• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)65 bool cpufreq_supports_freq_invariance(void)
66 {
67 	return static_branch_likely(&cpufreq_freq_invariance);
68 }
69 
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72 
has_target(void)73 static inline bool has_target(void)
74 {
75 	return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77 
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 			      struct cpufreq_governor *new_gov,
85 			      unsigned int new_pol);
86 
87 /*
88  * Two notifier lists: the "policy" list is involved in the
89  * validation process for a new CPU frequency policy; the
90  * "transition" list for kernel code that needs to handle
91  * changes to devices when the CPU clock speed changes.
92  * The mutex locks both lists.
93  */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96 
97 static int off __read_mostly;
cpufreq_disabled(void)98 static int cpufreq_disabled(void)
99 {
100 	return off;
101 }
disable_cpufreq(void)102 void disable_cpufreq(void)
103 {
104 	off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107 
have_governor_per_policy(void)108 bool have_governor_per_policy(void)
109 {
110 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113 
114 static struct kobject *cpufreq_global_kobject;
115 
get_governor_parent_kobj(struct cpufreq_policy * policy)116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 	if (have_governor_per_policy())
119 		return &policy->kobj;
120 	else
121 		return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124 
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 	struct kernel_cpustat kcpustat;
128 	u64 cur_wall_time;
129 	u64 idle_time;
130 	u64 busy_time;
131 
132 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133 
134 	kcpustat_cpu_fetch(&kcpustat, cpu);
135 
136 	busy_time = kcpustat.cpustat[CPUTIME_USER];
137 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
142 
143 	idle_time = cur_wall_time - busy_time;
144 	if (wall)
145 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146 
147 	return div_u64(idle_time, NSEC_PER_USEC);
148 }
149 
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153 
154 	if (idle_time == -1ULL)
155 		return get_cpu_idle_time_jiffy(cpu, wall);
156 	else if (!io_busy)
157 		idle_time += get_cpu_iowait_time_us(cpu, wall);
158 
159 	return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
cpufreq_cpu_get_raw(unsigned int cpu)185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
cpufreq_generic_get(unsigned int cpu)193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
cpufreq_cpu_get(unsigned int cpu)218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
cpufreq_cpu_put(struct cpufreq_policy * policy)246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
cpufreq_cpu_release(struct cpufreq_policy * policy)256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
cpufreq_cpu_acquire(unsigned int cpu)280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	arch_set_freq_scale(policy->related_cpus,
450 			    policy->cur,
451 			    policy->cpuinfo.max_freq);
452 
453 	policy->transition_ongoing = false;
454 	policy->transition_task = NULL;
455 
456 	wake_up(&policy->transition_wait);
457 }
458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
459 
460 /*
461  * Fast frequency switching status count.  Positive means "enabled", negative
462  * means "disabled" and 0 means "not decided yet".
463  */
464 static int cpufreq_fast_switch_count;
465 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
466 
cpufreq_list_transition_notifiers(void)467 static void cpufreq_list_transition_notifiers(void)
468 {
469 	struct notifier_block *nb;
470 
471 	pr_info("Registered transition notifiers:\n");
472 
473 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
474 
475 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
476 		pr_info("%pS\n", nb->notifier_call);
477 
478 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
479 }
480 
481 /**
482  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
483  * @policy: cpufreq policy to enable fast frequency switching for.
484  *
485  * Try to enable fast frequency switching for @policy.
486  *
487  * The attempt will fail if there is at least one transition notifier registered
488  * at this point, as fast frequency switching is quite fundamentally at odds
489  * with transition notifiers.  Thus if successful, it will make registration of
490  * transition notifiers fail going forward.
491  */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
493 {
494 	lockdep_assert_held(&policy->rwsem);
495 
496 	if (!policy->fast_switch_possible)
497 		return;
498 
499 	mutex_lock(&cpufreq_fast_switch_lock);
500 	if (cpufreq_fast_switch_count >= 0) {
501 		cpufreq_fast_switch_count++;
502 		policy->fast_switch_enabled = true;
503 	} else {
504 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
505 			policy->cpu);
506 		cpufreq_list_transition_notifiers();
507 	}
508 	mutex_unlock(&cpufreq_fast_switch_lock);
509 }
510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
511 
512 /**
513  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
514  * @policy: cpufreq policy to disable fast frequency switching for.
515  */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
517 {
518 	mutex_lock(&cpufreq_fast_switch_lock);
519 	if (policy->fast_switch_enabled) {
520 		policy->fast_switch_enabled = false;
521 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
522 			cpufreq_fast_switch_count--;
523 	}
524 	mutex_unlock(&cpufreq_fast_switch_lock);
525 }
526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
527 
528 /**
529  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
530  * one.
531  * @policy: associated policy to interrogate
532  * @target_freq: target frequency to resolve.
533  *
534  * The target to driver frequency mapping is cached in the policy.
535  *
536  * Return: Lowest driver-supported frequency greater than or equal to the
537  * given target_freq, subject to policy (min/max) and driver limitations.
538  */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
540 					 unsigned int target_freq)
541 {
542 	target_freq = clamp_val(target_freq, policy->min, policy->max);
543 	policy->cached_target_freq = target_freq;
544 
545 	if (cpufreq_driver->target_index) {
546 		unsigned int idx;
547 
548 		idx = cpufreq_frequency_table_target(policy, target_freq,
549 						     CPUFREQ_RELATION_L);
550 		policy->cached_resolved_idx = idx;
551 		return policy->freq_table[idx].frequency;
552 	}
553 
554 	if (cpufreq_driver->resolve_freq)
555 		return cpufreq_driver->resolve_freq(policy, target_freq);
556 
557 	return target_freq;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560 
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 	unsigned int latency;
564 
565 	if (policy->transition_delay_us)
566 		return policy->transition_delay_us;
567 
568 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 	if (latency) {
570 		/*
571 		 * For platforms that can change the frequency very fast (< 10
572 		 * us), the above formula gives a decent transition delay. But
573 		 * for platforms where transition_latency is in milliseconds, it
574 		 * ends up giving unrealistic values.
575 		 *
576 		 * Cap the default transition delay to 10 ms, which seems to be
577 		 * a reasonable amount of time after which we should reevaluate
578 		 * the frequency.
