1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32
33 #include "n2_core.h"
34
35 #define DRV_MODULE_NAME "n2_crypto"
36 #define DRV_MODULE_VERSION "0.2"
37 #define DRV_MODULE_RELDATE "July 28, 2011"
38
39 static const char version[] =
40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46
47 #define N2_CRA_PRIORITY 200
48
49 static DEFINE_MUTEX(spu_lock);
50
51 struct spu_queue {
52 cpumask_t sharing;
53 unsigned long qhandle;
54
55 spinlock_t lock;
56 u8 q_type;
57 void *q;
58 unsigned long head;
59 unsigned long tail;
60 struct list_head jobs;
61
62 unsigned long devino;
63
64 char irq_name[32];
65 unsigned int irq;
66
67 struct list_head list;
68 };
69
70 struct spu_qreg {
71 struct spu_queue *queue;
72 unsigned long type;
73 };
74
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77
spu_next_offset(struct spu_queue * q,unsigned long off)78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80 if (q->q_type == HV_NCS_QTYPE_MAU) {
81 off += MAU_ENTRY_SIZE;
82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 off = 0;
84 } else {
85 off += CWQ_ENTRY_SIZE;
86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 off = 0;
88 }
89 return off;
90 }
91
92 struct n2_request_common {
93 struct list_head entry;
94 unsigned int offset;
95 };
96 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
97
98 /* An async job request records the final tail value it used in
99 * n2_request_common->offset, test to see if that offset is in
100 * the range old_head, new_head, inclusive.
101 */
job_finished(struct spu_queue * q,unsigned int offset,unsigned long old_head,unsigned long new_head)102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 unsigned long old_head, unsigned long new_head)
104 {
105 if (old_head <= new_head) {
106 if (offset > old_head && offset <= new_head)
107 return true;
108 } else {
109 if (offset > old_head || offset <= new_head)
110 return true;
111 }
112 return false;
113 }
114
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116 * a virtual device INO interrupt. We should process the
117 * completed CWQ entries and adjust the HEAD marker to clear
118 * the IRQ.
119 */
cwq_intr(int irq,void * dev_id)120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122 unsigned long off, new_head, hv_ret;
123 struct spu_queue *q = dev_id;
124
125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 smp_processor_id(), q->qhandle);
127
128 spin_lock(&q->lock);
129
130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 smp_processor_id(), new_head, hv_ret);
134
135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 /* XXX ... XXX */
137 }
138
139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 if (hv_ret == HV_EOK)
141 q->head = new_head;
142
143 spin_unlock(&q->lock);
144
145 return IRQ_HANDLED;
146 }
147
mau_intr(int irq,void * dev_id)148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150 struct spu_queue *q = dev_id;
151 unsigned long head, hv_ret;
152
153 spin_lock(&q->lock);
154
155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 smp_processor_id(), q->qhandle);
157
158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 smp_processor_id(), head, hv_ret);
162
163 sun4v_ncs_sethead_marker(q->qhandle, head);
164
165 spin_unlock(&q->lock);
166
167 return IRQ_HANDLED;
168 }
169
spu_queue_next(struct spu_queue * q,void * cur)170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172 return q->q + spu_next_offset(q, cur - q->q);
173 }
174
spu_queue_num_free(struct spu_queue * q)175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177 unsigned long head = q->head;
178 unsigned long tail = q->tail;
179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 unsigned long diff;
181
182 if (head > tail)
183 diff = head - tail;
184 else
185 diff = (end - tail) + head;
186
187 return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189
spu_queue_alloc(struct spu_queue * q,int num_entries)190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192 int avail = spu_queue_num_free(q);
193
194 if (avail >= num_entries)
195 return q->q + q->tail;
196
197 return NULL;
198 }
199
spu_queue_submit(struct spu_queue * q,void * last)200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202 unsigned long hv_ret, new_tail;
203
204 new_tail = spu_next_offset(q, last - q->q);
205
206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 if (hv_ret == HV_EOK)
208 q->tail = new_tail;
209 return hv_ret;
210 }
211
control_word_base(unsigned int len,unsigned int hmac_key_len,int enc_type,int auth_type,unsigned int hash_len,bool sfas,bool sob,bool eob,bool encrypt,int opcode)212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 int enc_type, int auth_type,
214 unsigned int hash_len,
215 bool sfas, bool sob, bool eob, bool encrypt,
216 int opcode)
217 {
218 u64 word = (len - 1) & CONTROL_LEN;
219
220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 if (sfas)
224 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 if (sob)
226 word |= CONTROL_START_OF_BLOCK;
227 if (eob)
228 word |= CONTROL_END_OF_BLOCK;
229 if (encrypt)
230 word |= CONTROL_ENCRYPT;
231 if (hmac_key_len)
232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 if (hash_len)
234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236 return word;
237 }
238
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242 if (this_len >= 64 ||
243 qp->head != qp->tail)
244 return true;
245 return false;
246 }
247 #endif
248
249 struct n2_ahash_alg {
250 struct list_head entry;
251 const u8 *hash_zero;
252 const u8 *hash_init;
253 u8 hw_op_hashsz;
254 u8 digest_size;
255 u8 auth_type;
256 u8 hmac_type;
257 struct ahash_alg alg;
258 };
259
n2_ahash_alg(struct crypto_tfm * tfm)260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262 struct crypto_alg *alg = tfm->__crt_alg;
263 struct ahash_alg *ahash_alg;
264
265 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267 return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269
270 struct n2_hmac_alg {
271 const char *child_alg;
272 struct n2_ahash_alg derived;
273 };
274
n2_hmac_alg(struct crypto_tfm * tfm)275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277 struct crypto_alg *alg = tfm->__crt_alg;
278 struct ahash_alg *ahash_alg;
279
280 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284
285 struct n2_hash_ctx {
286 struct crypto_ahash *fallback_tfm;
287 };
288
289 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290
291 struct n2_hmac_ctx {
292 struct n2_hash_ctx base;
293
294 struct crypto_shash *child_shash;
295
296 int hash_key_len;
297 unsigned char hash_key[N2_HASH_KEY_MAX];
298 };
299
300 struct n2_hash_req_ctx {
301 union {
302 struct md5_state md5;
303 struct sha1_state sha1;
304 struct sha256_state sha256;
305 } u;
306
307 struct ahash_request fallback_req;
308 };
309
n2_hash_async_init(struct ahash_request * req)310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319 return crypto_ahash_init(&rctx->fallback_req);
320 }
321
n2_hash_async_update(struct ahash_request * req)322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 rctx->fallback_req.nbytes = req->nbytes;
331 rctx->fallback_req.src = req->src;
332
333 return crypto_ahash_update(&rctx->fallback_req);
334 }
335
n2_hash_async_final(struct ahash_request * req)336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 rctx->fallback_req.result = req->result;
345
346 return crypto_ahash_final(&rctx->fallback_req);
347 }
348
n2_hash_async_finup(struct ahash_request * req)349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 rctx->fallback_req.nbytes = req->nbytes;
358 rctx->fallback_req.src = req->src;
359 rctx->fallback_req.result = req->result;
360
361 return crypto_ahash_finup(&rctx->fallback_req);
362 }
363
n2_hash_async_noimport(struct ahash_request * req,const void * in)364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366 return -ENOSYS;
367 }
368
n2_hash_async_noexport(struct ahash_request * req,void * out)369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371 return -ENOSYS;
372 }
373
