->inode could be NULL if async_chunk_start has failed to compress,
1206 * in which case we don't have anything to submit, yet we need to
1207 * always adjust ->async_delalloc_pages as its paired with the init
1208 * happening in cow_file_range_async
1209 */
1210 if (async_chunk->inode)
1211 submit_compressed_extents(async_chunk);
1212
1213 /* atomic_sub_return implies a barrier */
1214 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1215 5 * SZ_1M)
1216 cond_wake_up_nomb(&fs_info->async_submit_wait);
1217 }
1218
async_cow_free(struct btrfs_work * work)1219 static noinline void async_cow_free(struct btrfs_work *work)
1220 {
1221 struct async_chunk *async_chunk;
1222
1223 async_chunk = container_of(work, struct async_chunk, work);
1224 if (async_chunk->inode)
1225 btrfs_add_delayed_iput(async_chunk->inode);
1226 if (async_chunk->blkcg_css)
1227 css_put(async_chunk->blkcg_css);
1228 /*
1229 * Since the pointer to 'pending' is at the beginning of the array of
1230 * async_chunk's, freeing it ensures the whole array has been freed.
1231 */
1232 if (atomic_dec_and_test(async_chunk->pending))
1233 kvfree(async_chunk->pending);
1234 }
1235
cow_file_range_async(struct btrfs_inode * inode,struct writeback_control * wbc,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written)1236 static int cow_file_range_async(struct btrfs_inode *inode,
1237 struct writeback_control *wbc,
1238 struct page *locked_page,
1239 u64 start, u64 end, int *page_started,
1240 unsigned long *nr_written)
1241 {
1242 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1244 struct async_cow *ctx;
1245 struct async_chunk *async_chunk;
1246 unsigned long nr_pages;
1247 u64 cur_end;
1248 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1249 int i;
1250 bool should_compress;
1251 unsigned nofs_flag;
1252 const unsigned int write_flags = wbc_to_write_flags(wbc);
1253
1254 unlock_extent(&inode->io_tree, start, end);
1255
1256 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1257 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1258 num_chunks = 1;
1259 should_compress = false;
1260 } else {
1261 should_compress = true;
1262 }
1263
1264 nofs_flag = memalloc_nofs_save();
1265 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1266 memalloc_nofs_restore(nofs_flag);
1267
1268 if (!ctx) {
1269 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1271 EXTENT_DO_ACCOUNTING;
1272 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1274 PAGE_SET_ERROR;
1275
1276 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 clear_bits, page_ops);
1278 return -ENOMEM;
1279 }
1280
1281 async_chunk = ctx->chunks;
1282 atomic_set(&ctx->num_chunks, num_chunks);
1283
1284 for (i = 0; i < num_chunks; i++) {
1285 if (should_compress)
1286 cur_end = min(end, start + SZ_512K - 1);
1287 else
1288 cur_end = end;
1289
1290 /*
1291 * igrab is called higher up in the call chain, take only the
1292 * lightweight reference for the callback lifetime
1293 */
1294 ihold(&inode->vfs_inode);
1295 async_chunk[i].pending = &ctx->num_chunks;
1296 async_chunk[i].inode = &inode->vfs_inode;
1297 async_chunk[i].start = start;
1298 async_chunk[i].end = cur_end;
1299 async_chunk[i].write_flags = write_flags;
1300 INIT_LIST_HEAD(&async_chunk[i].extents);
1301
1302 /*
1303 * The locked_page comes all the way from writepage and its
1304 * the original page we were actually given. As we spread
1305 * this large delalloc region across multiple async_chunk
1306 * structs, only the first struct needs a pointer to locked_page
1307 *
1308 * This way we don't need racey decisions about who is supposed
1309 * to unlock it.
1310 */
1311 if (locked_page) {
1312 /*
1313 * Depending on the compressibility, the pages might or
1314 * might not go through async. We want all of them to
1315 * be accounted against wbc once. Let's do it here
1316 * before the paths diverge. wbc accounting is used
1317 * only for foreign writeback detection and doesn't
1318 * need full accuracy. Just account the whole thing
1319 * against the first page.
1320 */
1321 wbc_account_cgroup_owner(wbc, locked_page,
1322 cur_end - start);
1323 async_chunk[i].locked_page = locked_page;
1324 locked_page = NULL;
1325 } else {
1326 async_chunk[i].locked_page = NULL;
1327 }
1328
1329 if (blkcg_css != blkcg_root_css) {
1330 css_get(blkcg_css);
1331 async_chunk[i].blkcg_css = blkcg_css;
1332 } else {
1333 async_chunk[i].blkcg_css = NULL;
1334 }
1335
1336 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1337 async_cow_submit, async_cow_free);
1338
1339 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1340 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1341
1342 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1343
1344 *nr_written += nr_pages;
1345 start = cur_end + 1;
1346 }
1347 *page_started = 1;
1348 return 0;
1349 }
1350
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1351 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1352 u64 bytenr, u64 num_bytes)
1353 {
1354 int ret;
1355 struct btrfs_ordered_sum *sums;
1356 LIST_HEAD(list);
1357
1358 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1359 bytenr + num_bytes - 1, &list, 0);
1360 if (ret == 0 && list_empty(&list))
1361 return 0;
1362
1363 while (!list_empty(&list)) {
1364 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1365 list_del(&sums->list);
1366 kfree(sums);
1367 }
1368 if (ret < 0)
1369 return ret;
1370 return 1;
1371 }
1372
fallback_to_cow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1373 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1374 const u64 start, const u64 end,
1375 int *page_started, unsigned long *nr_written)
1376 {
1377 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1378 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1379 BTRFS_DATA_RELOC_TREE_OBJECTID);
1380 const u64 range_bytes = end + 1 - start;
1381 struct extent_io_tree *io_tree = &inode->io_tree;
1382 u64 range_start = start;
1383 u64 count;
1384
1385 /*
1386 * If EXTENT_NORESERVE is set it means that when the buffered write was
1387 * made we had not enough available data space and therefore we did not
1388 * reserve data space for it, since we though we could do NOCOW for the
1389 * respective file range (either there is prealloc extent or the inode
1390 * has the NOCOW bit set).
1391 *
1392 * However when we need to fallback to COW mode (because for example the
1393 * block group for the corresponding extent was turned to RO mode by a
1394 * scrub or relocation) we need to do the following:
1395 *
1396 * 1) We increment the bytes_may_use counter of the data space info.
1397 * If COW succeeds, it allocates a new data extent and after doing
1398 * that it decrements the space info's bytes_may_use counter and
1399 * increments its bytes_reserved counter by the same amount (we do
1400 * this at btrfs_add_reserved_bytes()). So we need to increment the
1401 * bytes_may_use counter to compensate (when space is reserved at
1402 * buffered write time, the bytes_may_use counter is incremented);
1403 *
1404 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1405 * that if the COW path fails for any reason, it decrements (through
1406 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1407 * data space info, which we incremented in the step above.
1408 *
1409 * If we need to fallback to cow and the inode corresponds to a free
1410 * space cache inode or an inode of the data relocation tree, we must
1411 * also increment bytes_may_use of the data space_info for the same
1412 * reason. Space caches and relocated data extents always get a prealloc
1413 * extent for them, however scrub or balance may have set the block
1414 * group that contains that extent to RO mode and therefore force COW
1415 * when starting writeback.
1416 */
1417 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1418 EXTENT_NORESERVE, 0);
1419 if (count > 0 || is_space_ino || is_reloc_ino) {
1420 u64 bytes = count;
1421 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1422 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1423
1424 if (is_space_ino || is_reloc_ino)
1425 bytes = range_bytes;
1426
1427 spin_lock(&sinfo->lock);
1428 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1429 spin_unlock(&sinfo->lock);
1430
1431 if (count > 0)
1432 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1433 0, 0, NULL);
1434 }
1435
1436 return cow_file_range(inode, locked_page, start, end, page_started,
1437 nr_written, 1);
1438 }
1439
1440 /*
1441 * when nowcow writeback call back. This checks for snapshots or COW copies
1442 * of the extents that exist in the file, and COWs the file as required.
1443 *
1444 * If no cow copies or snapshots exist, we write directly to the existing
1445 * blocks on disk
1446 */
run_delalloc_nocow(struct btrfs_inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1447 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1448 struct page *locked_page,
1449 const u64 start, const u64 end,
1450 int *page_started, int force,
1451 unsigned long *nr_written)
1452 {
1453 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1454 struct btrfs_root *root = inode->root;
1455 struct btrfs_path *path;
1456 u64 cow_start = (u64)-1;
1457 u64 cur_offset = start;
1458 int ret;
1459 bool check_prev = true;
1460 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1461 u64 ino = btrfs_ino(inode);
1462 bool nocow = false;
1463 u64 disk_bytenr = 0;
1464
1465 path = btrfs_alloc_path();
1466 if (!path) {
1467 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1468 EXTENT_LOCKED | EXTENT_DELALLOC |
1469 EXTENT_DO_ACCOUNTING |
1470 EXTENT_DEFRAG, PAGE_UNLOCK |
1471 PAGE_CLEAR_DIRTY |
1472 PAGE_SET_WRITEBACK |
1473 PAGE_END_WRITEBACK);
1474 return -ENOMEM;
1475 }
1476
1477 while (1) {
1478 struct btrfs_key found_key;
1479 struct btrfs_file_extent_item *fi;
1480 struct extent_buffer *leaf;
1481 u64 extent_end;
1482 u64 extent_offset;
1483 u64 num_bytes = 0;
1484 u64 disk_num_bytes;
1485 u64 ram_bytes;
1486 int extent_type;
1487
1488 nocow = false;
1489
1490 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1491 cur_offset, 0);
1492 if (ret < 0)
1493 goto error;
1494
1495 /*
1496 * If there is no extent for our range when doing the initial
1497 * search, then go back to the previous slot as it will be the
1498 * one containing the search offset
1499 */
1500 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1501 leaf = path->nodes[0];
1502 btrfs_item_key_to_cpu(leaf, &found_key,
1503 path->slots[0] - 1);
1504 if (found_key.objectid == ino &&
1505 found_key.type == BTRFS_EXTENT_DATA_KEY)
1506 path->slots[0]--;
1507 }
1508 check_prev = false;
1509 next_slot:
1510 /* Go to next leaf if we have exhausted the current one */
1511 leaf = path->nodes[0];
1512 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1513 ret = btrfs_next_leaf(root, path);
1514 if (ret < 0) {
1515 if (cow_start != (u64)-1)
1516 cur_offset = cow_start;
1517 goto error;
1518 }
1519 if (ret > 0)
1520 break;
1521 leaf = path->nodes[0];
1522 }
1523
1524 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1525
1526 /* Didn't find anything for our INO */
1527 if (found_key.objectid > ino)
1528 break;
1529 /*
1530 * Keep searching until we find an EXTENT_ITEM or there are no
1531 * more extents for this inode
1532 */
1533 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1534 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1535 path->slots[0]++;
1536 goto next_slot;
1537 }
1538
1539 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1540 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1541 found_key.offset > end)
1542 break;
1543
1544 /*
1545 * If the found extent starts after requested offset, then
1546 * adjust extent_end to be right before this extent begins
1547 */
1548 if (found_key.offset > cur_offset) {
1549 extent_end = found_key.offset;
1550 extent_type = 0;
1551 goto out_check;
1552 }
1553
1554 /*
1555 * Found extent which begins before our range and potentially
1556 * intersect it
1557 */
1558 fi = btrfs_item_ptr(leaf, path->slots[0],
1559 struct btrfs_file_extent_item);
1560 extent_type = btrfs_file_extent_type(leaf, fi);
1561
1562 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1563 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1564 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1565 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1566 extent_offset = btrfs_file_extent_offset(leaf, fi);
1567 extent_end = found_key.offset +
1568 btrfs_file_extent_num_bytes(leaf, fi);
1569 disk_num_bytes =
1570 btrfs_file_extent_disk_num_bytes(leaf, fi);
1571 /*
1572 * If the extent we got ends before our current offset,
1573 * skip to the next extent.
1574 */
1575 if (extent_end <= cur_offset) {
1576 path->slots[0]++;
1577 goto next_slot;
1578 }
1579 /* Skip holes */
1580 if (disk_bytenr == 0)
1581 goto out_check;
1582 /* Skip compressed/encrypted/encoded extents */
1583 if (btrfs_file_extent_compression(leaf, fi) ||
1584 btrfs_file_extent_encryption(leaf, fi) ||
1585 btrfs_file_extent_other_encoding(leaf, fi))
1586 goto out_check;
1587 /*
1588 * If extent is created before the last volume's snapshot
1589 * this implies the extent is shared, hence we can't do
1590 * nocow. This is the same check as in
1591 * btrfs_cross_ref_exist but without calling
1592 * btrfs_search_slot.
1593 */
1594 if (!freespace_inode &&
1595 btrfs_file_extent_generation(leaf, fi) <=
1596 btrfs_root_last_snapshot(&root->root_item))
1597 goto out_check;
1598 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1599 goto out_check;
1600 /* If extent is RO, we must COW it */
1601 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1602 goto out_check;
1603 ret = btrfs_cross_ref_exist(root, ino,
1604 found_key.offset -
1605 extent_offset, disk_bytenr, false);
1606 if (ret) {
1607 /*
1608 * ret could be -EIO if the above fails to read
1609 * metadata.
1610 */
1611 if (ret < 0) {
1612 if (cow_start != (u64)-1)
1613 cur_offset = cow_start;
1614 goto error;
1615 }
1616
1617 WARN_ON_ONCE(freespace_inode);
1618 goto out_check;
1619 }
1620 disk_bytenr += extent_offset;
1621 disk_bytenr += cur_offset - found_key.offset;
1622 num_bytes = min(end + 1, extent_end) - cur_offset;
1623 /*
1624 * If there are pending snapshots for this root, we
1625 * fall into common COW way
1626 */
1627 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1628 goto out_check;
1629 /*
1630 * force cow if csum exists in the range.
1631 * this ensure that csum for a given extent are
1632 * either valid or do not exist.
1633 */
1634 ret = csum_exist_in_range(fs_info, disk_bytenr,
1635 num_bytes);
1636 if (ret) {
1637 /*
1638 * ret could be -EIO if the above fails to read
1639 * metadata.
1640 */
1641 if (ret < 0) {
1642 if (cow_start != (u64)-1)
1643 cur_offset = cow_start;
1644 goto error;
1645 }
1646 WARN_ON_ONCE(freespace_inode);
1647 goto out_check;
1648 }
1649 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1650 goto out_check;
1651 nocow = true;
1652 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1653 extent_end = found_key.offset + ram_bytes;
1654 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1655 /* Skip extents outside of our requested range */
1656 if (extent_end <= start) {
1657 path->slots[0]++;
1658 goto next_slot;
1659 }
1660 } else {
1661 /* If this triggers then we have a memory corruption */
1662 BUG();
1663 }
1664 out_check:
1665 /*
1666 * If nocow is false then record the beginning of the range
1667 * that needs to be COWed
1668 */
1669 if (!nocow) {
1670 if (cow_start == (u64)-1)
1671 cow_start = cur_offset;
1672 cur_offset = extent_end;
1673 if (cur_offset > end)
1674 break;
1675 path->slots[0]++;
1676 goto next_slot;
1677 }
1678
1679 btrfs_release_path(path);
1680
1681 /*
1682 * COW range from cow_start to found_key.offset - 1. As the key
1683 * will contain the beginning of the first extent that can be
1684 * NOCOW, following one which needs to be COW'ed
1685 */
1686 if (cow_start != (u64)-1) {
1687 ret = fallback_to_cow(inode, locked_page,
1688 cow_start, found_key.offset - 1,
1689 page_started, nr_written);
1690 if (ret)
1691 goto error;
1692 cow_start = (u64)-1;
1693 }
1694
1695 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1696 u64 orig_start = found_key.offset - extent_offset;
1697 struct extent_map *em;
1698
1699 em = create_io_em(inode, cur_offset, num_bytes,
1700 orig_start,
1701 disk_bytenr, /* block_start */
1702 num_bytes, /* block_len */
1703 disk_num_bytes, /* orig_block_len */
1704 ram_bytes, BTRFS_COMPRESS_NONE,
1705 BTRFS_ORDERED_PREALLOC);
1706 if (IS_ERR(em)) {
1707 ret = PTR_ERR(em);
1708 goto error;
1709 }
1710 free_extent_map(em);
1711 ret = btrfs_add_ordered_extent(inode, cur_offset,
1712 disk_bytenr, num_bytes,
1713 num_bytes,
1714 BTRFS_ORDERED_PREALLOC);
1715 if (ret) {
1716 btrfs_drop_extent_cache(inode, cur_offset,
1717 cur_offset + num_bytes - 1,
1718 0);
1719 goto error;
1720 }
1721 } else {
1722 ret = btrfs_add_ordered_extent(inode, cur_offset,
1723 disk_bytenr, num_bytes,
1724 num_bytes,
1725 BTRFS_ORDERED_NOCOW);
1726 if (ret)
1727 goto error;
1728 }
1729
1730 if (nocow)
1731 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1732 nocow = false;
1733
1734 if (root->root_key.objectid ==
1735 BTRFS_DATA_RELOC_TREE_OBJECTID)
1736 /*
1737 * Error handled later, as we must prevent
1738 * extent_clear_unlock_delalloc() in error handler
1739 * from freeing metadata of created ordered extent.
1740 */
1741 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1742 num_bytes);
1743
1744 extent_clear_unlock_delalloc(inode, cur_offset,
1745 cur_offset + num_bytes - 1,
1746 locked_page, EXTENT_LOCKED |
1747 EXTENT_DELALLOC |
1748 EXTENT_CLEAR_DATA_RESV,
1749 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1750
1751 cur_offset = extent_end;
1752
1753 /*
1754 * btrfs_reloc_clone_csums() error, now we're OK to call error
1755 * handler, as metadata for created ordered extent will only
1756 * be freed by btrfs_finish_ordered_io().
1757 */
1758 if (ret)
1759 goto error;
1760 if (cur_offset > end)
1761 break;
1762 }
1763 btrfs_release_path(path);
1764
1765 if (cur_offset <= end && cow_start == (u64)-1)
1766 cow_start = cur_offset;
1767
1768 if (cow_start != (u64)-1) {
1769 cur_offset = end;
1770 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1771 page_started, nr_written);
1772 if (ret)
1773 goto error;
1774 }
1775
1776 error:
1777 if (nocow)
1778 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1779
1780 if (ret && cur_offset < end)
1781 extent_clear_unlock_delalloc(inode, cur_offset, end,
1782 locked_page, EXTENT_LOCKED |
1783 EXTENT_DELALLOC | EXTENT_DEFRAG |
1784 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1785 PAGE_CLEAR_DIRTY |
1786 PAGE_SET_WRITEBACK |
1787 PAGE_END_WRITEBACK);
1788 btrfs_free_path(path);
1789 return ret;
1790 }
1791
need_force_cow(struct btrfs_inode * inode,u64 start,u64 end)1792 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1793 {
1794
1795 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1796 !(inode->flags & BTRFS_INODE_PREALLOC))
1797 return 0;
1798
1799 /*
1800 * @defrag_bytes is a hint value, no spinlock held here,
1801 * if is not zero, it means the file is defragging.
1802 * Force cow if given extent needs to be defragged.
1803 */
1804 if (inode->defrag_bytes &&
1805 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1806 return 1;
1807
1808 return 0;
1809 }
1810
1811 /*
1812 * Function to process delayed allocation (create CoW) for ranges which are
1813 * being touched for the first time.
1814 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1815 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1816 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1817 struct writeback_control *wbc)
1818 {
1819 int ret;
1820 int force_cow = need_force_cow(inode, start, end);
1821
1822 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1823 ret = run_delalloc_nocow(inode, locked_page, start, end,
1824 page_started, 1, nr_written);
1825 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1826 ret = run_delalloc_nocow(inode, locked_page, start, end,
1827 page_started, 0, nr_written);
1828 } else if (!inode_can_compress(inode) ||
1829 !inode_need_compress(inode, start, end)) {
1830 ret = cow_file_range(inode, locked_page, start, end,
1831 page_started, nr_written, 1);
1832 } else {
1833 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1834 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1835 page_started, nr_written);
1836 }
1837 if (ret)
1838 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1839 end - start + 1);
1840 return ret;
1841 }
1842
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1843 void btrfs_split_delalloc_extent(struct inode *inode,
1844 struct extent_state *orig, u64 split)
1845 {
1846 u64 size;
1847
1848 /* not delalloc, ignore it */
1849 if (!(orig->state & EXTENT_DELALLOC))
1850 return;
1851
1852 size = orig->end - orig->start + 1;
1853 if (size > BTRFS_MAX_EXTENT_SIZE) {
1854 u32 num_extents;
1855 u64 new_size;
1856
1857 /*
1858 * See the explanation in btrfs_merge_delalloc_extent, the same
1859 * applies here, just in reverse.
1860 */
1861 new_size = orig->end - split + 1;
1862 num_extents = count_max_extents(new_size);
1863 new_size = split - orig->start;
1864 num_extents += count_max_extents(new_size);
1865 if (count_max_extents(size) >= num_extents)
1866 return;
1867 }
1868
1869 spin_lock(&BTRFS_I(inode)->lock);
1870 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1871 spin_unlock(&BTRFS_I(inode)->lock);
1872 }
1873
1874 /*
1875 * Handle merged delayed allocation extents so we can keep track of new extents
1876 * that are just merged onto old extents, such as when we are doing sequential
1877 * writes, so we can properly account for the metadata space we'll need.
1878 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1879 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1880 struct extent_state *other)
1881 {
1882 u64 new_size, old_size;
1883 u32 num_extents;
1884
1885 /* not delalloc, ignore it */
1886 if (!(other->state & EXTENT_DELALLOC))
1887 return;
1888
1889 if (new->start > other->start)
1890 new_size = new->end - other->start + 1;
1891 else
1892 new_size = other->end - new->start + 1;
1893
1894 /* we're not bigger than the max, unreserve the space and go */
1895 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1896 spin_lock(&BTRFS_I(inode)->lock);
1897 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1898 spin_unlock(&BTRFS_I(inode)->lock);
1899 return;
1900 }
1901
1902 /*
1903 * We have to add up either side to figure out how many extents were
1904 * accounted for before we merged into one big extent. If the number of
1905 * extents we accounted for is <= the amount we need for the new range
1906 * then we can return, otherwise drop. Think of it like this
1907 *
1908 * [ 4k][MAX_SIZE]
1909 *
1910 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1911 * need 2 outstanding extents, on one side we have 1 and the other side
1912 * we have 1 so they are == and we can return. But in this case
1913 *
1914 * [MAX_SIZE+4k][MAX_SIZE+4k]
1915 *
1916 * Each range on their own accounts for 2 extents, but merged together
1917 * they are only 3 extents worth of accounting, so we need to drop in
1918 * this case.
1919 */
1920 old_size = other->end - other->start + 1;
1921 num_extents = count_max_extents(old_size);
1922 old_size = new->end - new->start + 1;
1923 num_extents += count_max_extents(old_size);
1924 if (count_max_extents(new_size) >= num_extents)
1925 return;
1926
1927 spin_lock(&BTRFS_I(inode)->lock);
1928 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1929 spin_unlock(&BTRFS_I(inode)->lock);
1930 }
1931
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1932 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1933 struct inode *inode)
1934 {
1935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1936
1937 spin_lock(&root->delalloc_lock);
1938 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1939 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1940 &root->delalloc_inodes);
1941 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1942 &BTRFS_I(inode)->runtime_flags);
1943 root->nr_delalloc_inodes++;
1944 if (root->nr_delalloc_inodes == 1) {
1945 spin_lock(&fs_info->delalloc_root_lock);
1946 BUG_ON(!list_empty(&root->delalloc_root));
1947 list_add_tail(&root->delalloc_root,
1948 &fs_info->delalloc_roots);
1949 spin_unlock(&fs_info->delalloc_root_lock);
1950 }
1951 }
1952 spin_unlock(&root->delalloc_lock);
1953 }
1954
1955
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1956 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1957 struct btrfs_inode *inode)
1958 {
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960
1961 if (!list_empty(&inode->delalloc_inodes)) {
1962 list_del_init(&inode->delalloc_inodes);
1963 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1964 &inode->runtime_flags);
1965 root->nr_delalloc_inodes--;
1966 if (!root->nr_delalloc_inodes) {
1967 ASSERT(list_empty(&root->delalloc_inodes));
1968 spin_lock(&fs_info->delalloc_root_lock);
1969 BUG_ON(list_empty(&root->delalloc_root));
1970 list_del_init(&root->delalloc_root);
1971 spin_unlock(&fs_info->delalloc_root_lock);
1972 }
1973 }
1974 }
1975
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1976 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1977 struct btrfs_inode *inode)
1978 {
1979 spin_lock(&root->delalloc_lock);
1980 __btrfs_del_delalloc_inode(root, inode);
1981 spin_unlock(&root->delalloc_lock);
1982 }
1983
1984 /*
1985 * Properly track delayed allocation bytes in the inode and to maintain the
1986 * list of inodes that have pending delalloc work to be done.
1987 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1988 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1989 unsigned *bits)
1990 {
1991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1992
1993 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1994 WARN_ON(1);
1995 /*
1996 * set_bit and clear bit hooks normally require _irqsave/restore
1997 * but in this case, we are only testing for the DELALLOC
1998 * bit, which is only set or cleared with irqs on
1999 */
2000 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2001 struct btrfs_root *root = BTRFS_I(inode)->root;
2002 u64 len = state->end + 1 - state->start;
2003 u32 num_extents = count_max_extents(len);
2004 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2005
2006 spin_lock(&BTRFS_I(inode)->lock);
2007 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2008 spin_unlock(&BTRFS_I(inode)->lock);
2009
2010 /* For sanity tests */
2011 if (btrfs_is_testing(fs_info))
2012 return;
2013
2014 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2015 fs_info->delalloc_batch);
2016 spin_lock(&BTRFS_I(inode)->lock);
2017 BTRFS_I(inode)->delalloc_bytes += len;
2018 if (*bits & EXTENT_DEFRAG)
2019 BTRFS_I(inode)->defrag_bytes += len;
2020 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2021 &BTRFS_I(inode)->runtime_flags))
2022 btrfs_add_delalloc_inodes(root, inode);
2023 spin_unlock(&BTRFS_I(inode)->lock);
2024 }
2025
2026 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2027 (*bits & EXTENT_DELALLOC_NEW)) {
2028 spin_lock(&BTRFS_I(inode)->lock);
2029 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2030 state->start;
2031 spin_unlock(&BTRFS_I(inode)->lock);
2032 }
2033 }
2034
2035 /*
2036 * Once a range is no longer delalloc this function ensures that proper
2037 * accounting happens.
2038 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2039 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2040 struct extent_state *state, unsigned *bits)
2041 {
2042 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2043 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2044 u64 len = state->end + 1 - state->start;
2045 u32 num_extents = count_max_extents(len);
2046
2047 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2048 spin_lock(&inode->lock);
2049 inode->defrag_bytes -= len;
2050 spin_unlock(&inode->lock);
2051 }
2052
2053 /*
2054 * set_bit and clear bit hooks normally require _irqsave/restore
2055 * but in this case, we are only testing for the DELALLOC
2056 * bit, which is only set or cleared with irqs on
2057 */
2058 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2059 struct btrfs_root *root = inode->root;
2060 bool do_list = !btrfs_is_free_space_inode(inode);
2061
2062 spin_lock(&inode->lock);
2063 btrfs_mod_outstanding_extents(inode, -num_extents);
2064 spin_unlock(&inode->lock);
2065
2066 /*
2067 * We don't reserve metadata space for space cache inodes so we
2068 * don't need to call delalloc_release_metadata if there is an
2069 * error.
2070 */
2071 if (*bits & EXTENT_CLEAR_META_RESV &&
2072 root != fs_info->tree_root)
2073 btrfs_delalloc_release_metadata(inode, len, false);
2074
2075 /* For sanity tests. */
2076 if (btrfs_is_testing(fs_info))
2077 return;
2078
2079 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2080 do_list && !(state->state & EXTENT_NORESERVE) &&
2081 (*bits & EXTENT_CLEAR_DATA_RESV))
2082 btrfs_free_reserved_data_space_noquota(fs_info, len);
2083
2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2085 fs_info->delalloc_batch);
2086 spin_lock(&inode->lock);
2087 inode->delalloc_bytes -= len;
2088 if (do_list && inode->delalloc_bytes == 0 &&
2089 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2090 &inode->runtime_flags))
2091 btrfs_del_delalloc_inode(root, inode);
2092 spin_unlock(&inode->lock);
2093 }
2094
2095 if ((state->state & EXTENT_DELALLOC_NEW) &&
2096 (*bits & EXTENT_DELALLOC_NEW)) {
2097 spin_lock(&inode->lock);
2098 ASSERT(inode->new_delalloc_bytes >= len);
2099 inode->new_delalloc_bytes -= len;
2100 spin_unlock(&inode->lock);
2101 }
2102 }
2103
2104 /*
2105 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2106 * in a chunk's stripe. This function ensures that bios do not span a
2107 * stripe/chunk
2108 *
2109 * @page - The page we are about to add to the bio
2110 * @size - size we want to add to the bio
2111 * @bio - bio we want to ensure is smaller than a stripe
2112 * @bio_flags - flags of the bio
2113 *
2114 * return 1 if page cannot be added to the bio
2115 * return 0 if page can be added to the bio
2116 * return error otherwise
2117 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2118 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2119 unsigned long bio_flags)
2120 {
2121 struct inode *inode = page->mapping->host;
2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2123 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2124 u64 length = 0;
2125 u64 map_length;
2126 int ret;
2127 struct btrfs_io_geometry geom;
2128
2129 if (bio_flags & EXTENT_BIO_COMPRESSED)
2130 return 0;
2131
2132 length = bio->bi_iter.bi_size;
2133 map_length = length;
2134 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2135 &geom);
2136 if (ret < 0)
2137 return ret;
2138
2139 if (geom.len < length + size)
2140 return 1;
2141 return 0;
2142 }
2143
2144 /*
2145 * in order to insert checksums into the metadata in large chunks,
2146 * we wait until bio submission time. All the pages in the bio are
2147 * checksummed and sums are attached onto the ordered extent record.
2148 *
2149 * At IO completion time the cums attached on the ordered extent record
2150 * are inserted into the btree
2151 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2152 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2153 u64 bio_offset)
2154 {
2155 struct inode *inode = private_data;
2156
2157 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2158 }
2159
2160 /*
2161 * extent_io.c submission hook. This does the right thing for csum calculation
2162 * on write, or reading the csums from the tree before a read.
2163 *
2164 * Rules about async/sync submit,
2165 * a) read: sync submit
2166 *
2167 * b) write without checksum: sync submit
2168 *
2169 * c) write with checksum:
2170 * c-1) if bio is issued by fsync: sync submit
2171 * (sync_writers != 0)
2172 *
2173 * c-2) if root is reloc root: sync submit
2174 * (only in case of buffered IO)
2175 *
2176 * c-3) otherwise: async submit
2177 */
btrfs_submit_data_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2178 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2179 int mirror_num, unsigned long bio_flags)
2180
2181 {
2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2183 struct btrfs_root *root = BTRFS_I(inode)->root;
2184 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2185 blk_status_t ret = 0;
2186 int skip_sum;
2187 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2188
2189 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2190
2191 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2192 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2193
2194 if (bio_op(bio) != REQ_OP_WRITE) {
2195 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2196 if (ret)
2197 goto out;
2198
2199 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2200 ret = btrfs_submit_compressed_read(inode, bio,
2201 mirror_num,
2202 bio_flags);
2203 goto out;
2204 } else if (!skip_sum) {
2205 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2206 if (ret)
2207 goto out;
2208 }
2209 goto mapit;
2210 } else if (async && !skip_sum) {
2211 /* csum items have already been cloned */
2212 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2213 goto mapit;
2214 /* we're doing a write, do the async checksumming */
2215 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2216 0, inode, btrfs_submit_bio_start);
2217 goto out;
2218 } else if (!skip_sum) {
2219 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2220 if (ret)
2221 goto out;
2222 }
2223
2224 mapit:
2225 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2226
2227 out:
2228 if (ret) {
2229 bio->bi_status = ret;
2230 bio_endio(bio);
2231 }
2232 return ret;
2233 }
2234
2235 /*
2236 * given a list of ordered sums record them in the inode. This happens
2237 * at IO completion time based on sums calculated at bio submission time.
2238 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2239 static int add_pending_csums(struct btrfs_trans_handle *trans,
2240 struct list_head *list)
2241 {
2242 struct btrfs_ordered_sum *sum;
2243 int ret;
2244
2245 list_for_each_entry(sum, list, list) {
2246 trans->adding_csums = true;
2247 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2248 trans->adding_csums = false;
2249 if (ret)
2250 return ret;
2251 }
2252 return 0;
2253 }
2254
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2255 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2256 const u64 start,
2257 const u64 len,
2258 struct extent_state **cached_state)
2259 {
2260 u64 search_start = start;
2261 const u64 end = start + len - 1;
2262
2263 while (search_start < end) {
2264 const u64 search_len = end - search_start + 1;
2265 struct extent_map *em;
2266 u64 em_len;
2267 int ret = 0;
2268
2269 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2270 if (IS_ERR(em))
2271 return PTR_ERR(em);
2272
2273 if (em->block_start != EXTENT_MAP_HOLE)
2274 goto next;
2275
2276 em_len = em->len;
2277 if (em->start < search_start)
2278 em_len -= search_start - em->start;
2279 if (em_len > search_len)
2280 em_len = search_len;
2281
2282 ret = set_extent_bit(&inode->io_tree, search_start,
2283 search_start + em_len - 1,
2284 EXTENT_DELALLOC_NEW,
2285 NULL, cached_state, GFP_NOFS);
2286 next:
2287 search_start = extent_map_end(em);
2288 free_extent_map(em);
2289 if (ret)
2290 return ret;
2291 }
2292 return 0;
2293 }
2294
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2295 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2296 unsigned int extra_bits,
2297 struct extent_state **cached_state)
2298 {
2299 WARN_ON(PAGE_ALIGNED(end));
2300
2301 if (start >= i_size_read(&inode->vfs_inode) &&
2302 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2303 /*
2304 * There can't be any extents following eof in this case so just
2305 * set the delalloc new bit for the range directly.
2306 */
2307 extra_bits |= EXTENT_DELALLOC_NEW;
2308 } else {
2309 int ret;
2310
2311 ret = btrfs_find_new_delalloc_bytes(inode, start,
2312 end + 1 - start,
2313 cached_state);
2314 if (ret)
2315 return ret;
2316 }
2317
2318 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2319 cached_state);
2320 }
2321
2322 /* see btrfs_writepage_start_hook for details on why this is required */
2323 struct btrfs_writepage_fixup {
2324 struct page *page;
2325 struct inode *inode;
2326 struct btrfs_work work;
2327 };
2328
btrfs_writepage_fixup_worker(struct btrfs_work * work)2329 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2330 {
2331 struct btrfs_writepage_fixup *fixup;
2332 struct btrfs_ordered_extent *ordered;
2333 struct extent_state *cached_state = NULL;
2334 struct extent_changeset *data_reserved = NULL;
2335 struct page *page;
2336 struct btrfs_inode *inode;
2337 u64 page_start;
2338 u64 page_end;
2339 int ret = 0;
2340 bool free_delalloc_space = true;
2341
2342 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2343 page = fixup->page;
2344 inode = BTRFS_I(fixup->inode);
2345 page_start = page_offset(page);
2346 page_end = page_offset(page) + PAGE_SIZE - 1;
2347
2348 /*
2349 * This is similar to page_mkwrite, we need to reserve the space before
2350 * we take the page lock.
