• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 - 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26 
27 #include <stdio.h>
28 #include "c11/threads.h"
29 #include "dev/intel_device_info.h"
30 #include "util/macros.h"
31 #include "util/ralloc.h"
32 #include "util/u_math.h"
33 #include "brw_isa_info.h"
34 
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38 
39 struct ra_regs;
40 struct nir_shader;
41 struct brw_program;
42 struct shader_info;
43 
44 struct nir_shader_compiler_options;
45 typedef struct nir_shader nir_shader;
46 
47 struct brw_compiler {
48    const struct intel_device_info *devinfo;
49 
50    /* This lock must be taken if the compiler is to be modified in any way,
51     * including adding something to the ralloc child list.
52     */
53    mtx_t mutex;
54 
55    struct brw_isa_info isa;
56 
57    struct {
58       struct ra_regs *regs;
59 
60       /**
61        * Array of the ra classes for the unaligned contiguous register
62        * block sizes used.
63        */
64       struct ra_class **classes;
65    } vec4_reg_set;
66 
67    struct {
68       struct ra_regs *regs;
69 
70       /**
71        * Array of the ra classes for the unaligned contiguous register
72        * block sizes used, indexed by register size.
73        */
74       struct ra_class *classes[16];
75 
76       /**
77        * ra class for the aligned barycentrics we use for PLN, which doesn't
78        * appear in *classes.
79        */
80       struct ra_class *aligned_bary_class;
81    } fs_reg_sets[3];
82 
83    void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
84    void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
85 
86    bool scalar_stage[MESA_ALL_SHADER_STAGES];
87    bool use_tcs_8_patch;
88    struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
89 
90    /**
91     * Apply workarounds for SIN and COS output range problems.
92     * This can negatively impact performance.
93     */
94    bool precise_trig;
95 
96    /**
97     * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
98     * Base Address?  (If not, it's a normal GPU address.)
99     */
100    bool constant_buffer_0_is_relative;
101 
102    /**
103     * Whether or not the driver supports NIR shader constants.  This controls
104     * whether nir_opt_large_constants will be run.
105     */
106    bool supports_shader_constants;
107 
108    /**
109     * Whether or not the driver wants variable group size to be lowered by the
110     * back-end compiler.
111     */
112    bool lower_variable_group_size;
113 
114    /**
115     * Whether indirect UBO loads should use the sampler or go through the
116     * data/constant cache.  For the sampler, UBO surface states have to be set
117     * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
118     * constant or data cache, UBOs must use VK_FORMAT_RAW.
119     */
120    bool indirect_ubos_use_sampler;
121 
122    struct nir_shader *clc_shader;
123 };
124 
125 #define brw_shader_debug_log(compiler, data, fmt, ... ) do {    \
126    static unsigned id = 0;                                      \
127    compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__);   \
128 } while (0)
129 
130 #define brw_shader_perf_log(compiler, data, fmt, ... ) do {     \
131    static unsigned id = 0;                                      \
132    compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__);    \
133 } while (0)
134 
135 /**
136  * We use a constant subgroup size of 32.  It really only needs to be a
137  * maximum and, since we do SIMD32 for compute shaders in some cases, it
138  * needs to be at least 32.  SIMD8 and SIMD16 shaders will still claim a
139  * subgroup size of 32 but will act as if 16 or 24 of those channels are
140  * disabled.
141  */
142 #define BRW_SUBGROUP_SIZE 32
143 
144 static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)145 brw_shader_stage_is_bindless(gl_shader_stage stage)
146 {
147    return stage >= MESA_SHADER_RAYGEN &&
148           stage <= MESA_SHADER_CALLABLE;
149 }
150 
151 static inline bool
brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)152 brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
153 {
154    return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
155 }
156 
157 /**
158  * Program key structures.
159  *
160  * When drawing, we look for the currently bound shaders in the program
161  * cache.  This is essentially a hash table lookup, and these are the keys.
162  *
163  * Sometimes OpenGL features specified as state need to be simulated via
164  * shader code, due to a mismatch between the API and the hardware.  This
165  * is often referred to as "non-orthagonal state" or "NOS".  We store NOS
166  * in the program key so it's considered when searching for a program.  If
167  * we haven't seen a particular combination before, we have to recompile a
168  * new specialized version.
169  *
170  * Shader compilation should not look up state in gl_context directly, but
171  * instead use the copy in the program key.  This guarantees recompiles will
172  * happen correctly.
173  *
174  *  @{
175  */
176 
177 enum PACKED gfx6_gather_sampler_wa {
178    WA_SIGN = 1,      /* whether we need to sign extend */
179    WA_8BIT = 2,      /* if we have an 8bit format needing wa */
180    WA_16BIT = 4,     /* if we have a 16bit format needing wa */
181 };
182 
183 #define BRW_MAX_SAMPLERS 32
184 
185 /* Provide explicit padding for each member, to ensure that the compiler
186  * initializes every bit in the shader cache keys.  The keys will be compared
187  * with memcmp.
188  */
189 PRAGMA_DIAGNOSTIC_PUSH
190 PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
191 
192 /**
193  * Sampler information needed by VS, WM, and GS program cache keys.
194  */
195 struct brw_sampler_prog_key_data {
196    /**
197     * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
198     */
199    uint16_t swizzles[BRW_MAX_SAMPLERS];
200 
201    uint32_t gl_clamp_mask[3];
202 
203    /**
204     * For RG32F, gather4's channel select is broken.
205     */
206    uint32_t gather_channel_quirk_mask;
207 
208    /**
209     * Whether this sampler uses the compressed multisample surface layout.
210     */
211    uint32_t compressed_multisample_layout_mask;
212 
213    /**
214     * Whether this sampler is using 16x multisampling. If so fetching from
215     * this sampler will be handled with a different instruction, ld2dms_w
216     * instead of ld2dms.
217     */
218    uint32_t msaa_16;
219 
220    /**
221     * For Sandybridge, which shader w/a we need for gather quirks.
222     */
223    enum gfx6_gather_sampler_wa gfx6_gather_wa[BRW_MAX_SAMPLERS];
224 
225    /**
226     * Texture units that have a YUV image bound.
227     */
228    uint32_t y_u_v_image_mask;
229    uint32_t y_uv_image_mask;
230    uint32_t yx_xuxv_image_mask;
231    uint32_t xy_uxvx_image_mask;
232    uint32_t ayuv_image_mask;
233    uint32_t xyuv_image_mask;
234    uint32_t bt709_mask;
235    uint32_t bt2020_mask;
236 
237    /* Scale factor for each texture. */
238    float scale_factors[BRW_MAX_SAMPLERS];
239 };
240 
241 struct brw_base_prog_key {
242    unsigned program_string_id;
243 
244    bool robust_buffer_access;
245 
246    /**
247     * Apply workarounds for SIN and COS input range problems.
248     * This limits input range for SIN and COS to [-2p : 2p] to
249     * avoid precision issues.
250     */
251    bool limit_trig_input_range;
252    unsigned padding:16;
253 
254    struct brw_sampler_prog_key_data tex;
255 };
256 
257 /**
258  * The VF can't natively handle certain types of attributes, such as GL_FIXED
259  * or most 10_10_10_2 types.  These flags enable various VS workarounds to
260  * "fix" attributes at the beginning of shaders.
261  */
262 #define BRW_ATTRIB_WA_COMPONENT_MASK    7  /* mask for GL_FIXED scale channel count */
263 #define BRW_ATTRIB_WA_NORMALIZE     8   /* normalize in shader */
264 #define BRW_ATTRIB_WA_BGRA          16  /* swap r/b channels in shader */
265 #define BRW_ATTRIB_WA_SIGN          32  /* interpret as signed in shader */
266 #define BRW_ATTRIB_WA_SCALE         64  /* interpret as scaled in shader */
267 
268 /**
269  * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
270  * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
271  * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
272  * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
273  */
274 #define MAX_GL_VERT_ATTRIB     VERT_ATTRIB_MAX
275 #define MAX_VK_VERT_ATTRIB     (VERT_ATTRIB_GENERIC0 + 28)
276 
277 /**
278  * Max number of binding table entries used for stream output.