n2_hash_cra_init(struct crypto_tfm * tfm)374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 struct crypto_ahash *fallback_tfm;
380 int err;
381
382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 CRYPTO_ALG_NEED_FALLBACK);
384 if (IS_ERR(fallback_tfm)) {
385 pr_warn("Fallback driver '%s' could not be loaded!\n",
386 fallback_driver_name);
387 err = PTR_ERR(fallback_tfm);
388 goto out;
389 }
390
391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 crypto_ahash_reqsize(fallback_tfm)));
393
394 ctx->fallback_tfm = fallback_tfm;
395 return 0;
396
397 out:
398 return err;
399 }
400
n2_hash_cra_exit(struct crypto_tfm * tfm)401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406 crypto_free_ahash(ctx->fallback_tfm);
407 }
408
n2_hmac_cra_init(struct crypto_tfm * tfm)409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 struct crypto_ahash *fallback_tfm;
416 struct crypto_shash *child_shash;
417 int err;
418
419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 CRYPTO_ALG_NEED_FALLBACK);
421 if (IS_ERR(fallback_tfm)) {
422 pr_warn("Fallback driver '%s' could not be loaded!\n",
423 fallback_driver_name);
424 err = PTR_ERR(fallback_tfm);
425 goto out;
426 }
427
428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 if (IS_ERR(child_shash)) {
430 pr_warn("Child shash '%s' could not be loaded!\n",
431 n2alg->child_alg);
432 err = PTR_ERR(child_shash);
433 goto out_free_fallback;
434 }
435
436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 crypto_ahash_reqsize(fallback_tfm)));
438
439 ctx->child_shash = child_shash;
440 ctx->base.fallback_tfm = fallback_tfm;
441 return 0;
442
443 out_free_fallback:
444 crypto_free_ahash(fallback_tfm);
445
446 out:
447 return err;
448 }
449
n2_hmac_cra_exit(struct crypto_tfm * tfm)450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455 crypto_free_ahash(ctx->base.fallback_tfm);
456 crypto_free_shash(ctx->child_shash);
457 }
458
n2_hmac_async_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 unsigned int keylen)
461 {
462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 struct crypto_shash *child_shash = ctx->child_shash;
464 struct crypto_ahash *fallback_tfm;
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 bs = crypto_shash_blocksize(child_shash);
473 ds = crypto_shash_digestsize(child_shash);
474 BUG_ON(ds > N2_HASH_KEY_MAX);
475 if (keylen > bs) {
476 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 ctx->hash_key);
478 if (err)
479 return err;
480 keylen = ds;
481 } else if (keylen <= N2_HASH_KEY_MAX)
482 memcpy(ctx->hash_key, key, keylen);
483
484 ctx->hash_key_len = keylen;
485
486 return err;
487 }
488
wait_for_tail(struct spu_queue * qp)489 static unsigned long wait_for_tail(struct spu_queue *qp)
490 {
491 unsigned long head, hv_ret;
492
493 do {
494 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 if (hv_ret != HV_EOK) {
496 pr_err("Hypervisor error on gethead\n");
497 break;
498 }
499 if (head == qp->tail) {
500 qp->head = head;
501 break;
502 }
503 } while (1);
504 return hv_ret;
505 }
506
submit_and_wait_for_tail(struct spu_queue * qp,struct cwq_initial_entry * ent)507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 struct cwq_initial_entry *ent)
509 {
510 unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512 if (hv_ret == HV_EOK)
513 hv_ret = wait_for_tail(qp);
514
515 return hv_ret;
516 }
517
n2_do_async_digest(struct ahash_request * req,unsigned int auth_type,unsigned int digest_size,unsigned int result_size,void * hash_loc,unsigned long auth_key,unsigned int auth_key_len)518 static int n2_do_async_digest(struct ahash_request *req,
519 unsigned int auth_type, unsigned int digest_size,
520 unsigned int result_size, void *hash_loc,
521 unsigned long auth_key, unsigned int auth_key_len)
522 {
523 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 struct cwq_initial_entry *ent;
525 struct crypto_hash_walk walk;
526 struct spu_queue *qp;
527 unsigned long flags;
528 int err = -ENODEV;
529 int nbytes, cpu;
530
531 /* The total effective length of the operation may not
532 * exceed 2^16.
533 */
534 if (unlikely(req->nbytes > (1 << 16))) {
535 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 rctx->fallback_req.base.flags =
540 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 rctx->fallback_req.nbytes = req->nbytes;
542 rctx->fallback_req.src = req->src;
543 rctx->fallback_req.result = req->result;
544
545 return crypto_ahash_digest(&rctx->fallback_req);
546 }
547
548 nbytes = crypto_hash_walk_first(req, &walk);
549
550 cpu = get_cpu();
551 qp = cpu_to_cwq[cpu];
552 if (!qp)
553 goto out;
554
555 spin_lock_irqsave(&qp->lock, flags);
556
557 /* XXX can do better, improve this later by doing a by-hand scatterlist
558 * XXX walk, etc.
559 */
560 ent = qp->q + qp->tail;
561
562 ent->control = control_word_base(nbytes, auth_key_len, 0,
563 auth_type, digest_size,
564 false, true, false, false,
565 OPCODE_INPLACE_BIT |
566 OPCODE_AUTH_MAC);
567 ent->src_addr = __pa(walk.data);
568 ent->auth_key_addr = auth_key;
569 ent->auth_iv_addr = __pa(hash_loc);
570 ent->final_auth_state_addr = 0UL;
571 ent->enc_key_addr = 0UL;
572 ent->enc_iv_addr = 0UL;
573 ent->dest_addr = __pa(hash_loc);
574
575 nbytes = crypto_hash_walk_done(&walk, 0);
576 while (nbytes > 0) {
577 ent = spu_queue_next(qp, ent);
578
579 ent->control = (nbytes - 1);
580 ent->src_addr = __pa(walk.data);
581 ent->auth_key_addr = 0UL;
582 ent->auth_iv_addr = 0UL;
583 ent->final_auth_state_addr = 0UL;
584 ent->enc_key_addr = 0UL;
585 ent->enc_iv_addr = 0UL;
586 ent->dest_addr = 0UL;
587
588 nbytes = crypto_hash_walk_done(&walk, 0);
589 }
590 ent->control |= CONTROL_END_OF_BLOCK;
591
592 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 err = -EINVAL;
594 else
595 err = 0;
596
597 spin_unlock_irqrestore(&qp->lock, flags);
598
599 if (!err)
600 memcpy(req->result, hash_loc, result_size);
601 out:
602 put_cpu();
603
604 return err;
605 }
606
n2_hash_async_digest(struct ahash_request * req)607 static int n2_hash_async_digest(struct ahash_request *req)
608 {
609 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 int ds;
612
613 ds = n2alg->digest_size;
614 if (unlikely(req->nbytes == 0)) {
615 memcpy(req->result, n2alg->hash_zero, ds);
616 return 0;
617 }
618 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620 return n2_do_async_digest(req, n2alg->auth_type,
621 n2alg->hw_op_hashsz, ds,
622 &rctx->u, 0UL, 0);
623 }
624
n2_hmac_async_digest(struct ahash_request * req)625 static int n2_hmac_async_digest(struct ahash_request *req)
626 {
627 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 int ds;
632
633 ds = n2alg->derived.digest_size;
634 if (unlikely(req->nbytes == 0) ||
635 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 rctx->fallback_req.base.flags =
641 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 rctx->fallback_req.nbytes = req->nbytes;
643 rctx->fallback_req.src = req->src;
644 rctx->fallback_req.result = req->result;
645
646 return crypto_ahash_digest(&rctx->fallback_req);
647 }
648 memcpy(&rctx->u, n2alg->derived.hash_init,
649 n2alg->derived.hw_op_hashsz);
650
651 return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 n2alg->derived.hw_op_hashsz, ds,
653 &rctx->u,
654 __pa(&ctx->hash_key),
655 ctx->hash_key_len);
656 }
657
658 struct n2_skcipher_context {
659 int key_len;
660 int enc_type;
661 union {
662 u8 aes[AES_MAX_KEY_SIZE];
663 u8 des[DES_KEY_SIZE];
664 u8 des3[3 * DES_KEY_SIZE];
665 } key;
666 };
667
668 #define N2_CHUNK_ARR_LEN 16
669
670 struct n2_crypto_chunk {
671 struct list_head entry;
672 unsigned long iv_paddr : 44;
673 unsigned long arr_len : 20;
674 unsigned long dest_paddr;
675 unsigned long dest_final;
676 struct {
677 unsigned long src_paddr : 44;
678 unsigned long src_len : 20;
679 } arr[N2_CHUNK_ARR_LEN];
680 };
681
682 struct n2_request_context {
683 struct skcipher_walk walk;
684 struct list_head chunk_list;
685 struct n2_crypto_chunk chunk;
686 u8 temp_iv[16];
687 };
688
689 /* The SPU allows some level of flexibility for partial cipher blocks
690 * being specified in a descriptor.