2351 */
2352 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2353 PAGE_SIZE);
2354 again:
2355 lock_page(page);
2356
2357 /*
2358 * Before we queued this fixup, we took a reference on the page.
2359 * page->mapping may go NULL, but it shouldn't be moved to a different
2360 * address space.
2361 */
2362 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2363 /*
2364 * Unfortunately this is a little tricky, either
2365 *
2366 * 1) We got here and our page had already been dealt with and
2367 * we reserved our space, thus ret == 0, so we need to just
2368 * drop our space reservation and bail. This can happen the
2369 * first time we come into the fixup worker, or could happen
2370 * while waiting for the ordered extent.
2371 * 2) Our page was already dealt with, but we happened to get an
2372 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2373 * this case we obviously don't have anything to release, but
2374 * because the page was already dealt with we don't want to
2375 * mark the page with an error, so make sure we're resetting
2376 * ret to 0. This is why we have this check _before_ the ret
2377 * check, because we do not want to have a surprise ENOSPC
2378 * when the page was already properly dealt with.
2379 */
2380 if (!ret) {
2381 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2382 btrfs_delalloc_release_space(inode, data_reserved,
2383 page_start, PAGE_SIZE,
2384 true);
2385 }
2386 ret = 0;
2387 goto out_page;
2388 }
2389
2390 /*
2391 * We can't mess with the page state unless it is locked, so now that
2392 * it is locked bail if we failed to make our space reservation.
2393 */
2394 if (ret)
2395 goto out_page;
2396
2397 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2398
2399 /* already ordered? We're done */
2400 if (PagePrivate2(page))
2401 goto out_reserved;
2402
2403 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2404 if (ordered) {
2405 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2406 &cached_state);
2407 unlock_page(page);
2408 btrfs_start_ordered_extent(ordered, 1);
2409 btrfs_put_ordered_extent(ordered);
2410 goto again;
2411 }
2412
2413 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2414 &cached_state);
2415 if (ret)
2416 goto out_reserved;
2417
2418 /*
2419 * Everything went as planned, we're now the owner of a dirty page with
2420 * delayed allocation bits set and space reserved for our COW
2421 * destination.
2422 *
2423 * The page was dirty when we started, nothing should have cleaned it.
2424 */
2425 BUG_ON(!PageDirty(page));
2426 free_delalloc_space = false;
2427 out_reserved:
2428 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2429 if (free_delalloc_space)
2430 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2431 PAGE_SIZE, true);
2432 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2433 &cached_state);
2434 out_page:
2435 if (ret) {
2436 /*
2437 * We hit ENOSPC or other errors. Update the mapping and page
2438 * to reflect the errors and clean the page.
2439 */
2440 mapping_set_error(page->mapping, ret);
2441 end_extent_writepage(page, ret, page_start, page_end);
2442 clear_page_dirty_for_io(page);
2443 SetPageError(page);
2444 }
2445 ClearPageChecked(page);
2446 unlock_page(page);
2447 put_page(page);
2448 kfree(fixup);
2449 extent_changeset_free(data_reserved);
2450 /*
2451 * As a precaution, do a delayed iput in case it would be the last iput
2452 * that could need flushing space. Recursing back to fixup worker would
2453 * deadlock.
2454 */
2455 btrfs_add_delayed_iput(&inode->vfs_inode);
2456 }
2457
2458 /*
2459 * There are a few paths in the higher layers of the kernel that directly
2460 * set the page dirty bit without asking the filesystem if it is a
2461 * good idea. This causes problems because we want to make sure COW
2462 * properly happens and the data=ordered rules are followed.
2463 *
2464 * In our case any range that doesn't have the ORDERED bit set
2465 * hasn't been properly setup for IO. We kick off an async process
2466 * to fix it up. The async helper will wait for ordered extents, set
2467 * the delalloc bit and make it safe to write the page.
2468 */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2469 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2470 {
2471 struct inode *inode = page->mapping->host;
2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2473 struct btrfs_writepage_fixup *fixup;
2474
2475 /* this page is properly in the ordered list */
2476 if (TestClearPagePrivate2(page))
2477 return 0;
2478
2479 /*
2480 * PageChecked is set below when we create a fixup worker for this page,
2481 * don't try to create another one if we're already PageChecked()
2482 *
2483 * The extent_io writepage code will redirty the page if we send back
2484 * EAGAIN.
2485 */
2486 if (PageChecked(page))
2487 return -EAGAIN;
2488
2489 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2490 if (!fixup)
2491 return -EAGAIN;
2492
2493 /*
2494 * We are already holding a reference to this inode from
2495 * write_cache_pages. We need to hold it because the space reservation
2496 * takes place outside of the page lock, and we can't trust
2497 * page->mapping outside of the page lock.
2498 */
2499 ihold(inode);
2500 SetPageChecked(page);
2501 get_page(page);
2502 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2503 fixup->page = page;
2504 fixup->inode = inode;
2505 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2506
2507 return -EAGAIN;
2508 }
2509
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,u64 qgroup_reserved)2510 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2511 struct btrfs_inode *inode, u64 file_pos,
2512 struct btrfs_file_extent_item *stack_fi,
2513 u64 qgroup_reserved)
2514 {
2515 struct btrfs_root *root = inode->root;
2516 struct btrfs_path *path;
2517 struct extent_buffer *leaf;
2518 struct btrfs_key ins;
2519 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2520 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2521 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2522 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2523 int extent_inserted = 0;
2524 int ret;
2525
2526 path = btrfs_alloc_path();
2527 if (!path)
2528 return -ENOMEM;
2529
2530 /*
2531 * we may be replacing one extent in the tree with another.
2532 * The new extent is pinned in the extent map, and we don't want
2533 * to drop it from the cache until it is completely in the btree.
2534 *
2535 * So, tell btrfs_drop_extents to leave this extent in the cache.
2536 * the caller is expected to unpin it and allow it to be merged
2537 * with the others.
2538 */
2539 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2540 file_pos + num_bytes, NULL, 0,
2541 1, sizeof(*stack_fi), &extent_inserted);
2542 if (ret)
2543 goto out;
2544
2545 if (!extent_inserted) {
2546 ins.objectid = btrfs_ino(inode);
2547 ins.offset = file_pos;
2548 ins.type = BTRFS_EXTENT_DATA_KEY;
2549
2550 path->leave_spinning = 1;
2551 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2552 sizeof(*stack_fi));
2553 if (ret)
2554 goto out;
2555 }
2556 leaf = path->nodes[0];
2557 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2558 write_extent_buffer(leaf, stack_fi,
2559 btrfs_item_ptr_offset(leaf, path->slots[0]),
2560 sizeof(struct btrfs_file_extent_item));
2561
2562 btrfs_mark_buffer_dirty(leaf);
2563 btrfs_release_path(path);
2564
2565 inode_add_bytes(&inode->vfs_inode, num_bytes);
2566
2567 ins.objectid = disk_bytenr;
2568 ins.offset = disk_num_bytes;
2569 ins.type = BTRFS_EXTENT_ITEM_KEY;
2570
2571 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2572 if (ret)
2573 goto out;
2574
2575 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2576 file_pos, qgroup_reserved, &ins);
2577 out:
2578 btrfs_free_path(path);
2579
2580 return ret;
2581 }
2582
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2583 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2584 u64 start, u64 len)
2585 {
2586 struct btrfs_block_group *cache;
2587
2588 cache = btrfs_lookup_block_group(fs_info, start);
2589 ASSERT(cache);
2590
2591 spin_lock(&cache->lock);
2592 cache->delalloc_bytes -= len;
2593 spin_unlock(&cache->lock);
2594
2595 btrfs_put_block_group(cache);
2596 }
2597
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)2598 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2599 struct btrfs_ordered_extent *oe)
2600 {
2601 struct btrfs_file_extent_item stack_fi;
2602 u64 logical_len;
2603
2604 memset(&stack_fi, 0, sizeof(stack_fi));
2605 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2606 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2607 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2608 oe->disk_num_bytes);
2609 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2610 logical_len = oe->truncated_len;
2611 else
2612 logical_len = oe->num_bytes;
2613 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2614 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2615 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2616 /* Encryption and other encoding is reserved and all 0 */
2617
2618 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2619 oe->file_offset, &stack_fi,
2620 oe->qgroup_rsv);
2621 }
2622
2623 /*
2624 * As ordered data IO finishes, this gets called so we can finish
2625 * an ordered extent if the range of bytes in the file it covers are
2626 * fully written.
2627 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2628 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2629 {
2630 struct inode *inode = ordered_extent->inode;
2631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2632 struct btrfs_root *root = BTRFS_I(inode)->root;
2633 struct btrfs_trans_handle *trans = NULL;
2634 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2635 struct extent_state *cached_state = NULL;
2636 u64 start, end;
2637 int compress_type = 0;
2638 int ret = 0;
2639 u64 logical_len = ordered_extent->num_bytes;
2640 bool freespace_inode;
2641 bool truncated = false;
2642 bool range_locked = false;
2643 bool clear_new_delalloc_bytes = false;
2644 bool clear_reserved_extent = true;
2645 unsigned int clear_bits;
2646
2647 start = ordered_extent->file_offset;
2648 end = start + ordered_extent->num_bytes - 1;
2649
2650 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2651 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2652 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2653 clear_new_delalloc_bytes = true;
2654
2655 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2656
2657 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2658 ret = -EIO;
2659 goto out;
2660 }
2661
2662 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2663
2664 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2665 truncated = true;
2666 logical_len = ordered_extent->truncated_len;
2667 /* Truncated the entire extent, don't bother adding */
2668 if (!logical_len)
2669 goto out;
2670 }
2671
2672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2673 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2674
2675 btrfs_inode_safe_disk_i_size_write(inode, 0);
2676 if (freespace_inode)
2677 trans = btrfs_join_transaction_spacecache(root);
2678 else
2679 trans = btrfs_join_transaction(root);
2680 if (IS_ERR(trans)) {
2681 ret = PTR_ERR(trans);
2682 trans = NULL;
2683 goto out;
2684 }
2685 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2686 ret = btrfs_update_inode_fallback(trans, root, inode);
2687 if (ret) /* -ENOMEM or corruption */
2688 btrfs_abort_transaction(trans, ret);
2689 goto out;
2690 }
2691
2692 range_locked = true;
2693 lock_extent_bits(io_tree, start, end, &cached_state);
2694
2695 if (freespace_inode)
2696 trans = btrfs_join_transaction_spacecache(root);
2697 else
2698 trans = btrfs_join_transaction(root);
2699 if (IS_ERR(trans)) {
2700 ret = PTR_ERR(trans);
2701 trans = NULL;
2702 goto out;
2703 }
2704
2705 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2706
2707 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2708 compress_type = ordered_extent->compress_type;
2709 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2710 BUG_ON(compress_type);
2711 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2712 ordered_extent->file_offset,
2713 ordered_extent->file_offset +
2714 logical_len);
2715 } else {
2716 BUG_ON(root == fs_info->tree_root);
2717 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2718 if (!ret) {
2719 clear_reserved_extent = false;
2720 btrfs_release_delalloc_bytes(fs_info,
2721 ordered_extent->disk_bytenr,
2722 ordered_extent->disk_num_bytes);
2723 }
2724 }
2725 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2726 ordered_extent->file_offset,
2727 ordered_extent->num_bytes, trans->transid);
2728 if (ret < 0) {
2729 btrfs_abort_transaction(trans, ret);
2730 goto out;
2731 }
2732
2733 ret = add_pending_csums(trans, &ordered_extent->list);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto out;
2737 }
2738
2739 btrfs_inode_safe_disk_i_size_write(inode, 0);
2740 ret = btrfs_update_inode_fallback(trans, root, inode);
2741 if (ret) { /* -ENOMEM or corruption */
2742 btrfs_abort_transaction(trans, ret);
2743 goto out;
2744 }
2745 ret = 0;
2746 out:
2747 clear_bits = EXTENT_DEFRAG;
2748 if (range_locked)
2749 clear_bits |= EXTENT_LOCKED;
2750 if (clear_new_delalloc_bytes)
2751 clear_bits |= EXTENT_DELALLOC_NEW;
2752 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2753 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2754 &cached_state);
2755
2756 if (trans)
2757 btrfs_end_transaction(trans);
2758
2759 if (ret || truncated) {
2760 u64 unwritten_start = start;
2761
2762 /*
2763 * If we failed to finish this ordered extent for any reason we
2764 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
2765 * extent, and mark the inode with the error if it wasn't
2766 * already set. Any error during writeback would have already
2767 * set the mapping error, so we need to set it if we're the ones
2768 * marking this ordered extent as failed.
2769 */
2770 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
2771 &ordered_extent->flags))
2772 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
2773
2774 if (truncated)
2775 unwritten_start += logical_len;
2776 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2777
2778 /* Drop the cache for the part of the extent we didn't write. */
2779 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2780
2781 /*
2782 * If the ordered extent had an IOERR or something else went
2783 * wrong we need to return the space for this ordered extent
2784 * back to the allocator. We only free the extent in the
2785 * truncated case if we didn't write out the extent at all.
2786 *
2787 * If we made it past insert_reserved_file_extent before we
2788 * errored out then we don't need to do this as the accounting
2789 * has already been done.
2790 */
2791 if ((ret || !logical_len) &&
2792 clear_reserved_extent &&
2793 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2794 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2795 /*
2796 * Discard the range before returning it back to the
2797 * free space pool
2798 */
2799 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2800 btrfs_discard_extent(fs_info,
2801 ordered_extent->disk_bytenr,
2802 ordered_extent->disk_num_bytes,
2803 NULL);
2804 btrfs_free_reserved_extent(fs_info,
2805 ordered_extent->disk_bytenr,
2806 ordered_extent->disk_num_bytes, 1);
2807 }
2808 }
2809
2810 /*
2811 * This needs to be done to make sure anybody waiting knows we are done
2812 * updating everything for this ordered extent.
2813 */
2814 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
2815
2816 /* once for us */
2817 btrfs_put_ordered_extent(ordered_extent);
2818 /* once for the tree */
2819 btrfs_put_ordered_extent(ordered_extent);
2820
2821 return ret;
2822 }
2823
finish_ordered_fn(struct btrfs_work * work)2824 static void finish_ordered_fn(struct btrfs_work *work)
2825 {
2826 struct btrfs_ordered_extent *ordered_extent;
2827 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2828 btrfs_finish_ordered_io(ordered_extent);
2829 }
2830
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)2831 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2832 u64 end, int uptodate)
2833 {
2834 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2835 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2836 struct btrfs_ordered_extent *ordered_extent = NULL;
2837 struct btrfs_workqueue *wq;
2838
2839 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2840
2841 ClearPagePrivate2(page);
2842 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2843 end - start + 1, uptodate))
2844 return;
2845
2846 if (btrfs_is_free_space_inode(inode))
2847 wq = fs_info->endio_freespace_worker;
2848 else
2849 wq = fs_info->endio_write_workers;
2850
2851 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2852 btrfs_queue_work(wq, &ordered_extent->work);
2853 }
2854
check_data_csum(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)2855 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2856 int icsum, struct page *page, int pgoff, u64 start,
2857 size_t len)
2858 {
2859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2860 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2861 char *kaddr;
2862 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2863 u8 *csum_expected;
2864 u8 csum[BTRFS_CSUM_SIZE];
2865
2866 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2867
2868 kaddr = kmap_atomic(page);
2869 shash->tfm = fs_info->csum_shash;
2870
2871 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2872
2873 if (memcmp(csum, csum_expected, csum_size))
2874 goto zeroit;
2875
2876 kunmap_atomic(kaddr);
2877 return 0;
2878 zeroit:
2879 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2880 io_bio->mirror_num);
2881 if (io_bio->device)
2882 btrfs_dev_stat_inc_and_print(io_bio->device,
2883 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2884 memset(kaddr + pgoff, 1, len);
2885 flush_dcache_page(page);
2886 kunmap_atomic(kaddr);
2887 return -EIO;
2888 }
2889
2890 /*
2891 * when reads are done, we need to check csums to verify the data is correct
2892 * if there's a match, we allow the bio to finish. If not, the code in
2893 * extent_io.c will try to find good copies for us.
2894 */
btrfs_verify_data_csum(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)2895 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2896 struct page *page, u64 start, u64 end, int mirror)
2897 {
2898 size_t offset = start - page_offset(page);
2899 struct inode *inode = page->mapping->host;
2900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2901 struct btrfs_root *root = BTRFS_I(inode)->root;
2902
2903 if (PageChecked(page)) {
2904 ClearPageChecked(page);
2905 return 0;
2906 }
2907
2908 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2909 return 0;
2910
2911 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2912 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2913 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2914 return 0;
2915 }
2916
2917 phy_offset >>= inode->i_sb->s_blocksize_bits;
2918 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2919 (size_t)(end - start + 1));
2920 }
2921
2922 /*
2923 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2924 *
2925 * @inode: The inode we want to perform iput on
2926 *
2927 * This function uses the generic vfs_inode::i_count to track whether we should
2928 * just decrement it (in case it's > 1) or if this is the last iput then link
2929 * the inode to the delayed iput machinery. Delayed iputs are processed at
2930 * transaction commit time/superblock commit/cleaner kthread.
2931 */
btrfs_add_delayed_iput(struct inode * inode)2932 void btrfs_add_delayed_iput(struct inode *inode)
2933 {
2934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935 struct btrfs_inode *binode = BTRFS_I(inode);
2936
2937 if (atomic_add_unless(&inode->i_count, -1, 1))
2938 return;
2939
2940 atomic_inc(&fs_info->nr_delayed_iputs);
2941 spin_lock(&fs_info->delayed_iput_lock);
2942 ASSERT(list_empty(&binode->delayed_iput));
2943 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2944 spin_unlock(&fs_info->delayed_iput_lock);
2945 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2946 wake_up_process(fs_info->cleaner_kthread);
2947 }
2948
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2949 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2950 struct btrfs_inode *inode)
2951 {
2952 list_del_init(&inode->delayed_iput);
2953 spin_unlock(&fs_info->delayed_iput_lock);
2954 iput(&inode->vfs_inode);
2955 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2956 wake_up(&fs_info->delayed_iputs_wait);
2957 spin_lock(&fs_info->delayed_iput_lock);
2958 }
2959
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)2960 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2961 struct btrfs_inode *inode)
2962 {
2963 if (!list_empty(&inode->delayed_iput)) {
2964 spin_lock(&fs_info->delayed_iput_lock);
2965 if (!list_empty(&inode->delayed_iput))
2966 run_delayed_iput_locked(fs_info, inode);
2967 spin_unlock(&fs_info->delayed_iput_lock);
2968 }
2969 }
2970
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)2971 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2972 {
2973
2974 spin_lock(&fs_info->delayed_iput_lock);
2975 while (!list_empty(&fs_info->delayed_iputs)) {
2976 struct btrfs_inode *inode;
2977
2978 inode = list_first_entry(&fs_info->delayed_iputs,
2979 struct btrfs_inode, delayed_iput);
2980 run_delayed_iput_locked(fs_info, inode);
2981 cond_resched_lock(&fs_info->delayed_iput_lock);
2982 }
2983 spin_unlock(&fs_info->delayed_iput_lock);
2984 }
2985
2986 /**
2987 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2988 * @fs_info - the fs_info for this fs
2989 * @return - EINTR if we were killed, 0 if nothing's pending
2990 *
2991 * This will wait on any delayed iputs that are currently running with KILLABLE
2992 * set. Once they are all done running we will return, unless we are killed in
2993 * which case we return EINTR. This helps in user operations like fallocate etc
2994 * that might get blocked on the iputs.
2995 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)2996 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2997 {
2998 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2999 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3000 if (ret)
3001 return -EINTR;
3002 return 0;
3003 }
3004
3005 /*
3006 * This creates an orphan entry for the given inode in case something goes wrong
3007 * in the middle of an unlink.
3008 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3009 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3010 struct btrfs_inode *inode)
3011 {
3012 int ret;
3013
3014 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3015 if (ret && ret != -EEXIST) {
3016 btrfs_abort_transaction(trans, ret);
3017 return ret;
3018 }
3019
3020 return 0;
3021 }
3022
3023 /*
3024 * We have done the delete so we can go ahead and remove the orphan item for
3025 * this particular inode.
3026 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3027 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3028 struct btrfs_inode *inode)
3029 {
3030 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3031 }
3032
3033 /*
3034 * this cleans up any orphans that may be left on the list from the last use
3035 * of this root.
3036 */
btrfs_orphan_cleanup(struct btrfs_root * root)3037 int btrfs_orphan_cleanup(struct btrfs_root *root)
3038 {
3039 struct btrfs_fs_info *fs_info = root->fs_info;
3040 struct btrfs_path *path;
3041 struct extent_buffer *leaf;
3042 struct btrfs_key key, found_key;
3043 struct btrfs_trans_handle *trans;
3044 struct inode *inode;
3045 u64 last_objectid = 0;
3046 int ret = 0, nr_unlink = 0;
3047
3048 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3049 return 0;
3050
3051 path = btrfs_alloc_path();
3052 if (!path) {
3053 ret = -ENOMEM;
3054 goto out;
3055 }
3056 path->reada = READA_BACK;
3057
3058 key.objectid = BTRFS_ORPHAN_OBJECTID;
3059 key.type = BTRFS_ORPHAN_ITEM_KEY;
3060 key.offset = (u64)-1;
3061
3062 while (1) {
3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064 if (ret < 0)
3065 goto out;
3066
3067 /*
3068 * if ret == 0 means we found what we were searching for, which
3069 * is weird, but possible, so only screw with path if we didn't
3070 * find the key and see if we have stuff that matches
3071 */
3072 if (ret > 0) {
3073 ret = 0;
3074 if (path->slots[0] == 0)
3075 break;
3076 path->slots[0]--;
3077 }
3078
3079 /* pull out the item */
3080 leaf = path->nodes[0];
3081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3082
3083 /* make sure the item matches what we want */
3084 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3085 break;
3086 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3087 break;
3088
3089 /* release the path since we're done with it */
3090 btrfs_release_path(path);
3091
3092 /*
3093 * this is where we are basically btrfs_lookup, without the
3094 * crossing root thing. we store the inode number in the
3095 * offset of the orphan item.
3096 */
3097
3098 if (found_key.offset == last_objectid) {
3099 btrfs_err(fs_info,
3100 "Error removing orphan entry, stopping orphan cleanup");
3101 ret = -EINVAL;
3102 goto out;
3103 }
3104
3105 last_objectid = found_key.offset;
3106
3107 found_key.objectid = found_key.offset;
3108 found_key.type = BTRFS_INODE_ITEM_KEY;
3109 found_key.offset = 0;
3110 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3111 ret = PTR_ERR_OR_ZERO(inode);
3112 if (ret && ret != -ENOENT)
3113 goto out;
3114
3115 if (ret == -ENOENT && root == fs_info->tree_root) {
3116 struct btrfs_root *dead_root;
3117 int is_dead_root = 0;
3118
3119 /*
3120 * this is an orphan in the tree root. Currently these
3121 * could come from 2 sources:
3122 * a) a snapshot deletion in progress
3123 * b) a free space cache inode
3124 * We need to distinguish those two, as the snapshot
3125 * orphan must not get deleted.
3126 * find_dead_roots already ran before us, so if this
3127 * is a snapshot deletion, we should find the root
3128 * in the fs_roots radix tree.
3129 */
3130
3131 spin_lock(&fs_info->fs_roots_radix_lock);
3132 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3133 (unsigned long)found_key.objectid);
3134 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3135 is_dead_root = 1;
3136 spin_unlock(&fs_info->fs_roots_radix_lock);
3137
3138 if (is_dead_root) {
3139 /* prevent this orphan from being found again */
3140 key.offset = found_key.objectid - 1;
3141 continue;
3142 }
3143
3144 }
3145
3146 /*
3147 * If we have an inode with links, there are a couple of
3148 * possibilities. Old kernels (before v3.12) used to create an
3149 * orphan item for truncate indicating that there were possibly
3150 * extent items past i_size that needed to be deleted. In v3.12,
3151 * truncate was changed to update i_size in sync with the extent
3152 * items, but the (useless) orphan item was still created. Since
3153 * v4.18, we don't create the orphan item for truncate at all.
3154 *
3155 * So, this item could mean that we need to do a truncate, but
3156 * only if this filesystem was last used on a pre-v3.12 kernel
3157 * and was not cleanly unmounted. The odds of that are quite
3158 * slim, and it's a pain to do the truncate now, so just delete
3159 * the orphan item.
3160 *
3161 * It's also possible that this orphan item was supposed to be
3162 * deleted but wasn't. The inode number may have been reused,
3163 * but either way, we can delete the orphan item.
3164 */
3165 if (ret == -ENOENT || inode->i_nlink) {
3166 if (!ret)
3167 iput(inode);
3168 trans = btrfs_start_transaction(root, 1);
3169 if (IS_ERR(trans)) {
3170 ret = PTR_ERR(trans);
3171 goto out;
3172 }
3173 btrfs_debug(fs_info, "auto deleting %Lu",
3174 found_key.objectid);
3175 ret = btrfs_del_orphan_item(trans, root,
3176 found_key.objectid);
3177 btrfs_end_transaction(trans);
3178 if (ret)
3179 goto out;
3180 continue;
3181 }
3182
3183 nr_unlink++;
3184
3185 /* this will do delete_inode and everything for us */
3186 iput(inode);
3187 }
3188 /* release the path since we're done with it */
3189 btrfs_release_path(path);
3190
3191 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3192
3193 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3194 trans = btrfs_join_transaction(root);
3195 if (!IS_ERR(trans))
3196 btrfs_end_transaction(trans);
3197 }
3198
3199 if (nr_unlink)
3200 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3201
3202 out:
3203 if (ret)
3204 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3205 btrfs_free_path(path);
3206 return ret;
3207 }
3208
3209 /*
3210 * very simple check to peek ahead in the leaf looking for xattrs. If we
3211 * don't find any xattrs, we know there can't be any acls.
3212 *
3213 * slot is the slot the inode is in, objectid is the objectid of the inode
3214 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3215 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3216 int slot, u64 objectid,
3217 int *first_xattr_slot)
3218 {
3219 u32 nritems = btrfs_header_nritems(leaf);
3220 struct btrfs_key found_key;
3221 static u64 xattr_access = 0;
3222 static u64 xattr_default = 0;
3223 int scanned = 0;
3224
3225 if (!xattr_access) {
3226 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3227 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3228 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3229 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3230 }
3231
3232 slot++;
3233 *first_xattr_slot = -1;
3234 while (slot < nritems) {
3235 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3236
3237 /* we found a different objectid, there must not be acls */
3238 if (found_key.objectid != objectid)
3239 return 0;
3240
3241 /* we found an xattr, assume we've got an acl */
3242 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3243 if (*first_xattr_slot == -1)
3244 *first_xattr_slot = slot;
3245 if (found_key.offset == xattr_access ||
3246 found_key.offset == xattr_default)
3247 return 1;
3248 }
3249
3250 /*
3251 * we found a key greater than an xattr key, there can't
3252 * be any acls later on
3253 */
3254 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3255 return 0;
3256
3257 slot++;
3258 scanned++;
3259
3260 /*
3261 * it goes inode, inode backrefs, xattrs, extents,
3262 * so if there are a ton of hard links to an inode there can
3263 * be a lot of backrefs. Don't waste time searching too hard,
3264 * this is just an optimization
3265 */
3266 if (scanned >= 8)
3267 break;
3268 }
3269 /* we hit the end of the leaf before we found an xattr or
3270 * something larger than an xattr. We have to assume the inode
3271 * has acls
3272 */
3273 if (*first_xattr_slot == -1)
3274 *first_xattr_slot = slot;
3275 return 1;
3276 }
3277
3278 /*
3279 * read an inode from the btree into the in-memory inode
3280 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3281 static int btrfs_read_locked_inode(struct inode *inode,
3282 struct btrfs_path *in_path)
3283 {
3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3285 struct btrfs_path *path = in_path;
3286 struct extent_buffer *leaf;
3287 struct btrfs_inode_item *inode_item;
3288 struct btrfs_root *root = BTRFS_I(inode)->root;
3289 struct btrfs_key location;
3290 unsigned long ptr;
3291 int maybe_acls;
3292 u32 rdev;
3293 int ret;
3294 bool filled = false;
3295 int first_xattr_slot;
3296
3297 ret = btrfs_fill_inode(inode, &rdev);
3298 if (!ret)
3299 filled = true;
3300
3301 if (!path) {
3302 path = btrfs_alloc_path();
3303 if (!path)
3304 return -ENOMEM;
3305 }
3306
3307 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3308
3309 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3310 if (ret) {
3311 if (path != in_path)
3312 btrfs_free_path(path);
3313 return ret;
3314 }
3315
3316 leaf = path->nodes[0];
3317
3318 if (filled)
3319 goto cache_index;
3320
3321 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_inode_item);
3323 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3324 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3325 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3326 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3327 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3328 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3329 round_up(i_size_read(inode), fs_info->sectorsize));
3330
3331 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3332 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3333
3334 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3335 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3336
3337 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3338 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3339
3340 BTRFS_I(inode)->i_otime.tv_sec =
3341 btrfs_timespec_sec(leaf, &inode_item->otime);
3342 BTRFS_I(inode)->i_otime.tv_nsec =
3343 btrfs_timespec_nsec(leaf, &inode_item->otime);
3344
3345 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3346 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3347 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3348
3349 inode_set_iversion_queried(inode,
3350 btrfs_inode_sequence(leaf, inode_item));
3351 inode->i_generation = BTRFS_I(inode)->generation;
3352 inode->i_rdev = 0;
3353 rdev = btrfs_inode_rdev(leaf, inode_item);
3354
3355 BTRFS_I(inode)->index_cnt = (u64)-1;
3356 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3357
3358 cache_index:
3359 /*
3360 * If we were modified in the current generation and evicted from memory
3361 * and then re-read we need to do a full sync since we don't have any
3362 * idea about which extents were modified before we were evicted from
3363 * cache.
3364 *
3365 * This is required for both inode re-read from disk and delayed inode
3366 * in delayed_nodes_tree.
3367 */
3368 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3371
3372 /*
3373 * We don't persist the id of the transaction where an unlink operation
3374 * against the inode was last made. So here we assume the inode might
3375 * have been evicted, and therefore the exact value of last_unlink_trans
3376 * lost, and set it to last_trans to avoid metadata inconsistencies
3377 * between the inode and its parent if the inode is fsync'ed and the log
3378 * replayed. For example, in the scenario:
3379 *
3380 * touch mydir/foo
3381 * ln mydir/foo mydir/bar
3382 * sync
3383 * unlink mydir/bar
3384 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3385 * xfs_io -c fsync mydir/foo
3386 * <power failure>
3387 * mount fs, triggers fsync log replay
3388 *
3389 * We must make sure that when we fsync our inode foo we also log its
3390 * parent inode, otherwise after log replay the parent still has the
3391 * dentry with the "bar" name but our inode foo has a link count of 1
3392 * and doesn't have an inode ref with the name "bar" anymore.
3393 *
3394 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3395 * but it guarantees correctness at the expense of occasional full
3396 * transaction commits on fsync if our inode is a directory, or if our
3397 * inode is not a directory, logging its parent unnecessarily.
3398 */
3399 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3400
3401 /*
3402 * Same logic as for last_unlink_trans. We don't persist the generation
3403 * of the last transaction where this inode was used for a reflink
3404 * operation, so after eviction and reloading the inode we must be
3405 * pessimistic and assume the last transaction that modified the inode.
3406 */
3407 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3408
3409 path->slots[0]++;
3410 if (inode->i_nlink != 1 ||
3411 path->slots[0] >= btrfs_header_nritems(leaf))
3412 goto cache_acl;
3413
3414 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3415 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3416 goto cache_acl;
3417
3418 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3419 if (location.type == BTRFS_INODE_REF_KEY) {
3420 struct btrfs_inode_ref *ref;
3421
3422 ref = (struct btrfs_inode_ref *)ptr;
3423 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3424 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3425 struct btrfs_inode_extref *extref;
3426
3427 extref = (struct btrfs_inode_extref *)ptr;
3428 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3429 extref);
3430 }
3431 cache_acl:
3432 /*
3433 * try to precache a NULL acl entry for files that don't have
3434 * any xattrs or acls
3435 */
3436 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3437 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3438 if (first_xattr_slot != -1) {
3439 path->slots[0] = first_xattr_slot;
3440 ret = btrfs_load_inode_props(inode, path);
3441 if (ret)
3442 btrfs_err(fs_info,
3443 "error loading props for ino %llu (root %llu): %d",
3444 btrfs_ino(BTRFS_I(inode)),
3445 root->root_key.objectid, ret);
3446 }
3447 if (path != in_path)
3448 btrfs_free_path(path);
3449
3450 if (!maybe_acls)
3451 cache_no_acl(inode);
3452
3453 switch (inode->i_mode & S_IFMT) {
3454 case S_IFREG:
3455 inode->i_mapping->a_ops = &btrfs_aops;
3456 inode->i_fop = &btrfs_file_operations;
3457 inode->i_op = &btrfs_file_inode_operations;
3458 break;
3459 case S_IFDIR:
3460 inode->i_fop = &btrfs_dir_file_operations;
3461 inode->i_op = &btrfs_dir_inode_operations;
3462 break;
3463 case S_IFLNK:
3464 inode->i_op = &btrfs_symlink_inode_operations;
3465 inode_nohighmem(inode);
3466 inode->i_mapping->a_ops = &btrfs_aops;
3467 break;
3468 default:
3469 inode->i_op = &btrfs_special_inode_operations;
3470 init_special_inode(inode, inode->i_mode, rdev);
3471 break;
3472 }
3473
3474 btrfs_sync_inode_flags_to_i_flags(inode);
3475 return 0;
3476 }
3477
3478 /*
3479 * given a leaf and an inode, copy the inode fields into the leaf
3480 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3481 static void fill_inode_item(struct btrfs_trans_handle *trans,
3482 struct extent_buffer *leaf,
3483 struct btrfs_inode_item *item,
3484 struct inode *inode)
3485 {
3486 struct btrfs_map_token token;
3487
3488 btrfs_init_map_token(&token, leaf);
3489
3490 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3491 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3492 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3493 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3494 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3495
3496 btrfs_set_token_timespec_sec(&token, &item->atime,
3497 inode->i_atime.tv_sec);
3498 btrfs_set_token_timespec_nsec(&token, &item->atime,
3499 inode->i_atime.tv_nsec);
3500
3501 btrfs_set_token_timespec_sec(&token, &item->mtime,
3502 inode->i_mtime.tv_sec);
3503 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3504 inode->i_mtime.tv_nsec);
3505
3506 btrfs_set_token_timespec_sec(&token, &item->ctime,
3507 inode->i_ctime.tv_sec);
3508 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3509 inode->i_ctime.tv_nsec);
3510
3511 btrfs_set_token_timespec_sec(&token, &item->otime,
3512 BTRFS_I(inode)->i_otime.tv_sec);
3513 btrfs_set_token_timespec_nsec(&token, &item->otime,
3514 BTRFS_I(inode)->i_otime.tv_nsec);
3515
3516 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3517 btrfs_set_token_inode_generation(&token, item,
3518 BTRFS_I(inode)->generation);
3519 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3520 btrfs_set_token_inode_transid(&token, item, trans->transid);
3521 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3522 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3523 btrfs_set_token_inode_block_group(&token, item, 0);
3524 }
3525
3526 /*
3527 * copy everything in the in-memory inode into the btree.