279  *
280  * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
281  * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
282  *
283  * On Gfx6, the size of transform feedback data is limited not by the number
284  * of components but by the number of binding table entries we set aside.  We
285  * use one binding table entry for a float, one entry for a vector, and one
286  * entry per matrix column.  Since the only way we can communicate our
287  * transform feedback capabilities to the client is via
288  * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
289  * worst case, in which all the varyings are floats, so we use up one binding
290  * table entry per component.  Therefore we need to set aside at least 64
291  * binding table entries for use by transform feedback.
292  *
293  * Note: since we don't currently pack varyings, it is currently impossible
294  * for the client to actually use up all of these binding table entries--if
295  * all of their varyings were floats, they would run out of varying slots and
296  * fail to link.  But that's a bug, so it seems prudent to go ahead and
297  * allocate the number of binding table entries we will need once the bug is
298  * fixed.
299  */
300 #define BRW_MAX_SOL_BINDINGS 64
301 
302 /** The program key for Vertex Shaders. */
303 struct brw_vs_prog_key {
304    struct brw_base_prog_key base;
305 
306    /**
307     * Per-attribute workaround flags
308     *
309     * For each attribute, a combination of BRW_ATTRIB_WA_*.
310     *
311     * For OpenGL, where we expose a maximum of 16 user input attributes
312     * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
313     * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
314     * expose up to 28 user input vertex attributes that are mapped to slots
315     * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
316     * enough to hold this many slots.
317     */
318    uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
319 
320    /**
321     * For pre-Gfx6 hardware, a bitfield indicating which texture coordinates
322     * are going to be replaced with point coordinates (as a consequence of a
323     * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)).  Because
324     * our SF thread requires exact matching between VS outputs and FS inputs,
325     * these texture coordinates will need to be unconditionally included in
326     * the VUE, even if they aren't written by the vertex shader.
327     */
328    uint8_t point_coord_replace;
329    unsigned clamp_pointsize:1;
330 
331    bool copy_edgeflag:1;
332 
333    bool clamp_vertex_color:1;
334 
335    /**
336     * How many user clipping planes are being uploaded to the vertex shader as
337     * push constants.
338     *
339     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
340     * clip distances.
341     */
342    unsigned nr_userclip_plane_consts:4;
343 
344    uint32_t padding: 25;
345 };
346 
347 /** The program key for Tessellation Control Shaders. */
348 struct brw_tcs_prog_key
349 {
350    struct brw_base_prog_key base;
351 
352    /** A bitfield of per-vertex outputs written. */
353    uint64_t outputs_written;
354 
355    enum tess_primitive_mode _tes_primitive_mode;
356 
357    unsigned input_vertices;
358 
359    /** A bitfield of per-patch outputs written. */
360    uint32_t patch_outputs_written;
361 
362    bool quads_workaround;
363    uint32_t padding:24;
364 };
365 
366 /** The program key for Tessellation Evaluation Shaders. */
367 struct brw_tes_prog_key
368 {
369    struct brw_base_prog_key base;
370 
371    /** A bitfield of per-vertex inputs read. */
372    uint64_t inputs_read;
373 
374    /** A bitfield of per-patch inputs read. */
375    uint32_t patch_inputs_read;
376 
377    /**
378     * How many user clipping planes are being uploaded to the tessellation
379     * evaluation shader as push constants.
380     *
381     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
382     * clip distances.
383     */
384    unsigned nr_userclip_plane_consts:4;
385    unsigned clamp_pointsize:1;
386    uint32_t padding:27;
387 };
388 
389 /** The program key for Geometry Shaders. */
390 struct brw_gs_prog_key
391 {
392    struct brw_base_prog_key base;
393 
394    /**
395     * How many user clipping planes are being uploaded to the geometry shader
396     * as push constants.
397     *
398     * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
399     * clip distances.
400     */
401    unsigned nr_userclip_plane_consts:4;
402    unsigned clamp_pointsize:1;
403    unsigned padding:27;
404 };
405 
406 struct brw_task_prog_key
407 {
408    struct brw_base_prog_key base;
409 };
410 
411 struct brw_mesh_prog_key
412 {
413    struct brw_base_prog_key base;
414 };
415 
416 enum brw_sf_primitive {
417    BRW_SF_PRIM_POINTS = 0,
418    BRW_SF_PRIM_LINES = 1,
419    BRW_SF_PRIM_TRIANGLES = 2,
420    BRW_SF_PRIM_UNFILLED_TRIS = 3,
421 };
422 
423 struct brw_sf_prog_key {
424    uint64_t attrs;
425    bool contains_flat_varying;
426    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
427    uint8_t point_sprite_coord_replace;
428    enum brw_sf_primitive primitive:2;
429    bool do_twoside_color:1;
430    bool frontface_ccw:1;
431    bool do_point_sprite:1;
432    bool do_point_coord:1;
433    bool sprite_origin_lower_left:1;
434    bool userclip_active:1;
435    unsigned padding: 32;
436 };
437 
438 enum brw_clip_mode {
439    BRW_CLIP_MODE_NORMAL             = 0,
440    BRW_CLIP_MODE_CLIP_ALL           = 1,
441    BRW_CLIP_MODE_CLIP_NON_REJECTED  = 2,
442    BRW_CLIP_MODE_REJECT_ALL         = 3,
443    BRW_CLIP_MODE_ACCEPT_ALL         = 4,
444    BRW_CLIP_MODE_KERNEL_CLIP        = 5,
445 };
446 
447 enum brw_clip_fill_mode {
448    BRW_CLIP_FILL_MODE_LINE = 0,
449    BRW_CLIP_FILL_MODE_POINT = 1,
450    BRW_CLIP_FILL_MODE_FILL = 2,
451    BRW_CLIP_FILL_MODE_CULL = 3,
452 };
453 
454 /* Note that if unfilled primitives are being emitted, we have to fix
455  * up polygon offset and flatshading at this point:
456  */
457 struct brw_clip_prog_key {
458    uint64_t attrs;
459    float offset_factor;
460    float offset_units;
461    float offset_clamp;
462    bool contains_flat_varying;
463    bool contains_noperspective_varying;
464    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
465    unsigned primitive:4;
466    unsigned nr_userclip:4;
467    bool pv_first:1;
468    bool do_unfilled:1;
469    enum brw_clip_fill_mode fill_cw:2;  /* includes cull information */
470    enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
471    bool offset_cw:1;
472    bool offset_ccw:1;
473    bool copy_bfc_cw:1;
474    bool copy_bfc_ccw:1;
475    enum brw_clip_mode clip_mode:3;
476    uint64_t padding:51;
477 };
478 
479 /* A big lookup table is used to figure out which and how many
480  * additional regs will inserted before the main payload in the WM
481  * program execution.  These mainly relate to depth and stencil
482  * processing and the early-depth-test optimization.
483  */
484 enum brw_wm_iz_bits {
485    BRW_WM_IZ_PS_KILL_ALPHATEST_BIT     = 0x1,
486    BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT     = 0x2,
487    BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT    = 0x4,
488    BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT     = 0x8,
489    BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT  = 0x10,
490    BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT   = 0x20,
491    BRW_WM_IZ_BIT_MAX                   = 0x40
492 };
493 
494 enum brw_wm_aa_enable {
495    BRW_WM_AA_NEVER,
496    BRW_WM_AA_SOMETIMES,
497    BRW_WM_AA_ALWAYS
498 };
499 
500 /** The program key for Fragment/Pixel Shaders. */
501 struct brw_wm_prog_key {
502    struct brw_base_prog_key base;
503 
504    uint64_t input_slots_valid;
505    float alpha_test_ref;
506    uint8_t color_outputs_valid;
507 
508    /* Some collection of BRW_WM_IZ_* */
509    uint8_t iz_lookup;
510    bool stats_wm:1;
511    bool flat_shade:1;
512    unsigned nr_color_regions:5;
513    bool emit_alpha_test:1;
514    enum compare_func alpha_test_func:3; /* < For Gfx4/5 MRT alpha test */
515    bool alpha_test_replicate_alpha:1;
516    bool alpha_to_coverage:1;
517    bool clamp_fragment_color:1;
518    bool persample_interp:1;
519    bool multisample_fbo:1;
520    enum brw_wm_aa_enable line_aa:2;
521    bool force_dual_color_blend:1;
522    bool coherent_fb_fetch:1;
523    bool ignore_sample_mask_out:1;
524    bool coarse_pixel:1;
525 
526    uint64_t padding:58;
527 };
528 
529 struct brw_cs_prog_key {
530    struct brw_base_prog_key base;
531 };
532 
533 struct brw_bs_prog_key {
534    struct brw_base_prog_key base;
535 };
536 
537 struct brw_ff_gs_prog_key {
538    uint64_t attrs;
539 
540    /**
541     * Map from the index of a transform feedback binding table entry to the
542     * gl_varying_slot that should be streamed out through that binding table
543     * entry.