691 *
692 * It merely requires that every descriptor's length field is at least
693 * as large as the cipher block size. This means that a cipher block
694 * can span at most 2 descriptors. However, this does not allow a
695 * partial block to span into the final descriptor as that would
696 * violate the rule (since every descriptor's length must be at lest
697 * the block size). So, for example, assuming an 8 byte block size:
698 *
699 * 0xe --> 0xa --> 0x8
700 *
701 * is a valid length sequence, whereas:
702 *
703 * 0xe --> 0xb --> 0x7
704 *
705 * is not a valid sequence.
706 */
707
708 struct n2_skcipher_alg {
709 struct list_head entry;
710 u8 enc_type;
711 struct skcipher_alg skcipher;
712 };
713
n2_skcipher_alg(struct crypto_skcipher * tfm)714 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
715 {
716 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
717
718 return container_of(alg, struct n2_skcipher_alg, skcipher);
719 }
720
721 struct n2_skcipher_request_context {
722 struct skcipher_walk walk;
723 };
724
n2_aes_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)725 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
726 unsigned int keylen)
727 {
728 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
729 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
730 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
731
732 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
733
734 switch (keylen) {
735 case AES_KEYSIZE_128:
736 ctx->enc_type |= ENC_TYPE_ALG_AES128;
737 break;
738 case AES_KEYSIZE_192:
739 ctx->enc_type |= ENC_TYPE_ALG_AES192;
740 break;
741 case AES_KEYSIZE_256:
742 ctx->enc_type |= ENC_TYPE_ALG_AES256;
743 break;
744 default:
745 return -EINVAL;
746 }
747
748 ctx->key_len = keylen;
749 memcpy(ctx->key.aes, key, keylen);
750 return 0;
751 }
752
n2_des_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)753 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
754 unsigned int keylen)
755 {
756 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
757 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
758 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
759 int err;
760
761 err = verify_skcipher_des_key(skcipher, key);
762 if (err)
763 return err;
764
765 ctx->enc_type = n2alg->enc_type;
766
767 ctx->key_len = keylen;
768 memcpy(ctx->key.des, key, keylen);
769 return 0;
770 }
771
n2_3des_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)772 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
773 unsigned int keylen)
774 {
775 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
776 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
777 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
778 int err;
779
780 err = verify_skcipher_des3_key(skcipher, key);
781 if (err)
782 return err;
783
784 ctx->enc_type = n2alg->enc_type;
785
786 ctx->key_len = keylen;
787 memcpy(ctx->key.des3, key, keylen);
788 return 0;
789 }
790
skcipher_descriptor_len(int nbytes,unsigned int block_size)791 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
792 {
793 int this_len = nbytes;
794
795 this_len -= (nbytes & (block_size - 1));
796 return this_len > (1 << 16) ? (1 << 16) : this_len;
797 }
798
__n2_crypt_chunk(struct crypto_skcipher * skcipher,struct n2_crypto_chunk * cp,struct spu_queue * qp,bool encrypt)799 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
800 struct n2_crypto_chunk *cp,
801 struct spu_queue *qp, bool encrypt)
802 {
803 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
804 struct cwq_initial_entry *ent;
805 bool in_place;
806 int i;
807
808 ent = spu_queue_alloc(qp, cp->arr_len);
809 if (!ent) {
810 pr_info("queue_alloc() of %d fails\n",
811 cp->arr_len);
812 return -EBUSY;
813 }
814
815 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
816
817 ent->control = control_word_base(cp->arr[0].src_len,
818 0, ctx->enc_type, 0, 0,
819 false, true, false, encrypt,
820 OPCODE_ENCRYPT |
821 (in_place ? OPCODE_INPLACE_BIT : 0));
822 ent->src_addr = cp->arr[0].src_paddr;
823 ent->auth_key_addr = 0UL;
824 ent->auth_iv_addr = 0UL;
825 ent->final_auth_state_addr = 0UL;
826 ent->enc_key_addr = __pa(&ctx->key);
827 ent->enc_iv_addr = cp->iv_paddr;
828 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
829
830 for (i = 1; i < cp->arr_len; i++) {
831 ent = spu_queue_next(qp, ent);
832
833 ent->control = cp->arr[i].src_len - 1;
834 ent->src_addr = cp->arr[i].src_paddr;
835 ent->auth_key_addr = 0UL;
836 ent->auth_iv_addr = 0UL;
837 ent->final_auth_state_addr = 0UL;
838 ent->enc_key_addr = 0UL;
839 ent->enc_iv_addr = 0UL;
840 ent->dest_addr = 0UL;
841 }
842 ent->control |= CONTROL_END_OF_BLOCK;
843
844 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
845 }
846
n2_compute_chunks(struct skcipher_request * req)847 static int n2_compute_chunks(struct skcipher_request *req)
848 {
849 struct n2_request_context *rctx = skcipher_request_ctx(req);
850 struct skcipher_walk *walk = &rctx->walk;
851 struct n2_crypto_chunk *chunk;
852 unsigned long dest_prev;
853 unsigned int tot_len;
854 bool prev_in_place;
855 int err, nbytes;
856
857 err = skcipher_walk_async(walk, req);
858 if (err)
859 return err;
860
861 INIT_LIST_HEAD(&rctx->chunk_list);
862
863 chunk = &rctx->chunk;
864 INIT_LIST_HEAD(&chunk->entry);
865
866 chunk->iv_paddr = 0UL;
867 chunk->arr_len = 0;
868 chunk->dest_paddr = 0UL;
869
870 prev_in_place = false;
871 dest_prev = ~0UL;
872 tot_len = 0;
873
874 while ((nbytes = walk->nbytes) != 0) {
875 unsigned long dest_paddr, src_paddr;
876 bool in_place;
877 int this_len;
878
879 src_paddr = (page_to_phys(walk->src.phys.page) +
880 walk->src.phys.offset);
881 dest_paddr = (page_to_phys(walk->dst.phys.page) +
882 walk->dst.phys.offset);
883 in_place = (src_paddr == dest_paddr);
884 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
885
886 if (chunk->arr_len != 0) {
887 if (in_place != prev_in_place ||
888 (!prev_in_place &&
889 dest_paddr != dest_prev) ||
890 chunk->arr_len == N2_CHUNK_ARR_LEN ||
891 tot_len + this_len > (1 << 16)) {
892 chunk->dest_final = dest_prev;
893 list_add_tail(&chunk->entry,
894 &rctx->chunk_list);
895 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
896 if (!chunk) {
897 err = -ENOMEM;
898 break;
899 }
900 INIT_LIST_HEAD(&chunk->entry);
901 }
902 }
903 if (chunk->arr_len == 0) {
904 chunk->dest_paddr = dest_paddr;
905 tot_len = 0;
906 }
907 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
908 chunk->arr[chunk->arr_len].src_len = this_len;
909 chunk->arr_len++;
910
911 dest_prev = dest_paddr + this_len;
912 prev_in_place = in_place;
913 tot_len += this_len;
914
915 err = skcipher_walk_done(walk, nbytes - this_len);
916 if (err)
917 break;
918 }
919 if (!err && chunk->arr_len != 0) {
920 chunk->dest_final = dest_prev;
921 list_add_tail(&chunk->entry, &rctx->chunk_list);
922 }
923
924 return err;
925 }
926
n2_chunk_complete(struct skcipher_request * req,void * final_iv)927 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
928 {
929 struct n2_request_context *rctx = skcipher_request_ctx(req);
930 struct n2_crypto_chunk *c, *tmp;
931
932 if (final_iv)
933 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
934