3528 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3529 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root, struct inode *inode)
3531 {
3532 struct btrfs_inode_item *inode_item;
3533 struct btrfs_path *path;
3534 struct extent_buffer *leaf;
3535 int ret;
3536
3537 path = btrfs_alloc_path();
3538 if (!path)
3539 return -ENOMEM;
3540
3541 path->leave_spinning = 1;
3542 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3543 1);
3544 if (ret) {
3545 if (ret > 0)
3546 ret = -ENOENT;
3547 goto failed;
3548 }
3549
3550 leaf = path->nodes[0];
3551 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3552 struct btrfs_inode_item);
3553
3554 fill_inode_item(trans, leaf, inode_item, inode);
3555 btrfs_mark_buffer_dirty(leaf);
3556 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3557 ret = 0;
3558 failed:
3559 btrfs_free_path(path);
3560 return ret;
3561 }
3562
3563 /*
3564 * copy everything in the in-memory inode into the btree.
3565 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3566 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root, struct inode *inode)
3568 {
3569 struct btrfs_fs_info *fs_info = root->fs_info;
3570 int ret;
3571
3572 /*
3573 * If the inode is a free space inode, we can deadlock during commit
3574 * if we put it into the delayed code.
3575 *
3576 * The data relocation inode should also be directly updated
3577 * without delay
3578 */
3579 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3580 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3581 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3582 btrfs_update_root_times(trans, root);
3583
3584 ret = btrfs_delayed_update_inode(trans, root, inode);
3585 if (!ret)
3586 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3587 return ret;
3588 }
3589
3590 return btrfs_update_inode_item(trans, root, inode);
3591 }
3592
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3593 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3594 struct btrfs_root *root,
3595 struct inode *inode)
3596 {
3597 int ret;
3598
3599 ret = btrfs_update_inode(trans, root, inode);
3600 if (ret == -ENOSPC)
3601 return btrfs_update_inode_item(trans, root, inode);
3602 return ret;
3603 }
3604
3605 /*
3606 * unlink helper that gets used here in inode.c and in the tree logging
3607 * recovery code. It remove a link in a directory with a given name, and
3608 * also drops the back refs in the inode to the directory
3609 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3610 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3611 struct btrfs_root *root,
3612 struct btrfs_inode *dir,
3613 struct btrfs_inode *inode,
3614 const char *name, int name_len)
3615 {
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617 struct btrfs_path *path;
3618 int ret = 0;
3619 struct btrfs_dir_item *di;
3620 u64 index;
3621 u64 ino = btrfs_ino(inode);
3622 u64 dir_ino = btrfs_ino(dir);
3623
3624 path = btrfs_alloc_path();
3625 if (!path) {
3626 ret = -ENOMEM;
3627 goto out;
3628 }
3629
3630 path->leave_spinning = 1;
3631 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3632 name, name_len, -1);
3633 if (IS_ERR_OR_NULL(di)) {
3634 ret = di ? PTR_ERR(di) : -ENOENT;
3635 goto err;
3636 }
3637 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3638 if (ret)
3639 goto err;
3640 btrfs_release_path(path);
3641
3642 /*
3643 * If we don't have dir index, we have to get it by looking up
3644 * the inode ref, since we get the inode ref, remove it directly,
3645 * it is unnecessary to do delayed deletion.
3646 *
3647 * But if we have dir index, needn't search inode ref to get it.
3648 * Since the inode ref is close to the inode item, it is better
3649 * that we delay to delete it, and just do this deletion when
3650 * we update the inode item.
3651 */
3652 if (inode->dir_index) {
3653 ret = btrfs_delayed_delete_inode_ref(inode);
3654 if (!ret) {
3655 index = inode->dir_index;
3656 goto skip_backref;
3657 }
3658 }
3659
3660 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3661 dir_ino, &index);
3662 if (ret) {
3663 btrfs_info(fs_info,
3664 "failed to delete reference to %.*s, inode %llu parent %llu",
3665 name_len, name, ino, dir_ino);
3666 btrfs_abort_transaction(trans, ret);
3667 goto err;
3668 }
3669 skip_backref:
3670 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3671 if (ret) {
3672 btrfs_abort_transaction(trans, ret);
3673 goto err;
3674 }
3675
3676 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3677 dir_ino);
3678 if (ret != 0 && ret != -ENOENT) {
3679 btrfs_abort_transaction(trans, ret);
3680 goto err;
3681 }
3682
3683 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3684 index);
3685 if (ret == -ENOENT)
3686 ret = 0;
3687 else if (ret)
3688 btrfs_abort_transaction(trans, ret);
3689
3690 /*
3691 * If we have a pending delayed iput we could end up with the final iput
3692 * being run in btrfs-cleaner context. If we have enough of these built
3693 * up we can end up burning a lot of time in btrfs-cleaner without any
3694 * way to throttle the unlinks. Since we're currently holding a ref on
3695 * the inode we can run the delayed iput here without any issues as the
3696 * final iput won't be done until after we drop the ref we're currently
3697 * holding.
3698 */
3699 btrfs_run_delayed_iput(fs_info, inode);
3700 err:
3701 btrfs_free_path(path);
3702 if (ret)
3703 goto out;
3704
3705 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3706 inode_inc_iversion(&inode->vfs_inode);
3707 inode_inc_iversion(&dir->vfs_inode);
3708 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3709 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3710 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3711 out:
3712 return ret;
3713 }
3714
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3715 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3716 struct btrfs_root *root,
3717 struct btrfs_inode *dir, struct btrfs_inode *inode,
3718 const char *name, int name_len)
3719 {
3720 int ret;
3721 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3722 if (!ret) {
3723 drop_nlink(&inode->vfs_inode);
3724 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3725 }
3726 return ret;
3727 }
3728
3729 /*
3730 * helper to start transaction for unlink and rmdir.
3731 *
3732 * unlink and rmdir are special in btrfs, they do not always free space, so
3733 * if we cannot make our reservations the normal way try and see if there is
3734 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3735 * allow the unlink to occur.
3736 */
__unlink_start_trans(struct inode * dir)3737 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3738 {
3739 struct btrfs_root *root = BTRFS_I(dir)->root;
3740
3741 /*
3742 * 1 for the possible orphan item
3743 * 1 for the dir item
3744 * 1 for the dir index
3745 * 1 for the inode ref
3746 * 1 for the inode
3747 */
3748 return btrfs_start_transaction_fallback_global_rsv(root, 5);
3749 }
3750
btrfs_unlink(struct inode * dir,struct dentry * dentry)3751 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3752 {
3753 struct btrfs_root *root = BTRFS_I(dir)->root;
3754 struct btrfs_trans_handle *trans;
3755 struct inode *inode = d_inode(dentry);
3756 int ret;
3757
3758 trans = __unlink_start_trans(dir);
3759 if (IS_ERR(trans))
3760 return PTR_ERR(trans);
3761
3762 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3763 0);
3764
3765 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3766 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3767 dentry->d_name.len);
3768 if (ret)
3769 goto out;
3770
3771 if (inode->i_nlink == 0) {
3772 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3773 if (ret)
3774 goto out;
3775 }
3776
3777 out:
3778 btrfs_end_transaction(trans);
3779 btrfs_btree_balance_dirty(root->fs_info);
3780 return ret;
3781 }
3782
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)3783 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3784 struct inode *dir, struct dentry *dentry)
3785 {
3786 struct btrfs_root *root = BTRFS_I(dir)->root;
3787 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3788 struct btrfs_path *path;
3789 struct extent_buffer *leaf;
3790 struct btrfs_dir_item *di;
3791 struct btrfs_key key;
3792 const char *name = dentry->d_name.name;
3793 int name_len = dentry->d_name.len;
3794 u64 index;
3795 int ret;
3796 u64 objectid;
3797 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3798
3799 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3800 objectid = inode->root->root_key.objectid;
3801 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3802 objectid = inode->location.objectid;
3803 } else {
3804 WARN_ON(1);
3805 return -EINVAL;
3806 }
3807
3808 path = btrfs_alloc_path();
3809 if (!path)
3810 return -ENOMEM;
3811
3812 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3813 name, name_len, -1);
3814 if (IS_ERR_OR_NULL(di)) {
3815 ret = di ? PTR_ERR(di) : -ENOENT;
3816 goto out;
3817 }
3818
3819 leaf = path->nodes[0];
3820 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3821 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3822 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3823 if (ret) {
3824 btrfs_abort_transaction(trans, ret);
3825 goto out;
3826 }
3827 btrfs_release_path(path);
3828
3829 /*
3830 * This is a placeholder inode for a subvolume we didn't have a
3831 * reference to at the time of the snapshot creation. In the meantime
3832 * we could have renamed the real subvol link into our snapshot, so
3833 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3834 * Instead simply lookup the dir_index_item for this entry so we can
3835 * remove it. Otherwise we know we have a ref to the root and we can
3836 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3837 */
3838 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3839 di = btrfs_search_dir_index_item(root, path, dir_ino,
3840 name, name_len);
3841 if (IS_ERR_OR_NULL(di)) {
3842 if (!di)
3843 ret = -ENOENT;
3844 else
3845 ret = PTR_ERR(di);
3846 btrfs_abort_transaction(trans, ret);
3847 goto out;
3848 }
3849
3850 leaf = path->nodes[0];
3851 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3852 index = key.offset;
3853 btrfs_release_path(path);
3854 } else {
3855 ret = btrfs_del_root_ref(trans, objectid,
3856 root->root_key.objectid, dir_ino,
3857 &index, name, name_len);
3858 if (ret) {
3859 btrfs_abort_transaction(trans, ret);
3860 goto out;
3861 }
3862 }
3863
3864 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3865 if (ret) {
3866 btrfs_abort_transaction(trans, ret);
3867 goto out;
3868 }
3869
3870 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3871 inode_inc_iversion(dir);
3872 dir->i_mtime = dir->i_ctime = current_time(dir);
3873 ret = btrfs_update_inode_fallback(trans, root, dir);
3874 if (ret)
3875 btrfs_abort_transaction(trans, ret);
3876 out:
3877 btrfs_free_path(path);
3878 return ret;
3879 }
3880
3881 /*
3882 * Helper to check if the subvolume references other subvolumes or if it's
3883 * default.
3884 */
may_destroy_subvol(struct btrfs_root * root)3885 static noinline int may_destroy_subvol(struct btrfs_root *root)
3886 {
3887 struct btrfs_fs_info *fs_info = root->fs_info;
3888 struct btrfs_path *path;
3889 struct btrfs_dir_item *di;
3890 struct btrfs_key key;
3891 u64 dir_id;
3892 int ret;
3893
3894 path = btrfs_alloc_path();
3895 if (!path)
3896 return -ENOMEM;
3897
3898 /* Make sure this root isn't set as the default subvol */
3899 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3900 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3901 dir_id, "default", 7, 0);
3902 if (di && !IS_ERR(di)) {
3903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3904 if (key.objectid == root->root_key.objectid) {
3905 ret = -EPERM;
3906 btrfs_err(fs_info,
3907 "deleting default subvolume %llu is not allowed",
3908 key.objectid);
3909 goto out;
3910 }
3911 btrfs_release_path(path);
3912 }
3913
3914 key.objectid = root->root_key.objectid;
3915 key.type = BTRFS_ROOT_REF_KEY;
3916 key.offset = (u64)-1;
3917
3918 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3919 if (ret < 0)
3920 goto out;
3921 BUG_ON(ret == 0);
3922
3923 ret = 0;
3924 if (path->slots[0] > 0) {
3925 path->slots[0]--;
3926 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3927 if (key.objectid == root->root_key.objectid &&
3928 key.type == BTRFS_ROOT_REF_KEY)
3929 ret = -ENOTEMPTY;
3930 }
3931 out:
3932 btrfs_free_path(path);
3933 return ret;
3934 }
3935
3936 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)3937 static void btrfs_prune_dentries(struct btrfs_root *root)
3938 {
3939 struct btrfs_fs_info *fs_info = root->fs_info;
3940 struct rb_node *node;
3941 struct rb_node *prev;
3942 struct btrfs_inode *entry;
3943 struct inode *inode;
3944 u64 objectid = 0;
3945
3946 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3947 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3948
3949 spin_lock(&root->inode_lock);
3950 again:
3951 node = root->inode_tree.rb_node;
3952 prev = NULL;
3953 while (node) {
3954 prev = node;
3955 entry = rb_entry(node, struct btrfs_inode, rb_node);
3956
3957 if (objectid < btrfs_ino(entry))
3958 node = node->rb_left;
3959 else if (objectid > btrfs_ino(entry))
3960 node = node->rb_right;
3961 else
3962 break;
3963 }
3964 if (!node) {
3965 while (prev) {
3966 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3967 if (objectid <= btrfs_ino(entry)) {
3968 node = prev;
3969 break;
3970 }
3971 prev = rb_next(prev);
3972 }
3973 }
3974 while (node) {
3975 entry = rb_entry(node, struct btrfs_inode, rb_node);
3976 objectid = btrfs_ino(entry) + 1;
3977 inode = igrab(&entry->vfs_inode);
3978 if (inode) {
3979 spin_unlock(&root->inode_lock);
3980 if (atomic_read(&inode->i_count) > 1)
3981 d_prune_aliases(inode);
3982 /*
3983 * btrfs_drop_inode will have it removed from the inode
3984 * cache when its usage count hits zero.
3985 */
3986 iput(inode);
3987 cond_resched();
3988 spin_lock(&root->inode_lock);
3989 goto again;
3990 }
3991
3992 if (cond_resched_lock(&root->inode_lock))
3993 goto again;
3994
3995 node = rb_next(node);
3996 }
3997 spin_unlock(&root->inode_lock);
3998 }
3999
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4000 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4001 {
4002 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4003 struct btrfs_root *root = BTRFS_I(dir)->root;
4004 struct inode *inode = d_inode(dentry);
4005 struct btrfs_root *dest = BTRFS_I(inode)->root;
4006 struct btrfs_trans_handle *trans;
4007 struct btrfs_block_rsv block_rsv;
4008 u64 root_flags;
4009 int ret;
4010 int err;
4011
4012 /*
4013 * Don't allow to delete a subvolume with send in progress. This is
4014 * inside the inode lock so the error handling that has to drop the bit
4015 * again is not run concurrently.
4016 */
4017 spin_lock(&dest->root_item_lock);
4018 if (dest->send_in_progress) {
4019 spin_unlock(&dest->root_item_lock);
4020 btrfs_warn(fs_info,
4021 "attempt to delete subvolume %llu during send",
4022 dest->root_key.objectid);
4023 return -EPERM;
4024 }
4025 if (atomic_read(&dest->nr_swapfiles)) {
4026 spin_unlock(&dest->root_item_lock);
4027 btrfs_warn(fs_info,
4028 "attempt to delete subvolume %llu with active swapfile",
4029 root->root_key.objectid);
4030 return -EPERM;
4031 }
4032 root_flags = btrfs_root_flags(&dest->root_item);
4033 btrfs_set_root_flags(&dest->root_item,
4034 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4035 spin_unlock(&dest->root_item_lock);
4036
4037 down_write(&fs_info->subvol_sem);
4038
4039 err = may_destroy_subvol(dest);
4040 if (err)
4041 goto out_up_write;
4042
4043 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4044 /*
4045 * One for dir inode,
4046 * two for dir entries,
4047 * two for root ref/backref.
4048 */
4049 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4050 if (err)
4051 goto out_up_write;
4052
4053 trans = btrfs_start_transaction(root, 0);
4054 if (IS_ERR(trans)) {
4055 err = PTR_ERR(trans);
4056 goto out_release;
4057 }
4058 trans->block_rsv = &block_rsv;
4059 trans->bytes_reserved = block_rsv.size;
4060
4061 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4062
4063 ret = btrfs_unlink_subvol(trans, dir, dentry);
4064 if (ret) {
4065 err = ret;
4066 btrfs_abort_transaction(trans, ret);
4067 goto out_end_trans;
4068 }
4069
4070 btrfs_record_root_in_trans(trans, dest);
4071
4072 memset(&dest->root_item.drop_progress, 0,
4073 sizeof(dest->root_item.drop_progress));
4074 dest->root_item.drop_level = 0;
4075 btrfs_set_root_refs(&dest->root_item, 0);
4076
4077 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4078 ret = btrfs_insert_orphan_item(trans,
4079 fs_info->tree_root,
4080 dest->root_key.objectid);
4081 if (ret) {
4082 btrfs_abort_transaction(trans, ret);
4083 err = ret;
4084 goto out_end_trans;
4085 }
4086 }
4087
4088 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4089 BTRFS_UUID_KEY_SUBVOL,
4090 dest->root_key.objectid);
4091 if (ret && ret != -ENOENT) {
4092 btrfs_abort_transaction(trans, ret);
4093 err = ret;
4094 goto out_end_trans;
4095 }
4096 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4097 ret = btrfs_uuid_tree_remove(trans,
4098 dest->root_item.received_uuid,
4099 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4100 dest->root_key.objectid);
4101 if (ret && ret != -ENOENT) {
4102 btrfs_abort_transaction(trans, ret);
4103 err = ret;
4104 goto out_end_trans;
4105 }
4106 }
4107
4108 free_anon_bdev(dest->anon_dev);
4109 dest->anon_dev = 0;
4110 out_end_trans:
4111 trans->block_rsv = NULL;
4112 trans->bytes_reserved = 0;
4113 ret = btrfs_end_transaction(trans);
4114 if (ret && !err)
4115 err = ret;
4116 inode->i_flags |= S_DEAD;
4117 out_release:
4118 btrfs_subvolume_release_metadata(root, &block_rsv);
4119 out_up_write:
4120 up_write(&fs_info->subvol_sem);
4121 if (err) {
4122 spin_lock(&dest->root_item_lock);
4123 root_flags = btrfs_root_flags(&dest->root_item);
4124 btrfs_set_root_flags(&dest->root_item,
4125 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4126 spin_unlock(&dest->root_item_lock);
4127 } else {
4128 d_invalidate(dentry);
4129 btrfs_prune_dentries(dest);
4130 ASSERT(dest->send_in_progress == 0);
4131
4132 /* the last ref */
4133 if (dest->ino_cache_inode) {
4134 iput(dest->ino_cache_inode);
4135 dest->ino_cache_inode = NULL;
4136 }
4137 }
4138
4139 return err;
4140 }
4141
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4142 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4143 {
4144 struct inode *inode = d_inode(dentry);
4145 int err = 0;
4146 struct btrfs_root *root = BTRFS_I(dir)->root;
4147 struct btrfs_trans_handle *trans;
4148 u64 last_unlink_trans;
4149
4150 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4151 return -ENOTEMPTY;
4152 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4153 return btrfs_delete_subvolume(dir, dentry);
4154
4155 trans = __unlink_start_trans(dir);
4156 if (IS_ERR(trans))
4157 return PTR_ERR(trans);
4158
4159 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4160 err = btrfs_unlink_subvol(trans, dir, dentry);
4161 goto out;
4162 }
4163
4164 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4165 if (err)
4166 goto out;
4167
4168 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4169
4170 /* now the directory is empty */
4171 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4172 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4173 dentry->d_name.len);
4174 if (!err) {
4175 btrfs_i_size_write(BTRFS_I(inode), 0);
4176 /*
4177 * Propagate the last_unlink_trans value of the deleted dir to
4178 * its parent directory. This is to prevent an unrecoverable
4179 * log tree in the case we do something like this:
4180 * 1) create dir foo
4181 * 2) create snapshot under dir foo
4182 * 3) delete the snapshot
4183 * 4) rmdir foo
4184 * 5) mkdir foo
4185 * 6) fsync foo or some file inside foo
4186 */
4187 if (last_unlink_trans >= trans->transid)
4188 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4189 }
4190 out:
4191 btrfs_end_transaction(trans);
4192 btrfs_btree_balance_dirty(root->fs_info);
4193
4194 return err;
4195 }
4196
4197 /*
4198 * Return this if we need to call truncate_block for the last bit of the
4199 * truncate.
4200 */
4201 #define NEED_TRUNCATE_BLOCK 1
4202
4203 /*
4204 * this can truncate away extent items, csum items and directory items.
4205 * It starts at a high offset and removes keys until it can't find
4206 * any higher than new_size
4207 *
4208 * csum items that cross the new i_size are truncated to the new size
4209 * as well.
4210 *
4211 * min_type is the minimum key type to truncate down to. If set to 0, this
4212 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4213 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4214 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4215 struct btrfs_root *root,
4216 struct inode *inode,
4217 u64 new_size, u32 min_type)
4218 {
4219 struct btrfs_fs_info *fs_info = root->fs_info;
4220 struct btrfs_path *path;
4221 struct extent_buffer *leaf;
4222 struct btrfs_file_extent_item *fi;
4223 struct btrfs_key key;
4224 struct btrfs_key found_key;
4225 u64 extent_start = 0;
4226 u64 extent_num_bytes = 0;
4227 u64 extent_offset = 0;
4228 u64 item_end = 0;
4229 u64 last_size = new_size;
4230 u32 found_type = (u8)-1;
4231 int found_extent;
4232 int del_item;
4233 int pending_del_nr = 0;
4234 int pending_del_slot = 0;
4235 int extent_type = -1;
4236 int ret;
4237 u64 ino = btrfs_ino(BTRFS_I(inode));
4238 u64 bytes_deleted = 0;
4239 bool be_nice = false;
4240 bool should_throttle = false;
4241 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4242 struct extent_state *cached_state = NULL;
4243
4244 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4245
4246 /*
4247 * For non-free space inodes and non-shareable roots, we want to back
4248 * off from time to time. This means all inodes in subvolume roots,
4249 * reloc roots, and data reloc roots.
4250 */
4251 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4252 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4253 be_nice = true;
4254
4255 path = btrfs_alloc_path();
4256 if (!path)
4257 return -ENOMEM;
4258 path->reada = READA_BACK;
4259
4260 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4261 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4262 &cached_state);
4263
4264 /*
4265 * We want to drop from the next block forward in case this
4266 * new size is not block aligned since we will be keeping the
4267 * last block of the extent just the way it is.
4268 */
4269 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4270 fs_info->sectorsize),
4271 (u64)-1, 0);
4272 }
4273
4274 /*
4275 * This function is also used to drop the items in the log tree before
4276 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4277 * it is used to drop the logged items. So we shouldn't kill the delayed
4278 * items.
4279 */
4280 if (min_type == 0 && root == BTRFS_I(inode)->root)
4281 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4282
4283 key.objectid = ino;
4284 key.offset = (u64)-1;
4285 key.type = (u8)-1;
4286
4287 search_again:
4288 /*
4289 * with a 16K leaf size and 128MB extents, you can actually queue
4290 * up a huge file in a single leaf. Most of the time that
4291 * bytes_deleted is > 0, it will be huge by the time we get here
4292 */
4293 if (be_nice && bytes_deleted > SZ_32M &&
4294 btrfs_should_end_transaction(trans)) {
4295 ret = -EAGAIN;
4296 goto out;
4297 }
4298
4299 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4300 if (ret < 0)
4301 goto out;
4302
4303 if (ret > 0) {
4304 ret = 0;
4305 /* there are no items in the tree for us to truncate, we're
4306 * done
4307 */
4308 if (path->slots[0] == 0)
4309 goto out;
4310 path->slots[0]--;
4311 }
4312
4313 while (1) {
4314 u64 clear_start = 0, clear_len = 0;
4315
4316 fi = NULL;
4317 leaf = path->nodes[0];
4318 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4319 found_type = found_key.type;
4320
4321 if (found_key.objectid != ino)
4322 break;
4323
4324 if (found_type < min_type)
4325 break;
4326
4327 item_end = found_key.offset;
4328 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4329 fi = btrfs_item_ptr(leaf, path->slots[0],
4330 struct btrfs_file_extent_item);
4331 extent_type = btrfs_file_extent_type(leaf, fi);
4332 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4333 item_end +=
4334 btrfs_file_extent_num_bytes(leaf, fi);
4335
4336 trace_btrfs_truncate_show_fi_regular(
4337 BTRFS_I(inode), leaf, fi,
4338 found_key.offset);
4339 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4340 item_end += btrfs_file_extent_ram_bytes(leaf,
4341 fi);
4342
4343 trace_btrfs_truncate_show_fi_inline(
4344 BTRFS_I(inode), leaf, fi, path->slots[0],
4345 found_key.offset);
4346 }
4347 item_end--;
4348 }
4349 if (found_type > min_type) {
4350 del_item = 1;
4351 } else {
4352 if (item_end < new_size)
4353 break;
4354 if (found_key.offset >= new_size)
4355 del_item = 1;
4356 else
4357 del_item = 0;
4358 }
4359 found_extent = 0;
4360 /* FIXME, shrink the extent if the ref count is only 1 */
4361 if (found_type != BTRFS_EXTENT_DATA_KEY)
4362 goto delete;
4363
4364 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4365 u64 num_dec;
4366
4367 clear_start = found_key.offset;
4368 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4369 if (!del_item) {
4370 u64 orig_num_bytes =
4371 btrfs_file_extent_num_bytes(leaf, fi);
4372 extent_num_bytes = ALIGN(new_size -
4373 found_key.offset,
4374 fs_info->sectorsize);
4375 clear_start = ALIGN(new_size, fs_info->sectorsize);
4376 btrfs_set_file_extent_num_bytes(leaf, fi,
4377 extent_num_bytes);
4378 num_dec = (orig_num_bytes -
4379 extent_num_bytes);
4380 if (test_bit(BTRFS_ROOT_SHAREABLE,
4381 &root->state) &&
4382 extent_start != 0)
4383 inode_sub_bytes(inode, num_dec);
4384 btrfs_mark_buffer_dirty(leaf);
4385 } else {
4386 extent_num_bytes =
4387 btrfs_file_extent_disk_num_bytes(leaf,
4388 fi);
4389 extent_offset = found_key.offset -
4390 btrfs_file_extent_offset(leaf, fi);
4391
4392 /* FIXME blocksize != 4096 */
4393 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4394 if (extent_start != 0) {
4395 found_extent = 1;
4396 if (test_bit(BTRFS_ROOT_SHAREABLE,
4397 &root->state))
4398 inode_sub_bytes(inode, num_dec);
4399 }
4400 }
4401 clear_len = num_dec;
4402 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4403 /*
4404 * we can't truncate inline items that have had
4405 * special encodings
4406 */
4407 if (!del_item &&
4408 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4409 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4410 btrfs_file_extent_compression(leaf, fi) == 0) {
4411 u32 size = (u32)(new_size - found_key.offset);
4412
4413 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4414 size = btrfs_file_extent_calc_inline_size(size);
4415 btrfs_truncate_item(path, size, 1);
4416 } else if (!del_item) {
4417 /*
4418 * We have to bail so the last_size is set to
4419 * just before this extent.
4420 */
4421 ret = NEED_TRUNCATE_BLOCK;
4422 break;
4423 } else {
4424 /*
4425 * Inline extents are special, we just treat
4426 * them as a full sector worth in the file
4427 * extent tree just for simplicity sake.
4428 */
4429 clear_len = fs_info->sectorsize;
4430 }
4431
4432 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4433 inode_sub_bytes(inode, item_end + 1 - new_size);
4434 }
4435 delete:
4436 /*
4437 * We use btrfs_truncate_inode_items() to clean up log trees for
4438 * multiple fsyncs, and in this case we don't want to clear the
4439 * file extent range because it's just the log.
4440 */
4441 if (root == BTRFS_I(inode)->root) {
4442 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4443 clear_start, clear_len);
4444 if (ret) {
4445 btrfs_abort_transaction(trans, ret);
4446 break;
4447 }
4448 }
4449
4450 if (del_item)
4451 last_size = found_key.offset;
4452 else
4453 last_size = new_size;
4454 if (del_item) {
4455 if (!pending_del_nr) {
4456 /* no pending yet, add ourselves */
4457 pending_del_slot = path->slots[0];
4458 pending_del_nr = 1;
4459 } else if (pending_del_nr &&
4460 path->slots[0] + 1 == pending_del_slot) {
4461 /* hop on the pending chunk */
4462 pending_del_nr++;
4463 pending_del_slot = path->slots[0];
4464 } else {
4465 BUG();
4466 }
4467 } else {
4468 break;
4469 }
4470 should_throttle = false;
4471
4472 if (found_extent &&
4473 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4474 struct btrfs_ref ref = { 0 };
4475
4476 bytes_deleted += extent_num_bytes;
4477
4478 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4479 extent_start, extent_num_bytes, 0);
4480 ref.real_root = root->root_key.objectid;
4481 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4482 ino, extent_offset);
4483 ret = btrfs_free_extent(trans, &ref);
4484 if (ret) {
4485 btrfs_abort_transaction(trans, ret);
4486 break;
4487 }
4488 if (be_nice) {
4489 if (btrfs_should_throttle_delayed_refs(trans))
4490 should_throttle = true;
4491 }
4492 }
4493
4494 if (found_type == BTRFS_INODE_ITEM_KEY)
4495 break;
4496
4497 if (path->slots[0] == 0 ||
4498 path->slots[0] != pending_del_slot ||
4499 should_throttle) {
4500 if (pending_del_nr) {
4501 ret = btrfs_del_items(trans, root, path,
4502 pending_del_slot,
4503 pending_del_nr);
4504 if (ret) {
4505 btrfs_abort_transaction(trans, ret);
4506 break;
4507 }
4508 pending_del_nr = 0;
4509 }
4510 btrfs_release_path(path);
4511
4512 /*
4513 * We can generate a lot of delayed refs, so we need to
4514 * throttle every once and a while and make sure we're
4515 * adding enough space to keep up with the work we are
4516 * generating. Since we hold a transaction here we
4517 * can't flush, and we don't want to FLUSH_LIMIT because
4518 * we could have generated too many delayed refs to
4519 * actually allocate, so just bail if we're short and
4520 * let the normal reservation dance happen higher up.
4521 */
4522 if (should_throttle) {
4523 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4524 BTRFS_RESERVE_NO_FLUSH);
4525 if (ret) {
4526 ret = -EAGAIN;
4527 break;
4528 }
4529 }
4530 goto search_again;
4531 } else {
4532 path->slots[0]--;
4533 }
4534 }
4535 out:
4536 if (ret >= 0 && pending_del_nr) {
4537 int err;
4538
4539 err = btrfs_del_items(trans, root, path, pending_del_slot,
4540 pending_del_nr);
4541 if (err) {
4542 btrfs_abort_transaction(trans, err);
4543 ret = err;
4544 }
4545 }
4546 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4547 ASSERT(last_size >= new_size);
4548 if (!ret && last_size > new_size)
4549 last_size = new_size;
4550 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4552 (u64)-1, &cached_state);
4553 }
4554
4555 btrfs_free_path(path);
4556 return ret;
4557 }
4558
4559 /*
4560 * btrfs_truncate_block - read, zero a chunk and write a block
4561 * @inode - inode that we're zeroing
4562 * @from - the offset to start zeroing
4563 * @len - the length to zero, 0 to zero the entire range respective to the
4564 * offset
4565 * @front - zero up to the offset instead of from the offset on
4566 *
4567 * This will find the block for the "from" offset and cow the block and zero the
4568 * part we want to zero. This is used with truncate and hole punching.
4569 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4570 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4571 int front)
4572 {
4573 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4574 struct address_space *mapping = inode->i_mapping;
4575 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4576 struct btrfs_ordered_extent *ordered;
4577 struct extent_state *cached_state = NULL;
4578 struct extent_changeset *data_reserved = NULL;
4579 char *kaddr;
4580 bool only_release_metadata = false;
4581 u32 blocksize = fs_info->sectorsize;
4582 pgoff_t index = from >> PAGE_SHIFT;
4583 unsigned offset = from & (blocksize - 1);
4584 struct page *page;
4585 gfp_t mask = btrfs_alloc_write_mask(mapping);
4586 size_t write_bytes = blocksize;
4587 int ret = 0;
4588 u64 block_start;
4589 u64 block_end;
4590
4591 if (IS_ALIGNED(offset, blocksize) &&
4592 (!len || IS_ALIGNED(len, blocksize)))
4593 goto out;
4594
4595 block_start = round_down(from, blocksize);
4596 block_end = block_start + blocksize - 1;
4597
4598 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4599 block_start, blocksize);
4600 if (ret < 0) {
4601 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4602 &write_bytes) > 0) {
4603 /* For nocow case, no need to reserve data space */
4604 only_release_metadata = true;
4605 } else {
4606 goto out;
4607 }
4608 }
4609 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4610 if (ret < 0) {
4611 if (!only_release_metadata)
4612 btrfs_free_reserved_data_space(BTRFS_I(inode),
4613 data_reserved, block_start, blocksize);
4614 goto out;
4615 }
4616 again:
4617 page = find_or_create_page(mapping, index, mask);
4618 if (!page) {
4619 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4620 block_start, blocksize, true);
4621 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4622 ret = -ENOMEM;
4623 goto out;
4624 }
4625
4626 if (!PageUptodate(page)) {
4627 ret = btrfs_readpage(NULL, page);
4628 lock_page(page);
4629 if (page->mapping != mapping) {
4630 unlock_page(page);
4631 put_page(page);
4632 goto again;
4633 }
4634 if (!PageUptodate(page)) {
4635 ret = -EIO;
4636 goto out_unlock;
4637 }
4638 }
4639 wait_on_page_writeback(page);
4640
4641 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4642 set_page_extent_mapped(page);
4643
4644 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4645 if (ordered) {
4646 unlock_extent_cached(io_tree, block_start, block_end,
4647 &cached_state);
4648 unlock_page(page);
4649 put_page(page);
4650 btrfs_start_ordered_extent(ordered, 1);
4651 btrfs_put_ordered_extent(ordered);
4652 goto again;
4653 }
4654
4655 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4656 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4657 0, 0, &cached_state);
4658
4659 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4660 &cached_state);
4661 if (ret) {
4662 unlock_extent_cached(io_tree, block_start, block_end,
4663 &cached_state);
4664 goto out_unlock;
4665 }
4666
4667 if (offset != blocksize) {
4668 if (!len)
4669 len = blocksize - offset;
4670 kaddr = kmap(page);
4671 if (front)
4672 memset(kaddr + (block_start - page_offset(page)),
4673 0, offset);
4674 else
4675 memset(kaddr + (block_start - page_offset(page)) + offset,
4676 0, len);
4677 flush_dcache_page(page);
4678 kunmap(page);
4679 }
4680 ClearPageChecked(page);
4681 set_page_dirty(page);
4682 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4683
4684 if (only_release_metadata)
4685 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4686 block_end, EXTENT_NORESERVE, NULL, NULL,
4687 GFP_NOFS);
4688
4689 out_unlock:
4690 if (ret) {
4691 if (only_release_metadata)
4692 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4693 blocksize, true);
4694 else
4695 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4696 block_start, blocksize, true);
4697 }
4698 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4699 unlock_page(page);
4700 put_page(page);
4701 out:
4702 if (only_release_metadata)
4703 btrfs_check_nocow_unlock(BTRFS_I(inode));
4704 extent_changeset_free(data_reserved);
4705 return ret;
4706 }
4707
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)4708 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4709 u64 offset, u64 len)
4710 {
4711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4712 struct btrfs_trans_handle *trans;
4713 int ret;
4714
4715 /*
4716 * Still need to make sure the inode looks like it's been updated so
4717 * that any holes get logged if we fsync.
4718 */
4719 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4720 BTRFS_I(inode)->last_trans = fs_info->generation;
4721 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4722 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4723 return 0;
4724 }
4725
4726 /*
4727 * 1 - for the one we're dropping
4728 * 1 - for the one we're adding
4729 * 1 - for updating the inode.