544     */
545    unsigned char transform_feedback_bindings[BRW_MAX_SOL_BINDINGS];
546 
547    /**
548     * Map from the index of a transform feedback binding table entry to the
549     * swizzles that should be used when streaming out data through that
550     * binding table entry.
551     */
552    unsigned char transform_feedback_swizzles[BRW_MAX_SOL_BINDINGS];
553 
554    /**
555     * Hardware primitive type being drawn, e.g. _3DPRIM_TRILIST.
556     */
557    unsigned primitive:8;
558 
559    unsigned pv_first:1;
560    unsigned need_gs_prog:1;
561 
562    /**
563     * Number of varyings that are output to transform feedback.
564     */
565    unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
566    uint64_t padding:47;
567 };
568 
569 /* brw_any_prog_key is any of the keys that map to an API stage */
570 union brw_any_prog_key {
571    struct brw_base_prog_key base;
572    struct brw_vs_prog_key vs;
573    struct brw_tcs_prog_key tcs;
574    struct brw_tes_prog_key tes;
575    struct brw_gs_prog_key gs;
576    struct brw_wm_prog_key wm;
577    struct brw_cs_prog_key cs;
578    struct brw_bs_prog_key bs;
579    struct brw_task_prog_key task;
580    struct brw_mesh_prog_key mesh;
581 };
582 
583 PRAGMA_DIAGNOSTIC_POP
584 
585 /*
586  * Image metadata structure as laid out in the shader parameter
587  * buffer.  Entries have to be 16B-aligned for the vec4 back-end to be
588  * able to use them.  That's okay because the padding and any unused
589  * entries [most of them except when we're doing untyped surface
590  * access] will be removed by the uniform packing pass.
591  */
592 #define BRW_IMAGE_PARAM_OFFSET_OFFSET           0
593 #define BRW_IMAGE_PARAM_SIZE_OFFSET             4
594 #define BRW_IMAGE_PARAM_STRIDE_OFFSET           8
595 #define BRW_IMAGE_PARAM_TILING_OFFSET           12
596 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET        16
597 #define BRW_IMAGE_PARAM_SIZE                    20
598 
599 struct brw_image_param {
600    /** Offset applied to the X and Y surface coordinates. */
601    uint32_t offset[2];
602 
603    /** Surface X, Y and Z dimensions. */
604    uint32_t size[3];
605 
606    /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
607     * pixels, vertical slice stride in pixels.
608     */
609    uint32_t stride[4];
610 
611    /** Log2 of the tiling modulus in the X, Y and Z dimension. */
612    uint32_t tiling[3];
613 
614    /**
615     * Right shift to apply for bit 6 address swizzling.  Two different
616     * swizzles can be specified and will be applied one after the other.  The
617     * resulting address will be:
618     *
619     *  addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
620     *                              (addr >> swizzling[1])))
621     *
622     * Use \c 0xff if any of the swizzles is not required.
623     */
624    uint32_t swizzling[2];
625 };
626 
627 /** Max number of render targets in a shader */
628 #define BRW_MAX_DRAW_BUFFERS 8
629 
630 /**
631  * Binding table index for the first gfx6 SOL binding.
632  */
633 #define BRW_GFX6_SOL_BINDING_START 0
634 
635 struct brw_ubo_range
636 {
637    uint16_t block;
638    uint8_t start;
639    uint8_t length;
640 };
641 
642 /* We reserve the first 2^16 values for builtins */
643 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
644 
645 enum brw_param_builtin {
646    BRW_PARAM_BUILTIN_ZERO,
647 
648    BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
649    BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
650    BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
651    BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
652    BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
653    BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
654    BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
655    BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
656    BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
657    BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
658    BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
659    BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
660    BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
661    BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
662    BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
663    BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
664    BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
665    BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
666    BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
667    BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
668    BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
669    BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
670    BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
671    BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
672    BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
673    BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
674    BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
675    BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
676    BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
677    BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
678    BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
679    BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
680 
681    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
682    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
683    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
684    BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
685    BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
686    BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
687 
688    BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
689 
690    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
691    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
692    BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
693    BRW_PARAM_BUILTIN_SUBGROUP_ID,
694    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
695    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
696    BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
697    BRW_PARAM_BUILTIN_WORK_DIM,
698 };
699 
700 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
701    (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
702 
703 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param)  \
704    ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
705     (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
706 
707 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
708    (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
709 
710 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
711    (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
712 
713 enum brw_shader_reloc_id {
714    BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
715    BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
716    BRW_SHADER_RELOC_SHADER_START_OFFSET,
717    BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
718    BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
719 };
720 
721 enum brw_shader_reloc_type {
722    /** An arbitrary 32-bit value */
723    BRW_SHADER_RELOC_TYPE_U32,
724    /** A MOV instruction with an immediate source */
725    BRW_SHADER_RELOC_TYPE_MOV_IMM,
726 };
727 
728 /** Represents a code relocation
729  *
730  * Relocatable constants are immediates in the code which we want to be able
731  * to replace post-compile with the actual value.
732  */
733 struct brw_shader_reloc {
734    /** The 32-bit ID of the relocatable constant */
735    uint32_t id;
736 
737    /** Type of this relocation */
738    enum brw_shader_reloc_type type;
739 
740    /** The offset in the shader to the relocated value
741     *
742     * For MOV_IMM relocs, this is an offset to the MOV instruction.  This
743     * allows us to do some sanity checking while we update the value.
744     */
745    uint32_t offset;
746 
747    /** Value to be added to the relocated value before it is written */
748    uint32_t delta;
749 };
750 
751 /** A value to write to a relocation */
752 struct brw_shader_reloc_value {
753    /** The 32-bit ID of the relocatable constant */
754    uint32_t id;
755 
756    /** The value with which to replace the relocated immediate */
757    uint32_t value;
758 };
759 
760 struct brw_stage_prog_data {
761    struct brw_ubo_range ubo_ranges[4];
762 
763    unsigned nr_params;       /**< number of float params/constants */
764 
765    gl_shader_stage stage;
766 
767    /* zero_push_reg is a bitfield which indicates what push registers (if any)
768     * should be zeroed by SW at the start of the shader.  The corresponding
769     * push_reg_mask_param specifies the param index (in 32-bit units) where
770     * the actual runtime 64-bit mask will be pushed.  The shader will zero
771     * push reg i if
772     *
773     *    reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
774     *
775     * If this field is set, brw_compiler::compact_params must be false.
776     */
777    uint64_t zero_push_reg;
778    unsigned push_reg_mask_param;
779 
780    unsigned curb_read_length;
781    unsigned total_scratch;
782    unsigned total_shared;
783 
784    unsigned program_size;
785 
786    unsigned const_data_size;
787    unsigned const_data_offset;
788 
789    unsigned num_relocs;
790    const struct brw_shader_reloc *relocs;
791 
792    /** Does this program pull from any UBO or other constant buffers? */
793    bool has_ubo_pull;
794 
795    /** How many ray queries objects in this shader. */
796    unsigned ray_queries;
797 
798    /**
799     * Register where the thread expects to find input data from the URB
800     * (typically uniforms, followed by vertex or fragment attributes).
801     */
802    unsigned dispatch_grf_start_reg;
803 
804    bool use_alt_mode; /**< Use ALT floating point mode?  Otherwise, IEEE. */
805 
806    /* 32-bit identifiers for all push/pull parameters.  These can be anything
807     * the driver wishes them to be; the core of the back-end compiler simply
808     * re-arranges them.  The one restriction is that the bottom 2^16 values
809     * are reserved for builtins defined in the brw_param_builtin enum defined
810     * above.