935 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
936 list_del(&c->entry);
937 if (unlikely(c != &rctx->chunk))
938 kfree(c);
939 }
940
941 }
942
n2_do_ecb(struct skcipher_request * req,bool encrypt)943 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
944 {
945 struct n2_request_context *rctx = skcipher_request_ctx(req);
946 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
947 int err = n2_compute_chunks(req);
948 struct n2_crypto_chunk *c, *tmp;
949 unsigned long flags, hv_ret;
950 struct spu_queue *qp;
951
952 if (err)
953 return err;
954
955 qp = cpu_to_cwq[get_cpu()];
956 err = -ENODEV;
957 if (!qp)
958 goto out;
959
960 spin_lock_irqsave(&qp->lock, flags);
961
962 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
963 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
964 if (err)
965 break;
966 list_del(&c->entry);
967 if (unlikely(c != &rctx->chunk))
968 kfree(c);
969 }
970 if (!err) {
971 hv_ret = wait_for_tail(qp);
972 if (hv_ret != HV_EOK)
973 err = -EINVAL;
974 }
975
976 spin_unlock_irqrestore(&qp->lock, flags);
977
978 out:
979 put_cpu();
980
981 n2_chunk_complete(req, NULL);
982 return err;
983 }
984
n2_encrypt_ecb(struct skcipher_request * req)985 static int n2_encrypt_ecb(struct skcipher_request *req)
986 {
987 return n2_do_ecb(req, true);
988 }
989
n2_decrypt_ecb(struct skcipher_request * req)990 static int n2_decrypt_ecb(struct skcipher_request *req)
991 {
992 return n2_do_ecb(req, false);
993 }
994
n2_do_chaining(struct skcipher_request * req,bool encrypt)995 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
996 {
997 struct n2_request_context *rctx = skcipher_request_ctx(req);
998 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
999 unsigned long flags, hv_ret, iv_paddr;
1000 int err = n2_compute_chunks(req);
1001 struct n2_crypto_chunk *c, *tmp;
1002 struct spu_queue *qp;
1003 void *final_iv_addr;
1004
1005 final_iv_addr = NULL;
1006
1007 if (err)
1008 return err;
1009
1010 qp = cpu_to_cwq[get_cpu()];
1011 err = -ENODEV;
1012 if (!qp)
1013 goto out;
1014
1015 spin_lock_irqsave(&qp->lock, flags);
1016
1017 if (encrypt) {
1018 iv_paddr = __pa(rctx->walk.iv);
1019 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1020 entry) {
1021 c->iv_paddr = iv_paddr;
1022 err = __n2_crypt_chunk(tfm, c, qp, true);
1023 if (err)
1024 break;
1025 iv_paddr = c->dest_final - rctx->walk.blocksize;
1026 list_del(&c->entry);
1027 if (unlikely(c != &rctx->chunk))
1028 kfree(c);
1029 }
1030 final_iv_addr = __va(iv_paddr);
1031 } else {
1032 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1033 entry) {
1034 if (c == &rctx->chunk) {
1035 iv_paddr = __pa(rctx->walk.iv);
1036 } else {
1037 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1038 tmp->arr[tmp->arr_len-1].src_len -
1039 rctx->walk.blocksize);
1040 }
1041 if (!final_iv_addr) {
1042 unsigned long pa;
1043
1044 pa = (c->arr[c->arr_len-1].src_paddr +
1045 c->arr[c->arr_len-1].src_len -
1046 rctx->walk.blocksize);
1047 final_iv_addr = rctx->temp_iv;
1048 memcpy(rctx->temp_iv, __va(pa),
1049 rctx->walk.blocksize);
1050 }
1051 c->iv_paddr = iv_paddr;
1052 err = __n2_crypt_chunk(tfm, c, qp, false);
1053 if (err)
1054 break;
1055 list_del(&c->entry);
1056 if (unlikely(c != &rctx->chunk))
1057 kfree(c);
1058 }
1059 }
1060 if (!err) {
1061 hv_ret = wait_for_tail(qp);
1062 if (hv_ret != HV_EOK)
1063 err = -EINVAL;
1064 }
1065
1066 spin_unlock_irqrestore(&qp->lock, flags);
1067
1068 out:
1069 put_cpu();
1070
1071 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1072 return err;
1073 }
1074
n2_encrypt_chaining(struct skcipher_request * req)1075 static int n2_encrypt_chaining(struct skcipher_request *req)
1076 {
1077 return n2_do_chaining(req, true);
1078 }
1079
n2_decrypt_chaining(struct skcipher_request * req)1080 static int n2_decrypt_chaining(struct skcipher_request *req)
1081 {
1082 return n2_do_chaining(req, false);
1083 }
1084
1085 struct n2_skcipher_tmpl {
1086 const char *name;
1087 const char *drv_name;
1088 u8 block_size;
1089 u8 enc_type;
1090 struct skcipher_alg skcipher;
1091 };
1092
1093 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1094 /* DES: ECB CBC and CFB are supported */
1095 { .name = "ecb(des)",
1096 .drv_name = "ecb-des",
1097 .block_size = DES_BLOCK_SIZE,
1098 .enc_type = (ENC_TYPE_ALG_DES |
1099 ENC_TYPE_CHAINING_ECB),
1100 .skcipher = {
1101 .min_keysize = DES_KEY_SIZE,
1102 .max_keysize = DES_KEY_SIZE,
1103 .setkey = n2_des_setkey,
1104 .encrypt = n2_encrypt_ecb,
1105 .decrypt = n2_decrypt_ecb,
1106 },
1107 },
1108 { .name = "cbc(des)",
1109 .drv_name = "cbc-des",
1110 .block_size = DES_BLOCK_SIZE,
1111 .enc_type = (ENC_TYPE_ALG_DES |
1112 ENC_TYPE_CHAINING_CBC),
1113 .skcipher = {
1114 .ivsize = DES_BLOCK_SIZE,
1115 .min_keysize = DES_KEY_SIZE,
1116 .max_keysize = DES_KEY_SIZE,
1117 .setkey = n2_des_setkey,
1118 .encrypt = n2_encrypt_chaining,
1119 .decrypt = n2_decrypt_chaining,
1120 },
1121 },
1122 { .name = "cfb(des)",
1123 .drv_name = "cfb-des",
1124 .block_size = DES_BLOCK_SIZE,
1125 .enc_type = (ENC_TYPE_ALG_DES |
1126 ENC_TYPE_CHAINING_CFB),
1127 .skcipher = {
1128 .min_keysize = DES_KEY_SIZE,
1129 .max_keysize = DES_KEY_SIZE,
1130 .setkey = n2_des_setkey,
1131 .encrypt = n2_encrypt_chaining,
1132 .decrypt = n2_decrypt_chaining,
1133 },
1134 },
1135
1136 /* 3DES: ECB CBC and CFB are supported */
1137 { .name = "ecb(des3_ede)",
1138 .drv_name = "ecb-3des",
1139 .block_size = DES_BLOCK_SIZE,
1140 .enc_type = (ENC_TYPE_ALG_3DES |
1141 ENC_TYPE_CHAINING_ECB),
1142 .skcipher = {
1143 .min_keysize = 3 * DES_KEY_SIZE,
1144 .max_keysize = 3 * DES_KEY_SIZE,
1145 .setkey = n2_3des_setkey,
1146 .encrypt = n2_encrypt_ecb,
1147 .decrypt = n2_decrypt_ecb,
1148 },
1149 },
1150 { .name = "cbc(des3_ede)",
1151 .drv_name = "cbc-3des",
1152 .block_size = DES_BLOCK_SIZE,
1153 .enc_type = (ENC_TYPE_ALG_3DES |
1154 ENC_TYPE_CHAINING_CBC),
1155 .skcipher = {
1156 .ivsize = DES_BLOCK_SIZE,
1157 .min_keysize = 3 * DES_KEY_SIZE,
1158 .max_keysize = 3 * DES_KEY_SIZE,
1159 .setkey = n2_3des_setkey,
1160 .encrypt = n2_encrypt_chaining,
1161 .decrypt = n2_decrypt_chaining,
1162 },
1163 },
1164 { .name = "cfb(des3_ede)",
1165 .drv_name = "cfb-3des",
1166 .block_size = DES_BLOCK_SIZE,
1167 .enc_type = (ENC_TYPE_ALG_3DES |
1168 ENC_TYPE_CHAINING_CFB),
1169 .skcipher = {
1170 .min_keysize = 3 * DES_KEY_SIZE,
1171 .max_keysize = 3 * DES_KEY_SIZE,
1172 .setkey = n2_3des_setkey,
1173 .encrypt = n2_encrypt_chaining,
1174 .decrypt = n2_decrypt_chaining,
1175 },
1176 },
1177 /* AES: ECB CBC and CTR are supported */
1178 { .name = "ecb(aes)",
1179 .drv_name = "ecb-aes",
1180 .block_size = AES_BLOCK_SIZE,
1181 .enc_type = (ENC_TYPE_ALG_AES128 |
1182 ENC_TYPE_CHAINING_ECB),
1183 .skcipher = {
1184 .min_keysize = AES_MIN_KEY_SIZE,
1185 .max_keysize = AES_MAX_KEY_SIZE,
1186 .setkey = n2_aes_setkey,
1187 .encrypt = n2_encrypt_ecb,
1188 .decrypt = n2_decrypt_ecb,
1189 },
1190 },
1191 { .name = "cbc(aes)",
1192 .drv_name = "cbc-aes",
1193 .block_size = AES_BLOCK_SIZE,
1194 .enc_type = (ENC_TYPE_ALG_AES128 |
1195 ENC_TYPE_CHAINING_CBC),
1196 .skcipher = {
1197 .ivsize = AES_BLOCK_SIZE,
1198 .min_keysize = AES_MIN_KEY_SIZE,
1199 .max_keysize = AES_MAX_KEY_SIZE,