4730 */
4731 trans = btrfs_start_transaction(root, 3);
4732 if (IS_ERR(trans))
4733 return PTR_ERR(trans);
4734
4735 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4736 if (ret) {
4737 btrfs_abort_transaction(trans, ret);
4738 btrfs_end_transaction(trans);
4739 return ret;
4740 }
4741
4742 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4743 offset, 0, 0, len, 0, len, 0, 0, 0);
4744 if (ret)
4745 btrfs_abort_transaction(trans, ret);
4746 else
4747 btrfs_update_inode(trans, root, inode);
4748 btrfs_end_transaction(trans);
4749 return ret;
4750 }
4751
4752 /*
4753 * This function puts in dummy file extents for the area we're creating a hole
4754 * for. So if we are truncating this file to a larger size we need to insert
4755 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4756 * the range between oldsize and size
4757 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)4758 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4759 {
4760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4761 struct btrfs_root *root = BTRFS_I(inode)->root;
4762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4763 struct extent_map *em = NULL;
4764 struct extent_state *cached_state = NULL;
4765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4766 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4767 u64 block_end = ALIGN(size, fs_info->sectorsize);
4768 u64 last_byte;
4769 u64 cur_offset;
4770 u64 hole_size;
4771 int err = 0;
4772
4773 /*
4774 * If our size started in the middle of a block we need to zero out the
4775 * rest of the block before we expand the i_size, otherwise we could
4776 * expose stale data.
4777 */
4778 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4779 if (err)
4780 return err;
4781
4782 if (size <= hole_start)
4783 return 0;
4784
4785 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4786 block_end - 1, &cached_state);
4787 cur_offset = hole_start;
4788 while (1) {
4789 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4790 block_end - cur_offset);
4791 if (IS_ERR(em)) {
4792 err = PTR_ERR(em);
4793 em = NULL;
4794 break;
4795 }
4796 last_byte = min(extent_map_end(em), block_end);
4797 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4798 hole_size = last_byte - cur_offset;
4799
4800 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4801 struct extent_map *hole_em;
4802
4803 err = maybe_insert_hole(root, inode, cur_offset,
4804 hole_size);
4805 if (err)
4806 break;
4807
4808 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4809 cur_offset, hole_size);
4810 if (err)
4811 break;
4812
4813 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4814 cur_offset + hole_size - 1, 0);
4815 hole_em = alloc_extent_map();
4816 if (!hole_em) {
4817 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4818 &BTRFS_I(inode)->runtime_flags);
4819 goto next;
4820 }
4821 hole_em->start = cur_offset;
4822 hole_em->len = hole_size;
4823 hole_em->orig_start = cur_offset;
4824
4825 hole_em->block_start = EXTENT_MAP_HOLE;
4826 hole_em->block_len = 0;
4827 hole_em->orig_block_len = 0;
4828 hole_em->ram_bytes = hole_size;
4829 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4830 hole_em->generation = fs_info->generation;
4831
4832 while (1) {
4833 write_lock(&em_tree->lock);
4834 err = add_extent_mapping(em_tree, hole_em, 1);
4835 write_unlock(&em_tree->lock);
4836 if (err != -EEXIST)
4837 break;
4838 btrfs_drop_extent_cache(BTRFS_I(inode),
4839 cur_offset,
4840 cur_offset +
4841 hole_size - 1, 0);
4842 }
4843 free_extent_map(hole_em);
4844 } else {
4845 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4846 cur_offset, hole_size);
4847 if (err)
4848 break;
4849 }
4850 next:
4851 free_extent_map(em);
4852 em = NULL;
4853 cur_offset = last_byte;
4854 if (cur_offset >= block_end)
4855 break;
4856 }
4857 free_extent_map(em);
4858 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4859 return err;
4860 }
4861
btrfs_setsize(struct inode * inode,struct iattr * attr)4862 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4863 {
4864 struct btrfs_root *root = BTRFS_I(inode)->root;
4865 struct btrfs_trans_handle *trans;
4866 loff_t oldsize = i_size_read(inode);
4867 loff_t newsize = attr->ia_size;
4868 int mask = attr->ia_valid;
4869 int ret;
4870
4871 /*
4872 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4873 * special case where we need to update the times despite not having
4874 * these flags set. For all other operations the VFS set these flags
4875 * explicitly if it wants a timestamp update.
4876 */
4877 if (newsize != oldsize) {
4878 inode_inc_iversion(inode);
4879 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4880 inode->i_ctime = inode->i_mtime =
4881 current_time(inode);
4882 }
4883
4884 if (newsize > oldsize) {
4885 /*
4886 * Don't do an expanding truncate while snapshotting is ongoing.
4887 * This is to ensure the snapshot captures a fully consistent
4888 * state of this file - if the snapshot captures this expanding
4889 * truncation, it must capture all writes that happened before
4890 * this truncation.
4891 */
4892 btrfs_drew_write_lock(&root->snapshot_lock);
4893 ret = btrfs_cont_expand(inode, oldsize, newsize);
4894 if (ret) {
4895 btrfs_drew_write_unlock(&root->snapshot_lock);
4896 return ret;
4897 }
4898
4899 trans = btrfs_start_transaction(root, 1);
4900 if (IS_ERR(trans)) {
4901 btrfs_drew_write_unlock(&root->snapshot_lock);
4902 return PTR_ERR(trans);
4903 }
4904
4905 i_size_write(inode, newsize);
4906 btrfs_inode_safe_disk_i_size_write(inode, 0);
4907 pagecache_isize_extended(inode, oldsize, newsize);
4908 ret = btrfs_update_inode(trans, root, inode);
4909 btrfs_drew_write_unlock(&root->snapshot_lock);
4910 btrfs_end_transaction(trans);
4911 } else {
4912
4913 /*
4914 * We're truncating a file that used to have good data down to
4915 * zero. Make sure any new writes to the file get on disk
4916 * on close.
4917 */
4918 if (newsize == 0)
4919 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4920 &BTRFS_I(inode)->runtime_flags);
4921
4922 truncate_setsize(inode, newsize);
4923
4924 inode_dio_wait(inode);
4925
4926 ret = btrfs_truncate(inode, newsize == oldsize);
4927 if (ret && inode->i_nlink) {
4928 int err;
4929
4930 /*
4931 * Truncate failed, so fix up the in-memory size. We
4932 * adjusted disk_i_size down as we removed extents, so
4933 * wait for disk_i_size to be stable and then update the
4934 * in-memory size to match.
4935 */
4936 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4937 if (err)
4938 return err;
4939 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4940 }
4941 }
4942
4943 return ret;
4944 }
4945
btrfs_setattr(struct dentry * dentry,struct iattr * attr)4946 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4947 {
4948 struct inode *inode = d_inode(dentry);
4949 struct btrfs_root *root = BTRFS_I(inode)->root;
4950 int err;
4951
4952 if (btrfs_root_readonly(root))
4953 return -EROFS;
4954
4955 err = setattr_prepare(dentry, attr);
4956 if (err)
4957 return err;
4958
4959 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4960 err = btrfs_setsize(inode, attr);
4961 if (err)
4962 return err;
4963 }
4964
4965 if (attr->ia_valid) {
4966 setattr_copy(inode, attr);
4967 inode_inc_iversion(inode);
4968 err = btrfs_dirty_inode(inode);
4969
4970 if (!err && attr->ia_valid & ATTR_MODE)
4971 err = posix_acl_chmod(inode, inode->i_mode);
4972 }
4973
4974 return err;
4975 }
4976
4977 /*
4978 * While truncating the inode pages during eviction, we get the VFS calling
4979 * btrfs_invalidatepage() against each page of the inode. This is slow because
4980 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4981 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4982 * extent_state structures over and over, wasting lots of time.
4983 *
4984 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4985 * those expensive operations on a per page basis and do only the ordered io
4986 * finishing, while we release here the extent_map and extent_state structures,
4987 * without the excessive merging and splitting.
4988 */
evict_inode_truncate_pages(struct inode * inode)4989 static void evict_inode_truncate_pages(struct inode *inode)
4990 {
4991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4992 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4993 struct rb_node *node;
4994
4995 ASSERT(inode->i_state & I_FREEING);
4996 truncate_inode_pages_final(&inode->i_data);
4997
4998 write_lock(&map_tree->lock);
4999 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5000 struct extent_map *em;
5001
5002 node = rb_first_cached(&map_tree->map);
5003 em = rb_entry(node, struct extent_map, rb_node);
5004 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5005 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5006 remove_extent_mapping(map_tree, em);
5007 free_extent_map(em);
5008 if (need_resched()) {
5009 write_unlock(&map_tree->lock);
5010 cond_resched();
5011 write_lock(&map_tree->lock);
5012 }
5013 }
5014 write_unlock(&map_tree->lock);
5015
5016 /*
5017 * Keep looping until we have no more ranges in the io tree.
5018 * We can have ongoing bios started by readahead that have
5019 * their endio callback (extent_io.c:end_bio_extent_readpage)
5020 * still in progress (unlocked the pages in the bio but did not yet
5021 * unlocked the ranges in the io tree). Therefore this means some
5022 * ranges can still be locked and eviction started because before
5023 * submitting those bios, which are executed by a separate task (work
5024 * queue kthread), inode references (inode->i_count) were not taken
5025 * (which would be dropped in the end io callback of each bio).
5026 * Therefore here we effectively end up waiting for those bios and
5027 * anyone else holding locked ranges without having bumped the inode's
5028 * reference count - if we don't do it, when they access the inode's
5029 * io_tree to unlock a range it may be too late, leading to an
5030 * use-after-free issue.
5031 */
5032 spin_lock(&io_tree->lock);
5033 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5034 struct extent_state *state;
5035 struct extent_state *cached_state = NULL;
5036 u64 start;
5037 u64 end;
5038 unsigned state_flags;
5039
5040 node = rb_first(&io_tree->state);
5041 state = rb_entry(node, struct extent_state, rb_node);
5042 start = state->start;
5043 end = state->end;
5044 state_flags = state->state;
5045 spin_unlock(&io_tree->lock);
5046
5047 lock_extent_bits(io_tree, start, end, &cached_state);
5048
5049 /*
5050 * If still has DELALLOC flag, the extent didn't reach disk,
5051 * and its reserved space won't be freed by delayed_ref.
5052 * So we need to free its reserved space here.
5053 * (Refer to comment in btrfs_invalidatepage, case 2)
5054 *
5055 * Note, end is the bytenr of last byte, so we need + 1 here.
5056 */
5057 if (state_flags & EXTENT_DELALLOC)
5058 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5059 end - start + 1);
5060
5061 clear_extent_bit(io_tree, start, end,
5062 EXTENT_LOCKED | EXTENT_DELALLOC |
5063 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5064 &cached_state);
5065
5066 cond_resched();
5067 spin_lock(&io_tree->lock);
5068 }
5069 spin_unlock(&io_tree->lock);
5070 }
5071
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5072 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5073 struct btrfs_block_rsv *rsv)
5074 {
5075 struct btrfs_fs_info *fs_info = root->fs_info;
5076 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5077 struct btrfs_trans_handle *trans;
5078 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5079 int ret;
5080
5081 /*
5082 * Eviction should be taking place at some place safe because of our
5083 * delayed iputs. However the normal flushing code will run delayed
5084 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5085 *
5086 * We reserve the delayed_refs_extra here again because we can't use
5087 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5088 * above. We reserve our extra bit here because we generate a ton of
5089 * delayed refs activity by truncating.
5090 *
5091 * If we cannot make our reservation we'll attempt to steal from the
5092 * global reserve, because we really want to be able to free up space.
5093 */
5094 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5095 BTRFS_RESERVE_FLUSH_EVICT);
5096 if (ret) {
5097 /*
5098 * Try to steal from the global reserve if there is space for
5099 * it.
5100 */
5101 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5102 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5103 btrfs_warn(fs_info,
5104 "could not allocate space for delete; will truncate on mount");
5105 return ERR_PTR(-ENOSPC);
5106 }
5107 delayed_refs_extra = 0;
5108 }
5109
5110 trans = btrfs_join_transaction(root);
5111 if (IS_ERR(trans))
5112 return trans;
5113
5114 if (delayed_refs_extra) {
5115 trans->block_rsv = &fs_info->trans_block_rsv;
5116 trans->bytes_reserved = delayed_refs_extra;
5117 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5118 delayed_refs_extra, 1);
5119 }
5120 return trans;
5121 }
5122
btrfs_evict_inode(struct inode * inode)5123 void btrfs_evict_inode(struct inode *inode)
5124 {
5125 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5126 struct btrfs_trans_handle *trans;
5127 struct btrfs_root *root = BTRFS_I(inode)->root;
5128 struct btrfs_block_rsv *rsv;
5129 int ret;
5130
5131 trace_btrfs_inode_evict(inode);
5132
5133 if (!root) {
5134 clear_inode(inode);
5135 return;
5136 }
5137
5138 evict_inode_truncate_pages(inode);
5139
5140 if (inode->i_nlink &&
5141 ((btrfs_root_refs(&root->root_item) != 0 &&
5142 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5143 btrfs_is_free_space_inode(BTRFS_I(inode))))
5144 goto no_delete;
5145
5146 if (is_bad_inode(inode))
5147 goto no_delete;
5148
5149 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5150
5151 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5152 goto no_delete;
5153
5154 if (inode->i_nlink > 0) {
5155 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5156 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5157 goto no_delete;
5158 }
5159
5160 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5161 if (ret)
5162 goto no_delete;
5163
5164 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5165 if (!rsv)
5166 goto no_delete;
5167 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5168 rsv->failfast = 1;
5169
5170 btrfs_i_size_write(BTRFS_I(inode), 0);
5171
5172 while (1) {
5173 trans = evict_refill_and_join(root, rsv);
5174 if (IS_ERR(trans))
5175 goto free_rsv;
5176
5177 trans->block_rsv = rsv;
5178
5179 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5180 trans->block_rsv = &fs_info->trans_block_rsv;
5181 btrfs_end_transaction(trans);
5182 btrfs_btree_balance_dirty(fs_info);
5183 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5184 goto free_rsv;
5185 else if (!ret)
5186 break;
5187 }
5188
5189 /*
5190 * Errors here aren't a big deal, it just means we leave orphan items in
5191 * the tree. They will be cleaned up on the next mount. If the inode
5192 * number gets reused, cleanup deletes the orphan item without doing
5193 * anything, and unlink reuses the existing orphan item.
5194 *
5195 * If it turns out that we are dropping too many of these, we might want
5196 * to add a mechanism for retrying these after a commit.
5197 */
5198 trans = evict_refill_and_join(root, rsv);
5199 if (!IS_ERR(trans)) {
5200 trans->block_rsv = rsv;
5201 btrfs_orphan_del(trans, BTRFS_I(inode));
5202 trans->block_rsv = &fs_info->trans_block_rsv;
5203 btrfs_end_transaction(trans);
5204 }
5205
5206 if (!(root == fs_info->tree_root ||
5207 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5208 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5209
5210 free_rsv:
5211 btrfs_free_block_rsv(fs_info, rsv);
5212 no_delete:
5213 /*
5214 * If we didn't successfully delete, the orphan item will still be in
5215 * the tree and we'll retry on the next mount. Again, we might also want
5216 * to retry these periodically in the future.
5217 */
5218 btrfs_remove_delayed_node(BTRFS_I(inode));
5219 clear_inode(inode);
5220 }
5221
5222 /*
5223 * Return the key found in the dir entry in the location pointer, fill @type
5224 * with BTRFS_FT_*, and return 0.
5225 *
5226 * If no dir entries were found, returns -ENOENT.
5227 * If found a corrupted location in dir entry, returns -EUCLEAN.
5228 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5229 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5230 struct btrfs_key *location, u8 *type)
5231 {
5232 const char *name = dentry->d_name.name;
5233 int namelen = dentry->d_name.len;
5234 struct btrfs_dir_item *di;
5235 struct btrfs_path *path;
5236 struct btrfs_root *root = BTRFS_I(dir)->root;
5237 int ret = 0;
5238
5239 path = btrfs_alloc_path();
5240 if (!path)
5241 return -ENOMEM;
5242
5243 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5244 name, namelen, 0);
5245 if (IS_ERR_OR_NULL(di)) {
5246 ret = di ? PTR_ERR(di) : -ENOENT;
5247 goto out;
5248 }
5249
5250 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5251 if (location->type != BTRFS_INODE_ITEM_KEY &&
5252 location->type != BTRFS_ROOT_ITEM_KEY) {
5253 ret = -EUCLEAN;
5254 btrfs_warn(root->fs_info,
5255 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5256 __func__, name, btrfs_ino(BTRFS_I(dir)),
5257 location->objectid, location->type, location->offset);
5258 }
5259 if (!ret)
5260 *type = btrfs_dir_type(path->nodes[0], di);
5261 out:
5262 btrfs_free_path(path);
5263 return ret;
5264 }
5265
5266 /*
5267 * when we hit a tree root in a directory, the btrfs part of the inode
5268 * needs to be changed to reflect the root directory of the tree root. This
5269 * is kind of like crossing a mount point.
5270 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5271 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5272 struct inode *dir,
5273 struct dentry *dentry,
5274 struct btrfs_key *location,
5275 struct btrfs_root **sub_root)
5276 {
5277 struct btrfs_path *path;
5278 struct btrfs_root *new_root;
5279 struct btrfs_root_ref *ref;
5280 struct extent_buffer *leaf;
5281 struct btrfs_key key;
5282 int ret;
5283 int err = 0;
5284
5285 path = btrfs_alloc_path();
5286 if (!path) {
5287 err = -ENOMEM;
5288 goto out;
5289 }
5290
5291 err = -ENOENT;
5292 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5293 key.type = BTRFS_ROOT_REF_KEY;
5294 key.offset = location->objectid;
5295
5296 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5297 if (ret) {
5298 if (ret < 0)
5299 err = ret;
5300 goto out;
5301 }
5302
5303 leaf = path->nodes[0];
5304 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5305 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5306 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5307 goto out;
5308
5309 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5310 (unsigned long)(ref + 1),
5311 dentry->d_name.len);
5312 if (ret)
5313 goto out;
5314
5315 btrfs_release_path(path);
5316
5317 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5318 if (IS_ERR(new_root)) {
5319 err = PTR_ERR(new_root);
5320 goto out;
5321 }
5322
5323 *sub_root = new_root;
5324 location->objectid = btrfs_root_dirid(&new_root->root_item);
5325 location->type = BTRFS_INODE_ITEM_KEY;
5326 location->offset = 0;
5327 err = 0;
5328 out:
5329 btrfs_free_path(path);
5330 return err;
5331 }
5332
inode_tree_add(struct inode * inode)5333 static void inode_tree_add(struct inode *inode)
5334 {
5335 struct btrfs_root *root = BTRFS_I(inode)->root;
5336 struct btrfs_inode *entry;
5337 struct rb_node **p;
5338 struct rb_node *parent;
5339 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5340 u64 ino = btrfs_ino(BTRFS_I(inode));
5341
5342 if (inode_unhashed(inode))
5343 return;
5344 parent = NULL;
5345 spin_lock(&root->inode_lock);
5346 p = &root->inode_tree.rb_node;
5347 while (*p) {
5348 parent = *p;
5349 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5350
5351 if (ino < btrfs_ino(entry))
5352 p = &parent->rb_left;
5353 else if (ino > btrfs_ino(entry))
5354 p = &parent->rb_right;
5355 else {
5356 WARN_ON(!(entry->vfs_inode.i_state &
5357 (I_WILL_FREE | I_FREEING)));
5358 rb_replace_node(parent, new, &root->inode_tree);
5359 RB_CLEAR_NODE(parent);
5360 spin_unlock(&root->inode_lock);
5361 return;
5362 }
5363 }
5364 rb_link_node(new, parent, p);
5365 rb_insert_color(new, &root->inode_tree);
5366 spin_unlock(&root->inode_lock);
5367 }
5368
inode_tree_del(struct btrfs_inode * inode)5369 static void inode_tree_del(struct btrfs_inode *inode)
5370 {
5371 struct btrfs_root *root = inode->root;
5372 int empty = 0;
5373
5374 spin_lock(&root->inode_lock);
5375 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5376 rb_erase(&inode->rb_node, &root->inode_tree);
5377 RB_CLEAR_NODE(&inode->rb_node);
5378 empty = RB_EMPTY_ROOT(&root->inode_tree);
5379 }
5380 spin_unlock(&root->inode_lock);
5381
5382 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5383 spin_lock(&root->inode_lock);
5384 empty = RB_EMPTY_ROOT(&root->inode_tree);
5385 spin_unlock(&root->inode_lock);
5386 if (empty)
5387 btrfs_add_dead_root(root);
5388 }
5389 }
5390
5391
btrfs_init_locked_inode(struct inode * inode,void * p)5392 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5393 {
5394 struct btrfs_iget_args *args = p;
5395
5396 inode->i_ino = args->ino;
5397 BTRFS_I(inode)->location.objectid = args->ino;
5398 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5399 BTRFS_I(inode)->location.offset = 0;
5400 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5401 BUG_ON(args->root && !BTRFS_I(inode)->root);
5402 return 0;
5403 }
5404
btrfs_find_actor(struct inode * inode,void * opaque)5405 static int btrfs_find_actor(struct inode *inode, void *opaque)
5406 {
5407 struct btrfs_iget_args *args = opaque;
5408
5409 return args->ino == BTRFS_I(inode)->location.objectid &&
5410 args->root == BTRFS_I(inode)->root;
5411 }
5412
btrfs_iget_locked(struct super_block * s,u64 ino,struct btrfs_root * root)5413 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5414 struct btrfs_root *root)
5415 {
5416 struct inode *inode;
5417 struct btrfs_iget_args args;
5418 unsigned long hashval = btrfs_inode_hash(ino, root);
5419
5420 args.ino = ino;
5421 args.root = root;
5422
5423 inode = iget5_locked(s, hashval, btrfs_find_actor,
5424 btrfs_init_locked_inode,
5425 (void *)&args);
5426 return inode;
5427 }
5428
5429 /*
5430 * Get an inode object given its inode number and corresponding root.
5431 * Path can be preallocated to prevent recursing back to iget through
5432 * allocator. NULL is also valid but may require an additional allocation
5433 * later.
5434 */
btrfs_iget_path(struct super_block * s,u64 ino,struct btrfs_root * root,struct btrfs_path * path)5435 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5436 struct btrfs_root *root, struct btrfs_path *path)
5437 {
5438 struct inode *inode;
5439
5440 inode = btrfs_iget_locked(s, ino, root);
5441 if (!inode)
5442 return ERR_PTR(-ENOMEM);
5443
5444 if (inode->i_state & I_NEW) {
5445 int ret;
5446
5447 ret = btrfs_read_locked_inode(inode, path);
5448 if (!ret) {
5449 inode_tree_add(inode);
5450 unlock_new_inode(inode);
5451 } else {
5452 iget_failed(inode);
5453 /*
5454 * ret > 0 can come from btrfs_search_slot called by
5455 * btrfs_read_locked_inode, this means the inode item
5456 * was not found.
5457 */
5458 if (ret > 0)
5459 ret = -ENOENT;
5460 inode = ERR_PTR(ret);
5461 }
5462 }
5463
5464 return inode;
5465 }
5466
btrfs_iget(struct super_block * s,u64 ino,struct btrfs_root * root)5467 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5468 {
5469 return btrfs_iget_path(s, ino, root, NULL);
5470 }
5471
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5472 static struct inode *new_simple_dir(struct super_block *s,
5473 struct btrfs_key *key,
5474 struct btrfs_root *root)
5475 {
5476 struct inode *inode = new_inode(s);
5477
5478 if (!inode)
5479 return ERR_PTR(-ENOMEM);
5480
5481 BTRFS_I(inode)->root = btrfs_grab_root(root);
5482 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5483 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5484
5485 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5486 /*
5487 * We only need lookup, the rest is read-only and there's no inode
5488 * associated with the dentry
5489 */
5490 inode->i_op = &simple_dir_inode_operations;
5491 inode->i_opflags &= ~IOP_XATTR;
5492 inode->i_fop = &simple_dir_operations;
5493 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5494 inode->i_mtime = current_time(inode);
5495 inode->i_atime = inode->i_mtime;
5496 inode->i_ctime = inode->i_mtime;
5497 BTRFS_I(inode)->i_otime = inode->i_mtime;
5498
5499 return inode;
5500 }
5501
btrfs_inode_type(struct inode * inode)5502 static inline u8 btrfs_inode_type(struct inode *inode)
5503 {
5504 /*
5505 * Compile-time asserts that generic FT_* types still match
5506 * BTRFS_FT_* types
5507 */
5508 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5509 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5510 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5511 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5512 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5513 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5514 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5515 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5516
5517 return fs_umode_to_ftype(inode->i_mode);
5518 }
5519
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5520 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5521 {
5522 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5523 struct inode *inode;
5524 struct btrfs_root *root = BTRFS_I(dir)->root;
5525 struct btrfs_root *sub_root = root;
5526 struct btrfs_key location;
5527 u8 di_type = 0;
5528 int ret = 0;
5529
5530 if (dentry->d_name.len > BTRFS_NAME_LEN)
5531 return ERR_PTR(-ENAMETOOLONG);
5532
5533 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5534 if (ret < 0)
5535 return ERR_PTR(ret);
5536
5537 if (location.type == BTRFS_INODE_ITEM_KEY) {
5538 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5539 if (IS_ERR(inode))
5540 return inode;
5541
5542 /* Do extra check against inode mode with di_type */
5543 if (btrfs_inode_type(inode) != di_type) {
5544 btrfs_crit(fs_info,
5545 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5546 inode->i_mode, btrfs_inode_type(inode),
5547 di_type);
5548 iput(inode);
5549 return ERR_PTR(-EUCLEAN);
5550 }
5551 return inode;
5552 }
5553
5554 ret = fixup_tree_root_location(fs_info, dir, dentry,
5555 &location, &sub_root);
5556 if (ret < 0) {
5557 if (ret != -ENOENT)
5558 inode = ERR_PTR(ret);
5559 else
5560 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5561 } else {
5562 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5563 }
5564 if (root != sub_root)
5565 btrfs_put_root(sub_root);
5566
5567 if (!IS_ERR(inode) && root != sub_root) {
5568 down_read(&fs_info->cleanup_work_sem);
5569 if (!sb_rdonly(inode->i_sb))
5570 ret = btrfs_orphan_cleanup(sub_root);
5571 up_read(&fs_info->cleanup_work_sem);
5572 if (ret) {
5573 iput(inode);
5574 inode = ERR_PTR(ret);
5575 }
5576 }
5577
5578 return inode;
5579 }
5580
btrfs_dentry_delete(const struct dentry * dentry)5581 static int btrfs_dentry_delete(const struct dentry *dentry)
5582 {
5583 struct btrfs_root *root;
5584 struct inode *inode = d_inode(dentry);
5585
5586 if (!inode && !IS_ROOT(dentry))
5587 inode = d_inode(dentry->d_parent);
5588
5589 if (inode) {
5590 root = BTRFS_I(inode)->root;
5591 if (btrfs_root_refs(&root->root_item) == 0)
5592 return 1;
5593
5594 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5595 return 1;
5596 }
5597 return 0;
5598 }
5599
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5600 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5601 unsigned int flags)
5602 {
5603 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5604
5605 if (inode == ERR_PTR(-ENOENT))
5606 inode = NULL;
5607 return d_splice_alias(inode, dentry);
5608 }
5609
5610 /*
5611 * All this infrastructure exists because dir_emit can fault, and we are holding
5612 * the tree lock when doing readdir. For now just allocate a buffer and copy
5613 * our information into that, and then dir_emit from the buffer. This is
5614 * similar to what NFS does, only we don't keep the buffer around in pagecache
5615 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5616 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5617 * tree lock.
5618 */
btrfs_opendir(struct inode * inode,struct file * file)5619 static int btrfs_opendir(struct inode *inode, struct file *file)
5620 {
5621 struct btrfs_file_private *private;
5622
5623 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5624 if (!private)
5625 return -ENOMEM;
5626 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5627 if (!private->filldir_buf) {
5628 kfree(private);
5629 return -ENOMEM;
5630 }
5631 file->private_data = private;
5632 return 0;
5633 }
5634
5635 struct dir_entry {
5636 u64 ino;
5637 u64 offset;
5638 unsigned type;
5639 int name_len;
5640 };
5641
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5642 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5643 {
5644 while (entries--) {
5645 struct dir_entry *entry = addr;
5646 char *name = (char *)(entry + 1);
5647
5648 ctx->pos = get_unaligned(&entry->offset);
5649 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5650 get_unaligned(&entry->ino),
5651 get_unaligned(&entry->type)))
5652 return 1;
5653 addr += sizeof(struct dir_entry) +
5654 get_unaligned(&entry->name_len);
5655 ctx->pos++;
5656 }
5657 return 0;
5658 }
5659
btrfs_real_readdir(struct file * file,struct dir_context * ctx)5660 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5661 {
5662 struct inode *inode = file_inode(file);
5663 struct btrfs_root *root = BTRFS_I(inode)->root;
5664 struct btrfs_file_private *private = file->private_data;
5665 struct btrfs_dir_item *di;
5666 struct btrfs_key key;
5667 struct btrfs_key found_key;
5668 struct btrfs_path *path;
5669 void *addr;
5670 struct list_head ins_list;
5671 struct list_head del_list;
5672 int ret;
5673 struct extent_buffer *leaf;
5674 int slot;
5675 char *name_ptr;
5676 int name_len;
5677 int entries = 0;
5678 int total_len = 0;
5679 bool put = false;
5680 struct btrfs_key location;
5681
5682 if (!dir_emit_dots(file, ctx))
5683 return 0;
5684
5685 path = btrfs_alloc_path();
5686 if (!path)
5687 return -ENOMEM;
5688
5689 addr = private->filldir_buf;
5690 path->reada = READA_FORWARD;
5691
5692 INIT_LIST_HEAD(&ins_list);
5693 INIT_LIST_HEAD(&del_list);
5694 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5695
5696 again:
5697 key.type = BTRFS_DIR_INDEX_KEY;
5698 key.offset = ctx->pos;
5699 key.objectid = btrfs_ino(BTRFS_I(inode));
5700
5701 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5702 if (ret < 0)
5703 goto err;
5704
5705 while (1) {
5706 struct dir_entry *entry;
5707
5708 leaf = path->nodes[0];
5709 slot = path->slots[0];
5710 if (slot >= btrfs_header_nritems(leaf)) {
5711 ret = btrfs_next_leaf(root, path);
5712 if (ret < 0)
5713 goto err;
5714 else if (ret > 0)
5715 break;
5716 continue;
5717 }
5718
5719 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5720
5721 if (found_key.objectid != key.objectid)
5722 break;
5723 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5724 break;
5725 if (found_key.offset < ctx->pos)
5726 goto next;
5727 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5728 goto next;
5729 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5730 name_len = btrfs_dir_name_len(leaf, di);
5731 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5732 PAGE_SIZE) {
5733 btrfs_release_path(path);
5734 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5735 if (ret)
5736 goto nopos;
5737 addr = private->filldir_buf;
5738 entries = 0;
5739 total_len = 0;
5740 goto again;
5741 }
5742
5743 entry = addr;
5744 put_unaligned(name_len, &entry->name_len);
5745 name_ptr = (char *)(entry + 1);
5746 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5747 name_len);
5748 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5749 &entry->type);
5750 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5751 put_unaligned(location.objectid, &entry->ino);
5752 put_unaligned(found_key.offset, &entry->offset);
5753 entries++;
5754 addr += sizeof(struct dir_entry) + name_len;
5755 total_len += sizeof(struct dir_entry) + name_len;
5756 next:
5757 path->slots[0]++;
5758 }
5759 btrfs_release_path(path);
5760
5761 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5762 if (ret)
5763 goto nopos;
5764
5765 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5766 if (ret)
5767 goto nopos;
5768
5769 /*
5770 * Stop new entries from being returned after we return the last
5771 * entry.
5772 *
5773 * New directory entries are assigned a strictly increasing
5774 * offset. This means that new entries created during readdir
5775 * are *guaranteed* to be seen in the future by that readdir.
5776 * This has broken buggy programs which operate on names as
5777 * they're returned by readdir. Until we re-use freed offsets
5778 * we have this hack to stop new entries from being returned
5779 * under the assumption that they'll never reach this huge
5780 * offset.
5781 *
5782 * This is being careful not to overflow 32bit loff_t unless the
5783 * last entry requires it because doing so has broken 32bit apps
5784 * in the past.
5785 */
5786 if (ctx->pos >= INT_MAX)
5787 ctx->pos = LLONG_MAX;
5788 else
5789 ctx->pos = INT_MAX;
5790 nopos:
5791 ret = 0;
5792 err:
5793 if (put)
5794 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5795 btrfs_free_path(path);
5796 return ret;
5797 }
5798
5799 /*
5800 * This is somewhat expensive, updating the tree every time the
5801 * inode changes. But, it is most likely to find the inode in cache.
5802 * FIXME, needs more benchmarking...there are no reasons other than performance
5803 * to keep or drop this code.
5804 */
btrfs_dirty_inode(struct inode * inode)5805 static int btrfs_dirty_inode(struct inode *inode)
5806 {
5807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5808 struct btrfs_root *root = BTRFS_I(inode)->root;
5809 struct btrfs_trans_handle *trans;
5810 int ret;
5811
5812 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5813 return 0;
5814
5815 trans = btrfs_join_transaction(root);
5816 if (IS_ERR(trans))
5817 return PTR_ERR(trans);
5818
5819 ret = btrfs_update_inode(trans, root, inode);
5820 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5821 /* whoops, lets try again with the full transaction */
5822 btrfs_end_transaction(trans);
5823 trans = btrfs_start_transaction(root, 1);
5824 if (IS_ERR(trans))
5825 return PTR_ERR(trans);
5826
5827 ret = btrfs_update_inode(trans, root, inode);
5828 }
5829 btrfs_end_transaction(trans);
5830 if (BTRFS_I(inode)->delayed_node)
5831 btrfs_balance_delayed_items(fs_info);
5832
5833 return ret;
5834 }
5835
5836 /*
5837 * This is a copy of file_update_time. We need this so we can return error on
5838 * ENOSPC for updating the inode in the case of file write and mmap writes.
5839 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)5840 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5841 int flags)
5842 {
5843 struct btrfs_root *root = BTRFS_I(inode)->root;
5844 bool dirty = flags & ~S_VERSION;
5845
5846 if (btrfs_root_readonly(root))
5847 return -EROFS;
5848
5849 if (flags & S_VERSION)
5850 dirty |= inode_maybe_inc_iversion(inode, dirty);
5851 if (flags & S_CTIME)
5852 inode->i_ctime = *now;
5853 if (flags & S_MTIME)
5854 inode->i_mtime = *now;
5855 if (flags & S_ATIME)
5856 inode->i_atime = *now;
5857 return dirty ? btrfs_dirty_inode(inode) : 0;
5858 }
5859
5860 /*
5861 * find the highest existing sequence number in a directory
5862 * and then set the in-memory index_cnt variable to reflect
5863 * free sequence numbers
5864 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5865 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5866 {
5867 struct btrfs_root *root = inode->root;
5868 struct btrfs_key key, found_key;
5869 struct btrfs_path *path;
5870 struct extent_buffer *leaf;
5871 int ret;
5872
5873 key.objectid = btrfs_ino(inode);
5874 key.type = BTRFS_DIR_INDEX_KEY;
5875 key.offset = (u64)-1;
5876
5877 path = btrfs_alloc_path();
5878 if (!path)
5879 return -ENOMEM;
5880
5881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5882 if (ret < 0)
5883 goto out;
5884 /* FIXME: we should be able to handle this */
5885 if (ret == 0)
5886 goto out;
5887 ret = 0;
5888
5889 /*
5890 * MAGIC NUMBER EXPLANATION:
5891 * since we search a directory based on f_pos we have to start at 2
5892 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5893 * else has to start at 2
5894 */
5895 if (path->slots[0] == 0) {
5896 inode->index_cnt = 2;
5897 goto out;
5898 }
5899
5900 path->slots[0]--;
5901
5902 leaf = path->nodes[0];
5903 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904
5905 if (found_key.objectid != btrfs_ino(inode) ||
5906 found_key.type != BTRFS_DIR_INDEX_KEY) {
5907 inode->index_cnt = 2;
5908 goto out;
5909 }
5910
5911 inode->index_cnt = found_key.offset + 1;
5912 out:
5913 btrfs_free_path(path);
5914 return ret;
5915 }
5916
5917 /*
5918 * helper to find a free sequence number in a given directory. This current
5919 * code is very simple, later versions will do smarter things in the btree
5920 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)5921 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5922 {
5923 int ret = 0;
5924
5925 if (dir->index_cnt == (u64)-1) {
5926 ret = btrfs_inode_delayed_dir_index_count(dir);
5927 if (ret) {
5928 ret = btrfs_set_inode_index_count(dir);
5929 if (ret)
5930 return ret;
5931 }
5932 }
5933
5934 *index = dir->index_cnt;
5935 dir->index_cnt++;
5936
5937 return ret;
5938 }
5939
btrfs_insert_inode_locked(struct inode * inode)5940 static int btrfs_insert_inode_locked(struct inode *inode)
5941 {
5942 struct btrfs_iget_args args;
5943
5944 args.ino = BTRFS_I(inode)->location.objectid;
5945 args.root = BTRFS_I(inode)->root;
5946
5947 return insert_inode_locked4(inode,
5948 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5949 btrfs_find_actor, &args);
5950 }
5951
5952 /*
5953 * Inherit flags from the parent inode.