811     */
812    uint32_t *param;
813 
814    /* Whether shader uses atomic operations. */
815    bool uses_atomic_load_store;
816 };
817 
818 static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data * prog_data,unsigned nr_new_params)819 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
820                                unsigned nr_new_params)
821 {
822    unsigned old_nr_params = prog_data->nr_params;
823    prog_data->nr_params += nr_new_params;
824    prog_data->param = reralloc(ralloc_parent(prog_data->param),
825                                prog_data->param, uint32_t,
826                                prog_data->nr_params);
827    return prog_data->param + old_nr_params;
828 }
829 
830 enum brw_barycentric_mode {
831    BRW_BARYCENTRIC_PERSPECTIVE_PIXEL       = 0,
832    BRW_BARYCENTRIC_PERSPECTIVE_CENTROID    = 1,
833    BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE      = 2,
834    BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL    = 3,
835    BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
836    BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE   = 5,
837    BRW_BARYCENTRIC_MODE_COUNT              = 6
838 };
839 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
840    ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
841     (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
842     (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
843 
844 enum brw_pixel_shader_computed_depth_mode {
845    BRW_PSCDEPTH_OFF   = 0, /* PS does not compute depth */
846    BRW_PSCDEPTH_ON    = 1, /* PS computes depth; no guarantee about value */
847    BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
848    BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
849 };
850 
851 /* Data about a particular attempt to compile a program.  Note that
852  * there can be many of these, each in a different GL state
853  * corresponding to a different brw_wm_prog_key struct, with different
854  * compiled programs.
855  */
856 struct brw_wm_prog_data {
857    struct brw_stage_prog_data base;
858 
859    unsigned num_per_primitive_inputs;
860    unsigned num_varying_inputs;
861 
862    uint8_t reg_blocks_8;
863    uint8_t reg_blocks_16;
864    uint8_t reg_blocks_32;
865 
866    uint8_t dispatch_grf_start_reg_16;
867    uint8_t dispatch_grf_start_reg_32;
868    uint32_t prog_offset_16;
869    uint32_t prog_offset_32;
870 
871    struct {
872       /** @{
873        * surface indices the WM-specific surfaces
874        */
875       uint32_t render_target_read_start;
876       /** @} */
877    } binding_table;
878 
879    uint8_t color_outputs_written;
880    uint8_t computed_depth_mode;
881    bool computed_stencil;
882 
883    bool early_fragment_tests;
884    bool post_depth_coverage;
885    bool inner_coverage;
886    bool dispatch_8;
887    bool dispatch_16;
888    bool dispatch_32;
889    bool dual_src_blend;
890    bool persample_dispatch;
891    bool uses_pos_offset;
892    bool uses_omask;
893    bool uses_kill;
894    bool uses_src_depth;
895    bool uses_src_w;
896    bool uses_depth_w_coefficients;
897    bool uses_sample_mask;
898    bool uses_vmask;
899    bool has_render_target_reads;
900    bool has_side_effects;
901    bool pulls_bary;
902 
903    bool contains_flat_varying;
904    bool contains_noperspective_varying;
905 
906    /**
907     * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
908     */
909    bool per_coarse_pixel_dispatch;
910 
911    /**
912     * Mask of which interpolation modes are required by the fragment shader.
913     * Those interpolations are delivered as part of the thread payload. Used
914     * in hardware setup on gfx6+.
915     */
916    uint32_t barycentric_interp_modes;
917 
918    /**
919     * Whether nonperspective interpolation modes are used by the
920     * barycentric_interp_modes or fragment shader through interpolator messages.
921     */
922    bool uses_nonperspective_interp_modes;
923 
924    /**
925     * Mask of which FS inputs are marked flat by the shader source.  This is
926     * needed for setting up 3DSTATE_SF/SBE.
927     */
928    uint32_t flat_inputs;
929 
930    /**
931     * The FS inputs
932     */
933    uint64_t inputs;
934 
935    /* Mapping of VUE slots to interpolation modes.
936     * Used by the Gfx4-5 clip/sf/wm stages.
937     */
938    unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
939 
940    /**
941     * Map from gl_varying_slot to the position within the FS setup data
942     * payload where the varying's attribute vertex deltas should be delivered.
943     * For varying slots that are not used by the FS, the value is -1.
944     */
945    int urb_setup[VARYING_SLOT_MAX];
946 
947    /**
948     * Cache structure into the urb_setup array above that contains the
949     * attribute numbers of active varyings out of urb_setup.
950     * The actual count is stored in urb_setup_attribs_count.
951     */
952    uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
953    uint8_t urb_setup_attribs_count;
954 };
955 
956 /** Returns the SIMD width corresponding to a given KSP index
957  *
958  * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
959  * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
960  * kernel start pointer (KSP) indices that is based on what dispatch widths
961  * are enabled.  This function provides, effectively, the reverse mapping.
962  *
963  * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
964  * width of 8, 16, or 32 is returned.  If the KSP is invalid, 0 is returned.
965  */
966 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool simd8_enabled,bool simd16_enabled,bool simd32_enabled)967 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
968                           bool simd16_enabled, bool simd32_enabled)
969 {
970    /* This function strictly ignores contiguous dispatch */
971    switch (ksp_idx) {
972    case 0:
973       return simd8_enabled ? 8 :
974              (simd16_enabled && !simd32_enabled) ? 16 :
975              (simd32_enabled && !simd16_enabled) ? 32 : 0;
976    case 1:
977       return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
978    case 2:
979       return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
980    default:
981       unreachable("Invalid KSP index");
982    }
983 }
984 
985 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
986    brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
987                              (wm_state)._16PixelDispatchEnable, \
988                              (wm_state)._32PixelDispatchEnable)
989 
990 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
991    (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
992 
993 static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data * prog_data,unsigned simd_width)994 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
995                               unsigned simd_width)
996 {
997    switch (simd_width) {
998    case 8: return 0;
999    case 16: return prog_data->prog_offset_16;
1000    case 32: return prog_data->prog_offset_32;
1001    default: return 0;
1002    }
1003 }
1004 
1005 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
1006    _brw_wm_prog_data_prog_offset(prog_data, \
1007       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1008 
1009 static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data * prog_data,unsigned simd_width)1010 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
1011                                          unsigned simd_width)
1012 {
1013    switch (simd_width) {
1014    case 8: return prog_data->base.dispatch_grf_start_reg;
1015    case 16: return prog_data->dispatch_grf_start_reg_16;
1016    case 32: return prog_data->dispatch_grf_start_reg_32;
1017    default: return 0;
1018    }
1019 }
1020 
1021 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
1022    _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
1023       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1024 
1025 static inline uint8_t
_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data * prog_data,unsigned simd_width)1026 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
1027                              unsigned simd_width)
1028 {
1029    switch (simd_width) {
1030    case 8: return prog_data->reg_blocks_8;
1031    case 16: return prog_data->reg_blocks_16;
1032    case 32: return prog_data->reg_blocks_32;
1033    default: return 0;
1034    }
1035 }
1036 
1037 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
1038    _brw_wm_prog_data_reg_blocks(prog_data, \
1039       brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
1040 
1041 struct brw_push_const_block {
1042    unsigned dwords;     /* Dword count, not reg aligned */
1043    unsigned regs;
1044    unsigned size;       /* Bytes, register aligned */
1045 };
1046 
1047 struct brw_cs_prog_data {
1048    struct brw_stage_prog_data base;
1049 
1050    unsigned local_size[3];
1051 
1052    /* Program offsets for the 8/16/32 SIMD variants.  Multiple variants are
1053     * kept when using variable group size, and the right one can only be
1054     * decided at dispatch time.