579 		 */
580 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 	}
582 
583 	return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586 
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)590 static ssize_t show_boost(struct kobject *kobj,
591 			  struct kobj_attribute *attr, char *buf)
592 {
593 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595 
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 			   const char *buf, size_t count)
598 {
599 	int ret, enable;
600 
601 	ret = sscanf(buf, "%d", &enable);
602 	if (ret != 1 || enable < 0 || enable > 1)
603 		return -EINVAL;
604 
605 	if (cpufreq_boost_trigger_state(enable)) {
606 		pr_err("%s: Cannot %s BOOST!\n",
607 		       __func__, enable ? "enable" : "disable");
608 		return -EINVAL;
609 	}
610 
611 	pr_debug("%s: cpufreq BOOST %s\n",
612 		 __func__, enable ? "enabled" : "disabled");
613 
614 	return count;
615 }
616 define_one_global_rw(boost);
617 
find_governor(const char * str_governor)618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 	struct cpufreq_governor *t;
621 
622 	for_each_governor(t)
623 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 			return t;
625 
626 	return NULL;
627 }
628 
get_governor(const char * str_governor)629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 	struct cpufreq_governor *t;
632 
633 	mutex_lock(&cpufreq_governor_mutex);
634 	t = find_governor(str_governor);
635 	if (!t)
636 		goto unlock;
637 
638 	if (!try_module_get(t->owner))
639 		t = NULL;
640 
641 unlock:
642 	mutex_unlock(&cpufreq_governor_mutex);
643 
644 	return t;
645 }
646 
cpufreq_parse_policy(char * str_governor)647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 		return CPUFREQ_POLICY_PERFORMANCE;
651 
652 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 		return CPUFREQ_POLICY_POWERSAVE;
654 
655 	return CPUFREQ_POLICY_UNKNOWN;
656 }
657 
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
cpufreq_parse_governor(char * str_governor)662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 	struct cpufreq_governor *t;
665 
666 	t = get_governor(str_governor);
667 	if (t)
668 		return t;
669 
670 	if (request_module("cpufreq_%s", str_governor))
671 		return NULL;
672 
673 	return get_governor(str_governor);
674 }
675 
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683 
684 #define show_one(file_name, object)			\
685 static ssize_t show_##file_name				\
686 (struct cpufreq_policy *policy, char *buf)		\
687 {							\
688 	return sprintf(buf, "%u\n", policy->object);	\
689 }
690 
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696 
arch_freq_get_on_cpu(int cpu)697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 	return 0;
700 }
701 
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 	ssize_t ret;
705 	unsigned int freq;
706 
707 	freq = arch_freq_get_on_cpu(policy->cpu);
708 	if (freq)
709 		ret = sprintf(buf, "%u\n", freq);
710 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 	else
713 		ret = sprintf(buf, "%u\n", policy->cur);
714 	return ret;
715 }
716 
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)			\
721 static ssize_t store_##file_name					\
722 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
723 {									\
724 	unsigned long val;						\
725 	int ret;							\
726 									\
727 	ret = sscanf(buf, "%lu", &val);					\
728 	if (ret != 1)							\
729 		return -EINVAL;						\
730 									\
731 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 	return ret >= 0 ? count : ret;					\
733 }
734 
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737 
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 					char *buf)
743 {
744 	unsigned int cur_freq = __cpufreq_get(policy);
745 
746 	if (cur_freq)
747 		return sprintf(buf, "%u\n", cur_freq);
748 
749 	return sprintf(buf, "<unknown>\n");
750 }
751 
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 		return sprintf(buf, "powersave\n");
759 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 		return sprintf(buf, "performance\n");
761 	else if (policy->governor)
762 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 				policy->governor->name);
764 	return -EINVAL;
765 }
766 
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 					const char *buf, size_t count)
772 {
773 	char str_governor[16];
774 	int ret;
775 
776 	ret = sscanf(buf, "%15s", str_governor);
777 	if (ret != 1)
778 		return -EINVAL;
779 
780 	if (cpufreq_driver->setpolicy) {
781 		unsigned int new_pol;
782 
783 		new_pol = cpufreq_parse_policy(str_governor);
784 		if (!new_pol)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, NULL, new_pol);
788 	} else {
789 		struct cpufreq_governor *new_gov;
790 
791 		new_gov = cpufreq_parse_governor(str_governor);
792 		if (!new_gov)
793 			return -EINVAL;
794 
795 		ret = cpufreq_set_policy(policy, new_gov,
796 					 CPUFREQ_POLICY_UNKNOWN);
797 
798 		module_put(new_gov->owner);
799 	}
800 
801 	return ret ? ret : count;
802 }
803 
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811 
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 						char *buf)
817 {
818 	ssize_t i = 0;
819 	struct cpufreq_governor *t;
820 
821 	if (!has_target()) {
822 		i += sprintf(buf, "performance powersave");
823 		goto out;
824 	}
825 
826 	mutex_lock(&cpufreq_governor_mutex);
827 	for_each_governor(t) {
828 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 		    - (CPUFREQ_NAME_LEN + 2)))
830 			break;
831 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 	}
833 	mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 	i += sprintf(&buf[i], "\n");
836 	return i;
837 }
838 
cpufreq_show_cpus(const struct cpumask * mask,char * buf)839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 	ssize_t i = 0;
842 	unsigned int cpu;
843 
844 	for_each_cpu(cpu, mask) {
845 		if (i)
846 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 		if (i >= (PAGE_SIZE - 5))
849 			break;
850 	}
851 	i += sprintf(&buf[i], "\n");
852 	return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855 
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
show_related_cpus(struct cpufreq_policy * policy,char * buf)860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 	return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864 
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 	return cpufreq_show_cpus(policy->cpus, buf);
871 }
872 
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 					const char *buf, size_t count)
875 {
876 	unsigned int freq = 0;
877 	unsigned int ret;
878 
879 	if (!policy->governor || !policy->governor->store_setspeed)
880 		return -EINVAL;
881 
882 	ret = sscanf(buf, "%u", &freq);
883 	if (ret != 1)
884 		return -EINVAL;
885 
886 	policy->governor->store_setspeed(policy, freq);
887 
888 	return count;
889 }
890 
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 	if (!policy->governor || !policy->governor->show_setspeed)
894 		return sprintf(buf, "<unsupported>\n");
895 
896 	return policy->governor->show_setspeed(policy, buf);
897 }
898 
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
show_bios_limit(struct cpufreq_policy * policy,char * buf)902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 	unsigned int limit;
905 	int ret;
906 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 	if (!ret)
908 		return sprintf(buf, "%u\n", limit);
909 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911 
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926 
927 static struct attribute *default_attrs[] = {
928 	&cpuinfo_min_freq.attr,
929 	&cpuinfo_max_freq.attr,
930 	&cpuinfo_transition_latency.attr,
931 	&scaling_min_freq.attr,
932 	&scaling_max_freq.attr,
933 	&affected_cpus.attr,
934 	&related_cpus.attr,
935 	&scaling_governor.attr,
936 	&scaling_driver.attr,
937 	&scaling_available_governors.attr,
938 	&scaling_setspeed.attr,
939 	NULL
940 };
941 
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944 
show(struct kobject * kobj,struct attribute * attr,char * buf)945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 	struct cpufreq_policy *policy = to_policy(kobj);
948 	struct freq_attr *fattr = to_attr(attr);
949 	ssize_t ret;
950 
951 	if (!fattr->show)
952 		return -EIO;
953 
954 	down_read(&policy->rwsem);
955 	ret = fattr->show(policy, buf);
956 	up_read(&policy->rwsem);
957 
958 	return ret;
959 }
960 
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 		     const char *buf, size_t count)
963 {
964 	struct cpufreq_policy *policy = to_policy(kobj);
965 	struct freq_attr *fattr = to_attr(attr);
966 	ssize_t ret = -EINVAL;
967 
968 	if (!fattr->store)
969 		return -EIO;
970 
971 	/*
972 	 * cpus_read_trylock() is used here to work around a circular lock
973 	 * dependency problem with respect to the cpufreq_register_driver().
974 	 */
975 	if (!cpus_read_trylock())
976 		return -EBUSY;
977 
978 	if (cpu_online(policy->cpu)) {
979 		down_write(&policy->rwsem);
980 		ret = fattr->store(policy, buf, count);
981 		up_write(&policy->rwsem);
982 	}
983 
984 	cpus_read_unlock();
985 
986 	return ret;
987 }
988 
cpufreq_sysfs_release(struct kobject * kobj)989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 	struct cpufreq_policy *policy = to_policy(kobj);
992 	pr_debug("last reference is dropped\n");
993 	complete(&policy->kobj_unregister);
994 }
995 
996 static const struct sysfs_ops sysfs_ops = {
997 	.show	= show,
998 	.store	= store,
999 };
1000 
1001 static struct kobj_type ktype_cpufreq = {
1002 	.sysfs_ops	= &sysfs_ops,
1003 	.default_attrs	= default_attrs,
1004 	.release	= cpufreq_sysfs_release,
1005 };
1006 
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1008 				struct device *dev)
1009 {
1010 	if (unlikely(!dev))
1011 		return;
1012 
1013 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 		return;
1015 
1016 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 		dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020 
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 				   struct device *dev)
1023 {
1024 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 	sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027 
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 	struct freq_attr **drv_attr;
1031 	int ret = 0;
1032 
1033 	/* set up files for this cpu device */
1034 	drv_attr = cpufreq_driver->attr;
1035 	while (drv_attr && *drv_attr) {
1036 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 		if (ret)
1038 			return ret;
1039 		drv_attr++;
1040 	}
1041 	if (cpufreq_driver->get) {
1042 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 	if (ret)
1049 		return ret;
1050 
1051 	if (cpufreq_driver->bios_limit) {
1052 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
cpufreq_init_policy(struct cpufreq_policy * policy)1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 	struct cpufreq_governor *gov = NULL;
1063 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 	int ret;
1065 
1066 	if (has_target()) {
1067 		/* Update policy governor to the one used before hotplug. */
1068 		gov = get_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				 gov->name, policy->cpu);
1072 		} else {
1073 			gov = get_governor(default_governor);
1074 		}
1075 
1076 		if (!gov) {
1077 			gov = cpufreq_default_governor();
1078 			__module_get(gov->owner);
1079 		}
1080 
1081 	} else {
1082 
1083 		/* Use the default policy if there is no last_policy. */
1084 		if (policy->last_policy) {
1085 			pol = policy->last_policy;
1086 		} else {
1087 			pol = cpufreq_parse_policy(default_governor);
1088 			/*
1089 			 * In case the default governor is neither "performance"
1090 			 * nor "powersave", fall back to the initial policy
1091 			 * value set by the driver.
