1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 #define CGROUP_ARRAY_INDEX_ZERO 0
30 #define CGROUP_ARRAY_INDEX_ONE 1
31 #define CGROUP_ARRAY_INDEX_TWO 2
32
33 /* Controllers blocked by the commandline in v1 */
34 static u16 cgroup_no_v1_mask;
35
36 /* disable named v1 mounts */
37 static bool cgroup_no_v1_named;
38
39 /*
40 * pidlist destructions need to be flushed on cgroup destruction. Use a
41 * separate workqueue as flush domain.
42 */
43 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
44
45 /* protects cgroup_subsys->release_agent_path */
46 static DEFINE_SPINLOCK(release_agent_path_lock);
47
cgroup1_ssid_disabled(int ssid)48 bool cgroup1_ssid_disabled(int ssid)
49 {
50 return cgroup_no_v1_mask & (1 << ssid);
51 }
52
53 /**
54 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
55 * @from: attach to all cgroups of a given task
56 * @tsk: the task to be attached
57 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)58 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
59 {
60 struct cgroup_root *root;
61 int retval = 0;
62
63 mutex_lock(&cgroup_mutex);
64 percpu_down_write(&cgroup_threadgroup_rwsem);
65 for_each_root(root)
66 {
67 struct cgroup *from_cgrp;
68
69 if (root == &cgrp_dfl_root) {
70 continue;
71 }
72
73 spin_lock_irq(&css_set_lock);
74 from_cgrp = task_cgroup_from_root(from, root);
75 spin_unlock_irq(&css_set_lock);
76
77 retval = cgroup_attach_task(from_cgrp, tsk, false);
78 if (retval) {
79 break;
80 }
81 }
82 percpu_up_write(&cgroup_threadgroup_rwsem);
83 mutex_unlock(&cgroup_mutex);
84
85 return retval;
86 }
87 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
88
89 /**
90 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
91 * @to: cgroup to which the tasks will be moved
92 * @from: cgroup in which the tasks currently reside
93 *
94 * Locking rules between cgroup_post_fork() and the migration path
95 * guarantee that, if a task is forking while being migrated, the new child
96 * is guaranteed to be either visible in the source cgroup after the
97 * parent's migration is complete or put into the target cgroup. No task
98 * can slip out of migration through forking.
99 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)100 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
101 {
102 DEFINE_CGROUP_MGCTX(mgctx);
103 struct cgrp_cset_link *link;
104 struct css_task_iter it;
105 struct task_struct *task;
106 int ret;
107
108 if (cgroup_on_dfl(to)) {
109 return -EINVAL;
110 }
111
112 ret = cgroup_migrate_vet_dst(to);
113 if (ret) {
114 return ret;
115 }
116
117 mutex_lock(&cgroup_mutex);
118
119 percpu_down_write(&cgroup_threadgroup_rwsem);
120
121 /* all tasks in @from are being moved, all csets are source */
122 spin_lock_irq(&css_set_lock);
123 list_for_each_entry(link, &from->cset_links, cset_link) cgroup_migrate_add_src(link->cset, to, &mgctx);
124 spin_unlock_irq(&css_set_lock);
125
126 ret = cgroup_migrate_prepare_dst(&mgctx);
127 if (ret) {
128 goto out_err;
129 }
130
131 /*
132 * Migrate tasks one-by-one until @from is empty. This fails iff
133 * ->can_attach() fails.
134 */
135 do {
136 css_task_iter_start(&from->self, 0, &it);
137
138 do {
139 task = css_task_iter_next(&it);
140 } while (task && (task->flags & PF_EXITING));
141
142 if (task) {
143 get_task_struct(task);
144 }
145 css_task_iter_end(&it);
146
147 if (task) {
148 ret = cgroup_migrate(task, false, &mgctx);
149 if (!ret) {
150 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
151 }
152 put_task_struct(task);
153 }
154 } while (task && !ret);
155 out_err:
156 cgroup_migrate_finish(&mgctx);
157 percpu_up_write(&cgroup_threadgroup_rwsem);
158 mutex_unlock(&cgroup_mutex);
159 return ret;
160 }
161
162 /*
163 * Stuff for reading the 'tasks'/'procs' files.
164 *
165 * Reading this file can return large amounts of data if a cgroup has
166 * *lots* of attached tasks. So it may need several calls to read(),
167 * but we cannot guarantee that the information we produce is correct
168 * unless we produce it entirely atomically.
169 *
170 */
171
172 /* which pidlist file are we talking about? */
173 enum cgroup_filetype {
174 CGROUP_FILE_PROCS,
175 CGROUP_FILE_TASKS,
176 };
177
178 /*
179 * A pidlist is a list of pids that virtually represents the contents of one
180 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
181 * a pair (one each for procs, tasks) for each pid namespace that's relevant
182 * to the cgroup.
183 */
184 struct cgroup_pidlist {
185 /*
186 * used to find which pidlist is wanted. doesn't change as long as
187 * this particular list stays in the list.