1200 .setkey = n2_aes_setkey,
1201 .encrypt = n2_encrypt_chaining,
1202 .decrypt = n2_decrypt_chaining,
1203 },
1204 },
1205 { .name = "ctr(aes)",
1206 .drv_name = "ctr-aes",
1207 .block_size = AES_BLOCK_SIZE,
1208 .enc_type = (ENC_TYPE_ALG_AES128 |
1209 ENC_TYPE_CHAINING_COUNTER),
1210 .skcipher = {
1211 .ivsize = AES_BLOCK_SIZE,
1212 .min_keysize = AES_MIN_KEY_SIZE,
1213 .max_keysize = AES_MAX_KEY_SIZE,
1214 .setkey = n2_aes_setkey,
1215 .encrypt = n2_encrypt_chaining,
1216 .decrypt = n2_encrypt_chaining,
1217 },
1218 },
1219
1220 };
1221 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1222
1223 static LIST_HEAD(skcipher_algs);
1224
1225 struct n2_hash_tmpl {
1226 const char *name;
1227 const u8 *hash_zero;
1228 const u8 *hash_init;
1229 u8 hw_op_hashsz;
1230 u8 digest_size;
1231 u8 statesize;
1232 u8 block_size;
1233 u8 auth_type;
1234 u8 hmac_type;
1235 };
1236
1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238 cpu_to_le32(MD5_H0),
1239 cpu_to_le32(MD5_H1),
1240 cpu_to_le32(MD5_H2),
1241 cpu_to_le32(MD5_H3),
1242 };
1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1245 };
1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1249 };
1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1253 };
1254
1255 static const struct n2_hash_tmpl hash_tmpls[] = {
1256 { .name = "md5",
1257 .hash_zero = md5_zero_message_hash,
1258 .hash_init = (u8 *)n2_md5_init,
1259 .auth_type = AUTH_TYPE_MD5,
1260 .hmac_type = AUTH_TYPE_HMAC_MD5,
1261 .hw_op_hashsz = MD5_DIGEST_SIZE,
1262 .digest_size = MD5_DIGEST_SIZE,
1263 .statesize = sizeof(struct md5_state),
1264 .block_size = MD5_HMAC_BLOCK_SIZE },
1265 { .name = "sha1",
1266 .hash_zero = sha1_zero_message_hash,
1267 .hash_init = (u8 *)n2_sha1_init,
1268 .auth_type = AUTH_TYPE_SHA1,
1269 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1270 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1271 .digest_size = SHA1_DIGEST_SIZE,
1272 .statesize = sizeof(struct sha1_state),
1273 .block_size = SHA1_BLOCK_SIZE },
1274 { .name = "sha256",
1275 .hash_zero = sha256_zero_message_hash,
1276 .hash_init = (u8 *)n2_sha256_init,
1277 .auth_type = AUTH_TYPE_SHA256,
1278 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1279 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1280 .digest_size = SHA256_DIGEST_SIZE,
1281 .statesize = sizeof(struct sha256_state),
1282 .block_size = SHA256_BLOCK_SIZE },
1283 { .name = "sha224",
1284 .hash_zero = sha224_zero_message_hash,
1285 .hash_init = (u8 *)n2_sha224_init,
1286 .auth_type = AUTH_TYPE_SHA256,
1287 .hmac_type = AUTH_TYPE_RESERVED,
1288 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1289 .digest_size = SHA224_DIGEST_SIZE,
1290 .statesize = sizeof(struct sha256_state),
1291 .block_size = SHA224_BLOCK_SIZE },
1292 };
1293 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1294
1295 static LIST_HEAD(ahash_algs);
1296 static LIST_HEAD(hmac_algs);
1297
1298 static int algs_registered;
1299
__n2_unregister_algs(void)1300 static void __n2_unregister_algs(void)
1301 {
1302 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1303 struct n2_ahash_alg *alg, *alg_tmp;
1304 struct n2_hmac_alg *hmac, *hmac_tmp;
1305
1306 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1307 crypto_unregister_skcipher(&skcipher->skcipher);
1308 list_del(&skcipher->entry);
1309 kfree(skcipher);
1310 }
1311 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1312 crypto_unregister_ahash(&hmac->derived.alg);
1313 list_del(&hmac->derived.entry);
1314 kfree(hmac);
1315 }
1316 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1317 crypto_unregister_ahash(&alg->alg);
1318 list_del(&alg->entry);
1319 kfree(alg);
1320 }
1321 }
1322
n2_skcipher_init_tfm(struct crypto_skcipher * tfm)1323 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1324 {
1325 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1326 return 0;
1327 }
1328
__n2_register_one_skcipher(const struct n2_skcipher_tmpl * tmpl)1329 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1330 {
1331 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1332 struct skcipher_alg *alg;
1333 int err;
1334
1335 if (!p)
1336 return -ENOMEM;
1337
1338 alg = &p->skcipher;
1339 *alg = tmpl->skcipher;
1340
1341 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1342 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1343 alg->base.cra_priority = N2_CRA_PRIORITY;
1344 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1345 CRYPTO_ALG_ALLOCATES_MEMORY;
1346 alg->base.cra_blocksize = tmpl->block_size;
1347 p->enc_type = tmpl->enc_type;
1348 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1349 alg->base.cra_module = THIS_MODULE;
1350 alg->init = n2_skcipher_init_tfm;
1351
1352 list_add(&p->entry, &skcipher_algs);
1353 err = crypto_register_skcipher(alg);
1354 if (err) {
1355 pr_err("%s alg registration failed\n", alg->base.cra_name);
1356 list_del(&p->entry);
1357 kfree(p);
1358 } else {
1359 pr_info("%s alg registered\n", alg->base.cra_name);
1360 }
1361 return err;
1362 }
1363
__n2_register_one_hmac(struct n2_ahash_alg * n2ahash)1364 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1365 {
1366 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1367 struct ahash_alg *ahash;
1368 struct crypto_alg *base;
1369 int err;
1370
1371 if (!p)
1372 return -ENOMEM;
1373
1374 p->child_alg = n2ahash->alg.halg.base.cra_name;
1375 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1376 INIT_LIST_HEAD(&p->derived.entry);
1377
1378 ahash = &p->derived.alg;
1379 ahash->digest = n2_hmac_async_digest;
1380 ahash->setkey = n2_hmac_async_setkey;
1381
1382 base = &ahash->halg.base;
1383 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1384 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1385
1386 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1387 base->cra_init = n2_hmac_cra_init;
1388 base->cra_exit = n2_hmac_cra_exit;
1389
1390 list_add(&p->derived.entry, &hmac_algs);
1391 err = crypto_register_ahash(ahash);
1392 if (err) {
1393 pr_err("%s alg registration failed\n", base->cra_name);
1394 list_del(&p->derived.entry);
1395 kfree(p);
1396 } else {
1397 pr_info("%s alg registered\n", base->cra_name);
1398 }
1399 return err;
1400 }
1401
__n2_register_one_ahash(const struct n2_hash_tmpl * tmpl)1402 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1403 {
1404 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1405 struct hash_alg_common *halg;
1406 struct crypto_alg *base;
1407 struct ahash_alg *ahash;
1408 int err;
1409
1410 if (!p)
1411 return -ENOMEM;
1412
1413 p->hash_zero = tmpl->hash_zero;
1414 p->hash_init = tmpl->hash_init;
1415 p->auth_type = tmpl->auth_type;
1416 p->hmac_type = tmpl->hmac_type;
1417 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1418 p->digest_size = tmpl->digest_size;
1419
1420 ahash = &p->alg;
1421 ahash->init = n2_hash_async_init;
1422 ahash->update = n2_hash_async_update;
1423 ahash->final = n2_hash_async_final;
1424 ahash->finup = n2_hash_async_finup;
1425 ahash->digest = n2_hash_async_digest;
1426 ahash->export = n2_hash_async_noexport;
1427 ahash->import = n2_hash_async_noimport;
1428
1429 halg = &ahash->halg;
1430 halg->digestsize = tmpl->digest_size;
1431 halg->statesize = tmpl->statesize;