1092 			 */
1093 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 				pol = policy->policy;
1095 		}
1096 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 		    pol != CPUFREQ_POLICY_POWERSAVE)
1098 			return -ENODATA;
1099 	}
1100 
1101 	ret = cpufreq_set_policy(policy, gov, pol);
1102 	if (gov)
1103 		module_put(gov->owner);
1104 
1105 	return ret;
1106 }
1107 
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 	int ret = 0;
1111 
1112 	/* Has this CPU been taken care of already? */
1113 	if (cpumask_test_cpu(cpu, policy->cpus))
1114 		return 0;
1115 
1116 	down_write(&policy->rwsem);
1117 	if (has_target())
1118 		cpufreq_stop_governor(policy);
1119 
1120 	cpumask_set_cpu(cpu, policy->cpus);
1121 
1122 	if (has_target()) {
1123 		ret = cpufreq_start_governor(policy);
1124 		if (ret)
1125 			pr_err("%s: Failed to start governor\n", __func__);
1126 	}
1127 	up_write(&policy->rwsem);
1128 	return ret;
1129 }
1130 
refresh_frequency_limits(struct cpufreq_policy * policy)1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 	if (!policy_is_inactive(policy)) {
1134 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1135 
1136 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 	}
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140 
handle_update(struct work_struct * work)1141 static void handle_update(struct work_struct *work)
1142 {
1143 	struct cpufreq_policy *policy =
1144 		container_of(work, struct cpufreq_policy, update);
1145 
1146 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 	down_write(&policy->rwsem);
1148 	refresh_frequency_limits(policy);
1149 	up_write(&policy->rwsem);
1150 }
1151 
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 				void *data)
1154 {
1155 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156 
1157 	schedule_work(&policy->update);
1158 	return 0;
1159 }
1160 
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 				void *data)
1163 {
1164 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165 
1166 	schedule_work(&policy->update);
1167 	return 0;
1168 }
1169 
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 	struct kobject *kobj;
1173 	struct completion *cmp;
1174 
1175 	down_write(&policy->rwsem);
1176 	cpufreq_stats_free_table(policy);
1177 	kobj = &policy->kobj;
1178 	cmp = &policy->kobj_unregister;
1179 	up_write(&policy->rwsem);
1180 	kobject_put(kobj);
1181 
1182 	/*
1183 	 * We need to make sure that the underlying kobj is
1184 	 * actually not referenced anymore by anybody before we
1185 	 * proceed with unloading.
1186 	 */
1187 	pr_debug("waiting for dropping of refcount\n");
1188 	wait_for_completion(cmp);
1189 	pr_debug("wait complete\n");
1190 }
1191 
cpufreq_policy_alloc(unsigned int cpu)1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 	struct cpufreq_policy *policy;
1195 	struct device *dev = get_cpu_device(cpu);
1196 	int ret;
1197 
1198 	if (!dev)
1199 		return NULL;
1200 
1201 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 	if (!policy)
1203 		return NULL;
1204 
1205 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 		goto err_free_policy;
1207 
1208 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 		goto err_free_cpumask;
1210 
1211 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 		goto err_free_rcpumask;
1213 
1214 	init_completion(&policy->kobj_unregister);
1215 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216 				   cpufreq_global_kobject, "policy%u", cpu);
1217 	if (ret) {
1218 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219 		/*
1220 		 * The entire policy object will be freed below, but the extra
1221 		 * memory allocated for the kobject name needs to be freed by
1222 		 * releasing the kobject.
1223 		 */
1224 		kobject_put(&policy->kobj);
1225 		goto err_free_real_cpus;
1226 	}
1227 
1228 	freq_constraints_init(&policy->constraints);
1229 
1230 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1231 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1232 
1233 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234 				    &policy->nb_min);
1235 	if (ret) {
1236 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237 			ret, cpumask_pr_args(policy->cpus));
1238 		goto err_kobj_remove;
1239 	}
1240 
1241 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242 				    &policy->nb_max);
1243 	if (ret) {
1244 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245 			ret, cpumask_pr_args(policy->cpus));
1246 		goto err_min_qos_notifier;
1247 	}
1248 
1249 	INIT_LIST_HEAD(&policy->policy_list);
1250 	init_rwsem(&policy->rwsem);
1251 	spin_lock_init(&policy->transition_lock);
1252 	init_waitqueue_head(&policy->transition_wait);
1253 	INIT_WORK(&policy->update, handle_update);
1254 
1255 	policy->cpu = cpu;
1256 	return policy;
1257 
1258 err_min_qos_notifier:
1259 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 				 &policy->nb_min);
1261 err_kobj_remove:
1262 	cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 	free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 	free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 	free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 	kfree(policy);
1271 
1272 	return NULL;
1273 }
1274 
cpufreq_policy_free(struct cpufreq_policy * policy)1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 	unsigned long flags;
1278 	int cpu;
1279 
1280 	/* Remove policy from list */
1281 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 	list_del(&policy->policy_list);
1283 
1284 	for_each_cpu(cpu, policy->related_cpus)
1285 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287 
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 				 &policy->nb_max);
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 				 &policy->nb_min);
1292 
1293 	/* Cancel any pending policy->update work before freeing the policy. */
1294 	cancel_work_sync(&policy->update);
1295 
1296 	if (policy->max_freq_req) {
1297 		/*
1298 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1299 		 * successfully adding max_freq_req request.
1300 		 */
1301 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302 					     CPUFREQ_REMOVE_POLICY, policy);
1303 		freq_qos_remove_request(policy->max_freq_req);
1304 	}
1305 
1306 	freq_qos_remove_request(policy->min_freq_req);
1307 	kfree(policy->min_freq_req);
1308 
1309 	cpufreq_policy_put_kobj(policy);
1310 	free_cpumask_var(policy->real_cpus);
1311 	free_cpumask_var(policy->related_cpus);
1312 	free_cpumask_var(policy->cpus);
1313 	kfree(policy);
1314 }
1315 
cpufreq_online(unsigned int cpu)1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318 	struct cpufreq_policy *policy;
1319 	bool new_policy;
1320 	unsigned long flags;
1321 	unsigned int j;
1322 	int ret;
1323 
1324 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325 
1326 	/* Check if this CPU already has a policy to manage it */
1327 	policy = per_cpu(cpufreq_cpu_data, cpu);
1328 	if (policy) {
1329 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330 		if (!policy_is_inactive(policy))
1331 			return cpufreq_add_policy_cpu(policy, cpu);
1332 
1333 		/* This is the only online CPU for the policy.  Start over. */
1334 		new_policy = false;
1335 		down_write(&policy->rwsem);
1336 		policy->cpu = cpu;
1337 		policy->governor = NULL;
1338 		up_write(&policy->rwsem);
1339 	} else {
1340 		new_policy = true;
1341 		policy = cpufreq_policy_alloc(cpu);
1342 		if (!policy)
1343 			return -ENOMEM;
1344 	}
1345 
1346 	if (!new_policy && cpufreq_driver->online) {
1347 		ret = cpufreq_driver->online(policy);
1348 		if (ret) {
1349 			pr_debug("%s: %d: initialization failed\n", __func__,
1350 				 __LINE__);
1351 			goto out_exit_policy;
1352 		}
1353 
1354 		/* Recover policy->cpus using related_cpus */
1355 		cpumask_copy(policy->cpus, policy->related_cpus);
1356 	} else {
1357 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1358 
1359 		/*
1360 		 * Call driver. From then on the cpufreq must be able
1361 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1362 		 */
1363 		ret = cpufreq_driver->init(policy);
1364 		if (ret) {
1365 			pr_debug("%s: %d: initialization failed\n", __func__,
1366 				 __LINE__);
1367 			goto out_free_policy;
1368 		}
1369 
1370 		/*
1371 		 * The initialization has succeeded and the policy is online.
1372 		 * If there is a problem with its frequency table, take it
1373 		 * offline and drop it.
1374 		 */
1375 		ret = cpufreq_table_validate_and_sort(policy);
1376 		if (ret)
1377 			goto out_offline_policy;
1378 
1379 		/* related_cpus should at least include policy->cpus. */
1380 		cpumask_copy(policy->related_cpus, policy->cpus);
1381 	}
1382 
1383 	down_write(&policy->rwsem);
1384 	/*
1385 	 * affected cpus must always be the one, which are online. We aren't
1386 	 * managing offline cpus here.
1387 	 */
1388 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1389 
1390 	if (new_policy) {
1391 		for_each_cpu(j, policy->related_cpus) {
1392 			per_cpu(cpufreq_cpu_data, j) = policy;
1393 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1394 		}
1395 
1396 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1397 					       GFP_KERNEL);
1398 		if (!policy->min_freq_req)
1399 			goto out_destroy_policy;
1400 
1401 		ret = freq_qos_add_request(&policy->constraints,
1402 					   policy->min_freq_req, FREQ_QOS_MIN,
1403 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1404 		if (ret < 0) {
1405 			/*
1406 			 * So we don't call freq_qos_remove_request() for an
1407 			 * uninitialized request.
1408 			 */
1409 			kfree(policy->min_freq_req);
1410 			policy->min_freq_req = NULL;
1411 			goto out_destroy_policy;
1412 		}
1413 
1414 		/*
1415 		 * This must be initialized right here to avoid calling
1416 		 * freq_qos_remove_request() on uninitialized request in case
1417 		 * of errors.