5954 *
5955 * Currently only the compression flags and the cow flags are inherited.
5956 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)5957 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5958 {
5959 unsigned int flags;
5960
5961 if (!dir)
5962 return;
5963
5964 flags = BTRFS_I(dir)->flags;
5965
5966 if (flags & BTRFS_INODE_NOCOMPRESS) {
5967 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5968 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5969 } else if (flags & BTRFS_INODE_COMPRESS) {
5970 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5971 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5972 }
5973
5974 if (flags & BTRFS_INODE_NODATACOW) {
5975 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5976 if (S_ISREG(inode->i_mode))
5977 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5978 }
5979
5980 btrfs_sync_inode_flags_to_i_flags(inode);
5981 }
5982
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)5983 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5984 struct btrfs_root *root,
5985 struct inode *dir,
5986 const char *name, int name_len,
5987 u64 ref_objectid, u64 objectid,
5988 umode_t mode, u64 *index)
5989 {
5990 struct btrfs_fs_info *fs_info = root->fs_info;
5991 struct inode *inode;
5992 struct btrfs_inode_item *inode_item;
5993 struct btrfs_key *location;
5994 struct btrfs_path *path;
5995 struct btrfs_inode_ref *ref;
5996 struct btrfs_key key[2];
5997 u32 sizes[2];
5998 int nitems = name ? 2 : 1;
5999 unsigned long ptr;
6000 unsigned int nofs_flag;
6001 int ret;
6002
6003 path = btrfs_alloc_path();
6004 if (!path)
6005 return ERR_PTR(-ENOMEM);
6006
6007 nofs_flag = memalloc_nofs_save();
6008 inode = new_inode(fs_info->sb);
6009 memalloc_nofs_restore(nofs_flag);
6010 if (!inode) {
6011 btrfs_free_path(path);
6012 return ERR_PTR(-ENOMEM);
6013 }
6014
6015 /*
6016 * O_TMPFILE, set link count to 0, so that after this point,
6017 * we fill in an inode item with the correct link count.
6018 */
6019 if (!name)
6020 set_nlink(inode, 0);
6021
6022 /*
6023 * we have to initialize this early, so we can reclaim the inode
6024 * number if we fail afterwards in this function.
6025 */
6026 inode->i_ino = objectid;
6027
6028 if (dir && name) {
6029 trace_btrfs_inode_request(dir);
6030
6031 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6032 if (ret) {
6033 btrfs_free_path(path);
6034 iput(inode);
6035 return ERR_PTR(ret);
6036 }
6037 } else if (dir) {
6038 *index = 0;
6039 }
6040 /*
6041 * index_cnt is ignored for everything but a dir,
6042 * btrfs_set_inode_index_count has an explanation for the magic
6043 * number
6044 */
6045 BTRFS_I(inode)->index_cnt = 2;
6046 BTRFS_I(inode)->dir_index = *index;
6047 BTRFS_I(inode)->root = btrfs_grab_root(root);
6048 BTRFS_I(inode)->generation = trans->transid;
6049 inode->i_generation = BTRFS_I(inode)->generation;
6050
6051 /*
6052 * We could have gotten an inode number from somebody who was fsynced
6053 * and then removed in this same transaction, so let's just set full
6054 * sync since it will be a full sync anyway and this will blow away the
6055 * old info in the log.
6056 */
6057 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6058
6059 key[0].objectid = objectid;
6060 key[0].type = BTRFS_INODE_ITEM_KEY;
6061 key[0].offset = 0;
6062
6063 sizes[0] = sizeof(struct btrfs_inode_item);
6064
6065 if (name) {
6066 /*
6067 * Start new inodes with an inode_ref. This is slightly more
6068 * efficient for small numbers of hard links since they will
6069 * be packed into one item. Extended refs will kick in if we
6070 * add more hard links than can fit in the ref item.
6071 */
6072 key[1].objectid = objectid;
6073 key[1].type = BTRFS_INODE_REF_KEY;
6074 key[1].offset = ref_objectid;
6075
6076 sizes[1] = name_len + sizeof(*ref);
6077 }
6078
6079 location = &BTRFS_I(inode)->location;
6080 location->objectid = objectid;
6081 location->offset = 0;
6082 location->type = BTRFS_INODE_ITEM_KEY;
6083
6084 ret = btrfs_insert_inode_locked(inode);
6085 if (ret < 0) {
6086 iput(inode);
6087 goto fail;
6088 }
6089
6090 path->leave_spinning = 1;
6091 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6092 if (ret != 0)
6093 goto fail_unlock;
6094
6095 inode_init_owner(inode, dir, mode);
6096 inode_set_bytes(inode, 0);
6097
6098 inode->i_mtime = current_time(inode);
6099 inode->i_atime = inode->i_mtime;
6100 inode->i_ctime = inode->i_mtime;
6101 BTRFS_I(inode)->i_otime = inode->i_mtime;
6102
6103 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6104 struct btrfs_inode_item);
6105 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6106 sizeof(*inode_item));
6107 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6108
6109 if (name) {
6110 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6111 struct btrfs_inode_ref);
6112 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6113 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6114 ptr = (unsigned long)(ref + 1);
6115 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6116 }
6117
6118 btrfs_mark_buffer_dirty(path->nodes[0]);
6119 btrfs_free_path(path);
6120
6121 btrfs_inherit_iflags(inode, dir);
6122
6123 if (S_ISREG(mode)) {
6124 if (btrfs_test_opt(fs_info, NODATASUM))
6125 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6126 if (btrfs_test_opt(fs_info, NODATACOW))
6127 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6128 BTRFS_INODE_NODATASUM;
6129 }
6130
6131 inode_tree_add(inode);
6132
6133 trace_btrfs_inode_new(inode);
6134 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6135
6136 btrfs_update_root_times(trans, root);
6137
6138 ret = btrfs_inode_inherit_props(trans, inode, dir);
6139 if (ret)
6140 btrfs_err(fs_info,
6141 "error inheriting props for ino %llu (root %llu): %d",
6142 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6143
6144 return inode;
6145
6146 fail_unlock:
6147 discard_new_inode(inode);
6148 fail:
6149 if (dir && name)
6150 BTRFS_I(dir)->index_cnt--;
6151 btrfs_free_path(path);
6152 return ERR_PTR(ret);
6153 }
6154
6155 /*
6156 * utility function to add 'inode' into 'parent_inode' with
6157 * a give name and a given sequence number.
6158 * if 'add_backref' is true, also insert a backref from the
6159 * inode to the parent directory.
6160 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6161 int btrfs_add_link(struct btrfs_trans_handle *trans,
6162 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6163 const char *name, int name_len, int add_backref, u64 index)
6164 {
6165 int ret = 0;
6166 struct btrfs_key key;
6167 struct btrfs_root *root = parent_inode->root;
6168 u64 ino = btrfs_ino(inode);
6169 u64 parent_ino = btrfs_ino(parent_inode);
6170
6171 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6172 memcpy(&key, &inode->root->root_key, sizeof(key));
6173 } else {
6174 key.objectid = ino;
6175 key.type = BTRFS_INODE_ITEM_KEY;
6176 key.offset = 0;
6177 }
6178
6179 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6180 ret = btrfs_add_root_ref(trans, key.objectid,
6181 root->root_key.objectid, parent_ino,
6182 index, name, name_len);
6183 } else if (add_backref) {
6184 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6185 parent_ino, index);
6186 }
6187
6188 /* Nothing to clean up yet */
6189 if (ret)
6190 return ret;
6191
6192 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6193 btrfs_inode_type(&inode->vfs_inode), index);
6194 if (ret == -EEXIST || ret == -EOVERFLOW)
6195 goto fail_dir_item;
6196 else if (ret) {
6197 btrfs_abort_transaction(trans, ret);
6198 return ret;
6199 }
6200
6201 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6202 name_len * 2);
6203 inode_inc_iversion(&parent_inode->vfs_inode);
6204 /*
6205 * If we are replaying a log tree, we do not want to update the mtime
6206 * and ctime of the parent directory with the current time, since the
6207 * log replay procedure is responsible for setting them to their correct
6208 * values (the ones it had when the fsync was done).
6209 */
6210 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6211 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6212
6213 parent_inode->vfs_inode.i_mtime = now;
6214 parent_inode->vfs_inode.i_ctime = now;
6215 }
6216 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6217 if (ret)
6218 btrfs_abort_transaction(trans, ret);
6219 return ret;
6220
6221 fail_dir_item:
6222 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6223 u64 local_index;
6224 int err;
6225 err = btrfs_del_root_ref(trans, key.objectid,
6226 root->root_key.objectid, parent_ino,
6227 &local_index, name, name_len);
6228 if (err)
6229 btrfs_abort_transaction(trans, err);
6230 } else if (add_backref) {
6231 u64 local_index;
6232 int err;
6233
6234 err = btrfs_del_inode_ref(trans, root, name, name_len,
6235 ino, parent_ino, &local_index);
6236 if (err)
6237 btrfs_abort_transaction(trans, err);
6238 }
6239
6240 /* Return the original error code */
6241 return ret;
6242 }
6243
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6244 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6245 struct btrfs_inode *dir, struct dentry *dentry,
6246 struct btrfs_inode *inode, int backref, u64 index)
6247 {
6248 int err = btrfs_add_link(trans, dir, inode,
6249 dentry->d_name.name, dentry->d_name.len,
6250 backref, index);
6251 if (err > 0)
6252 err = -EEXIST;
6253 return err;
6254 }
6255
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6256 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6257 umode_t mode, dev_t rdev)
6258 {
6259 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6260 struct btrfs_trans_handle *trans;
6261 struct btrfs_root *root = BTRFS_I(dir)->root;
6262 struct inode *inode = NULL;
6263 int err;
6264 u64 objectid;
6265 u64 index = 0;
6266
6267 /*
6268 * 2 for inode item and ref
6269 * 2 for dir items
6270 * 1 for xattr if selinux is on
6271 */
6272 trans = btrfs_start_transaction(root, 5);
6273 if (IS_ERR(trans))
6274 return PTR_ERR(trans);
6275
6276 err = btrfs_find_free_ino(root, &objectid);
6277 if (err)
6278 goto out_unlock;
6279
6280 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6281 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6282 mode, &index);
6283 if (IS_ERR(inode)) {
6284 err = PTR_ERR(inode);
6285 inode = NULL;
6286 goto out_unlock;
6287 }
6288
6289 /*
6290 * If the active LSM wants to access the inode during
6291 * d_instantiate it needs these. Smack checks to see
6292 * if the filesystem supports xattrs by looking at the
6293 * ops vector.
6294 */
6295 inode->i_op = &btrfs_special_inode_operations;
6296 init_special_inode(inode, inode->i_mode, rdev);
6297
6298 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6299 if (err)
6300 goto out_unlock;
6301
6302 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6303 0, index);
6304 if (err)
6305 goto out_unlock;
6306
6307 btrfs_update_inode(trans, root, inode);
6308 d_instantiate_new(dentry, inode);
6309
6310 out_unlock:
6311 btrfs_end_transaction(trans);
6312 btrfs_btree_balance_dirty(fs_info);
6313 if (err && inode) {
6314 inode_dec_link_count(inode);
6315 discard_new_inode(inode);
6316 }
6317 return err;
6318 }
6319
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6320 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6321 umode_t mode, bool excl)
6322 {
6323 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6324 struct btrfs_trans_handle *trans;
6325 struct btrfs_root *root = BTRFS_I(dir)->root;
6326 struct inode *inode = NULL;
6327 int err;
6328 u64 objectid;
6329 u64 index = 0;
6330
6331 /*
6332 * 2 for inode item and ref
6333 * 2 for dir items
6334 * 1 for xattr if selinux is on
6335 */
6336 trans = btrfs_start_transaction(root, 5);
6337 if (IS_ERR(trans))
6338 return PTR_ERR(trans);
6339
6340 err = btrfs_find_free_ino(root, &objectid);
6341 if (err)
6342 goto out_unlock;
6343
6344 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6345 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6346 mode, &index);
6347 if (IS_ERR(inode)) {
6348 err = PTR_ERR(inode);
6349 inode = NULL;
6350 goto out_unlock;
6351 }
6352 /*
6353 * If the active LSM wants to access the inode during
6354 * d_instantiate it needs these. Smack checks to see
6355 * if the filesystem supports xattrs by looking at the
6356 * ops vector.
6357 */
6358 inode->i_fop = &btrfs_file_operations;
6359 inode->i_op = &btrfs_file_inode_operations;
6360 inode->i_mapping->a_ops = &btrfs_aops;
6361
6362 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6363 if (err)
6364 goto out_unlock;
6365
6366 err = btrfs_update_inode(trans, root, inode);
6367 if (err)
6368 goto out_unlock;
6369
6370 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371 0, index);
6372 if (err)
6373 goto out_unlock;
6374
6375 d_instantiate_new(dentry, inode);
6376
6377 out_unlock:
6378 btrfs_end_transaction(trans);
6379 if (err && inode) {
6380 inode_dec_link_count(inode);
6381 discard_new_inode(inode);
6382 }
6383 btrfs_btree_balance_dirty(fs_info);
6384 return err;
6385 }
6386
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6387 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6388 struct dentry *dentry)
6389 {
6390 struct btrfs_trans_handle *trans = NULL;
6391 struct btrfs_root *root = BTRFS_I(dir)->root;
6392 struct inode *inode = d_inode(old_dentry);
6393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6394 u64 index;
6395 int err;
6396 int drop_inode = 0;
6397
6398 /* do not allow sys_link's with other subvols of the same device */
6399 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6400 return -EXDEV;
6401
6402 if (inode->i_nlink >= BTRFS_LINK_MAX)
6403 return -EMLINK;
6404
6405 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6406 if (err)
6407 goto fail;
6408
6409 /*
6410 * 2 items for inode and inode ref
6411 * 2 items for dir items
6412 * 1 item for parent inode
6413 * 1 item for orphan item deletion if O_TMPFILE
6414 */
6415 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6416 if (IS_ERR(trans)) {
6417 err = PTR_ERR(trans);
6418 trans = NULL;
6419 goto fail;
6420 }
6421
6422 /* There are several dir indexes for this inode, clear the cache. */
6423 BTRFS_I(inode)->dir_index = 0ULL;
6424 inc_nlink(inode);
6425 inode_inc_iversion(inode);
6426 inode->i_ctime = current_time(inode);
6427 ihold(inode);
6428 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6429
6430 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6431 1, index);
6432
6433 if (err) {
6434 drop_inode = 1;
6435 } else {
6436 struct dentry *parent = dentry->d_parent;
6437
6438 err = btrfs_update_inode(trans, root, inode);
6439 if (err)
6440 goto fail;
6441 if (inode->i_nlink == 1) {
6442 /*
6443 * If new hard link count is 1, it's a file created
6444 * with open(2) O_TMPFILE flag.
6445 */
6446 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6447 if (err)
6448 goto fail;
6449 }
6450 d_instantiate(dentry, inode);
6451 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6452 }
6453
6454 fail:
6455 if (trans)
6456 btrfs_end_transaction(trans);
6457 if (drop_inode) {
6458 inode_dec_link_count(inode);
6459 iput(inode);
6460 }
6461 btrfs_btree_balance_dirty(fs_info);
6462 return err;
6463 }
6464
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6465 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6466 {
6467 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6468 struct inode *inode = NULL;
6469 struct btrfs_trans_handle *trans;
6470 struct btrfs_root *root = BTRFS_I(dir)->root;
6471 int err = 0;
6472 u64 objectid = 0;
6473 u64 index = 0;
6474
6475 /*
6476 * 2 items for inode and ref
6477 * 2 items for dir items
6478 * 1 for xattr if selinux is on
6479 */
6480 trans = btrfs_start_transaction(root, 5);
6481 if (IS_ERR(trans))
6482 return PTR_ERR(trans);
6483
6484 err = btrfs_find_free_ino(root, &objectid);
6485 if (err)
6486 goto out_fail;
6487
6488 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6489 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6490 S_IFDIR | mode, &index);
6491 if (IS_ERR(inode)) {
6492 err = PTR_ERR(inode);
6493 inode = NULL;
6494 goto out_fail;
6495 }
6496
6497 /* these must be set before we unlock the inode */
6498 inode->i_op = &btrfs_dir_inode_operations;
6499 inode->i_fop = &btrfs_dir_file_operations;
6500
6501 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6502 if (err)
6503 goto out_fail;
6504
6505 btrfs_i_size_write(BTRFS_I(inode), 0);
6506 err = btrfs_update_inode(trans, root, inode);
6507 if (err)
6508 goto out_fail;
6509
6510 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6511 dentry->d_name.name,
6512 dentry->d_name.len, 0, index);
6513 if (err)
6514 goto out_fail;
6515
6516 d_instantiate_new(dentry, inode);
6517
6518 out_fail:
6519 btrfs_end_transaction(trans);
6520 if (err && inode) {
6521 inode_dec_link_count(inode);
6522 discard_new_inode(inode);
6523 }
6524 btrfs_btree_balance_dirty(fs_info);
6525 return err;
6526 }
6527
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6528 static noinline int uncompress_inline(struct btrfs_path *path,
6529 struct page *page,
6530 size_t pg_offset, u64 extent_offset,
6531 struct btrfs_file_extent_item *item)
6532 {
6533 int ret;
6534 struct extent_buffer *leaf = path->nodes[0];
6535 char *tmp;
6536 size_t max_size;
6537 unsigned long inline_size;
6538 unsigned long ptr;
6539 int compress_type;
6540
6541 WARN_ON(pg_offset != 0);
6542 compress_type = btrfs_file_extent_compression(leaf, item);
6543 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6544 inline_size = btrfs_file_extent_inline_item_len(leaf,
6545 btrfs_item_nr(path->slots[0]));
6546 tmp = kmalloc(inline_size, GFP_NOFS);
6547 if (!tmp)
6548 return -ENOMEM;
6549 ptr = btrfs_file_extent_inline_start(item);
6550
6551 read_extent_buffer(leaf, tmp, ptr, inline_size);
6552
6553 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6554 ret = btrfs_decompress(compress_type, tmp, page,
6555 extent_offset, inline_size, max_size);
6556
6557 /*
6558 * decompression code contains a memset to fill in any space between the end
6559 * of the uncompressed data and the end of max_size in case the decompressed
6560 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6561 * the end of an inline extent and the beginning of the next block, so we
6562 * cover that region here.
6563 */
6564
6565 if (max_size + pg_offset < PAGE_SIZE) {
6566 char *map = kmap(page);
6567 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6568 kunmap(page);
6569 }
6570 kfree(tmp);
6571 return ret;
6572 }
6573
6574 /**
6575 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6576 * @inode: file to search in
6577 * @page: page to read extent data into if the extent is inline
6578 * @pg_offset: offset into @page to copy to
6579 * @start: file offset
6580 * @len: length of range starting at @start
6581 *
6582 * This returns the first &struct extent_map which overlaps with the given
6583 * range, reading it from the B-tree and caching it if necessary. Note that
6584 * there may be more extents which overlap the given range after the returned
6585 * extent_map.
6586 *
6587 * If @page is not NULL and the extent is inline, this also reads the extent
6588 * data directly into the page and marks the extent up to date in the io_tree.
6589 *
6590 * Return: ERR_PTR on error, non-NULL extent_map on success.
6591 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len)6592 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6593 struct page *page, size_t pg_offset,
6594 u64 start, u64 len)
6595 {
6596 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6597 int ret = 0;
6598 u64 extent_start = 0;
6599 u64 extent_end = 0;
6600 u64 objectid = btrfs_ino(inode);
6601 int extent_type = -1;
6602 struct btrfs_path *path = NULL;
6603 struct btrfs_root *root = inode->root;
6604 struct btrfs_file_extent_item *item;
6605 struct extent_buffer *leaf;
6606 struct btrfs_key found_key;
6607 struct extent_map *em = NULL;
6608 struct extent_map_tree *em_tree = &inode->extent_tree;
6609 struct extent_io_tree *io_tree = &inode->io_tree;
6610
6611 read_lock(&em_tree->lock);
6612 em = lookup_extent_mapping(em_tree, start, len);
6613 read_unlock(&em_tree->lock);
6614
6615 if (em) {
6616 if (em->start > start || em->start + em->len <= start)
6617 free_extent_map(em);
6618 else if (em->block_start == EXTENT_MAP_INLINE && page)
6619 free_extent_map(em);
6620 else
6621 goto out;
6622 }
6623 em = alloc_extent_map();
6624 if (!em) {
6625 ret = -ENOMEM;
6626 goto out;
6627 }
6628 em->start = EXTENT_MAP_HOLE;
6629 em->orig_start = EXTENT_MAP_HOLE;
6630 em->len = (u64)-1;
6631 em->block_len = (u64)-1;
6632
6633 path = btrfs_alloc_path();
6634 if (!path) {
6635 ret = -ENOMEM;
6636 goto out;
6637 }
6638
6639 /* Chances are we'll be called again, so go ahead and do readahead */
6640 path->reada = READA_FORWARD;
6641
6642 /*
6643 * Unless we're going to uncompress the inline extent, no sleep would
6644 * happen.
6645 */
6646 path->leave_spinning = 1;
6647
6648 path->recurse = btrfs_is_free_space_inode(inode);
6649
6650 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6651 if (ret < 0) {
6652 goto out;
6653 } else if (ret > 0) {
6654 if (path->slots[0] == 0)
6655 goto not_found;
6656 path->slots[0]--;
6657 ret = 0;
6658 }
6659
6660 leaf = path->nodes[0];
6661 item = btrfs_item_ptr(leaf, path->slots[0],
6662 struct btrfs_file_extent_item);
6663 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6664 if (found_key.objectid != objectid ||
6665 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6666 /*
6667 * If we backup past the first extent we want to move forward
6668 * and see if there is an extent in front of us, otherwise we'll
6669 * say there is a hole for our whole search range which can
6670 * cause problems.
6671 */
6672 extent_end = start;
6673 goto next;
6674 }
6675
6676 extent_type = btrfs_file_extent_type(leaf, item);
6677 extent_start = found_key.offset;
6678 extent_end = btrfs_file_extent_end(path);
6679 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6680 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6681 /* Only regular file could have regular/prealloc extent */
6682 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6683 ret = -EUCLEAN;
6684 btrfs_crit(fs_info,
6685 "regular/prealloc extent found for non-regular inode %llu",
6686 btrfs_ino(inode));
6687 goto out;
6688 }
6689 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6690 extent_start);
6691 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6692 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6693 path->slots[0],
6694 extent_start);
6695 }
6696 next:
6697 if (start >= extent_end) {
6698 path->slots[0]++;
6699 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6700 ret = btrfs_next_leaf(root, path);
6701 if (ret < 0)
6702 goto out;
6703 else if (ret > 0)
6704 goto not_found;
6705
6706 leaf = path->nodes[0];
6707 }
6708 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6709 if (found_key.objectid != objectid ||
6710 found_key.type != BTRFS_EXTENT_DATA_KEY)
6711 goto not_found;
6712 if (start + len <= found_key.offset)
6713 goto not_found;
6714 if (start > found_key.offset)
6715 goto next;
6716
6717 /* New extent overlaps with existing one */
6718 em->start = start;
6719 em->orig_start = start;
6720 em->len = found_key.offset - start;
6721 em->block_start = EXTENT_MAP_HOLE;
6722 goto insert;
6723 }
6724
6725 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6726
6727 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6728 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6729 goto insert;
6730 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6731 unsigned long ptr;
6732 char *map;
6733 size_t size;
6734 size_t extent_offset;
6735 size_t copy_size;
6736
6737 if (!page)
6738 goto out;
6739
6740 size = btrfs_file_extent_ram_bytes(leaf, item);
6741 extent_offset = page_offset(page) + pg_offset - extent_start;
6742 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6743 size - extent_offset);
6744 em->start = extent_start + extent_offset;
6745 em->len = ALIGN(copy_size, fs_info->sectorsize);
6746 em->orig_block_len = em->len;
6747 em->orig_start = em->start;
6748 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6749
6750 btrfs_set_path_blocking(path);
6751 if (!PageUptodate(page)) {
6752 if (btrfs_file_extent_compression(leaf, item) !=
6753 BTRFS_COMPRESS_NONE) {
6754 ret = uncompress_inline(path, page, pg_offset,
6755 extent_offset, item);
6756 if (ret)
6757 goto out;
6758 } else {
6759 map = kmap(page);
6760 read_extent_buffer(leaf, map + pg_offset, ptr,
6761 copy_size);
6762 if (pg_offset + copy_size < PAGE_SIZE) {
6763 memset(map + pg_offset + copy_size, 0,
6764 PAGE_SIZE - pg_offset -
6765 copy_size);
6766 }
6767 kunmap(page);
6768 }
6769 flush_dcache_page(page);
6770 }
6771 set_extent_uptodate(io_tree, em->start,
6772 extent_map_end(em) - 1, NULL, GFP_NOFS);
6773 goto insert;
6774 }
6775 not_found:
6776 em->start = start;
6777 em->orig_start = start;
6778 em->len = len;
6779 em->block_start = EXTENT_MAP_HOLE;
6780 insert:
6781 ret = 0;
6782 btrfs_release_path(path);
6783 if (em->start > start || extent_map_end(em) <= start) {
6784 btrfs_err(fs_info,
6785 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6786 em->start, em->len, start, len);
6787 ret = -EIO;
6788 goto out;
6789 }
6790
6791 write_lock(&em_tree->lock);
6792 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6793 write_unlock(&em_tree->lock);
6794 out:
6795 btrfs_free_path(path);
6796
6797 trace_btrfs_get_extent(root, inode, em);
6798
6799 if (ret) {
6800 free_extent_map(em);
6801 return ERR_PTR(ret);
6802 }
6803 return em;
6804 }
6805
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)6806 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6807 u64 start, u64 len)
6808 {
6809 struct extent_map *em;
6810 struct extent_map *hole_em = NULL;
6811 u64 delalloc_start = start;
6812 u64 end;
6813 u64 delalloc_len;
6814 u64 delalloc_end;
6815 int err = 0;
6816
6817 em = btrfs_get_extent(inode, NULL, 0, start, len);
6818 if (IS_ERR(em))
6819 return em;
6820 /*
6821 * If our em maps to:
6822 * - a hole or
6823 * - a pre-alloc extent,
6824 * there might actually be delalloc bytes behind it.
6825 */
6826 if (em->block_start != EXTENT_MAP_HOLE &&
6827 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6828 return em;
6829 else
6830 hole_em = em;
6831
6832 /* check to see if we've wrapped (len == -1 or similar) */
6833 end = start + len;
6834 if (end < start)
6835 end = (u64)-1;
6836 else
6837 end -= 1;
6838
6839 em = NULL;
6840
6841 /* ok, we didn't find anything, lets look for delalloc */
6842 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6843 end, len, EXTENT_DELALLOC, 1);
6844 delalloc_end = delalloc_start + delalloc_len;
6845 if (delalloc_end < delalloc_start)
6846 delalloc_end = (u64)-1;
6847
6848 /*
6849 * We didn't find anything useful, return the original results from
6850 * get_extent()
6851 */
6852 if (delalloc_start > end || delalloc_end <= start) {
6853 em = hole_em;
6854 hole_em = NULL;
6855 goto out;
6856 }
6857
6858 /*
6859 * Adjust the delalloc_start to make sure it doesn't go backwards from
6860 * the start they passed in
6861 */
6862 delalloc_start = max(start, delalloc_start);
6863 delalloc_len = delalloc_end - delalloc_start;
6864
6865 if (delalloc_len > 0) {
6866 u64 hole_start;
6867 u64 hole_len;
6868 const u64 hole_end = extent_map_end(hole_em);
6869
6870 em = alloc_extent_map();
6871 if (!em) {
6872 err = -ENOMEM;
6873 goto out;
6874 }
6875
6876 ASSERT(hole_em);
6877 /*
6878 * When btrfs_get_extent can't find anything it returns one
6879 * huge hole
6880 *
6881 * Make sure what it found really fits our range, and adjust to
6882 * make sure it is based on the start from the caller
6883 */
6884 if (hole_end <= start || hole_em->start > end) {
6885 free_extent_map(hole_em);
6886 hole_em = NULL;
6887 } else {
6888 hole_start = max(hole_em->start, start);
6889 hole_len = hole_end - hole_start;
6890 }
6891
6892 if (hole_em && delalloc_start > hole_start) {
6893 /*
6894 * Our hole starts before our delalloc, so we have to
6895 * return just the parts of the hole that go until the
6896 * delalloc starts
6897 */
6898 em->len = min(hole_len, delalloc_start - hole_start);
6899 em->start = hole_start;
6900 em->orig_start = hole_start;
6901 /*
6902 * Don't adjust block start at all, it is fixed at
6903 * EXTENT_MAP_HOLE
6904 */
6905 em->block_start = hole_em->block_start;
6906 em->block_len = hole_len;
6907 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6908 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6909 } else {
6910 /*
6911 * Hole is out of passed range or it starts after
6912 * delalloc range
6913 */
6914 em->start = delalloc_start;
6915 em->len = delalloc_len;
6916 em->orig_start = delalloc_start;
6917 em->block_start = EXTENT_MAP_DELALLOC;
6918 em->block_len = delalloc_len;
6919 }
6920 } else {
6921 return hole_em;
6922 }
6923 out:
6924
6925 free_extent_map(hole_em);
6926 if (err) {
6927 free_extent_map(em);
6928 return ERR_PTR(err);
6929 }
6930 return em;
6931 }
6932
btrfs_create_dio_extent(struct btrfs_inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)6933 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6934 const u64 start,
6935 const u64 len,
6936 const u64 orig_start,
6937 const u64 block_start,
6938 const u64 block_len,
6939 const u64 orig_block_len,
6940 const u64 ram_bytes,
6941 const int type)
6942 {
6943 struct extent_map *em = NULL;
6944 int ret;
6945
6946 if (type != BTRFS_ORDERED_NOCOW) {
6947 em = create_io_em(inode, start, len, orig_start, block_start,
6948 block_len, orig_block_len, ram_bytes,
6949 BTRFS_COMPRESS_NONE, /* compress_type */
6950 type);
6951 if (IS_ERR(em))
6952 goto out;
6953 }
6954 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6955 block_len, type);
6956 if (ret) {
6957 if (em) {
6958 free_extent_map(em);
6959 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6960 }
6961 em = ERR_PTR(ret);
6962 }
6963 out:
6964
6965 return em;
6966 }
6967
btrfs_new_extent_direct(struct btrfs_inode * inode,u64 start,u64 len)6968 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6969 u64 start, u64 len)
6970 {
6971 struct btrfs_root *root = inode->root;
6972 struct btrfs_fs_info *fs_info = root->fs_info;
6973 struct extent_map *em;
6974 struct btrfs_key ins;
6975 u64 alloc_hint;
6976 int ret;
6977
6978 alloc_hint = get_extent_allocation_hint(inode, start, len);
6979 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6980 0, alloc_hint, &ins, 1, 1);
6981 if (ret)
6982 return ERR_PTR(ret);
6983
6984 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6985 ins.objectid, ins.offset, ins.offset,
6986 ins.offset, BTRFS_ORDERED_REGULAR);
6987 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6988 if (IS_ERR(em))
6989 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6990 1);
6991
6992 return em;
6993 }
6994
6995 /*
6996 * Check if we can do nocow write into the range [@offset, @offset + @len)
6997 *
6998 * @offset: File offset
6999 * @len: The length to write, will be updated to the nocow writeable
7000 * range
7001 * @orig_start: (optional) Return the original file offset of the file extent
7002 * @orig_len: (optional) Return the original on-disk length of the file extent
7003 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7004 * @strict: if true, omit optimizations that might force us into unnecessary
7005 * cow. e.g., don't trust generation number.
7006 *
7007 * This function will flush ordered extents in the range to ensure proper
7008 * nocow checks for (nowait == false) case.
7009 *
7010 * Return:
7011 * >0 and update @len if we can do nocow write
7012 * 0 if we can't do nocow write
7013 * <0 if error happened
7014 *
7015 * NOTE: This only checks the file extents, caller is responsible to wait for
7016 * any ordered extents.
7017 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7018 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7019 u64 *orig_start, u64 *orig_block_len,
7020 u64 *ram_bytes, bool strict)
7021 {
7022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7023 struct btrfs_path *path;
7024 int ret;
7025 struct extent_buffer *leaf;
7026 struct btrfs_root *root = BTRFS_I(inode)->root;
7027 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7028 struct btrfs_file_extent_item *fi;
7029 struct btrfs_key key;
7030 u64 disk_bytenr;
7031 u64 backref_offset;
7032 u64 extent_end;
7033 u64 num_bytes;
7034 int slot;
7035 int found_type;
7036 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7037
7038 path = btrfs_alloc_path();
7039 if (!path)
7040 return -ENOMEM;
7041
7042 ret = btrfs_lookup_file_extent(NULL, root, path,
7043 btrfs_ino(BTRFS_I(inode)), offset, 0);
7044 if (ret < 0)
7045 goto out;
7046
7047 slot = path->slots[0];
7048 if (ret == 1) {
7049 if (slot == 0) {
7050 /* can't find the item, must cow */
7051 ret = 0;
7052 goto out;
7053 }
7054 slot--;
7055 }
7056 ret = 0;
7057 leaf = path->nodes[0];
7058 btrfs_item_key_to_cpu(leaf, &key, slot);
7059 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7060 key.type != BTRFS_EXTENT_DATA_KEY) {
7061 /* not our file or wrong item type, must cow */
7062 goto out;
7063 }
7064
7065 if (key.offset > offset) {
7066 /* Wrong offset, must cow */
7067 goto out;
7068 }
7069
7070 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7071 found_type = btrfs_file_extent_type(leaf, fi);
7072 if (found_type != BTRFS_FILE_EXTENT_REG &&
7073 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7074 /* not a regular extent, must cow */
7075 goto out;
7076 }
7077
7078 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7079 goto out;
7080
7081 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7082 if (extent_end <= offset)
7083 goto out;
7084
7085 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7086 if (disk_bytenr == 0)
7087 goto out;
7088
7089 if (btrfs_file_extent_compression(leaf, fi) ||
7090 btrfs_file_extent_encryption(leaf, fi) ||
7091 btrfs_file_extent_other_encoding(leaf, fi))
7092 goto out;
7093
7094 /*
7095 * Do the same check as in btrfs_cross_ref_exist but without the
7096 * unnecessary search.
