• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			struct netdev_name_node *name_node;
1199 			list_for_each_entry(name_node, &d->name_node->list, list) {
1200 				if (!sscanf(name_node->name, name, &i))
1201 					continue;
1202 				if (i < 0 || i >= max_netdevices)
1203 					continue;
1204 
1205 				/*  avoid cases where sscanf is not exact inverse of printf */
1206 				snprintf(buf, IFNAMSIZ, name, i);
1207 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 					set_bit(i, inuse);
1209 			}
1210 			if (!sscanf(d->name, name, &i))
1211 				continue;
1212 			if (i < 0 || i >= max_netdevices)
1213 				continue;
1214 
1215 			/*  avoid cases where sscanf is not exact inverse of printf */
1216 			snprintf(buf, IFNAMSIZ, name, i);
1217 			if (!strncmp(buf, d->name, IFNAMSIZ))
1218 				set_bit(i, inuse);
1219 		}
1220 
1221 		i = find_first_zero_bit(inuse, max_netdevices);
1222 		free_page((unsigned long) inuse);
1223 	}
1224 
1225 	snprintf(buf, IFNAMSIZ, name, i);
1226 	if (!__dev_get_by_name(net, buf))
1227 		return i;
1228 
1229 	/* It is possible to run out of possible slots
1230 	 * when the name is long and there isn't enough space left
1231 	 * for the digits, or if all bits are used.
1232 	 */
1233 	return -ENFILE;
1234 }
1235 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 			     struct net_device *dev,
1238 			     const char *name)
1239 {
1240 	char buf[IFNAMSIZ];
1241 	int ret;
1242 
1243 	BUG_ON(!net);
1244 	ret = __dev_alloc_name(net, name, buf);
1245 	if (ret >= 0)
1246 		strlcpy(dev->name, buf, IFNAMSIZ);
1247 	return ret;
1248 }
1249 
1250 /**
1251  *	dev_alloc_name - allocate a name for a device
1252  *	@dev: device
1253  *	@name: name format string
1254  *
1255  *	Passed a format string - eg "lt%d" it will try and find a suitable
1256  *	id. It scans list of devices to build up a free map, then chooses
1257  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1258  *	while allocating the name and adding the device in order to avoid
1259  *	duplicates.
1260  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261  *	Returns the number of the unit assigned or a negative errno code.
1262  */
1263 
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 			      const char *name)
1272 {
1273 	BUG_ON(!net);
1274 
1275 	if (!dev_valid_name(name))
1276 		return -EINVAL;
1277 
1278 	if (strchr(name, '%'))
1279 		return dev_alloc_name_ns(net, dev, name);
1280 	else if (__dev_get_by_name(net, name))
1281 		return -EEXIST;
1282 	else if (dev->name != name)
1283 		strlcpy(dev->name, name, IFNAMSIZ);
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  *	dev_change_name - change name of a device
1290  *	@dev: device
1291  *	@newname: name (or format string) must be at least IFNAMSIZ
1292  *
1293  *	Change name of a device, can pass format strings "eth%d".
1294  *	for wildcarding.
1295  */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 	unsigned char old_assign_type;
1299 	char oldname[IFNAMSIZ];
1300 	int err = 0;
1301 	int ret;
1302 	struct net *net;
1303 
1304 	ASSERT_RTNL();
1305 	BUG_ON(!dev_net(dev));
1306 
1307 	net = dev_net(dev);
1308 
1309 	/* Some auto-enslaved devices e.g. failover slaves are
1310 	 * special, as userspace might rename the device after
1311 	 * the interface had been brought up and running since
1312 	 * the point kernel initiated auto-enslavement. Allow
1313 	 * live name change even when these slave devices are
1314 	 * up and running.
1315 	 *
1316 	 * Typically, users of these auto-enslaving devices
1317 	 * don't actually care about slave name change, as
1318 	 * they are supposed to operate on master interface
1319 	 * directly.
1320 	 */
1321 	if (dev->flags & IFF_UP &&
1322 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 		return -EBUSY;
1324 
1325 	down_write(&devnet_rename_sem);
1326 
1327 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 		up_write(&devnet_rename_sem);
1329 		return 0;
1330 	}
1331 
1332 	memcpy(oldname, dev->name, IFNAMSIZ);
1333 
1334 	err = dev_get_valid_name(net, dev, newname);
1335 	if (err < 0) {
1336 		up_write(&devnet_rename_sem);
1337 		return err;
1338 	}
1339 
1340 	if (oldname[0] && !strchr(oldname, '%'))
1341 		netdev_info(dev, "renamed from %s\n", oldname);
1342 
1343 	old_assign_type = dev->name_assign_type;
1344 	dev->name_assign_type = NET_NAME_RENAMED;
1345 
1346 rollback:
1347 	ret = device_rename(&dev->dev, dev->name);
1348 	if (ret) {
1349 		memcpy(dev->name, oldname, IFNAMSIZ);
1350 		dev->name_assign_type = old_assign_type;
1351 		up_write(&devnet_rename_sem);
1352 		return ret;
1353 	}
1354 
1355 	up_write(&devnet_rename_sem);
1356 
1357 	netdev_adjacent_rename_links(dev, oldname);
1358 
1359 	write_lock_bh(&dev_base_lock);
1360 	netdev_name_node_del(dev->name_node);
1361 	write_unlock_bh(&dev_base_lock);
1362 
1363 	synchronize_rcu();
1364 
1365 	write_lock_bh(&dev_base_lock);
1366 	netdev_name_node_add(net, dev->name_node);
1367 	write_unlock_bh(&dev_base_lock);
1368 
1369 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 	ret = notifier_to_errno(ret);
1371 
1372 	if (ret) {
1373 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1374 		if (err >= 0) {
1375 			err = ret;
1376 			down_write(&devnet_rename_sem);
1377 			memcpy(dev->name, oldname, IFNAMSIZ);
1378 			memcpy(oldname, newname, IFNAMSIZ);
1379 			dev->name_assign_type = old_assign_type;
1380 			old_assign_type = NET_NAME_RENAMED;
1381 			goto rollback;
1382 		} else {
1383 			pr_err("%s: name change rollback failed: %d\n",
1384 			       dev->name, ret);
1385 		}
1386 	}
1387 
1388 	return err;
1389 }
1390 
1391 /**
1392  *	dev_set_alias - change ifalias of a device
1393  *	@dev: device
1394  *	@alias: name up to IFALIASZ
1395  *	@len: limit of bytes to copy from info
1396  *
1397  *	Set ifalias for a device,
1398  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 	struct dev_ifalias *new_alias = NULL;
1402 
1403 	if (len >= IFALIASZ)
1404 		return -EINVAL;
1405 
1406 	if (len) {
1407 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 		if (!new_alias)
1409 			return -ENOMEM;
1410 
1411 		memcpy(new_alias->ifalias, alias, len);
1412 		new_alias->ifalias[len] = 0;
1413 	}
1414 
1415 	mutex_lock(&ifalias_mutex);
1416 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 					mutex_is_locked(&ifalias_mutex));
1418 	mutex_unlock(&ifalias_mutex);
1419 
1420 	if (new_alias)
1421 		kfree_rcu(new_alias, rcuhead);
1422 
1423 	return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426 
1427 /**
1428  *	dev_get_alias - get ifalias of a device
1429  *	@dev: device
1430  *	@name: buffer to store name of ifalias
1431  *	@len: size of buffer
1432  *
1433  *	get ifalias for a device.  Caller must make sure dev cannot go
1434  *	away,  e.g. rcu read lock or own a reference count to device.
1435  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 	const struct dev_ifalias *alias;
1439 	int ret = 0;
1440 
1441 	rcu_read_lock();
1442 	alias = rcu_dereference(dev->ifalias);
1443 	if (alias)
1444 		ret = snprintf(name, len, "%s", alias->ifalias);
1445 	rcu_read_unlock();
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  *	netdev_features_change - device changes features
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed features.
1455  */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461 
1462 /**
1463  *	netdev_state_change - device changes state
1464  *	@dev: device to cause notification
1465  *
1466  *	Called to indicate a device has changed state. This function calls
1467  *	the notifier chains for netdev_chain and sends a NEWLINK message
1468  *	to the routing socket.
1469  */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		struct netdev_notifier_change_info change_info = {
1474 			.info.dev = dev,
1475 		};
1476 
1477 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 					      &change_info.info);
1479 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 	}
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483 
1484 /**
1485  * netdev_notify_peers - notify network peers about existence of @dev
1486  * @dev: network device
1487  *
1488  * Generate traffic such that interested network peers are aware of
1489  * @dev, such as by generating a gratuitous ARP. This may be used when
1490  * a device wants to inform the rest of the network about some sort of
1491  * reconfiguration such as a failover event or virtual machine
1492  * migration.
1493  */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 	rtnl_lock();
1497 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 	rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 	const struct net_device_ops *ops = dev->netdev_ops;
1506 	int ret;
1507 
1508 	ASSERT_RTNL();
1509 
1510 	if (!netif_device_present(dev)) {
1511 		/* may be detached because parent is runtime-suspended */
1512 		if (dev->dev.parent)
1513 			pm_runtime_resume(dev->dev.parent);
1514 		if (!netif_device_present(dev))
1515 			return -ENODEV;
1516 	}
1517 
1518 	/* Block netpoll from trying to do any rx path servicing.
1519 	 * If we don't do this there is a chance ndo_poll_controller
1520 	 * or ndo_poll may be running while we open the device
1521 	 */
1522 	netpoll_poll_disable(dev);
1523 
1524 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 	ret = notifier_to_errno(ret);
1526 	if (ret)
1527 		return ret;
1528 
1529 	set_bit(__LINK_STATE_START, &dev->state);
1530 
1531 	if (ops->ndo_validate_addr)
1532 		ret = ops->ndo_validate_addr(dev);
1533 
1534 	if (!ret && ops->ndo_open)
1535 		ret = ops->ndo_open(dev);
1536 
1537 	netpoll_poll_enable(dev);
1538 
1539 	if (ret)
1540 		clear_bit(__LINK_STATE_START, &dev->state);
1541 	else {
1542 		dev->flags |= IFF_UP;
1543 		dev_set_rx_mode(dev);
1544 		dev_activate(dev);
1545 		add_device_randomness(dev->dev_addr, dev->addr_len);
1546 	}
1547 
1548 	return ret;
1549 }
1550 
1551 /**
1552  *	dev_open	- prepare an interface for use.
1553  *	@dev: device to open
1554  *	@extack: netlink extended ack
1555  *
1556  *	Takes a device from down to up state. The device's private open
1557  *	function is invoked and then the multicast lists are loaded. Finally
1558  *	the device is moved into the up state and a %NETDEV_UP message is
1559  *	sent to the netdev notifier chain.
1560  *
1561  *	Calling this function on an active interface is a nop. On a failure
1562  *	a negative errno code is returned.
1563  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 	int ret;
1567 
1568 	if (dev->flags & IFF_UP)
1569 		return 0;
1570 
1571 	ret = __dev_open(dev, extack);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 	call_netdevice_notifiers(NETDEV_UP, dev);
1577 
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581 
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 	struct net_device *dev;
1585 
1586 	ASSERT_RTNL();
1587 	might_sleep();
1588 
1589 	list_for_each_entry(dev, head, close_list) {
1590 		/* Temporarily disable netpoll until the interface is down */
1591 		netpoll_poll_disable(dev);
1592 
1593 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594 
1595 		clear_bit(__LINK_STATE_START, &dev->state);
1596 
1597 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1598 		 * can be even on different cpu. So just clear netif_running().
1599 		 *
1600 		 * dev->stop() will invoke napi_disable() on all of it's
1601 		 * napi_struct instances on this device.
1602 		 */
1603 		smp_mb__after_atomic(); /* Commit netif_running(). */
1604 	}
1605 
1606 	dev_deactivate_many(head);
1607 
1608 	list_for_each_entry(dev, head, close_list) {
1609 		const struct net_device_ops *ops = dev->netdev_ops;
1610 
1611 		/*
1612 		 *	Call the device specific close. This cannot fail.
1613 		 *	Only if device is UP
1614 		 *
1615 		 *	We allow it to be called even after a DETACH hot-plug
1616 		 *	event.
1617 		 */
1618 		if (ops->ndo_stop)
1619 			ops->ndo_stop(dev);
1620 
1621 		dev->flags &= ~IFF_UP;
1622 		netpoll_poll_enable(dev);
1623 	}
1624 }
1625 
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 	LIST_HEAD(single);
1629 
1630 	list_add(&dev->close_list, &single);
1631 	__dev_close_many(&single);
1632 	list_del(&single);
1633 }
1634 
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 	struct net_device *dev, *tmp;
1638 
1639 	/* Remove the devices that don't need to be closed */
1640 	list_for_each_entry_safe(dev, tmp, head, close_list)
1641 		if (!(dev->flags & IFF_UP))
1642 			list_del_init(&dev->close_list);
1643 
1644 	__dev_close_many(head);
1645 
1646 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 		if (unlink)
1650 			list_del_init(&dev->close_list);
1651 	}
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654 
1655 /**
1656  *	dev_close - shutdown an interface.
1657  *	@dev: device to shutdown
1658  *
1659  *	This function moves an active device into down state. A
1660  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662  *	chain.
1663  */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		LIST_HEAD(single);
1668 
1669 		list_add(&dev->close_list, &single);
1670 		dev_close_many(&single, true);
1671 		list_del(&single);
1672 	}
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675 
1676 
1677 /**
1678  *	dev_disable_lro - disable Large Receive Offload on a device
1679  *	@dev: device
1680  *
1681  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1682  *	called under RTNL.  This is needed if received packets may be
1683  *	forwarded to another interface.
1684  */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 	struct net_device *lower_dev;
1688 	struct list_head *iter;
1689 
1690 	dev->wanted_features &= ~NETIF_F_LRO;
1691 	netdev_update_features(dev);
1692 
1693 	if (unlikely(dev->features & NETIF_F_LRO))
1694 		netdev_WARN(dev, "failed to disable LRO!\n");
1695 
1696 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 		dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700 
1701 /**
1702  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703  *	@dev: device
1704  *
1705  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1706  *	called under RTNL.  This is needed if Generic XDP is installed on
1707  *	the device.
1708  */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 	netdev_update_features(dev);
1713 
1714 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717 
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) 						\
1721 	case NETDEV_##val:				\
1722 		return "NETDEV_" __stringify(val);
1723 	switch (cmd) {
1724 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 	N(PRE_CHANGEADDR)
1734 	}
1735 #undef N
1736 	return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 				   struct net_device *dev)
1742 {
1743 	struct netdev_notifier_info info = {
1744 		.dev = dev,
1745 	};
1746 
1747 	return nb->notifier_call(nb, val, &info);
1748 }
1749 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 					     struct net_device *dev)
1752 {
1753 	int err;
1754 
1755 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 	err = notifier_to_errno(err);
1757 	if (err)
1758 		return err;
1759 
1760 	if (!(dev->flags & IFF_UP))
1761 		return 0;
1762 
1763 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 	return 0;
1765 }
1766 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 						struct net_device *dev)
1769 {
1770 	if (dev->flags & IFF_UP) {
1771 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 					dev);
1773 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 	}
1775 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 						 struct net *net)
1780 {
1781 	struct net_device *dev;
1782 	int err;
1783 
1784 	for_each_netdev(net, dev) {
1785 		err = call_netdevice_register_notifiers(nb, dev);
1786 		if (err)
1787 			goto rollback;
1788 	}
1789 	return 0;
1790 
1791 rollback:
1792 	for_each_netdev_continue_reverse(net, dev)
1793 		call_netdevice_unregister_notifiers(nb, dev);
1794 	return err;
1795 }
1796 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 						    struct net *net)
1799 {
1800 	struct net_device *dev;
1801 
1802 	for_each_netdev(net, dev)
1803 		call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805 
1806 static int dev_boot_phase = 1;
1807 
1808 /**
1809  * register_netdevice_notifier - register a network notifier block
1810  * @nb: notifier
1811  *
1812  * Register a notifier to be called when network device events occur.
1813  * The notifier passed is linked into the kernel structures and must
1814  * not be reused until it has been unregistered. A negative errno code
1815  * is returned on a failure.
1816  *
1817  * When registered all registration and up events are replayed
1818  * to the new notifier to allow device to have a race free
1819  * view of the network device list.
1820  */
1821 
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 	struct net *net;
1825 	int err;
1826 
1827 	/* Close race with setup_net() and cleanup_net() */
1828 	down_write(&pernet_ops_rwsem);
1829 	rtnl_lock();
1830 	err = raw_notifier_chain_register(&netdev_chain, nb);
1831 	if (err)
1832 		goto unlock;
1833 	if (dev_boot_phase)
1834 		goto unlock;
1835 	for_each_net(net) {
1836 		err = call_netdevice_register_net_notifiers(nb, net);
1837 		if (err)
1838 			goto rollback;
1839 	}
1840 
1841 unlock:
1842 	rtnl_unlock();
1843 	up_write(&pernet_ops_rwsem);
1844 	return err;
1845 
1846 rollback:
1847 	for_each_net_continue_reverse(net)
1848 		call_netdevice_unregister_net_notifiers(nb, net);
1849 
1850 	raw_notifier_chain_unregister(&netdev_chain, nb);
1851 	goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854 
1855 /**
1856  * unregister_netdevice_notifier - unregister a network notifier block
1857  * @nb: notifier
1858  *
1859  * Unregister a notifier previously registered by
1860  * register_netdevice_notifier(). The notifier is unlinked into the
1861  * kernel structures and may then be reused. A negative errno code
1862  * is returned on a failure.
1863  *
1864  * After unregistering unregister and down device events are synthesized
1865  * for all devices on the device list to the removed notifier to remove
1866  * the need for special case cleanup code.
1867  */
1868 
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 	struct net *net;
1872 	int err;
1873 
1874 	/* Close race with setup_net() and cleanup_net() */
1875 	down_write(&pernet_ops_rwsem);
1876 	rtnl_lock();
1877 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 	if (err)
1879 		goto unlock;
1880 
1881 	for_each_net(net)
1882 		call_netdevice_unregister_net_notifiers(nb, net);
1883 
1884 unlock:
1885 	rtnl_unlock();
1886 	up_write(&pernet_ops_rwsem);
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 					     struct notifier_block *nb,
1893 					     bool ignore_call_fail)
1894 {
1895 	int err;
1896 
1897 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 	if (err)
1899 		return err;
1900 	if (dev_boot_phase)
1901 		return 0;
1902 
1903 	err = call_netdevice_register_net_notifiers(nb, net);
1904 	if (err && !ignore_call_fail)
1905 		goto chain_unregister;
1906 
1907 	return 0;
1908 
1909 chain_unregister:
1910 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 	return err;
1912 }
1913 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 					       struct notifier_block *nb)
1916 {
1917 	int err;
1918 
1919 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 	if (err)
1921 		return err;
1922 
1923 	call_netdevice_unregister_net_notifiers(nb, net);
1924 	return 0;
1925 }
1926 
1927 /**
1928  * register_netdevice_notifier_net - register a per-netns network notifier block
1929  * @net: network namespace
1930  * @nb: notifier
1931  *
1932  * Register a notifier to be called when network device events occur.
1933  * The notifier passed is linked into the kernel structures and must
1934  * not be reused until it has been unregistered. A negative errno code
1935  * is returned on a failure.
1936  *
1937  * When registered all registration and up events are replayed
1938  * to the new notifier to allow device to have a race free
1939  * view of the network device list.
1940  */
1941 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 	int err;
1945 
1946 	rtnl_lock();
1947 	err = __register_netdevice_notifier_net(net, nb, false);
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952 
1953 /**
1954  * unregister_netdevice_notifier_net - unregister a per-netns
1955  *                                     network notifier block
1956  * @net: network namespace
1957  * @nb: notifier
1958  *
1959  * Unregister a notifier previously registered by
1960  * register_netdevice_notifier(). The notifier is unlinked into the
1961  * kernel structures and may then be reused. A negative errno code
1962  * is returned on a failure.
1963  *
1964  * After unregistering unregister and down device events are synthesized
1965  * for all devices on the device list to the removed notifier to remove
1966  * the need for special case cleanup code.
1967  */
1968 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 				      struct notifier_block *nb)
1971 {
1972 	int err;
1973 
1974 	rtnl_lock();
1975 	err = __unregister_netdevice_notifier_net(net, nb);
1976 	rtnl_unlock();
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 					struct notifier_block *nb,
1983 					struct netdev_net_notifier *nn)
1984 {
1985 	int err;
1986 
1987 	rtnl_lock();
1988 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 	if (!err) {
1990 		nn->nb = nb;
1991 		list_add(&nn->list, &dev->net_notifier_list);
1992 	}
1993 	rtnl_unlock();
1994 	return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 					  struct notifier_block *nb,
2000 					  struct netdev_net_notifier *nn)
2001 {
2002 	int err;
2003 
2004 	rtnl_lock();
2005 	list_del(&nn->list);
2006 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 	rtnl_unlock();
2008 	return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 					     struct net *net)
2014 {
2015 	struct netdev_net_notifier *nn;
2016 
2017 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 		__register_netdevice_notifier_net(net, nn->nb, true);
2020 	}
2021 }
2022 
2023 /**
2024  *	call_netdevice_notifiers_info - call all network notifier blocks
2025  *	@val: value passed unmodified to notifier function
2026  *	@info: notifier information data
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 					 struct netdev_notifier_info *info)
2034 {
2035 	struct net *net = dev_net(info->dev);
2036 	int ret;
2037 
2038 	ASSERT_RTNL();
2039 
2040 	/* Run per-netns notifier block chain first, then run the global one.
2041 	 * Hopefully, one day, the global one is going to be removed after
2042 	 * all notifier block registrators get converted to be per-netns.
2043 	 */
2044 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 	if (ret & NOTIFY_STOP_MASK)
2046 		return ret;
2047 	return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 					   struct net_device *dev,
2052 					   struct netlink_ext_ack *extack)
2053 {
2054 	struct netdev_notifier_info info = {
2055 		.dev = dev,
2056 		.extack = extack,
2057 	};
2058 
2059 	return call_netdevice_notifiers_info(val, &info);
2060 }
2061 
2062 /**
2063  *	call_netdevice_notifiers - call all network notifier blocks
2064  *      @val: value passed unmodified to notifier function
2065  *      @dev: net_device pointer passed unmodified to notifier function
2066  *
2067  *	Call all network notifier blocks.  Parameters and return value
2068  *	are as for raw_notifier_call_chain().
2069  */
2070 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 	return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076 
2077 /**
2078  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2079  *	@val: value passed unmodified to notifier function
2080  *	@dev: net_device pointer passed unmodified to notifier function
2081  *	@arg: additional u32 argument passed to the notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 					struct net_device *dev, u32 arg)
2088 {
2089 	struct netdev_notifier_info_ext info = {
2090 		.info.dev = dev,
2091 		.ext.mtu = arg,
2092 	};
2093 
2094 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095 
2096 	return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098 
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101 
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 	static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107 
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 	static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114 
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117 
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 	static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123 
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 	static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130 
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 	int wanted;
2139 
2140 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 	if (wanted > 0)
2142 		static_branch_enable(&netstamp_needed_key);
2143 	else
2144 		static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148 
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 0)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_inc(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168 
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 	int wanted;
2173 
2174 	while (1) {
2175 		wanted = atomic_read(&netstamp_wanted);
2176 		if (wanted <= 1)
2177 			break;
2178 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 			return;
2180 	}
2181 	atomic_dec(&netstamp_needed_deferred);
2182 	schedule_work(&netstamp_work);
2183 #else
2184 	static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188 
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 	skb->tstamp = 0;
2192 	if (static_branch_unlikely(&netstamp_needed_key))
2193 		__net_timestamp(skb);
2194 }
2195 
2196 #define net_timestamp_check(COND, SKB)				\
2197 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2198 		if ((COND) && !(SKB)->tstamp)			\
2199 			__net_timestamp(SKB);			\
2200 	}							\
2201 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 	unsigned int len;
2205 
2206 	if (!(dev->flags & IFF_UP))
2207 		return false;
2208 
2209 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 	if (skb->len <= len)
2211 		return true;
2212 
2213 	/* if TSO is enabled, we don't care about the length as the packet
2214 	 * could be forwarded without being segmented before
2215 	 */
2216 	if (skb_is_gso(skb))
2217 		return true;
2218 
2219 	return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 	int ret = ____dev_forward_skb(dev, skb);
2226 
2227 	if (likely(!ret)) {
2228 		skb->protocol = eth_type_trans(skb, dev);
2229 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 	}
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235 
2236 /**
2237  * dev_forward_skb - loopback an skb to another netif
2238  *
2239  * @dev: destination network device
2240  * @skb: buffer to forward
2241  *
2242  * return values:
2243  *	NET_RX_SUCCESS	(no congestion)
2244  *	NET_RX_DROP     (packet was dropped, but freed)
2245  *
2246  * dev_forward_skb can be used for injecting an skb from the
2247  * start_xmit function of one device into the receive queue
2248  * of another device.
2249  *
2250  * The receiving device may be in another namespace, so
2251  * we have to clear all information in the skb that could
2252  * impact namespace isolation.
2253  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 			      struct packet_type *pt_prev,
2262 			      struct net_device *orig_dev)
2263 {
2264 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 		return -ENOMEM;
2266 	refcount_inc(&skb->users);
2267 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 					  struct packet_type **pt,
2272 					  struct net_device *orig_dev,
2273 					  __be16 type,
2274 					  struct list_head *ptype_list)
2275 {
2276 	struct packet_type *ptype, *pt_prev = *pt;
2277 
2278 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 		if (ptype->type != type)
2280 			continue;
2281 		if (pt_prev)
2282 			deliver_skb(skb, pt_prev, orig_dev);
2283 		pt_prev = ptype;
2284 	}
2285 	*pt = pt_prev;
2286 }
2287 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 	if (!ptype->af_packet_priv || !skb->sk)
2291 		return false;
2292 
2293 	if (ptype->id_match)
2294 		return ptype->id_match(ptype, skb->sk);
2295 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 		return true;
2297 
2298 	return false;
2299 }
2300 
2301 /**
2302  * dev_nit_active - return true if any network interface taps are in use
2303  *
2304  * @dev: network device to check for the presence of taps
2305  */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311 
2312 /*
2313  *	Support routine. Sends outgoing frames to any network
2314  *	taps currently in use.
2315  */
2316 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct packet_type *ptype;
2320 	struct sk_buff *skb2 = NULL;
2321 	struct packet_type *pt_prev = NULL;
2322 	struct list_head *ptype_list = &ptype_all;
2323 
2324 	rcu_read_lock();
2325 again:
2326 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 		if (ptype->ignore_outgoing)
2328 			continue;
2329 
2330 		/* Never send packets back to the socket
2331 		 * they originated from - MvS (miquels@drinkel.ow.org)
2332 		 */
2333 		if (skb_loop_sk(ptype, skb))
2334 			continue;
2335 
2336 		if (pt_prev) {
2337 			deliver_skb(skb2, pt_prev, skb->dev);
2338 			pt_prev = ptype;
2339 			continue;
2340 		}
2341 
2342 		/* need to clone skb, done only once */
2343 		skb2 = skb_clone(skb, GFP_ATOMIC);
2344 		if (!skb2)
2345 			goto out_unlock;
2346 
2347 		net_timestamp_set(skb2);
2348 
2349 		/* skb->nh should be correctly
2350 		 * set by sender, so that the second statement is
2351 		 * just protection against buggy protocols.
2352 		 */
2353 		skb_reset_mac_header(skb2);
2354 
2355 		if (skb_network_header(skb2) < skb2->data ||
2356 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 					     ntohs(skb2->protocol),
2359 					     dev->name);
2360 			skb_reset_network_header(skb2);
2361 		}
2362 
2363 		skb2->transport_header = skb2->network_header;
2364 		skb2->pkt_type = PACKET_OUTGOING;
2365 		pt_prev = ptype;
2366 	}
2367 
2368 	if (ptype_list == &ptype_all) {
2369 		ptype_list = &dev->ptype_all;
2370 		goto again;
2371 	}
2372 out_unlock:
2373 	if (pt_prev) {
2374 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 		else
2377 			kfree_skb(skb2);
2378 	}
2379 	rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382 
2383 /**
2384  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385  * @dev: Network device
2386  * @txq: number of queues available
2387  *
2388  * If real_num_tx_queues is changed the tc mappings may no longer be
2389  * valid. To resolve this verify the tc mapping remains valid and if
2390  * not NULL the mapping. With no priorities mapping to this
2391  * offset/count pair it will no longer be used. In the worst case TC0
2392  * is invalid nothing can be done so disable priority mappings. If is
2393  * expected that drivers will fix this mapping if they can before
2394  * calling netif_set_real_num_tx_queues.