1055     */
1056    unsigned prog_offset[3];
1057 
1058    /* Bitmask indicating which program offsets are valid. */
1059    unsigned prog_mask;
1060 
1061    /* Bitmask indicating which programs have spilled. */
1062    unsigned prog_spilled;
1063 
1064    bool uses_barrier;
1065    bool uses_num_work_groups;
1066    bool uses_inline_data;
1067    bool uses_btd_stack_ids;
1068 
1069    struct {
1070       struct brw_push_const_block cross_thread;
1071       struct brw_push_const_block per_thread;
1072    } push;
1073 
1074    struct {
1075       /** @{
1076        * surface indices the CS-specific surfaces
1077        */
1078       uint32_t work_groups_start;
1079       /** @} */
1080    } binding_table;
1081 };
1082 
1083 static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data * prog_data,unsigned dispatch_width)1084 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
1085                              unsigned dispatch_width)
1086 {
1087    assert(dispatch_width == 8 ||
1088           dispatch_width == 16 ||
1089           dispatch_width == 32);
1090    const unsigned index = dispatch_width / 16;
1091    assert(prog_data->prog_mask & (1 << index));
1092    return prog_data->prog_offset[index];
1093 }
1094 
1095 struct brw_bs_prog_data {
1096    struct brw_stage_prog_data base;
1097 
1098    /** SIMD size of the root shader */
1099    uint8_t simd_size;
1100 
1101    /** Maximum stack size of all shaders */
1102    uint32_t max_stack_size;
1103 
1104    /** Offset into the shader where the resume SBT is located */
1105    uint32_t resume_sbt_offset;
1106 };
1107 
1108 struct brw_ff_gs_prog_data {
1109    unsigned urb_read_length;
1110    unsigned total_grf;
1111 
1112    /**
1113     * Gfx6 transform feedback: Amount by which the streaming vertex buffer
1114     * indices should be incremented each time the GS is invoked.
1115     */
1116    unsigned svbi_postincrement_value;
1117 };
1118 
1119 /**
1120  * Enum representing the i965-specific vertex results that don't correspond
1121  * exactly to any element of gl_varying_slot.  The values of this enum are
1122  * assigned such that they don't conflict with gl_varying_slot.
1123  */
1124 typedef enum
1125 {
1126    BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
1127    BRW_VARYING_SLOT_PAD,
1128    /**
1129     * Technically this is not a varying but just a placeholder that
1130     * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
1131     * builtin variable to be compiled correctly. see compile_sf_prog() for
1132     * more info.
1133     */
1134    BRW_VARYING_SLOT_PNTC,
1135    BRW_VARYING_SLOT_COUNT
1136 } brw_varying_slot;
1137 
1138 /**
1139  * We always program SF to start reading at an offset of 1 (2 varying slots)
1140  * from the start of the vertex URB entry.  This causes it to skip:
1141  * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gfx4-5
1142  * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gfx6+
1143  */
1144 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
1145 
1146 /**
1147  * Bitmask indicating which fragment shader inputs represent varyings (and
1148  * hence have to be delivered to the fragment shader by the SF/SBE stage).
1149  */
1150 #define BRW_FS_VARYING_INPUT_MASK \
1151    (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1152     ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1153 
1154 /**
1155  * Data structure recording the relationship between the gl_varying_slot enum
1156  * and "slots" within the vertex URB entry (VUE).  A "slot" is defined as a
1157  * single octaword within the VUE (128 bits).
1158  *
1159  * Note that each BRW register contains 256 bits (2 octawords), so when
1160  * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
1161  * consecutive VUE slots.  When accessing the VUE in URB_INTERLEAVED mode (as
1162  * in a vertex shader), each register corresponds to a single VUE slot, since
1163  * it contains data for two separate vertices.
1164  */
1165 struct brw_vue_map {
1166    /**
1167     * Bitfield representing all varying slots that are (a) stored in this VUE
1168     * map, and (b) actually written by the shader.  Does not include any of
1169     * the additional varying slots defined in brw_varying_slot.
1170     */
1171    uint64_t slots_valid;
1172 
1173    /**
1174     * Is this VUE map for a separate shader pipeline?
1175     *
1176     * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
1177     * without the linker having a chance to dead code eliminate unused varyings.
1178     *
1179     * This means that we have to use a fixed slot layout, based on the output's
1180     * location field, rather than assigning slots in a compact contiguous block.
1181     */
1182    bool separate;
1183 
1184    /**
1185     * Map from gl_varying_slot value to VUE slot.  For gl_varying_slots that are
1186     * not stored in a slot (because they are not written, or because
1187     * additional processing is applied before storing them in the VUE), the
1188     * value is -1.
1189     */
1190    signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
1191 
1192    /**
1193     * Map from VUE slot to gl_varying_slot value.  For slots that do not
1194     * directly correspond to a gl_varying_slot, the value comes from
1195     * brw_varying_slot.
1196     *
1197     * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
1198     */
1199    signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
1200 
1201    /**
1202     * Total number of VUE slots in use
1203     */
1204    int num_slots;
1205 
1206    /**
1207     * Number of per-patch VUE slots. Only valid for tessellation control
1208     * shader outputs and tessellation evaluation shader inputs.
1209     */
1210    int num_per_patch_slots;
1211 
1212    /**
1213     * Number of per-vertex VUE slots. Only valid for tessellation control
1214     * shader outputs and tessellation evaluation shader inputs.
1215     */
1216    int num_per_vertex_slots;
1217 };
1218 
1219 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map,
1220                        gl_shader_stage stage);
1221 
1222 /**
1223  * Convert a VUE slot number into a byte offset within the VUE.
1224  */
brw_vue_slot_to_offset(unsigned slot)1225 static inline unsigned brw_vue_slot_to_offset(unsigned slot)
1226 {
1227    return 16*slot;
1228 }
1229 
1230 /**
1231  * Convert a vertex output (brw_varying_slot) into a byte offset within the
1232  * VUE.
1233  */
1234 static inline unsigned
brw_varying_to_offset(const struct brw_vue_map * vue_map,unsigned varying)1235 brw_varying_to_offset(const struct brw_vue_map *vue_map, unsigned varying)
1236 {
1237    return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1238 }
1239 
1240 void brw_compute_vue_map(const struct intel_device_info *devinfo,
1241                          struct brw_vue_map *vue_map,
1242                          uint64_t slots_valid,
1243                          bool separate_shader,
1244                          uint32_t pos_slots);
1245 
1246 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
1247                               uint64_t slots_valid,
1248                               uint32_t is_patch);
1249 
1250 /* brw_interpolation_map.c */
1251 void brw_setup_vue_interpolation(const struct brw_vue_map *vue_map,
1252                                  struct nir_shader *nir,
1253                                  struct brw_wm_prog_data *prog_data);
1254 
1255 enum shader_dispatch_mode {
1256    DISPATCH_MODE_4X1_SINGLE = 0,
1257    DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
1258    DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
1259    DISPATCH_MODE_SIMD8 = 3,
1260 
1261    DISPATCH_MODE_TCS_SINGLE_PATCH = 0,
1262    DISPATCH_MODE_TCS_8_PATCH = 2,
1263 };
1264 
1265 /**
1266  * @defgroup Tessellator parameter enumerations.
1267  *
1268  * These correspond to the hardware values in 3DSTATE_TE, and are provided
1269  * as part of the tessellation evaluation shader.
1270  *
1271  * @{
1272  */
1273 enum brw_tess_partitioning {
1274    BRW_TESS_PARTITIONING_INTEGER         = 0,
1275    BRW_TESS_PARTITIONING_ODD_FRACTIONAL  = 1,
1276    BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1277 };
1278 
1279 enum brw_tess_output_topology {
1280    BRW_TESS_OUTPUT_TOPOLOGY_POINT   = 0,
1281    BRW_TESS_OUTPUT_TOPOLOGY_LINE    = 1,
1282    BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW  = 2,
1283    BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1284 };
1285 
1286 enum brw_tess_domain {
1287    BRW_TESS_DOMAIN_QUAD    = 0,
1288    BRW_TESS_DOMAIN_TRI     = 1,
1289    BRW_TESS_DOMAIN_ISOLINE = 2,
1290 };
1291 /** @} */
1292 
1293 struct brw_vue_prog_data {
1294    struct brw_stage_prog_data base;
1295    struct brw_vue_map vue_map;
1296 
1297    /** Should the hardware deliver input VUE handles for URB pull loads? */
1298    bool include_vue_handles;
1299 
1300    unsigned urb_read_length;
1301    unsigned total_grf;
1302 
1303    uint32_t clip_distance_mask;
1304    uint32_t cull_distance_mask;
1305 
1306    /* Used for calculating urb partitions.  In the VS, this is the size of the
1307     * URB entry used for both input and output to the thread.  In the GS, this
1308     * is the size of the URB entry used for output.