1418 		 */
1419 		policy->max_freq_req = policy->min_freq_req + 1;
1420 
1421 		ret = freq_qos_add_request(&policy->constraints,
1422 					   policy->max_freq_req, FREQ_QOS_MAX,
1423 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1424 		if (ret < 0) {
1425 			policy->max_freq_req = NULL;
1426 			goto out_destroy_policy;
1427 		}
1428 
1429 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1430 				CPUFREQ_CREATE_POLICY, policy);
1431 	}
1432 
1433 	if (cpufreq_driver->get && has_target()) {
1434 		policy->cur = cpufreq_driver->get(policy->cpu);
1435 		if (!policy->cur) {
1436 			pr_err("%s: ->get() failed\n", __func__);
1437 			goto out_destroy_policy;
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Sometimes boot loaders set CPU frequency to a value outside of
1443 	 * frequency table present with cpufreq core. In such cases CPU might be
1444 	 * unstable if it has to run on that frequency for long duration of time
1445 	 * and so its better to set it to a frequency which is specified in
1446 	 * freq-table. This also makes cpufreq stats inconsistent as
1447 	 * cpufreq-stats would fail to register because current frequency of CPU
1448 	 * isn't found in freq-table.
1449 	 *
1450 	 * Because we don't want this change to effect boot process badly, we go
1451 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1452 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1453 	 * is initialized to zero).
1454 	 *
1455 	 * We are passing target-freq as "policy->cur - 1" otherwise
1456 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1457 	 * equal to target-freq.
1458 	 */
1459 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1460 	    && has_target()) {
1461 		unsigned int old_freq = policy->cur;
1462 
1463 		/* Are we running at unknown frequency ? */
1464 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1465 		if (ret == -EINVAL) {
1466 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1467 						      CPUFREQ_RELATION_L);
1468 
1469 			/*
1470 			 * Reaching here after boot in a few seconds may not
1471 			 * mean that system will remain stable at "unknown"
1472 			 * frequency for longer duration. Hence, a BUG_ON().
1473 			 */
1474 			BUG_ON(ret);
1475 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1476 				__func__, policy->cpu, old_freq, policy->cur);
1477 		}
1478 	}
1479 
1480 	if (new_policy) {
1481 		ret = cpufreq_add_dev_interface(policy);
1482 		if (ret)
1483 			goto out_destroy_policy;
1484 
1485 		cpufreq_stats_create_table(policy);
1486 
1487 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1488 		list_add(&policy->policy_list, &cpufreq_policy_list);
1489 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1490 	}
1491 
1492 	ret = cpufreq_init_policy(policy);
1493 	if (ret) {
1494 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1495 		       __func__, cpu, ret);
1496 		goto out_destroy_policy;
1497 	}
1498 
1499 	up_write(&policy->rwsem);
1500 
1501 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1502 
1503 	/* Callback for handling stuff after policy is ready */
1504 	if (cpufreq_driver->ready)
1505 		cpufreq_driver->ready(policy);
1506 
1507 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1508 		policy->cdev = of_cpufreq_cooling_register(policy);
1509 
1510 	pr_debug("initialization complete\n");
1511 
1512 	return 0;
1513 
1514 out_destroy_policy:
1515 	for_each_cpu(j, policy->real_cpus)
1516 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1517 
1518 	up_write(&policy->rwsem);
1519 
1520 out_offline_policy:
1521 	if (cpufreq_driver->offline)
1522 		cpufreq_driver->offline(policy);
1523 
1524 out_exit_policy:
1525 	if (cpufreq_driver->exit)
1526 		cpufreq_driver->exit(policy);
1527 
1528 out_free_policy:
1529 	cpufreq_policy_free(policy);
1530 	return ret;
1531 }
1532 
1533 /**
1534  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1535  * @dev: CPU device.
1536  * @sif: Subsystem interface structure pointer (not used)
1537  */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1538 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1539 {
1540 	struct cpufreq_policy *policy;
1541 	unsigned cpu = dev->id;
1542 	int ret;
1543 
1544 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1545 
1546 	if (cpu_online(cpu)) {
1547 		ret = cpufreq_online(cpu);
1548 		if (ret)
1549 			return ret;
1550 	}
1551 
1552 	/* Create sysfs link on CPU registration */
1553 	policy = per_cpu(cpufreq_cpu_data, cpu);
1554 	if (policy)
1555 		add_cpu_dev_symlink(policy, cpu, dev);
1556 
1557 	return 0;
1558 }
1559 
cpufreq_offline(unsigned int cpu)1560 static int cpufreq_offline(unsigned int cpu)
1561 {
1562 	struct cpufreq_policy *policy;
1563 	int ret;
1564 
1565 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1566 
1567 	policy = cpufreq_cpu_get_raw(cpu);
1568 	if (!policy) {
1569 		pr_debug("%s: No cpu_data found\n", __func__);
1570 		return 0;
1571 	}
1572 
1573 	down_write(&policy->rwsem);
1574 	if (has_target())
1575 		cpufreq_stop_governor(policy);
1576 
1577 	cpumask_clear_cpu(cpu, policy->cpus);
1578 
1579 	if (policy_is_inactive(policy)) {
1580 		if (has_target())
1581 			strncpy(policy->last_governor, policy->governor->name,
1582 				CPUFREQ_NAME_LEN);
1583 		else
1584 			policy->last_policy = policy->policy;
1585 	} else if (cpu == policy->cpu) {
1586 		/* Nominate new CPU */
1587 		policy->cpu = cpumask_any(policy->cpus);
1588 	}
1589 
1590 	/* Start governor again for active policy */
1591 	if (!policy_is_inactive(policy)) {
1592 		if (has_target()) {
1593 			ret = cpufreq_start_governor(policy);
1594 			if (ret)
1595 				pr_err("%s: Failed to start governor\n", __func__);
1596 		}
1597 
1598 		goto unlock;
1599 	}
1600 
1601 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1602 		cpufreq_cooling_unregister(policy->cdev);
1603 		policy->cdev = NULL;
1604 	}
1605 
1606 	if (cpufreq_driver->stop_cpu)
1607 		cpufreq_driver->stop_cpu(policy);
1608 
1609 	if (has_target())
1610 		cpufreq_exit_governor(policy);
1611 
1612 	/*
1613 	 * Perform the ->offline() during light-weight tear-down, as
1614 	 * that allows fast recovery when the CPU comes back.
1615 	 */
1616 	if (cpufreq_driver->offline) {
1617 		cpufreq_driver->offline(policy);
1618 	} else if (cpufreq_driver->exit) {
1619 		cpufreq_driver->exit(policy);
1620 		policy->freq_table = NULL;
1621 	}
1622 
1623 unlock:
1624 	up_write(&policy->rwsem);
1625 	return 0;
1626 }
1627 
1628 /*
1629  * cpufreq_remove_dev - remove a CPU device
1630  *
1631  * Removes the cpufreq interface for a CPU device.
1632  */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1633 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1634 {
1635 	unsigned int cpu = dev->id;
1636 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1637 
1638 	if (!policy)
1639 		return;
1640 
1641 	if (cpu_online(cpu))
1642 		cpufreq_offline(cpu);
1643 
1644 	cpumask_clear_cpu(cpu, policy->real_cpus);
1645 	remove_cpu_dev_symlink(policy, dev);
1646 
1647 	if (cpumask_empty(policy->real_cpus)) {
1648 		/* We did light-weight exit earlier, do full tear down now */
1649 		if (cpufreq_driver->offline)
1650 			cpufreq_driver->exit(policy);
1651 
1652 		cpufreq_policy_free(policy);
1653 	}
1654 }
1655 
1656 /**
1657  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1658  *	in deep trouble.
1659  *	@policy: policy managing CPUs
1660  *	@new_freq: CPU frequency the CPU actually runs at
1661  *
1662  *	We adjust to current frequency first, and need to clean up later.
1663  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1664  */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1665 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1666 				unsigned int new_freq)
1667 {
1668 	struct cpufreq_freqs freqs;
1669 
1670 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1671 		 policy->cur, new_freq);
1672 
1673 	freqs.old = policy->cur;
1674 	freqs.new = new_freq;
1675 
1676 	cpufreq_freq_transition_begin(policy, &freqs);
1677 	cpufreq_freq_transition_end(policy, &freqs, 0);
1678 }
1679 
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1680 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1681 {
1682 	unsigned int new_freq;
1683 
1684 	new_freq = cpufreq_driver->get(policy->cpu);
1685 	if (!new_freq)
1686 		return 0;
1687 
1688 	/*
1689 	 * If fast frequency switching is used with the given policy, the check
1690 	 * against policy->cur is pointless, so skip it in that case.
1691 	 */
1692 	if (policy->fast_switch_enabled || !has_target())
1693 		return new_freq;
1694 
1695 	if (policy->cur != new_freq) {
1696 		cpufreq_out_of_sync(policy, new_freq);
1697 		if (update)
1698 			schedule_work(&policy->update);
1699 	}
1700 
1701 	return new_freq;
1702 }
1703 
1704 /**
1705  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1706  * @cpu: CPU number
1707  *
1708  * This is the last known freq, without actually getting it from the driver.