2395  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	int i;
2399 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 
2401 	/* If TC0 is invalidated disable TC mapping */
2402 	if (tc->offset + tc->count > txq) {
2403 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 		dev->num_tc = 0;
2405 		return;
2406 	}
2407 
2408 	/* Invalidated prio to tc mappings set to TC0 */
2409 	for (i = 1; i < TC_BITMASK + 1; i++) {
2410 		int q = netdev_get_prio_tc_map(dev, i);
2411 
2412 		tc = &dev->tc_to_txq[q];
2413 		if (tc->offset + tc->count > txq) {
2414 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 				i, q);
2416 			netdev_set_prio_tc_map(dev, i, 0);
2417 		}
2418 	}
2419 }
2420 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 	if (dev->num_tc) {
2424 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 		int i;
2426 
2427 		/* walk through the TCs and see if it falls into any of them */
2428 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 			if ((txq - tc->offset) < tc->count)
2430 				return i;
2431 		}
2432 
2433 		/* didn't find it, just return -1 to indicate no match */
2434 		return -1;
2435 	}
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440 
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P)		\
2448 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449 
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 			     int tci, u16 index)
2452 {
2453 	struct xps_map *map = NULL;
2454 	int pos;
2455 
2456 	if (dev_maps)
2457 		map = xmap_dereference(dev_maps->attr_map[tci]);
2458 	if (!map)
2459 		return false;
2460 
2461 	for (pos = map->len; pos--;) {
2462 		if (map->queues[pos] != index)
2463 			continue;
2464 
2465 		if (map->len > 1) {
2466 			map->queues[pos] = map->queues[--map->len];
2467 			break;
2468 		}
2469 
2470 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 		kfree_rcu(map, rcu);
2472 		return false;
2473 	}
2474 
2475 	return true;
2476 }
2477 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 				 struct xps_dev_maps *dev_maps,
2480 				 int cpu, u16 offset, u16 count)
2481 {
2482 	int num_tc = dev->num_tc ? : 1;
2483 	bool active = false;
2484 	int tci;
2485 
2486 	for (tci = cpu * num_tc; num_tc--; tci++) {
2487 		int i, j;
2488 
2489 		for (i = count, j = offset; i--; j++) {
2490 			if (!remove_xps_queue(dev_maps, tci, j))
2491 				break;
2492 		}
2493 
2494 		active |= i < 0;
2495 	}
2496 
2497 	return active;
2498 }
2499 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 			   struct xps_dev_maps *dev_maps,
2502 			   bool is_rxqs_map)
2503 {
2504 	if (is_rxqs_map) {
2505 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 	} else {
2508 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 	}
2510 	static_key_slow_dec_cpuslocked(&xps_needed);
2511 	kfree_rcu(dev_maps, rcu);
2512 }
2513 
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 			   u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 	bool active = false;
2519 	int i, j;
2520 
2521 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 	     j < nr_ids;)
2523 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 					       count);
2525 	if (!active)
2526 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527 
2528 	if (!is_rxqs_map) {
2529 		for (i = offset + (count - 1); count--; i--) {
2530 			netdev_queue_numa_node_write(
2531 				netdev_get_tx_queue(dev, i),
2532 				NUMA_NO_NODE);
2533 		}
2534 	}
2535 }
2536 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 				   u16 count)
2539 {
2540 	const unsigned long *possible_mask = NULL;
2541 	struct xps_dev_maps *dev_maps;
2542 	unsigned int nr_ids;
2543 
2544 	if (!static_key_false(&xps_needed))
2545 		return;
2546 
2547 	cpus_read_lock();
2548 	mutex_lock(&xps_map_mutex);
2549 
2550 	if (static_key_false(&xps_rxqs_needed)) {
2551 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 		if (dev_maps) {
2553 			nr_ids = dev->num_rx_queues;
2554 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 				       offset, count, true);
2556 		}
2557 	}
2558 
2559 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 	if (!dev_maps)
2561 		goto out_no_maps;
2562 
2563 	if (num_possible_cpus() > 1)
2564 		possible_mask = cpumask_bits(cpu_possible_mask);
2565 	nr_ids = nr_cpu_ids;
2566 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 		       false);
2568 
2569 out_no_maps:
2570 	mutex_unlock(&xps_map_mutex);
2571 	cpus_read_unlock();
2572 }
2573 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 				      u16 index, bool is_rxqs_map)
2581 {
2582 	struct xps_map *new_map;
2583 	int alloc_len = XPS_MIN_MAP_ALLOC;
2584 	int i, pos;
2585 
2586 	for (pos = 0; map && pos < map->len; pos++) {
2587 		if (map->queues[pos] != index)
2588 			continue;
2589 		return map;
2590 	}
2591 
2592 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 	if (map) {
2594 		if (pos < map->alloc_len)
2595 			return map;
2596 
2597 		alloc_len = map->alloc_len * 2;
2598 	}
2599 
2600 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 	 *  map
2602 	 */
2603 	if (is_rxqs_map)
2604 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 	else
2606 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 				       cpu_to_node(attr_index));
2608 	if (!new_map)
2609 		return NULL;
2610 
2611 	for (i = 0; i < pos; i++)
2612 		new_map->queues[i] = map->queues[i];
2613 	new_map->alloc_len = alloc_len;
2614 	new_map->len = pos;
2615 
2616 	return new_map;
2617 }
2618 
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 			  u16 index, bool is_rxqs_map)
2622 {
2623 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 	int i, j, tci, numa_node_id = -2;
2626 	int maps_sz, num_tc = 1, tc = 0;
2627 	struct xps_map *map, *new_map;
2628 	bool active = false;
2629 	unsigned int nr_ids;
2630 
2631 	if (dev->num_tc) {
2632 		/* Do not allow XPS on subordinate device directly */
2633 		num_tc = dev->num_tc;
2634 		if (num_tc < 0)
2635 			return -EINVAL;
2636 
2637 		/* If queue belongs to subordinate dev use its map */
2638 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2639 
2640 		tc = netdev_txq_to_tc(dev, index);
2641 		if (tc < 0)
2642 			return -EINVAL;
2643 	}
2644 
2645 	mutex_lock(&xps_map_mutex);
2646 	if (is_rxqs_map) {
2647 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2648 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2649 		nr_ids = dev->num_rx_queues;
2650 	} else {
2651 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2652 		if (num_possible_cpus() > 1) {
2653 			online_mask = cpumask_bits(cpu_online_mask);
2654 			possible_mask = cpumask_bits(cpu_possible_mask);
2655 		}
2656 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2657 		nr_ids = nr_cpu_ids;
2658 	}
2659 
2660 	if (maps_sz < L1_CACHE_BYTES)
2661 		maps_sz = L1_CACHE_BYTES;
2662 
2663 	/* allocate memory for queue storage */
2664 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2665 	     j < nr_ids;) {
2666 		if (!new_dev_maps)
2667 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2668 		if (!new_dev_maps) {
2669 			mutex_unlock(&xps_map_mutex);
2670 			return -ENOMEM;
2671 		}
2672 
2673 		tci = j * num_tc + tc;
2674 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2675 				 NULL;
2676 
2677 		map = expand_xps_map(map, j, index, is_rxqs_map);
2678 		if (!map)
2679 			goto error;
2680 
2681 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2682 	}
2683 
2684 	if (!new_dev_maps)
2685 		goto out_no_new_maps;
2686 
2687 	if (!dev_maps) {
2688 		/* Increment static keys at most once per type */
2689 		static_key_slow_inc_cpuslocked(&xps_needed);
2690 		if (is_rxqs_map)
2691 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2692 	}
2693 
2694 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2695 	     j < nr_ids;) {
2696 		/* copy maps belonging to foreign traffic classes */
2697 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2698 			/* fill in the new device map from the old device map */
2699 			map = xmap_dereference(dev_maps->attr_map[tci]);
2700 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701 		}
2702 
2703 		/* We need to explicitly update tci as prevous loop
2704 		 * could break out early if dev_maps is NULL.
2705 		 */
2706 		tci = j * num_tc + tc;
2707 
2708 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2709 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2710 			/* add tx-queue to CPU/rx-queue maps */
2711 			int pos = 0;
2712 
2713 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			while ((pos < map->len) && (map->queues[pos] != index))
2715 				pos++;
2716 
2717 			if (pos == map->len)
2718 				map->queues[map->len++] = index;
2719 #ifdef CONFIG_NUMA
2720 			if (!is_rxqs_map) {
2721 				if (numa_node_id == -2)
2722 					numa_node_id = cpu_to_node(j);
2723 				else if (numa_node_id != cpu_to_node(j))
2724 					numa_node_id = -1;
2725 			}
2726 #endif
2727 		} else if (dev_maps) {
2728 			/* fill in the new device map from the old device map */
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 		}
2732 
2733 		/* copy maps belonging to foreign traffic classes */
2734 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2735 			/* fill in the new device map from the old device map */
2736 			map = xmap_dereference(dev_maps->attr_map[tci]);
2737 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738 		}
2739 	}
2740 
2741 	if (is_rxqs_map)
2742 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2743 	else
2744 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2745 
2746 	/* Cleanup old maps */
2747 	if (!dev_maps)
2748 		goto out_no_old_maps;
2749 
2750 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2751 	     j < nr_ids;) {
2752 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2753 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2754 			map = xmap_dereference(dev_maps->attr_map[tci]);
2755 			if (map && map != new_map)
2756 				kfree_rcu(map, rcu);
2757 		}
2758 	}
2759 
2760 	kfree_rcu(dev_maps, rcu);
2761 
2762 out_no_old_maps:
2763 	dev_maps = new_dev_maps;
2764 	active = true;
2765 
2766 out_no_new_maps:
2767 	if (!is_rxqs_map) {
2768 		/* update Tx queue numa node */
2769 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2770 					     (numa_node_id >= 0) ?
2771 					     numa_node_id : NUMA_NO_NODE);
2772 	}
2773 
2774 	if (!dev_maps)
2775 		goto out_no_maps;
2776 
2777 	/* removes tx-queue from unused CPUs/rx-queues */
2778 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2779 	     j < nr_ids;) {
2780 		for (i = tc, tci = j * num_tc; i--; tci++)
2781 			active |= remove_xps_queue(dev_maps, tci, index);
2782 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2783 		    !netif_attr_test_online(j, online_mask, nr_ids))
2784 			active |= remove_xps_queue(dev_maps, tci, index);
2785 		for (i = num_tc - tc, tci++; --i; tci++)
2786 			active |= remove_xps_queue(dev_maps, tci, index);
2787 	}
2788 
2789 	/* free map if not active */
2790 	if (!active)
2791 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2792 
2793 out_no_maps:
2794 	mutex_unlock(&xps_map_mutex);
2795 
2796 	return 0;
2797 error:
2798 	/* remove any maps that we added */
2799 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2800 	     j < nr_ids;) {
2801 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2802 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2803 			map = dev_maps ?
2804 			      xmap_dereference(dev_maps->attr_map[tci]) :
2805 			      NULL;
2806 			if (new_map && new_map != map)
2807 				kfree(new_map);
2808 		}
2809 	}
2810 
2811 	mutex_unlock(&xps_map_mutex);
2812 
2813 	kfree(new_dev_maps);
2814 	return -ENOMEM;
2815 }
2816 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2817 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2818 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2819 			u16 index)
2820 {
2821 	int ret;
2822 
2823 	cpus_read_lock();
2824 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2825 	cpus_read_unlock();
2826 
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(netif_set_xps_queue);
2830 
2831 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2832 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2833 {
2834 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835 
2836 	/* Unbind any subordinate channels */
2837 	while (txq-- != &dev->_tx[0]) {
2838 		if (txq->sb_dev)
2839 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2840 	}
2841 }
2842 
netdev_reset_tc(struct net_device * dev)2843 void netdev_reset_tc(struct net_device *dev)
2844 {
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 	netdev_unbind_all_sb_channels(dev);
2849 
2850 	/* Reset TC configuration of device */
2851 	dev->num_tc = 0;
2852 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2853 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2854 }
2855 EXPORT_SYMBOL(netdev_reset_tc);
2856 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2858 {
2859 	if (tc >= dev->num_tc)
2860 		return -EINVAL;
2861 
2862 #ifdef CONFIG_XPS
2863 	netif_reset_xps_queues(dev, offset, count);
2864 #endif
2865 	dev->tc_to_txq[tc].count = count;
2866 	dev->tc_to_txq[tc].offset = offset;
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_set_tc_queue);
2870 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2871 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2872 {
2873 	if (num_tc > TC_MAX_QUEUE)
2874 		return -EINVAL;
2875 
2876 #ifdef CONFIG_XPS
2877 	netif_reset_xps_queues_gt(dev, 0);
2878 #endif
2879 	netdev_unbind_all_sb_channels(dev);
2880 
2881 	dev->num_tc = num_tc;
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_num_tc);
2885 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2886 void netdev_unbind_sb_channel(struct net_device *dev,
2887 			      struct net_device *sb_dev)
2888 {
2889 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2890 
2891 #ifdef CONFIG_XPS
2892 	netif_reset_xps_queues_gt(sb_dev, 0);
2893 #endif
2894 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2895 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2896 
2897 	while (txq-- != &dev->_tx[0]) {
2898 		if (txq->sb_dev == sb_dev)
2899 			txq->sb_dev = NULL;
2900 	}
2901 }
2902 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2903 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2904 int netdev_bind_sb_channel_queue(struct net_device *dev,
2905 				 struct net_device *sb_dev,
2906 				 u8 tc, u16 count, u16 offset)
2907 {
2908 	/* Make certain the sb_dev and dev are already configured */
2909 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2910 		return -EINVAL;
2911 
2912 	/* We cannot hand out queues we don't have */
2913 	if ((offset + count) > dev->real_num_tx_queues)
2914 		return -EINVAL;
2915 
2916 	/* Record the mapping */
2917 	sb_dev->tc_to_txq[tc].count = count;
2918 	sb_dev->tc_to_txq[tc].offset = offset;
2919 
2920 	/* Provide a way for Tx queue to find the tc_to_txq map or
2921 	 * XPS map for itself.
2922 	 */
2923 	while (count--)
2924 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2929 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2930 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2931 {
2932 	/* Do not use a multiqueue device to represent a subordinate channel */
2933 	if (netif_is_multiqueue(dev))
2934 		return -ENODEV;
2935 
2936 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2937 	 * Channel 0 is meant to be "native" mode and used only to represent
2938 	 * the main root device. We allow writing 0 to reset the device back
2939 	 * to normal mode after being used as a subordinate channel.
2940 	 */
2941 	if (channel > S16_MAX)
2942 		return -EINVAL;
2943 
2944 	dev->num_tc = -channel;
2945 
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netdev_set_sb_channel);
2949 
2950 /*
2951  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2952  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2953  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2954 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2955 {
2956 	bool disabling;
2957 	int rc;
2958 
2959 	disabling = txq < dev->real_num_tx_queues;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues)
2962 		return -EINVAL;
2963 
2964 	if (dev->reg_state == NETREG_REGISTERED ||
2965 	    dev->reg_state == NETREG_UNREGISTERING) {
2966 		ASSERT_RTNL();
2967 
2968 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2969 						  txq);
2970 		if (rc)
2971 			return rc;
2972 
2973 		if (dev->num_tc)
2974 			netif_setup_tc(dev, txq);
2975 
2976 		dev_qdisc_change_real_num_tx(dev, txq);
2977 
2978 		dev->real_num_tx_queues = txq;
2979 
2980 		if (disabling) {
2981 			synchronize_net();
2982 			qdisc_reset_all_tx_gt(dev, txq);
2983 #ifdef CONFIG_XPS
2984 			netif_reset_xps_queues_gt(dev, txq);
2985 #endif
2986 		}
2987 	} else {
2988 		dev->real_num_tx_queues = txq;
2989 	}
2990 
2991 	return 0;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2994 
2995 #ifdef CONFIG_SYSFS
2996 /**
2997  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2998  *	@dev: Network device
2999  *	@rxq: Actual number of RX queues
3000  *
3001  *	This must be called either with the rtnl_lock held or before
3002  *	registration of the net device.  Returns 0 on success, or a
3003  *	negative error code.  If called before registration, it always
3004  *	succeeds.
3005  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3006 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3007 {
3008 	int rc;
3009 
3010 	if (rxq < 1 || rxq > dev->num_rx_queues)
3011 		return -EINVAL;
3012 
3013 	if (dev->reg_state == NETREG_REGISTERED) {
3014 		ASSERT_RTNL();
3015 
3016 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3017 						  rxq);
3018 		if (rc)
3019 			return rc;
3020 	}
3021 
3022 	dev->real_num_rx_queues = rxq;
3023 	return 0;
3024 }
3025 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3026 #endif
3027 
3028 /**
3029  * netif_get_num_default_rss_queues - default number of RSS queues
3030  *
3031  * This routine should set an upper limit on the number of RSS queues
3032  * used by default by multiqueue devices.
3033  */
netif_get_num_default_rss_queues(void)3034 int netif_get_num_default_rss_queues(void)
3035 {
3036 	return is_kdump_kernel() ?
3037 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3038 }
3039 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3040 
__netif_reschedule(struct Qdisc * q)3041 static void __netif_reschedule(struct Qdisc *q)
3042 {
3043 	struct softnet_data *sd;
3044 	unsigned long flags;
3045 
3046 	local_irq_save(flags);
3047 	sd = this_cpu_ptr(&softnet_data);
3048 	q->next_sched = NULL;
3049 	*sd->output_queue_tailp = q;
3050 	sd->output_queue_tailp = &q->next_sched;
3051 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3052 	local_irq_restore(flags);
3053 }
3054 
__netif_schedule(struct Qdisc * q)3055 void __netif_schedule(struct Qdisc *q)
3056 {
3057 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3058 		__netif_reschedule(q);
3059 }
3060 EXPORT_SYMBOL(__netif_schedule);
3061 
3062 struct dev_kfree_skb_cb {
3063 	enum skb_free_reason reason;
3064 };
3065 
get_kfree_skb_cb(const struct sk_buff * skb)3066 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3067 {
3068 	return (struct dev_kfree_skb_cb *)skb->cb;
3069 }
3070 
netif_schedule_queue(struct netdev_queue * txq)3071 void netif_schedule_queue(struct netdev_queue *txq)
3072 {
3073 	rcu_read_lock();
3074 	if (!netif_xmit_stopped(txq)) {
3075 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3076 
3077 		__netif_schedule(q);
3078 	}
3079 	rcu_read_unlock();
3080 }
3081 EXPORT_SYMBOL(netif_schedule_queue);
3082 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3083 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3084 {
3085 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3086 		struct Qdisc *q;
3087 
3088 		rcu_read_lock();
3089 		q = rcu_dereference(dev_queue->qdisc);
3090 		__netif_schedule(q);
3091 		rcu_read_unlock();
3092 	}
3093 }
3094 EXPORT_SYMBOL(netif_tx_wake_queue);
3095 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3096 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 	unsigned long flags;
3099 
3100 	if (unlikely(!skb))
3101 		return;
3102 
3103 	if (likely(refcount_read(&skb->users) == 1)) {
3104 		smp_rmb();
3105 		refcount_set(&skb->users, 0);
3106 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3107 		return;
3108 	}
3109 	get_kfree_skb_cb(skb)->reason = reason;
3110 	local_irq_save(flags);
3111 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3112 	__this_cpu_write(softnet_data.completion_queue, skb);
3113 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3114 	local_irq_restore(flags);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3117 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3118 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120 	if (in_irq() || irqs_disabled())
3121 		__dev_kfree_skb_irq(skb, reason);
3122 	else
3123 		dev_kfree_skb(skb);
3124 }
3125 EXPORT_SYMBOL(__dev_kfree_skb_any);
3126 
3127 
3128 /**
3129  * netif_device_detach - mark device as removed
3130  * @dev: network device
3131  *
3132  * Mark device as removed from system and therefore no longer available.
3133  */
netif_device_detach(struct net_device * dev)3134 void netif_device_detach(struct net_device *dev)
3135 {
3136 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 	    netif_running(dev)) {
3138 		netif_tx_stop_all_queues(dev);
3139 	}
3140 }
3141 EXPORT_SYMBOL(netif_device_detach);
3142 
3143 /**
3144  * netif_device_attach - mark device as attached
3145  * @dev: network device
3146  *
3147  * Mark device as attached from system and restart if needed.
3148  */
netif_device_attach(struct net_device * dev)3149 void netif_device_attach(struct net_device *dev)
3150 {
3151 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 	    netif_running(dev)) {
3153 		netif_tx_wake_all_queues(dev);
3154 		__netdev_watchdog_up(dev);
3155 	}
3156 }
3157 EXPORT_SYMBOL(netif_device_attach);
3158 
3159 /*
3160  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3161  * to be used as a distribution range.
3162  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3163 static u16 skb_tx_hash(const struct net_device *dev,
3164 		       const struct net_device *sb_dev,
3165 		       struct sk_buff *skb)
3166 {
3167 	u32 hash;
3168 	u16 qoffset = 0;
3169 	u16 qcount = dev->real_num_tx_queues;
3170 
3171 	if (dev->num_tc) {
3172 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3173 
3174 		qoffset = sb_dev->tc_to_txq[tc].offset;
3175 		qcount = sb_dev->tc_to_txq[tc].count;
3176 		if (unlikely(!qcount)) {
3177 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3178 					     sb_dev->name, qoffset, tc);
3179 			qoffset = 0;
3180 			qcount = dev->real_num_tx_queues;
3181 		}
3182 	}
3183 
3184 	if (skb_rx_queue_recorded(skb)) {
3185 		hash = skb_get_rx_queue(skb);
3186 		if (hash >= qoffset)
3187 			hash -= qoffset;
3188 		while (unlikely(hash >= qcount))
3189 			hash -= qcount;
3190 		return hash + qoffset;
3191 	}
3192 
3193 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3194 }
3195 
skb_warn_bad_offload(const struct sk_buff * skb)3196 static void skb_warn_bad_offload(const struct sk_buff *skb)
3197 {
3198 	static const netdev_features_t null_features;
3199 	struct net_device *dev = skb->dev;
3200 	const char *name = "";
3201 
3202 	if (!net_ratelimit())
3203 		return;
3204 
3205 	if (dev) {
3206 		if (dev->dev.parent)
3207 			name = dev_driver_string(dev->dev.parent);
3208 		else
3209 			name = netdev_name(dev);
3210 	}
3211 	skb_dump(KERN_WARNING, skb, false);
3212 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3213 	     name, dev ? &dev->features : &null_features,
3214 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3215 }
3216 
3217 /*
3218  * Invalidate hardware checksum when packet is to be mangled, and
3219  * complete checksum manually on outgoing path.
3220  */
skb_checksum_help(struct sk_buff * skb)3221 int skb_checksum_help(struct sk_buff *skb)
3222 {
3223 	__wsum csum;
3224 	int ret = 0, offset;
3225 
3226 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 		goto out_set_summed;
3228 
3229 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3230 		skb_warn_bad_offload(skb);
3231 		return -EINVAL;
3232 	}
3233 
3234 	/* Before computing a checksum, we should make sure no frag could
3235 	 * be modified by an external entity : checksum could be wrong.
3236 	 */
3237 	if (skb_has_shared_frag(skb)) {
3238 		ret = __skb_linearize(skb);
3239 		if (ret)
3240 			goto out;
3241 	}
3242 
3243 	offset = skb_checksum_start_offset(skb);
3244 	ret = -EINVAL;
3245 	if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3246 		goto out;
3247 
3248 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3249 
3250 	offset += skb->csum_offset;
3251 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3252 		goto out;
3253 
3254 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3255 	if (ret)
3256 		goto out;
3257 
3258 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3259 out_set_summed:
3260 	skb->ip_summed = CHECKSUM_NONE;
3261 out:
3262 	return ret;
3263 }
3264 EXPORT_SYMBOL(skb_checksum_help);
3265 
skb_crc32c_csum_help(struct sk_buff * skb)3266 int skb_crc32c_csum_help(struct sk_buff *skb)
3267 {
3268 	__le32 crc32c_csum;
3269 	int ret = 0, offset, start;
3270 
3271 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3272 		goto out;
3273 
3274 	if (unlikely(skb_is_gso(skb)))
3275 		goto out;
3276 
3277 	/* Before computing a checksum, we should make sure no frag could
3278 	 * be modified by an external entity : checksum could be wrong.
3279 	 */
3280 	if (unlikely(skb_has_shared_frag(skb))) {
3281 		ret = __skb_linearize(skb);
3282 		if (ret)
3283 			goto out;
3284 	}
3285 	start = skb_checksum_start_offset(skb);
3286 	offset = start + offsetof(struct sctphdr, checksum);
3287 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3288 		ret = -EINVAL;
3289 		goto out;
3290 	}
3291 
3292 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3293 	if (ret)
3294 		goto out;
3295 
3296 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297 						  skb->len - start, ~(__u32)0,
3298 						  crc32c_csum_stub));
3299 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3300 	skb->ip_summed = CHECKSUM_NONE;
3301 	skb->csum_not_inet = 0;
3302 out:
3303 	return ret;
3304 }
3305 
skb_network_protocol(struct sk_buff * skb,int * depth)3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3307 {
3308 	__be16 type = skb->protocol;
3309 
3310 	/* Tunnel gso handlers can set protocol to ethernet. */
3311 	if (type == htons(ETH_P_TEB)) {
3312 		struct ethhdr *eth;
3313 
3314 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3315 			return 0;
3316 
3317 		eth = (struct ethhdr *)skb->data;
3318 		type = eth->h_proto;
3319 	}
3320 
3321 	return __vlan_get_protocol(skb, type, depth);
3322 }
3323 
3324 /**
3325  *	skb_mac_gso_segment - mac layer segmentation handler.
3326  *	@skb: buffer to segment
3327  *	@features: features for the output path (see dev->features)
3328  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330 				    netdev_features_t features)
3331 {
3332 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333 	struct packet_offload *ptype;
3334 	int vlan_depth = skb->mac_len;
3335 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3336 
3337 	if (unlikely(!type))
3338 		return ERR_PTR(-EINVAL);
3339 
3340 	__skb_pull(skb, vlan_depth);
3341 
3342 	rcu_read_lock();
3343 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3344 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3345 			segs = ptype->callbacks.gso_segment(skb, features);
3346 			break;
3347 		}
3348 	}
3349 	rcu_read_unlock();
3350 
3351 	__skb_push(skb, skb->data - skb_mac_header(skb));
3352 
3353 	return segs;
3354 }
3355 EXPORT_SYMBOL(skb_mac_gso_segment);
3356 
3357 
3358 /* openvswitch calls this on rx path, so we need a different check.
3359  */
skb_needs_check(struct sk_buff * skb,bool tx_path)3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362 	if (tx_path)
3363 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3364 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3365 
3366 	return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368 
3369 /**
3370  *	__skb_gso_segment - Perform segmentation on skb.
3371  *	@skb: buffer to segment
3372  *	@features: features for the output path (see dev->features)
3373  *	@tx_path: whether it is called in TX path
3374  *
3375  *	This function segments the given skb and returns a list of segments.
3376  *
3377  *	It may return NULL if the skb requires no segmentation.  This is
3378  *	only possible when GSO is used for verifying header integrity.
3379  *
3380  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383 				  netdev_features_t features, bool tx_path)
3384 {
3385 	struct sk_buff *segs;
3386 
3387 	if (unlikely(skb_needs_check(skb, tx_path))) {
3388 		int err;
3389 
3390 		/* We're going to init ->check field in TCP or UDP header */
3391 		err = skb_cow_head(skb, 0);
3392 		if (err < 0)
3393 			return ERR_PTR(err);
3394 	}
3395 
3396 	/* Only report GSO partial support if it will enable us to
3397 	 * support segmentation on this frame without needing additional
3398 	 * work.