1432
1433 base = &halg->base;
1434 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1435 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1436 base->cra_priority = N2_CRA_PRIORITY;
1437 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1438 CRYPTO_ALG_NEED_FALLBACK;
1439 base->cra_blocksize = tmpl->block_size;
1440 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1441 base->cra_module = THIS_MODULE;
1442 base->cra_init = n2_hash_cra_init;
1443 base->cra_exit = n2_hash_cra_exit;
1444
1445 list_add(&p->entry, &ahash_algs);
1446 err = crypto_register_ahash(ahash);
1447 if (err) {
1448 pr_err("%s alg registration failed\n", base->cra_name);
1449 list_del(&p->entry);
1450 kfree(p);
1451 } else {
1452 pr_info("%s alg registered\n", base->cra_name);
1453 }
1454 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1455 err = __n2_register_one_hmac(p);
1456 return err;
1457 }
1458
n2_register_algs(void)1459 static int n2_register_algs(void)
1460 {
1461 int i, err = 0;
1462
1463 mutex_lock(&spu_lock);
1464 if (algs_registered++)
1465 goto out;
1466
1467 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1468 err = __n2_register_one_ahash(&hash_tmpls[i]);
1469 if (err) {
1470 __n2_unregister_algs();
1471 goto out;
1472 }
1473 }
1474 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1475 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1476 if (err) {
1477 __n2_unregister_algs();
1478 goto out;
1479 }
1480 }
1481
1482 out:
1483 mutex_unlock(&spu_lock);
1484 return err;
1485 }
1486
n2_unregister_algs(void)1487 static void n2_unregister_algs(void)
1488 {
1489 mutex_lock(&spu_lock);
1490 if (!--algs_registered)
1491 __n2_unregister_algs();
1492 mutex_unlock(&spu_lock);
1493 }
1494
1495 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1496 * a devino. This isn't very useful to us because all of the
1497 * interrupts listed in the device_node have been translated to
1498 * Linux virtual IRQ cookie numbers.
1499 *
1500 * So we have to back-translate, going through the 'intr' and 'ino'
1501 * property tables of the n2cp MDESC node, matching it with the OF
1502 * 'interrupts' property entries, in order to to figure out which
1503 * devino goes to which already-translated IRQ.
1504 */
find_devino_index(struct platform_device * dev,struct spu_mdesc_info * ip,unsigned long dev_ino)1505 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1506 unsigned long dev_ino)
1507 {
1508 const unsigned int *dev_intrs;
1509 unsigned int intr;
1510 int i;
1511
1512 for (i = 0; i < ip->num_intrs; i++) {
1513 if (ip->ino_table[i].ino == dev_ino)
1514 break;
1515 }
1516 if (i == ip->num_intrs)
1517 return -ENODEV;
1518
1519 intr = ip->ino_table[i].intr;
1520
1521 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1522 if (!dev_intrs)
1523 return -ENODEV;
1524
1525 for (i = 0; i < dev->archdata.num_irqs; i++) {
1526 if (dev_intrs[i] == intr)
1527 return i;
1528 }
1529
1530 return -ENODEV;
1531 }
1532
spu_map_ino(struct platform_device * dev,struct spu_mdesc_info * ip,const char * irq_name,struct spu_queue * p,irq_handler_t handler)1533 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1534 const char *irq_name, struct spu_queue *p,
1535 irq_handler_t handler)
1536 {
1537 unsigned long herr;
1538 int index;
1539
1540 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1541 if (herr)
1542 return -EINVAL;
1543
1544 index = find_devino_index(dev, ip, p->devino);
1545 if (index < 0)
1546 return index;
1547
1548 p->irq = dev->archdata.irqs[index];
1549
1550 sprintf(p->irq_name, "%s-%d", irq_name, index);
1551
1552 return request_irq(p->irq, handler, 0, p->irq_name, p);
1553 }
1554
1555 static struct kmem_cache *queue_cache[2];
1556
new_queue(unsigned long q_type)1557 static void *new_queue(unsigned long q_type)
1558 {
1559 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1560 }
1561
free_queue(void * p,unsigned long q_type)1562 static void free_queue(void *p, unsigned long q_type)
1563 {
1564 kmem_cache_free(queue_cache[q_type - 1], p);
1565 }
1566
queue_cache_init(void)1567 static int queue_cache_init(void)
1568 {
1569 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1570 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1571 kmem_cache_create("mau_queue",
1572 (MAU_NUM_ENTRIES *
1573 MAU_ENTRY_SIZE),
1574 MAU_ENTRY_SIZE, 0, NULL);
1575 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1576 return -ENOMEM;
1577
1578 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1579 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1580 kmem_cache_create("cwq_queue",
1581 (CWQ_NUM_ENTRIES *
1582 CWQ_ENTRY_SIZE),
1583 CWQ_ENTRY_SIZE, 0, NULL);
1584 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1585 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1586 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1587 return -ENOMEM;
1588 }
1589 return 0;
1590 }
1591
queue_cache_destroy(void)1592 static void queue_cache_destroy(void)
1593 {
1594 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1595 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1596 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1597 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1598 }
1599
spu_queue_register_workfn(void * arg)1600 static long spu_queue_register_workfn(void *arg)
1601 {
1602 struct spu_qreg *qr = arg;
1603 struct spu_queue *p = qr->queue;
1604 unsigned long q_type = qr->type;
1605 unsigned long hv_ret;
1606
1607 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1608 CWQ_NUM_ENTRIES, &p->qhandle);
1609 if (!hv_ret)
1610 sun4v_ncs_sethead_marker(p->qhandle, 0);
1611
1612 return hv_ret ? -EINVAL : 0;
1613 }
1614
spu_queue_register(struct spu_queue * p,unsigned long q_type)1615 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1616 {
1617 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1618 struct spu_qreg qr = { .queue = p, .type = q_type };
1619
1620 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1621 }
1622
spu_queue_setup(struct spu_queue * p)1623 static int spu_queue_setup(struct spu_queue *p)
1624 {
1625 int err;
1626
1627 p->q = new_queue(p->q_type);
1628 if (!p->q)
1629 return -ENOMEM;
1630
1631 err = spu_queue_register(p, p->q_type);
1632 if (err) {
1633 free_queue(p->q, p->q_type);
1634 p->q = NULL;
1635 }
1636
1637 return err;
1638 }
1639
spu_queue_destroy(struct spu_queue * p)1640 static void spu_queue_destroy(struct spu_queue *p)
1641 {
1642 unsigned long hv_ret;
1643
1644 if (!p->q)
1645 return;
1646
1647 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1648
1649 if (!hv_ret)
1650 free_queue(p->q, p->q_type);
1651 }
1652
spu_list_destroy(struct list_head * list)1653 static void spu_list_destroy(struct list_head *list)
1654 {
1655 struct spu_queue *p, *n;
1656
1657 list_for_each_entry_safe(p, n, list, list) {
1658 int i;
1659
1660 for (i = 0; i < NR_CPUS; i++) {
1661 if (cpu_to_cwq[i] == p)
1662 cpu_to_cwq[i] = NULL;
1663 }
1664
1665 if (p->irq) {
1666 free_irq(p->irq, p);
1667 p->irq = 0;
1668 }
1669 spu_queue_destroy(p);
1670 list_del(&p->list);
1671 kfree(p);
1672 }
1673 }
1674
1675 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1676 * gathering cpu membership information.