1709  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1710  */
cpufreq_quick_get(unsigned int cpu)1711 unsigned int cpufreq_quick_get(unsigned int cpu)
1712 {
1713 	struct cpufreq_policy *policy;
1714 	unsigned int ret_freq = 0;
1715 	unsigned long flags;
1716 
1717 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1718 
1719 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1720 		ret_freq = cpufreq_driver->get(cpu);
1721 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722 		return ret_freq;
1723 	}
1724 
1725 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1726 
1727 	policy = cpufreq_cpu_get(cpu);
1728 	if (policy) {
1729 		ret_freq = policy->cur;
1730 		cpufreq_cpu_put(policy);
1731 	}
1732 
1733 	return ret_freq;
1734 }
1735 EXPORT_SYMBOL(cpufreq_quick_get);
1736 
1737 /**
1738  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1739  * @cpu: CPU number
1740  *
1741  * Just return the max possible frequency for a given CPU.
1742  */
cpufreq_quick_get_max(unsigned int cpu)1743 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1744 {
1745 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1746 	unsigned int ret_freq = 0;
1747 
1748 	if (policy) {
1749 		ret_freq = policy->max;
1750 		cpufreq_cpu_put(policy);
1751 	}
1752 
1753 	return ret_freq;
1754 }
1755 EXPORT_SYMBOL(cpufreq_quick_get_max);
1756 
1757 /**
1758  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1759  * @cpu: CPU number
1760  *
1761  * The default return value is the max_freq field of cpuinfo.
1762  */
cpufreq_get_hw_max_freq(unsigned int cpu)1763 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1764 {
1765 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1766 	unsigned int ret_freq = 0;
1767 
1768 	if (policy) {
1769 		ret_freq = policy->cpuinfo.max_freq;
1770 		cpufreq_cpu_put(policy);
1771 	}
1772 
1773 	return ret_freq;
1774 }
1775 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1776 
__cpufreq_get(struct cpufreq_policy * policy)1777 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1778 {
1779 	if (unlikely(policy_is_inactive(policy)))
1780 		return 0;
1781 
1782 	return cpufreq_verify_current_freq(policy, true);
1783 }
1784 
1785 /**
1786  * cpufreq_get - get the current CPU frequency (in kHz)
1787  * @cpu: CPU number
1788  *
1789  * Get the CPU current (static) CPU frequency
1790  */
cpufreq_get(unsigned int cpu)1791 unsigned int cpufreq_get(unsigned int cpu)
1792 {
1793 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1794 	unsigned int ret_freq = 0;
1795 
1796 	if (policy) {
1797 		down_read(&policy->rwsem);
1798 		if (cpufreq_driver->get)
1799 			ret_freq = __cpufreq_get(policy);
1800 		up_read(&policy->rwsem);
1801 
1802 		cpufreq_cpu_put(policy);
1803 	}
1804 
1805 	return ret_freq;
1806 }
1807 EXPORT_SYMBOL(cpufreq_get);
1808 
1809 static struct subsys_interface cpufreq_interface = {
1810 	.name		= "cpufreq",
1811 	.subsys		= &cpu_subsys,
1812 	.add_dev	= cpufreq_add_dev,
1813 	.remove_dev	= cpufreq_remove_dev,
1814 };
1815 
1816 /*
1817  * In case platform wants some specific frequency to be configured
1818  * during suspend..
1819  */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1820 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1821 {
1822 	int ret;
1823 
1824 	if (!policy->suspend_freq) {
1825 		pr_debug("%s: suspend_freq not defined\n", __func__);
1826 		return 0;
1827 	}
1828 
1829 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1830 			policy->suspend_freq);
1831 
1832 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1833 			CPUFREQ_RELATION_H);
1834 	if (ret)
1835 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1836 				__func__, policy->suspend_freq, ret);
1837 
1838 	return ret;
1839 }
1840 EXPORT_SYMBOL(cpufreq_generic_suspend);
1841 
1842 /**
1843  * cpufreq_suspend() - Suspend CPUFreq governors
1844  *
1845  * Called during system wide Suspend/Hibernate cycles for suspending governors
1846  * as some platforms can't change frequency after this point in suspend cycle.
1847  * Because some of the devices (like: i2c, regulators, etc) they use for
1848  * changing frequency are suspended quickly after this point.
1849  */
cpufreq_suspend(void)1850 void cpufreq_suspend(void)
1851 {
1852 	struct cpufreq_policy *policy;
1853 
1854 	if (!cpufreq_driver)
1855 		return;
1856 
1857 	if (!has_target() && !cpufreq_driver->suspend)
1858 		goto suspend;
1859 
1860 	pr_debug("%s: Suspending Governors\n", __func__);
1861 
1862 	for_each_active_policy(policy) {
1863 		if (has_target()) {
1864 			down_write(&policy->rwsem);
1865 			cpufreq_stop_governor(policy);
1866 			up_write(&policy->rwsem);
1867 		}
1868 
1869 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1870 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1871 				cpufreq_driver->name);
1872 	}
1873 
1874 suspend:
1875 	cpufreq_suspended = true;
1876 }
1877 
1878 /**
1879  * cpufreq_resume() - Resume CPUFreq governors
1880  *
1881  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1882  * are suspended with cpufreq_suspend().
1883  */
cpufreq_resume(void)1884 void cpufreq_resume(void)
1885 {
1886 	struct cpufreq_policy *policy;
1887 	int ret;
1888 
1889 	if (!cpufreq_driver)
1890 		return;
1891 
1892 	if (unlikely(!cpufreq_suspended))
1893 		return;
1894 
1895 	cpufreq_suspended = false;
1896 
1897 	if (!has_target() && !cpufreq_driver->resume)
1898 		return;
1899 
1900 	pr_debug("%s: Resuming Governors\n", __func__);
1901 
1902 	for_each_active_policy(policy) {
1903 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1904 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1905 				policy);
1906 		} else if (has_target()) {
1907 			down_write(&policy->rwsem);
1908 			ret = cpufreq_start_governor(policy);
1909 			up_write(&policy->rwsem);
1910 
1911 			if (ret)
1912 				pr_err("%s: Failed to start governor for policy: %p\n",
1913 				       __func__, policy);
1914 		}
1915 	}
1916 }
1917 
1918 /**
1919  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1920  * @flags: Flags to test against the current cpufreq driver's flags.
1921  *
1922  * Assumes that the driver is there, so callers must ensure that this is the
1923  * case.
1924  */
cpufreq_driver_test_flags(u16 flags)1925 bool cpufreq_driver_test_flags(u16 flags)
1926 {
1927 	return !!(cpufreq_driver->flags & flags);
1928 }
1929 
1930 /**
1931  *	cpufreq_get_current_driver - return current driver's name
1932  *
1933  *	Return the name string of the currently loaded cpufreq driver
1934  *	or NULL, if none.
1935  */
cpufreq_get_current_driver(void)1936 const char *cpufreq_get_current_driver(void)
1937 {
1938 	if (cpufreq_driver)
1939 		return cpufreq_driver->name;
1940 
1941 	return NULL;
1942 }
1943 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1944 
1945 /**
1946  *	cpufreq_get_driver_data - return current driver data
1947  *
1948  *	Return the private data of the currently loaded cpufreq
1949  *	driver, or NULL if no cpufreq driver is loaded.
1950  */
cpufreq_get_driver_data(void)1951 void *cpufreq_get_driver_data(void)
1952 {
1953 	if (cpufreq_driver)
1954 		return cpufreq_driver->driver_data;
1955 
1956 	return NULL;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1959 
1960 /*********************************************************************
1961  *                     NOTIFIER LISTS INTERFACE                      *
1962  *********************************************************************/
1963 
1964 /**
1965  *	cpufreq_register_notifier - register a driver with cpufreq
1966  *	@nb: notifier function to register
1967  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1968  *
1969  *	Add a driver to one of two lists: either a list of drivers that
1970  *      are notified about clock rate changes (once before and once after
1971  *      the transition), or a list of drivers that are notified about
1972  *      changes in cpufreq policy.
1973  *
1974  *	This function may sleep, and has the same return conditions as
1975  *	blocking_notifier_chain_register.