188 */
189 struct {
190 enum cgroup_filetype type;
191 struct pid_namespace *ns;
192 } key;
193 /* array of xids */
194 pid_t *list;
195 /* how many elements the above list has */
196 int length;
197 /* each of these stored in a list by its cgroup */
198 struct list_head links;
199 /* pointer to the cgroup we belong to, for list removal purposes */
200 struct cgroup *owner;
201 /* for delayed destruction */
202 struct delayed_work destroy_dwork;
203 };
204
205 /*
206 * Used to destroy all pidlists lingering waiting for destroy timer. None
207 * should be left afterwards.
208 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)209 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
210 {
211 struct cgroup_pidlist *l, *tmp_l;
212
213 mutex_lock(&cgrp->pidlist_mutex);
214 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
215 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
216 mutex_unlock(&cgrp->pidlist_mutex);
217
218 flush_workqueue(cgroup_pidlist_destroy_wq);
219 BUG_ON(!list_empty(&cgrp->pidlists));
220 }
221
cgroup_pidlist_destroy_work_fn(struct work_struct * work)222 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
223 {
224 struct delayed_work *dwork = to_delayed_work(work);
225 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, destroy_dwork);
226 struct cgroup_pidlist *tofree = NULL;
227
228 mutex_lock(&l->owner->pidlist_mutex);
229
230 /*
231 * Destroy iff we didn't get queued again. The state won't change
232 * as destroy_dwork can only be queued while locked.
233 */
234 if (!delayed_work_pending(dwork)) {
235 list_del(&l->links);
236 kvfree(l->list);
237 put_pid_ns(l->key.ns);
238 tofree = l;
239 }
240
241 mutex_unlock(&l->owner->pidlist_mutex);
242 kfree(tofree);
243 }
244
245 /*
246 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
247 * Returns the number of unique elements.
248 */
pidlist_uniq(pid_t * list,int length)249 static int pidlist_uniq(pid_t *list, int length)
250 {
251 int src, dest = 1;
252
253 /*
254 * we presume the 0th element is unique, so i starts at 1. trivial
255 * edge cases first; no work needs to be done for either
256 */
257 if (length == 0 || length == 1) {
258 return length;
259 }
260 /* src and dest walk down the list; dest counts unique elements */
261 for (src = 1; src < length; src++) {
262 /* find next unique element */
263 while (list[src] == list[src - 1]) {
264 src++;
265 if (src == length) {
266 goto after;
267 }
268 }
269 /* dest always points to where the next unique element goes */
270 list[dest] = list[src];
271 dest++;
272 }
273 after:
274 return dest;
275 }
276
277 /*
278 * The two pid files - task and cgroup.procs - guaranteed that the result
279 * is sorted, which forced this whole pidlist fiasco. As pid order is
280 * different per namespace, each namespace needs differently sorted list,
281 * making it impossible to use, for example, single rbtree of member tasks
282 * sorted by task pointer. As pidlists can be fairly large, allocating one
283 * per open file is dangerous, so cgroup had to implement shared pool of
284 * pidlists keyed by cgroup and namespace.
285 */
cmppid(const void * a,const void * b)286 static int cmppid(const void *a, const void *b)
287 {
288 return *(pid_t *)a - *(pid_t *)b;
289 }
290
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)291 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, enum cgroup_filetype type)
292 {
293 struct cgroup_pidlist *l;
294 /* don't need task_nsproxy() if we're looking at ourself */
295 struct pid_namespace *ns = task_active_pid_ns(current);
296
297 lockdep_assert_held(&cgrp->pidlist_mutex);
298
299 list_for_each_entry(l, &cgrp->pidlists, links) if (l->key.type == type && l->key.ns == ns) return l;
300 return NULL;
301 }
302
303 /*
304 * find the appropriate pidlist for our purpose (given procs vs tasks)
305 * returns with the lock on that pidlist already held, and takes care
306 * of the use count, or returns NULL with no locks held if we're out of
307 * memory.
308 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)309 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, enum cgroup_filetype type)
310 {
311 struct cgroup_pidlist *l;
312
313 lockdep_assert_held(&cgrp->pidlist_mutex);
314
315 l = cgroup_pidlist_find(cgrp, type);
316 if (l) {
317 return l;
318 }
319
320 /* entry not found; create a new one */
321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
322 if (!l) {
323 return l;
324 }
325
326 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
327 l->key.type = type;
328 /* don't need task_nsproxy() if we're looking at ourself */
329 l->key.ns = get_pid_ns(task_active_pid_ns(current));
330 l->owner = cgrp;
331 list_add(&l->links, &cgrp->pidlists);
332 return l;
333 }
334
335 /*
336 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
337 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)338 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, struct cgroup_pidlist **lp)
339 {
340 pid_t *array;
341 int length;
342 int pid, n = 0; /* used for populating the array */
343 struct css_task_iter it;
344 struct task_struct *tsk;
345 struct cgroup_pidlist *l;
346
347 lockdep_assert_held(&cgrp->pidlist_mutex);
348
349 /*
350 * If cgroup gets more users after we read count, we won't have
351 * enough space - tough. This race is indistinguishable to the
352 * caller from the case that the additional cgroup users didn't
353 * show up until sometime later on.