3399 	 */
3400 	if (features & NETIF_F_GSO_PARTIAL) {
3401 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402 		struct net_device *dev = skb->dev;
3403 
3404 		partial_features |= dev->features & dev->gso_partial_features;
3405 		if (!skb_gso_ok(skb, features | partial_features))
3406 			features &= ~NETIF_F_GSO_PARTIAL;
3407 	}
3408 
3409 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411 
3412 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413 	SKB_GSO_CB(skb)->encap_level = 0;
3414 
3415 	skb_reset_mac_header(skb);
3416 	skb_reset_mac_len(skb);
3417 
3418 	segs = skb_mac_gso_segment(skb, features);
3419 
3420 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421 		skb_warn_bad_offload(skb);
3422 
3423 	return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426 
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 	if (net_ratelimit()) {
3432 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433 		skb_dump(KERN_ERR, skb, true);
3434 		dump_stack();
3435 	}
3436 }
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3438 #endif
3439 
3440 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442 {
3443 #ifdef CONFIG_HIGHMEM
3444 	int i;
3445 
3446 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3447 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449 
3450 			if (PageHighMem(skb_frag_page(frag)))
3451 				return 1;
3452 		}
3453 	}
3454 #endif
3455 	return 0;
3456 }
3457 
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459  * instead of standard features for the netdev.
3460  */
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463 					   netdev_features_t features,
3464 					   __be16 type)
3465 {
3466 	if (eth_p_mpls(type))
3467 		features &= skb->dev->mpls_features;
3468 
3469 	return features;
3470 }
3471 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473 					   netdev_features_t features,
3474 					   __be16 type)
3475 {
3476 	return features;
3477 }
3478 #endif
3479 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481 	netdev_features_t features)
3482 {
3483 	__be16 type;
3484 
3485 	type = skb_network_protocol(skb, NULL);
3486 	features = net_mpls_features(skb, features, type);
3487 
3488 	if (skb->ip_summed != CHECKSUM_NONE &&
3489 	    !can_checksum_protocol(features, type)) {
3490 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491 	}
3492 	if (illegal_highdma(skb->dev, skb))
3493 		features &= ~NETIF_F_SG;
3494 
3495 	return features;
3496 }
3497 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499 					  struct net_device *dev,
3500 					  netdev_features_t features)
3501 {
3502 	return features;
3503 }
3504 EXPORT_SYMBOL(passthru_features_check);
3505 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507 					     struct net_device *dev,
3508 					     netdev_features_t features)
3509 {
3510 	return vlan_features_check(skb, features);
3511 }
3512 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514 					    struct net_device *dev,
3515 					    netdev_features_t features)
3516 {
3517 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518 
3519 	if (gso_segs > dev->gso_max_segs)
3520 		return features & ~NETIF_F_GSO_MASK;
3521 
3522 	/* Support for GSO partial features requires software
3523 	 * intervention before we can actually process the packets
3524 	 * so we need to strip support for any partial features now
3525 	 * and we can pull them back in after we have partially
3526 	 * segmented the frame.
3527 	 */
3528 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3529 		features &= ~dev->gso_partial_features;
3530 
3531 	/* Make sure to clear the IPv4 ID mangling feature if the
3532 	 * IPv4 header has the potential to be fragmented.
3533 	 */
3534 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3535 		struct iphdr *iph = skb->encapsulation ?
3536 				    inner_ip_hdr(skb) : ip_hdr(skb);
3537 
3538 		if (!(iph->frag_off & htons(IP_DF)))
3539 			features &= ~NETIF_F_TSO_MANGLEID;
3540 	}
3541 
3542 	return features;
3543 }
3544 
netif_skb_features(struct sk_buff * skb)3545 netdev_features_t netif_skb_features(struct sk_buff *skb)
3546 {
3547 	struct net_device *dev = skb->dev;
3548 	netdev_features_t features = dev->features;
3549 
3550 	if (skb_is_gso(skb))
3551 		features = gso_features_check(skb, dev, features);
3552 
3553 	/* If encapsulation offload request, verify we are testing
3554 	 * hardware encapsulation features instead of standard
3555 	 * features for the netdev
3556 	 */
3557 	if (skb->encapsulation)
3558 		features &= dev->hw_enc_features;
3559 
3560 	if (skb_vlan_tagged(skb))
3561 		features = netdev_intersect_features(features,
3562 						     dev->vlan_features |
3563 						     NETIF_F_HW_VLAN_CTAG_TX |
3564 						     NETIF_F_HW_VLAN_STAG_TX);
3565 
3566 	if (dev->netdev_ops->ndo_features_check)
3567 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3568 								features);
3569 	else
3570 		features &= dflt_features_check(skb, dev, features);
3571 
3572 	return harmonize_features(skb, features);
3573 }
3574 EXPORT_SYMBOL(netif_skb_features);
3575 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3576 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3577 		    struct netdev_queue *txq, bool more)
3578 {
3579 	unsigned int len;
3580 	int rc;
3581 
3582 	if (dev_nit_active(dev))
3583 		dev_queue_xmit_nit(skb, dev);
3584 
3585 	len = skb->len;
3586 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3587 	trace_net_dev_start_xmit(skb, dev);
3588 	rc = netdev_start_xmit(skb, dev, txq, more);
3589 	trace_net_dev_xmit(skb, rc, dev, len);
3590 
3591 	return rc;
3592 }
3593 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 				    struct netdev_queue *txq, int *ret)
3596 {
3597 	struct sk_buff *skb = first;
3598 	int rc = NETDEV_TX_OK;
3599 
3600 	while (skb) {
3601 		struct sk_buff *next = skb->next;
3602 
3603 		skb_mark_not_on_list(skb);
3604 		rc = xmit_one(skb, dev, txq, next != NULL);
3605 		if (unlikely(!dev_xmit_complete(rc))) {
3606 			skb->next = next;
3607 			goto out;
3608 		}
3609 
3610 		skb = next;
3611 		if (netif_tx_queue_stopped(txq) && skb) {
3612 			rc = NETDEV_TX_BUSY;
3613 			break;
3614 		}
3615 	}
3616 
3617 out:
3618 	*ret = rc;
3619 	return skb;
3620 }
3621 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 					  netdev_features_t features)
3624 {
3625 	if (skb_vlan_tag_present(skb) &&
3626 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 		skb = __vlan_hwaccel_push_inside(skb);
3628 	return skb;
3629 }
3630 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 			    const netdev_features_t features)
3633 {
3634 	if (unlikely(skb_csum_is_sctp(skb)))
3635 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 			skb_crc32c_csum_help(skb);
3637 
3638 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3639 }
3640 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3641 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3642 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3643 {
3644 	netdev_features_t features;
3645 
3646 	features = netif_skb_features(skb);
3647 	skb = validate_xmit_vlan(skb, features);
3648 	if (unlikely(!skb))
3649 		goto out_null;
3650 
3651 	skb = sk_validate_xmit_skb(skb, dev);
3652 	if (unlikely(!skb))
3653 		goto out_null;
3654 
3655 	if (netif_needs_gso(skb, features)) {
3656 		struct sk_buff *segs;
3657 
3658 		segs = skb_gso_segment(skb, features);
3659 		if (IS_ERR(segs)) {
3660 			goto out_kfree_skb;
3661 		} else if (segs) {
3662 			consume_skb(skb);
3663 			skb = segs;
3664 		}
3665 	} else {
3666 		if (skb_needs_linearize(skb, features) &&
3667 		    __skb_linearize(skb))
3668 			goto out_kfree_skb;
3669 
3670 		/* If packet is not checksummed and device does not
3671 		 * support checksumming for this protocol, complete
3672 		 * checksumming here.
3673 		 */
3674 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3675 			if (skb->encapsulation)
3676 				skb_set_inner_transport_header(skb,
3677 							       skb_checksum_start_offset(skb));
3678 			else
3679 				skb_set_transport_header(skb,
3680 							 skb_checksum_start_offset(skb));
3681 			if (skb_csum_hwoffload_help(skb, features))
3682 				goto out_kfree_skb;
3683 		}
3684 	}
3685 
3686 	skb = validate_xmit_xfrm(skb, features, again);
3687 
3688 	return skb;
3689 
3690 out_kfree_skb:
3691 	kfree_skb(skb);
3692 out_null:
3693 	atomic_long_inc(&dev->tx_dropped);
3694 	return NULL;
3695 }
3696 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3697 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3698 {
3699 	struct sk_buff *next, *head = NULL, *tail;
3700 
3701 	for (; skb != NULL; skb = next) {
3702 		next = skb->next;
3703 		skb_mark_not_on_list(skb);
3704 
3705 		/* in case skb wont be segmented, point to itself */
3706 		skb->prev = skb;
3707 
3708 		skb = validate_xmit_skb(skb, dev, again);
3709 		if (!skb)
3710 			continue;
3711 
3712 		if (!head)
3713 			head = skb;
3714 		else
3715 			tail->next = skb;
3716 		/* If skb was segmented, skb->prev points to
3717 		 * the last segment. If not, it still contains skb.
3718 		 */
3719 		tail = skb->prev;
3720 	}
3721 	return head;
3722 }
3723 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3724 
qdisc_pkt_len_init(struct sk_buff * skb)3725 static void qdisc_pkt_len_init(struct sk_buff *skb)
3726 {
3727 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3728 
3729 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3730 
3731 	/* To get more precise estimation of bytes sent on wire,
3732 	 * we add to pkt_len the headers size of all segments
3733 	 */
3734 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3735 		unsigned int hdr_len;
3736 		u16 gso_segs = shinfo->gso_segs;
3737 
3738 		/* mac layer + network layer */
3739 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3740 
3741 		/* + transport layer */
3742 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3743 			const struct tcphdr *th;
3744 			struct tcphdr _tcphdr;
3745 
3746 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3747 						sizeof(_tcphdr), &_tcphdr);
3748 			if (likely(th))
3749 				hdr_len += __tcp_hdrlen(th);
3750 		} else {
3751 			struct udphdr _udphdr;
3752 
3753 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3754 					       sizeof(_udphdr), &_udphdr))
3755 				hdr_len += sizeof(struct udphdr);
3756 		}
3757 
3758 		if (shinfo->gso_type & SKB_GSO_DODGY)
3759 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3760 						shinfo->gso_size);
3761 
3762 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3763 	}
3764 }
3765 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3766 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3767 				 struct net_device *dev,
3768 				 struct netdev_queue *txq)
3769 {
3770 	spinlock_t *root_lock = qdisc_lock(q);
3771 	struct sk_buff *to_free = NULL;
3772 	bool contended;
3773 	int rc;
3774 
3775 	qdisc_calculate_pkt_len(skb, q);
3776 
3777 	if (q->flags & TCQ_F_NOLOCK) {
3778 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3779 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3780 			qdisc_run(q);
3781 
3782 		if (unlikely(to_free))
3783 			kfree_skb_list(to_free);
3784 		return rc;
3785 	}
3786 
3787 	/*
3788 	 * Heuristic to force contended enqueues to serialize on a
3789 	 * separate lock before trying to get qdisc main lock.
3790 	 * This permits qdisc->running owner to get the lock more
3791 	 * often and dequeue packets faster.
3792 	 */
3793 	contended = qdisc_is_running(q);
3794 	if (unlikely(contended))
3795 		spin_lock(&q->busylock);
3796 
3797 	spin_lock(root_lock);
3798 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3799 		__qdisc_drop(skb, &to_free);
3800 		rc = NET_XMIT_DROP;
3801 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3802 		   qdisc_run_begin(q)) {
3803 		/*
3804 		 * This is a work-conserving queue; there are no old skbs
3805 		 * waiting to be sent out; and the qdisc is not running -
3806 		 * xmit the skb directly.
3807 		 */
3808 
3809 		qdisc_bstats_update(q, skb);
3810 
3811 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3812 			if (unlikely(contended)) {
3813 				spin_unlock(&q->busylock);
3814 				contended = false;
3815 			}
3816 			__qdisc_run(q);
3817 		}
3818 
3819 		qdisc_run_end(q);
3820 		rc = NET_XMIT_SUCCESS;
3821 	} else {
3822 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3823 		if (qdisc_run_begin(q)) {
3824 			if (unlikely(contended)) {
3825 				spin_unlock(&q->busylock);
3826 				contended = false;
3827 			}
3828 			__qdisc_run(q);
3829 			qdisc_run_end(q);
3830 		}
3831 	}
3832 	spin_unlock(root_lock);
3833 	if (unlikely(to_free))
3834 		kfree_skb_list(to_free);
3835 	if (unlikely(contended))
3836 		spin_unlock(&q->busylock);
3837 	return rc;
3838 }
3839 
3840 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3841 static void skb_update_prio(struct sk_buff *skb)
3842 {
3843 	const struct netprio_map *map;
3844 	const struct sock *sk;
3845 	unsigned int prioidx;
3846 
3847 	if (skb->priority)
3848 		return;
3849 	map = rcu_dereference_bh(skb->dev->priomap);
3850 	if (!map)
3851 		return;
3852 	sk = skb_to_full_sk(skb);
3853 	if (!sk)
3854 		return;
3855 
3856 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3857 
3858 	if (prioidx < map->priomap_len)
3859 		skb->priority = map->priomap[prioidx];
3860 }
3861 #else
3862 #define skb_update_prio(skb)
3863 #endif
3864 
3865 /**
3866  *	dev_loopback_xmit - loop back @skb
3867  *	@net: network namespace this loopback is happening in
3868  *	@sk:  sk needed to be a netfilter okfn
3869  *	@skb: buffer to transmit
3870  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3871 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3872 {
3873 	skb_reset_mac_header(skb);
3874 	__skb_pull(skb, skb_network_offset(skb));
3875 	skb->pkt_type = PACKET_LOOPBACK;
3876 	if (skb->ip_summed == CHECKSUM_NONE)
3877 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3878 	WARN_ON(!skb_dst(skb));
3879 	skb_dst_force(skb);
3880 	netif_rx_ni(skb);
3881 	return 0;
3882 }
3883 EXPORT_SYMBOL(dev_loopback_xmit);
3884 
3885 #ifdef CONFIG_NET_EGRESS
3886 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3887 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3888 {
3889 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3890 	struct tcf_result cl_res;
3891 
3892 	if (!miniq)
3893 		return skb;
3894 
3895 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3896 	qdisc_skb_cb(skb)->mru = 0;
3897 	mini_qdisc_bstats_cpu_update(miniq, skb);
3898 
3899 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3900 	case TC_ACT_OK:
3901 	case TC_ACT_RECLASSIFY:
3902 		skb->tc_index = TC_H_MIN(cl_res.classid);
3903 		break;
3904 	case TC_ACT_SHOT:
3905 		mini_qdisc_qstats_cpu_drop(miniq);
3906 		*ret = NET_XMIT_DROP;
3907 		kfree_skb(skb);
3908 		return NULL;
3909 	case TC_ACT_STOLEN:
3910 	case TC_ACT_QUEUED:
3911 	case TC_ACT_TRAP:
3912 		*ret = NET_XMIT_SUCCESS;
3913 		consume_skb(skb);
3914 		return NULL;
3915 	case TC_ACT_REDIRECT:
3916 		/* No need to push/pop skb's mac_header here on egress! */
3917 		skb_do_redirect(skb);
3918 		*ret = NET_XMIT_SUCCESS;
3919 		return NULL;
3920 	default:
3921 		break;
3922 	}
3923 
3924 	return skb;
3925 }
3926 #endif /* CONFIG_NET_EGRESS */
3927 
3928 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3929 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3930 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3931 {
3932 	struct xps_map *map;
3933 	int queue_index = -1;
3934 
3935 	if (dev->num_tc) {
3936 		tci *= dev->num_tc;
3937 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3938 	}
3939 
3940 	map = rcu_dereference(dev_maps->attr_map[tci]);
3941 	if (map) {
3942 		if (map->len == 1)
3943 			queue_index = map->queues[0];
3944 		else
3945 			queue_index = map->queues[reciprocal_scale(
3946 						skb_get_hash(skb), map->len)];
3947 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3948 			queue_index = -1;
3949 	}
3950 	return queue_index;
3951 }
3952 #endif
3953 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3954 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3955 			 struct sk_buff *skb)
3956 {
3957 #ifdef CONFIG_XPS
3958 	struct xps_dev_maps *dev_maps;
3959 	struct sock *sk = skb->sk;
3960 	int queue_index = -1;
3961 
3962 	if (!static_key_false(&xps_needed))
3963 		return -1;
3964 
3965 	rcu_read_lock();
3966 	if (!static_key_false(&xps_rxqs_needed))
3967 		goto get_cpus_map;
3968 
3969 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3970 	if (dev_maps) {
3971 		int tci = sk_rx_queue_get(sk);
3972 
3973 		if (tci >= 0 && tci < dev->num_rx_queues)
3974 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3975 							  tci);
3976 	}
3977 
3978 get_cpus_map:
3979 	if (queue_index < 0) {
3980 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3981 		if (dev_maps) {
3982 			unsigned int tci = skb->sender_cpu - 1;
3983 
3984 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3985 							  tci);
3986 		}
3987 	}
3988 	rcu_read_unlock();
3989 
3990 	return queue_index;
3991 #else
3992 	return -1;
3993 #endif
3994 }
3995 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3996 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3997 		     struct net_device *sb_dev)
3998 {
3999 	return 0;
4000 }
4001 EXPORT_SYMBOL(dev_pick_tx_zero);
4002 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4003 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4004 		       struct net_device *sb_dev)
4005 {
4006 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4007 }
4008 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4009 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4010 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4011 		     struct net_device *sb_dev)
4012 {
4013 	struct sock *sk = skb->sk;
4014 	int queue_index = sk_tx_queue_get(sk);
4015 
4016 	sb_dev = sb_dev ? : dev;
4017 
4018 	if (queue_index < 0 || skb->ooo_okay ||
4019 	    queue_index >= dev->real_num_tx_queues) {
4020 		int new_index = get_xps_queue(dev, sb_dev, skb);
4021 
4022 		if (new_index < 0)
4023 			new_index = skb_tx_hash(dev, sb_dev, skb);
4024 
4025 		if (queue_index != new_index && sk &&
4026 		    sk_fullsock(sk) &&
4027 		    rcu_access_pointer(sk->sk_dst_cache))
4028 			sk_tx_queue_set(sk, new_index);
4029 
4030 		queue_index = new_index;
4031 	}
4032 
4033 	return queue_index;
4034 }
4035 EXPORT_SYMBOL(netdev_pick_tx);
4036 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4037 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4038 					 struct sk_buff *skb,
4039 					 struct net_device *sb_dev)
4040 {
4041 	int queue_index = 0;
4042 
4043 #ifdef CONFIG_XPS
4044 	u32 sender_cpu = skb->sender_cpu - 1;
4045 
4046 	if (sender_cpu >= (u32)NR_CPUS)
4047 		skb->sender_cpu = raw_smp_processor_id() + 1;
4048 #endif
4049 
4050 	if (dev->real_num_tx_queues != 1) {
4051 		const struct net_device_ops *ops = dev->netdev_ops;
4052 
4053 		if (ops->ndo_select_queue)
4054 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4055 		else
4056 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4057 
4058 		queue_index = netdev_cap_txqueue(dev, queue_index);
4059 	}
4060 
4061 	skb_set_queue_mapping(skb, queue_index);
4062 	return netdev_get_tx_queue(dev, queue_index);
4063 }
4064 
4065 /**
4066  *	__dev_queue_xmit - transmit a buffer
4067  *	@skb: buffer to transmit
4068  *	@sb_dev: suboordinate device used for L2 forwarding offload
4069  *
4070  *	Queue a buffer for transmission to a network device. The caller must
4071  *	have set the device and priority and built the buffer before calling
4072  *	this function. The function can be called from an interrupt.
4073  *
4074  *	A negative errno code is returned on a failure. A success does not
4075  *	guarantee the frame will be transmitted as it may be dropped due
4076  *	to congestion or traffic shaping.
4077  *
4078  * -----------------------------------------------------------------------------------
4079  *      I notice this method can also return errors from the queue disciplines,
4080  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4081  *      be positive.
4082  *
4083  *      Regardless of the return value, the skb is consumed, so it is currently
4084  *      difficult to retry a send to this method.  (You can bump the ref count
4085  *      before sending to hold a reference for retry if you are careful.)
4086  *
4087  *      When calling this method, interrupts MUST be enabled.  This is because
4088  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4089  *          --BLG
4090  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4091 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4092 {
4093 	struct net_device *dev = skb->dev;
4094 	struct netdev_queue *txq;
4095 	struct Qdisc *q;
4096 	int rc = -ENOMEM;
4097 	bool again = false;
4098 
4099 	skb_reset_mac_header(skb);
4100 	skb_assert_len(skb);
4101 
4102 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4103 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4104 
4105 	/* Disable soft irqs for various locks below. Also
4106 	 * stops preemption for RCU.
4107 	 */
4108 	rcu_read_lock_bh();
4109 
4110 	skb_update_prio(skb);
4111 
4112 	qdisc_pkt_len_init(skb);
4113 #ifdef CONFIG_NET_CLS_ACT
4114 	skb->tc_at_ingress = 0;
4115 # ifdef CONFIG_NET_EGRESS
4116 	if (static_branch_unlikely(&egress_needed_key)) {
4117 		skb = sch_handle_egress(skb, &rc, dev);
4118 		if (!skb)
4119 			goto out;
4120 	}
4121 # endif
4122 #endif
4123 	/* If device/qdisc don't need skb->dst, release it right now while
4124 	 * its hot in this cpu cache.
4125 	 */
4126 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4127 		skb_dst_drop(skb);
4128 	else
4129 		skb_dst_force(skb);
4130 
4131 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4132 	q = rcu_dereference_bh(txq->qdisc);
4133 
4134 	trace_net_dev_queue(skb);
4135 	if (q->enqueue) {
4136 		rc = __dev_xmit_skb(skb, q, dev, txq);
4137 		goto out;
4138 	}
4139 
4140 	/* The device has no queue. Common case for software devices:
4141 	 * loopback, all the sorts of tunnels...
4142 
4143 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4144 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4145 	 * counters.)
4146 	 * However, it is possible, that they rely on protection
4147 	 * made by us here.
4148 
4149 	 * Check this and shot the lock. It is not prone from deadlocks.
4150 	 *Either shot noqueue qdisc, it is even simpler 8)
4151 	 */
4152 	if (dev->flags & IFF_UP) {
4153 		int cpu = smp_processor_id(); /* ok because BHs are off */
4154 
4155 		/* Other cpus might concurrently change txq->xmit_lock_owner
4156 		 * to -1 or to their cpu id, but not to our id.
4157 		 */
4158 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4159 			if (dev_xmit_recursion())
4160 				goto recursion_alert;
4161 
4162 			skb = validate_xmit_skb(skb, dev, &again);
4163 			if (!skb)
4164 				goto out;
4165 
4166 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4167 			HARD_TX_LOCK(dev, txq, cpu);
4168 
4169 			if (!netif_xmit_stopped(txq)) {
4170 				dev_xmit_recursion_inc();
4171 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4172 				dev_xmit_recursion_dec();
4173 				if (dev_xmit_complete(rc)) {
4174 					HARD_TX_UNLOCK(dev, txq);
4175 					goto out;
4176 				}
4177 			}
4178 			HARD_TX_UNLOCK(dev, txq);
4179 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4180 					     dev->name);
4181 		} else {
4182 			/* Recursion is detected! It is possible,
4183 			 * unfortunately
4184 			 */
4185 recursion_alert:
4186 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4187 					     dev->name);
4188 		}
4189 	}
4190 
4191 	rc = -ENETDOWN;
4192 	rcu_read_unlock_bh();
4193 
4194 	atomic_long_inc(&dev->tx_dropped);
4195 	kfree_skb_list(skb);
4196 	return rc;
4197 out:
4198 	rcu_read_unlock_bh();
4199 	return rc;
4200 }
4201 
dev_queue_xmit(struct sk_buff * skb)4202 int dev_queue_xmit(struct sk_buff *skb)
4203 {
4204 	return __dev_queue_xmit(skb, NULL);
4205 }
4206 EXPORT_SYMBOL(dev_queue_xmit);
4207 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4208 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4209 {
4210 	return __dev_queue_xmit(skb, sb_dev);
4211 }
4212 EXPORT_SYMBOL(dev_queue_xmit_accel);
4213 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4214 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4215 {
4216 	struct net_device *dev = skb->dev;
4217 	struct sk_buff *orig_skb = skb;
4218 	struct netdev_queue *txq;
4219 	int ret = NETDEV_TX_BUSY;
4220 	bool again = false;
4221 
4222 	if (unlikely(!netif_running(dev) ||
4223 		     !netif_carrier_ok(dev)))
4224 		goto drop;
4225 
4226 	skb = validate_xmit_skb_list(skb, dev, &again);
4227 	if (skb != orig_skb)
4228 		goto drop;
4229 
4230 	skb_set_queue_mapping(skb, queue_id);
4231 	txq = skb_get_tx_queue(dev, skb);
4232 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4233 
4234 	local_bh_disable();
4235 
4236 	dev_xmit_recursion_inc();
4237 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4238 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4239 		ret = netdev_start_xmit(skb, dev, txq, false);
4240 	HARD_TX_UNLOCK(dev, txq);
4241 	dev_xmit_recursion_dec();
4242 
4243 	local_bh_enable();
4244 	return ret;
4245 drop:
4246 	atomic_long_inc(&dev->tx_dropped);
4247 	kfree_skb_list(skb);
4248 	return NET_XMIT_DROP;
4249 }
4250 EXPORT_SYMBOL(__dev_direct_xmit);
4251 
4252 /*************************************************************************
4253  *			Receiver routines
4254  *************************************************************************/
4255 
4256 int netdev_max_backlog __read_mostly = 1000;
4257 EXPORT_SYMBOL(netdev_max_backlog);
4258 
4259 int netdev_tstamp_prequeue __read_mostly = 1;
4260 int netdev_budget __read_mostly = 300;
4261 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4262 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4263 int weight_p __read_mostly = 64;           /* old backlog weight */
4264 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4265 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4266 int dev_rx_weight __read_mostly = 64;
4267 int dev_tx_weight __read_mostly = 64;
4268 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4269 int gro_normal_batch __read_mostly = 8;
4270 
4271 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4272 static inline void ____napi_schedule(struct softnet_data *sd,
4273 				     struct napi_struct *napi)
4274 {
4275 	list_add_tail(&napi->poll_list, &sd->poll_list);
4276 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4277 }
4278 
4279 #ifdef CONFIG_RPS
4280 
4281 /* One global table that all flow-based protocols share. */
4282 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4283 EXPORT_SYMBOL(rps_sock_flow_table);
4284 u32 rps_cpu_mask __read_mostly;
4285 EXPORT_SYMBOL(rps_cpu_mask);
4286 
4287 struct static_key_false rps_needed __read_mostly;
4288 EXPORT_SYMBOL(rps_needed);
4289 struct static_key_false rfs_needed __read_mostly;
4290 EXPORT_SYMBOL(rfs_needed);
4291 
4292 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4293 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4294 	    struct rps_dev_flow *rflow, u16 next_cpu)
4295 {
4296 	if (next_cpu < nr_cpu_ids) {
4297 #ifdef CONFIG_RFS_ACCEL
4298 		struct netdev_rx_queue *rxqueue;
4299 		struct rps_dev_flow_table *flow_table;
4300 		struct rps_dev_flow *old_rflow;
4301 		u32 flow_id;
4302 		u16 rxq_index;
4303 		int rc;
4304 
4305 		/* Should we steer this flow to a different hardware queue? */
4306 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4307 		    !(dev->features & NETIF_F_NTUPLE))
4308 			goto out;
4309 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4310 		if (rxq_index == skb_get_rx_queue(skb))
4311 			goto out;
4312 
4313 		rxqueue = dev->_rx + rxq_index;
4314 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4315 		if (!flow_table)
4316 			goto out;
4317 		flow_id = skb_get_hash(skb) & flow_table->mask;
4318 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4319 							rxq_index, flow_id);
4320 		if (rc < 0)
4321 			goto out;
4322 		old_rflow = rflow;
4323 		rflow = &flow_table->flows[flow_id];
4324 		rflow->filter = rc;
4325 		if (old_rflow->filter == rflow->filter)
4326 			old_rflow->filter = RPS_NO_FILTER;
4327 	out:
4328 #endif
4329 		rflow->last_qtail =
4330 			per_cpu(softnet_data, next_cpu).input_queue_head;
4331 	}
4332 
4333 	rflow->cpu = next_cpu;
4334 	return rflow;
4335 }
4336 
4337 /*
4338  * get_rps_cpu is called from netif_receive_skb and returns the target
4339  * CPU from the RPS map of the receiving queue for a given skb.
4340  * rcu_read_lock must be held on entry.