1677 */
spu_mdesc_walk_arcs(struct mdesc_handle * mdesc,struct platform_device * dev,u64 node,struct spu_queue * p,struct spu_queue ** table)1678 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1679 struct platform_device *dev,
1680 u64 node, struct spu_queue *p,
1681 struct spu_queue **table)
1682 {
1683 u64 arc;
1684
1685 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1686 u64 tgt = mdesc_arc_target(mdesc, arc);
1687 const char *name = mdesc_node_name(mdesc, tgt);
1688 const u64 *id;
1689
1690 if (strcmp(name, "cpu"))
1691 continue;
1692 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1693 if (table[*id] != NULL) {
1694 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1695 dev->dev.of_node);
1696 return -EINVAL;
1697 }
1698 cpumask_set_cpu(*id, &p->sharing);
1699 table[*id] = p;
1700 }
1701 return 0;
1702 }
1703
1704 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
handle_exec_unit(struct spu_mdesc_info * ip,struct list_head * list,struct platform_device * dev,struct mdesc_handle * mdesc,u64 node,const char * iname,unsigned long q_type,irq_handler_t handler,struct spu_queue ** table)1705 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1706 struct platform_device *dev, struct mdesc_handle *mdesc,
1707 u64 node, const char *iname, unsigned long q_type,
1708 irq_handler_t handler, struct spu_queue **table)
1709 {
1710 struct spu_queue *p;
1711 int err;
1712
1713 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1714 if (!p) {
1715 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1716 dev->dev.of_node);
1717 return -ENOMEM;
1718 }
1719
1720 cpumask_clear(&p->sharing);
1721 spin_lock_init(&p->lock);
1722 p->q_type = q_type;
1723 INIT_LIST_HEAD(&p->jobs);
1724 list_add(&p->list, list);
1725
1726 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1727 if (err)
1728 return err;
1729
1730 err = spu_queue_setup(p);
1731 if (err)
1732 return err;
1733
1734 return spu_map_ino(dev, ip, iname, p, handler);
1735 }
1736
spu_mdesc_scan(struct mdesc_handle * mdesc,struct platform_device * dev,struct spu_mdesc_info * ip,struct list_head * list,const char * exec_name,unsigned long q_type,irq_handler_t handler,struct spu_queue ** table)1737 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1738 struct spu_mdesc_info *ip, struct list_head *list,
1739 const char *exec_name, unsigned long q_type,
1740 irq_handler_t handler, struct spu_queue **table)
1741 {
1742 int err = 0;
1743 u64 node;
1744
1745 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1746 const char *type;
1747
1748 type = mdesc_get_property(mdesc, node, "type", NULL);
1749 if (!type || strcmp(type, exec_name))
1750 continue;
1751
1752 err = handle_exec_unit(ip, list, dev, mdesc, node,
1753 exec_name, q_type, handler, table);
1754 if (err) {
1755 spu_list_destroy(list);
1756 break;
1757 }
1758 }
1759
1760 return err;
1761 }
1762
get_irq_props(struct mdesc_handle * mdesc,u64 node,struct spu_mdesc_info * ip)1763 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1764 struct spu_mdesc_info *ip)
1765 {
1766 const u64 *ino;
1767 int ino_len;
1768 int i;
1769
1770 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1771 if (!ino) {
1772 printk("NO 'ino'\n");
1773 return -ENODEV;
1774 }
1775
1776 ip->num_intrs = ino_len / sizeof(u64);
1777 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1778 ip->num_intrs),
1779 GFP_KERNEL);
1780 if (!ip->ino_table)
1781 return -ENOMEM;
1782
1783 for (i = 0; i < ip->num_intrs; i++) {
1784 struct ino_blob *b = &ip->ino_table[i];
1785 b->intr = i + 1;
1786 b->ino = ino[i];
1787 }
1788
1789 return 0;
1790 }
1791
grab_mdesc_irq_props(struct mdesc_handle * mdesc,struct platform_device * dev,struct spu_mdesc_info * ip,const char * node_name)1792 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1793 struct platform_device *dev,
1794 struct spu_mdesc_info *ip,
1795 const char *node_name)
1796 {
1797 const unsigned int *reg;
1798 u64 node;
1799
1800 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1801 if (!reg)
1802 return -ENODEV;
1803
1804 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1805 const char *name;
1806 const u64 *chdl;
1807
1808 name = mdesc_get_property(mdesc, node, "name", NULL);
1809 if (!name || strcmp(name, node_name))
1810 continue;
1811 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812 if (!chdl || (*chdl != *reg))
1813 continue;
1814 ip->cfg_handle = *chdl;
1815 return get_irq_props(mdesc, node, ip);
1816 }
1817
1818 return -ENODEV;
1819 }
1820
1821 static unsigned long n2_spu_hvapi_major;
1822 static unsigned long n2_spu_hvapi_minor;
1823
n2_spu_hvapi_register(void)1824 static int n2_spu_hvapi_register(void)
1825 {
1826 int err;
1827
1828 n2_spu_hvapi_major = 2;
1829 n2_spu_hvapi_minor = 0;
1830
1831 err = sun4v_hvapi_register(HV_GRP_NCS,
1832 n2_spu_hvapi_major,
1833 &n2_spu_hvapi_minor);
1834
1835 if (!err)
1836 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1837 n2_spu_hvapi_major,
1838 n2_spu_hvapi_minor);
1839
1840 return err;
1841 }
1842
n2_spu_hvapi_unregister(void)1843 static void n2_spu_hvapi_unregister(void)
1844 {
1845 sun4v_hvapi_unregister(HV_GRP_NCS);
1846 }
1847
1848 static int global_ref;
1849
grab_global_resources(void)1850 static int grab_global_resources(void)
1851 {
1852 int err = 0;
1853
1854 mutex_lock(&spu_lock);
1855
1856 if (global_ref++)
1857 goto out;
1858
1859 err = n2_spu_hvapi_register();
1860 if (err)
1861 goto out;
1862
1863 err = queue_cache_init();
1864 if (err)
1865 goto out_hvapi_release;
1866
1867 err = -ENOMEM;
1868 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869 GFP_KERNEL);
1870 if (!cpu_to_cwq)
1871 goto out_queue_cache_destroy;
1872
1873 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1874 GFP_KERNEL);
1875 if (!cpu_to_mau)
1876 goto out_free_cwq_table;
1877
1878 err = 0;
1879
1880 out:
1881 if (err)
1882 global_ref--;
1883 mutex_unlock(&spu_lock);
1884 return err;
1885
1886 out_free_cwq_table:
1887 kfree(cpu_to_cwq);
1888 cpu_to_cwq = NULL;
1889
1890 out_queue_cache_destroy:
1891 queue_cache_destroy();
1892
1893 out_hvapi_release:
1894 n2_spu_hvapi_unregister();
1895 goto out;
1896 }
1897
release_global_resources(void)1898 static void release_global_resources(void)
1899 {
1900 mutex_lock(&spu_lock);
1901 if (!--global_ref) {
1902 kfree(cpu_to_cwq);
1903 cpu_to_cwq = NULL;
1904
1905 kfree(cpu_to_mau);
1906 cpu_to_mau = NULL;
1907
1908 queue_cache_destroy();
1909 n2_spu_hvapi_unregister();
1910 }