354 */
355 length = cgroup_task_count(cgrp);
356 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
357 if (!array) {
358 return -ENOMEM;
359 }
360 /* now, populate the array */
361 css_task_iter_start(&cgrp->self, 0, &it);
362 while ((tsk = css_task_iter_next(&it))) {
363 if (unlikely(n == length)) {
364 break;
365 }
366 /* get tgid or pid for procs or tasks file respectively */
367 if (type == CGROUP_FILE_PROCS) {
368 pid = task_tgid_vnr(tsk);
369 } else {
370 pid = task_pid_vnr(tsk);
371 }
372 if (pid > 0) { /* make sure to only use valid results */
373 array[n++] = pid;
374 }
375 }
376 css_task_iter_end(&it);
377 length = n;
378 /* now sort & (if procs) strip out duplicates */
379 sort(array, length, sizeof(pid_t), cmppid, NULL);
380 if (type == CGROUP_FILE_PROCS) {
381 length = pidlist_uniq(array, length);
382 }
383
384 l = cgroup_pidlist_find_create(cgrp, type);
385 if (!l) {
386 kvfree(array);
387 return -ENOMEM;
388 }
389
390 /* store array, freeing old if necessary */
391 kvfree(l->list);
392 l->list = array;
393 l->length = length;
394 *lp = l;
395 return 0;
396 }
397
398 /*
399 * seq_file methods for the tasks/procs files. The seq_file position is the
400 * next pid to display; the seq_file iterator is a pointer to the pid
401 * in the cgroup->l->list array.
402 */
403
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)404 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
405 {
406 /*
407 * Initially we receive a position value that corresponds to
408 * one more than the last pid shown (or 0 on the first call or
409 * after a seek to the start). Use a binary-search to find the
410 * next pid to display, if any
411 */
412 struct kernfs_open_file *of = s->private;
413 struct cgroup_file_ctx *ctx = of->priv;
414 struct cgroup *cgrp = seq_css(s)->cgroup;
415 struct cgroup_pidlist *l;
416 enum cgroup_filetype type = seq_cft(s)->private;
417 int index = 0, pid = *pos;
418 int *iter, ret;
419
420 mutex_lock(&cgrp->pidlist_mutex);
421
422 /*
423 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
424 * start() after open. If the matching pidlist is around, we can use
425 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
426 * directly. It could already have been destroyed.
427 */
428 if (ctx->procs1.pidlist) {
429 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
430 }
431
432 /*
433 * Either this is the first start() after open or the matching
434 * pidlist has been destroyed inbetween. Create a new one.
435 */
436 if (!ctx->procs1.pidlist) {
437 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
438 if (ret) {
439 return ERR_PTR(ret);
440 }
441 }
442 l = ctx->procs1.pidlist;
443
444 if (pid) {
445 int end = l->length;
446
447 while (index < end) {
448 int mid = (index + end) / 2;
449 if (l->list[mid] == pid) {
450 index = mid;
451 break;
452 } else if (l->list[mid] <= pid) {
453 index = mid + 1;
454 } else {
455 end = mid;
456 }
457 }
458 }
459 /* If we're off the end of the array, we're done */
460 if (index >= l->length) {
461 return NULL;
462 }
463 /* Update the abstract position to be the actual pid that we found */
464 iter = l->list + index;
465 *pos = *iter;
466 return iter;
467 }
468
cgroup_pidlist_stop(struct seq_file * s,void * v)469 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
470 {
471 struct kernfs_open_file *of = s->private;
472 struct cgroup_file_ctx *ctx = of->priv;
473 struct cgroup_pidlist *l = ctx->procs1.pidlist;
474
475 if (l) {
476 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, CGROUP_PIDLIST_DESTROY_DELAY);
477 }
478 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
479 }
480
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)481 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
482 {
483 struct kernfs_open_file *of = s->private;
484 struct cgroup_file_ctx *ctx = of->priv;
485 struct cgroup_pidlist *l = ctx->procs1.pidlist;
486 pid_t *p = v;
487 pid_t *end = l->list + l->length;
488 /*
489 * Advance to the next pid in the array. If this goes off the
490 * end, we're done
491 */
492 p++;
493 if (p >= end) {
494 (*pos)++;
495 return NULL;
496 } else {
497 *pos = *p;
498 return p;
499 }
500 }
501
cgroup_pidlist_show(struct seq_file * s,void * v)502 static int cgroup_pidlist_show(struct seq_file *s, void *v)
503 {
504 seq_printf(s, "%d\n", *(int *)v);
505
506 return 0;
507 }
508
cgroup1_procs_write_func(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)509 static ssize_t cgroup1_procs_write_func(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off,
510 bool threadgroup)
511 {
512 struct cgroup *cgrp;
513 struct task_struct *task;
514 const struct cred *cred, *tcred;
515 ssize_t ret;
516 bool locked;
517
518 cgrp = cgroup_kn_lock_live(of->kn, false);
519 if (!cgrp) {
520 return -ENODEV;
521 }
522
523 task = cgroup_procs_write_start(buf, threadgroup, &locked);
524 ret = PTR_ERR_OR_ZERO(task);
525 if (ret) {
526 goto out_unlock;
527 }
528
529 /*
530 * Even if we're attaching all tasks in the thread group, we only need
531 * to check permissions on one of them. Check permissions using the
532 * credentials from file open to protect against inherited fd attacks.