1309     */
1310    unsigned urb_entry_size;
1311 
1312    enum shader_dispatch_mode dispatch_mode;
1313 };
1314 
1315 struct brw_vs_prog_data {
1316    struct brw_vue_prog_data base;
1317 
1318    uint64_t inputs_read;
1319    uint64_t double_inputs_read;
1320 
1321    unsigned nr_attribute_slots;
1322 
1323    bool uses_vertexid;
1324    bool uses_instanceid;
1325    bool uses_is_indexed_draw;
1326    bool uses_firstvertex;
1327    bool uses_baseinstance;
1328    bool uses_drawid;
1329 };
1330 
1331 struct brw_tcs_prog_data
1332 {
1333    struct brw_vue_prog_data base;
1334 
1335    /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1336    bool include_primitive_id;
1337 
1338    /** Number vertices in output patch */
1339    int instances;
1340 
1341    /** Track patch count threshold */
1342    int patch_count_threshold;
1343 };
1344 
1345 
1346 struct brw_tes_prog_data
1347 {
1348    struct brw_vue_prog_data base;
1349 
1350    enum brw_tess_partitioning partitioning;
1351    enum brw_tess_output_topology output_topology;
1352    enum brw_tess_domain domain;
1353    bool include_primitive_id;
1354 };
1355 
1356 struct brw_gs_prog_data
1357 {
1358    struct brw_vue_prog_data base;
1359 
1360    unsigned vertices_in;
1361 
1362    /**
1363     * Size of an output vertex, measured in HWORDS (32 bytes).
1364     */
1365    unsigned output_vertex_size_hwords;
1366 
1367    unsigned output_topology;
1368 
1369    /**
1370     * Size of the control data (cut bits or StreamID bits), in hwords (32
1371     * bytes).  0 if there is no control data.
1372     */
1373    unsigned control_data_header_size_hwords;
1374 
1375    /**
1376     * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1377     * if the control data is StreamID bits, or
1378     * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1379     * Ignored if control_data_header_size is 0.
1380     */
1381    unsigned control_data_format;
1382 
1383    bool include_primitive_id;
1384 
1385    /**
1386     * The number of vertices emitted, if constant - otherwise -1.
1387     */
1388    int static_vertex_count;
1389 
1390    int invocations;
1391 
1392    /**
1393     * Gfx6: Provoking vertex convention for odd-numbered triangles
1394     * in tristrips.
1395     */
1396    unsigned pv_first:1;
1397 
1398    /**
1399     * Gfx6: Number of varyings that are output to transform feedback.
1400     */
1401    unsigned num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1402 
1403    /**
1404     * Gfx6: Map from the index of a transform feedback binding table entry to the
1405     * gl_varying_slot that should be streamed out through that binding table
1406     * entry.
1407     */
1408    unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1409 
1410    /**
1411     * Gfx6: Map from the index of a transform feedback binding table entry to the
1412     * swizzles that should be used when streaming out data through that
1413     * binding table entry.
1414     */
1415    unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1416 };
1417 
1418 struct brw_sf_prog_data {
1419    uint32_t urb_read_length;
1420    uint32_t total_grf;
1421 
1422    /* Each vertex may have up to 12 attributes, 4 components each,
1423     * except WPOS which requires only 2.  (11*4 + 2) == 44 ==> 11
1424     * rows.
1425     *
1426     * Actually we use 4 for each, so call it 12 rows.
1427     */
1428    unsigned urb_entry_size;
1429 };
1430 
1431 struct brw_clip_prog_data {
1432    uint32_t curb_read_length;	/* user planes? */
1433    uint32_t clip_mode;
1434    uint32_t urb_read_length;
1435    uint32_t total_grf;
1436 };
1437 
1438 struct brw_tue_map {
1439    uint32_t size_dw;
1440 
1441    uint32_t per_task_data_start_dw;
1442 };
1443 
1444 struct brw_mue_map {
1445    int32_t start_dw[VARYING_SLOT_MAX];
1446 
1447    uint32_t size_dw;
1448 
1449    uint32_t max_primitives;
1450    uint32_t per_primitive_start_dw;
1451    uint32_t per_primitive_header_size_dw;
1452    uint32_t per_primitive_data_size_dw;
1453    uint32_t per_primitive_pitch_dw;
1454 
1455    uint32_t max_vertices;
1456    uint32_t per_vertex_start_dw;
1457    uint32_t per_vertex_header_size_dw;
1458    uint32_t per_vertex_data_size_dw;
1459    uint32_t per_vertex_pitch_dw;
1460 };
1461 
1462 struct brw_task_prog_data {
1463    struct brw_cs_prog_data base;
1464    struct brw_tue_map map;
1465    bool uses_drawid;
1466 };
1467 
1468 enum brw_mesh_index_format {
1469    BRW_INDEX_FORMAT_U32,
1470 };
1471 
1472 struct brw_mesh_prog_data {
1473    struct brw_cs_prog_data base;
1474    struct brw_mue_map map;
1475 
1476    uint32_t clip_distance_mask;
1477    uint32_t cull_distance_mask;
1478    uint16_t primitive_type;
1479 
1480    enum brw_mesh_index_format index_format;
1481 
1482    bool uses_drawid;
1483 };
1484 
1485 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1486 union brw_any_prog_data {
1487    struct brw_stage_prog_data base;
1488    struct brw_vue_prog_data vue;
1489    struct brw_vs_prog_data vs;
1490    struct brw_tcs_prog_data tcs;
1491    struct brw_tes_prog_data tes;
1492    struct brw_gs_prog_data gs;
1493    struct brw_wm_prog_data wm;
1494    struct brw_cs_prog_data cs;
1495    struct brw_bs_prog_data bs;
1496    struct brw_task_prog_data task;
1497    struct brw_mesh_prog_data mesh;
1498 };
1499 
1500 #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK)                            \
1501 static inline struct brw_##STAGE##_prog_data *                             \
1502 brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data)             \
1503 {                                                                          \
1504    if (prog_data)                                                          \
1505       assert(CHECK);                                                       \
1506    return (struct brw_##STAGE##_prog_data *) prog_data;                    \
1507 }                                                                          \
1508 static inline const struct brw_##STAGE##_prog_data *                       \
1509 brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1510 {                                                                          \
1511    if (prog_data)                                                          \
1512       assert(CHECK);                                                       \
1513    return (const struct brw_##STAGE##_prog_data *) prog_data;              \
1514 }
1515 
1516 DEFINE_PROG_DATA_DOWNCAST(vs,  prog_data->stage == MESA_SHADER_VERTEX)
1517 DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
1518 DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
1519 DEFINE_PROG_DATA_DOWNCAST(gs,  prog_data->stage == MESA_SHADER_GEOMETRY)
1520 DEFINE_PROG_DATA_DOWNCAST(wm,  prog_data->stage == MESA_SHADER_FRAGMENT)
1521 DEFINE_PROG_DATA_DOWNCAST(cs,  gl_shader_stage_uses_workgroup(prog_data->stage))
1522 DEFINE_PROG_DATA_DOWNCAST(bs,  brw_shader_stage_is_bindless(prog_data->stage))
1523 
1524 DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
1525                                prog_data->stage == MESA_SHADER_TESS_CTRL ||
1526                                prog_data->stage == MESA_SHADER_TESS_EVAL ||
1527                                prog_data->stage == MESA_SHADER_GEOMETRY)
1528 
1529 DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
1530 DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
1531 
1532 /* These are not really brw_stage_prog_data. */
1533 DEFINE_PROG_DATA_DOWNCAST(ff_gs, true)
1534 DEFINE_PROG_DATA_DOWNCAST(clip,  true)
1535 DEFINE_PROG_DATA_DOWNCAST(sf,    true)
1536 #undef DEFINE_PROG_DATA_DOWNCAST
1537 
1538 struct brw_compile_stats {
1539    uint32_t dispatch_width; /**< 0 for vec4 */
1540    uint32_t instructions;
1541    uint32_t sends;
1542    uint32_t loops;
1543    uint32_t cycles;
1544    uint32_t spills;
1545    uint32_t fills;
1546 };
1547 
1548 /** @} */
1549 
1550 struct brw_compiler *
1551 brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
1552 
1553 /**
1554  * Returns a compiler configuration for use with disk shader cache
1555  *
1556  * This value only needs to change for settings that can cause different
1557  * program generation between two runs on the same hardware.
1558  *
1559  * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1560  * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1561  */
1562 uint64_t
1563 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1564 
1565 unsigned
1566 brw_prog_data_size(gl_shader_stage stage);
1567 
1568 unsigned
1569 brw_prog_key_size(gl_shader_stage stage);
1570 
1571 void
1572 brw_prog_key_set_id(union brw_any_prog_key *key, gl_shader_stage, unsigned id);
1573 
1574 /**
1575  * Parameters for compiling a vertex shader.