4341  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4342 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4343 		       struct rps_dev_flow **rflowp)
4344 {
4345 	const struct rps_sock_flow_table *sock_flow_table;
4346 	struct netdev_rx_queue *rxqueue = dev->_rx;
4347 	struct rps_dev_flow_table *flow_table;
4348 	struct rps_map *map;
4349 	int cpu = -1;
4350 	u32 tcpu;
4351 	u32 hash;
4352 
4353 	if (skb_rx_queue_recorded(skb)) {
4354 		u16 index = skb_get_rx_queue(skb);
4355 
4356 		if (unlikely(index >= dev->real_num_rx_queues)) {
4357 			WARN_ONCE(dev->real_num_rx_queues > 1,
4358 				  "%s received packet on queue %u, but number "
4359 				  "of RX queues is %u\n",
4360 				  dev->name, index, dev->real_num_rx_queues);
4361 			goto done;
4362 		}
4363 		rxqueue += index;
4364 	}
4365 
4366 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4367 
4368 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4369 	map = rcu_dereference(rxqueue->rps_map);
4370 	if (!flow_table && !map)
4371 		goto done;
4372 
4373 	skb_reset_network_header(skb);
4374 	hash = skb_get_hash(skb);
4375 	if (!hash)
4376 		goto done;
4377 
4378 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4379 	if (flow_table && sock_flow_table) {
4380 		struct rps_dev_flow *rflow;
4381 		u32 next_cpu;
4382 		u32 ident;
4383 
4384 		/* First check into global flow table if there is a match */
4385 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4386 		if ((ident ^ hash) & ~rps_cpu_mask)
4387 			goto try_rps;
4388 
4389 		next_cpu = ident & rps_cpu_mask;
4390 
4391 		/* OK, now we know there is a match,
4392 		 * we can look at the local (per receive queue) flow table
4393 		 */
4394 		rflow = &flow_table->flows[hash & flow_table->mask];
4395 		tcpu = rflow->cpu;
4396 
4397 		/*
4398 		 * If the desired CPU (where last recvmsg was done) is
4399 		 * different from current CPU (one in the rx-queue flow
4400 		 * table entry), switch if one of the following holds:
4401 		 *   - Current CPU is unset (>= nr_cpu_ids).
4402 		 *   - Current CPU is offline.
4403 		 *   - The current CPU's queue tail has advanced beyond the
4404 		 *     last packet that was enqueued using this table entry.
4405 		 *     This guarantees that all previous packets for the flow
4406 		 *     have been dequeued, thus preserving in order delivery.
4407 		 */
4408 		if (unlikely(tcpu != next_cpu) &&
4409 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4410 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4411 		      rflow->last_qtail)) >= 0)) {
4412 			tcpu = next_cpu;
4413 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4414 		}
4415 
4416 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4417 			*rflowp = rflow;
4418 			cpu = tcpu;
4419 			goto done;
4420 		}
4421 	}
4422 
4423 try_rps:
4424 
4425 	if (map) {
4426 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4427 		if (cpu_online(tcpu)) {
4428 			cpu = tcpu;
4429 			goto done;
4430 		}
4431 	}
4432 
4433 done:
4434 	return cpu;
4435 }
4436 
4437 #ifdef CONFIG_RFS_ACCEL
4438 
4439 /**
4440  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4441  * @dev: Device on which the filter was set
4442  * @rxq_index: RX queue index
4443  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4444  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4445  *
4446  * Drivers that implement ndo_rx_flow_steer() should periodically call
4447  * this function for each installed filter and remove the filters for
4448  * which it returns %true.
4449  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4450 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4451 			 u32 flow_id, u16 filter_id)
4452 {
4453 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4454 	struct rps_dev_flow_table *flow_table;
4455 	struct rps_dev_flow *rflow;
4456 	bool expire = true;
4457 	unsigned int cpu;
4458 
4459 	rcu_read_lock();
4460 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4461 	if (flow_table && flow_id <= flow_table->mask) {
4462 		rflow = &flow_table->flows[flow_id];
4463 		cpu = READ_ONCE(rflow->cpu);
4464 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4465 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4466 			   rflow->last_qtail) <
4467 		     (int)(10 * flow_table->mask)))
4468 			expire = false;
4469 	}
4470 	rcu_read_unlock();
4471 	return expire;
4472 }
4473 EXPORT_SYMBOL(rps_may_expire_flow);
4474 
4475 #endif /* CONFIG_RFS_ACCEL */
4476 
4477 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4478 static void rps_trigger_softirq(void *data)
4479 {
4480 	struct softnet_data *sd = data;
4481 
4482 	____napi_schedule(sd, &sd->backlog);
4483 	sd->received_rps++;
4484 }
4485 
4486 #endif /* CONFIG_RPS */
4487 
4488 /*
4489  * Check if this softnet_data structure is another cpu one
4490  * If yes, queue it to our IPI list and return 1
4491  * If no, return 0
4492  */
rps_ipi_queued(struct softnet_data * sd)4493 static int rps_ipi_queued(struct softnet_data *sd)
4494 {
4495 #ifdef CONFIG_RPS
4496 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4497 
4498 	if (sd != mysd) {
4499 		sd->rps_ipi_next = mysd->rps_ipi_list;
4500 		mysd->rps_ipi_list = sd;
4501 
4502 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4503 		return 1;
4504 	}
4505 #endif /* CONFIG_RPS */
4506 	return 0;
4507 }
4508 
4509 #ifdef CONFIG_NET_FLOW_LIMIT
4510 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4511 #endif
4512 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4513 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4514 {
4515 #ifdef CONFIG_NET_FLOW_LIMIT
4516 	struct sd_flow_limit *fl;
4517 	struct softnet_data *sd;
4518 	unsigned int old_flow, new_flow;
4519 
4520 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4521 		return false;
4522 
4523 	sd = this_cpu_ptr(&softnet_data);
4524 
4525 	rcu_read_lock();
4526 	fl = rcu_dereference(sd->flow_limit);
4527 	if (fl) {
4528 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4529 		old_flow = fl->history[fl->history_head];
4530 		fl->history[fl->history_head] = new_flow;
4531 
4532 		fl->history_head++;
4533 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4534 
4535 		if (likely(fl->buckets[old_flow]))
4536 			fl->buckets[old_flow]--;
4537 
4538 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4539 			fl->count++;
4540 			rcu_read_unlock();
4541 			return true;
4542 		}
4543 	}
4544 	rcu_read_unlock();
4545 #endif
4546 	return false;
4547 }
4548 
4549 /*
4550  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4551  * queue (may be a remote CPU queue).
4552  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4553 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4554 			      unsigned int *qtail)
4555 {
4556 	struct softnet_data *sd;
4557 	unsigned long flags;
4558 	unsigned int qlen;
4559 
4560 	sd = &per_cpu(softnet_data, cpu);
4561 
4562 	local_irq_save(flags);
4563 
4564 	rps_lock(sd);
4565 	if (!netif_running(skb->dev))
4566 		goto drop;
4567 	qlen = skb_queue_len(&sd->input_pkt_queue);
4568 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4569 		if (qlen) {
4570 enqueue:
4571 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4572 			input_queue_tail_incr_save(sd, qtail);
4573 			rps_unlock(sd);
4574 			local_irq_restore(flags);
4575 			return NET_RX_SUCCESS;
4576 		}
4577 
4578 		/* Schedule NAPI for backlog device
4579 		 * We can use non atomic operation since we own the queue lock
4580 		 */
4581 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4582 			if (!rps_ipi_queued(sd))
4583 				____napi_schedule(sd, &sd->backlog);
4584 		}
4585 		goto enqueue;
4586 	}
4587 
4588 drop:
4589 	sd->dropped++;
4590 	rps_unlock(sd);
4591 
4592 	local_irq_restore(flags);
4593 
4594 	atomic_long_inc(&skb->dev->rx_dropped);
4595 	kfree_skb(skb);
4596 	return NET_RX_DROP;
4597 }
4598 
netif_get_rxqueue(struct sk_buff * skb)4599 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4600 {
4601 	struct net_device *dev = skb->dev;
4602 	struct netdev_rx_queue *rxqueue;
4603 
4604 	rxqueue = dev->_rx;
4605 
4606 	if (skb_rx_queue_recorded(skb)) {
4607 		u16 index = skb_get_rx_queue(skb);
4608 
4609 		if (unlikely(index >= dev->real_num_rx_queues)) {
4610 			WARN_ONCE(dev->real_num_rx_queues > 1,
4611 				  "%s received packet on queue %u, but number "
4612 				  "of RX queues is %u\n",
4613 				  dev->name, index, dev->real_num_rx_queues);
4614 
4615 			return rxqueue; /* Return first rxqueue */
4616 		}
4617 		rxqueue += index;
4618 	}
4619 	return rxqueue;
4620 }
4621 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4622 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4623 				     struct xdp_buff *xdp,
4624 				     struct bpf_prog *xdp_prog)
4625 {
4626 	struct netdev_rx_queue *rxqueue;
4627 	void *orig_data, *orig_data_end;
4628 	u32 metalen, act = XDP_DROP;
4629 	__be16 orig_eth_type;
4630 	struct ethhdr *eth;
4631 	bool orig_bcast;
4632 	int hlen, off;
4633 	u32 mac_len;
4634 
4635 	/* Reinjected packets coming from act_mirred or similar should
4636 	 * not get XDP generic processing.
4637 	 */
4638 	if (skb_is_redirected(skb))
4639 		return XDP_PASS;
4640 
4641 	/* XDP packets must be linear and must have sufficient headroom
4642 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4643 	 * native XDP provides, thus we need to do it here as well.
4644 	 */
4645 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4646 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4647 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4648 		int troom = skb->tail + skb->data_len - skb->end;
4649 
4650 		/* In case we have to go down the path and also linearize,
4651 		 * then lets do the pskb_expand_head() work just once here.
4652 		 */
4653 		if (pskb_expand_head(skb,
4654 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4655 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4656 			goto do_drop;
4657 		if (skb_linearize(skb))
4658 			goto do_drop;
4659 	}
4660 
4661 	/* The XDP program wants to see the packet starting at the MAC
4662 	 * header.
4663 	 */
4664 	mac_len = skb->data - skb_mac_header(skb);
4665 	hlen = skb_headlen(skb) + mac_len;
4666 	xdp->data = skb->data - mac_len;
4667 	xdp->data_meta = xdp->data;
4668 	xdp->data_end = xdp->data + hlen;
4669 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4670 
4671 	/* SKB "head" area always have tailroom for skb_shared_info */
4672 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4673 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4674 
4675 	orig_data_end = xdp->data_end;
4676 	orig_data = xdp->data;
4677 	eth = (struct ethhdr *)xdp->data;
4678 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4679 	orig_eth_type = eth->h_proto;
4680 
4681 	rxqueue = netif_get_rxqueue(skb);
4682 	xdp->rxq = &rxqueue->xdp_rxq;
4683 
4684 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4685 
4686 	/* check if bpf_xdp_adjust_head was used */
4687 	off = xdp->data - orig_data;
4688 	if (off) {
4689 		if (off > 0)
4690 			__skb_pull(skb, off);
4691 		else if (off < 0)
4692 			__skb_push(skb, -off);
4693 
4694 		skb->mac_header += off;
4695 		skb_reset_network_header(skb);
4696 	}
4697 
4698 	/* check if bpf_xdp_adjust_tail was used */
4699 	off = xdp->data_end - orig_data_end;
4700 	if (off != 0) {
4701 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4702 		skb->len += off; /* positive on grow, negative on shrink */
4703 	}
4704 
4705 	/* check if XDP changed eth hdr such SKB needs update */
4706 	eth = (struct ethhdr *)xdp->data;
4707 	if ((orig_eth_type != eth->h_proto) ||
4708 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4709 		__skb_push(skb, ETH_HLEN);
4710 		skb->protocol = eth_type_trans(skb, skb->dev);
4711 	}
4712 
4713 	switch (act) {
4714 	case XDP_REDIRECT:
4715 	case XDP_TX:
4716 		__skb_push(skb, mac_len);
4717 		break;
4718 	case XDP_PASS:
4719 		metalen = xdp->data - xdp->data_meta;
4720 		if (metalen)
4721 			skb_metadata_set(skb, metalen);
4722 		break;
4723 	default:
4724 		bpf_warn_invalid_xdp_action(act);
4725 		fallthrough;
4726 	case XDP_ABORTED:
4727 		trace_xdp_exception(skb->dev, xdp_prog, act);
4728 		fallthrough;
4729 	case XDP_DROP:
4730 	do_drop:
4731 		kfree_skb(skb);
4732 		break;
4733 	}
4734 
4735 	return act;
4736 }
4737 
4738 /* When doing generic XDP we have to bypass the qdisc layer and the
4739  * network taps in order to match in-driver-XDP behavior.
4740  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4741 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4742 {
4743 	struct net_device *dev = skb->dev;
4744 	struct netdev_queue *txq;
4745 	bool free_skb = true;
4746 	int cpu, rc;
4747 
4748 	txq = netdev_core_pick_tx(dev, skb, NULL);
4749 	cpu = smp_processor_id();
4750 	HARD_TX_LOCK(dev, txq, cpu);
4751 	if (!netif_xmit_stopped(txq)) {
4752 		rc = netdev_start_xmit(skb, dev, txq, 0);
4753 		if (dev_xmit_complete(rc))
4754 			free_skb = false;
4755 	}
4756 	HARD_TX_UNLOCK(dev, txq);
4757 	if (free_skb) {
4758 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4759 		kfree_skb(skb);
4760 	}
4761 }
4762 
4763 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4764 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4765 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4766 {
4767 	if (xdp_prog) {
4768 		struct xdp_buff xdp;
4769 		u32 act;
4770 		int err;
4771 
4772 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4773 		if (act != XDP_PASS) {
4774 			switch (act) {
4775 			case XDP_REDIRECT:
4776 				err = xdp_do_generic_redirect(skb->dev, skb,
4777 							      &xdp, xdp_prog);
4778 				if (err)
4779 					goto out_redir;
4780 				break;
4781 			case XDP_TX:
4782 				generic_xdp_tx(skb, xdp_prog);
4783 				break;
4784 			}
4785 			return XDP_DROP;
4786 		}
4787 	}
4788 	return XDP_PASS;
4789 out_redir:
4790 	kfree_skb(skb);
4791 	return XDP_DROP;
4792 }
4793 EXPORT_SYMBOL_GPL(do_xdp_generic);
4794 
netif_rx_internal(struct sk_buff * skb)4795 static int netif_rx_internal(struct sk_buff *skb)
4796 {
4797 	int ret;
4798 
4799 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4800 
4801 	trace_netif_rx(skb);
4802 
4803 #ifdef CONFIG_RPS
4804 	if (static_branch_unlikely(&rps_needed)) {
4805 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4806 		int cpu;
4807 
4808 		preempt_disable();
4809 		rcu_read_lock();
4810 
4811 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4812 		if (cpu < 0)
4813 			cpu = smp_processor_id();
4814 
4815 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4816 
4817 		rcu_read_unlock();
4818 		preempt_enable();
4819 	} else
4820 #endif
4821 	{
4822 		unsigned int qtail;
4823 
4824 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4825 		put_cpu();
4826 	}
4827 	return ret;
4828 }
4829 
4830 /**
4831  *	netif_rx	-	post buffer to the network code
4832  *	@skb: buffer to post
4833  *
4834  *	This function receives a packet from a device driver and queues it for
4835  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4836  *	may be dropped during processing for congestion control or by the
4837  *	protocol layers.
4838  *
4839  *	return values:
4840  *	NET_RX_SUCCESS	(no congestion)
4841  *	NET_RX_DROP     (packet was dropped)
4842  *
4843  */
4844 
netif_rx(struct sk_buff * skb)4845 int netif_rx(struct sk_buff *skb)
4846 {
4847 	int ret;
4848 
4849 	trace_netif_rx_entry(skb);
4850 
4851 	ret = netif_rx_internal(skb);
4852 	trace_netif_rx_exit(ret);
4853 
4854 	return ret;
4855 }
4856 EXPORT_SYMBOL(netif_rx);
4857 
netif_rx_ni(struct sk_buff * skb)4858 int netif_rx_ni(struct sk_buff *skb)
4859 {
4860 	int err;
4861 
4862 	trace_netif_rx_ni_entry(skb);
4863 
4864 	preempt_disable();
4865 	err = netif_rx_internal(skb);
4866 	if (local_softirq_pending())
4867 		do_softirq();
4868 	preempt_enable();
4869 	trace_netif_rx_ni_exit(err);
4870 
4871 	return err;
4872 }
4873 EXPORT_SYMBOL(netif_rx_ni);
4874 
netif_rx_any_context(struct sk_buff * skb)4875 int netif_rx_any_context(struct sk_buff *skb)
4876 {
4877 	/*
4878 	 * If invoked from contexts which do not invoke bottom half
4879 	 * processing either at return from interrupt or when softrqs are
4880 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4881 	 * directly.
4882 	 */
4883 	if (in_interrupt())
4884 		return netif_rx(skb);
4885 	else
4886 		return netif_rx_ni(skb);
4887 }
4888 EXPORT_SYMBOL(netif_rx_any_context);
4889 
net_tx_action(struct softirq_action * h)4890 static __latent_entropy void net_tx_action(struct softirq_action *h)
4891 {
4892 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4893 
4894 	if (sd->completion_queue) {
4895 		struct sk_buff *clist;
4896 
4897 		local_irq_disable();
4898 		clist = sd->completion_queue;
4899 		sd->completion_queue = NULL;
4900 		local_irq_enable();
4901 
4902 		while (clist) {
4903 			struct sk_buff *skb = clist;
4904 
4905 			clist = clist->next;
4906 
4907 			WARN_ON(refcount_read(&skb->users));
4908 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4909 				trace_consume_skb(skb);
4910 			else
4911 				trace_kfree_skb(skb, net_tx_action);
4912 
4913 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4914 				__kfree_skb(skb);
4915 			else
4916 				__kfree_skb_defer(skb);
4917 		}
4918 
4919 		__kfree_skb_flush();
4920 	}
4921 
4922 	if (sd->output_queue) {
4923 		struct Qdisc *head;
4924 
4925 		local_irq_disable();
4926 		head = sd->output_queue;
4927 		sd->output_queue = NULL;
4928 		sd->output_queue_tailp = &sd->output_queue;
4929 		local_irq_enable();
4930 
4931 		rcu_read_lock();
4932 
4933 		while (head) {
4934 			struct Qdisc *q = head;
4935 			spinlock_t *root_lock = NULL;
4936 
4937 			head = head->next_sched;
4938 
4939 			/* We need to make sure head->next_sched is read
4940 			 * before clearing __QDISC_STATE_SCHED
4941 			 */
4942 			smp_mb__before_atomic();
4943 
4944 			if (!(q->flags & TCQ_F_NOLOCK)) {
4945 				root_lock = qdisc_lock(q);
4946 				spin_lock(root_lock);
4947 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4948 						     &q->state))) {
4949 				/* There is a synchronize_net() between
4950 				 * STATE_DEACTIVATED flag being set and
4951 				 * qdisc_reset()/some_qdisc_is_busy() in
4952 				 * dev_deactivate(), so we can safely bail out
4953 				 * early here to avoid data race between
4954 				 * qdisc_deactivate() and some_qdisc_is_busy()
4955 				 * for lockless qdisc.
4956 				 */
4957 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4958 				continue;
4959 			}
4960 
4961 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4962 			qdisc_run(q);
4963 			if (root_lock)
4964 				spin_unlock(root_lock);
4965 		}
4966 
4967 		rcu_read_unlock();
4968 	}
4969 
4970 	xfrm_dev_backlog(sd);
4971 }
4972 
4973 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4974 /* This hook is defined here for ATM LANE */
4975 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4976 			     unsigned char *addr) __read_mostly;
4977 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4978 #endif
4979 
4980 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4981 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4982 		   struct net_device *orig_dev, bool *another)
4983 {
4984 #ifdef CONFIG_NET_CLS_ACT
4985 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4986 	struct tcf_result cl_res;
4987 
4988 	/* If there's at least one ingress present somewhere (so
4989 	 * we get here via enabled static key), remaining devices
4990 	 * that are not configured with an ingress qdisc will bail
4991 	 * out here.
4992 	 */
4993 	if (!miniq)
4994 		return skb;
4995 
4996 	if (*pt_prev) {
4997 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4998 		*pt_prev = NULL;
4999 	}
5000 
5001 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5002 	qdisc_skb_cb(skb)->mru = 0;
5003 	skb->tc_at_ingress = 1;
5004 	mini_qdisc_bstats_cpu_update(miniq, skb);
5005 
5006 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5007 				     &cl_res, false)) {
5008 	case TC_ACT_OK:
5009 	case TC_ACT_RECLASSIFY:
5010 		skb->tc_index = TC_H_MIN(cl_res.classid);
5011 		break;
5012 	case TC_ACT_SHOT:
5013 		mini_qdisc_qstats_cpu_drop(miniq);
5014 		kfree_skb(skb);
5015 		return NULL;
5016 	case TC_ACT_STOLEN:
5017 	case TC_ACT_QUEUED:
5018 	case TC_ACT_TRAP:
5019 		consume_skb(skb);
5020 		return NULL;
5021 	case TC_ACT_REDIRECT:
5022 		/* skb_mac_header check was done by cls/act_bpf, so
5023 		 * we can safely push the L2 header back before
5024 		 * redirecting to another netdev
5025 		 */
5026 		__skb_push(skb, skb->mac_len);
5027 		if (skb_do_redirect(skb) == -EAGAIN) {
5028 			__skb_pull(skb, skb->mac_len);
5029 			*another = true;
5030 			break;
5031 		}
5032 		return NULL;
5033 	case TC_ACT_CONSUMED:
5034 		return NULL;
5035 	default:
5036 		break;
5037 	}
5038 #endif /* CONFIG_NET_CLS_ACT */
5039 	return skb;
5040 }
5041 
5042 /**
5043  *	netdev_is_rx_handler_busy - check if receive handler is registered
5044  *	@dev: device to check
5045  *
5046  *	Check if a receive handler is already registered for a given device.
5047  *	Return true if there one.
5048  *
5049  *	The caller must hold the rtnl_mutex.
5050  */
netdev_is_rx_handler_busy(struct net_device * dev)5051 bool netdev_is_rx_handler_busy(struct net_device *dev)
5052 {
5053 	ASSERT_RTNL();
5054 	return dev && rtnl_dereference(dev->rx_handler);
5055 }
5056 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5057 
5058 /**
5059  *	netdev_rx_handler_register - register receive handler
5060  *	@dev: device to register a handler for
5061  *	@rx_handler: receive handler to register
5062  *	@rx_handler_data: data pointer that is used by rx handler
5063  *
5064  *	Register a receive handler for a device. This handler will then be
5065  *	called from __netif_receive_skb. A negative errno code is returned
5066  *	on a failure.
5067  *
5068  *	The caller must hold the rtnl_mutex.
5069  *
5070  *	For a general description of rx_handler, see enum rx_handler_result.
5071  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5072 int netdev_rx_handler_register(struct net_device *dev,
5073 			       rx_handler_func_t *rx_handler,
5074 			       void *rx_handler_data)
5075 {
5076 	if (netdev_is_rx_handler_busy(dev))
5077 		return -EBUSY;
5078 
5079 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5080 		return -EINVAL;
5081 
5082 	/* Note: rx_handler_data must be set before rx_handler */
5083 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5084 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5085 
5086 	return 0;
5087 }
5088 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5089 
5090 /**
5091  *	netdev_rx_handler_unregister - unregister receive handler
5092  *	@dev: device to unregister a handler from
5093  *
5094  *	Unregister a receive handler from a device.
5095  *
5096  *	The caller must hold the rtnl_mutex.
5097  */
netdev_rx_handler_unregister(struct net_device * dev)5098 void netdev_rx_handler_unregister(struct net_device *dev)
5099 {
5100 
5101 	ASSERT_RTNL();
5102 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5103 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5104 	 * section has a guarantee to see a non NULL rx_handler_data
5105 	 * as well.
5106 	 */
5107 	synchronize_net();
5108 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5109 }
5110 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5111 
5112 /*
5113  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5114  * the special handling of PFMEMALLOC skbs.
5115  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5116 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5117 {
5118 	switch (skb->protocol) {
5119 	case htons(ETH_P_ARP):
5120 	case htons(ETH_P_IP):
5121 	case htons(ETH_P_IPV6):
5122 	case htons(ETH_P_8021Q):
5123 	case htons(ETH_P_8021AD):
5124 		return true;
5125 	default:
5126 		return false;
5127 	}
5128 }
5129 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5130 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5131 			     int *ret, struct net_device *orig_dev)
5132 {
5133 	if (nf_hook_ingress_active(skb)) {
5134 		int ingress_retval;
5135 
5136 		if (*pt_prev) {
5137 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5138 			*pt_prev = NULL;
5139 		}
5140 
5141 		rcu_read_lock();
5142 		ingress_retval = nf_hook_ingress(skb);
5143 		rcu_read_unlock();
5144 		return ingress_retval;
5145 	}
5146 	return 0;
5147 }
5148 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5149 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5150 				    struct packet_type **ppt_prev)
5151 {
5152 	struct packet_type *ptype, *pt_prev;
5153 	rx_handler_func_t *rx_handler;
5154 	struct sk_buff *skb = *pskb;
5155 	struct net_device *orig_dev;
5156 	bool deliver_exact = false;
5157 	int ret = NET_RX_DROP;
5158 	__be16 type;
5159 
5160 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5161 
5162 	trace_netif_receive_skb(skb);
5163 
5164 	orig_dev = skb->dev;
5165 
5166 	skb_reset_network_header(skb);
5167 	if (!skb_transport_header_was_set(skb))
5168 		skb_reset_transport_header(skb);
5169 	skb_reset_mac_len(skb);
5170 
5171 	pt_prev = NULL;
5172 
5173 another_round:
5174 	skb->skb_iif = skb->dev->ifindex;
5175 
5176 	__this_cpu_inc(softnet_data.processed);
5177 
5178 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5179 		int ret2;
5180 
5181 		preempt_disable();
5182 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5183 		preempt_enable();
5184 
5185 		if (ret2 != XDP_PASS) {
5186 			ret = NET_RX_DROP;
5187 			goto out;
5188 		}
5189 		skb_reset_mac_len(skb);
5190 	}
5191 
5192 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5193 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5194 		skb = skb_vlan_untag(skb);
5195 		if (unlikely(!skb))
5196 			goto out;
5197 	}
5198 
5199 	if (skb_skip_tc_classify(skb))
5200 		goto skip_classify;
5201 
5202 	if (pfmemalloc)
5203 		goto skip_taps;
5204 
5205 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5206 		if (pt_prev)
5207 			ret = deliver_skb(skb, pt_prev, orig_dev);
5208 		pt_prev = ptype;
5209 	}
5210 
5211 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5212 		if (pt_prev)
5213 			ret = deliver_skb(skb, pt_prev, orig_dev);
5214 		pt_prev = ptype;
5215 	}
5216 
5217 skip_taps:
5218 #ifdef CONFIG_NET_INGRESS
5219 	if (static_branch_unlikely(&ingress_needed_key)) {
5220 		bool another = false;
5221 
5222 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5223 					 &another);
5224 		if (another)
5225 			goto another_round;
5226 		if (!skb)
5227 			goto out;
5228 
5229 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5230 			goto out;
5231 	}
5232 #endif
5233 	skb_reset_redirect(skb);
5234 skip_classify:
5235 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5236 		goto drop;
5237 
5238 	if (skb_vlan_tag_present(skb)) {
5239 		if (pt_prev) {
5240 			ret = deliver_skb(skb, pt_prev, orig_dev);
5241 			pt_prev = NULL;
5242 		}
5243 		if (vlan_do_receive(&skb))
5244 			goto another_round;
5245 		else if (unlikely(!skb))
5246 			goto out;
5247 	}
5248 
5249 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5250 	if (rx_handler) {
5251 		if (pt_prev) {
5252 			ret = deliver_skb(skb, pt_prev, orig_dev);
5253 			pt_prev = NULL;
5254 		}
5255 		switch (rx_handler(&skb)) {
5256 		case RX_HANDLER_CONSUMED:
5257 			ret = NET_RX_SUCCESS;
5258 			goto out;
5259 		case RX_HANDLER_ANOTHER:
5260 			goto another_round;
5261 		case RX_HANDLER_EXACT:
5262 			deliver_exact = true;
5263 		case RX_HANDLER_PASS:
5264 			break;
5265 		default:
5266 			BUG();
5267 		}
5268 	}
5269 
5270 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5271 check_vlan_id:
5272 		if (skb_vlan_tag_get_id(skb)) {
5273 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5274 			 * find vlan device.