533 */
534 cred = of->file->f_cred;
535 tcred = get_task_cred(task);
536 #ifdef CONFIG_HYPERHOLD
537 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) && !uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
538 #else
539 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
540 #endif
541 !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid) &&
542 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
543 ret = -EACCES;
544 put_cred(tcred);
545 if (ret) {
546 goto out_finish;
547 }
548
549 ret = cgroup_attach_task(cgrp, task, threadgroup);
550
551 out_finish:
552 cgroup_procs_write_finish(task, locked);
553 out_unlock:
554 cgroup_kn_unlock(of->kn);
555
556 return ret ?: nbytes;
557 }
558
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)559 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)
560 {
561 return cgroup1_procs_write_func(of, buf, nbytes, off, true);
562 }
563
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)564 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)
565 {
566 return cgroup1_procs_write_func(of, buf, nbytes, off, false);
567 }
568
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)569 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off)
570 {
571 struct cgroup *cgrp;
572 struct cgroup_file_ctx *ctx;
573
574 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
575
576 /*
577 * Release agent gets called with all capabilities,
578 * require capabilities to set release agent.
579 */
580 ctx = of->priv;
581 if ((ctx->ns->user_ns != &init_user_ns) ||
582 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
583 return -EPERM;
584
585 cgrp = cgroup_kn_lock_live(of->kn, false);
586 if (!cgrp) {
587 return -ENODEV;
588 }
589 spin_lock(&release_agent_path_lock);
590 strlcpy(cgrp->root->release_agent_path, strstrip(buf), sizeof(cgrp->root->release_agent_path));
591 spin_unlock(&release_agent_path_lock);
592 cgroup_kn_unlock(of->kn);
593 return nbytes;
594 }
595
cgroup_release_agent_show(struct seq_file * seq,void * v)596 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
597 {
598 struct cgroup *cgrp = seq_css(seq)->cgroup;
599
600 spin_lock(&release_agent_path_lock);
601 seq_puts(seq, cgrp->root->release_agent_path);
602 spin_unlock(&release_agent_path_lock);
603 seq_putc(seq, '\n');
604 return 0;
605 }
606
cgroup_sane_behavior_show(struct seq_file * seq,void * v)607 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
608 {
609 seq_puts(seq, "0\n");
610 return 0;
611 }
612
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)613 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft)
614 {
615 return notify_on_release(css->cgroup);
616 }
617
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)618 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)
619 {
620 if (val) {
621 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
622 } else {
623 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
624 }
625 return 0;
626 }
627
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)628 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, struct cftype *cft)
629 {
630 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
631 }
632
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)633 static int cgroup_clone_children_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val)
634 {
635 if (val) {
636 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
637 } else {
638 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
639 }
640 return 0;
641 }
642
643 /* cgroup core interface files for the legacy hierarchies */
644 struct cftype cgroup1_base_files[] = {
645 {
646 .name = "cgroup.procs",
647 .seq_start = cgroup_pidlist_start,
648 .seq_next = cgroup_pidlist_next,
649 .seq_stop = cgroup_pidlist_stop,
650 .seq_show = cgroup_pidlist_show,
651 .private = CGROUP_FILE_PROCS,
652 .write = cgroup1_procs_write,
653 },
654 {
655 .name = "cgroup.clone_children",
656 .read_u64 = cgroup_clone_children_read,
657 .write_u64 = cgroup_clone_children_write,
658 },
659 {
660 .name = "cgroup.sane_behavior",
661 .flags = CFTYPE_ONLY_ON_ROOT,
662 .seq_show = cgroup_sane_behavior_show,
663 },
664 {
665 .name = "tasks",
666 .seq_start = cgroup_pidlist_start,
667 .seq_next = cgroup_pidlist_next,
668 .seq_stop = cgroup_pidlist_stop,
669 .seq_show = cgroup_pidlist_show,
670 .private = CGROUP_FILE_TASKS,
671 .write = cgroup1_tasks_write,
672 },
673 {
674 .name = "notify_on_release",
675 .read_u64 = cgroup_read_notify_on_release,
676 .write_u64 = cgroup_write_notify_on_release,
677 },
678 {
679 .name = "release_agent",
680 .flags = CFTYPE_ONLY_ON_ROOT,
681 .seq_show = cgroup_release_agent_show,
682 .write = cgroup_release_agent_write,
683 .max_write_len = PATH_MAX - 1,
684 },
685 {} /* terminate */
686 };
687
688 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)689 int proc_cgroupstats_show(struct seq_file *m, void *v)
690 {
691 struct cgroup_subsys *ss;
692 int i;
693 bool dead;
694
695 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
696 /*
697 * ideally we don't want subsystems moving around while we do this.
698 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
699 * subsys/hierarchy state.