1976  */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1977 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1978 {
1979 	int ret;
1980 
1981 	if (cpufreq_disabled())
1982 		return -EINVAL;
1983 
1984 	switch (list) {
1985 	case CPUFREQ_TRANSITION_NOTIFIER:
1986 		mutex_lock(&cpufreq_fast_switch_lock);
1987 
1988 		if (cpufreq_fast_switch_count > 0) {
1989 			mutex_unlock(&cpufreq_fast_switch_lock);
1990 			return -EBUSY;
1991 		}
1992 		ret = srcu_notifier_chain_register(
1993 				&cpufreq_transition_notifier_list, nb);
1994 		if (!ret)
1995 			cpufreq_fast_switch_count--;
1996 
1997 		mutex_unlock(&cpufreq_fast_switch_lock);
1998 		break;
1999 	case CPUFREQ_POLICY_NOTIFIER:
2000 		ret = blocking_notifier_chain_register(
2001 				&cpufreq_policy_notifier_list, nb);
2002 		break;
2003 	default:
2004 		ret = -EINVAL;
2005 	}
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL(cpufreq_register_notifier);
2010 
2011 /**
2012  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
2013  *	@nb: notifier block to be unregistered
2014  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2015  *
2016  *	Remove a driver from the CPU frequency notifier list.
2017  *
2018  *	This function may sleep, and has the same return conditions as
2019  *	blocking_notifier_chain_unregister.
2020  */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2021 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2022 {
2023 	int ret;
2024 
2025 	if (cpufreq_disabled())
2026 		return -EINVAL;
2027 
2028 	switch (list) {
2029 	case CPUFREQ_TRANSITION_NOTIFIER:
2030 		mutex_lock(&cpufreq_fast_switch_lock);
2031 
2032 		ret = srcu_notifier_chain_unregister(
2033 				&cpufreq_transition_notifier_list, nb);
2034 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2035 			cpufreq_fast_switch_count++;
2036 
2037 		mutex_unlock(&cpufreq_fast_switch_lock);
2038 		break;
2039 	case CPUFREQ_POLICY_NOTIFIER:
2040 		ret = blocking_notifier_chain_unregister(
2041 				&cpufreq_policy_notifier_list, nb);
2042 		break;
2043 	default:
2044 		ret = -EINVAL;
2045 	}
2046 
2047 	return ret;
2048 }
2049 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2050 
2051 
2052 /*********************************************************************
2053  *                              GOVERNORS                            *
2054  *********************************************************************/
2055 
2056 /**
2057  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2058  * @policy: cpufreq policy to switch the frequency for.
2059  * @target_freq: New frequency to set (may be approximate).
2060  *
2061  * Carry out a fast frequency switch without sleeping.
2062  *
2063  * The driver's ->fast_switch() callback invoked by this function must be
2064  * suitable for being called from within RCU-sched read-side critical sections
2065  * and it is expected to select the minimum available frequency greater than or
2066  * equal to @target_freq (CPUFREQ_RELATION_L).
2067  *
2068  * This function must not be called if policy->fast_switch_enabled is unset.
2069  *
2070  * Governors calling this function must guarantee that it will never be invoked
2071  * twice in parallel for the same policy and that it will never be called in
2072  * parallel with either ->target() or ->target_index() for the same policy.
2073  *
2074  * Returns the actual frequency set for the CPU.
2075  *
2076  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2077  * error condition, the hardware configuration must be preserved.
2078  */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2079 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2080 					unsigned int target_freq)
2081 {
2082 	unsigned int freq;
2083 	int cpu;
2084 
2085 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2086 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2087 
2088 	if (!freq)
2089 		return 0;
2090 
2091 	policy->cur = freq;
2092 	arch_set_freq_scale(policy->related_cpus, freq,
2093 			    policy->cpuinfo.max_freq);
2094 	cpufreq_stats_record_transition(policy, freq);
2095 
2096 	if (trace_cpu_frequency_enabled()) {
2097 		for_each_cpu(cpu, policy->cpus)
2098 			trace_cpu_frequency(freq, cpu);
2099 	}
2100 
2101 	return freq;
2102 }
2103 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2104 
2105 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2106 static int __target_intermediate(struct cpufreq_policy *policy,
2107 				 struct cpufreq_freqs *freqs, int index)
2108 {
2109 	int ret;
2110 
2111 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2112 
2113 	/* We don't need to switch to intermediate freq */
2114 	if (!freqs->new)
2115 		return 0;
2116 
2117 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2118 		 __func__, policy->cpu, freqs->old, freqs->new);
2119 
2120 	cpufreq_freq_transition_begin(policy, freqs);
2121 	ret = cpufreq_driver->target_intermediate(policy, index);
2122 	cpufreq_freq_transition_end(policy, freqs, ret);
2123 
2124 	if (ret)
2125 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2126 		       __func__, ret);
2127 
2128 	return ret;
2129 }
2130 
__target_index(struct cpufreq_policy * policy,int index)2131 static int __target_index(struct cpufreq_policy *policy, int index)
2132 {
2133 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2134 	unsigned int intermediate_freq = 0;
2135 	unsigned int newfreq = policy->freq_table[index].frequency;
2136 	int retval = -EINVAL;
2137 	bool notify;
2138 
2139 	if (newfreq == policy->cur)
2140 		return 0;
2141 
2142 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2143 	if (notify) {
2144 		/* Handle switching to intermediate frequency */
2145 		if (cpufreq_driver->get_intermediate) {
2146 			retval = __target_intermediate(policy, &freqs, index);
2147 			if (retval)
2148 				return retval;
2149 
2150 			intermediate_freq = freqs.new;
2151 			/* Set old freq to intermediate */
2152 			if (intermediate_freq)
2153 				freqs.old = freqs.new;
2154 		}
2155 
2156 		freqs.new = newfreq;
2157 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2158 			 __func__, policy->cpu, freqs.old, freqs.new);
2159 
2160 		cpufreq_freq_transition_begin(policy, &freqs);
2161 	}
2162 
2163 	retval = cpufreq_driver->target_index(policy, index);
2164 	if (retval)
2165 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2166 		       retval);
2167 
2168 	if (notify) {
2169 		cpufreq_freq_transition_end(policy, &freqs, retval);
2170 
2171 		/*
2172 		 * Failed after setting to intermediate freq? Driver should have
2173 		 * reverted back to initial frequency and so should we. Check
2174 		 * here for intermediate_freq instead of get_intermediate, in
2175 		 * case we haven't switched to intermediate freq at all.
2176 		 */
2177 		if (unlikely(retval && intermediate_freq)) {
2178 			freqs.old = intermediate_freq;
2179 			freqs.new = policy->restore_freq;
2180 			cpufreq_freq_transition_begin(policy, &freqs);
2181 			cpufreq_freq_transition_end(policy, &freqs, 0);
2182 		}
2183 	}
2184 
2185 	return retval;
2186 }
2187 
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2188 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2189 			    unsigned int target_freq,
2190 			    unsigned int relation)
2191 {
2192 	unsigned int old_target_freq = target_freq;
2193 	int index;
2194 
2195 	if (cpufreq_disabled())
2196 		return -ENODEV;
2197 
2198 	/* Make sure that target_freq is within supported range */
2199 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2200 
2201 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2202 		 policy->cpu, target_freq, relation, old_target_freq);
2203 
2204 	/*
2205 	 * This might look like a redundant call as we are checking it again
2206 	 * after finding index. But it is left intentionally for cases where
2207 	 * exactly same freq is called again and so we can save on few function
2208 	 * calls.
2209 	 */
2210 	if (target_freq == policy->cur &&
2211 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2212 		return 0;
2213 
2214 	/* Save last value to restore later on errors */
2215 	policy->restore_freq = policy->cur;
2216 
2217 	if (cpufreq_driver->target)
2218 		return cpufreq_driver->target(policy, target_freq, relation);
2219 
2220 	if (!cpufreq_driver->target_index)
2221 		return -EINVAL;
2222 
2223 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2224 
2225 	return __target_index(policy, index);
2226 }
2227 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2228 
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2229 int cpufreq_driver_target(struct cpufreq_policy *policy,
2230 			  unsigned int target_freq,
2231 			  unsigned int relation)
2232 {
2233 	int ret;
2234 
2235 	down_write(&policy->rwsem);
2236 
2237 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2238 
2239 	up_write(&policy->rwsem);
2240 
2241 	return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2244 
cpufreq_fallback_governor(void)2245 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2246 {
2247 	return NULL;
2248 }
2249 
cpufreq_init_governor(struct cpufreq_policy * policy)2250 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2251 {
2252 	int ret;
2253 
2254 	/* Don't start any governor operations if we are entering suspend */
2255 	if (cpufreq_suspended)
2256 		return 0;
2257 	/*
2258 	 * Governor might not be initiated here if ACPI _PPC changed
2259 	 * notification happened, so check it.