7097 */
7098 if (!strict &&
7099 (btrfs_file_extent_generation(leaf, fi) <=
7100 btrfs_root_last_snapshot(&root->root_item)))
7101 goto out;
7102
7103 backref_offset = btrfs_file_extent_offset(leaf, fi);
7104
7105 if (orig_start) {
7106 *orig_start = key.offset - backref_offset;
7107 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7108 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7109 }
7110
7111 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7112 goto out;
7113
7114 num_bytes = min(offset + *len, extent_end) - offset;
7115 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7116 u64 range_end;
7117
7118 range_end = round_up(offset + num_bytes,
7119 root->fs_info->sectorsize) - 1;
7120 ret = test_range_bit(io_tree, offset, range_end,
7121 EXTENT_DELALLOC, 0, NULL);
7122 if (ret) {
7123 ret = -EAGAIN;
7124 goto out;
7125 }
7126 }
7127
7128 btrfs_release_path(path);
7129
7130 /*
7131 * look for other files referencing this extent, if we
7132 * find any we must cow
7133 */
7134
7135 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7136 key.offset - backref_offset, disk_bytenr,
7137 strict);
7138 if (ret) {
7139 ret = 0;
7140 goto out;
7141 }
7142
7143 /*
7144 * adjust disk_bytenr and num_bytes to cover just the bytes
7145 * in this extent we are about to write. If there
7146 * are any csums in that range we have to cow in order
7147 * to keep the csums correct
7148 */
7149 disk_bytenr += backref_offset;
7150 disk_bytenr += offset - key.offset;
7151 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7152 goto out;
7153 /*
7154 * all of the above have passed, it is safe to overwrite this extent
7155 * without cow
7156 */
7157 *len = num_bytes;
7158 ret = 1;
7159 out:
7160 btrfs_free_path(path);
7161 return ret;
7162 }
7163
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,bool writing)7164 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7165 struct extent_state **cached_state, bool writing)
7166 {
7167 struct btrfs_ordered_extent *ordered;
7168 int ret = 0;
7169
7170 while (1) {
7171 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7172 cached_state);
7173 /*
7174 * We're concerned with the entire range that we're going to be
7175 * doing DIO to, so we need to make sure there's no ordered
7176 * extents in this range.
7177 */
7178 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7179 lockend - lockstart + 1);
7180
7181 /*
7182 * We need to make sure there are no buffered pages in this
7183 * range either, we could have raced between the invalidate in
7184 * generic_file_direct_write and locking the extent. The
7185 * invalidate needs to happen so that reads after a write do not
7186 * get stale data.
7187 */
7188 if (!ordered &&
7189 (!writing || !filemap_range_has_page(inode->i_mapping,
7190 lockstart, lockend)))
7191 break;
7192
7193 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7194 cached_state);
7195
7196 if (ordered) {
7197 /*
7198 * If we are doing a DIO read and the ordered extent we
7199 * found is for a buffered write, we can not wait for it
7200 * to complete and retry, because if we do so we can
7201 * deadlock with concurrent buffered writes on page
7202 * locks. This happens only if our DIO read covers more
7203 * than one extent map, if at this point has already
7204 * created an ordered extent for a previous extent map
7205 * and locked its range in the inode's io tree, and a
7206 * concurrent write against that previous extent map's
7207 * range and this range started (we unlock the ranges
7208 * in the io tree only when the bios complete and
7209 * buffered writes always lock pages before attempting
7210 * to lock range in the io tree).
7211 */
7212 if (writing ||
7213 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7214 btrfs_start_ordered_extent(ordered, 1);
7215 else
7216 ret = -ENOTBLK;
7217 btrfs_put_ordered_extent(ordered);
7218 } else {
7219 /*
7220 * We could trigger writeback for this range (and wait
7221 * for it to complete) and then invalidate the pages for
7222 * this range (through invalidate_inode_pages2_range()),
7223 * but that can lead us to a deadlock with a concurrent
7224 * call to readahead (a buffered read or a defrag call
7225 * triggered a readahead) on a page lock due to an
7226 * ordered dio extent we created before but did not have
7227 * yet a corresponding bio submitted (whence it can not
7228 * complete), which makes readahead wait for that
7229 * ordered extent to complete while holding a lock on
7230 * that page.
7231 */
7232 ret = -ENOTBLK;
7233 }
7234
7235 if (ret)
7236 break;
7237
7238 cond_resched();
7239 }
7240
7241 return ret;
7242 }
7243
7244 /* The callers of this must take lock_extent() */
create_io_em(struct btrfs_inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7245 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7246 u64 len, u64 orig_start, u64 block_start,
7247 u64 block_len, u64 orig_block_len,
7248 u64 ram_bytes, int compress_type,
7249 int type)
7250 {
7251 struct extent_map_tree *em_tree;
7252 struct extent_map *em;
7253 int ret;
7254
7255 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7256 type == BTRFS_ORDERED_COMPRESSED ||
7257 type == BTRFS_ORDERED_NOCOW ||
7258 type == BTRFS_ORDERED_REGULAR);
7259
7260 em_tree = &inode->extent_tree;
7261 em = alloc_extent_map();
7262 if (!em)
7263 return ERR_PTR(-ENOMEM);
7264
7265 em->start = start;
7266 em->orig_start = orig_start;
7267 em->len = len;
7268 em->block_len = block_len;
7269 em->block_start = block_start;
7270 em->orig_block_len = orig_block_len;
7271 em->ram_bytes = ram_bytes;
7272 em->generation = -1;
7273 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7274 if (type == BTRFS_ORDERED_PREALLOC) {
7275 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7276 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7277 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7278 em->compress_type = compress_type;
7279 }
7280
7281 do {
7282 btrfs_drop_extent_cache(inode, em->start,
7283 em->start + em->len - 1, 0);
7284 write_lock(&em_tree->lock);
7285 ret = add_extent_mapping(em_tree, em, 1);
7286 write_unlock(&em_tree->lock);
7287 /*
7288 * The caller has taken lock_extent(), who could race with us
7289 * to add em?
7290 */
7291 } while (ret == -EEXIST);
7292
7293 if (ret) {
7294 free_extent_map(em);
7295 return ERR_PTR(ret);
7296 }
7297
7298 /* em got 2 refs now, callers needs to do free_extent_map once. */
7299 return em;
7300 }
7301
7302
btrfs_get_blocks_direct_write(struct extent_map ** map,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7303 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7304 struct inode *inode,
7305 struct btrfs_dio_data *dio_data,
7306 u64 start, u64 len)
7307 {
7308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7309 struct extent_map *em = *map;
7310 int ret = 0;
7311
7312 /*
7313 * We don't allocate a new extent in the following cases
7314 *
7315 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7316 * existing extent.
7317 * 2) The extent is marked as PREALLOC. We're good to go here and can
7318 * just use the extent.
7319 *
7320 */
7321 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7322 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7323 em->block_start != EXTENT_MAP_HOLE)) {
7324 int type;
7325 u64 block_start, orig_start, orig_block_len, ram_bytes;
7326
7327 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7328 type = BTRFS_ORDERED_PREALLOC;
7329 else
7330 type = BTRFS_ORDERED_NOCOW;
7331 len = min(len, em->len - (start - em->start));
7332 block_start = em->block_start + (start - em->start);
7333
7334 if (can_nocow_extent(inode, start, &len, &orig_start,
7335 &orig_block_len, &ram_bytes, false) == 1 &&
7336 btrfs_inc_nocow_writers(fs_info, block_start)) {
7337 struct extent_map *em2;
7338
7339 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7340 orig_start, block_start,
7341 len, orig_block_len,
7342 ram_bytes, type);
7343 btrfs_dec_nocow_writers(fs_info, block_start);
7344 if (type == BTRFS_ORDERED_PREALLOC) {
7345 free_extent_map(em);
7346 *map = em = em2;
7347 }
7348
7349 if (em2 && IS_ERR(em2)) {
7350 ret = PTR_ERR(em2);
7351 goto out;
7352 }
7353 /*
7354 * For inode marked NODATACOW or extent marked PREALLOC,
7355 * use the existing or preallocated extent, so does not
7356 * need to adjust btrfs_space_info's bytes_may_use.
7357 */
7358 btrfs_free_reserved_data_space_noquota(fs_info, len);
7359 goto skip_cow;
7360 }
7361 }
7362
7363 /* this will cow the extent */
7364 free_extent_map(em);
7365 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7366 if (IS_ERR(em)) {
7367 ret = PTR_ERR(em);
7368 goto out;
7369 }
7370
7371 len = min(len, em->len - (start - em->start));
7372
7373 skip_cow:
7374 /*
7375 * Need to update the i_size under the extent lock so buffered
7376 * readers will get the updated i_size when we unlock.
7377 */
7378 if (start + len > i_size_read(inode))
7379 i_size_write(inode, start + len);
7380
7381 dio_data->reserve -= len;
7382 out:
7383 return ret;
7384 }
7385
btrfs_dio_iomap_begin(struct inode * inode,loff_t start,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)7386 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7387 loff_t length, unsigned int flags, struct iomap *iomap,
7388 struct iomap *srcmap)
7389 {
7390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7391 struct extent_map *em;
7392 struct extent_state *cached_state = NULL;
7393 struct btrfs_dio_data *dio_data = NULL;
7394 u64 lockstart, lockend;
7395 const bool write = !!(flags & IOMAP_WRITE);
7396 int ret = 0;
7397 u64 len = length;
7398 bool unlock_extents = false;
7399 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7400
7401 /*
7402 * We used current->journal_info here to see if we were sync, but
7403 * there's a lot of tests in the enospc machinery to not do flushing if
7404 * we have a journal_info set, so we need to clear this out and re-set
7405 * it in iomap_end.
7406 */
7407 ASSERT(current->journal_info == NULL ||
7408 current->journal_info == BTRFS_DIO_SYNC_STUB);
7409 current->journal_info = NULL;
7410
7411 if (!write)
7412 len = min_t(u64, len, fs_info->sectorsize);
7413
7414 lockstart = start;
7415 lockend = start + len - 1;
7416
7417 /*
7418 * The generic stuff only does filemap_write_and_wait_range, which
7419 * isn't enough if we've written compressed pages to this area, so we
7420 * need to flush the dirty pages again to make absolutely sure that any
7421 * outstanding dirty pages are on disk.
7422 */
7423 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7424 &BTRFS_I(inode)->runtime_flags)) {
7425 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7426 start + length - 1);
7427 if (ret)
7428 return ret;
7429 }
7430
7431 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7432 if (!dio_data)
7433 return -ENOMEM;
7434
7435 dio_data->sync = sync;
7436 dio_data->length = length;
7437 if (write) {
7438 dio_data->reserve = round_up(length, fs_info->sectorsize);
7439 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7440 &dio_data->data_reserved,
7441 start, dio_data->reserve);
7442 if (ret) {
7443 extent_changeset_free(dio_data->data_reserved);
7444 kfree(dio_data);
7445 return ret;
7446 }
7447 }
7448 iomap->private = dio_data;
7449
7450
7451 /*
7452 * If this errors out it's because we couldn't invalidate pagecache for
7453 * this range and we need to fallback to buffered.
7454 */
7455 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7456 ret = -ENOTBLK;
7457 goto err;
7458 }
7459
7460 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7461 if (IS_ERR(em)) {
7462 ret = PTR_ERR(em);
7463 goto unlock_err;
7464 }
7465
7466 /*
7467 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7468 * io. INLINE is special, and we could probably kludge it in here, but
7469 * it's still buffered so for safety lets just fall back to the generic
7470 * buffered path.
7471 *
7472 * For COMPRESSED we _have_ to read the entire extent in so we can
7473 * decompress it, so there will be buffering required no matter what we
7474 * do, so go ahead and fallback to buffered.
7475 *
7476 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7477 * to buffered IO. Don't blame me, this is the price we pay for using
7478 * the generic code.
7479 */
7480 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7481 em->block_start == EXTENT_MAP_INLINE) {
7482 free_extent_map(em);
7483 /*
7484 * If we are in a NOWAIT context, return -EAGAIN in order to
7485 * fallback to buffered IO. This is not only because we can
7486 * block with buffered IO (no support for NOWAIT semantics at
7487 * the moment) but also to avoid returning short reads to user
7488 * space - this happens if we were able to read some data from
7489 * previous non-compressed extents and then when we fallback to
7490 * buffered IO, at btrfs_file_read_iter() by calling
7491 * filemap_read(), we fail to fault in pages for the read buffer,
7492 * in which case filemap_read() returns a short read (the number
7493 * of bytes previously read is > 0, so it does not return -EFAULT).
7494 */
7495 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7496 goto unlock_err;
7497 }
7498
7499 len = min(len, em->len - (start - em->start));
7500 if (write) {
7501 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7502 start, len);
7503 if (ret < 0)
7504 goto unlock_err;
7505 unlock_extents = true;
7506 /* Recalc len in case the new em is smaller than requested */
7507 len = min(len, em->len - (start - em->start));
7508 } else {
7509 /*
7510 * We need to unlock only the end area that we aren't using.
7511 * The rest is going to be unlocked by the endio routine.
7512 */
7513 lockstart = start + len;
7514 if (lockstart < lockend)
7515 unlock_extents = true;
7516 }
7517
7518 if (unlock_extents)
7519 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7520 lockstart, lockend, &cached_state);
7521 else
7522 free_extent_state(cached_state);
7523
7524 /*
7525 * Translate extent map information to iomap.
7526 * We trim the extents (and move the addr) even though iomap code does
7527 * that, since we have locked only the parts we are performing I/O in.
7528 */
7529 if ((em->block_start == EXTENT_MAP_HOLE) ||
7530 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7531 iomap->addr = IOMAP_NULL_ADDR;
7532 iomap->type = IOMAP_HOLE;
7533 } else {
7534 iomap->addr = em->block_start + (start - em->start);
7535 iomap->type = IOMAP_MAPPED;
7536 }
7537 iomap->offset = start;
7538 iomap->bdev = fs_info->fs_devices->latest_bdev;
7539 iomap->length = len;
7540
7541 free_extent_map(em);
7542
7543 return 0;
7544
7545 unlock_err:
7546 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7547 &cached_state);
7548 err:
7549 if (dio_data) {
7550 btrfs_delalloc_release_space(BTRFS_I(inode),
7551 dio_data->data_reserved, start,
7552 dio_data->reserve, true);
7553 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7554 extent_changeset_free(dio_data->data_reserved);
7555 kfree(dio_data);
7556 }
7557 return ret;
7558 }
7559
btrfs_dio_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned int flags,struct iomap * iomap)7560 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7561 ssize_t written, unsigned int flags, struct iomap *iomap)
7562 {
7563 int ret = 0;
7564 struct btrfs_dio_data *dio_data = iomap->private;
7565 size_t submitted = dio_data->submitted;
7566 const bool write = !!(flags & IOMAP_WRITE);
7567
7568 if (!write && (iomap->type == IOMAP_HOLE)) {
7569 /* If reading from a hole, unlock and return */
7570 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7571 goto out;
7572 }
7573
7574 if (submitted < length) {
7575 pos += submitted;
7576 length -= submitted;
7577 if (write)
7578 __endio_write_update_ordered(BTRFS_I(inode), pos,
7579 length, false);
7580 else
7581 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7582 pos + length - 1);
7583 ret = -ENOTBLK;
7584 }
7585
7586 if (write) {
7587 if (dio_data->reserve)
7588 btrfs_delalloc_release_space(BTRFS_I(inode),
7589 dio_data->data_reserved, pos,
7590 dio_data->reserve, true);
7591 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7592 extent_changeset_free(dio_data->data_reserved);
7593 }
7594 out:
7595 /*
7596 * We're all done, we can re-set the current->journal_info now safely
7597 * for our endio.
7598 */
7599 if (dio_data->sync) {
7600 ASSERT(current->journal_info == NULL);
7601 current->journal_info = BTRFS_DIO_SYNC_STUB;
7602 }
7603 kfree(dio_data);
7604 iomap->private = NULL;
7605
7606 return ret;
7607 }
7608
btrfs_dio_private_put(struct btrfs_dio_private * dip)7609 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7610 {
7611 /*
7612 * This implies a barrier so that stores to dio_bio->bi_status before
7613 * this and loads of dio_bio->bi_status after this are fully ordered.
7614 */
7615 if (!refcount_dec_and_test(&dip->refs))
7616 return;
7617
7618 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7619 __endio_write_update_ordered(BTRFS_I(dip->inode),
7620 dip->logical_offset,
7621 dip->bytes,
7622 !dip->dio_bio->bi_status);
7623 } else {
7624 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7625 dip->logical_offset,
7626 dip->logical_offset + dip->bytes - 1);
7627 }
7628
7629 bio_endio(dip->dio_bio);
7630 kfree(dip);
7631 }
7632
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)7633 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7634 int mirror_num,
7635 unsigned long bio_flags)
7636 {
7637 struct btrfs_dio_private *dip = bio->bi_private;
7638 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7639 blk_status_t ret;
7640
7641 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7642
7643 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7644 if (ret)
7645 return ret;
7646
7647 refcount_inc(&dip->refs);
7648 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7649 if (ret)
7650 refcount_dec(&dip->refs);
7651 return ret;
7652 }
7653
btrfs_check_read_dio_bio(struct inode * inode,struct btrfs_io_bio * io_bio,const bool uptodate)7654 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7655 struct btrfs_io_bio *io_bio,
7656 const bool uptodate)
7657 {
7658 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7659 const u32 sectorsize = fs_info->sectorsize;
7660 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7662 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7663 struct bio_vec bvec;
7664 struct bvec_iter iter;
7665 u64 start = io_bio->logical;
7666 int icsum = 0;
7667 blk_status_t err = BLK_STS_OK;
7668
7669 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7670 unsigned int i, nr_sectors, pgoff;
7671
7672 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7673 pgoff = bvec.bv_offset;
7674 for (i = 0; i < nr_sectors; i++) {
7675 ASSERT(pgoff < PAGE_SIZE);
7676 if (uptodate &&
7677 (!csum || !check_data_csum(inode, io_bio, icsum,
7678 bvec.bv_page, pgoff,
7679 start, sectorsize))) {
7680 clean_io_failure(fs_info, failure_tree, io_tree,
7681 start, bvec.bv_page,
7682 btrfs_ino(BTRFS_I(inode)),
7683 pgoff);
7684 } else {
7685 blk_status_t status;
7686
7687 status = btrfs_submit_read_repair(inode,
7688 &io_bio->bio,
7689 start - io_bio->logical,
7690 bvec.bv_page, pgoff,
7691 start,
7692 start + sectorsize - 1,
7693 io_bio->mirror_num,
7694 submit_dio_repair_bio);
7695 if (status)
7696 err = status;
7697 }
7698 start += sectorsize;
7699 icsum++;
7700 pgoff += sectorsize;
7701 }
7702 }
7703 return err;
7704 }
7705
__endio_write_update_ordered(struct btrfs_inode * inode,const u64 offset,const u64 bytes,const bool uptodate)7706 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7707 const u64 offset, const u64 bytes,
7708 const bool uptodate)
7709 {
7710 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7711 struct btrfs_ordered_extent *ordered = NULL;
7712 struct btrfs_workqueue *wq;
7713 u64 ordered_offset = offset;
7714 u64 ordered_bytes = bytes;
7715 u64 last_offset;
7716
7717 if (btrfs_is_free_space_inode(inode))
7718 wq = fs_info->endio_freespace_worker;
7719 else
7720 wq = fs_info->endio_write_workers;
7721
7722 while (ordered_offset < offset + bytes) {
7723 last_offset = ordered_offset;
7724 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7725 &ordered_offset,
7726 ordered_bytes,
7727 uptodate)) {
7728 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7729 NULL);
7730 btrfs_queue_work(wq, &ordered->work);
7731 }
7732 /*
7733 * If btrfs_dec_test_ordered_pending does not find any ordered
7734 * extent in the range, we can exit.
7735 */
7736 if (ordered_offset == last_offset)
7737 return;
7738 /*
7739 * Our bio might span multiple ordered extents. In this case
7740 * we keep going until we have accounted the whole dio.
7741 */
7742 if (ordered_offset < offset + bytes) {
7743 ordered_bytes = offset + bytes - ordered_offset;
7744 ordered = NULL;
7745 }
7746 }
7747 }
7748
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)7749 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7750 struct bio *bio, u64 offset)
7751 {
7752 struct inode *inode = private_data;
7753
7754 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7755 }
7756
btrfs_end_dio_bio(struct bio * bio)7757 static void btrfs_end_dio_bio(struct bio *bio)
7758 {
7759 struct btrfs_dio_private *dip = bio->bi_private;
7760 blk_status_t err = bio->bi_status;
7761
7762 if (err)
7763 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7764 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7765 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7766 bio->bi_opf,
7767 (unsigned long long)bio->bi_iter.bi_sector,
7768 bio->bi_iter.bi_size, err);
7769
7770 if (bio_op(bio) == REQ_OP_READ) {
7771 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7772 !err);
7773 }
7774
7775 if (err)
7776 dip->dio_bio->bi_status = err;
7777
7778 bio_put(bio);
7779 btrfs_dio_private_put(dip);
7780 }
7781
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)7782 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7783 struct inode *inode, u64 file_offset, int async_submit)
7784 {
7785 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7786 struct btrfs_dio_private *dip = bio->bi_private;
7787 bool write = bio_op(bio) == REQ_OP_WRITE;
7788 blk_status_t ret;
7789
7790 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7791 if (async_submit)
7792 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7793
7794 if (!write) {
7795 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7796 if (ret)
7797 goto err;
7798 }
7799
7800 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7801 goto map;
7802
7803 if (write && async_submit) {
7804 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7805 file_offset, inode,
7806 btrfs_submit_bio_start_direct_io);
7807 goto err;
7808 } else if (write) {
7809 /*
7810 * If we aren't doing async submit, calculate the csum of the
7811 * bio now.
7812 */
7813 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7814 if (ret)
7815 goto err;
7816 } else {
7817 u64 csum_offset;
7818
7819 csum_offset = file_offset - dip->logical_offset;
7820 csum_offset >>= inode->i_sb->s_blocksize_bits;
7821 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7822 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7823 }
7824 map:
7825 ret = btrfs_map_bio(fs_info, bio, 0);
7826 err:
7827 return ret;
7828 }
7829
7830 /*
7831 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7832 * or ordered extents whether or not we submit any bios.
7833 */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)7834 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7835 struct inode *inode,
7836 loff_t file_offset)
7837 {
7838 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7839 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7840 size_t dip_size;
7841 struct btrfs_dio_private *dip;
7842
7843 dip_size = sizeof(*dip);
7844 if (!write && csum) {
7845 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7846 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7847 size_t nblocks;
7848
7849 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7850 dip_size += csum_size * nblocks;
7851 }
7852
7853 dip = kzalloc(dip_size, GFP_NOFS);
7854 if (!dip)
7855 return NULL;
7856
7857 dip->inode = inode;
7858 dip->logical_offset = file_offset;
7859 dip->bytes = dio_bio->bi_iter.bi_size;
7860 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7861 dip->dio_bio = dio_bio;
7862 refcount_set(&dip->refs, 1);
7863 return dip;
7864 }
7865
btrfs_submit_direct(struct inode * inode,struct iomap * iomap,struct bio * dio_bio,loff_t file_offset)7866 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7867 struct bio *dio_bio, loff_t file_offset)
7868 {
7869 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7870 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7872 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7873 BTRFS_BLOCK_GROUP_RAID56_MASK);
7874 struct btrfs_dio_private *dip;
7875 struct bio *bio;
7876 u64 start_sector;
7877 int async_submit = 0;
7878 u64 submit_len;
7879 int clone_offset = 0;
7880 int clone_len;
7881 int ret;
7882 blk_status_t status;
7883 struct btrfs_io_geometry geom;
7884 struct btrfs_dio_data *dio_data = iomap->private;
7885
7886 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7887 if (!dip) {
7888 if (!write) {
7889 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7890 file_offset + dio_bio->bi_iter.bi_size - 1);
7891 }
7892 dio_bio->bi_status = BLK_STS_RESOURCE;
7893 bio_endio(dio_bio);
7894 return BLK_QC_T_NONE;
7895 }
7896
7897 if (!write && csum) {
7898 /*
7899 * Load the csums up front to reduce csum tree searches and
7900 * contention when submitting bios.
7901 */
7902 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7903 dip->csums);
7904 if (status != BLK_STS_OK)
7905 goto out_err;
7906 }
7907
7908 start_sector = dio_bio->bi_iter.bi_sector;
7909 submit_len = dio_bio->bi_iter.bi_size;
7910
7911 do {
7912 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7913 start_sector << 9, submit_len,
7914 &geom);
7915 if (ret) {
7916 status = errno_to_blk_status(ret);
7917 goto out_err;
7918 }
7919 ASSERT(geom.len <= INT_MAX);
7920
7921 clone_len = min_t(int, submit_len, geom.len);
7922
7923 /*
7924 * This will never fail as it's passing GPF_NOFS and
7925 * the allocation is backed by btrfs_bioset.
7926 */
7927 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7928 bio->bi_private = dip;
7929 bio->bi_end_io = btrfs_end_dio_bio;
7930 btrfs_io_bio(bio)->logical = file_offset;
7931
7932 ASSERT(submit_len >= clone_len);
7933 submit_len -= clone_len;
7934
7935 /*
7936 * Increase the count before we submit the bio so we know
7937 * the end IO handler won't happen before we increase the
7938 * count. Otherwise, the dip might get freed before we're
7939 * done setting it up.
7940 *
7941 * We transfer the initial reference to the last bio, so we
7942 * don't need to increment the reference count for the last one.
7943 */
7944 if (submit_len > 0) {
7945 refcount_inc(&dip->refs);
7946 /*
7947 * If we are submitting more than one bio, submit them
7948 * all asynchronously. The exception is RAID 5 or 6, as
7949 * asynchronous checksums make it difficult to collect
7950 * full stripe writes.
7951 */
7952 if (!raid56)
7953 async_submit = 1;
7954 }
7955
7956 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7957 async_submit);
7958 if (status) {
7959 bio_put(bio);
7960 if (submit_len > 0)
7961 refcount_dec(&dip->refs);
7962 goto out_err;
7963 }
7964
7965 dio_data->submitted += clone_len;
7966 clone_offset += clone_len;
7967 start_sector += clone_len >> 9;
7968 file_offset += clone_len;
7969 } while (submit_len > 0);
7970 return BLK_QC_T_NONE;
7971
7972 out_err:
7973 dip->dio_bio->bi_status = status;
7974 btrfs_dio_private_put(dip);
7975 return BLK_QC_T_NONE;
7976 }
7977
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)7978 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7979 const struct iov_iter *iter, loff_t offset)
7980 {
7981 int seg;
7982 int i;
7983 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7984 ssize_t retval = -EINVAL;
7985
7986 if (offset & blocksize_mask)
7987 goto out;
7988
7989 if (iov_iter_alignment(iter) & blocksize_mask)
7990 goto out;
7991
7992 /* If this is a write we don't need to check anymore */
7993 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7994 return 0;
7995 /*
7996 * Check to make sure we don't have duplicate iov_base's in this
7997 * iovec, if so return EINVAL, otherwise we'll get csum errors
7998 * when reading back.
7999 */
8000 for (seg = 0; seg < iter->nr_segs; seg++) {
8001 for (i = seg + 1; i < iter->nr_segs; i++) {
8002 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8003 goto out;
8004 }
8005 }
8006 retval = 0;
8007 out:
8008 return retval;
8009 }
8010
btrfs_maybe_fsync_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)8011 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
8012 int error, unsigned flags)
8013 {
8014 /*
8015 * Now if we're still in the context of our submitter we know we can't
8016 * safely run generic_write_sync(), so clear our flag here so that the
8017 * caller knows to follow up with a sync.
8018 */
8019 if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
8020 current->journal_info = NULL;
8021 return error;
8022 }
8023
8024 if (error)
8025 return error;
8026
8027 if (size) {
8028 iocb->ki_flags |= IOCB_DSYNC;
8029 return generic_write_sync(iocb, size);
8030 }
8031
8032 return 0;
8033 }
8034
8035 static const struct iomap_ops btrfs_dio_iomap_ops = {
8036 .iomap_begin = btrfs_dio_iomap_begin,
8037 .iomap_end = btrfs_dio_iomap_end,
8038 };
8039
8040 static const struct iomap_dio_ops btrfs_dio_ops = {
8041 .submit_io = btrfs_submit_direct,
8042 };
8043
8044 static const struct iomap_dio_ops btrfs_sync_dops = {
8045 .submit_io = btrfs_submit_direct,
8046 .end_io = btrfs_maybe_fsync_end_io,
8047 };
8048
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8049 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8050 {
8051 struct file *file = iocb->ki_filp;
8052 struct inode *inode = file->f_mapping->host;
8053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8054 struct extent_changeset *data_reserved = NULL;
8055 loff_t offset = iocb->ki_pos;
8056 size_t count = 0;
8057 bool relock = false;
8058 ssize_t ret;
8059
8060 if (check_direct_IO(fs_info, iter, offset)) {
8061 ASSERT(current->journal_info == NULL ||
8062 current->journal_info == BTRFS_DIO_SYNC_STUB);
8063 current->journal_info = NULL;
8064 return 0;
8065 }
8066
8067 count = iov_iter_count(iter);
8068 if (iov_iter_rw(iter) == WRITE) {
8069 /*
8070 * If the write DIO is beyond the EOF, we need update
8071 * the isize, but it is protected by i_mutex. So we can
8072 * not unlock the i_mutex at this case.
8073 */
8074 if (offset + count <= inode->i_size) {
8075 inode_unlock(inode);
8076 relock = true;
8077 }
8078 down_read(&BTRFS_I(inode)->dio_sem);
8079 }
8080
8081 /*
8082 * We have are actually a sync iocb, so we need our fancy endio to know
8083 * if we need to sync.
8084 */
8085 if (current->journal_info)
8086 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8087 &btrfs_sync_dops, is_sync_kiocb(iocb));
8088 else
8089 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
8090 &btrfs_dio_ops, is_sync_kiocb(iocb));
8091
8092 if (ret == -ENOTBLK)
8093 ret = 0;
8094
8095 if (iov_iter_rw(iter) == WRITE)
8096 up_read(&BTRFS_I(inode)->dio_sem);
8097
8098 if (relock)
8099 inode_lock(inode);
8100
8101 extent_changeset_free(data_reserved);
8102 return ret;
8103 }
8104
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)8105 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8106 u64 start, u64 len)
8107 {
8108 int ret;
8109
8110 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8111 if (ret)
8112 return ret;
8113
8114 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8115 }
8116
btrfs_readpage(struct file * file,struct page * page)8117 int btrfs_readpage(struct file *file, struct page *page)
8118 {
8119 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8120 u64 start = page_offset(page);
8121 u64 end = start + PAGE_SIZE - 1;
8122 unsigned long bio_flags = 0;
8123 struct bio *bio = NULL;
8124 int ret;
8125
8126 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8127
8128 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8129 if (bio)
8130 ret = submit_one_bio(bio, 0, bio_flags);
8131 return ret;
8132 }
8133
btrfs_writepage(struct page * page,struct writeback_control * wbc)8134 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8135 {
8136 struct inode *inode = page->mapping->host;
8137 int ret;
8138
8139 if (current->flags & PF_MEMALLOC) {
8140 redirty_page_for_writepage(wbc, page);
8141 unlock_page(page);
8142 return 0;
8143 }
8144
8145 /*
8146 * If we are under memory pressure we will call this directly from the
8147 * VM, we need to make sure we have the inode referenced for the ordered
8148 * extent. If not just return like we didn't do anything.
8149 */
8150 if (!igrab(inode)) {
8151 redirty_page_for_writepage(wbc, page);
8152 return AOP_WRITEPAGE_ACTIVATE;
8153 }
8154 ret = extent_write_full_page(page, wbc);
8155 btrfs_add_delayed_iput(inode);
8156 return ret;
8157 }
8158
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8159 static int btrfs_writepages(struct address_space *mapping,
8160 struct writeback_control *wbc)
8161 {
8162 return extent_writepages(mapping, wbc);
8163 }
8164
btrfs_readahead(struct readahead_control * rac)8165 static void btrfs_readahead(struct readahead_control *rac)
8166 {
8167 extent_readahead(rac);
8168 }
8169
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8170 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8171 {
8172 int ret = try_release_extent_mapping(page, gfp_flags);
8173 if (ret == 1)
8174 detach_page_private(page);
8175 return ret;
8176 }
8177
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8178 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8179 {
8180 if (PageWriteback(page) || PageDirty(page))
8181 return 0;
8182 return __btrfs_releasepage(page, gfp_flags);
8183 }
8184
8185 #ifdef CONFIG_MIGRATION
btrfs_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)8186 static int btrfs_migratepage(struct address_space *mapping,
8187 struct page *newpage, struct page *page,
8188 enum migrate_mode mode)
8189 {
8190 int ret;
8191
8192 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8193 if (ret != MIGRATEPAGE_SUCCESS)
8194 return ret;
8195
8196 if (page_has_private(page))
8197 attach_page_private(newpage, detach_page_private(page));
8198
8199 if (PagePrivate2(page)) {
8200 ClearPagePrivate2(page);
8201 SetPagePrivate2(newpage);
8202 }
8203
8204 if (mode != MIGRATE_SYNC_NO_COPY)
8205 migrate_page_copy(newpage, page);
8206 else
8207 migrate_page_states(newpage, page);
8208 return MIGRATEPAGE_SUCCESS;
8209 }
8210 #endif
8211
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8212 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8213 unsigned int length)
8214 {
8215 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8216 struct extent_io_tree *tree = &inode->io_tree;
8217 struct btrfs_ordered_extent *ordered;
8218 struct extent_state *cached_state = NULL;
8219 u64 page_start = page_offset(page);
8220 u64 page_end = page_start + PAGE_SIZE - 1;
8221 u64 start;
8222 u64 end;
8223 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8224
8225 /*
8226 * we have the page locked, so new writeback can't start,
8227 * and the dirty bit won't be cleared while we are here.
8228 *
8229 * Wait for IO on this page so that we can safely clear
8230 * the PagePrivate2 bit and do ordered accounting
8231 */
8232 wait_on_page_writeback(page);
8233
8234 /*
8235 * For subpage case, we have call sites like
8236 * btrfs_punch_hole_lock_range() which passes range not aligned to
8237 * sectorsize.
8238 * If the range doesn't cover the full page, we don't need to and
8239 * shouldn't clear page extent mapped, as page->private can still
8240 * record subpage dirty bits for other part of the range.
8241 *
8242 * For cases that can invalidate the full even the range doesn't
8243 * cover the full page, like invalidating the last page, we're
8244 * still safe to wait for ordered extent to finish.
8245 */
8246 if (!(offset == 0 && length == PAGE_SIZE)) {
8247 btrfs_releasepage(page, GFP_NOFS);
8248 return;
8249 }
8250
8251 if (!inode_evicting)
8252 lock_extent_bits(tree, page_start, page_end, &cached_state);
8253
8254 start = page_start;
8255 again:
8256 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8257 if (ordered) {
8258 end = min(page_end,
8259 ordered->file_offset + ordered->num_bytes - 1);
8260 /*
8261 * IO on this page will never be started, so we need
8262 * to account for any ordered extents now
8263 */
8264 if (!inode_evicting)
8265 clear_extent_bit(tree, start, end,
8266 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8267 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8268 EXTENT_DEFRAG, 1, 0, &cached_state);
8269 /*
8270 * whoever cleared the private bit is responsible
8271 * for the finish_ordered_io
8272 */
8273 if (TestClearPagePrivate2(page)) {
8274 struct btrfs_ordered_inode_tree *tree;
8275 u64 new_len;
8276
8277 tree = &inode->ordered_tree;
8278
8279 spin_lock_irq(&tree->lock);
8280 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8281 new_len = start - ordered->file_offset;
8282 if (new_len < ordered->truncated_len)
8283 ordered->truncated_len = new_len;
8284 spin_unlock_irq(&tree->lock);
8285
8286 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8287 start,
8288 end - start + 1, 1))
8289 btrfs_finish_ordered_io(ordered);
8290 }
8291 btrfs_put_ordered_extent(ordered);
8292 if (!inode_evicting) {
8293 cached_state = NULL;
8294 lock_extent_bits(tree, start, end,
8295 &cached_state);
8296 }
8297
8298 start = end + 1;
8299 if (start < page_end)
8300 goto again;
8301 }
8302
8303 /*
8304 * Qgroup reserved space handler
8305 * Page here will be either
8306 * 1) Already written to disk or ordered extent already submitted
8307 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8308 * Qgroup will be handled by its qgroup_record then.