5275 			 */
5276 			skb->pkt_type = PACKET_OTHERHOST;
5277 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5278 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5279 			/* Outer header is 802.1P with vlan 0, inner header is
5280 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5281 			 * not find vlan dev for vlan id 0.
5282 			 */
5283 			__vlan_hwaccel_clear_tag(skb);
5284 			skb = skb_vlan_untag(skb);
5285 			if (unlikely(!skb))
5286 				goto out;
5287 			if (vlan_do_receive(&skb))
5288 				/* After stripping off 802.1P header with vlan 0
5289 				 * vlan dev is found for inner header.
5290 				 */
5291 				goto another_round;
5292 			else if (unlikely(!skb))
5293 				goto out;
5294 			else
5295 				/* We have stripped outer 802.1P vlan 0 header.
5296 				 * But could not find vlan dev.
5297 				 * check again for vlan id to set OTHERHOST.
5298 				 */
5299 				goto check_vlan_id;
5300 		}
5301 		/* Note: we might in the future use prio bits
5302 		 * and set skb->priority like in vlan_do_receive()
5303 		 * For the time being, just ignore Priority Code Point
5304 		 */
5305 		__vlan_hwaccel_clear_tag(skb);
5306 	}
5307 
5308 	type = skb->protocol;
5309 
5310 	/* deliver only exact match when indicated */
5311 	if (likely(!deliver_exact)) {
5312 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5313 				       &ptype_base[ntohs(type) &
5314 						   PTYPE_HASH_MASK]);
5315 	}
5316 
5317 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5318 			       &orig_dev->ptype_specific);
5319 
5320 	if (unlikely(skb->dev != orig_dev)) {
5321 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322 				       &skb->dev->ptype_specific);
5323 	}
5324 
5325 	if (pt_prev) {
5326 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5327 			goto drop;
5328 		*ppt_prev = pt_prev;
5329 	} else {
5330 drop:
5331 		if (!deliver_exact)
5332 			atomic_long_inc(&skb->dev->rx_dropped);
5333 		else
5334 			atomic_long_inc(&skb->dev->rx_nohandler);
5335 		kfree_skb(skb);
5336 		/* Jamal, now you will not able to escape explaining
5337 		 * me how you were going to use this. :-)
5338 		 */
5339 		ret = NET_RX_DROP;
5340 	}
5341 
5342 out:
5343 	/* The invariant here is that if *ppt_prev is not NULL
5344 	 * then skb should also be non-NULL.
5345 	 *
5346 	 * Apparently *ppt_prev assignment above holds this invariant due to
5347 	 * skb dereferencing near it.
5348 	 */
5349 	*pskb = skb;
5350 	return ret;
5351 }
5352 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5353 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5354 {
5355 	struct net_device *orig_dev = skb->dev;
5356 	struct packet_type *pt_prev = NULL;
5357 	int ret;
5358 
5359 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5360 	if (pt_prev)
5361 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5362 					 skb->dev, pt_prev, orig_dev);
5363 	return ret;
5364 }
5365 
5366 /**
5367  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5368  *	@skb: buffer to process
5369  *
5370  *	More direct receive version of netif_receive_skb().  It should
5371  *	only be used by callers that have a need to skip RPS and Generic XDP.
5372  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5373  *
5374  *	This function may only be called from softirq context and interrupts
5375  *	should be enabled.
5376  *
5377  *	Return values (usually ignored):
5378  *	NET_RX_SUCCESS: no congestion
5379  *	NET_RX_DROP: packet was dropped
5380  */
netif_receive_skb_core(struct sk_buff * skb)5381 int netif_receive_skb_core(struct sk_buff *skb)
5382 {
5383 	int ret;
5384 
5385 	rcu_read_lock();
5386 	ret = __netif_receive_skb_one_core(skb, false);
5387 	rcu_read_unlock();
5388 
5389 	return ret;
5390 }
5391 EXPORT_SYMBOL(netif_receive_skb_core);
5392 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5393 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5394 						  struct packet_type *pt_prev,
5395 						  struct net_device *orig_dev)
5396 {
5397 	struct sk_buff *skb, *next;
5398 
5399 	if (!pt_prev)
5400 		return;
5401 	if (list_empty(head))
5402 		return;
5403 	if (pt_prev->list_func != NULL)
5404 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5405 				   ip_list_rcv, head, pt_prev, orig_dev);
5406 	else
5407 		list_for_each_entry_safe(skb, next, head, list) {
5408 			skb_list_del_init(skb);
5409 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5410 		}
5411 }
5412 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5413 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5414 {
5415 	/* Fast-path assumptions:
5416 	 * - There is no RX handler.
5417 	 * - Only one packet_type matches.
5418 	 * If either of these fails, we will end up doing some per-packet
5419 	 * processing in-line, then handling the 'last ptype' for the whole
5420 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5421 	 * because the 'last ptype' must be constant across the sublist, and all
5422 	 * other ptypes are handled per-packet.
5423 	 */
5424 	/* Current (common) ptype of sublist */
5425 	struct packet_type *pt_curr = NULL;
5426 	/* Current (common) orig_dev of sublist */
5427 	struct net_device *od_curr = NULL;
5428 	struct list_head sublist;
5429 	struct sk_buff *skb, *next;
5430 
5431 	INIT_LIST_HEAD(&sublist);
5432 	list_for_each_entry_safe(skb, next, head, list) {
5433 		struct net_device *orig_dev = skb->dev;
5434 		struct packet_type *pt_prev = NULL;
5435 
5436 		skb_list_del_init(skb);
5437 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5438 		if (!pt_prev)
5439 			continue;
5440 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5441 			/* dispatch old sublist */
5442 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5443 			/* start new sublist */
5444 			INIT_LIST_HEAD(&sublist);
5445 			pt_curr = pt_prev;
5446 			od_curr = orig_dev;
5447 		}
5448 		list_add_tail(&skb->list, &sublist);
5449 	}
5450 
5451 	/* dispatch final sublist */
5452 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453 }
5454 
__netif_receive_skb(struct sk_buff * skb)5455 static int __netif_receive_skb(struct sk_buff *skb)
5456 {
5457 	int ret;
5458 
5459 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5460 		unsigned int noreclaim_flag;
5461 
5462 		/*
5463 		 * PFMEMALLOC skbs are special, they should
5464 		 * - be delivered to SOCK_MEMALLOC sockets only
5465 		 * - stay away from userspace
5466 		 * - have bounded memory usage
5467 		 *
5468 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5469 		 * context down to all allocation sites.
5470 		 */
5471 		noreclaim_flag = memalloc_noreclaim_save();
5472 		ret = __netif_receive_skb_one_core(skb, true);
5473 		memalloc_noreclaim_restore(noreclaim_flag);
5474 	} else
5475 		ret = __netif_receive_skb_one_core(skb, false);
5476 
5477 	return ret;
5478 }
5479 
__netif_receive_skb_list(struct list_head * head)5480 static void __netif_receive_skb_list(struct list_head *head)
5481 {
5482 	unsigned long noreclaim_flag = 0;
5483 	struct sk_buff *skb, *next;
5484 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5485 
5486 	list_for_each_entry_safe(skb, next, head, list) {
5487 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5488 			struct list_head sublist;
5489 
5490 			/* Handle the previous sublist */
5491 			list_cut_before(&sublist, head, &skb->list);
5492 			if (!list_empty(&sublist))
5493 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5494 			pfmemalloc = !pfmemalloc;
5495 			/* See comments in __netif_receive_skb */
5496 			if (pfmemalloc)
5497 				noreclaim_flag = memalloc_noreclaim_save();
5498 			else
5499 				memalloc_noreclaim_restore(noreclaim_flag);
5500 		}
5501 	}
5502 	/* Handle the remaining sublist */
5503 	if (!list_empty(head))
5504 		__netif_receive_skb_list_core(head, pfmemalloc);
5505 	/* Restore pflags */
5506 	if (pfmemalloc)
5507 		memalloc_noreclaim_restore(noreclaim_flag);
5508 }
5509 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5510 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5511 {
5512 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5513 	struct bpf_prog *new = xdp->prog;
5514 	int ret = 0;
5515 
5516 	if (new) {
5517 		u32 i;
5518 
5519 		mutex_lock(&new->aux->used_maps_mutex);
5520 
5521 		/* generic XDP does not work with DEVMAPs that can
5522 		 * have a bpf_prog installed on an entry
5523 		 */
5524 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5525 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5526 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5527 				mutex_unlock(&new->aux->used_maps_mutex);
5528 				return -EINVAL;
5529 			}
5530 		}
5531 
5532 		mutex_unlock(&new->aux->used_maps_mutex);
5533 	}
5534 
5535 	switch (xdp->command) {
5536 	case XDP_SETUP_PROG:
5537 		rcu_assign_pointer(dev->xdp_prog, new);
5538 		if (old)
5539 			bpf_prog_put(old);
5540 
5541 		if (old && !new) {
5542 			static_branch_dec(&generic_xdp_needed_key);
5543 		} else if (new && !old) {
5544 			static_branch_inc(&generic_xdp_needed_key);
5545 			dev_disable_lro(dev);
5546 			dev_disable_gro_hw(dev);
5547 		}
5548 		break;
5549 
5550 	default:
5551 		ret = -EINVAL;
5552 		break;
5553 	}
5554 
5555 	return ret;
5556 }
5557 
netif_receive_skb_internal(struct sk_buff * skb)5558 static int netif_receive_skb_internal(struct sk_buff *skb)
5559 {
5560 	int ret;
5561 
5562 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5563 
5564 	if (skb_defer_rx_timestamp(skb))
5565 		return NET_RX_SUCCESS;
5566 
5567 	rcu_read_lock();
5568 #ifdef CONFIG_RPS
5569 	if (static_branch_unlikely(&rps_needed)) {
5570 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5571 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5572 
5573 		if (cpu >= 0) {
5574 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5575 			rcu_read_unlock();
5576 			return ret;
5577 		}
5578 	}
5579 #endif
5580 	ret = __netif_receive_skb(skb);
5581 	rcu_read_unlock();
5582 	return ret;
5583 }
5584 
netif_receive_skb_list_internal(struct list_head * head)5585 static void netif_receive_skb_list_internal(struct list_head *head)
5586 {
5587 	struct sk_buff *skb, *next;
5588 	struct list_head sublist;
5589 
5590 	INIT_LIST_HEAD(&sublist);
5591 	list_for_each_entry_safe(skb, next, head, list) {
5592 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5593 		skb_list_del_init(skb);
5594 		if (!skb_defer_rx_timestamp(skb))
5595 			list_add_tail(&skb->list, &sublist);
5596 	}
5597 	list_splice_init(&sublist, head);
5598 
5599 	rcu_read_lock();
5600 #ifdef CONFIG_RPS
5601 	if (static_branch_unlikely(&rps_needed)) {
5602 		list_for_each_entry_safe(skb, next, head, list) {
5603 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5604 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5605 
5606 			if (cpu >= 0) {
5607 				/* Will be handled, remove from list */
5608 				skb_list_del_init(skb);
5609 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5610 			}
5611 		}
5612 	}
5613 #endif
5614 	__netif_receive_skb_list(head);
5615 	rcu_read_unlock();
5616 }
5617 
5618 /**
5619  *	netif_receive_skb - process receive buffer from network
5620  *	@skb: buffer to process
5621  *
5622  *	netif_receive_skb() is the main receive data processing function.
5623  *	It always succeeds. The buffer may be dropped during processing
5624  *	for congestion control or by the protocol layers.
5625  *
5626  *	This function may only be called from softirq context and interrupts
5627  *	should be enabled.
5628  *
5629  *	Return values (usually ignored):
5630  *	NET_RX_SUCCESS: no congestion
5631  *	NET_RX_DROP: packet was dropped
5632  */
netif_receive_skb(struct sk_buff * skb)5633 int netif_receive_skb(struct sk_buff *skb)
5634 {
5635 	int ret;
5636 
5637 	trace_netif_receive_skb_entry(skb);
5638 
5639 	ret = netif_receive_skb_internal(skb);
5640 	trace_netif_receive_skb_exit(ret);
5641 
5642 	return ret;
5643 }
5644 EXPORT_SYMBOL(netif_receive_skb);
5645 
5646 /**
5647  *	netif_receive_skb_list - process many receive buffers from network
5648  *	@head: list of skbs to process.
5649  *
5650  *	Since return value of netif_receive_skb() is normally ignored, and
5651  *	wouldn't be meaningful for a list, this function returns void.
5652  *
5653  *	This function may only be called from softirq context and interrupts
5654  *	should be enabled.
5655  */
netif_receive_skb_list(struct list_head * head)5656 void netif_receive_skb_list(struct list_head *head)
5657 {
5658 	struct sk_buff *skb;
5659 
5660 	if (list_empty(head))
5661 		return;
5662 	if (trace_netif_receive_skb_list_entry_enabled()) {
5663 		list_for_each_entry(skb, head, list)
5664 			trace_netif_receive_skb_list_entry(skb);
5665 	}
5666 	netif_receive_skb_list_internal(head);
5667 	trace_netif_receive_skb_list_exit(0);
5668 }
5669 EXPORT_SYMBOL(netif_receive_skb_list);
5670 
5671 static DEFINE_PER_CPU(struct work_struct, flush_works);
5672 
5673 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5674 static void flush_backlog(struct work_struct *work)
5675 {
5676 	struct sk_buff *skb, *tmp;
5677 	struct softnet_data *sd;
5678 
5679 	local_bh_disable();
5680 	sd = this_cpu_ptr(&softnet_data);
5681 
5682 	local_irq_disable();
5683 	rps_lock(sd);
5684 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5685 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5686 			__skb_unlink(skb, &sd->input_pkt_queue);
5687 			dev_kfree_skb_irq(skb);
5688 			input_queue_head_incr(sd);
5689 		}
5690 	}
5691 	rps_unlock(sd);
5692 	local_irq_enable();
5693 
5694 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5695 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696 			__skb_unlink(skb, &sd->process_queue);
5697 			kfree_skb(skb);
5698 			input_queue_head_incr(sd);
5699 		}
5700 	}
5701 	local_bh_enable();
5702 }
5703 
flush_required(int cpu)5704 static bool flush_required(int cpu)
5705 {
5706 #if IS_ENABLED(CONFIG_RPS)
5707 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5708 	bool do_flush;
5709 
5710 	local_irq_disable();
5711 	rps_lock(sd);
5712 
5713 	/* as insertion into process_queue happens with the rps lock held,
5714 	 * process_queue access may race only with dequeue
5715 	 */
5716 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5717 		   !skb_queue_empty_lockless(&sd->process_queue);
5718 	rps_unlock(sd);
5719 	local_irq_enable();
5720 
5721 	return do_flush;
5722 #endif
5723 	/* without RPS we can't safely check input_pkt_queue: during a
5724 	 * concurrent remote skb_queue_splice() we can detect as empty both
5725 	 * input_pkt_queue and process_queue even if the latter could end-up
5726 	 * containing a lot of packets.
5727 	 */
5728 	return true;
5729 }
5730 
flush_all_backlogs(void)5731 static void flush_all_backlogs(void)
5732 {
5733 	static cpumask_t flush_cpus;
5734 	unsigned int cpu;
5735 
5736 	/* since we are under rtnl lock protection we can use static data
5737 	 * for the cpumask and avoid allocating on stack the possibly
5738 	 * large mask
5739 	 */
5740 	ASSERT_RTNL();
5741 
5742 	get_online_cpus();
5743 
5744 	cpumask_clear(&flush_cpus);
5745 	for_each_online_cpu(cpu) {
5746 		if (flush_required(cpu)) {
5747 			queue_work_on(cpu, system_highpri_wq,
5748 				      per_cpu_ptr(&flush_works, cpu));
5749 			cpumask_set_cpu(cpu, &flush_cpus);
5750 		}
5751 	}
5752 
5753 	/* we can have in flight packet[s] on the cpus we are not flushing,
5754 	 * synchronize_net() in unregister_netdevice_many() will take care of
5755 	 * them
5756 	 */
5757 	for_each_cpu(cpu, &flush_cpus)
5758 		flush_work(per_cpu_ptr(&flush_works, cpu));
5759 
5760 	put_online_cpus();
5761 }
5762 
5763 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5764 static void gro_normal_list(struct napi_struct *napi)
5765 {
5766 	if (!napi->rx_count)
5767 		return;
5768 	netif_receive_skb_list_internal(&napi->rx_list);
5769 	INIT_LIST_HEAD(&napi->rx_list);
5770 	napi->rx_count = 0;
5771 }
5772 
5773 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5774  * pass the whole batch up to the stack.
5775  */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5776 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5777 {
5778 	list_add_tail(&skb->list, &napi->rx_list);
5779 	napi->rx_count += segs;
5780 	if (napi->rx_count >= gro_normal_batch)
5781 		gro_normal_list(napi);
5782 }
5783 
5784 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5785 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5786 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5787 {
5788 	struct packet_offload *ptype;
5789 	__be16 type = skb->protocol;
5790 	struct list_head *head = &offload_base;
5791 	int err = -ENOENT;
5792 
5793 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5794 
5795 	if (NAPI_GRO_CB(skb)->count == 1) {
5796 		skb_shinfo(skb)->gso_size = 0;
5797 		goto out;
5798 	}
5799 
5800 	rcu_read_lock();
5801 	list_for_each_entry_rcu(ptype, head, list) {
5802 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5803 			continue;
5804 
5805 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5806 					 ipv6_gro_complete, inet_gro_complete,
5807 					 skb, 0);
5808 		break;
5809 	}
5810 	rcu_read_unlock();
5811 
5812 	if (err) {
5813 		WARN_ON(&ptype->list == head);
5814 		kfree_skb(skb);
5815 		return NET_RX_SUCCESS;
5816 	}
5817 
5818 out:
5819 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5820 	return NET_RX_SUCCESS;
5821 }
5822 
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5823 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5824 				   bool flush_old)
5825 {
5826 	struct list_head *head = &napi->gro_hash[index].list;
5827 	struct sk_buff *skb, *p;
5828 
5829 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5830 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5831 			return;
5832 		skb_list_del_init(skb);
5833 		napi_gro_complete(napi, skb);
5834 		napi->gro_hash[index].count--;
5835 	}
5836 
5837 	if (!napi->gro_hash[index].count)
5838 		__clear_bit(index, &napi->gro_bitmask);
5839 }
5840 
5841 /* napi->gro_hash[].list contains packets ordered by age.
5842  * youngest packets at the head of it.
5843  * Complete skbs in reverse order to reduce latencies.
5844  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5845 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5846 {
5847 	unsigned long bitmask = napi->gro_bitmask;
5848 	unsigned int i, base = ~0U;
5849 
5850 	while ((i = ffs(bitmask)) != 0) {
5851 		bitmask >>= i;
5852 		base += i;
5853 		__napi_gro_flush_chain(napi, base, flush_old);
5854 	}
5855 }
5856 EXPORT_SYMBOL(napi_gro_flush);
5857 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5858 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5859 					  struct sk_buff *skb)
5860 {
5861 	unsigned int maclen = skb->dev->hard_header_len;
5862 	u32 hash = skb_get_hash_raw(skb);
5863 	struct list_head *head;
5864 	struct sk_buff *p;
5865 
5866 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5867 	list_for_each_entry(p, head, list) {
5868 		unsigned long diffs;
5869 
5870 		NAPI_GRO_CB(p)->flush = 0;
5871 
5872 		if (hash != skb_get_hash_raw(p)) {
5873 			NAPI_GRO_CB(p)->same_flow = 0;
5874 			continue;
5875 		}
5876 
5877 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5878 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5879 		if (skb_vlan_tag_present(p))
5880 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5881 		diffs |= skb_metadata_dst_cmp(p, skb);
5882 		diffs |= skb_metadata_differs(p, skb);
5883 		if (maclen == ETH_HLEN)
5884 			diffs |= compare_ether_header(skb_mac_header(p),
5885 						      skb_mac_header(skb));
5886 		else if (!diffs)
5887 			diffs = memcmp(skb_mac_header(p),
5888 				       skb_mac_header(skb),
5889 				       maclen);
5890 
5891 		diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5892 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5893 		if (!diffs) {
5894 			struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5895 			struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5896 
5897 			diffs |= (!!p_ext) ^ (!!skb_ext);
5898 			if (!diffs && unlikely(skb_ext))
5899 				diffs |= p_ext->chain ^ skb_ext->chain;
5900 		}
5901 #endif
5902 
5903 		NAPI_GRO_CB(p)->same_flow = !diffs;
5904 	}
5905 
5906 	return head;
5907 }
5908 
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5909 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5910 {
5911 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5912 	const skb_frag_t *frag0 = &pinfo->frags[0];
5913 
5914 	NAPI_GRO_CB(skb)->data_offset = 0;
5915 	NAPI_GRO_CB(skb)->frag0 = NULL;
5916 	NAPI_GRO_CB(skb)->frag0_len = 0;
5917 
5918 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5919 	    !PageHighMem(skb_frag_page(frag0)) &&
5920 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5921 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5922 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5923 						    skb_frag_size(frag0),
5924 						    skb->end - skb->tail);
5925 	}
5926 }
5927 
gro_pull_from_frag0(struct sk_buff * skb,int grow)5928 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5929 {
5930 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5931 
5932 	BUG_ON(skb->end - skb->tail < grow);
5933 
5934 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5935 
5936 	skb->data_len -= grow;
5937 	skb->tail += grow;
5938 
5939 	skb_frag_off_add(&pinfo->frags[0], grow);
5940 	skb_frag_size_sub(&pinfo->frags[0], grow);
5941 
5942 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5943 		skb_frag_unref(skb, 0);
5944 		memmove(pinfo->frags, pinfo->frags + 1,
5945 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5946 	}
5947 }
5948 
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5949 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5950 {
5951 	struct sk_buff *oldest;
5952 
5953 	oldest = list_last_entry(head, struct sk_buff, list);
5954 
5955 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5956 	 * impossible.
5957 	 */
5958 	if (WARN_ON_ONCE(!oldest))
5959 		return;
5960 
5961 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5962 	 * SKB to the chain.
5963 	 */
5964 	skb_list_del_init(oldest);
5965 	napi_gro_complete(napi, oldest);
5966 }
5967 
5968 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5969 							   struct sk_buff *));
5970 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5971 							   struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5972 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5973 {
5974 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5975 	struct list_head *head = &offload_base;
5976 	struct packet_offload *ptype;
5977 	__be16 type = skb->protocol;
5978 	struct list_head *gro_head;
5979 	struct sk_buff *pp = NULL;
5980 	enum gro_result ret;
5981 	int same_flow;
5982 	int grow;
5983 
5984 	if (netif_elide_gro(skb->dev))
5985 		goto normal;
5986 
5987 	gro_head = gro_list_prepare(napi, skb);
5988 
5989 	rcu_read_lock();
5990 	list_for_each_entry_rcu(ptype, head, list) {
5991 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5992 			continue;
5993 
5994 		skb_set_network_header(skb, skb_gro_offset(skb));
5995 		skb_reset_mac_len(skb);
5996 		NAPI_GRO_CB(skb)->same_flow = 0;
5997 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5998 		NAPI_GRO_CB(skb)->free = 0;
5999 		NAPI_GRO_CB(skb)->encap_mark = 0;
6000 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6001 		NAPI_GRO_CB(skb)->is_fou = 0;
6002 		NAPI_GRO_CB(skb)->is_atomic = 1;
6003 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6004 
6005 		/* Setup for GRO checksum validation */
6006 		switch (skb->ip_summed) {
6007 		case CHECKSUM_COMPLETE:
6008 			NAPI_GRO_CB(skb)->csum = skb->csum;
6009 			NAPI_GRO_CB(skb)->csum_valid = 1;
6010 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6011 			break;
6012 		case CHECKSUM_UNNECESSARY:
6013 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6014 			NAPI_GRO_CB(skb)->csum_valid = 0;
6015 			break;
6016 		default:
6017 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6018 			NAPI_GRO_CB(skb)->csum_valid = 0;
6019 		}
6020 
6021 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6022 					ipv6_gro_receive, inet_gro_receive,
6023 					gro_head, skb);
6024 		break;
6025 	}
6026 	rcu_read_unlock();
6027 
6028 	if (&ptype->list == head)
6029 		goto normal;
6030 
6031 	if (PTR_ERR(pp) == -EINPROGRESS) {
6032 		ret = GRO_CONSUMED;
6033 		goto ok;
6034 	}
6035 
6036 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6037 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6038 
6039 	if (pp) {
6040 		skb_list_del_init(pp);
6041 		napi_gro_complete(napi, pp);
6042 		napi->gro_hash[hash].count--;
6043 	}
6044 
6045 	if (same_flow)
6046 		goto ok;
6047 
6048 	if (NAPI_GRO_CB(skb)->flush)
6049 		goto normal;
6050 
6051 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6052 		gro_flush_oldest(napi, gro_head);
6053 	} else {
6054 		napi->gro_hash[hash].count++;
6055 	}
6056 	NAPI_GRO_CB(skb)->count = 1;
6057 	NAPI_GRO_CB(skb)->age = jiffies;
6058 	NAPI_GRO_CB(skb)->last = skb;
6059 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6060 	list_add(&skb->list, gro_head);
6061 	ret = GRO_HELD;
6062 
6063 pull:
6064 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6065 	if (grow > 0)
6066 		gro_pull_from_frag0(skb, grow);
6067 ok:
6068 	if (napi->gro_hash[hash].count) {
6069 		if (!test_bit(hash, &napi->gro_bitmask))
6070 			__set_bit(hash, &napi->gro_bitmask);
6071 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6072 		__clear_bit(hash, &napi->gro_bitmask);
6073 	}
6074 
6075 	return ret;
6076 
6077 normal:
6078 	ret = GRO_NORMAL;
6079 	goto pull;
6080 }
6081 
gro_find_receive_by_type(__be16 type)6082 struct packet_offload *gro_find_receive_by_type(__be16 type)
6083 {
6084 	struct list_head *offload_head = &offload_base;
6085 	struct packet_offload *ptype;
6086 
6087 	list_for_each_entry_rcu(ptype, offload_head, list) {
6088 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6089 			continue;
6090 		return ptype;
6091 	}
6092 	return NULL;
6093 }
6094 EXPORT_SYMBOL(gro_find_receive_by_type);
6095 
gro_find_complete_by_type(__be16 type)6096 struct packet_offload *gro_find_complete_by_type(__be16 type)
6097 {
6098 	struct list_head *offload_head = &offload_base;
6099 	struct packet_offload *ptype;
6100 
6101 	list_for_each_entry_rcu(ptype, offload_head, list) {
6102 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6103 			continue;
6104 		return ptype;
6105 	}
6106 	return NULL;
6107 }
6108 EXPORT_SYMBOL(gro_find_complete_by_type);
6109 
napi_skb_free_stolen_head(struct sk_buff * skb)6110 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6111 {
6112 	skb_dst_drop(skb);
6113 	skb_ext_put(skb);
6114 	kmem_cache_free(skbuff_head_cache, skb);
6115 }
6116 
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6117 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6118 				    struct sk_buff *skb,
6119 				    gro_result_t ret)
6120 {
6121 	switch (ret) {
6122 	case GRO_NORMAL:
6123 		gro_normal_one(napi, skb, 1);
6124 		break;
6125 
6126 	case GRO_DROP:
6127 		kfree_skb(skb);
6128 		break;
6129 
6130 	case GRO_MERGED_FREE:
6131 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6132 			napi_skb_free_stolen_head(skb);
6133 		else
6134 			__kfree_skb(skb);
6135 		break;
6136 
6137 	case GRO_HELD:
6138 	case GRO_MERGED:
6139 	case GRO_CONSUMED:
6140 		break;
6141 	}
6142 
6143 	return ret;
6144 }
6145 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6146 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6147 {
6148 	gro_result_t ret;
6149 
6150 	skb_mark_napi_id(skb, napi);
6151 	trace_napi_gro_receive_entry(skb);
6152 
6153 	skb_gro_reset_offset(skb, 0);
6154 
6155 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6156 	trace_napi_gro_receive_exit(ret);
6157 
6158 	return ret;
6159 }
6160 EXPORT_SYMBOL(napi_gro_receive);
6161 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6162 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6163 {
6164 	if (unlikely(skb->pfmemalloc)) {
6165 		consume_skb(skb);
6166 		return;
6167 	}
6168 	__skb_pull(skb, skb_headlen(skb));
6169 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6170 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6171 	__vlan_hwaccel_clear_tag(skb);
6172 	skb->dev = napi->dev;
6173 	skb->skb_iif = 0;
6174 
6175 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6176 	skb->pkt_type = PACKET_HOST;
6177 
6178 	skb->encapsulation = 0;
6179 	skb_shinfo(skb)->gso_type = 0;
6180 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6181 	skb_ext_reset(skb);
6182 	nf_reset_ct(skb);
6183 
6184 	napi->skb = skb;
6185 }
6186 
napi_get_frags(struct napi_struct * napi)6187 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6188 {
6189 	struct sk_buff *skb = napi->skb;
6190 
6191 	if (!skb) {
6192 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6193 		if (skb) {
6194 			napi->skb = skb;
6195 			skb_mark_napi_id(skb, napi);
6196 		}
6197 	}
6198 	return skb;
6199 }
6200 EXPORT_SYMBOL(napi_get_frags);
6201 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6202 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6203 				      struct sk_buff *skb,
6204 				      gro_result_t ret)
6205 {
6206 	switch (ret) {
6207 	case GRO_NORMAL:
6208 	case GRO_HELD:
6209 		__skb_push(skb, ETH_HLEN);
6210 		skb->protocol = eth_type_trans(skb, skb->dev);
6211 		if (ret == GRO_NORMAL)
6212 			gro_normal_one(napi, skb, 1);
6213 		break;
6214 
6215 	case GRO_DROP:
6216 		napi_reuse_skb(napi, skb);
6217 		break;
6218 
6219 	case GRO_MERGED_FREE:
6220 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6221 			napi_skb_free_stolen_head(skb);
6222 		else
6223 			napi_reuse_skb(napi, skb);
6224 		break;
6225 
6226 	case GRO_MERGED:
6227 	case GRO_CONSUMED:
6228 		break;
6229 	}
6230 
6231 	return ret;
6232 }
6233 
6234 /* Upper GRO stack assumes network header starts at gro_offset=0
6235  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6236  * We copy ethernet header into skb->data to have a common layout.