2260 	 */
2261 	if (!policy->governor)
2262 		return -EINVAL;
2263 
2264 	/* Platform doesn't want dynamic frequency switching ? */
2265 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2266 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2267 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2268 
2269 		if (gov) {
2270 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2271 				policy->governor->name, gov->name);
2272 			policy->governor = gov;
2273 		} else {
2274 			return -EINVAL;
2275 		}
2276 	}
2277 
2278 	if (!try_module_get(policy->governor->owner))
2279 		return -EINVAL;
2280 
2281 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2282 
2283 	if (policy->governor->init) {
2284 		ret = policy->governor->init(policy);
2285 		if (ret) {
2286 			module_put(policy->governor->owner);
2287 			return ret;
2288 		}
2289 	}
2290 
2291 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2292 
2293 	return 0;
2294 }
2295 
cpufreq_exit_governor(struct cpufreq_policy * policy)2296 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2297 {
2298 	if (cpufreq_suspended || !policy->governor)
2299 		return;
2300 
2301 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2302 
2303 	if (policy->governor->exit)
2304 		policy->governor->exit(policy);
2305 
2306 	module_put(policy->governor->owner);
2307 }
2308 
cpufreq_start_governor(struct cpufreq_policy * policy)2309 int cpufreq_start_governor(struct cpufreq_policy *policy)
2310 {
2311 	int ret;
2312 
2313 	if (cpufreq_suspended)
2314 		return 0;
2315 
2316 	if (!policy->governor)
2317 		return -EINVAL;
2318 
2319 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2320 
2321 	if (cpufreq_driver->get)
2322 		cpufreq_verify_current_freq(policy, false);
2323 
2324 	if (policy->governor->start) {
2325 		ret = policy->governor->start(policy);
2326 		if (ret)
2327 			return ret;
2328 	}
2329 
2330 	if (policy->governor->limits)
2331 		policy->governor->limits(policy);
2332 
2333 	return 0;
2334 }
2335 
cpufreq_stop_governor(struct cpufreq_policy * policy)2336 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2337 {
2338 	if (cpufreq_suspended || !policy->governor)
2339 		return;
2340 
2341 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2342 
2343 	if (policy->governor->stop)
2344 		policy->governor->stop(policy);
2345 }
2346 
cpufreq_governor_limits(struct cpufreq_policy * policy)2347 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2348 {
2349 	if (cpufreq_suspended || !policy->governor)
2350 		return;
2351 
2352 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2353 
2354 	if (policy->governor->limits)
2355 		policy->governor->limits(policy);
2356 }
2357 
cpufreq_register_governor(struct cpufreq_governor * governor)2358 int cpufreq_register_governor(struct cpufreq_governor *governor)
2359 {
2360 	int err;
2361 
2362 	if (!governor)
2363 		return -EINVAL;
2364 
2365 	if (cpufreq_disabled())
2366 		return -ENODEV;
2367 
2368 	mutex_lock(&cpufreq_governor_mutex);
2369 
2370 	err = -EBUSY;
2371 	if (!find_governor(governor->name)) {
2372 		err = 0;
2373 		list_add(&governor->governor_list, &cpufreq_governor_list);
2374 	}
2375 
2376 	mutex_unlock(&cpufreq_governor_mutex);
2377 	return err;
2378 }
2379 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2380 
cpufreq_unregister_governor(struct cpufreq_governor * governor)2381 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2382 {
2383 	struct cpufreq_policy *policy;
2384 	unsigned long flags;
2385 
2386 	if (!governor)
2387 		return;
2388 
2389 	if (cpufreq_disabled())
2390 		return;
2391 
2392 	/* clear last_governor for all inactive policies */
2393 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2394 	for_each_inactive_policy(policy) {
2395 		if (!strcmp(policy->last_governor, governor->name)) {
2396 			policy->governor = NULL;
2397 			strcpy(policy->last_governor, "\0");
2398 		}
2399 	}
2400 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2401 
2402 	mutex_lock(&cpufreq_governor_mutex);
2403 	list_del(&governor->governor_list);
2404 	mutex_unlock(&cpufreq_governor_mutex);
2405 }
2406 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2407 
2408 
2409 /*********************************************************************
2410  *                          POLICY INTERFACE                         *
2411  *********************************************************************/
2412 
2413 /**
2414  * cpufreq_get_policy - get the current cpufreq_policy
2415  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2416  *	is written
2417  * @cpu: CPU to find the policy for
2418  *
2419  * Reads the current cpufreq policy.
2420  */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2421 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2422 {
2423 	struct cpufreq_policy *cpu_policy;
2424 	if (!policy)
2425 		return -EINVAL;
2426 
2427 	cpu_policy = cpufreq_cpu_get(cpu);
2428 	if (!cpu_policy)
2429 		return -EINVAL;
2430 
2431 	memcpy(policy, cpu_policy, sizeof(*policy));
2432 
2433 	cpufreq_cpu_put(cpu_policy);
2434 	return 0;
2435 }
2436 EXPORT_SYMBOL(cpufreq_get_policy);
2437 
2438 /**
2439  * cpufreq_set_policy - Modify cpufreq policy parameters.
2440  * @policy: Policy object to modify.
2441  * @new_gov: Policy governor pointer.
2442  * @new_pol: Policy value (for drivers with built-in governors).
2443  *
2444  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2445  * limits to be set for the policy, update @policy with the verified limits
2446  * values and either invoke the driver's ->setpolicy() callback (if present) or
2447  * carry out a governor update for @policy.  That is, run the current governor's
2448  * ->limits() callback (if @new_gov points to the same object as the one in
2449  * @policy) or replace the governor for @policy with @new_gov.
2450  *
2451  * The cpuinfo part of @policy is not updated by this function.
2452  */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2453 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2454 			      struct cpufreq_governor *new_gov,
2455 			      unsigned int new_pol)
2456 {
2457 	struct cpufreq_policy_data new_data;
2458 	struct cpufreq_governor *old_gov;
2459 	int ret;
2460 
2461 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2462 	new_data.freq_table = policy->freq_table;
2463 	new_data.cpu = policy->cpu;
2464 	/*
2465 	 * PM QoS framework collects all the requests from users and provide us
2466 	 * the final aggregated value here.
2467 	 */
2468 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2469 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2470 
2471 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2472 		 new_data.cpu, new_data.min, new_data.max);
2473 
2474 	/*
2475 	 * Verify that the CPU speed can be set within these limits and make sure
2476 	 * that min <= max.
2477 	 */
2478 	ret = cpufreq_driver->verify(&new_data);
2479 	if (ret)
2480 		return ret;
2481 
2482 	policy->min = new_data.min;
2483 	policy->max = new_data.max;
2484 	trace_cpu_frequency_limits(policy);
2485 
2486 	policy->cached_target_freq = UINT_MAX;
2487 
2488 	pr_debug("new min and max freqs are %u - %u kHz\n",
2489 		 policy->min, policy->max);
2490 
2491 	if (cpufreq_driver->setpolicy) {
2492 		policy->policy = new_pol;
2493 		pr_debug("setting range\n");
2494 		return cpufreq_driver->setpolicy(policy);
2495 	}
2496 
2497 	if (new_gov == policy->governor) {
2498 		pr_debug("governor limits update\n");
2499 		cpufreq_governor_limits(policy);
2500 		return 0;
2501 	}
2502 
2503 	pr_debug("governor switch\n");
2504 
2505 	/* save old, working values */
2506 	old_gov = policy->governor;
2507 	/* end old governor */
2508 	if (old_gov) {
2509 		cpufreq_stop_governor(policy);
2510 		cpufreq_exit_governor(policy);
2511 	}
2512 
2513 	/* start new governor */
2514 	policy->governor = new_gov;
2515 	ret = cpufreq_init_governor(policy);
2516 	if (!ret) {
2517 		ret = cpufreq_start_governor(policy);
2518 		if (!ret) {
2519 			pr_debug("governor change\n");
2520 			sched_cpufreq_governor_change(policy, old_gov);
2521 			return 0;
2522 		}
2523 		cpufreq_exit_governor(policy);
2524 	}
2525 
2526 	/* new governor failed, so re-start old one */
2527 	pr_debug("starting governor %s failed\n", policy->governor->name);
2528 	if (old_gov) {
2529 		policy->governor = old_gov;
2530 		if (cpufreq_init_governor(policy))
2531 			policy->governor = NULL;
2532 		else
2533 			cpufreq_start_governor(policy);
2534 	}
2535 
2536 	return ret;
2537 }
2538 
2539 /**
2540  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2541  * @cpu: CPU to re-evaluate the policy for.
2542  *
2543  * Update the current frequency for the cpufreq policy of @cpu and use
2544  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2545  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2546  * for the policy in question, among other things.
2547  */
cpufreq_update_policy(unsigned int cpu)2548 void cpufreq_update_policy(unsigned int cpu)
2549 {
2550 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2551 
2552 	if (!policy)
2553 		return;
2554 
2555 	/*
2556 	 * BIOS might change freq behind our back
2557 	 * -> ask driver for current freq and notify governors about a change
2558 	 */
2559 	if (cpufreq_driver->get && has_target() &&
2560 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2561 		goto unlock;
2562 
2563 	refresh_frequency_limits(policy);
2564 
2565 unlock:
2566 	cpufreq_cpu_release(policy);
2567 }
2568 EXPORT_SYMBOL(cpufreq_update_policy);
2569 
2570 /**
2571  * cpufreq_update_limits - Update policy limits for a given CPU.