8309 * btrfs_qgroup_free_data() call will do nothing here.
8310 *
8311 * 2) Not written to disk yet
8312 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8313 * bit of its io_tree, and free the qgroup reserved data space.
8314 * Since the IO will never happen for this page.
8315 */
8316 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8317 if (!inode_evicting) {
8318 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8319 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8320 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8321 &cached_state);
8322
8323 __btrfs_releasepage(page, GFP_NOFS);
8324 }
8325
8326 ClearPageChecked(page);
8327 detach_page_private(page);
8328 }
8329
8330 /*
8331 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8332 * called from a page fault handler when a page is first dirtied. Hence we must
8333 * be careful to check for EOF conditions here. We set the page up correctly
8334 * for a written page which means we get ENOSPC checking when writing into
8335 * holes and correct delalloc and unwritten extent mapping on filesystems that
8336 * support these features.
8337 *
8338 * We are not allowed to take the i_mutex here so we have to play games to
8339 * protect against truncate races as the page could now be beyond EOF. Because
8340 * truncate_setsize() writes the inode size before removing pages, once we have
8341 * the page lock we can determine safely if the page is beyond EOF. If it is not
8342 * beyond EOF, then the page is guaranteed safe against truncation until we
8343 * unlock the page.
8344 */
btrfs_page_mkwrite(struct vm_fault * vmf)8345 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8346 {
8347 struct page *page = vmf->page;
8348 struct inode *inode = file_inode(vmf->vma->vm_file);
8349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8350 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8351 struct btrfs_ordered_extent *ordered;
8352 struct extent_state *cached_state = NULL;
8353 struct extent_changeset *data_reserved = NULL;
8354 char *kaddr;
8355 unsigned long zero_start;
8356 loff_t size;
8357 vm_fault_t ret;
8358 int ret2;
8359 int reserved = 0;
8360 u64 reserved_space;
8361 u64 page_start;
8362 u64 page_end;
8363 u64 end;
8364
8365 reserved_space = PAGE_SIZE;
8366
8367 sb_start_pagefault(inode->i_sb);
8368 page_start = page_offset(page);
8369 page_end = page_start + PAGE_SIZE - 1;
8370 end = page_end;
8371
8372 /*
8373 * Reserving delalloc space after obtaining the page lock can lead to
8374 * deadlock. For example, if a dirty page is locked by this function
8375 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8376 * dirty page write out, then the btrfs_writepage() function could
8377 * end up waiting indefinitely to get a lock on the page currently
8378 * being processed by btrfs_page_mkwrite() function.
8379 */
8380 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8381 page_start, reserved_space);
8382 if (!ret2) {
8383 ret2 = file_update_time(vmf->vma->vm_file);
8384 reserved = 1;
8385 }
8386 if (ret2) {
8387 ret = vmf_error(ret2);
8388 if (reserved)
8389 goto out;
8390 goto out_noreserve;
8391 }
8392
8393 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8394 again:
8395 lock_page(page);
8396 size = i_size_read(inode);
8397
8398 if ((page->mapping != inode->i_mapping) ||
8399 (page_start >= size)) {
8400 /* page got truncated out from underneath us */
8401 goto out_unlock;
8402 }
8403 wait_on_page_writeback(page);
8404
8405 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8406 set_page_extent_mapped(page);
8407
8408 /*
8409 * we can't set the delalloc bits if there are pending ordered
8410 * extents. Drop our locks and wait for them to finish
8411 */
8412 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8413 PAGE_SIZE);
8414 if (ordered) {
8415 unlock_extent_cached(io_tree, page_start, page_end,
8416 &cached_state);
8417 unlock_page(page);
8418 btrfs_start_ordered_extent(ordered, 1);
8419 btrfs_put_ordered_extent(ordered);
8420 goto again;
8421 }
8422
8423 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8424 reserved_space = round_up(size - page_start,
8425 fs_info->sectorsize);
8426 if (reserved_space < PAGE_SIZE) {
8427 end = page_start + reserved_space - 1;
8428 btrfs_delalloc_release_space(BTRFS_I(inode),
8429 data_reserved, page_start,
8430 PAGE_SIZE - reserved_space, true);
8431 }
8432 }
8433
8434 /*
8435 * page_mkwrite gets called when the page is firstly dirtied after it's
8436 * faulted in, but write(2) could also dirty a page and set delalloc
8437 * bits, thus in this case for space account reason, we still need to
8438 * clear any delalloc bits within this page range since we have to
8439 * reserve data&meta space before lock_page() (see above comments).
8440 */
8441 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8442 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8443 EXTENT_DEFRAG, 0, 0, &cached_state);
8444
8445 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8446 &cached_state);
8447 if (ret2) {
8448 unlock_extent_cached(io_tree, page_start, page_end,
8449 &cached_state);
8450 ret = VM_FAULT_SIGBUS;
8451 goto out_unlock;
8452 }
8453
8454 /* page is wholly or partially inside EOF */
8455 if (page_start + PAGE_SIZE > size)
8456 zero_start = offset_in_page(size);
8457 else
8458 zero_start = PAGE_SIZE;
8459
8460 if (zero_start != PAGE_SIZE) {
8461 kaddr = kmap(page);
8462 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8463 flush_dcache_page(page);
8464 kunmap(page);
8465 }
8466 ClearPageChecked(page);
8467 set_page_dirty(page);
8468 SetPageUptodate(page);
8469
8470 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8471
8472 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8473
8474 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8475 sb_end_pagefault(inode->i_sb);
8476 extent_changeset_free(data_reserved);
8477 return VM_FAULT_LOCKED;
8478
8479 out_unlock:
8480 unlock_page(page);
8481 out:
8482 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8483 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8484 reserved_space, (ret != 0));
8485 out_noreserve:
8486 sb_end_pagefault(inode->i_sb);
8487 extent_changeset_free(data_reserved);
8488 return ret;
8489 }
8490
btrfs_truncate(struct inode * inode,bool skip_writeback)8491 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8492 {
8493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8494 struct btrfs_root *root = BTRFS_I(inode)->root;
8495 struct btrfs_block_rsv *rsv;
8496 int ret;
8497 struct btrfs_trans_handle *trans;
8498 u64 mask = fs_info->sectorsize - 1;
8499 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8500
8501 if (!skip_writeback) {
8502 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8503 (u64)-1);
8504 if (ret)
8505 return ret;
8506 }
8507
8508 /*
8509 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8510 * things going on here:
8511 *
8512 * 1) We need to reserve space to update our inode.
8513 *
8514 * 2) We need to have something to cache all the space that is going to
8515 * be free'd up by the truncate operation, but also have some slack
8516 * space reserved in case it uses space during the truncate (thank you
8517 * very much snapshotting).
8518 *
8519 * And we need these to be separate. The fact is we can use a lot of
8520 * space doing the truncate, and we have no earthly idea how much space
8521 * we will use, so we need the truncate reservation to be separate so it
8522 * doesn't end up using space reserved for updating the inode. We also
8523 * need to be able to stop the transaction and start a new one, which
8524 * means we need to be able to update the inode several times, and we
8525 * have no idea of knowing how many times that will be, so we can't just
8526 * reserve 1 item for the entirety of the operation, so that has to be
8527 * done separately as well.
8528 *
8529 * So that leaves us with
8530 *
8531 * 1) rsv - for the truncate reservation, which we will steal from the
8532 * transaction reservation.
8533 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8534 * updating the inode.
8535 */
8536 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8537 if (!rsv)
8538 return -ENOMEM;
8539 rsv->size = min_size;
8540 rsv->failfast = 1;
8541
8542 /*
8543 * 1 for the truncate slack space
8544 * 1 for updating the inode.
8545 */
8546 trans = btrfs_start_transaction(root, 2);
8547 if (IS_ERR(trans)) {
8548 ret = PTR_ERR(trans);
8549 goto out;
8550 }
8551
8552 /* Migrate the slack space for the truncate to our reserve */
8553 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8554 min_size, false);
8555 BUG_ON(ret);
8556
8557 /*
8558 * So if we truncate and then write and fsync we normally would just
8559 * write the extents that changed, which is a problem if we need to
8560 * first truncate that entire inode. So set this flag so we write out
8561 * all of the extents in the inode to the sync log so we're completely
8562 * safe.
8563 */
8564 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8565 trans->block_rsv = rsv;
8566
8567 while (1) {
8568 ret = btrfs_truncate_inode_items(trans, root, inode,
8569 inode->i_size,
8570 BTRFS_EXTENT_DATA_KEY);
8571 trans->block_rsv = &fs_info->trans_block_rsv;
8572 if (ret != -ENOSPC && ret != -EAGAIN)
8573 break;
8574
8575 ret = btrfs_update_inode(trans, root, inode);
8576 if (ret)
8577 break;
8578
8579 btrfs_end_transaction(trans);
8580 btrfs_btree_balance_dirty(fs_info);
8581
8582 trans = btrfs_start_transaction(root, 2);
8583 if (IS_ERR(trans)) {
8584 ret = PTR_ERR(trans);
8585 trans = NULL;
8586 break;
8587 }
8588
8589 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8590 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8591 rsv, min_size, false);
8592 BUG_ON(ret); /* shouldn't happen */
8593 trans->block_rsv = rsv;
8594 }
8595
8596 /*
8597 * We can't call btrfs_truncate_block inside a trans handle as we could
8598 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8599 * we've truncated everything except the last little bit, and can do
8600 * btrfs_truncate_block and then update the disk_i_size.
8601 */
8602 if (ret == NEED_TRUNCATE_BLOCK) {
8603 btrfs_end_transaction(trans);
8604 btrfs_btree_balance_dirty(fs_info);
8605
8606 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8607 if (ret)
8608 goto out;
8609 trans = btrfs_start_transaction(root, 1);
8610 if (IS_ERR(trans)) {
8611 ret = PTR_ERR(trans);
8612 goto out;
8613 }
8614 btrfs_inode_safe_disk_i_size_write(inode, 0);
8615 }
8616
8617 if (trans) {
8618 int ret2;
8619
8620 trans->block_rsv = &fs_info->trans_block_rsv;
8621 ret2 = btrfs_update_inode(trans, root, inode);
8622 if (ret2 && !ret)
8623 ret = ret2;
8624
8625 ret2 = btrfs_end_transaction(trans);
8626 if (ret2 && !ret)
8627 ret = ret2;
8628 btrfs_btree_balance_dirty(fs_info);
8629 }
8630 out:
8631 btrfs_free_block_rsv(fs_info, rsv);
8632
8633 return ret;
8634 }
8635
8636 /*
8637 * create a new subvolume directory/inode (helper for the ioctl).
8638 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)8639 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8640 struct btrfs_root *new_root,
8641 struct btrfs_root *parent_root,
8642 u64 new_dirid)
8643 {
8644 struct inode *inode;
8645 int err;
8646 u64 index = 0;
8647
8648 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8649 new_dirid, new_dirid,
8650 S_IFDIR | (~current_umask() & S_IRWXUGO),
8651 &index);
8652 if (IS_ERR(inode))
8653 return PTR_ERR(inode);
8654 inode->i_op = &btrfs_dir_inode_operations;
8655 inode->i_fop = &btrfs_dir_file_operations;
8656
8657 set_nlink(inode, 1);
8658 btrfs_i_size_write(BTRFS_I(inode), 0);
8659 unlock_new_inode(inode);
8660
8661 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8662 if (err)
8663 btrfs_err(new_root->fs_info,
8664 "error inheriting subvolume %llu properties: %d",
8665 new_root->root_key.objectid, err);
8666
8667 err = btrfs_update_inode(trans, new_root, inode);
8668
8669 iput(inode);
8670 return err;
8671 }
8672
btrfs_alloc_inode(struct super_block * sb)8673 struct inode *btrfs_alloc_inode(struct super_block *sb)
8674 {
8675 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8676 struct btrfs_inode *ei;
8677 struct inode *inode;
8678
8679 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8680 if (!ei)
8681 return NULL;
8682
8683 ei->root = NULL;
8684 ei->generation = 0;
8685 ei->last_trans = 0;
8686 ei->last_sub_trans = 0;
8687 ei->logged_trans = 0;
8688 ei->delalloc_bytes = 0;
8689 ei->new_delalloc_bytes = 0;
8690 ei->defrag_bytes = 0;
8691 ei->disk_i_size = 0;
8692 ei->flags = 0;
8693 ei->csum_bytes = 0;
8694 ei->index_cnt = (u64)-1;
8695 ei->dir_index = 0;
8696 ei->last_unlink_trans = 0;
8697 ei->last_reflink_trans = 0;
8698 ei->last_log_commit = 0;
8699
8700 spin_lock_init(&ei->lock);
8701 ei->outstanding_extents = 0;
8702 if (sb->s_magic != BTRFS_TEST_MAGIC)
8703 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8704 BTRFS_BLOCK_RSV_DELALLOC);
8705 ei->runtime_flags = 0;
8706 ei->prop_compress = BTRFS_COMPRESS_NONE;
8707 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8708
8709 ei->delayed_node = NULL;
8710
8711 ei->i_otime.tv_sec = 0;
8712 ei->i_otime.tv_nsec = 0;
8713
8714 inode = &ei->vfs_inode;
8715 extent_map_tree_init(&ei->extent_tree);
8716 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8717 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8718 IO_TREE_INODE_IO_FAILURE, inode);
8719 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8720 IO_TREE_INODE_FILE_EXTENT, inode);
8721 ei->io_tree.track_uptodate = true;
8722 ei->io_failure_tree.track_uptodate = true;
8723 atomic_set(&ei->sync_writers, 0);
8724 mutex_init(&ei->log_mutex);
8725 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8726 INIT_LIST_HEAD(&ei->delalloc_inodes);
8727 INIT_LIST_HEAD(&ei->delayed_iput);
8728 RB_CLEAR_NODE(&ei->rb_node);
8729 init_rwsem(&ei->dio_sem);
8730
8731 return inode;
8732 }
8733
8734 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)8735 void btrfs_test_destroy_inode(struct inode *inode)
8736 {
8737 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8738 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8739 }
8740 #endif
8741
btrfs_free_inode(struct inode * inode)8742 void btrfs_free_inode(struct inode *inode)
8743 {
8744 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8745 }
8746
btrfs_destroy_inode(struct inode * vfs_inode)8747 void btrfs_destroy_inode(struct inode *vfs_inode)
8748 {
8749 struct btrfs_ordered_extent *ordered;
8750 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8751 struct btrfs_root *root = inode->root;
8752
8753 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8754 WARN_ON(vfs_inode->i_data.nrpages);
8755 WARN_ON(inode->block_rsv.reserved);
8756 WARN_ON(inode->block_rsv.size);
8757 WARN_ON(inode->outstanding_extents);
8758 WARN_ON(inode->delalloc_bytes);
8759 WARN_ON(inode->new_delalloc_bytes);
8760 WARN_ON(inode->csum_bytes);
8761 WARN_ON(inode->defrag_bytes);
8762
8763 /*
8764 * This can happen where we create an inode, but somebody else also
8765 * created the same inode and we need to destroy the one we already
8766 * created.
8767 */
8768 if (!root)
8769 return;
8770
8771 while (1) {
8772 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8773 if (!ordered)
8774 break;
8775 else {
8776 btrfs_err(root->fs_info,
8777 "found ordered extent %llu %llu on inode cleanup",
8778 ordered->file_offset, ordered->num_bytes);
8779 btrfs_remove_ordered_extent(inode, ordered);
8780 btrfs_put_ordered_extent(ordered);
8781 btrfs_put_ordered_extent(ordered);
8782 }
8783 }
8784 btrfs_qgroup_check_reserved_leak(inode);
8785 inode_tree_del(inode);
8786 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8787 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8788 btrfs_put_root(inode->root);
8789 }
8790
btrfs_drop_inode(struct inode * inode)8791 int btrfs_drop_inode(struct inode *inode)
8792 {
8793 struct btrfs_root *root = BTRFS_I(inode)->root;
8794
8795 if (root == NULL)
8796 return 1;
8797
8798 /* the snap/subvol tree is on deleting */
8799 if (btrfs_root_refs(&root->root_item) == 0)
8800 return 1;
8801 else
8802 return generic_drop_inode(inode);
8803 }
8804
init_once(void * foo)8805 static void init_once(void *foo)
8806 {
8807 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8808
8809 inode_init_once(&ei->vfs_inode);
8810 }
8811
btrfs_destroy_cachep(void)8812 void __cold btrfs_destroy_cachep(void)
8813 {
8814 /*
8815 * Make sure all delayed rcu free inodes are flushed before we
8816 * destroy cache.
8817 */
8818 rcu_barrier();
8819 kmem_cache_destroy(btrfs_inode_cachep);
8820 kmem_cache_destroy(btrfs_trans_handle_cachep);
8821 kmem_cache_destroy(btrfs_path_cachep);
8822 kmem_cache_destroy(btrfs_free_space_cachep);
8823 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8824 }
8825
btrfs_init_cachep(void)8826 int __init btrfs_init_cachep(void)
8827 {
8828 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8829 sizeof(struct btrfs_inode), 0,
8830 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8831 init_once);
8832 if (!btrfs_inode_cachep)
8833 goto fail;
8834
8835 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8836 sizeof(struct btrfs_trans_handle), 0,
8837 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8838 if (!btrfs_trans_handle_cachep)
8839 goto fail;
8840
8841 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8842 sizeof(struct btrfs_path), 0,
8843 SLAB_MEM_SPREAD, NULL);
8844 if (!btrfs_path_cachep)
8845 goto fail;
8846
8847 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8848 sizeof(struct btrfs_free_space), 0,
8849 SLAB_MEM_SPREAD, NULL);
8850 if (!btrfs_free_space_cachep)
8851 goto fail;
8852
8853 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8854 PAGE_SIZE, PAGE_SIZE,
8855 SLAB_MEM_SPREAD, NULL);
8856 if (!btrfs_free_space_bitmap_cachep)
8857 goto fail;
8858
8859 return 0;
8860 fail:
8861 btrfs_destroy_cachep();
8862 return -ENOMEM;
8863 }
8864
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)8865 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8866 u32 request_mask, unsigned int flags)
8867 {
8868 u64 delalloc_bytes;
8869 struct inode *inode = d_inode(path->dentry);
8870 u32 blocksize = inode->i_sb->s_blocksize;
8871 u32 bi_flags = BTRFS_I(inode)->flags;
8872
8873 stat->result_mask |= STATX_BTIME;
8874 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8875 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8876 if (bi_flags & BTRFS_INODE_APPEND)
8877 stat->attributes |= STATX_ATTR_APPEND;
8878 if (bi_flags & BTRFS_INODE_COMPRESS)
8879 stat->attributes |= STATX_ATTR_COMPRESSED;
8880 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8881 stat->attributes |= STATX_ATTR_IMMUTABLE;
8882 if (bi_flags & BTRFS_INODE_NODUMP)
8883 stat->attributes |= STATX_ATTR_NODUMP;
8884
8885 stat->attributes_mask |= (STATX_ATTR_APPEND |
8886 STATX_ATTR_COMPRESSED |
8887 STATX_ATTR_IMMUTABLE |
8888 STATX_ATTR_NODUMP);
8889
8890 generic_fillattr(inode, stat);
8891 stat->dev = BTRFS_I(inode)->root->anon_dev;
8892
8893 spin_lock(&BTRFS_I(inode)->lock);
8894 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8895 spin_unlock(&BTRFS_I(inode)->lock);
8896 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8897 ALIGN(delalloc_bytes, blocksize)) >> 9;
8898 return 0;
8899 }
8900
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)8901 static int btrfs_rename_exchange(struct inode *old_dir,
8902 struct dentry *old_dentry,
8903 struct inode *new_dir,
8904 struct dentry *new_dentry)
8905 {
8906 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8907 struct btrfs_trans_handle *trans;
8908 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8909 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8910 struct inode *new_inode = new_dentry->d_inode;
8911 struct inode *old_inode = old_dentry->d_inode;
8912 struct timespec64 ctime = current_time(old_inode);
8913 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8914 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8915 u64 old_idx = 0;
8916 u64 new_idx = 0;
8917 int ret;
8918 int ret2;
8919 bool root_log_pinned = false;
8920 bool dest_log_pinned = false;
8921 bool need_abort = false;
8922
8923 /*
8924 * For non-subvolumes allow exchange only within one subvolume, in the
8925 * same inode namespace. Two subvolumes (represented as directory) can
8926 * be exchanged as they're a logical link and have a fixed inode number.
8927 */
8928 if (root != dest &&
8929 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8930 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8931 return -EXDEV;
8932
8933 /* close the race window with snapshot create/destroy ioctl */
8934 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8935 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8936 down_read(&fs_info->subvol_sem);
8937
8938 /*
8939 * We want to reserve the absolute worst case amount of items. So if
8940 * both inodes are subvols and we need to unlink them then that would
8941 * require 4 item modifications, but if they are both normal inodes it
8942 * would require 5 item modifications, so we'll assume their normal
8943 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8944 * should cover the worst case number of items we'll modify.
8945 */
8946 trans = btrfs_start_transaction(root, 12);
8947 if (IS_ERR(trans)) {
8948 ret = PTR_ERR(trans);
8949 goto out_notrans;
8950 }
8951
8952 if (dest != root)
8953 btrfs_record_root_in_trans(trans, dest);
8954
8955 /*
8956 * We need to find a free sequence number both in the source and
8957 * in the destination directory for the exchange.
8958 */
8959 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8960 if (ret)
8961 goto out_fail;
8962 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8963 if (ret)
8964 goto out_fail;
8965
8966 BTRFS_I(old_inode)->dir_index = 0ULL;
8967 BTRFS_I(new_inode)->dir_index = 0ULL;
8968
8969 /* Reference for the source. */
8970 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8971 /* force full log commit if subvolume involved. */
8972 btrfs_set_log_full_commit(trans);
8973 } else {
8974 btrfs_pin_log_trans(root);
8975 root_log_pinned = true;
8976 ret = btrfs_insert_inode_ref(trans, dest,
8977 new_dentry->d_name.name,
8978 new_dentry->d_name.len,
8979 old_ino,
8980 btrfs_ino(BTRFS_I(new_dir)),
8981 old_idx);
8982 if (ret)
8983 goto out_fail;
8984 need_abort = true;
8985 }
8986
8987 /* And now for the dest. */
8988 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8989 /* force full log commit if subvolume involved. */
8990 btrfs_set_log_full_commit(trans);
8991 } else {
8992 btrfs_pin_log_trans(dest);
8993 dest_log_pinned = true;
8994 ret = btrfs_insert_inode_ref(trans, root,
8995 old_dentry->d_name.name,
8996 old_dentry->d_name.len,
8997 new_ino,
8998 btrfs_ino(BTRFS_I(old_dir)),
8999 new_idx);
9000 if (ret) {
9001 if (need_abort)
9002 btrfs_abort_transaction(trans, ret);
9003 goto out_fail;
9004 }
9005 }
9006
9007 /* Update inode version and ctime/mtime. */
9008 inode_inc_iversion(old_dir);
9009 inode_inc_iversion(new_dir);
9010 inode_inc_iversion(old_inode);
9011 inode_inc_iversion(new_inode);
9012 old_dir->i_ctime = old_dir->i_mtime = ctime;
9013 new_dir->i_ctime = new_dir->i_mtime = ctime;
9014 old_inode->i_ctime = ctime;
9015 new_inode->i_ctime = ctime;
9016
9017 if (old_dentry->d_parent != new_dentry->d_parent) {
9018 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9019 BTRFS_I(old_inode), 1);
9020 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9021 BTRFS_I(new_inode), 1);
9022 }
9023
9024 /* src is a subvolume */
9025 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9026 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9027 } else { /* src is an inode */
9028 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9029 BTRFS_I(old_dentry->d_inode),
9030 old_dentry->d_name.name,
9031 old_dentry->d_name.len);
9032 if (!ret)
9033 ret = btrfs_update_inode(trans, root, old_inode);
9034 }
9035 if (ret) {
9036 btrfs_abort_transaction(trans, ret);
9037 goto out_fail;
9038 }
9039
9040 /* dest is a subvolume */
9041 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9042 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9043 } else { /* dest is an inode */
9044 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9045 BTRFS_I(new_dentry->d_inode),
9046 new_dentry->d_name.name,
9047 new_dentry->d_name.len);
9048 if (!ret)
9049 ret = btrfs_update_inode(trans, dest, new_inode);
9050 }
9051 if (ret) {
9052 btrfs_abort_transaction(trans, ret);
9053 goto out_fail;
9054 }
9055
9056 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9057 new_dentry->d_name.name,
9058 new_dentry->d_name.len, 0, old_idx);
9059 if (ret) {
9060 btrfs_abort_transaction(trans, ret);
9061 goto out_fail;
9062 }
9063
9064 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9065 old_dentry->d_name.name,
9066 old_dentry->d_name.len, 0, new_idx);
9067 if (ret) {
9068 btrfs_abort_transaction(trans, ret);
9069 goto out_fail;
9070 }
9071
9072 if (old_inode->i_nlink == 1)
9073 BTRFS_I(old_inode)->dir_index = old_idx;
9074 if (new_inode->i_nlink == 1)
9075 BTRFS_I(new_inode)->dir_index = new_idx;
9076
9077 if (root_log_pinned) {
9078 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9079 new_dentry->d_parent);
9080 btrfs_end_log_trans(root);
9081 root_log_pinned = false;
9082 }
9083 if (dest_log_pinned) {
9084 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9085 old_dentry->d_parent);
9086 btrfs_end_log_trans(dest);
9087 dest_log_pinned = false;
9088 }
9089 out_fail:
9090 /*
9091 * If we have pinned a log and an error happened, we unpin tasks
9092 * trying to sync the log and force them to fallback to a transaction
9093 * commit if the log currently contains any of the inodes involved in
9094 * this rename operation (to ensure we do not persist a log with an
9095 * inconsistent state for any of these inodes or leading to any
9096 * inconsistencies when replayed). If the transaction was aborted, the
9097 * abortion reason is propagated to userspace when attempting to commit
9098 * the transaction. If the log does not contain any of these inodes, we
9099 * allow the tasks to sync it.
9100 */
9101 if (ret && (root_log_pinned || dest_log_pinned)) {
9102 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9103 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9104 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9105 (new_inode &&
9106 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9107 btrfs_set_log_full_commit(trans);
9108
9109 if (root_log_pinned) {
9110 btrfs_end_log_trans(root);
9111 root_log_pinned = false;
9112 }
9113 if (dest_log_pinned) {
9114 btrfs_end_log_trans(dest);
9115 dest_log_pinned = false;
9116 }
9117 }
9118 ret2 = btrfs_end_transaction(trans);
9119 ret = ret ? ret : ret2;
9120 out_notrans:
9121 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9122 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9123 up_read(&fs_info->subvol_sem);
9124
9125 return ret;
9126 }
9127
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9128 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9129 struct btrfs_root *root,
9130 struct inode *dir,
9131 struct dentry *dentry)
9132 {
9133 int ret;
9134 struct inode *inode;
9135 u64 objectid;
9136 u64 index;
9137
9138 ret = btrfs_find_free_ino(root, &objectid);
9139 if (ret)
9140 return ret;
9141
9142 inode = btrfs_new_inode(trans, root, dir,
9143 dentry->d_name.name,
9144 dentry->d_name.len,
9145 btrfs_ino(BTRFS_I(dir)),
9146 objectid,
9147 S_IFCHR | WHITEOUT_MODE,
9148 &index);
9149
9150 if (IS_ERR(inode)) {
9151 ret = PTR_ERR(inode);
9152 return ret;
9153 }
9154
9155 inode->i_op = &btrfs_special_inode_operations;
9156 init_special_inode(inode, inode->i_mode,
9157 WHITEOUT_DEV);
9158
9159 ret = btrfs_init_inode_security(trans, inode, dir,
9160 &dentry->d_name);
9161 if (ret)
9162 goto out;
9163
9164 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9165 BTRFS_I(inode), 0, index);
9166 if (ret)
9167 goto out;
9168
9169 ret = btrfs_update_inode(trans, root, inode);
9170 out:
9171 unlock_new_inode(inode);
9172 if (ret)
9173 inode_dec_link_count(inode);
9174 iput(inode);
9175
9176 return ret;
9177 }
9178
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9179 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9180 struct inode *new_dir, struct dentry *new_dentry,
9181 unsigned int flags)
9182 {
9183 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9184 struct btrfs_trans_handle *trans;
9185 unsigned int trans_num_items;
9186 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9187 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9188 struct inode *new_inode = d_inode(new_dentry);
9189 struct inode *old_inode = d_inode(old_dentry);
9190 u64 index = 0;
9191 int ret;
9192 int ret2;
9193 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9194 bool log_pinned = false;
9195
9196 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9197 return -EPERM;
9198
9199 /* we only allow rename subvolume link between subvolumes */
9200 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9201 return -EXDEV;
9202
9203 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9204 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9205 return -ENOTEMPTY;
9206
9207 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9208 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9209 return -ENOTEMPTY;
9210
9211
9212 /* check for collisions, even if the name isn't there */
9213 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9214 new_dentry->d_name.name,
9215 new_dentry->d_name.len);
9216
9217 if (ret) {
9218 if (ret == -EEXIST) {
9219 /* we shouldn't get
9220 * eexist without a new_inode */
9221 if (WARN_ON(!new_inode)) {
9222 return ret;
9223 }
9224 } else {
9225 /* maybe -EOVERFLOW */
9226 return ret;
9227 }
9228 }
9229 ret = 0;
9230
9231 /*
9232 * we're using rename to replace one file with another. Start IO on it
9233 * now so we don't add too much work to the end of the transaction
9234 */
9235 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9236 filemap_flush(old_inode->i_mapping);
9237
9238 /* close the racy window with snapshot create/destroy ioctl */
9239 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9240 down_read(&fs_info->subvol_sem);
9241 /*
9242 * We want to reserve the absolute worst case amount of items. So if
9243 * both inodes are subvols and we need to unlink them then that would
9244 * require 4 item modifications, but if they are both normal inodes it
9245 * would require 5 item modifications, so we'll assume they are normal
9246 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9247 * should cover the worst case number of items we'll modify.
9248 * If our rename has the whiteout flag, we need more 5 units for the
9249 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9250 * when selinux is enabled).
9251 */
9252 trans_num_items = 11;
9253 if (flags & RENAME_WHITEOUT)
9254 trans_num_items += 5;
9255 trans = btrfs_start_transaction(root, trans_num_items);
9256 if (IS_ERR(trans)) {
9257 ret = PTR_ERR(trans);
9258 goto out_notrans;
9259 }
9260
9261 if (dest != root)
9262 btrfs_record_root_in_trans(trans, dest);
9263
9264 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9265 if (ret)
9266 goto out_fail;
9267
9268 BTRFS_I(old_inode)->dir_index = 0ULL;
9269 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9270 /* force full log commit if subvolume involved. */
9271 btrfs_set_log_full_commit(trans);
9272 } else {
9273 btrfs_pin_log_trans(root);
9274 log_pinned = true;
9275 ret = btrfs_insert_inode_ref(trans, dest,
9276 new_dentry->d_name.name,
9277 new_dentry->d_name.len,
9278 old_ino,
9279 btrfs_ino(BTRFS_I(new_dir)), index);
9280 if (ret)
9281 goto out_fail;
9282 }
9283
9284 inode_inc_iversion(old_dir);
9285 inode_inc_iversion(new_dir);
9286 inode_inc_iversion(old_inode);
9287 old_dir->i_ctime = old_dir->i_mtime =
9288 new_dir->i_ctime = new_dir->i_mtime =
9289 old_inode->i_ctime = current_time(old_dir);
9290
9291 if (old_dentry->d_parent != new_dentry->d_parent)
9292 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9293 BTRFS_I(old_inode), 1);
9294
9295 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9296 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9297 } else {
9298 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9299 BTRFS_I(d_inode(old_dentry)),
9300 old_dentry->d_name.name,
9301 old_dentry->d_name.len);
9302 if (!ret)
9303 ret = btrfs_update_inode(trans, root, old_inode);
9304 }
9305 if (ret) {
9306 btrfs_abort_transaction(trans, ret);
9307 goto out_fail;
9308 }
9309
9310 if (new_inode) {
9311 inode_inc_iversion(new_inode);
9312 new_inode->i_ctime = current_time(new_inode);
9313 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9314 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9315 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9316 BUG_ON(new_inode->i_nlink == 0);
9317 } else {
9318 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9319 BTRFS_I(d_inode(new_dentry)),
9320 new_dentry->d_name.name,
9321 new_dentry->d_name.len);
9322 }
9323 if (!ret && new_inode->i_nlink == 0)
9324 ret = btrfs_orphan_add(trans,
9325 BTRFS_I(d_inode(new_dentry)));
9326 if (ret) {
9327 btrfs_abort_transaction(trans, ret);
9328 goto out_fail;
9329 }
9330 }
9331
9332 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9333 new_dentry->d_name.name,
9334 new_dentry->d_name.len, 0, index);
9335 if (ret) {
9336 btrfs_abort_transaction(trans, ret);
9337 goto out_fail;
9338 }
9339
9340 if (old_inode->i_nlink == 1)
9341 BTRFS_I(old_inode)->dir_index = index;
9342
9343 if (log_pinned) {
9344 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9345 new_dentry->d_parent);
9346 btrfs_end_log_trans(root);
9347 log_pinned = false;
9348 }
9349
9350 if (flags & RENAME_WHITEOUT) {
9351 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9352 old_dentry);
9353
9354 if (ret) {
9355 btrfs_abort_transaction(trans, ret);
9356 goto out_fail;
9357 }
9358 }
9359 out_fail:
9360 /*
9361 * If we have pinned the log and an error happened, we unpin tasks
9362 * trying to sync the log and force them to fallback to a transaction
9363 * commit if the log currently contains any of the inodes involved in
9364 * this rename operation (to ensure we do not persist a log with an
9365 * inconsistent state for any of these inodes or leading to any
9366 * inconsistencies when replayed). If the transaction was aborted, the
9367 * abortion reason is propagated to userspace when attempting to commit
9368 * the transaction. If the log does not contain any of these inodes, we
9369 * allow the tasks to sync it.
9370 */
9371 if (ret && log_pinned) {
9372 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9373 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9374 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9375 (new_inode &&
9376 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9377 btrfs_set_log_full_commit(trans);
9378
9379 btrfs_end_log_trans(root);
9380 log_pinned = false;
9381 }
9382 ret2 = btrfs_end_transaction(trans);
9383 ret = ret ? ret : ret2;
9384 out_notrans:
9385 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9386 up_read(&fs_info->subvol_sem);
9387
9388 return ret;
9389 }
9390
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9391 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9392 struct inode *new_dir, struct dentry *new_dentry,
9393 unsigned int flags)
9394 {
9395 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9396 return -EINVAL;
9397
9398 if (flags & RENAME_EXCHANGE)
9399 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9400 new_dentry);
9401
9402 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9403 }
9404
9405 struct btrfs_delalloc_work {
9406 struct inode *inode;
9407 struct completion completion;
9408 struct list_head list;
9409 struct btrfs_work work;
9410 };
9411
btrfs_run_delalloc_work(struct btrfs_work * work)9412 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9413 {
9414 struct btrfs_delalloc_work *delalloc_work;
9415 struct inode *inode;
9416
9417 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9418 work);
9419 inode = delalloc_work->inode;
9420 filemap_flush(inode->i_mapping);
9421 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9422 &BTRFS_I(inode)->runtime_flags))
9423 filemap_flush(inode->i_mapping);
9424
9425 iput(inode);
9426 complete(&delalloc_work->completion);
9427 }
9428
btrfs_alloc_delalloc_work(struct inode * inode)9429 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9430 {
9431 struct btrfs_delalloc_work *work;
9432
9433 work = kmalloc(sizeof(*work), GFP_NOFS);
9434 if (!work)
9435 return NULL;
9436
9437 init_completion(&work->completion);
9438 INIT_LIST_HEAD(&work->list);
9439 work->inode = inode;
9440 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9441
9442 return work;
9443 }
9444
9445 /*
9446 * some fairly slow code that needs optimization. This walks the list
9447 * of all the inodes with pending delalloc and forces them to disk.