700 */
701 mutex_lock(&cgroup_mutex);
702
703 for_each_subsys(ss, i) for_each_subsys(ss, i)
704 {
705 dead = percpu_ref_is_dying(&ss->root->cgrp.self.refcnt);
706 seq_printf(m, "%s\t%d\t%d\t%d\n", ss->legacy_name, dead ? 0 : ss->root->hierarchy_id,
707 dead ? 0 : atomic_read(&ss->root->nr_cgrps), cgroup_ssid_enabled(i));
708 }
709
710 mutex_unlock(&cgroup_mutex);
711 return 0;
712 }
713
714 /**
715 * cgroupstats_build - build and fill cgroupstats
716 * @stats: cgroupstats to fill information into
717 * @dentry: A dentry entry belonging to the cgroup for which stats have
718 * been requested.
719 *
720 * Build and fill cgroupstats so that taskstats can export it to user
721 * space.
722 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)723 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
724 {
725 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
726 struct cgroup *cgrp;
727 struct css_task_iter it;
728 struct task_struct *tsk;
729
730 /* it should be kernfs_node belonging to cgroupfs and is a directory */
731 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || kernfs_type(kn) != KERNFS_DIR) {
732 return -EINVAL;
733 }
734
735 mutex_lock(&cgroup_mutex);
736
737 /*
738 * We aren't being called from kernfs and there's no guarantee on
739 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
740 * @kn->priv is RCU safe. Let's do the RCU dancing.
741 */
742 rcu_read_lock();
743 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
744 if (!cgrp || cgroup_is_dead(cgrp)) {
745 rcu_read_unlock();
746 mutex_unlock(&cgroup_mutex);
747 return -ENOENT;
748 }
749 rcu_read_unlock();
750
751 css_task_iter_start(&cgrp->self, 0, &it);
752 while ((tsk = css_task_iter_next(&it))) {
753 switch (tsk->state) {
754 case TASK_RUNNING:
755 stats->nr_running++;
756 break;
757 case TASK_INTERRUPTIBLE:
758 stats->nr_sleeping++;
759 break;
760 case TASK_UNINTERRUPTIBLE:
761 stats->nr_uninterruptible++;
762 break;
763 case TASK_STOPPED:
764 stats->nr_stopped++;
765 break;
766 default:
767 if (delayacct_is_task_waiting_on_io(tsk)) {
768 stats->nr_io_wait++;
769 }
770 break;
771 }
772 }
773 css_task_iter_end(&it);
774
775 mutex_unlock(&cgroup_mutex);
776 return 0;
777 }
778
cgroup1_check_for_release(struct cgroup * cgrp)779 void cgroup1_check_for_release(struct cgroup *cgrp)
780 {
781 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && !css_has_online_children(&cgrp->self) &&
782 !cgroup_is_dead(cgrp)) {
783 schedule_work(&cgrp->release_agent_work);
784 }
785 }
786
787 /*
788 * Notify userspace when a cgroup is released, by running the
789 * configured release agent with the name of the cgroup (path
790 * relative to the root of cgroup file system) as the argument.
791 *
792 * Most likely, this user command will try to rmdir this cgroup.
793 *
794 * This races with the possibility that some other task will be
795 * attached to this cgroup before it is removed, or that some other
796 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
797 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
798 * unused, and this cgroup will be reprieved from its death sentence,
799 * to continue to serve a useful existence. Next time it's released,
800 * we will get notified again, if it still has 'notify_on_release' set.
801 *
802 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
803 * means only wait until the task is successfully execve()'d. The
804 * separate release agent task is forked by call_usermodehelper(),
805 * then control in this thread returns here, without waiting for the
806 * release agent task. We don't bother to wait because the caller of
807 * this routine has no use for the exit status of the release agent
808 * task, so no sense holding our caller up for that.
809 */
cgroup1_release_agent(struct work_struct * work)810 void cgroup1_release_agent(struct work_struct *work)
811 {
812 struct cgroup *cgrp = container_of(work, struct cgroup, release_agent_work);
813 char *pathbuf, *agentbuf;
814 char *argv[3], *envp[3];
815 int ret;
816
817 /* snoop agent path and exit early if empty */
818 if (!cgrp->root->release_agent_path[0]) {
819 return;
820 }
821
822 /* prepare argument buffers */
823 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
824 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
825 if (!pathbuf || !agentbuf) {
826 goto out_free;
827 }
828
829 spin_lock(&release_agent_path_lock);
830 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
831 spin_unlock(&release_agent_path_lock);
832 if (!agentbuf[0]) {
833 goto out_free;
834 }
835
836 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
837 if (ret < 0 || ret >= PATH_MAX) {
838 goto out_free;
839 }
840
841 argv[CGROUP_ARRAY_INDEX_ZERO] = agentbuf;
842 argv[CGROUP_ARRAY_INDEX_ONE] = pathbuf;
843 argv[CGROUP_ARRAY_INDEX_TWO] = NULL;
844
845 /* minimal command environment */
846 envp[CGROUP_ARRAY_INDEX_ZERO] = "HOME=/";
847 envp[CGROUP_ARRAY_INDEX_ONE] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
848 envp[CGROUP_ARRAY_INDEX_TWO] = NULL;
849
850 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
851 out_free:
852 kfree(agentbuf);
853 kfree(pathbuf);
854 }
855
856 /*
857 * cgroup_rename - Only allow simple rename of directories in place.