2572  * @cpu: CPU to update the policy limits for.
2573  *
2574  * Invoke the driver's ->update_limits callback if present or call
2575  * cpufreq_update_policy() for @cpu.
2576  */
cpufreq_update_limits(unsigned int cpu)2577 void cpufreq_update_limits(unsigned int cpu)
2578 {
2579 	if (cpufreq_driver->update_limits)
2580 		cpufreq_driver->update_limits(cpu);
2581 	else
2582 		cpufreq_update_policy(cpu);
2583 }
2584 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2585 
2586 /*********************************************************************
2587  *               BOOST						     *
2588  *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2589 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2590 {
2591 	int ret;
2592 
2593 	if (!policy->freq_table)
2594 		return -ENXIO;
2595 
2596 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2597 	if (ret) {
2598 		pr_err("%s: Policy frequency update failed\n", __func__);
2599 		return ret;
2600 	}
2601 
2602 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2603 	if (ret < 0)
2604 		return ret;
2605 
2606 	return 0;
2607 }
2608 
cpufreq_boost_trigger_state(int state)2609 int cpufreq_boost_trigger_state(int state)
2610 {
2611 	struct cpufreq_policy *policy;
2612 	unsigned long flags;
2613 	int ret = 0;
2614 
2615 	if (cpufreq_driver->boost_enabled == state)
2616 		return 0;
2617 
2618 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2619 	cpufreq_driver->boost_enabled = state;
2620 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2621 
2622 	get_online_cpus();
2623 	for_each_active_policy(policy) {
2624 		ret = cpufreq_driver->set_boost(policy, state);
2625 		if (ret)
2626 			goto err_reset_state;
2627 	}
2628 	put_online_cpus();
2629 
2630 	return 0;
2631 
2632 err_reset_state:
2633 	put_online_cpus();
2634 
2635 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2636 	cpufreq_driver->boost_enabled = !state;
2637 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2638 
2639 	pr_err("%s: Cannot %s BOOST\n",
2640 	       __func__, state ? "enable" : "disable");
2641 
2642 	return ret;
2643 }
2644 
cpufreq_boost_supported(void)2645 static bool cpufreq_boost_supported(void)
2646 {
2647 	return cpufreq_driver->set_boost;
2648 }
2649 
create_boost_sysfs_file(void)2650 static int create_boost_sysfs_file(void)
2651 {
2652 	int ret;
2653 
2654 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2655 	if (ret)
2656 		pr_err("%s: cannot register global BOOST sysfs file\n",
2657 		       __func__);
2658 
2659 	return ret;
2660 }
2661 
remove_boost_sysfs_file(void)2662 static void remove_boost_sysfs_file(void)
2663 {
2664 	if (cpufreq_boost_supported())
2665 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2666 }
2667 
cpufreq_enable_boost_support(void)2668 int cpufreq_enable_boost_support(void)
2669 {
2670 	if (!cpufreq_driver)
2671 		return -EINVAL;
2672 
2673 	if (cpufreq_boost_supported())
2674 		return 0;
2675 
2676 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2677 
2678 	/* This will get removed on driver unregister */
2679 	return create_boost_sysfs_file();
2680 }
2681 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2682 
cpufreq_boost_enabled(void)2683 int cpufreq_boost_enabled(void)
2684 {
2685 	return cpufreq_driver->boost_enabled;
2686 }
2687 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2688 
2689 /*********************************************************************
2690  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2691  *********************************************************************/
2692 static enum cpuhp_state hp_online;
2693 
cpuhp_cpufreq_online(unsigned int cpu)2694 static int cpuhp_cpufreq_online(unsigned int cpu)
2695 {
2696 	cpufreq_online(cpu);
2697 
2698 	return 0;
2699 }
2700 
cpuhp_cpufreq_offline(unsigned int cpu)2701 static int cpuhp_cpufreq_offline(unsigned int cpu)
2702 {
2703 	cpufreq_offline(cpu);
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  * cpufreq_register_driver - register a CPU Frequency driver
2710  * @driver_data: A struct cpufreq_driver containing the values#
2711  * submitted by the CPU Frequency driver.
2712  *
2713  * Registers a CPU Frequency driver to this core code. This code
2714  * returns zero on success, -EEXIST when another driver got here first
2715  * (and isn't unregistered in the meantime).
2716  *
2717  */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2718 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2719 {
2720 	unsigned long flags;
2721 	int ret;
2722 
2723 	if (cpufreq_disabled())
2724 		return -ENODEV;
2725 
2726 	/*
2727 	 * The cpufreq core depends heavily on the availability of device
2728 	 * structure, make sure they are available before proceeding further.
2729 	 */
2730 	if (!get_cpu_device(0))
2731 		return -EPROBE_DEFER;
2732 
2733 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2734 	    !(driver_data->setpolicy || driver_data->target_index ||
2735 		    driver_data->target) ||
2736 	     (driver_data->setpolicy && (driver_data->target_index ||
2737 		    driver_data->target)) ||
2738 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2739 	     (!driver_data->online != !driver_data->offline))
2740 		return -EINVAL;
2741 
2742 	pr_debug("trying to register driver %s\n", driver_data->name);
2743 
2744 	/* Protect against concurrent CPU online/offline. */
2745 	cpus_read_lock();
2746 
2747 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2748 	if (cpufreq_driver) {
2749 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2750 		ret = -EEXIST;
2751 		goto out;
2752 	}
2753 	cpufreq_driver = driver_data;
2754 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2755 
2756 	/*
2757 	 * Mark support for the scheduler's frequency invariance engine for
2758 	 * drivers that implement target(), target_index() or fast_switch().
2759 	 */
2760 	if (!cpufreq_driver->setpolicy) {
2761 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2762 		pr_debug("supports frequency invariance");
2763 	}
2764 
2765 	if (driver_data->setpolicy)
2766 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2767 
2768 	if (cpufreq_boost_supported()) {
2769 		ret = create_boost_sysfs_file();
2770 		if (ret)
2771 			goto err_null_driver;
2772 	}
2773 
2774 	ret = subsys_interface_register(&cpufreq_interface);
2775 	if (ret)
2776 		goto err_boost_unreg;
2777 
2778 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2779 	    list_empty(&cpufreq_policy_list)) {
2780 		/* if all ->init() calls failed, unregister */
2781 		ret = -ENODEV;
2782 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2783 			 driver_data->name);
2784 		goto err_if_unreg;
2785 	}
2786 
2787 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2788 						   "cpufreq:online",
2789 						   cpuhp_cpufreq_online,
2790 						   cpuhp_cpufreq_offline);
2791 	if (ret < 0)
2792 		goto err_if_unreg;
2793 	hp_online = ret;
2794 	ret = 0;
2795 
2796 	pr_debug("driver %s up and running\n", driver_data->name);
2797 	goto out;
2798 
2799 err_if_unreg:
2800 	subsys_interface_unregister(&cpufreq_interface);
2801 err_boost_unreg:
2802 	remove_boost_sysfs_file();
2803 err_null_driver:
2804 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2805 	cpufreq_driver = NULL;
2806 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2807 out:
2808 	cpus_read_unlock();
2809 	return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2812 
2813 /*
2814  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2815  *
2816  * Unregister the current CPUFreq driver. Only call this if you have
2817  * the right to do so, i.e. if you have succeeded in initialising before!
2818  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2819  * currently not initialised.
2820  */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2821 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2822 {
2823 	unsigned long flags;
2824 
2825 	if (!cpufreq_driver || (driver != cpufreq_driver))
2826 		return -EINVAL;
2827 
2828 	pr_debug("unregistering driver %s\n", driver->name);
2829 
2830 	/* Protect against concurrent cpu hotplug */
2831 	cpus_read_lock();
2832 	subsys_interface_unregister(&cpufreq_interface);
2833 	remove_boost_sysfs_file();
2834 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2835 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2836 
2837 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2838 
2839 	cpufreq_driver = NULL;
2840 
2841 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842 	cpus_read_unlock();
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2847 
cpufreq_core_init(void)2848 static int __init cpufreq_core_init(void)
2849 {
2850 	struct cpufreq_governor *gov = cpufreq_default_governor();
2851 
2852 	if (cpufreq_disabled())
2853 		return -ENODEV;
2854 
2855 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2856 	BUG_ON(!cpufreq_global_kobject);
2857 
2858 	if (!strlen(default_governor))
2859 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2860 
2861 	return 0;
2862 }
2863 module_param(off, int, 0444);
2864 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2865 core_initcall(cpufreq_core_init);
2866