6237  */
napi_frags_skb(struct napi_struct * napi)6238 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6239 {
6240 	struct sk_buff *skb = napi->skb;
6241 	const struct ethhdr *eth;
6242 	unsigned int hlen = sizeof(*eth);
6243 
6244 	napi->skb = NULL;
6245 
6246 	skb_reset_mac_header(skb);
6247 	skb_gro_reset_offset(skb, hlen);
6248 
6249 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6250 		eth = skb_gro_header_slow(skb, hlen, 0);
6251 		if (unlikely(!eth)) {
6252 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6253 					     __func__, napi->dev->name);
6254 			napi_reuse_skb(napi, skb);
6255 			return NULL;
6256 		}
6257 	} else {
6258 		eth = (const struct ethhdr *)skb->data;
6259 		gro_pull_from_frag0(skb, hlen);
6260 		NAPI_GRO_CB(skb)->frag0 += hlen;
6261 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6262 	}
6263 	__skb_pull(skb, hlen);
6264 
6265 	/*
6266 	 * This works because the only protocols we care about don't require
6267 	 * special handling.
6268 	 * We'll fix it up properly in napi_frags_finish()
6269 	 */
6270 	skb->protocol = eth->h_proto;
6271 
6272 	return skb;
6273 }
6274 
napi_gro_frags(struct napi_struct * napi)6275 gro_result_t napi_gro_frags(struct napi_struct *napi)
6276 {
6277 	gro_result_t ret;
6278 	struct sk_buff *skb = napi_frags_skb(napi);
6279 
6280 	if (!skb)
6281 		return GRO_DROP;
6282 
6283 	trace_napi_gro_frags_entry(skb);
6284 
6285 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6286 	trace_napi_gro_frags_exit(ret);
6287 
6288 	return ret;
6289 }
6290 EXPORT_SYMBOL(napi_gro_frags);
6291 
6292 /* Compute the checksum from gro_offset and return the folded value
6293  * after adding in any pseudo checksum.
6294  */
__skb_gro_checksum_complete(struct sk_buff * skb)6295 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6296 {
6297 	__wsum wsum;
6298 	__sum16 sum;
6299 
6300 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6301 
6302 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6303 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6304 	/* See comments in __skb_checksum_complete(). */
6305 	if (likely(!sum)) {
6306 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6307 		    !skb->csum_complete_sw)
6308 			netdev_rx_csum_fault(skb->dev, skb);
6309 	}
6310 
6311 	NAPI_GRO_CB(skb)->csum = wsum;
6312 	NAPI_GRO_CB(skb)->csum_valid = 1;
6313 
6314 	return sum;
6315 }
6316 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6317 
net_rps_send_ipi(struct softnet_data * remsd)6318 static void net_rps_send_ipi(struct softnet_data *remsd)
6319 {
6320 #ifdef CONFIG_RPS
6321 	while (remsd) {
6322 		struct softnet_data *next = remsd->rps_ipi_next;
6323 
6324 		if (cpu_online(remsd->cpu))
6325 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6326 		remsd = next;
6327 	}
6328 #endif
6329 }
6330 
6331 /*
6332  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6333  * Note: called with local irq disabled, but exits with local irq enabled.
6334  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6335 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6336 {
6337 #ifdef CONFIG_RPS
6338 	struct softnet_data *remsd = sd->rps_ipi_list;
6339 
6340 	if (remsd) {
6341 		sd->rps_ipi_list = NULL;
6342 
6343 		local_irq_enable();
6344 
6345 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6346 		net_rps_send_ipi(remsd);
6347 	} else
6348 #endif
6349 		local_irq_enable();
6350 }
6351 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6352 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6353 {
6354 #ifdef CONFIG_RPS
6355 	return sd->rps_ipi_list != NULL;
6356 #else
6357 	return false;
6358 #endif
6359 }
6360 
process_backlog(struct napi_struct * napi,int quota)6361 static int process_backlog(struct napi_struct *napi, int quota)
6362 {
6363 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6364 	bool again = true;
6365 	int work = 0;
6366 
6367 	/* Check if we have pending ipi, its better to send them now,
6368 	 * not waiting net_rx_action() end.
6369 	 */
6370 	if (sd_has_rps_ipi_waiting(sd)) {
6371 		local_irq_disable();
6372 		net_rps_action_and_irq_enable(sd);
6373 	}
6374 
6375 	napi->weight = READ_ONCE(dev_rx_weight);
6376 	while (again) {
6377 		struct sk_buff *skb;
6378 
6379 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6380 			rcu_read_lock();
6381 			__netif_receive_skb(skb);
6382 			rcu_read_unlock();
6383 			input_queue_head_incr(sd);
6384 			if (++work >= quota)
6385 				return work;
6386 
6387 		}
6388 
6389 		local_irq_disable();
6390 		rps_lock(sd);
6391 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6392 			/*
6393 			 * Inline a custom version of __napi_complete().
6394 			 * only current cpu owns and manipulates this napi,
6395 			 * and NAPI_STATE_SCHED is the only possible flag set
6396 			 * on backlog.
6397 			 * We can use a plain write instead of clear_bit(),
6398 			 * and we dont need an smp_mb() memory barrier.
6399 			 */
6400 			napi->state = 0;
6401 			again = false;
6402 		} else {
6403 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6404 						   &sd->process_queue);
6405 		}
6406 		rps_unlock(sd);
6407 		local_irq_enable();
6408 	}
6409 
6410 	return work;
6411 }
6412 
6413 /**
6414  * __napi_schedule - schedule for receive
6415  * @n: entry to schedule
6416  *
6417  * The entry's receive function will be scheduled to run.
6418  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6419  */
__napi_schedule(struct napi_struct * n)6420 void __napi_schedule(struct napi_struct *n)
6421 {
6422 	unsigned long flags;
6423 
6424 	local_irq_save(flags);
6425 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6426 	local_irq_restore(flags);
6427 }
6428 EXPORT_SYMBOL(__napi_schedule);
6429 
6430 /**
6431  *	napi_schedule_prep - check if napi can be scheduled
6432  *	@n: napi context
6433  *
6434  * Test if NAPI routine is already running, and if not mark
6435  * it as running.  This is used as a condition variable to
6436  * insure only one NAPI poll instance runs.  We also make
6437  * sure there is no pending NAPI disable.
6438  */
napi_schedule_prep(struct napi_struct * n)6439 bool napi_schedule_prep(struct napi_struct *n)
6440 {
6441 	unsigned long val, new;
6442 
6443 	do {
6444 		val = READ_ONCE(n->state);
6445 		if (unlikely(val & NAPIF_STATE_DISABLE))
6446 			return false;
6447 		new = val | NAPIF_STATE_SCHED;
6448 
6449 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6450 		 * This was suggested by Alexander Duyck, as compiler
6451 		 * emits better code than :
6452 		 * if (val & NAPIF_STATE_SCHED)
6453 		 *     new |= NAPIF_STATE_MISSED;
6454 		 */
6455 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6456 						   NAPIF_STATE_MISSED;
6457 	} while (cmpxchg(&n->state, val, new) != val);
6458 
6459 	return !(val & NAPIF_STATE_SCHED);
6460 }
6461 EXPORT_SYMBOL(napi_schedule_prep);
6462 
6463 /**
6464  * __napi_schedule_irqoff - schedule for receive
6465  * @n: entry to schedule
6466  *
6467  * Variant of __napi_schedule() assuming hard irqs are masked.
6468  *
6469  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6470  * because the interrupt disabled assumption might not be true
6471  * due to force-threaded interrupts and spinlock substitution.
6472  */
__napi_schedule_irqoff(struct napi_struct * n)6473 void __napi_schedule_irqoff(struct napi_struct *n)
6474 {
6475 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6476 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6477 	else
6478 		__napi_schedule(n);
6479 }
6480 EXPORT_SYMBOL(__napi_schedule_irqoff);
6481 
napi_complete_done(struct napi_struct * n,int work_done)6482 bool napi_complete_done(struct napi_struct *n, int work_done)
6483 {
6484 	unsigned long flags, val, new, timeout = 0;
6485 	bool ret = true;
6486 
6487 	/*
6488 	 * 1) Don't let napi dequeue from the cpu poll list
6489 	 *    just in case its running on a different cpu.
6490 	 * 2) If we are busy polling, do nothing here, we have
6491 	 *    the guarantee we will be called later.
6492 	 */
6493 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6494 				 NAPIF_STATE_IN_BUSY_POLL)))
6495 		return false;
6496 
6497 	if (work_done) {
6498 		if (n->gro_bitmask)
6499 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6500 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6501 	}
6502 	if (n->defer_hard_irqs_count > 0) {
6503 		n->defer_hard_irqs_count--;
6504 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6505 		if (timeout)
6506 			ret = false;
6507 	}
6508 	if (n->gro_bitmask) {
6509 		/* When the NAPI instance uses a timeout and keeps postponing
6510 		 * it, we need to bound somehow the time packets are kept in
6511 		 * the GRO layer
6512 		 */
6513 		napi_gro_flush(n, !!timeout);
6514 	}
6515 
6516 	gro_normal_list(n);
6517 
6518 	if (unlikely(!list_empty(&n->poll_list))) {
6519 		/* If n->poll_list is not empty, we need to mask irqs */
6520 		local_irq_save(flags);
6521 		list_del_init(&n->poll_list);
6522 		local_irq_restore(flags);
6523 	}
6524 
6525 	do {
6526 		val = READ_ONCE(n->state);
6527 
6528 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6529 
6530 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6531 
6532 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6533 		 * because we will call napi->poll() one more time.
6534 		 * This C code was suggested by Alexander Duyck to help gcc.
6535 		 */
6536 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6537 						    NAPIF_STATE_SCHED;
6538 	} while (cmpxchg(&n->state, val, new) != val);
6539 
6540 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6541 		__napi_schedule(n);
6542 		return false;
6543 	}
6544 
6545 	if (timeout)
6546 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6547 			      HRTIMER_MODE_REL_PINNED);
6548 	return ret;
6549 }
6550 EXPORT_SYMBOL(napi_complete_done);
6551 
6552 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6553 static struct napi_struct *napi_by_id(unsigned int napi_id)
6554 {
6555 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6556 	struct napi_struct *napi;
6557 
6558 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6559 		if (napi->napi_id == napi_id)
6560 			return napi;
6561 
6562 	return NULL;
6563 }
6564 
6565 #if defined(CONFIG_NET_RX_BUSY_POLL)
6566 
6567 #define BUSY_POLL_BUDGET 8
6568 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6569 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6570 {
6571 	int rc;
6572 
6573 	/* Busy polling means there is a high chance device driver hard irq
6574 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6575 	 * set in napi_schedule_prep().
6576 	 * Since we are about to call napi->poll() once more, we can safely
6577 	 * clear NAPI_STATE_MISSED.
6578 	 *
6579 	 * Note: x86 could use a single "lock and ..." instruction
6580 	 * to perform these two clear_bit()
6581 	 */
6582 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6583 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6584 
6585 	local_bh_disable();
6586 
6587 	/* All we really want here is to re-enable device interrupts.
6588 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6589 	 */
6590 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6591 	/* We can't gro_normal_list() here, because napi->poll() might have
6592 	 * rearmed the napi (napi_complete_done()) in which case it could
6593 	 * already be running on another CPU.
6594 	 */
6595 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6596 	netpoll_poll_unlock(have_poll_lock);
6597 	if (rc == BUSY_POLL_BUDGET) {
6598 		/* As the whole budget was spent, we still own the napi so can
6599 		 * safely handle the rx_list.
6600 		 */
6601 		gro_normal_list(napi);
6602 		__napi_schedule(napi);
6603 	}
6604 	local_bh_enable();
6605 }
6606 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6607 void napi_busy_loop(unsigned int napi_id,
6608 		    bool (*loop_end)(void *, unsigned long),
6609 		    void *loop_end_arg)
6610 {
6611 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6612 	int (*napi_poll)(struct napi_struct *napi, int budget);
6613 	void *have_poll_lock = NULL;
6614 	struct napi_struct *napi;
6615 
6616 restart:
6617 	napi_poll = NULL;
6618 
6619 	rcu_read_lock();
6620 
6621 	napi = napi_by_id(napi_id);
6622 	if (!napi)
6623 		goto out;
6624 
6625 	preempt_disable();
6626 	for (;;) {
6627 		int work = 0;
6628 
6629 		local_bh_disable();
6630 		if (!napi_poll) {
6631 			unsigned long val = READ_ONCE(napi->state);
6632 
6633 			/* If multiple threads are competing for this napi,
6634 			 * we avoid dirtying napi->state as much as we can.
6635 			 */
6636 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6637 				   NAPIF_STATE_IN_BUSY_POLL))
6638 				goto count;
6639 			if (cmpxchg(&napi->state, val,
6640 				    val | NAPIF_STATE_IN_BUSY_POLL |
6641 					  NAPIF_STATE_SCHED) != val)
6642 				goto count;
6643 			have_poll_lock = netpoll_poll_lock(napi);
6644 			napi_poll = napi->poll;
6645 		}
6646 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6647 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6648 		gro_normal_list(napi);
6649 count:
6650 		if (work > 0)
6651 			__NET_ADD_STATS(dev_net(napi->dev),
6652 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6653 		local_bh_enable();
6654 
6655 		if (!loop_end || loop_end(loop_end_arg, start_time))
6656 			break;
6657 
6658 		if (unlikely(need_resched())) {
6659 			if (napi_poll)
6660 				busy_poll_stop(napi, have_poll_lock);
6661 			preempt_enable();
6662 			rcu_read_unlock();
6663 			cond_resched();
6664 			if (loop_end(loop_end_arg, start_time))
6665 				return;
6666 			goto restart;
6667 		}
6668 		cpu_relax();
6669 	}
6670 	if (napi_poll)
6671 		busy_poll_stop(napi, have_poll_lock);
6672 	preempt_enable();
6673 out:
6674 	rcu_read_unlock();
6675 }
6676 EXPORT_SYMBOL(napi_busy_loop);
6677 
6678 #endif /* CONFIG_NET_RX_BUSY_POLL */
6679 
napi_hash_add(struct napi_struct * napi)6680 static void napi_hash_add(struct napi_struct *napi)
6681 {
6682 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6683 		return;
6684 
6685 	spin_lock(&napi_hash_lock);
6686 
6687 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6688 	do {
6689 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6690 			napi_gen_id = MIN_NAPI_ID;
6691 	} while (napi_by_id(napi_gen_id));
6692 	napi->napi_id = napi_gen_id;
6693 
6694 	hlist_add_head_rcu(&napi->napi_hash_node,
6695 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6696 
6697 	spin_unlock(&napi_hash_lock);
6698 }
6699 
6700 /* Warning : caller is responsible to make sure rcu grace period
6701  * is respected before freeing memory containing @napi
6702  */
napi_hash_del(struct napi_struct * napi)6703 static void napi_hash_del(struct napi_struct *napi)
6704 {
6705 	spin_lock(&napi_hash_lock);
6706 
6707 	hlist_del_init_rcu(&napi->napi_hash_node);
6708 
6709 	spin_unlock(&napi_hash_lock);
6710 }
6711 
napi_watchdog(struct hrtimer * timer)6712 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6713 {
6714 	struct napi_struct *napi;
6715 
6716 	napi = container_of(timer, struct napi_struct, timer);
6717 
6718 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6719 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6720 	 */
6721 	if (!napi_disable_pending(napi) &&
6722 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6723 		__napi_schedule_irqoff(napi);
6724 
6725 	return HRTIMER_NORESTART;
6726 }
6727 
init_gro_hash(struct napi_struct * napi)6728 static void init_gro_hash(struct napi_struct *napi)
6729 {
6730 	int i;
6731 
6732 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6733 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6734 		napi->gro_hash[i].count = 0;
6735 	}
6736 	napi->gro_bitmask = 0;
6737 }
6738 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6739 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6740 		    int (*poll)(struct napi_struct *, int), int weight)
6741 {
6742 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6743 		return;
6744 
6745 	INIT_LIST_HEAD(&napi->poll_list);
6746 	INIT_HLIST_NODE(&napi->napi_hash_node);
6747 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6748 	napi->timer.function = napi_watchdog;
6749 	init_gro_hash(napi);
6750 	napi->skb = NULL;
6751 	INIT_LIST_HEAD(&napi->rx_list);
6752 	napi->rx_count = 0;
6753 	napi->poll = poll;
6754 	if (weight > NAPI_POLL_WEIGHT)
6755 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6756 				weight);
6757 	napi->weight = weight;
6758 	napi->dev = dev;
6759 #ifdef CONFIG_NETPOLL
6760 	napi->poll_owner = -1;
6761 #endif
6762 	set_bit(NAPI_STATE_SCHED, &napi->state);
6763 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6764 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6765 	napi_hash_add(napi);
6766 }
6767 EXPORT_SYMBOL(netif_napi_add);
6768 
napi_disable(struct napi_struct * n)6769 void napi_disable(struct napi_struct *n)
6770 {
6771 	might_sleep();
6772 	set_bit(NAPI_STATE_DISABLE, &n->state);
6773 
6774 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6775 		msleep(1);
6776 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6777 		msleep(1);
6778 
6779 	hrtimer_cancel(&n->timer);
6780 
6781 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6782 }
6783 EXPORT_SYMBOL(napi_disable);
6784 
flush_gro_hash(struct napi_struct * napi)6785 static void flush_gro_hash(struct napi_struct *napi)
6786 {
6787 	int i;
6788 
6789 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6790 		struct sk_buff *skb, *n;
6791 
6792 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6793 			kfree_skb(skb);
6794 		napi->gro_hash[i].count = 0;
6795 	}
6796 }
6797 
6798 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6799 void __netif_napi_del(struct napi_struct *napi)
6800 {
6801 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6802 		return;
6803 
6804 	napi_hash_del(napi);
6805 	list_del_rcu(&napi->dev_list);
6806 	napi_free_frags(napi);
6807 
6808 	flush_gro_hash(napi);
6809 	napi->gro_bitmask = 0;
6810 }
6811 EXPORT_SYMBOL(__netif_napi_del);
6812 
napi_poll(struct napi_struct * n,struct list_head * repoll)6813 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6814 {
6815 	void *have;
6816 	int work, weight;
6817 
6818 	list_del_init(&n->poll_list);
6819 
6820 	have = netpoll_poll_lock(n);
6821 
6822 	weight = n->weight;
6823 
6824 	/* This NAPI_STATE_SCHED test is for avoiding a race
6825 	 * with netpoll's poll_napi().  Only the entity which
6826 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6827 	 * actually make the ->poll() call.  Therefore we avoid
6828 	 * accidentally calling ->poll() when NAPI is not scheduled.
6829 	 */
6830 	work = 0;
6831 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6832 		work = n->poll(n, weight);
6833 		trace_napi_poll(n, work, weight);
6834 	}
6835 
6836 	if (unlikely(work > weight))
6837 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6838 			    n->poll, work, weight);
6839 
6840 	if (likely(work < weight))
6841 		goto out_unlock;
6842 
6843 	/* Drivers must not modify the NAPI state if they
6844 	 * consume the entire weight.  In such cases this code
6845 	 * still "owns" the NAPI instance and therefore can
6846 	 * move the instance around on the list at-will.
6847 	 */
6848 	if (unlikely(napi_disable_pending(n))) {
6849 		napi_complete(n);
6850 		goto out_unlock;
6851 	}
6852 
6853 	if (n->gro_bitmask) {
6854 		/* flush too old packets
6855 		 * If HZ < 1000, flush all packets.
6856 		 */
6857 		napi_gro_flush(n, HZ >= 1000);
6858 	}
6859 
6860 	gro_normal_list(n);
6861 
6862 	/* Some drivers may have called napi_schedule
6863 	 * prior to exhausting their budget.
6864 	 */
6865 	if (unlikely(!list_empty(&n->poll_list))) {
6866 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6867 			     n->dev ? n->dev->name : "backlog");
6868 		goto out_unlock;
6869 	}
6870 
6871 	list_add_tail(&n->poll_list, repoll);
6872 
6873 out_unlock:
6874 	netpoll_poll_unlock(have);
6875 
6876 	return work;
6877 }
6878 
net_rx_action(struct softirq_action * h)6879 static __latent_entropy void net_rx_action(struct softirq_action *h)
6880 {
6881 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6882 	unsigned long time_limit = jiffies +
6883 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6884 	int budget = READ_ONCE(netdev_budget);
6885 	LIST_HEAD(list);
6886 	LIST_HEAD(repoll);
6887 
6888 	local_irq_disable();
6889 	list_splice_init(&sd->poll_list, &list);
6890 	local_irq_enable();
6891 
6892 	for (;;) {
6893 		struct napi_struct *n;
6894 
6895 		if (list_empty(&list)) {
6896 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6897 				goto out;
6898 			break;
6899 		}
6900 
6901 		n = list_first_entry(&list, struct napi_struct, poll_list);
6902 		budget -= napi_poll(n, &repoll);
6903 
6904 		/* If softirq window is exhausted then punt.
6905 		 * Allow this to run for 2 jiffies since which will allow
6906 		 * an average latency of 1.5/HZ.
6907 		 */
6908 		if (unlikely(budget <= 0 ||
6909 			     time_after_eq(jiffies, time_limit))) {
6910 			sd->time_squeeze++;
6911 			break;
6912 		}
6913 	}
6914 
6915 	local_irq_disable();
6916 
6917 	list_splice_tail_init(&sd->poll_list, &list);
6918 	list_splice_tail(&repoll, &list);
6919 	list_splice(&list, &sd->poll_list);
6920 	if (!list_empty(&sd->poll_list))
6921 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6922 
6923 	net_rps_action_and_irq_enable(sd);
6924 out:
6925 	__kfree_skb_flush();
6926 }
6927 
6928 struct netdev_adjacent {
6929 	struct net_device *dev;
6930 
6931 	/* upper master flag, there can only be one master device per list */
6932 	bool master;
6933 
6934 	/* lookup ignore flag */
6935 	bool ignore;
6936 
6937 	/* counter for the number of times this device was added to us */
6938 	u16 ref_nr;
6939 
6940 	/* private field for the users */
6941 	void *private;
6942 
6943 	struct list_head list;
6944 	struct rcu_head rcu;
6945 };
6946 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6947 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6948 						 struct list_head *adj_list)
6949 {
6950 	struct netdev_adjacent *adj;
6951 
6952 	list_for_each_entry(adj, adj_list, list) {
6953 		if (adj->dev == adj_dev)
6954 			return adj;
6955 	}
6956 	return NULL;
6957 }
6958 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6959 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6960 				    struct netdev_nested_priv *priv)
6961 {
6962 	struct net_device *dev = (struct net_device *)priv->data;
6963 
6964 	return upper_dev == dev;
6965 }
6966 
6967 /**
6968  * netdev_has_upper_dev - Check if device is linked to an upper device
6969  * @dev: device
6970  * @upper_dev: upper device to check
6971  *
6972  * Find out if a device is linked to specified upper device and return true
6973  * in case it is. Note that this checks only immediate upper device,
6974  * not through a complete stack of devices. The caller must hold the RTNL lock.
6975  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6976 bool netdev_has_upper_dev(struct net_device *dev,
6977 			  struct net_device *upper_dev)
6978 {
6979 	struct netdev_nested_priv priv = {
6980 		.data = (void *)upper_dev,
6981 	};
6982 
6983 	ASSERT_RTNL();
6984 
6985 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6986 					     &priv);
6987 }
6988 EXPORT_SYMBOL(netdev_has_upper_dev);
6989 
6990 /**
6991  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6992  * @dev: device
6993  * @upper_dev: upper device to check
6994  *
6995  * Find out if a device is linked to specified upper device and return true
6996  * in case it is. Note that this checks the entire upper device chain.
6997  * The caller must hold rcu lock.
6998  */
6999 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7000 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7001 				  struct net_device *upper_dev)
7002 {
7003 	struct netdev_nested_priv priv = {
7004 		.data = (void *)upper_dev,
7005 	};
7006 
7007 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7008 					       &priv);
7009 }
7010 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7011 
7012 /**
7013  * netdev_has_any_upper_dev - Check if device is linked to some device
7014  * @dev: device
7015  *
7016  * Find out if a device is linked to an upper device and return true in case
7017  * it is. The caller must hold the RTNL lock.
7018  */
netdev_has_any_upper_dev(struct net_device * dev)7019 bool netdev_has_any_upper_dev(struct net_device *dev)
7020 {
7021 	ASSERT_RTNL();
7022 
7023 	return !list_empty(&dev->adj_list.upper);
7024 }
7025 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7026 
7027 /**
7028  * netdev_master_upper_dev_get - Get master upper device
7029  * @dev: device
7030  *
7031  * Find a master upper device and return pointer to it or NULL in case
7032  * it's not there. The caller must hold the RTNL lock.
7033  */
netdev_master_upper_dev_get(struct net_device * dev)7034 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7035 {
7036 	struct netdev_adjacent *upper;
7037 
7038 	ASSERT_RTNL();
7039 
7040 	if (list_empty(&dev->adj_list.upper))
7041 		return NULL;
7042 
7043 	upper = list_first_entry(&dev->adj_list.upper,
7044 				 struct netdev_adjacent, list);
7045 	if (likely(upper->master))
7046 		return upper->dev;
7047 	return NULL;
7048 }
7049 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7050 
__netdev_master_upper_dev_get(struct net_device * dev)7051 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7052 {
7053 	struct netdev_adjacent *upper;
7054 
7055 	ASSERT_RTNL();
7056 
7057 	if (list_empty(&dev->adj_list.upper))
7058 		return NULL;
7059 
7060 	upper = list_first_entry(&dev->adj_list.upper,
7061 				 struct netdev_adjacent, list);
7062 	if (likely(upper->master) && !upper->ignore)
7063 		return upper->dev;
7064 	return NULL;
7065 }
7066 
7067 /**
7068  * netdev_has_any_lower_dev - Check if device is linked to some device
7069  * @dev: device
7070  *
7071  * Find out if a device is linked to a lower device and return true in case
7072  * it is. The caller must hold the RTNL lock.
7073  */
netdev_has_any_lower_dev(struct net_device * dev)7074 static bool netdev_has_any_lower_dev(struct net_device *dev)
7075 {
7076 	ASSERT_RTNL();
7077 
7078 	return !list_empty(&dev->adj_list.lower);
7079 }
7080 
netdev_adjacent_get_private(struct list_head * adj_list)7081 void *netdev_adjacent_get_private(struct list_head *adj_list)
7082 {
7083 	struct netdev_adjacent *adj;
7084 
7085 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7086 
7087 	return adj->private;
7088 }
7089 EXPORT_SYMBOL(netdev_adjacent_get_private);
7090 
7091 /**
7092  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7093  * @dev: device
7094  * @iter: list_head ** of the current position
7095  *
7096  * Gets the next device from the dev's upper list, starting from iter
7097  * position. The caller must hold RCU read lock.