1911 mutex_unlock(&spu_lock);
1912 }
1913
alloc_n2cp(void)1914 static struct n2_crypto *alloc_n2cp(void)
1915 {
1916 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1917
1918 if (np)
1919 INIT_LIST_HEAD(&np->cwq_list);
1920
1921 return np;
1922 }
1923
free_n2cp(struct n2_crypto * np)1924 static void free_n2cp(struct n2_crypto *np)
1925 {
1926 kfree(np->cwq_info.ino_table);
1927 np->cwq_info.ino_table = NULL;
1928
1929 kfree(np);
1930 }
1931
n2_spu_driver_version(void)1932 static void n2_spu_driver_version(void)
1933 {
1934 static int n2_spu_version_printed;
1935
1936 if (n2_spu_version_printed++ == 0)
1937 pr_info("%s", version);
1938 }
1939
n2_crypto_probe(struct platform_device * dev)1940 static int n2_crypto_probe(struct platform_device *dev)
1941 {
1942 struct mdesc_handle *mdesc;
1943 struct n2_crypto *np;
1944 int err;
1945
1946 n2_spu_driver_version();
1947
1948 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1949
1950 np = alloc_n2cp();
1951 if (!np) {
1952 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1953 dev->dev.of_node);
1954 return -ENOMEM;
1955 }
1956
1957 err = grab_global_resources();
1958 if (err) {
1959 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1960 dev->dev.of_node);
1961 goto out_free_n2cp;
1962 }
1963
1964 mdesc = mdesc_grab();
1965
1966 if (!mdesc) {
1967 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1968 dev->dev.of_node);
1969 err = -ENODEV;
1970 goto out_free_global;
1971 }
1972 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1973 if (err) {
1974 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1975 dev->dev.of_node);
1976 mdesc_release(mdesc);
1977 goto out_free_global;
1978 }
1979
1980 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1982 cpu_to_cwq);
1983 mdesc_release(mdesc);
1984
1985 if (err) {
1986 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1987 dev->dev.of_node);
1988 goto out_free_global;
1989 }
1990
1991 err = n2_register_algs();
1992 if (err) {
1993 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1994 dev->dev.of_node);
1995 goto out_free_spu_list;
1996 }
1997
1998 dev_set_drvdata(&dev->dev, np);
1999
2000 return 0;
2001
2002 out_free_spu_list:
2003 spu_list_destroy(&np->cwq_list);
2004
2005 out_free_global:
2006 release_global_resources();
2007
2008 out_free_n2cp:
2009 free_n2cp(np);
2010
2011 return err;
2012 }
2013
n2_crypto_remove(struct platform_device * dev)2014 static int n2_crypto_remove(struct platform_device *dev)
2015 {
2016 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2017
2018 n2_unregister_algs();
2019
2020 spu_list_destroy(&np->cwq_list);
2021
2022 release_global_resources();
2023
2024 free_n2cp(np);
2025
2026 return 0;
2027 }
2028
alloc_ncp(void)2029 static struct n2_mau *alloc_ncp(void)
2030 {
2031 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2032
2033 if (mp)
2034 INIT_LIST_HEAD(&mp->mau_list);
2035
2036 return mp;
2037 }
2038
free_ncp(struct n2_mau * mp)2039 static void free_ncp(struct n2_mau *mp)
2040 {
2041 kfree(mp->mau_info.ino_table);
2042 mp->mau_info.ino_table = NULL;
2043
2044 kfree(mp);
2045 }
2046
n2_mau_probe(struct platform_device * dev)2047 static int n2_mau_probe(struct platform_device *dev)
2048 {
2049 struct mdesc_handle *mdesc;
2050 struct n2_mau *mp;
2051 int err;
2052
2053 n2_spu_driver_version();
2054
2055 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2056
2057 mp = alloc_ncp();
2058 if (!mp) {
2059 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2060 dev->dev.of_node);
2061 return -ENOMEM;
2062 }
2063
2064 err = grab_global_resources();
2065 if (err) {
2066 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2067 dev->dev.of_node);
2068 goto out_free_ncp;
2069 }
2070
2071 mdesc = mdesc_grab();
2072
2073 if (!mdesc) {
2074 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2075 dev->dev.of_node);
2076 err = -ENODEV;
2077 goto out_free_global;
2078 }
2079
2080 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2081 if (err) {
2082 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2083 dev->dev.of_node);
2084 mdesc_release(mdesc);
2085 goto out_free_global;
2086 }
2087
2088 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2089 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2090 cpu_to_mau);
2091 mdesc_release(mdesc);
2092
2093 if (err) {
2094 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2095 dev->dev.of_node);
2096 goto out_free_global;
2097 }
2098
2099 dev_set_drvdata(&dev->dev, mp);
2100
2101 return 0;
2102
2103 out_free_global:
2104 release_global_resources();
2105
2106 out_free_ncp:
2107 free_ncp(mp);
2108
2109 return err;
2110 }
2111
n2_mau_remove(struct platform_device * dev)2112 static int n2_mau_remove(struct platform_device *dev)
2113 {
2114 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2115
2116 spu_list_destroy(&mp->mau_list);
2117
2118 release_global_resources();
2119
2120 free_ncp(mp);
2121
2122 return 0;
2123 }
2124
2125 static const struct of_device_id n2_crypto_match[] = {
2126 {
2127 .name = "n2cp",
2128 .compatible = "SUNW,n2-cwq",
2129 },
2130 {
2131 .name = "n2cp",
2132 .compatible = "SUNW,vf-cwq",
2133 },
2134 {
2135 .name = "n2cp",
2136 .compatible = "SUNW,kt-cwq",
2137 },
2138 {},
2139 };
2140
2141 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2142
2143 static struct platform_driver n2_crypto_driver = {
2144 .driver = {
2145 .name = "n2cp",
2146 .of_match_table = n2_crypto_match,
2147 },
2148 .probe = n2_crypto_probe,
2149 .remove = n2_crypto_remove,
2150 };
2151
2152 static const struct of_device_id n2_mau_match[] = {
2153 {
2154 .name = "ncp",
2155 .compatible = "SUNW,n2-mau",
2156 },
2157 {
2158 .name = "ncp",
2159 .compatible = "SUNW,vf-mau",
2160 },
2161 {
2162 .name = "ncp",
2163 .compatible = "SUNW,kt-mau",
2164 },
2165 {},
2166 };
2167
2168 MODULE_DEVICE_TABLE(of, n2_mau_match);
2169
2170 static struct platform_driver n2_mau_driver = {
2171 .driver = {
2172 .name = "ncp",
2173 .of_match_table = n2_mau_match,
2174 },
2175 .probe = n2_mau_probe,
2176 .remove = n2_mau_remove,
2177 };
2178
2179 static struct platform_driver * const drivers[] = {
2180 &n2_crypto_driver,
2181 &n2_mau_driver,
2182 };
2183
n2_init(void)2184 static int __init n2_init(void)
2185 {
2186 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2187 }
2188
n2_exit(void)2189 static void __exit n2_exit(void)
2190 {
2191 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2192 }
2193
2194 module_init(n2_init);
2195 module_exit(n2_exit);
2196