1576  *
1577  * Some of these will be modified during the shader compilation.
1578  */
1579 struct brw_compile_vs_params {
1580    nir_shader *nir;
1581 
1582    const struct brw_vs_prog_key *key;
1583    struct brw_vs_prog_data *prog_data;
1584 
1585    bool edgeflag_is_last; /* true for gallium */
1586 
1587    struct brw_compile_stats *stats;
1588 
1589    void *log_data;
1590 
1591    char *error_str;
1592 
1593    /* If unset, DEBUG_VS is used. */
1594    uint64_t debug_flag;
1595 };
1596 
1597 /**
1598  * Compile a vertex shader.
1599  *
1600  * Returns the final assembly and updates the parameters structure.
1601  */
1602 const unsigned *
1603 brw_compile_vs(const struct brw_compiler *compiler,
1604                void *mem_ctx,
1605                struct brw_compile_vs_params *params);
1606 
1607 /**
1608  * Parameters for compiling a tessellation control shader.
1609  *
1610  * Some of these will be modified during the shader compilation.
1611  */
1612 struct brw_compile_tcs_params {
1613    nir_shader *nir;
1614 
1615    const struct brw_tcs_prog_key *key;
1616    struct brw_tcs_prog_data *prog_data;
1617 
1618    struct brw_compile_stats *stats;
1619 
1620    void *log_data;
1621 
1622    char *error_str;
1623 };
1624 
1625 /**
1626  * Compile a tessellation control shader.
1627  *
1628  * Returns the final assembly and updates the parameters structure.
1629  */
1630 const unsigned *
1631 brw_compile_tcs(const struct brw_compiler *compiler,
1632                 void *mem_ctx,
1633                 struct brw_compile_tcs_params *params);
1634 
1635 /**
1636  * Parameters for compiling a tessellation evaluation shader.
1637  *
1638  * Some of these will be modified during the shader compilation.
1639  */
1640 struct brw_compile_tes_params {
1641    nir_shader *nir;
1642 
1643    const struct brw_tes_prog_key *key;
1644    struct brw_tes_prog_data *prog_data;
1645    const struct brw_vue_map *input_vue_map;
1646 
1647    struct brw_compile_stats *stats;
1648 
1649    void *log_data;
1650 
1651    char *error_str;
1652 };
1653 
1654 /**
1655  * Compile a tessellation evaluation shader.
1656  *
1657  * Returns the final assembly and updates the parameters structure.
1658  */
1659 const unsigned *
1660 brw_compile_tes(const struct brw_compiler *compiler,
1661                 void *mem_ctx,
1662                 struct brw_compile_tes_params *params);
1663 
1664 /**
1665  * Parameters for compiling a geometry shader.
1666  *
1667  * Some of these will be modified during the shader compilation.
1668  */
1669 struct brw_compile_gs_params {
1670    nir_shader *nir;
1671 
1672    const struct brw_gs_prog_key *key;
1673    struct brw_gs_prog_data *prog_data;
1674 
1675    struct brw_compile_stats *stats;
1676 
1677    void *log_data;
1678 
1679    char *error_str;
1680 };
1681 
1682 /**
1683  * Compile a geometry shader.
1684  *
1685  * Returns the final assembly and updates the parameters structure.
1686  */
1687 const unsigned *
1688 brw_compile_gs(const struct brw_compiler *compiler,
1689                void *mem_ctx,
1690                struct brw_compile_gs_params *params);
1691 
1692 /**
1693  * Compile a strips and fans shader.
1694  *
1695  * This is a fixed-function shader determined entirely by the shader key and
1696  * a VUE map.
1697  *
1698  * Returns the final assembly and the program's size.
1699  */
1700 const unsigned *
1701 brw_compile_sf(const struct brw_compiler *compiler,
1702                void *mem_ctx,
1703                const struct brw_sf_prog_key *key,
1704                struct brw_sf_prog_data *prog_data,
1705                struct brw_vue_map *vue_map,
1706                unsigned *final_assembly_size);
1707 
1708 /**
1709  * Compile a clipper shader.
1710  *
1711  * This is a fixed-function shader determined entirely by the shader key and
1712  * a VUE map.
1713  *
1714  * Returns the final assembly and the program's size.
1715  */
1716 const unsigned *
1717 brw_compile_clip(const struct brw_compiler *compiler,
1718                  void *mem_ctx,
1719                  const struct brw_clip_prog_key *key,
1720                  struct brw_clip_prog_data *prog_data,
1721                  struct brw_vue_map *vue_map,
1722                  unsigned *final_assembly_size);
1723 
1724 struct brw_compile_task_params {
1725    struct nir_shader *nir;
1726 
1727    const struct brw_task_prog_key *key;
1728    struct brw_task_prog_data *prog_data;
1729 
1730    struct brw_compile_stats *stats;
1731 
1732    char *error_str;
1733    void *log_data;
1734 };
1735 
1736 const unsigned *
1737 brw_compile_task(const struct brw_compiler *compiler,
1738                  void *mem_ctx,
1739                  struct brw_compile_task_params *params);
1740 
1741 struct brw_compile_mesh_params {
1742    struct nir_shader *nir;
1743 
1744    const struct brw_mesh_prog_key *key;
1745    struct brw_mesh_prog_data *prog_data;
1746    const struct brw_tue_map *tue_map;
1747 
1748    struct brw_compile_stats *stats;
1749 
1750    char *error_str;
1751    void *log_data;
1752 };
1753 
1754 const unsigned *
1755 brw_compile_mesh(const struct brw_compiler *compiler,
1756                  void *mem_ctx,
1757                  struct brw_compile_mesh_params *params);
1758 
1759 /**
1760  * Parameters for compiling a fragment shader.
1761  *
1762  * Some of these will be modified during the shader compilation.
1763  */
1764 struct brw_compile_fs_params {
1765    nir_shader *nir;
1766 
1767    const struct brw_wm_prog_key *key;
1768    struct brw_wm_prog_data *prog_data;
1769 
1770    const struct brw_vue_map *vue_map;
1771    const struct brw_mue_map *mue_map;
1772 
1773    bool allow_spilling;
1774    bool use_rep_send;
1775 
1776    struct brw_compile_stats *stats;
1777 
1778    void *log_data;
1779 
1780    char *error_str;
1781 
1782    /* If unset, DEBUG_WM is used. */
1783    uint64_t debug_flag;
1784 };
1785 
1786 /**
1787  * Compile a fragment shader.
1788  *
1789  * Returns the final assembly and updates the parameters structure.
1790  */
1791 const unsigned *
1792 brw_compile_fs(const struct brw_compiler *compiler,
1793                void *mem_ctx,
1794                struct brw_compile_fs_params *params);
1795 
1796 /**
1797  * Parameters for compiling a compute shader.
1798  *
1799  * Some of these will be modified during the shader compilation.
1800  */
1801 struct brw_compile_cs_params {
1802    nir_shader *nir;
1803 
1804    const struct brw_cs_prog_key *key;
1805    struct brw_cs_prog_data *prog_data;
1806 
1807    struct brw_compile_stats *stats;
1808 
1809    void *log_data;
1810 
1811    char *error_str;
1812 
1813    /* If unset, DEBUG_CS is used. */
1814    uint64_t debug_flag;
1815 };
1816 
1817 /**
1818  * Compile a compute shader.
1819  *
1820  * Returns the final assembly and updates the parameters structure.
1821  */
1822 const unsigned *
1823 brw_compile_cs(const struct brw_compiler *compiler,
1824                void *mem_ctx,
1825                struct brw_compile_cs_params *params);
1826 
1827 /**
1828  * Parameters for compiling a Bindless shader.
1829  *
1830  * Some of these will be modified during the shader compilation.
1831  */
1832 struct brw_compile_bs_params {
1833    nir_shader *nir;
1834 
1835    const struct brw_bs_prog_key *key;
1836    struct brw_bs_prog_data *prog_data;
1837 
1838    unsigned num_resume_shaders;
1839    struct nir_shader **resume_shaders;
1840 
1841    struct brw_compile_stats *stats;
1842 
1843    void *log_data;
1844 
1845    char *error_str;
1846 };
1847 
1848 /**
1849  * Compile a Bindless shader.