7098  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7099 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7100 						 struct list_head **iter)
7101 {
7102 	struct netdev_adjacent *upper;
7103 
7104 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7105 
7106 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7107 
7108 	if (&upper->list == &dev->adj_list.upper)
7109 		return NULL;
7110 
7111 	*iter = &upper->list;
7112 
7113 	return upper->dev;
7114 }
7115 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7116 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7117 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7118 						  struct list_head **iter,
7119 						  bool *ignore)
7120 {
7121 	struct netdev_adjacent *upper;
7122 
7123 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7124 
7125 	if (&upper->list == &dev->adj_list.upper)
7126 		return NULL;
7127 
7128 	*iter = &upper->list;
7129 	*ignore = upper->ignore;
7130 
7131 	return upper->dev;
7132 }
7133 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7134 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7135 						    struct list_head **iter)
7136 {
7137 	struct netdev_adjacent *upper;
7138 
7139 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7140 
7141 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7142 
7143 	if (&upper->list == &dev->adj_list.upper)
7144 		return NULL;
7145 
7146 	*iter = &upper->list;
7147 
7148 	return upper->dev;
7149 }
7150 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7151 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7152 				       int (*fn)(struct net_device *dev,
7153 					 struct netdev_nested_priv *priv),
7154 				       struct netdev_nested_priv *priv)
7155 {
7156 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7157 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7158 	int ret, cur = 0;
7159 	bool ignore;
7160 
7161 	now = dev;
7162 	iter = &dev->adj_list.upper;
7163 
7164 	while (1) {
7165 		if (now != dev) {
7166 			ret = fn(now, priv);
7167 			if (ret)
7168 				return ret;
7169 		}
7170 
7171 		next = NULL;
7172 		while (1) {
7173 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7174 			if (!udev)
7175 				break;
7176 			if (ignore)
7177 				continue;
7178 
7179 			next = udev;
7180 			niter = &udev->adj_list.upper;
7181 			dev_stack[cur] = now;
7182 			iter_stack[cur++] = iter;
7183 			break;
7184 		}
7185 
7186 		if (!next) {
7187 			if (!cur)
7188 				return 0;
7189 			next = dev_stack[--cur];
7190 			niter = iter_stack[cur];
7191 		}
7192 
7193 		now = next;
7194 		iter = niter;
7195 	}
7196 
7197 	return 0;
7198 }
7199 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7200 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7201 				  int (*fn)(struct net_device *dev,
7202 					    struct netdev_nested_priv *priv),
7203 				  struct netdev_nested_priv *priv)
7204 {
7205 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7206 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7207 	int ret, cur = 0;
7208 
7209 	now = dev;
7210 	iter = &dev->adj_list.upper;
7211 
7212 	while (1) {
7213 		if (now != dev) {
7214 			ret = fn(now, priv);
7215 			if (ret)
7216 				return ret;
7217 		}
7218 
7219 		next = NULL;
7220 		while (1) {
7221 			udev = netdev_next_upper_dev_rcu(now, &iter);
7222 			if (!udev)
7223 				break;
7224 
7225 			next = udev;
7226 			niter = &udev->adj_list.upper;
7227 			dev_stack[cur] = now;
7228 			iter_stack[cur++] = iter;
7229 			break;
7230 		}
7231 
7232 		if (!next) {
7233 			if (!cur)
7234 				return 0;
7235 			next = dev_stack[--cur];
7236 			niter = iter_stack[cur];
7237 		}
7238 
7239 		now = next;
7240 		iter = niter;
7241 	}
7242 
7243 	return 0;
7244 }
7245 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7246 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7247 static bool __netdev_has_upper_dev(struct net_device *dev,
7248 				   struct net_device *upper_dev)
7249 {
7250 	struct netdev_nested_priv priv = {
7251 		.flags = 0,
7252 		.data = (void *)upper_dev,
7253 	};
7254 
7255 	ASSERT_RTNL();
7256 
7257 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7258 					   &priv);
7259 }
7260 
7261 /**
7262  * netdev_lower_get_next_private - Get the next ->private from the
7263  *				   lower neighbour list
7264  * @dev: device
7265  * @iter: list_head ** of the current position
7266  *
7267  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7268  * list, starting from iter position. The caller must hold either hold the
7269  * RTNL lock or its own locking that guarantees that the neighbour lower
7270  * list will remain unchanged.
7271  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7272 void *netdev_lower_get_next_private(struct net_device *dev,
7273 				    struct list_head **iter)
7274 {
7275 	struct netdev_adjacent *lower;
7276 
7277 	lower = list_entry(*iter, struct netdev_adjacent, list);
7278 
7279 	if (&lower->list == &dev->adj_list.lower)
7280 		return NULL;
7281 
7282 	*iter = lower->list.next;
7283 
7284 	return lower->private;
7285 }
7286 EXPORT_SYMBOL(netdev_lower_get_next_private);
7287 
7288 /**
7289  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7290  *				       lower neighbour list, RCU
7291  *				       variant
7292  * @dev: device
7293  * @iter: list_head ** of the current position
7294  *
7295  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7296  * list, starting from iter position. The caller must hold RCU read lock.
7297  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7298 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7299 					struct list_head **iter)
7300 {
7301 	struct netdev_adjacent *lower;
7302 
7303 	WARN_ON_ONCE(!rcu_read_lock_held());
7304 
7305 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7306 
7307 	if (&lower->list == &dev->adj_list.lower)
7308 		return NULL;
7309 
7310 	*iter = &lower->list;
7311 
7312 	return lower->private;
7313 }
7314 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7315 
7316 /**
7317  * netdev_lower_get_next - Get the next device from the lower neighbour
7318  *                         list
7319  * @dev: device
7320  * @iter: list_head ** of the current position
7321  *
7322  * Gets the next netdev_adjacent from the dev's lower neighbour
7323  * list, starting from iter position. The caller must hold RTNL lock or
7324  * its own locking that guarantees that the neighbour lower
7325  * list will remain unchanged.
7326  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7327 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7328 {
7329 	struct netdev_adjacent *lower;
7330 
7331 	lower = list_entry(*iter, struct netdev_adjacent, list);
7332 
7333 	if (&lower->list == &dev->adj_list.lower)
7334 		return NULL;
7335 
7336 	*iter = lower->list.next;
7337 
7338 	return lower->dev;
7339 }
7340 EXPORT_SYMBOL(netdev_lower_get_next);
7341 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7342 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7343 						struct list_head **iter)
7344 {
7345 	struct netdev_adjacent *lower;
7346 
7347 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7348 
7349 	if (&lower->list == &dev->adj_list.lower)
7350 		return NULL;
7351 
7352 	*iter = &lower->list;
7353 
7354 	return lower->dev;
7355 }
7356 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7357 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7358 						  struct list_head **iter,
7359 						  bool *ignore)
7360 {
7361 	struct netdev_adjacent *lower;
7362 
7363 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7364 
7365 	if (&lower->list == &dev->adj_list.lower)
7366 		return NULL;
7367 
7368 	*iter = &lower->list;
7369 	*ignore = lower->ignore;
7370 
7371 	return lower->dev;
7372 }
7373 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7374 int netdev_walk_all_lower_dev(struct net_device *dev,
7375 			      int (*fn)(struct net_device *dev,
7376 					struct netdev_nested_priv *priv),
7377 			      struct netdev_nested_priv *priv)
7378 {
7379 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7380 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7381 	int ret, cur = 0;
7382 
7383 	now = dev;
7384 	iter = &dev->adj_list.lower;
7385 
7386 	while (1) {
7387 		if (now != dev) {
7388 			ret = fn(now, priv);
7389 			if (ret)
7390 				return ret;
7391 		}
7392 
7393 		next = NULL;
7394 		while (1) {
7395 			ldev = netdev_next_lower_dev(now, &iter);
7396 			if (!ldev)
7397 				break;
7398 
7399 			next = ldev;
7400 			niter = &ldev->adj_list.lower;
7401 			dev_stack[cur] = now;
7402 			iter_stack[cur++] = iter;
7403 			break;
7404 		}
7405 
7406 		if (!next) {
7407 			if (!cur)
7408 				return 0;
7409 			next = dev_stack[--cur];
7410 			niter = iter_stack[cur];
7411 		}
7412 
7413 		now = next;
7414 		iter = niter;
7415 	}
7416 
7417 	return 0;
7418 }
7419 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7420 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7421 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7422 				       int (*fn)(struct net_device *dev,
7423 					 struct netdev_nested_priv *priv),
7424 				       struct netdev_nested_priv *priv)
7425 {
7426 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428 	int ret, cur = 0;
7429 	bool ignore;
7430 
7431 	now = dev;
7432 	iter = &dev->adj_list.lower;
7433 
7434 	while (1) {
7435 		if (now != dev) {
7436 			ret = fn(now, priv);
7437 			if (ret)
7438 				return ret;
7439 		}
7440 
7441 		next = NULL;
7442 		while (1) {
7443 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7444 			if (!ldev)
7445 				break;
7446 			if (ignore)
7447 				continue;
7448 
7449 			next = ldev;
7450 			niter = &ldev->adj_list.lower;
7451 			dev_stack[cur] = now;
7452 			iter_stack[cur++] = iter;
7453 			break;
7454 		}
7455 
7456 		if (!next) {
7457 			if (!cur)
7458 				return 0;
7459 			next = dev_stack[--cur];
7460 			niter = iter_stack[cur];
7461 		}
7462 
7463 		now = next;
7464 		iter = niter;
7465 	}
7466 
7467 	return 0;
7468 }
7469 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7470 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7471 					     struct list_head **iter)
7472 {
7473 	struct netdev_adjacent *lower;
7474 
7475 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7476 	if (&lower->list == &dev->adj_list.lower)
7477 		return NULL;
7478 
7479 	*iter = &lower->list;
7480 
7481 	return lower->dev;
7482 }
7483 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7484 
__netdev_upper_depth(struct net_device * dev)7485 static u8 __netdev_upper_depth(struct net_device *dev)
7486 {
7487 	struct net_device *udev;
7488 	struct list_head *iter;
7489 	u8 max_depth = 0;
7490 	bool ignore;
7491 
7492 	for (iter = &dev->adj_list.upper,
7493 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7494 	     udev;
7495 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7496 		if (ignore)
7497 			continue;
7498 		if (max_depth < udev->upper_level)
7499 			max_depth = udev->upper_level;
7500 	}
7501 
7502 	return max_depth;
7503 }
7504 
__netdev_lower_depth(struct net_device * dev)7505 static u8 __netdev_lower_depth(struct net_device *dev)
7506 {
7507 	struct net_device *ldev;
7508 	struct list_head *iter;
7509 	u8 max_depth = 0;
7510 	bool ignore;
7511 
7512 	for (iter = &dev->adj_list.lower,
7513 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7514 	     ldev;
7515 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7516 		if (ignore)
7517 			continue;
7518 		if (max_depth < ldev->lower_level)
7519 			max_depth = ldev->lower_level;
7520 	}
7521 
7522 	return max_depth;
7523 }
7524 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7525 static int __netdev_update_upper_level(struct net_device *dev,
7526 				       struct netdev_nested_priv *__unused)
7527 {
7528 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7529 	return 0;
7530 }
7531 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7532 static int __netdev_update_lower_level(struct net_device *dev,
7533 				       struct netdev_nested_priv *priv)
7534 {
7535 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7536 
7537 #ifdef CONFIG_LOCKDEP
7538 	if (!priv)
7539 		return 0;
7540 
7541 	if (priv->flags & NESTED_SYNC_IMM)
7542 		dev->nested_level = dev->lower_level - 1;
7543 	if (priv->flags & NESTED_SYNC_TODO)
7544 		net_unlink_todo(dev);
7545 #endif
7546 	return 0;
7547 }
7548 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7549 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7550 				  int (*fn)(struct net_device *dev,
7551 					    struct netdev_nested_priv *priv),
7552 				  struct netdev_nested_priv *priv)
7553 {
7554 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7555 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7556 	int ret, cur = 0;
7557 
7558 	now = dev;
7559 	iter = &dev->adj_list.lower;
7560 
7561 	while (1) {
7562 		if (now != dev) {
7563 			ret = fn(now, priv);
7564 			if (ret)
7565 				return ret;
7566 		}
7567 
7568 		next = NULL;
7569 		while (1) {
7570 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7571 			if (!ldev)
7572 				break;
7573 
7574 			next = ldev;
7575 			niter = &ldev->adj_list.lower;
7576 			dev_stack[cur] = now;
7577 			iter_stack[cur++] = iter;
7578 			break;
7579 		}
7580 
7581 		if (!next) {
7582 			if (!cur)
7583 				return 0;
7584 			next = dev_stack[--cur];
7585 			niter = iter_stack[cur];
7586 		}
7587 
7588 		now = next;
7589 		iter = niter;
7590 	}
7591 
7592 	return 0;
7593 }
7594 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7595 
7596 /**
7597  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7598  *				       lower neighbour list, RCU
7599  *				       variant
7600  * @dev: device
7601  *
7602  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7603  * list. The caller must hold RCU read lock.
7604  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7605 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7606 {
7607 	struct netdev_adjacent *lower;
7608 
7609 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7610 			struct netdev_adjacent, list);
7611 	if (lower)
7612 		return lower->private;
7613 	return NULL;
7614 }
7615 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7616 
7617 /**
7618  * netdev_master_upper_dev_get_rcu - Get master upper device
7619  * @dev: device
7620  *
7621  * Find a master upper device and return pointer to it or NULL in case
7622  * it's not there. The caller must hold the RCU read lock.
7623  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7624 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7625 {
7626 	struct netdev_adjacent *upper;
7627 
7628 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7629 				       struct netdev_adjacent, list);
7630 	if (upper && likely(upper->master))
7631 		return upper->dev;
7632 	return NULL;
7633 }
7634 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7635 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7636 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7637 			      struct net_device *adj_dev,
7638 			      struct list_head *dev_list)
7639 {
7640 	char linkname[IFNAMSIZ+7];
7641 
7642 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7643 		"upper_%s" : "lower_%s", adj_dev->name);
7644 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7645 				 linkname);
7646 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7647 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7648 			       char *name,
7649 			       struct list_head *dev_list)
7650 {
7651 	char linkname[IFNAMSIZ+7];
7652 
7653 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7654 		"upper_%s" : "lower_%s", name);
7655 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7656 }
7657 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7658 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7659 						 struct net_device *adj_dev,
7660 						 struct list_head *dev_list)
7661 {
7662 	return (dev_list == &dev->adj_list.upper ||
7663 		dev_list == &dev->adj_list.lower) &&
7664 		net_eq(dev_net(dev), dev_net(adj_dev));
7665 }
7666 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7667 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7668 					struct net_device *adj_dev,
7669 					struct list_head *dev_list,
7670 					void *private, bool master)
7671 {
7672 	struct netdev_adjacent *adj;
7673 	int ret;
7674 
7675 	adj = __netdev_find_adj(adj_dev, dev_list);
7676 
7677 	if (adj) {
7678 		adj->ref_nr += 1;
7679 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7680 			 dev->name, adj_dev->name, adj->ref_nr);
7681 
7682 		return 0;
7683 	}
7684 
7685 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7686 	if (!adj)
7687 		return -ENOMEM;
7688 
7689 	adj->dev = adj_dev;
7690 	adj->master = master;
7691 	adj->ref_nr = 1;
7692 	adj->private = private;
7693 	adj->ignore = false;
7694 	dev_hold(adj_dev);
7695 
7696 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7697 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7698 
7699 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7700 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7701 		if (ret)
7702 			goto free_adj;
7703 	}
7704 
7705 	/* Ensure that master link is always the first item in list. */
7706 	if (master) {
7707 		ret = sysfs_create_link(&(dev->dev.kobj),
7708 					&(adj_dev->dev.kobj), "master");
7709 		if (ret)
7710 			goto remove_symlinks;
7711 
7712 		list_add_rcu(&adj->list, dev_list);
7713 	} else {
7714 		list_add_tail_rcu(&adj->list, dev_list);
7715 	}
7716 
7717 	return 0;
7718 
7719 remove_symlinks:
7720 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7721 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7722 free_adj:
7723 	kfree(adj);
7724 	dev_put(adj_dev);
7725 
7726 	return ret;
7727 }
7728 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7729 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7730 					 struct net_device *adj_dev,
7731 					 u16 ref_nr,
7732 					 struct list_head *dev_list)
7733 {
7734 	struct netdev_adjacent *adj;
7735 
7736 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7737 		 dev->name, adj_dev->name, ref_nr);
7738 
7739 	adj = __netdev_find_adj(adj_dev, dev_list);
7740 
7741 	if (!adj) {
7742 		pr_err("Adjacency does not exist for device %s from %s\n",
7743 		       dev->name, adj_dev->name);
7744 		WARN_ON(1);
7745 		return;
7746 	}
7747 
7748 	if (adj->ref_nr > ref_nr) {
7749 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7750 			 dev->name, adj_dev->name, ref_nr,
7751 			 adj->ref_nr - ref_nr);
7752 		adj->ref_nr -= ref_nr;
7753 		return;
7754 	}
7755 
7756 	if (adj->master)
7757 		sysfs_remove_link(&(dev->dev.kobj), "master");
7758 
7759 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7760 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7761 
7762 	list_del_rcu(&adj->list);
7763 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7764 		 adj_dev->name, dev->name, adj_dev->name);
7765 	dev_put(adj_dev);
7766 	kfree_rcu(adj, rcu);
7767 }
7768 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7769 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7770 					    struct net_device *upper_dev,
7771 					    struct list_head *up_list,
7772 					    struct list_head *down_list,
7773 					    void *private, bool master)
7774 {
7775 	int ret;
7776 
7777 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7778 					   private, master);
7779 	if (ret)
7780 		return ret;
7781 
7782 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7783 					   private, false);
7784 	if (ret) {
7785 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7786 		return ret;
7787 	}
7788 
7789 	return 0;
7790 }
7791 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7792 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7793 					       struct net_device *upper_dev,
7794 					       u16 ref_nr,
7795 					       struct list_head *up_list,
7796 					       struct list_head *down_list)
7797 {
7798 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7799 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7800 }
7801 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7802 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7803 						struct net_device *upper_dev,
7804 						void *private, bool master)
7805 {
7806 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7807 						&dev->adj_list.upper,
7808 						&upper_dev->adj_list.lower,
7809 						private, master);
7810 }
7811 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7812 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7813 						   struct net_device *upper_dev)
7814 {
7815 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7816 					   &dev->adj_list.upper,
7817 					   &upper_dev->adj_list.lower);
7818 }
7819 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7820 static int __netdev_upper_dev_link(struct net_device *dev,
7821 				   struct net_device *upper_dev, bool master,
7822 				   void *upper_priv, void *upper_info,
7823 				   struct netdev_nested_priv *priv,
7824 				   struct netlink_ext_ack *extack)
7825 {
7826 	struct netdev_notifier_changeupper_info changeupper_info = {
7827 		.info = {
7828 			.dev = dev,
7829 			.extack = extack,
7830 		},
7831 		.upper_dev = upper_dev,
7832 		.master = master,
7833 		.linking = true,
7834 		.upper_info = upper_info,
7835 	};
7836 	struct net_device *master_dev;
7837 	int ret = 0;
7838 
7839 	ASSERT_RTNL();
7840 
7841 	if (dev == upper_dev)
7842 		return -EBUSY;
7843 
7844 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7845 	if (__netdev_has_upper_dev(upper_dev, dev))
7846 		return -EBUSY;
7847 
7848 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7849 		return -EMLINK;
7850 
7851 	if (!master) {
7852 		if (__netdev_has_upper_dev(dev, upper_dev))
7853 			return -EEXIST;
7854 	} else {
7855 		master_dev = __netdev_master_upper_dev_get(dev);
7856 		if (master_dev)
7857 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7858 	}
7859 
7860 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7861 					    &changeupper_info.info);
7862 	ret = notifier_to_errno(ret);
7863 	if (ret)
7864 		return ret;
7865 
7866 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7867 						   master);
7868 	if (ret)
7869 		return ret;
7870 
7871 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7872 					    &changeupper_info.info);
7873 	ret = notifier_to_errno(ret);
7874 	if (ret)
7875 		goto rollback;
7876 
7877 	__netdev_update_upper_level(dev, NULL);
7878 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7879 
7880 	__netdev_update_lower_level(upper_dev, priv);
7881 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7882 				    priv);
7883 
7884 	return 0;
7885 
7886 rollback:
7887 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7888 
7889 	return ret;
7890 }
7891 
7892 /**
7893  * netdev_upper_dev_link - Add a link to the upper device
7894  * @dev: device
7895  * @upper_dev: new upper device
7896  * @extack: netlink extended ack
7897  *
7898  * Adds a link to device which is upper to this one. The caller must hold
7899  * the RTNL lock. On a failure a negative errno code is returned.
7900  * On success the reference counts are adjusted and the function
7901  * returns zero.
7902  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7903 int netdev_upper_dev_link(struct net_device *dev,
7904 			  struct net_device *upper_dev,
7905 			  struct netlink_ext_ack *extack)
7906 {
7907 	struct netdev_nested_priv priv = {
7908 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7909 		.data = NULL,
7910 	};
7911 
7912 	return __netdev_upper_dev_link(dev, upper_dev, false,
7913 				       NULL, NULL, &priv, extack);
7914 }
7915 EXPORT_SYMBOL(netdev_upper_dev_link);
7916 
7917 /**
7918  * netdev_master_upper_dev_link - Add a master link to the upper device
7919  * @dev: device
7920  * @upper_dev: new upper device
7921  * @upper_priv: upper device private
7922  * @upper_info: upper info to be passed down via notifier
7923  * @extack: netlink extended ack
7924  *
7925  * Adds a link to device which is upper to this one. In this case, only
7926  * one master upper device can be linked, although other non-master devices
7927  * might be linked as well. The caller must hold the RTNL lock.
7928  * On a failure a negative errno code is returned. On success the reference
7929  * counts are adjusted and the function returns zero.
7930  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7931 int netdev_master_upper_dev_link(struct net_device *dev,
7932 				 struct net_device *upper_dev,
7933 				 void *upper_priv, void *upper_info,
7934 				 struct netlink_ext_ack *extack)
7935 {
7936 	struct netdev_nested_priv priv = {
7937 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7938 		.data = NULL,
7939 	};
7940 
7941 	return __netdev_upper_dev_link(dev, upper_dev, true,
7942 				       upper_priv, upper_info, &priv, extack);
7943 }
7944 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7945 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7946 static void __netdev_upper_dev_unlink(struct net_device *dev,
7947 				      struct net_device *upper_dev,
7948 				      struct netdev_nested_priv *priv)
7949 {
7950 	struct netdev_notifier_changeupper_info changeupper_info = {
7951 		.info = {
7952 			.dev = dev,
7953 		},
7954 		.upper_dev = upper_dev,
7955 		.linking = false,
7956 	};
7957 
7958 	ASSERT_RTNL();
7959 
7960 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7961 
7962 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7963 				      &changeupper_info.info);
7964 
7965 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7966 
7967 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7968 				      &changeupper_info.info);
7969 
7970 	__netdev_update_upper_level(dev, NULL);
7971 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7972 
7973 	__netdev_update_lower_level(upper_dev, priv);
7974 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7975 				    priv);
7976 }
7977 
7978 /**
7979  * netdev_upper_dev_unlink - Removes a link to upper device
7980  * @dev: device
7981  * @upper_dev: new upper device
7982  *
7983  * Removes a link to device which is upper to this one. The caller must hold
7984  * the RTNL lock.
7985  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7986 void netdev_upper_dev_unlink(struct net_device *dev,
7987 			     struct net_device *upper_dev)
7988 {
7989 	struct netdev_nested_priv priv = {
7990 		.flags = NESTED_SYNC_TODO,
7991 		.data = NULL,
7992 	};
7993 
7994 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7995 }
7996 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7997 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7998 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7999 				      struct net_device *lower_dev,
8000 				      bool val)
8001 {
8002 	struct netdev_adjacent *adj;
8003 
8004 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8005 	if (adj)
8006 		adj->ignore = val;
8007 
8008 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8009 	if (adj)
8010 		adj->ignore = val;
8011 }
8012 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8013 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8014 					struct net_device *lower_dev)
8015 {
8016 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8017 }
8018 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8019 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8020 				       struct net_device *lower_dev)
8021 {
8022 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8023 }
8024 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8025 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8026 				   struct net_device *new_dev,
8027 				   struct net_device *dev,
8028 				   struct netlink_ext_ack *extack)
8029 {
8030 	struct netdev_nested_priv priv = {
8031 		.flags = 0,
8032 		.data = NULL,
8033 	};
8034 	int err;
8035 
8036 	if (!new_dev)
8037 		return 0;
8038 
8039 	if (old_dev && new_dev != old_dev)
8040 		netdev_adjacent_dev_disable(dev, old_dev);
8041 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8042 				      extack);
8043 	if (err) {
8044 		if (old_dev && new_dev != old_dev)
8045 			netdev_adjacent_dev_enable(dev, old_dev);
8046 		return err;
8047 	}
8048 
8049 	return 0;
8050 }
8051 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8052 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8053 void netdev_adjacent_change_commit(struct net_device *old_dev,
8054 				   struct net_device *new_dev,
8055 				   struct net_device *dev)
8056 {
8057 	struct netdev_nested_priv priv = {
8058 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8059 		.data = NULL,
8060 	};
8061 
8062 	if (!new_dev || !old_dev)
8063 		return;
8064 
8065 	if (new_dev == old_dev)
8066 		return;
8067 
8068 	netdev_adjacent_dev_enable(dev, old_dev);
8069 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8070 }
8071 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8072 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8073 void netdev_adjacent_change_abort(struct net_device *old_dev,
8074 				  struct net_device *new_dev,
8075 				  struct net_device *dev)
8076 {
8077 	struct netdev_nested_priv priv = {
8078 		.flags = 0,
8079 		.data = NULL,
8080 	};
8081 
8082 	if (!new_dev)
8083 		return;
8084 
8085 	if (old_dev && new_dev != old_dev)
8086 		netdev_adjacent_dev_enable(dev, old_dev);
8087 
8088 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8089 }
8090 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8091 
8092 /**
8093  * netdev_bonding_info_change - Dispatch event about slave change
8094  * @dev: device
8095  * @bonding_info: info to dispatch
8096  *
8097  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8098  * The caller must hold the RTNL lock.
8099  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8100 void netdev_bonding_info_change(struct net_device *dev,
8101 				struct netdev_bonding_info *bonding_info)
8102 {
8103 	struct netdev_notifier_bonding_info info = {
8104 		.info.dev = dev,
8105 	};
8106 
8107 	memcpy(&info.bonding_info, bonding_info,
8108 	       sizeof(struct netdev_bonding_info));
8109 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8110 				      &info.info);
8111 }
8112 EXPORT_SYMBOL(netdev_bonding_info_change);
8113 
8114 /**
8115  * netdev_get_xmit_slave - Get the xmit slave of master device
8116  * @dev: device
8117  * @skb: The packet
8118  * @all_slaves: assume all the slaves are active
8119  *
8120  * The reference counters are not incremented so the caller must be
8121  * careful with locks. The caller must hold RCU lock.
8122  * %NULL is returned if no slave is found.