858 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)859 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, const char *new_name_str)
860 {
861 struct cgroup *cgrp = kn->priv;
862 int ret;
863
864 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
865 if (strchr(new_name_str, '\n')) {
866 return -EINVAL;
867 }
868
869 if (kernfs_type(kn) != KERNFS_DIR) {
870 return -ENOTDIR;
871 }
872 if (kn->parent != new_parent) {
873 return -EIO;
874 }
875
876 /*
877 * We're gonna grab cgroup_mutex which nests outside kernfs
878 * active_ref. kernfs_rename() doesn't require active_ref
879 * protection. Break them before grabbing cgroup_mutex.
880 */
881 kernfs_break_active_protection(new_parent);
882 kernfs_break_active_protection(kn);
883
884 mutex_lock(&cgroup_mutex);
885
886 ret = kernfs_rename(kn, new_parent, new_name_str);
887 if (!ret) {
888 TRACE_CGROUP_PATH(rename, cgrp);
889 }
890
891 mutex_unlock(&cgroup_mutex);
892
893 kernfs_unbreak_active_protection(kn);
894 kernfs_unbreak_active_protection(new_parent);
895 return ret;
896 }
897
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)898 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
899 {
900 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
901 struct cgroup_subsys *ss;
902 int ssid;
903
904 for_each_subsys(ss, ssid) if (root->subsys_mask & (1 << ssid)) seq_show_option(seq, ss->legacy_name, NULL);
905 if (root->flags & CGRP_ROOT_NOPREFIX) {
906 seq_puts(seq, ",noprefix");
907 }
908 if (root->flags & CGRP_ROOT_XATTR) {
909 seq_puts(seq, ",xattr");
910 }
911 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) {
912 seq_puts(seq, ",cpuset_v2_mode");
913 }
914
915 spin_lock(&release_agent_path_lock);
916 if (strlen(root->release_agent_path)) {
917 seq_show_option(seq, "release_agent", root->release_agent_path);
918 }
919 spin_unlock(&release_agent_path_lock);
920
921 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) {
922 seq_puts(seq, ",clone_children");
923 }
924 if (strlen(root->name)) {
925 seq_show_option(seq, "name", root->name);
926 }
927 return 0;
928 }
929
930 enum cgroup1_param {
931 Opt_all,
932 Opt_clone_children,
933 Opt_cpuset_v2_mode,
934 Opt_name,
935 Opt_none,
936 Opt_noprefix,
937 Opt_release_agent,
938 Opt_xattr,
939 };
940
941 const struct fs_parameter_spec cgroup1_fs_parameters[] = {fsparam_flag("all", Opt_all),
942 fsparam_flag("clone_children", Opt_clone_children),
943 fsparam_flag("cpuset_v2_mode", Opt_cpuset_v2_mode),
944 fsparam_string("name", Opt_name),
945 fsparam_flag("none", Opt_none),
946 fsparam_flag("noprefix", Opt_noprefix),
947 fsparam_string("release_agent", Opt_release_agent),
948 fsparam_flag("xattr", Opt_xattr),
949 {}};
950
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)951 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
952 {
953 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
954 struct cgroup_subsys *ss;
955 struct fs_parse_result result;
956 int opt, i;
957
958 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
959 if (opt == -ENOPARAM) {
960 int ret;
961
962 ret = vfs_parse_fs_param_source(fc, param);
963 if (ret != -ENOPARAM) {
964 return ret;
965 }
966 for_each_subsys(ss, i)
967 {
968 if (strcmp(param->key, ss->legacy_name)) {
969 continue;
970 }
971 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) {
972 return invalfc(fc, "Disabled controller '%s'", param->key);
973 }
974 ctx->subsys_mask |= (1 << i);
975 return 0;
976 }
977 return invalfc(fc, "Unknown subsys name '%s'", param->key);
978 }
979 if (opt < 0) {
980 return opt;
981 }
982
983 switch (opt) {
984 case Opt_none:
985 /* Explicitly have no subsystems */
986 ctx->none = true;
987 break;
988 case Opt_all:
989 ctx->all_ss = true;
990 break;
991 case Opt_noprefix:
992 ctx->flags |= CGRP_ROOT_NOPREFIX;
993 break;
994 case Opt_clone_children:
995 ctx->cpuset_clone_children = true;
996 break;
997 case Opt_cpuset_v2_mode:
998 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
999 break;
1000 case Opt_xattr:
1001 ctx->flags |= CGRP_ROOT_XATTR;
1002 break;
1003 case Opt_release_agent:
1004 /* Specifying two release agents is forbidden */
1005 if (ctx->release_agent) {
1006 return invalfc(fc, "release_agent respecified");
1007 }
1008 /*
1009 * Release agent gets called with all capabilities,
1010 * require capabilities to set release agent.