1850  *
1851  * Returns the final assembly and updates the parameters structure.
1852  */
1853 const unsigned *
1854 brw_compile_bs(const struct brw_compiler *compiler,
1855                void *mem_ctx,
1856                struct brw_compile_bs_params *params);
1857 
1858 /**
1859  * Compile a fixed function geometry shader.
1860  *
1861  * Returns the final assembly and the program's size.
1862  */
1863 const unsigned *
1864 brw_compile_ff_gs_prog(struct brw_compiler *compiler,
1865 		       void *mem_ctx,
1866 		       const struct brw_ff_gs_prog_key *key,
1867 		       struct brw_ff_gs_prog_data *prog_data,
1868 		       struct brw_vue_map *vue_map,
1869 		       unsigned *final_assembly_size);
1870 
1871 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1872                              gl_shader_stage stage,
1873                              const struct brw_base_prog_key *old_key,
1874                              const struct brw_base_prog_key *key);
1875 
1876 /* Shared Local Memory Size is specified as powers of two,
1877  * and also have a Gen-dependent minimum value if not zero.
1878  */
1879 static inline uint32_t
intel_calculate_slm_size(unsigned gen,uint32_t bytes)1880 intel_calculate_slm_size(unsigned gen, uint32_t bytes)
1881 {
1882    assert(bytes <= 64 * 1024);
1883    if (bytes > 0)
1884       return MAX2(util_next_power_of_two(bytes), gen >= 9 ? 1024 : 4096);
1885    else
1886       return 0;
1887 }
1888 
1889 static inline uint32_t
encode_slm_size(unsigned gen,uint32_t bytes)1890 encode_slm_size(unsigned gen, uint32_t bytes)
1891 {
1892    uint32_t slm_size = 0;
1893 
1894    /* Shared Local Memory is specified as powers of two, and encoded in
1895     * INTERFACE_DESCRIPTOR_DATA with the following representations:
1896     *
1897     * Size   | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1898     * -------------------------------------------------------------------
1899     * Gfx7-8 |    0 | none | none |    1 |    2 |     4 |     8 |    16 |
1900     * -------------------------------------------------------------------
1901     * Gfx9+  |    0 |    1 |    2 |    3 |    4 |     5 |     6 |     7 |
1902     */
1903 
1904    if (bytes > 0) {
1905       slm_size = intel_calculate_slm_size(gen, bytes);
1906       assert(util_is_power_of_two_nonzero(slm_size));
1907 
1908       if (gen >= 9) {
1909          /* Turn an exponent of 10 (1024 kB) into 1. */
1910          assert(slm_size >= 1024);
1911          slm_size = ffs(slm_size) - 10;
1912       } else {
1913          assert(slm_size >= 4096);
1914          /* Convert to the pre-Gfx9 representation. */
1915          slm_size = slm_size / 4096;
1916       }
1917    }
1918 
1919    return slm_size;
1920 }
1921 
1922 unsigned
1923 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1924                              unsigned threads);
1925 
1926 void
1927 brw_write_shader_relocs(const struct brw_isa_info *isa,
1928                         void *program,
1929                         const struct brw_stage_prog_data *prog_data,
1930                         struct brw_shader_reloc_value *values,
1931                         unsigned num_values);
1932 
1933 struct brw_cs_dispatch_info {
1934    uint32_t group_size;
1935    uint32_t simd_size;
1936    uint32_t threads;
1937 
1938    /* RightExecutionMask field used in GPGPU_WALKER. */
1939    uint32_t right_mask;
1940 };
1941 
1942 /**
1943  * Get the dispatch information for a shader to be used with GPGPU_WALKER and
1944  * similar instructions.
1945  *
1946  * If override_local_size is not NULL, it must to point to a 3-element that
1947  * will override the value from prog_data->local_size.  This is used by
1948  * ARB_compute_variable_group_size, where the size is set only at dispatch
1949  * time (so prog_data is outdated).
1950  */
1951 struct brw_cs_dispatch_info
1952 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
1953                          const struct brw_cs_prog_data *prog_data,
1954                          const unsigned *override_local_size);
1955 
1956 /**
1957  * Return true if the given shader stage is dispatched contiguously by the
1958  * relevant fixed function starting from channel 0 of the SIMD thread, which
1959  * implies that the dispatch mask of a thread can be assumed to have the form
1960  * '2^n - 1' for some n.
1961  */
1962 static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info * devinfo,gl_shader_stage stage,const struct brw_stage_prog_data * prog_data)1963 brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
1964                               gl_shader_stage stage,
1965                               const struct brw_stage_prog_data *prog_data)
1966 {
1967    /* The code below makes assumptions about the hardware's thread dispatch
1968     * behavior that could be proven wrong in future generations -- Make sure
1969     * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1970     * the NIR front-end before changing this assertion.
1971     */
1972    assert(devinfo->ver <= 12);
1973 
1974    switch (stage) {
1975    case MESA_SHADER_FRAGMENT: {
1976       /* The PSD discards subspans coming in with no lit samples, which in the
1977        * per-pixel shading case implies that each subspan will either be fully
1978        * lit (due to the VMask being used to allow derivative computations),
1979        * or not dispatched at all.  In per-sample dispatch mode individual
1980        * samples from the same subspan have a fixed relative location within
1981        * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1982        * general and we should return false.
1983        */
1984       const struct brw_wm_prog_data *wm_prog_data =
1985          (const struct brw_wm_prog_data *)prog_data;
1986       return devinfo->verx10 < 125 &&
1987              !wm_prog_data->persample_dispatch &&
1988              wm_prog_data->uses_vmask;
1989    }
1990    case MESA_SHADER_COMPUTE:
1991       /* Compute shaders will be spawned with either a fully enabled dispatch
1992        * mask or with whatever bottom/right execution mask was given to the
1993        * GPGPU walker command to be used along the workgroup edges -- In both
1994        * cases the dispatch mask is required to be tightly packed for our
1995        * invocation index calculations to work.
1996        */
1997       return true;
1998    default:
1999       /* Most remaining fixed functions are limited to use a packed dispatch
2000        * mask due to the hardware representation of the dispatch mask as a
2001        * single counter representing the number of enabled channels.
2002        */
2003       return true;
2004    }
2005 }
2006 
2007 /**
2008  * Computes the first varying slot in the URB produced by the previous stage
2009  * that is used in the next stage. We do this by testing the varying slots in
2010  * the previous stage's vue map against the inputs read in the next stage.
2011  *
2012  * Note that:
2013  *
2014  * - Each URB offset contains two varying slots and we can only skip a
2015  *   full offset if both slots are unused, so the value we return here is always
2016  *   rounded down to the closest multiple of two.
2017  *
2018  * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
2019  *   part of the vue header, so if these are read we can't skip anything.
2020  */
2021 static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,const struct brw_vue_map * prev_stage_vue_map)2022 brw_compute_first_urb_slot_required(uint64_t inputs_read,
2023                                     const struct brw_vue_map *prev_stage_vue_map)
2024 {
2025    if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
2026       for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
2027          int varying = prev_stage_vue_map->slot_to_varying[i];
2028          if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
2029             return ROUND_DOWN_TO(i, 2);
2030       }
2031    }
2032 
2033    return 0;
2034 }
2035 
2036 /* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
2037 #define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
2038 
2039 /* InlineData[0-1] is used for Vulkan descriptor. */
2040 #define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
2041 
2042 #define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
2043    (BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
2044 
2045 /**
2046  * This enum is used as the base indice of the nir_load_topology_id_intel
2047  * intrinsic. This is used to return different values based on some aspect of
2048  * the topology of the device.
2049  */
2050 enum brw_topology_id
2051 {
2052    /* A value based of the DSS identifier the shader is currently running on.
2053     * Be mindful that the DSS ID can be higher than the total number of DSS on
2054     * the device. This is because of the fusing that can occur on different
2055     * parts.
2056     */
2057    BRW_TOPOLOGY_ID_DSS,
2058 
2059    /* A value composed of EU ID, thread ID & SIMD lane ID. */
2060    BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
2061 };
2062 
2063 #ifdef __cplusplus
2064 } /* extern "C" */
2065 #endif
2066 
2067 #endif /* BRW_COMPILER_H */
2068