9448 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)9449 static int start_delalloc_inodes(struct btrfs_root *root,
9450 struct writeback_control *wbc, bool snapshot,
9451 bool in_reclaim_context)
9452 {
9453 struct btrfs_inode *binode;
9454 struct inode *inode;
9455 struct btrfs_delalloc_work *work, *next;
9456 struct list_head works;
9457 struct list_head splice;
9458 int ret = 0;
9459 bool full_flush = wbc->nr_to_write == LONG_MAX;
9460
9461 INIT_LIST_HEAD(&works);
9462 INIT_LIST_HEAD(&splice);
9463
9464 mutex_lock(&root->delalloc_mutex);
9465 spin_lock(&root->delalloc_lock);
9466 list_splice_init(&root->delalloc_inodes, &splice);
9467 while (!list_empty(&splice)) {
9468 binode = list_entry(splice.next, struct btrfs_inode,
9469 delalloc_inodes);
9470
9471 list_move_tail(&binode->delalloc_inodes,
9472 &root->delalloc_inodes);
9473
9474 if (in_reclaim_context &&
9475 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9476 continue;
9477
9478 inode = igrab(&binode->vfs_inode);
9479 if (!inode) {
9480 cond_resched_lock(&root->delalloc_lock);
9481 continue;
9482 }
9483 spin_unlock(&root->delalloc_lock);
9484
9485 if (snapshot)
9486 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9487 &binode->runtime_flags);
9488 if (full_flush) {
9489 work = btrfs_alloc_delalloc_work(inode);
9490 if (!work) {
9491 iput(inode);
9492 ret = -ENOMEM;
9493 goto out;
9494 }
9495 list_add_tail(&work->list, &works);
9496 btrfs_queue_work(root->fs_info->flush_workers,
9497 &work->work);
9498 } else {
9499 ret = sync_inode(inode, wbc);
9500 if (!ret &&
9501 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9502 &BTRFS_I(inode)->runtime_flags))
9503 ret = sync_inode(inode, wbc);
9504 btrfs_add_delayed_iput(inode);
9505 if (ret || wbc->nr_to_write <= 0)
9506 goto out;
9507 }
9508 cond_resched();
9509 spin_lock(&root->delalloc_lock);
9510 }
9511 spin_unlock(&root->delalloc_lock);
9512
9513 out:
9514 list_for_each_entry_safe(work, next, &works, list) {
9515 list_del_init(&work->list);
9516 wait_for_completion(&work->completion);
9517 kfree(work);
9518 }
9519
9520 if (!list_empty(&splice)) {
9521 spin_lock(&root->delalloc_lock);
9522 list_splice_tail(&splice, &root->delalloc_inodes);
9523 spin_unlock(&root->delalloc_lock);
9524 }
9525 mutex_unlock(&root->delalloc_mutex);
9526 return ret;
9527 }
9528
btrfs_start_delalloc_snapshot(struct btrfs_root * root)9529 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9530 {
9531 struct writeback_control wbc = {
9532 .nr_to_write = LONG_MAX,
9533 .sync_mode = WB_SYNC_NONE,
9534 .range_start = 0,
9535 .range_end = LLONG_MAX,
9536 };
9537 struct btrfs_fs_info *fs_info = root->fs_info;
9538
9539 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9540 return -EROFS;
9541
9542 return start_delalloc_inodes(root, &wbc, true, false);
9543 }
9544
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,u64 nr,bool in_reclaim_context)9545 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr,
9546 bool in_reclaim_context)
9547 {
9548 struct writeback_control wbc = {
9549 .nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr,
9550 .sync_mode = WB_SYNC_NONE,
9551 .range_start = 0,
9552 .range_end = LLONG_MAX,
9553 };
9554 struct btrfs_root *root;
9555 struct list_head splice;
9556 int ret;
9557
9558 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9559 return -EROFS;
9560
9561 INIT_LIST_HEAD(&splice);
9562
9563 mutex_lock(&fs_info->delalloc_root_mutex);
9564 spin_lock(&fs_info->delalloc_root_lock);
9565 list_splice_init(&fs_info->delalloc_roots, &splice);
9566 while (!list_empty(&splice) && nr) {
9567 /*
9568 * Reset nr_to_write here so we know that we're doing a full
9569 * flush.
9570 */
9571 if (nr == U64_MAX)
9572 wbc.nr_to_write = LONG_MAX;
9573
9574 root = list_first_entry(&splice, struct btrfs_root,
9575 delalloc_root);
9576 root = btrfs_grab_root(root);
9577 BUG_ON(!root);
9578 list_move_tail(&root->delalloc_root,
9579 &fs_info->delalloc_roots);
9580 spin_unlock(&fs_info->delalloc_root_lock);
9581
9582 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9583 btrfs_put_root(root);
9584 if (ret < 0 || wbc.nr_to_write <= 0)
9585 goto out;
9586 spin_lock(&fs_info->delalloc_root_lock);
9587 }
9588 spin_unlock(&fs_info->delalloc_root_lock);
9589
9590 ret = 0;
9591 out:
9592 if (!list_empty(&splice)) {
9593 spin_lock(&fs_info->delalloc_root_lock);
9594 list_splice_tail(&splice, &fs_info->delalloc_roots);
9595 spin_unlock(&fs_info->delalloc_root_lock);
9596 }
9597 mutex_unlock(&fs_info->delalloc_root_mutex);
9598 return ret;
9599 }
9600
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)9601 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9602 const char *symname)
9603 {
9604 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9605 struct btrfs_trans_handle *trans;
9606 struct btrfs_root *root = BTRFS_I(dir)->root;
9607 struct btrfs_path *path;
9608 struct btrfs_key key;
9609 struct inode *inode = NULL;
9610 int err;
9611 u64 objectid;
9612 u64 index = 0;
9613 int name_len;
9614 int datasize;
9615 unsigned long ptr;
9616 struct btrfs_file_extent_item *ei;
9617 struct extent_buffer *leaf;
9618
9619 name_len = strlen(symname);
9620 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9621 return -ENAMETOOLONG;
9622
9623 /*
9624 * 2 items for inode item and ref
9625 * 2 items for dir items
9626 * 1 item for updating parent inode item
9627 * 1 item for the inline extent item
9628 * 1 item for xattr if selinux is on
9629 */
9630 trans = btrfs_start_transaction(root, 7);
9631 if (IS_ERR(trans))
9632 return PTR_ERR(trans);
9633
9634 err = btrfs_find_free_ino(root, &objectid);
9635 if (err)
9636 goto out_unlock;
9637
9638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9639 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9640 objectid, S_IFLNK|S_IRWXUGO, &index);
9641 if (IS_ERR(inode)) {
9642 err = PTR_ERR(inode);
9643 inode = NULL;
9644 goto out_unlock;
9645 }
9646
9647 /*
9648 * If the active LSM wants to access the inode during
9649 * d_instantiate it needs these. Smack checks to see
9650 * if the filesystem supports xattrs by looking at the
9651 * ops vector.
9652 */
9653 inode->i_fop = &btrfs_file_operations;
9654 inode->i_op = &btrfs_file_inode_operations;
9655 inode->i_mapping->a_ops = &btrfs_aops;
9656
9657 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9658 if (err)
9659 goto out_unlock;
9660
9661 path = btrfs_alloc_path();
9662 if (!path) {
9663 err = -ENOMEM;
9664 goto out_unlock;
9665 }
9666 key.objectid = btrfs_ino(BTRFS_I(inode));
9667 key.offset = 0;
9668 key.type = BTRFS_EXTENT_DATA_KEY;
9669 datasize = btrfs_file_extent_calc_inline_size(name_len);
9670 err = btrfs_insert_empty_item(trans, root, path, &key,
9671 datasize);
9672 if (err) {
9673 btrfs_free_path(path);
9674 goto out_unlock;
9675 }
9676 leaf = path->nodes[0];
9677 ei = btrfs_item_ptr(leaf, path->slots[0],
9678 struct btrfs_file_extent_item);
9679 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9680 btrfs_set_file_extent_type(leaf, ei,
9681 BTRFS_FILE_EXTENT_INLINE);
9682 btrfs_set_file_extent_encryption(leaf, ei, 0);
9683 btrfs_set_file_extent_compression(leaf, ei, 0);
9684 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9685 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9686
9687 ptr = btrfs_file_extent_inline_start(ei);
9688 write_extent_buffer(leaf, symname, ptr, name_len);
9689 btrfs_mark_buffer_dirty(leaf);
9690 btrfs_free_path(path);
9691
9692 inode->i_op = &btrfs_symlink_inode_operations;
9693 inode_nohighmem(inode);
9694 inode_set_bytes(inode, name_len);
9695 btrfs_i_size_write(BTRFS_I(inode), name_len);
9696 err = btrfs_update_inode(trans, root, inode);
9697 /*
9698 * Last step, add directory indexes for our symlink inode. This is the
9699 * last step to avoid extra cleanup of these indexes if an error happens
9700 * elsewhere above.
9701 */
9702 if (!err)
9703 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9704 BTRFS_I(inode), 0, index);
9705 if (err)
9706 goto out_unlock;
9707
9708 d_instantiate_new(dentry, inode);
9709
9710 out_unlock:
9711 btrfs_end_transaction(trans);
9712 if (err && inode) {
9713 inode_dec_link_count(inode);
9714 discard_new_inode(inode);
9715 }
9716 btrfs_btree_balance_dirty(fs_info);
9717 return err;
9718 }
9719
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct inode * inode,struct btrfs_key * ins,u64 file_offset)9720 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9721 struct btrfs_trans_handle *trans_in,
9722 struct inode *inode, struct btrfs_key *ins,
9723 u64 file_offset)
9724 {
9725 struct btrfs_file_extent_item stack_fi;
9726 struct btrfs_replace_extent_info extent_info;
9727 struct btrfs_trans_handle *trans = trans_in;
9728 struct btrfs_path *path;
9729 u64 start = ins->objectid;
9730 u64 len = ins->offset;
9731 int ret;
9732
9733 memset(&stack_fi, 0, sizeof(stack_fi));
9734
9735 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9736 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9737 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9738 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9739 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9740 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9741 /* Encryption and other encoding is reserved and all 0 */
9742
9743 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9744 if (ret < 0)
9745 return ERR_PTR(ret);
9746
9747 if (trans) {
9748 ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9749 file_offset, &stack_fi, ret);
9750 if (ret)
9751 return ERR_PTR(ret);
9752 return trans;
9753 }
9754
9755 extent_info.disk_offset = start;
9756 extent_info.disk_len = len;
9757 extent_info.data_offset = 0;
9758 extent_info.data_len = len;
9759 extent_info.file_offset = file_offset;
9760 extent_info.extent_buf = (char *)&stack_fi;
9761 extent_info.is_new_extent = true;
9762 extent_info.qgroup_reserved = ret;
9763 extent_info.insertions = 0;
9764
9765 path = btrfs_alloc_path();
9766 if (!path)
9767 return ERR_PTR(-ENOMEM);
9768
9769 ret = btrfs_replace_file_extents(inode, path, file_offset,
9770 file_offset + len - 1, &extent_info,
9771 &trans);
9772 btrfs_free_path(path);
9773 if (ret)
9774 return ERR_PTR(ret);
9775
9776 return trans;
9777 }
9778
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)9779 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9780 u64 start, u64 num_bytes, u64 min_size,
9781 loff_t actual_len, u64 *alloc_hint,
9782 struct btrfs_trans_handle *trans)
9783 {
9784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9785 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9786 struct extent_map *em;
9787 struct btrfs_root *root = BTRFS_I(inode)->root;
9788 struct btrfs_key ins;
9789 u64 cur_offset = start;
9790 u64 clear_offset = start;
9791 u64 i_size;
9792 u64 cur_bytes;
9793 u64 last_alloc = (u64)-1;
9794 int ret = 0;
9795 bool own_trans = true;
9796 u64 end = start + num_bytes - 1;
9797
9798 if (trans)
9799 own_trans = false;
9800 while (num_bytes > 0) {
9801 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9802 cur_bytes = max(cur_bytes, min_size);
9803 /*
9804 * If we are severely fragmented we could end up with really
9805 * small allocations, so if the allocator is returning small
9806 * chunks lets make its job easier by only searching for those
9807 * sized chunks.
9808 */
9809 cur_bytes = min(cur_bytes, last_alloc);
9810 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9811 min_size, 0, *alloc_hint, &ins, 1, 0);
9812 if (ret)
9813 break;
9814
9815 /*
9816 * We've reserved this space, and thus converted it from
9817 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9818 * from here on out we will only need to clear our reservation
9819 * for the remaining unreserved area, so advance our
9820 * clear_offset by our extent size.
9821 */
9822 clear_offset += ins.offset;
9823
9824 last_alloc = ins.offset;
9825 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9826 /*
9827 * Now that we inserted the prealloc extent we can finally
9828 * decrement the number of reservations in the block group.
9829 * If we did it before, we could race with relocation and have
9830 * relocation miss the reserved extent, making it fail later.
9831 */
9832 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9833 if (IS_ERR(trans)) {
9834 ret = PTR_ERR(trans);
9835 btrfs_free_reserved_extent(fs_info, ins.objectid,
9836 ins.offset, 0);
9837 break;
9838 }
9839
9840 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9841 cur_offset + ins.offset -1, 0);
9842
9843 em = alloc_extent_map();
9844 if (!em) {
9845 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9846 &BTRFS_I(inode)->runtime_flags);
9847 goto next;
9848 }
9849
9850 em->start = cur_offset;
9851 em->orig_start = cur_offset;
9852 em->len = ins.offset;
9853 em->block_start = ins.objectid;
9854 em->block_len = ins.offset;
9855 em->orig_block_len = ins.offset;
9856 em->ram_bytes = ins.offset;
9857 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9858 em->generation = trans->transid;
9859
9860 while (1) {
9861 write_lock(&em_tree->lock);
9862 ret = add_extent_mapping(em_tree, em, 1);
9863 write_unlock(&em_tree->lock);
9864 if (ret != -EEXIST)
9865 break;
9866 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9867 cur_offset + ins.offset - 1,
9868 0);
9869 }
9870 free_extent_map(em);
9871 next:
9872 num_bytes -= ins.offset;
9873 cur_offset += ins.offset;
9874 *alloc_hint = ins.objectid + ins.offset;
9875
9876 inode_inc_iversion(inode);
9877 inode->i_ctime = current_time(inode);
9878 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9879 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9880 (actual_len > inode->i_size) &&
9881 (cur_offset > inode->i_size)) {
9882 if (cur_offset > actual_len)
9883 i_size = actual_len;
9884 else
9885 i_size = cur_offset;
9886 i_size_write(inode, i_size);
9887 btrfs_inode_safe_disk_i_size_write(inode, 0);
9888 }
9889
9890 ret = btrfs_update_inode(trans, root, inode);
9891
9892 if (ret) {
9893 btrfs_abort_transaction(trans, ret);
9894 if (own_trans)
9895 btrfs_end_transaction(trans);
9896 break;
9897 }
9898
9899 if (own_trans) {
9900 btrfs_end_transaction(trans);
9901 trans = NULL;
9902 }
9903 }
9904 if (clear_offset < end)
9905 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9906 end - clear_offset + 1);
9907 return ret;
9908 }
9909
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9910 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9911 u64 start, u64 num_bytes, u64 min_size,
9912 loff_t actual_len, u64 *alloc_hint)
9913 {
9914 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9915 min_size, actual_len, alloc_hint,
9916 NULL);
9917 }
9918
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9919 int btrfs_prealloc_file_range_trans(struct inode *inode,
9920 struct btrfs_trans_handle *trans, int mode,
9921 u64 start, u64 num_bytes, u64 min_size,
9922 loff_t actual_len, u64 *alloc_hint)
9923 {
9924 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9925 min_size, actual_len, alloc_hint, trans);
9926 }
9927
btrfs_set_page_dirty(struct page * page)9928 static int btrfs_set_page_dirty(struct page *page)
9929 {
9930 return __set_page_dirty_nobuffers(page);
9931 }
9932
btrfs_permission(struct inode * inode,int mask)9933 static int btrfs_permission(struct inode *inode, int mask)
9934 {
9935 struct btrfs_root *root = BTRFS_I(inode)->root;
9936 umode_t mode = inode->i_mode;
9937
9938 if (mask & MAY_WRITE &&
9939 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9940 if (btrfs_root_readonly(root))
9941 return -EROFS;
9942 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9943 return -EACCES;
9944 }
9945 return generic_permission(inode, mask);
9946 }
9947
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)9948 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9949 {
9950 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9951 struct btrfs_trans_handle *trans;
9952 struct btrfs_root *root = BTRFS_I(dir)->root;
9953 struct inode *inode = NULL;
9954 u64 objectid;
9955 u64 index;
9956 int ret = 0;
9957
9958 /*
9959 * 5 units required for adding orphan entry
9960 */
9961 trans = btrfs_start_transaction(root, 5);
9962 if (IS_ERR(trans))
9963 return PTR_ERR(trans);
9964
9965 ret = btrfs_find_free_ino(root, &objectid);
9966 if (ret)
9967 goto out;
9968
9969 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9970 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9971 if (IS_ERR(inode)) {
9972 ret = PTR_ERR(inode);
9973 inode = NULL;
9974 goto out;
9975 }
9976
9977 inode->i_fop = &btrfs_file_operations;
9978 inode->i_op = &btrfs_file_inode_operations;
9979
9980 inode->i_mapping->a_ops = &btrfs_aops;
9981
9982 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9983 if (ret)
9984 goto out;
9985
9986 ret = btrfs_update_inode(trans, root, inode);
9987 if (ret)
9988 goto out;
9989 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9990 if (ret)
9991 goto out;
9992
9993 /*
9994 * We set number of links to 0 in btrfs_new_inode(), and here we set
9995 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9996 * through:
9997 *
9998 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9999 */
10000 set_nlink(inode, 1);
10001 d_tmpfile(dentry, inode);
10002 unlock_new_inode(inode);
10003 mark_inode_dirty(inode);
10004 out:
10005 btrfs_end_transaction(trans);
10006 if (ret && inode)
10007 discard_new_inode(inode);
10008 btrfs_btree_balance_dirty(fs_info);
10009 return ret;
10010 }
10011
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10012 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10013 {
10014 struct inode *inode = tree->private_data;
10015 unsigned long index = start >> PAGE_SHIFT;
10016 unsigned long end_index = end >> PAGE_SHIFT;
10017 struct page *page;
10018
10019 while (index <= end_index) {
10020 page = find_get_page(inode->i_mapping, index);
10021 ASSERT(page); /* Pages should be in the extent_io_tree */
10022 set_page_writeback(page);
10023 put_page(page);
10024 index++;
10025 }
10026 }
10027
10028 #ifdef CONFIG_SWAP
10029 /*
10030 * Add an entry indicating a block group or device which is pinned by a
10031 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10032 * negative errno on failure.
10033 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10034 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10035 bool is_block_group)
10036 {
10037 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10038 struct btrfs_swapfile_pin *sp, *entry;
10039 struct rb_node **p;
10040 struct rb_node *parent = NULL;
10041
10042 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10043 if (!sp)
10044 return -ENOMEM;
10045 sp->ptr = ptr;
10046 sp->inode = inode;
10047 sp->is_block_group = is_block_group;
10048 sp->bg_extent_count = 1;
10049
10050 spin_lock(&fs_info->swapfile_pins_lock);
10051 p = &fs_info->swapfile_pins.rb_node;
10052 while (*p) {
10053 parent = *p;
10054 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10055 if (sp->ptr < entry->ptr ||
10056 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10057 p = &(*p)->rb_left;
10058 } else if (sp->ptr > entry->ptr ||
10059 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10060 p = &(*p)->rb_right;
10061 } else {
10062 if (is_block_group)
10063 entry->bg_extent_count++;
10064 spin_unlock(&fs_info->swapfile_pins_lock);
10065 kfree(sp);
10066 return 1;
10067 }
10068 }
10069 rb_link_node(&sp->node, parent, p);
10070 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10071 spin_unlock(&fs_info->swapfile_pins_lock);
10072 return 0;
10073 }
10074
10075 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10076 static void btrfs_free_swapfile_pins(struct inode *inode)
10077 {
10078 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10079 struct btrfs_swapfile_pin *sp;
10080 struct rb_node *node, *next;
10081
10082 spin_lock(&fs_info->swapfile_pins_lock);
10083 node = rb_first(&fs_info->swapfile_pins);
10084 while (node) {
10085 next = rb_next(node);
10086 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10087 if (sp->inode == inode) {
10088 rb_erase(&sp->node, &fs_info->swapfile_pins);
10089 if (sp->is_block_group) {
10090 btrfs_dec_block_group_swap_extents(sp->ptr,
10091 sp->bg_extent_count);
10092 btrfs_put_block_group(sp->ptr);
10093 }
10094 kfree(sp);
10095 }
10096 node = next;
10097 }
10098 spin_unlock(&fs_info->swapfile_pins_lock);
10099 }
10100
10101 struct btrfs_swap_info {
10102 u64 start;
10103 u64 block_start;
10104 u64 block_len;
10105 u64 lowest_ppage;
10106 u64 highest_ppage;
10107 unsigned long nr_pages;
10108 int nr_extents;
10109 };
10110
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10111 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10112 struct btrfs_swap_info *bsi)
10113 {
10114 unsigned long nr_pages;
10115 unsigned long max_pages;
10116 u64 first_ppage, first_ppage_reported, next_ppage;
10117 int ret;
10118
10119 /*
10120 * Our swapfile may have had its size extended after the swap header was
10121 * written. In that case activating the swapfile should not go beyond
10122 * the max size set in the swap header.
10123 */
10124 if (bsi->nr_pages >= sis->max)
10125 return 0;
10126
10127 max_pages = sis->max - bsi->nr_pages;
10128 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10129 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10130 PAGE_SIZE) >> PAGE_SHIFT;
10131
10132 if (first_ppage >= next_ppage)
10133 return 0;
10134 nr_pages = next_ppage - first_ppage;
10135 nr_pages = min(nr_pages, max_pages);
10136
10137 first_ppage_reported = first_ppage;
10138 if (bsi->start == 0)
10139 first_ppage_reported++;
10140 if (bsi->lowest_ppage > first_ppage_reported)
10141 bsi->lowest_ppage = first_ppage_reported;
10142 if (bsi->highest_ppage < (next_ppage - 1))
10143 bsi->highest_ppage = next_ppage - 1;
10144
10145 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10146 if (ret < 0)
10147 return ret;
10148 bsi->nr_extents += ret;
10149 bsi->nr_pages += nr_pages;
10150 return 0;
10151 }
10152
btrfs_swap_deactivate(struct file * file)10153 static void btrfs_swap_deactivate(struct file *file)
10154 {
10155 struct inode *inode = file_inode(file);
10156
10157 btrfs_free_swapfile_pins(inode);
10158 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10159 }
10160
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10161 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10162 sector_t *span)
10163 {
10164 struct inode *inode = file_inode(file);
10165 struct btrfs_root *root = BTRFS_I(inode)->root;
10166 struct btrfs_fs_info *fs_info = root->fs_info;
10167 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10168 struct extent_state *cached_state = NULL;
10169 struct extent_map *em = NULL;
10170 struct btrfs_device *device = NULL;
10171 struct btrfs_swap_info bsi = {
10172 .lowest_ppage = (sector_t)-1ULL,
10173 };
10174 int ret = 0;
10175 u64 isize;
10176 u64 start;
10177
10178 /*
10179 * If the swap file was just created, make sure delalloc is done. If the
10180 * file changes again after this, the user is doing something stupid and
10181 * we don't really care.
10182 */
10183 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10184 if (ret)
10185 return ret;
10186
10187 /*
10188 * The inode is locked, so these flags won't change after we check them.
10189 */
10190 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10191 btrfs_warn(fs_info, "swapfile must not be compressed");
10192 return -EINVAL;
10193 }
10194 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10195 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10196 return -EINVAL;
10197 }
10198 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10199 btrfs_warn(fs_info, "swapfile must not be checksummed");
10200 return -EINVAL;
10201 }
10202
10203 /*
10204 * Balance or device remove/replace/resize can move stuff around from
10205 * under us. The exclop protection makes sure they aren't running/won't
10206 * run concurrently while we are mapping the swap extents, and
10207 * fs_info->swapfile_pins prevents them from running while the swap
10208 * file is active and moving the extents. Note that this also prevents
10209 * a concurrent device add which isn't actually necessary, but it's not
10210 * really worth the trouble to allow it.
10211 */
10212 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10213 btrfs_warn(fs_info,
10214 "cannot activate swapfile while exclusive operation is running");
10215 return -EBUSY;
10216 }
10217
10218 /*
10219 * Prevent snapshot creation while we are activating the swap file.
10220 * We do not want to race with snapshot creation. If snapshot creation
10221 * already started before we bumped nr_swapfiles from 0 to 1 and
10222 * completes before the first write into the swap file after it is
10223 * activated, than that write would fallback to COW.
10224 */
10225 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10226 btrfs_exclop_finish(fs_info);
10227 btrfs_warn(fs_info,
10228 "cannot activate swapfile because snapshot creation is in progress");
10229 return -EINVAL;
10230 }
10231 /*
10232 * Snapshots can create extents which require COW even if NODATACOW is
10233 * set. We use this counter to prevent snapshots. We must increment it
10234 * before walking the extents because we don't want a concurrent
10235 * snapshot to run after we've already checked the extents.
10236 *
10237 * It is possible that subvolume is marked for deletion but still not
10238 * removed yet. To prevent this race, we check the root status before
10239 * activating the swapfile.
10240 */
10241 spin_lock(&root->root_item_lock);
10242 if (btrfs_root_dead(root)) {
10243 spin_unlock(&root->root_item_lock);
10244
10245 btrfs_exclop_finish(fs_info);
10246 btrfs_warn(fs_info,
10247 "cannot activate swapfile because subvolume %llu is being deleted",
10248 root->root_key.objectid);
10249 return -EPERM;
10250 }
10251 atomic_inc(&root->nr_swapfiles);
10252 spin_unlock(&root->root_item_lock);
10253
10254 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10255
10256 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10257 start = 0;
10258 while (start < isize) {
10259 u64 logical_block_start, physical_block_start;
10260 struct btrfs_block_group *bg;
10261 u64 len = isize - start;
10262
10263 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10264 if (IS_ERR(em)) {
10265 ret = PTR_ERR(em);
10266 goto out;
10267 }
10268
10269 if (em->block_start == EXTENT_MAP_HOLE) {
10270 btrfs_warn(fs_info, "swapfile must not have holes");
10271 ret = -EINVAL;
10272 goto out;
10273 }
10274 if (em->block_start == EXTENT_MAP_INLINE) {
10275 /*
10276 * It's unlikely we'll ever actually find ourselves
10277 * here, as a file small enough to fit inline won't be
10278 * big enough to store more than the swap header, but in
10279 * case something changes in the future, let's catch it
10280 * here rather than later.
10281 */
10282 btrfs_warn(fs_info, "swapfile must not be inline");
10283 ret = -EINVAL;
10284 goto out;
10285 }
10286 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10287 btrfs_warn(fs_info, "swapfile must not be compressed");
10288 ret = -EINVAL;
10289 goto out;
10290 }
10291
10292 logical_block_start = em->block_start + (start - em->start);
10293 len = min(len, em->len - (start - em->start));
10294 free_extent_map(em);
10295 em = NULL;
10296
10297 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10298 if (ret < 0) {
10299 goto out;
10300 } else if (ret) {
10301 ret = 0;
10302 } else {
10303 btrfs_warn(fs_info,
10304 "swapfile must not be copy-on-write");
10305 ret = -EINVAL;
10306 goto out;
10307 }
10308
10309 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10310 if (IS_ERR(em)) {
10311 ret = PTR_ERR(em);
10312 goto out;
10313 }
10314
10315 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10316 btrfs_warn(fs_info,
10317 "swapfile must have single data profile");
10318 ret = -EINVAL;
10319 goto out;
10320 }
10321
10322 if (device == NULL) {
10323 device = em->map_lookup->stripes[0].dev;
10324 ret = btrfs_add_swapfile_pin(inode, device, false);
10325 if (ret == 1)
10326 ret = 0;
10327 else if (ret)
10328 goto out;
10329 } else if (device != em->map_lookup->stripes[0].dev) {
10330 btrfs_warn(fs_info, "swapfile must be on one device");
10331 ret = -EINVAL;
10332 goto out;
10333 }
10334
10335 physical_block_start = (em->map_lookup->stripes[0].physical +
10336 (logical_block_start - em->start));
10337 len = min(len, em->len - (logical_block_start - em->start));
10338 free_extent_map(em);
10339 em = NULL;
10340
10341 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10342 if (!bg) {
10343 btrfs_warn(fs_info,
10344 "could not find block group containing swapfile");
10345 ret = -EINVAL;
10346 goto out;
10347 }
10348
10349 if (!btrfs_inc_block_group_swap_extents(bg)) {
10350 btrfs_warn(fs_info,
10351 "block group for swapfile at %llu is read-only%s",
10352 bg->start,
10353 atomic_read(&fs_info->scrubs_running) ?
10354 " (scrub running)" : "");
10355 btrfs_put_block_group(bg);
10356 ret = -EINVAL;
10357 goto out;
10358 }
10359
10360 ret = btrfs_add_swapfile_pin(inode, bg, true);
10361 if (ret) {
10362 btrfs_put_block_group(bg);
10363 if (ret == 1)
10364 ret = 0;
10365 else
10366 goto out;
10367 }
10368
10369 if (bsi.block_len &&
10370 bsi.block_start + bsi.block_len == physical_block_start) {
10371 bsi.block_len += len;
10372 } else {
10373 if (bsi.block_len) {
10374 ret = btrfs_add_swap_extent(sis, &bsi);
10375 if (ret)
10376 goto out;
10377 }
10378 bsi.start = start;
10379 bsi.block_start = physical_block_start;
10380 bsi.block_len = len;
10381 }
10382
10383 start += len;
10384 }
10385
10386 if (bsi.block_len)
10387 ret = btrfs_add_swap_extent(sis, &bsi);
10388
10389 out:
10390 if (!IS_ERR_OR_NULL(em))
10391 free_extent_map(em);
10392
10393 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10394
10395 if (ret)
10396 btrfs_swap_deactivate(file);
10397
10398 btrfs_drew_write_unlock(&root->snapshot_lock);
10399
10400 btrfs_exclop_finish(fs_info);
10401
10402 if (ret)
10403 return ret;
10404
10405 if (device)
10406 sis->bdev = device->bdev;
10407 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10408 sis->max = bsi.nr_pages;
10409 sis->pages = bsi.nr_pages - 1;
10410 sis->highest_bit = bsi.nr_pages - 1;
10411 return bsi.nr_extents;
10412 }
10413 #else
btrfs_swap_deactivate(struct file * file)10414 static void btrfs_swap_deactivate(struct file *file)
10415 {
10416 }
10417
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10418 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10419 sector_t *span)
10420 {
10421 return -EOPNOTSUPP;
10422 }
10423 #endif
10424
10425 static const struct inode_operations btrfs_dir_inode_operations = {
10426 .getattr = btrfs_getattr,
10427 .lookup = btrfs_lookup,
10428 .create = btrfs_create,
10429 .unlink = btrfs_unlink,
10430 .link = btrfs_link,
10431 .mkdir = btrfs_mkdir,
10432 .rmdir = btrfs_rmdir,
10433 .rename = btrfs_rename2,
10434 .symlink = btrfs_symlink,
10435 .setattr = btrfs_setattr,
10436 .mknod = btrfs_mknod,
10437 .listxattr = btrfs_listxattr,
10438 .permission = btrfs_permission,
10439 .get_acl = btrfs_get_acl,
10440 .set_acl = btrfs_set_acl,
10441 .update_time = btrfs_update_time,
10442 .tmpfile = btrfs_tmpfile,
10443 };
10444
10445 static const struct file_operations btrfs_dir_file_operations = {
10446 .llseek = generic_file_llseek,
10447 .read = generic_read_dir,
10448 .iterate_shared = btrfs_real_readdir,
10449 .open = btrfs_opendir,
10450 .unlocked_ioctl = btrfs_ioctl,
10451 #ifdef CONFIG_COMPAT
10452 .compat_ioctl = btrfs_compat_ioctl,
10453 #endif
10454 .release = btrfs_release_file,
10455 .fsync = btrfs_sync_file,
10456 };
10457
10458 /*
10459 * btrfs doesn't support the bmap operation because swapfiles
10460 * use bmap to make a mapping of extents in the file. They assume
10461 * these extents won't change over the life of the file and they
10462 * use the bmap result to do IO directly to the drive.
10463 *
10464 * the btrfs bmap call would return logical addresses that aren't
10465 * suitable for IO and they also will change frequently as COW
10466 * operations happen. So, swapfile + btrfs == corruption.
10467 *
10468 * For now we're avoiding this by dropping bmap.
10469 */
10470 static const struct address_space_operations btrfs_aops = {
10471 .readpage = btrfs_readpage,
10472 .writepage = btrfs_writepage,
10473 .writepages = btrfs_writepages,
10474 .readahead = btrfs_readahead,
10475 .direct_IO = noop_direct_IO,
10476 .invalidatepage = btrfs_invalidatepage,
10477 .releasepage = btrfs_releasepage,
10478 #ifdef CONFIG_MIGRATION
10479 .migratepage = btrfs_migratepage,
10480 #endif
10481 .set_page_dirty = btrfs_set_page_dirty,
10482 .error_remove_page = generic_error_remove_page,
10483 .swap_activate = btrfs_swap_activate,
10484 .swap_deactivate = btrfs_swap_deactivate,
10485 };
10486
10487 static const struct inode_operations btrfs_file_inode_operations = {
10488 .getattr = btrfs_getattr,
10489 .setattr = btrfs_setattr,
10490 .listxattr = btrfs_listxattr,
10491 .permission = btrfs_permission,
10492 .fiemap = btrfs_fiemap,
10493 .get_acl = btrfs_get_acl,
10494 .set_acl = btrfs_set_acl,
10495 .update_time = btrfs_update_time,
10496 };
10497 static const struct inode_operations btrfs_special_inode_operations = {
10498 .getattr = btrfs_getattr,
10499 .setattr = btrfs_setattr,
10500 .permission = btrfs_permission,
10501 .listxattr = btrfs_listxattr,
10502 .get_acl = btrfs_get_acl,
10503 .set_acl = btrfs_set_acl,
10504 .update_time = btrfs_update_time,
10505 };
10506 static const struct inode_operations btrfs_symlink_inode_operations = {
10507 .get_link = page_get_link,
10508 .getattr = btrfs_getattr,
10509 .setattr = btrfs_setattr,
10510 .permission = btrfs_permission,
10511 .listxattr = btrfs_listxattr,
10512 .update_time = btrfs_update_time,
10513 };
10514
10515 const struct dentry_operations btrfs_dentry_operations = {
10516 .d_delete = btrfs_dentry_delete,
10517 };
10518