1011 */
1012 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
1013 return invalfc(fc, "Setting release_agent not allowed");
1014 }
1015 ctx->release_agent = param->string;
1016 param->string = NULL;
1017 break;
1018 case Opt_name:
1019 /* blocked by boot param? */
1020 if (cgroup_no_v1_named) {
1021 return -ENOENT;
1022 }
1023 /* Can't specify an empty name */
1024 if (!param->size) {
1025 return invalfc(fc, "Empty name");
1026 }
1027 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) {
1028 return invalfc(fc, "Name too long");
1029 }
1030 /* Must match [\w.-]+ */
1031 for (i = 0; i < param->size; i++) {
1032 char c = param->string[i];
1033 if (isalnum(c)) {
1034 continue;
1035 }
1036 if ((c == '.') || (c == '-') || (c == '_')) {
1037 continue;
1038 }
1039 return invalfc(fc, "Invalid name");
1040 }
1041 /* Specifying two names is forbidden */
1042 if (ctx->name) {
1043 return invalfc(fc, "name respecified");
1044 }
1045 ctx->name = param->string;
1046 param->string = NULL;
1047 break;
1048 default:
1049 break;
1050 }
1051 return 0;
1052 }
1053
check_cgroupfs_options(struct fs_context * fc)1054 static int check_cgroupfs_options(struct fs_context *fc)
1055 {
1056 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1057 u16 mask = U16_MAX;
1058 u16 enabled = 0;
1059 struct cgroup_subsys *ss;
1060 int i;
1061
1062 #ifdef CONFIG_CPUSETS
1063 mask = ~((u16)1 << cpuset_cgrp_id);
1064 #endif
1065 for_each_subsys(ss, i) if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) enabled |= 1 << i;
1066
1067 ctx->subsys_mask &= enabled;
1068
1069 /*
1070 * In absense of 'none', 'name=' or subsystem name options,
1071 * let's default to 'all'.
1072 */
1073 if (!ctx->subsys_mask && !ctx->none && !ctx->name) {
1074 ctx->all_ss = true;
1075 }
1076
1077 if (ctx->all_ss) {
1078 /* Mutually exclusive option 'all' + subsystem name */
1079 if (ctx->subsys_mask) {
1080 return invalfc(fc, "subsys name conflicts with all");
1081 }
1082 /* 'all' => select all the subsystems */
1083 ctx->subsys_mask = enabled;
1084 }
1085
1086 /*
1087 * We either have to specify by name or by subsystems. (So all
1088 * empty hierarchies must have a name).
1089 */
1090 if (!ctx->subsys_mask && !ctx->name) {
1091 return invalfc(fc, "Need name or subsystem set");
1092 }
1093
1094 /*
1095 * Option noprefix was introduced just for backward compatibility
1096 * with the old cpuset, so we allow noprefix only if mounting just
1097 * the cpuset subsystem.
1098 */
1099 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) {
1100 return invalfc(fc, "noprefix used incorrectly");
1101 }
1102
1103 /* Can't specify "none" and some subsystems */
1104 if (ctx->subsys_mask && ctx->none) {
1105 return invalfc(fc, "none used incorrectly");
1106 }
1107
1108 return 0;
1109 }
1110
cgroup1_reconfigure(struct fs_context * fc)1111 int cgroup1_reconfigure(struct fs_context *fc)
1112 {
1113 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1114 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1115 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1116 int ret = 0;
1117 u16 added_mask, removed_mask;
1118
1119 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1120
1121 /* See what subsystems are wanted */
1122 ret = check_cgroupfs_options(fc);
1123 if (ret) {
1124 goto out_unlock;
1125 }
1126
1127 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) {
1128 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", task_tgid_nr(current), current->comm);
1129 }
1130
1131 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1132 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1133
1134 /* Don't allow flags or name to change at remount */
1135 if ((ctx->flags ^ root->flags) || (ctx->name && strcmp(ctx->name, root->name))) {
1136 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", ctx->flags, ctx->name ?: "",
1137 root->flags, root->name);
1138 ret = -EINVAL;
1139 goto out_unlock;
1140 }
1141
1142 /* remounting is not allowed for populated hierarchies */
1143 if (!list_empty(&root->cgrp.self.children)) {
1144 ret = -EBUSY;
1145 goto out_unlock;
1146 }
1147
1148 ret = rebind_subsystems(root, added_mask);
1149 if (ret) {
1150 goto out_unlock;
1151 }
1152
1153 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1154
1155 if (ctx->release_agent) {
1156 spin_lock(&release_agent_path_lock);
1157 strcpy(root->release_agent_path, ctx->release_agent);
1158 spin_unlock(&release_agent_path_lock);
1159 }
1160
1161 trace_cgroup_remount(root);
1162
1163 out_unlock:
1164 mutex_unlock(&cgroup_mutex);
1165 return ret;
1166 }
1167
1168 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1169 .rename = cgroup1_rename,
1170 .show_options = cgroup1_show_options,
1171 .mkdir = cgroup_mkdir,
1172 .rmdir = cgroup_rmdir,
1173 .show_path = cgroup_show_path,
1174 };
1175
1176 /*
1177 * The guts of cgroup1 mount - find or create cgroup_root to use.
1178 * Called with cgroup_mutex held; returns 0 on success, -E... on
1179 * error and positive - in case when the candidate is busy dying.
1180 * On success it stashes a reference to cgroup_root into given
1181 * cgroup_fs_context; that reference is *NOT* counting towards the
1182 * cgroup_root refcount.
1183 */
cgroup1_root_to_use(struct fs_context * fc)1184 static int cgroup1_root_to_use(struct fs_context *fc)
1185 {
1186 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1187 struct cgroup_root *root;
1188 struct cgroup_subsys *ss;
1189 int i, ret;
1190
1191 /* First find the desired set of subsystems */
1192 ret = check_cgroupfs_options(fc);
1193 if (ret) {
1194 return ret;
1195 }
1196
1197 /*
1198 * Destruction of cgroup root is asynchronous, so subsystems may
1199 * still be dying after the previous unmount. Let's drain the
1200 * dying subsystems. We just need to ensure that the ones
1201 * unmounted previously finish dying and don't care about new ones
1202 * starting. Testing ref liveliness is good enough.
1203 */
1204 for_each_subsys(ss, i)
1205 {
1206 if (!(ctx->subsys_mask & (1 << i)) || ss->root == &cgrp_dfl_root) {
1207 continue;
1208 }
1209
1210 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1211 return 1; /* restart */
1212 }
1213 cgroup_put(&ss->root->cgrp);
1214 }
1215
1216 for_each_root(root)
1217 {
1218 bool name_match = false;
1219
1220 if (root == &cgrp_dfl_root) {
1221 continue;
1222 }
1223
1224 /*
1225 * If we asked for a name then it must match. Also, if
1226 * name matches but sybsys_mask doesn't, we should fail.
1227 * Remember whether name matched.
1228 */
1229 if (ctx->name) {
1230 if (strcmp(ctx->name, root->name)) {
1231 continue;
1232 }
1233 name_match = true;
1234 }
1235
1236 /*
1237 * If we asked for subsystems (or explicitly for no
1238 * subsystems) then they must match.
1239 */
1240 if ((ctx->subsys_mask || ctx->none) && (ctx->subsys_mask != root->subsys_mask)) {
1241 if (!name_match) {
1242 continue;
1243 }
1244 return -EBUSY;
1245 }
1246
1247 if (root->flags ^ ctx->flags) {
1248 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1249 }
1250
1251 ctx->root = root;
1252 return 0;
1253 }
1254
1255 /*
1256 * No such thing, create a new one. name= matching without subsys
1257 * specification is allowed for already existing hierarchies but we
1258 * can't create new one without subsys specification.
1259 */
1260 if (!ctx->subsys_mask && !ctx->none) {
1261 return invalfc(fc, "No subsys list or none specified");
1262 }
1263
1264 /* Hierarchies may only be created in the initial cgroup namespace. */
1265 if (ctx->ns != &init_cgroup_ns) {
1266 return -EPERM;
1267 }
1268
1269 root = kzalloc(sizeof(*root), GFP_KERNEL);
1270 if (!root) {
1271 return -ENOMEM;
1272 }
1273
1274 ctx->root = root;
1275 init_cgroup_root(ctx);
1276
1277 ret = cgroup_setup_root(root, ctx->subsys_mask);
1278 if (ret) {
1279 cgroup_free_root(root);
1280 }
1281 return ret;
1282 }
1283
cgroup1_get_tree(struct fs_context * fc)1284 int cgroup1_get_tree(struct fs_context *fc)
1285 {
1286 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1287 int ret;
1288
1289 /* Check if the caller has permission to mount. */
1290 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) {
1291 return -EPERM;
1292 }
1293
1294 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1295
1296 ret = cgroup1_root_to_use(fc);
1297 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) {
1298 ret = 1; /* restart */
1299 }
1300
1301 mutex_unlock(&cgroup_mutex);
1302
1303 if (!ret) {
1304 ret = cgroup_do_get_tree(fc);
1305 }
1306
1307 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1308 fc_drop_locked(fc);
1309 ret = 1;
1310 }
1311
1312 if (unlikely(ret > 0)) {
1313 msleep(0xa);
1314 return restart_syscall();
1315 }
1316 return ret;
1317 }
1318
cgroup1_wq_init(void)1319 static int __init cgroup1_wq_init(void)
1320 {
1321 /*
1322 * Used to destroy pidlists and separate to serve as flush domain.
1323 * Cap @max_active to 1 too.
1324 */
1325 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 0, 1);
1326 BUG_ON(!cgroup_pidlist_destroy_wq);
1327 return 0;
1328 }
1329 core_initcall(cgroup1_wq_init);
1330
cgroup_no_v1(char * str)1331 static int __init cgroup_no_v1(char *str)
1332 {
1333 struct cgroup_subsys *ss;
1334 char *token;
1335 int i;
1336
1337 while ((token = strsep(&str, ",")) != NULL) {
1338 if (!*token) {
1339 continue;
1340 }
1341
1342 if (!strcmp(token, "all")) {
1343 cgroup_no_v1_mask = U16_MAX;
1344 continue;
1345 }
1346
1347 if (!strcmp(token, "named")) {
1348 cgroup_no_v1_named = true;
1349 continue;
1350 }
1351
1352 for_each_subsys(ss, i)
1353 {
1354 if (strcmp(token, ss->name) && strcmp(token, ss->legacy_name)) {
1355 continue;
1356 }
1357
1358 cgroup_no_v1_mask |= 1 << i;
1359 }
1360 }
1361 return 1;
1362 }
1363 __setup("cgroup_no_v1=", cgroup_no_v1);
1364