8123  */
8124 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8125 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8126 					 struct sk_buff *skb,
8127 					 bool all_slaves)
8128 {
8129 	const struct net_device_ops *ops = dev->netdev_ops;
8130 
8131 	if (!ops->ndo_get_xmit_slave)
8132 		return NULL;
8133 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8134 }
8135 EXPORT_SYMBOL(netdev_get_xmit_slave);
8136 
netdev_adjacent_add_links(struct net_device * dev)8137 static void netdev_adjacent_add_links(struct net_device *dev)
8138 {
8139 	struct netdev_adjacent *iter;
8140 
8141 	struct net *net = dev_net(dev);
8142 
8143 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8144 		if (!net_eq(net, dev_net(iter->dev)))
8145 			continue;
8146 		netdev_adjacent_sysfs_add(iter->dev, dev,
8147 					  &iter->dev->adj_list.lower);
8148 		netdev_adjacent_sysfs_add(dev, iter->dev,
8149 					  &dev->adj_list.upper);
8150 	}
8151 
8152 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8153 		if (!net_eq(net, dev_net(iter->dev)))
8154 			continue;
8155 		netdev_adjacent_sysfs_add(iter->dev, dev,
8156 					  &iter->dev->adj_list.upper);
8157 		netdev_adjacent_sysfs_add(dev, iter->dev,
8158 					  &dev->adj_list.lower);
8159 	}
8160 }
8161 
netdev_adjacent_del_links(struct net_device * dev)8162 static void netdev_adjacent_del_links(struct net_device *dev)
8163 {
8164 	struct netdev_adjacent *iter;
8165 
8166 	struct net *net = dev_net(dev);
8167 
8168 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8169 		if (!net_eq(net, dev_net(iter->dev)))
8170 			continue;
8171 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8172 					  &iter->dev->adj_list.lower);
8173 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8174 					  &dev->adj_list.upper);
8175 	}
8176 
8177 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8178 		if (!net_eq(net, dev_net(iter->dev)))
8179 			continue;
8180 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8181 					  &iter->dev->adj_list.upper);
8182 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8183 					  &dev->adj_list.lower);
8184 	}
8185 }
8186 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8187 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8188 {
8189 	struct netdev_adjacent *iter;
8190 
8191 	struct net *net = dev_net(dev);
8192 
8193 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8194 		if (!net_eq(net, dev_net(iter->dev)))
8195 			continue;
8196 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8197 					  &iter->dev->adj_list.lower);
8198 		netdev_adjacent_sysfs_add(iter->dev, dev,
8199 					  &iter->dev->adj_list.lower);
8200 	}
8201 
8202 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8203 		if (!net_eq(net, dev_net(iter->dev)))
8204 			continue;
8205 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8206 					  &iter->dev->adj_list.upper);
8207 		netdev_adjacent_sysfs_add(iter->dev, dev,
8208 					  &iter->dev->adj_list.upper);
8209 	}
8210 }
8211 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8212 void *netdev_lower_dev_get_private(struct net_device *dev,
8213 				   struct net_device *lower_dev)
8214 {
8215 	struct netdev_adjacent *lower;
8216 
8217 	if (!lower_dev)
8218 		return NULL;
8219 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8220 	if (!lower)
8221 		return NULL;
8222 
8223 	return lower->private;
8224 }
8225 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8226 
8227 
8228 /**
8229  * netdev_lower_change - Dispatch event about lower device state change
8230  * @lower_dev: device
8231  * @lower_state_info: state to dispatch
8232  *
8233  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8234  * The caller must hold the RTNL lock.
8235  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8236 void netdev_lower_state_changed(struct net_device *lower_dev,
8237 				void *lower_state_info)
8238 {
8239 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8240 		.info.dev = lower_dev,
8241 	};
8242 
8243 	ASSERT_RTNL();
8244 	changelowerstate_info.lower_state_info = lower_state_info;
8245 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8246 				      &changelowerstate_info.info);
8247 }
8248 EXPORT_SYMBOL(netdev_lower_state_changed);
8249 
dev_change_rx_flags(struct net_device * dev,int flags)8250 static void dev_change_rx_flags(struct net_device *dev, int flags)
8251 {
8252 	const struct net_device_ops *ops = dev->netdev_ops;
8253 
8254 	if (ops->ndo_change_rx_flags)
8255 		ops->ndo_change_rx_flags(dev, flags);
8256 }
8257 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8258 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8259 {
8260 	unsigned int old_flags = dev->flags;
8261 	kuid_t uid;
8262 	kgid_t gid;
8263 
8264 	ASSERT_RTNL();
8265 
8266 	dev->flags |= IFF_PROMISC;
8267 	dev->promiscuity += inc;
8268 	if (dev->promiscuity == 0) {
8269 		/*
8270 		 * Avoid overflow.
8271 		 * If inc causes overflow, untouch promisc and return error.
8272 		 */
8273 		if (inc < 0)
8274 			dev->flags &= ~IFF_PROMISC;
8275 		else {
8276 			dev->promiscuity -= inc;
8277 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8278 				dev->name);
8279 			return -EOVERFLOW;
8280 		}
8281 	}
8282 	if (dev->flags != old_flags) {
8283 		pr_info("device %s %s promiscuous mode\n",
8284 			dev->name,
8285 			dev->flags & IFF_PROMISC ? "entered" : "left");
8286 		if (audit_enabled) {
8287 			current_uid_gid(&uid, &gid);
8288 			audit_log(audit_context(), GFP_ATOMIC,
8289 				  AUDIT_ANOM_PROMISCUOUS,
8290 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8291 				  dev->name, (dev->flags & IFF_PROMISC),
8292 				  (old_flags & IFF_PROMISC),
8293 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8294 				  from_kuid(&init_user_ns, uid),
8295 				  from_kgid(&init_user_ns, gid),
8296 				  audit_get_sessionid(current));
8297 		}
8298 
8299 		dev_change_rx_flags(dev, IFF_PROMISC);
8300 	}
8301 	if (notify)
8302 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8303 	return 0;
8304 }
8305 
8306 /**
8307  *	dev_set_promiscuity	- update promiscuity count on a device
8308  *	@dev: device
8309  *	@inc: modifier
8310  *
8311  *	Add or remove promiscuity from a device. While the count in the device
8312  *	remains above zero the interface remains promiscuous. Once it hits zero
8313  *	the device reverts back to normal filtering operation. A negative inc
8314  *	value is used to drop promiscuity on the device.
8315  *	Return 0 if successful or a negative errno code on error.
8316  */
dev_set_promiscuity(struct net_device * dev,int inc)8317 int dev_set_promiscuity(struct net_device *dev, int inc)
8318 {
8319 	unsigned int old_flags = dev->flags;
8320 	int err;
8321 
8322 	err = __dev_set_promiscuity(dev, inc, true);
8323 	if (err < 0)
8324 		return err;
8325 	if (dev->flags != old_flags)
8326 		dev_set_rx_mode(dev);
8327 	return err;
8328 }
8329 EXPORT_SYMBOL(dev_set_promiscuity);
8330 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8331 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8332 {
8333 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8334 
8335 	ASSERT_RTNL();
8336 
8337 	dev->flags |= IFF_ALLMULTI;
8338 	dev->allmulti += inc;
8339 	if (dev->allmulti == 0) {
8340 		/*
8341 		 * Avoid overflow.
8342 		 * If inc causes overflow, untouch allmulti and return error.
8343 		 */
8344 		if (inc < 0)
8345 			dev->flags &= ~IFF_ALLMULTI;
8346 		else {
8347 			dev->allmulti -= inc;
8348 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8349 				dev->name);
8350 			return -EOVERFLOW;
8351 		}
8352 	}
8353 	if (dev->flags ^ old_flags) {
8354 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8355 		dev_set_rx_mode(dev);
8356 		if (notify)
8357 			__dev_notify_flags(dev, old_flags,
8358 					   dev->gflags ^ old_gflags);
8359 	}
8360 	return 0;
8361 }
8362 
8363 /**
8364  *	dev_set_allmulti	- update allmulti count on a device
8365  *	@dev: device
8366  *	@inc: modifier
8367  *
8368  *	Add or remove reception of all multicast frames to a device. While the
8369  *	count in the device remains above zero the interface remains listening
8370  *	to all interfaces. Once it hits zero the device reverts back to normal
8371  *	filtering operation. A negative @inc value is used to drop the counter
8372  *	when releasing a resource needing all multicasts.
8373  *	Return 0 if successful or a negative errno code on error.
8374  */
8375 
dev_set_allmulti(struct net_device * dev,int inc)8376 int dev_set_allmulti(struct net_device *dev, int inc)
8377 {
8378 	return __dev_set_allmulti(dev, inc, true);
8379 }
8380 EXPORT_SYMBOL(dev_set_allmulti);
8381 
8382 /*
8383  *	Upload unicast and multicast address lists to device and
8384  *	configure RX filtering. When the device doesn't support unicast
8385  *	filtering it is put in promiscuous mode while unicast addresses
8386  *	are present.
8387  */
__dev_set_rx_mode(struct net_device * dev)8388 void __dev_set_rx_mode(struct net_device *dev)
8389 {
8390 	const struct net_device_ops *ops = dev->netdev_ops;
8391 
8392 	/* dev_open will call this function so the list will stay sane. */
8393 	if (!(dev->flags&IFF_UP))
8394 		return;
8395 
8396 	if (!netif_device_present(dev))
8397 		return;
8398 
8399 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8400 		/* Unicast addresses changes may only happen under the rtnl,
8401 		 * therefore calling __dev_set_promiscuity here is safe.
8402 		 */
8403 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8404 			__dev_set_promiscuity(dev, 1, false);
8405 			dev->uc_promisc = true;
8406 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8407 			__dev_set_promiscuity(dev, -1, false);
8408 			dev->uc_promisc = false;
8409 		}
8410 	}
8411 
8412 	if (ops->ndo_set_rx_mode)
8413 		ops->ndo_set_rx_mode(dev);
8414 }
8415 
dev_set_rx_mode(struct net_device * dev)8416 void dev_set_rx_mode(struct net_device *dev)
8417 {
8418 	netif_addr_lock_bh(dev);
8419 	__dev_set_rx_mode(dev);
8420 	netif_addr_unlock_bh(dev);
8421 }
8422 
8423 /**
8424  *	dev_get_flags - get flags reported to userspace
8425  *	@dev: device
8426  *
8427  *	Get the combination of flag bits exported through APIs to userspace.
8428  */
dev_get_flags(const struct net_device * dev)8429 unsigned int dev_get_flags(const struct net_device *dev)
8430 {
8431 	unsigned int flags;
8432 
8433 	flags = (dev->flags & ~(IFF_PROMISC |
8434 				IFF_ALLMULTI |
8435 				IFF_RUNNING |
8436 				IFF_LOWER_UP |
8437 				IFF_DORMANT)) |
8438 		(dev->gflags & (IFF_PROMISC |
8439 				IFF_ALLMULTI));
8440 
8441 	if (netif_running(dev)) {
8442 		if (netif_oper_up(dev))
8443 			flags |= IFF_RUNNING;
8444 		if (netif_carrier_ok(dev))
8445 			flags |= IFF_LOWER_UP;
8446 		if (netif_dormant(dev))
8447 			flags |= IFF_DORMANT;
8448 	}
8449 
8450 	return flags;
8451 }
8452 EXPORT_SYMBOL(dev_get_flags);
8453 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8454 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8455 		       struct netlink_ext_ack *extack)
8456 {
8457 	unsigned int old_flags = dev->flags;
8458 	int ret;
8459 
8460 	ASSERT_RTNL();
8461 
8462 	/*
8463 	 *	Set the flags on our device.
8464 	 */
8465 
8466 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8467 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8468 			       IFF_AUTOMEDIA)) |
8469 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8470 				    IFF_ALLMULTI));
8471 
8472 	/*
8473 	 *	Load in the correct multicast list now the flags have changed.
8474 	 */
8475 
8476 	if ((old_flags ^ flags) & IFF_MULTICAST)
8477 		dev_change_rx_flags(dev, IFF_MULTICAST);
8478 
8479 	dev_set_rx_mode(dev);
8480 
8481 	/*
8482 	 *	Have we downed the interface. We handle IFF_UP ourselves
8483 	 *	according to user attempts to set it, rather than blindly
8484 	 *	setting it.
8485 	 */
8486 
8487 	ret = 0;
8488 	if ((old_flags ^ flags) & IFF_UP) {
8489 		if (old_flags & IFF_UP)
8490 			__dev_close(dev);
8491 		else
8492 			ret = __dev_open(dev, extack);
8493 	}
8494 
8495 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8496 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8497 		unsigned int old_flags = dev->flags;
8498 
8499 		dev->gflags ^= IFF_PROMISC;
8500 
8501 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8502 			if (dev->flags != old_flags)
8503 				dev_set_rx_mode(dev);
8504 	}
8505 
8506 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8507 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8508 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8509 	 */
8510 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8511 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8512 
8513 		dev->gflags ^= IFF_ALLMULTI;
8514 		__dev_set_allmulti(dev, inc, false);
8515 	}
8516 
8517 	return ret;
8518 }
8519 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8520 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8521 			unsigned int gchanges)
8522 {
8523 	unsigned int changes = dev->flags ^ old_flags;
8524 
8525 	if (gchanges)
8526 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8527 
8528 	if (changes & IFF_UP) {
8529 		if (dev->flags & IFF_UP)
8530 			call_netdevice_notifiers(NETDEV_UP, dev);
8531 		else
8532 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8533 	}
8534 
8535 	if (dev->flags & IFF_UP &&
8536 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8537 		struct netdev_notifier_change_info change_info = {
8538 			.info = {
8539 				.dev = dev,
8540 			},
8541 			.flags_changed = changes,
8542 		};
8543 
8544 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8545 	}
8546 }
8547 
8548 /**
8549  *	dev_change_flags - change device settings
8550  *	@dev: device
8551  *	@flags: device state flags
8552  *	@extack: netlink extended ack
8553  *
8554  *	Change settings on device based state flags. The flags are
8555  *	in the userspace exported format.
8556  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8557 int dev_change_flags(struct net_device *dev, unsigned int flags,
8558 		     struct netlink_ext_ack *extack)
8559 {
8560 	int ret;
8561 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8562 
8563 	ret = __dev_change_flags(dev, flags, extack);
8564 	if (ret < 0)
8565 		return ret;
8566 
8567 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8568 	__dev_notify_flags(dev, old_flags, changes);
8569 	return ret;
8570 }
8571 EXPORT_SYMBOL(dev_change_flags);
8572 
__dev_set_mtu(struct net_device * dev,int new_mtu)8573 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8574 {
8575 	const struct net_device_ops *ops = dev->netdev_ops;
8576 
8577 	if (ops->ndo_change_mtu)
8578 		return ops->ndo_change_mtu(dev, new_mtu);
8579 
8580 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8581 	WRITE_ONCE(dev->mtu, new_mtu);
8582 	return 0;
8583 }
8584 EXPORT_SYMBOL(__dev_set_mtu);
8585 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8586 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8587 		     struct netlink_ext_ack *extack)
8588 {
8589 	/* MTU must be positive, and in range */
8590 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8591 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8592 		return -EINVAL;
8593 	}
8594 
8595 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8596 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8597 		return -EINVAL;
8598 	}
8599 	return 0;
8600 }
8601 
8602 /**
8603  *	dev_set_mtu_ext - Change maximum transfer unit
8604  *	@dev: device
8605  *	@new_mtu: new transfer unit
8606  *	@extack: netlink extended ack
8607  *
8608  *	Change the maximum transfer size of the network device.
8609  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8610 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8611 		    struct netlink_ext_ack *extack)
8612 {
8613 	int err, orig_mtu;
8614 
8615 	if (new_mtu == dev->mtu)
8616 		return 0;
8617 
8618 	err = dev_validate_mtu(dev, new_mtu, extack);
8619 	if (err)
8620 		return err;
8621 
8622 	if (!netif_device_present(dev))
8623 		return -ENODEV;
8624 
8625 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8626 	err = notifier_to_errno(err);
8627 	if (err)
8628 		return err;
8629 
8630 	orig_mtu = dev->mtu;
8631 	err = __dev_set_mtu(dev, new_mtu);
8632 
8633 	if (!err) {
8634 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8635 						   orig_mtu);
8636 		err = notifier_to_errno(err);
8637 		if (err) {
8638 			/* setting mtu back and notifying everyone again,
8639 			 * so that they have a chance to revert changes.
8640 			 */
8641 			__dev_set_mtu(dev, orig_mtu);
8642 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8643 						     new_mtu);
8644 		}
8645 	}
8646 	return err;
8647 }
8648 
dev_set_mtu(struct net_device * dev,int new_mtu)8649 int dev_set_mtu(struct net_device *dev, int new_mtu)
8650 {
8651 	struct netlink_ext_ack extack;
8652 	int err;
8653 
8654 	memset(&extack, 0, sizeof(extack));
8655 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8656 	if (err && extack._msg)
8657 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8658 	return err;
8659 }
8660 EXPORT_SYMBOL(dev_set_mtu);
8661 
8662 /**
8663  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8664  *	@dev: device
8665  *	@new_len: new tx queue length
8666  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8667 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8668 {
8669 	unsigned int orig_len = dev->tx_queue_len;
8670 	int res;
8671 
8672 	if (new_len != (unsigned int)new_len)
8673 		return -ERANGE;
8674 
8675 	if (new_len != orig_len) {
8676 		dev->tx_queue_len = new_len;
8677 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8678 		res = notifier_to_errno(res);
8679 		if (res)
8680 			goto err_rollback;
8681 		res = dev_qdisc_change_tx_queue_len(dev);
8682 		if (res)
8683 			goto err_rollback;
8684 	}
8685 
8686 	return 0;
8687 
8688 err_rollback:
8689 	netdev_err(dev, "refused to change device tx_queue_len\n");
8690 	dev->tx_queue_len = orig_len;
8691 	return res;
8692 }
8693 
8694 /**
8695  *	dev_set_group - Change group this device belongs to
8696  *	@dev: device
8697  *	@new_group: group this device should belong to
8698  */
dev_set_group(struct net_device * dev,int new_group)8699 void dev_set_group(struct net_device *dev, int new_group)
8700 {
8701 	dev->group = new_group;
8702 }
8703 EXPORT_SYMBOL(dev_set_group);
8704 
8705 /**
8706  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8707  *	@dev: device
8708  *	@addr: new address
8709  *	@extack: netlink extended ack
8710  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8711 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8712 			      struct netlink_ext_ack *extack)
8713 {
8714 	struct netdev_notifier_pre_changeaddr_info info = {
8715 		.info.dev = dev,
8716 		.info.extack = extack,
8717 		.dev_addr = addr,
8718 	};
8719 	int rc;
8720 
8721 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8722 	return notifier_to_errno(rc);
8723 }
8724 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8725 
8726 /**
8727  *	dev_set_mac_address - Change Media Access Control Address
8728  *	@dev: device
8729  *	@sa: new address
8730  *	@extack: netlink extended ack
8731  *
8732  *	Change the hardware (MAC) address of the device
8733  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8734 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8735 			struct netlink_ext_ack *extack)
8736 {
8737 	const struct net_device_ops *ops = dev->netdev_ops;
8738 	int err;
8739 
8740 	if (!ops->ndo_set_mac_address)
8741 		return -EOPNOTSUPP;
8742 	if (sa->sa_family != dev->type)
8743 		return -EINVAL;
8744 	if (!netif_device_present(dev))
8745 		return -ENODEV;
8746 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8747 	if (err)
8748 		return err;
8749 	err = ops->ndo_set_mac_address(dev, sa);
8750 	if (err)
8751 		return err;
8752 	dev->addr_assign_type = NET_ADDR_SET;
8753 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8754 	add_device_randomness(dev->dev_addr, dev->addr_len);
8755 	return 0;
8756 }
8757 EXPORT_SYMBOL(dev_set_mac_address);
8758 
8759 static DECLARE_RWSEM(dev_addr_sem);
8760 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8761 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8762 			     struct netlink_ext_ack *extack)
8763 {
8764 	int ret;
8765 
8766 	down_write(&dev_addr_sem);
8767 	ret = dev_set_mac_address(dev, sa, extack);
8768 	up_write(&dev_addr_sem);
8769 	return ret;
8770 }
8771 EXPORT_SYMBOL(dev_set_mac_address_user);
8772 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8773 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8774 {
8775 	size_t size = sizeof(sa->sa_data);
8776 	struct net_device *dev;
8777 	int ret = 0;
8778 
8779 	down_read(&dev_addr_sem);
8780 	rcu_read_lock();
8781 
8782 	dev = dev_get_by_name_rcu(net, dev_name);
8783 	if (!dev) {
8784 		ret = -ENODEV;
8785 		goto unlock;
8786 	}
8787 	if (!dev->addr_len)
8788 		memset(sa->sa_data, 0, size);
8789 	else
8790 		memcpy(sa->sa_data, dev->dev_addr,
8791 		       min_t(size_t, size, dev->addr_len));
8792 	sa->sa_family = dev->type;
8793 
8794 unlock:
8795 	rcu_read_unlock();
8796 	up_read(&dev_addr_sem);
8797 	return ret;
8798 }
8799 EXPORT_SYMBOL(dev_get_mac_address);
8800 
8801 /**
8802  *	dev_change_carrier - Change device carrier
8803  *	@dev: device
8804  *	@new_carrier: new value
8805  *
8806  *	Change device carrier
8807  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8808 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8809 {
8810 	const struct net_device_ops *ops = dev->netdev_ops;
8811 
8812 	if (!ops->ndo_change_carrier)
8813 		return -EOPNOTSUPP;
8814 	if (!netif_device_present(dev))
8815 		return -ENODEV;
8816 	return ops->ndo_change_carrier(dev, new_carrier);
8817 }
8818 EXPORT_SYMBOL(dev_change_carrier);
8819 
8820 /**
8821  *	dev_get_phys_port_id - Get device physical port ID
8822  *	@dev: device
8823  *	@ppid: port ID
8824  *
8825  *	Get device physical port ID
8826  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8827 int dev_get_phys_port_id(struct net_device *dev,
8828 			 struct netdev_phys_item_id *ppid)
8829 {
8830 	const struct net_device_ops *ops = dev->netdev_ops;
8831 
8832 	if (!ops->ndo_get_phys_port_id)
8833 		return -EOPNOTSUPP;
8834 	return ops->ndo_get_phys_port_id(dev, ppid);
8835 }
8836 EXPORT_SYMBOL(dev_get_phys_port_id);
8837 
8838 /**
8839  *	dev_get_phys_port_name - Get device physical port name
8840  *	@dev: device
8841  *	@name: port name
8842  *	@len: limit of bytes to copy to name
8843  *
8844  *	Get device physical port name
8845  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8846 int dev_get_phys_port_name(struct net_device *dev,
8847 			   char *name, size_t len)
8848 {
8849 	const struct net_device_ops *ops = dev->netdev_ops;
8850 	int err;
8851 
8852 	if (ops->ndo_get_phys_port_name) {
8853 		err = ops->ndo_get_phys_port_name(dev, name, len);
8854 		if (err != -EOPNOTSUPP)
8855 			return err;
8856 	}
8857 	return devlink_compat_phys_port_name_get(dev, name, len);
8858 }
8859 EXPORT_SYMBOL(dev_get_phys_port_name);
8860 
8861 /**
8862  *	dev_get_port_parent_id - Get the device's port parent identifier
8863  *	@dev: network device
8864  *	@ppid: pointer to a storage for the port's parent identifier
8865  *	@recurse: allow/disallow recursion to lower devices
8866  *
8867  *	Get the devices's port parent identifier
8868  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8869 int dev_get_port_parent_id(struct net_device *dev,
8870 			   struct netdev_phys_item_id *ppid,
8871 			   bool recurse)
8872 {
8873 	const struct net_device_ops *ops = dev->netdev_ops;
8874 	struct netdev_phys_item_id first = { };
8875 	struct net_device *lower_dev;
8876 	struct list_head *iter;
8877 	int err;
8878 
8879 	if (ops->ndo_get_port_parent_id) {
8880 		err = ops->ndo_get_port_parent_id(dev, ppid);
8881 		if (err != -EOPNOTSUPP)
8882 			return err;
8883 	}
8884 
8885 	err = devlink_compat_switch_id_get(dev, ppid);
8886 	if (!err || err != -EOPNOTSUPP)
8887 		return err;
8888 
8889 	if (!recurse)
8890 		return -EOPNOTSUPP;
8891 
8892 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8893 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8894 		if (err)
8895 			break;
8896 		if (!first.id_len)
8897 			first = *ppid;
8898 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8899 			return -EOPNOTSUPP;
8900 	}
8901 
8902 	return err;
8903 }
8904 EXPORT_SYMBOL(dev_get_port_parent_id);
8905 
8906 /**
8907  *	netdev_port_same_parent_id - Indicate if two network devices have
8908  *	the same port parent identifier
8909  *	@a: first network device
8910  *	@b: second network device
8911  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8912 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8913 {
8914 	struct netdev_phys_item_id a_id = { };
8915 	struct netdev_phys_item_id b_id = { };
8916 
8917 	if (dev_get_port_parent_id(a, &a_id, true) ||
8918 	    dev_get_port_parent_id(b, &b_id, true))
8919 		return false;
8920 
8921 	return netdev_phys_item_id_same(&a_id, &b_id);
8922 }
8923 EXPORT_SYMBOL(netdev_port_same_parent_id);
8924 
8925 /**
8926  *	dev_change_proto_down - update protocol port state information
8927  *	@dev: device
8928  *	@proto_down: new value
8929  *
8930  *	This info can be used by switch drivers to set the phys state of the
8931  *	port.
8932  */
dev_change_proto_down(struct net_device * dev,bool proto_down)8933 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8934 {
8935 	const struct net_device_ops *ops = dev->netdev_ops;
8936 
8937 	if (!ops->ndo_change_proto_down)
8938 		return -EOPNOTSUPP;
8939 	if (!netif_device_present(dev))
8940 		return -ENODEV;
8941 	return ops->ndo_change_proto_down(dev, proto_down);
8942 }
8943 EXPORT_SYMBOL(dev_change_proto_down);
8944 
8945 /**
8946  *	dev_change_proto_down_generic - generic implementation for
8947  * 	ndo_change_proto_down that sets carrier according to
8948  * 	proto_down.
8949  *
8950  *	@dev: device
8951  *	@proto_down: new value
8952  */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8953 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8954 {
8955 	if (proto_down)
8956 		netif_carrier_off(dev);
8957 	else
8958 		netif_carrier_on(dev);
8959 	dev->proto_down = proto_down;
8960 	return 0;
8961 }
8962 EXPORT_SYMBOL(dev_change_proto_down_generic);
8963 
8964 /**
8965  *	dev_change_proto_down_reason - proto down reason
8966  *
8967  *	@dev: device
8968  *	@mask: proto down mask
8969  *	@value: proto down value
8970  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8971 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8972 				  u32 value)
8973 {
8974 	int b;
8975 
8976 	if (!mask) {
8977 		dev->proto_down_reason = value;
8978 	} else {
8979 		for_each_set_bit(b, &mask, 32) {
8980 			if (value & (1 << b))
8981 				dev->proto_down_reason |= BIT(b);
8982 			else
8983 				dev->proto_down_reason &= ~BIT(b);
8984 		}
8985 	}
8986 }
8987 EXPORT_SYMBOL(dev_change_proto_down_reason);
8988 
8989 struct bpf_xdp_link {
8990 	struct bpf_link link;
8991 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8992 	int flags;
8993 };
8994 
dev_xdp_mode(struct net_device * dev,u32 flags)8995 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8996 {
8997 	if (flags & XDP_FLAGS_HW_MODE)
8998 		return XDP_MODE_HW;
8999 	if (flags & XDP_FLAGS_DRV_MODE)
9000 		return XDP_MODE_DRV;
9001 	if (flags & XDP_FLAGS_SKB_MODE)
9002 		return XDP_MODE_SKB;
9003 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9004 }
9005 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9006 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9007 {
9008 	switch (mode) {
9009 	case XDP_MODE_SKB:
9010 		return generic_xdp_install;
9011 	case XDP_MODE_DRV:
9012 	case XDP_MODE_HW:
9013 		return dev->netdev_ops->ndo_bpf;
9014 	default:
9015 		return NULL;
9016 	};
9017 }
9018 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9019 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9020 					 enum bpf_xdp_mode mode)
9021 {
9022 	return dev->xdp_state[mode].link;
9023 }
9024 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9025 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9026 				     enum bpf_xdp_mode mode)
9027 {
9028 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9029 
9030 	if (link)
9031 		return link->link.prog;
9032 	return dev->xdp_state[mode].prog;
9033 }
9034 
dev_xdp_prog_count(struct net_device * dev)9035 static u8 dev_xdp_prog_count(struct net_device *dev)
9036 {
9037 	u8 count = 0;
9038 	int i;
9039 
9040 	for (i = 0; i < __MAX_XDP_MODE; i++)
9041 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9042 			count++;
9043 	return count;
9044 }
9045 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9046 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9047 {
9048 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9049 
9050 	return prog ? prog->aux->id : 0;
9051 }
9052 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9053 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9054 			     struct bpf_xdp_link *link)
9055 {
9056 	dev->xdp_state[mode].link = link;
9057 	dev->xdp_state[mode].prog = NULL;
9058 }
9059 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9060 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9061 			     struct bpf_prog *prog)
9062 {
9063 	dev->xdp_state[mode].link = NULL;
9064 	dev->xdp_state[mode].prog = prog;
9065 }
9066 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9067 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9068 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9069 			   u32 flags, struct bpf_prog *prog)
9070 {
9071 	struct netdev_bpf xdp;
9072 	int err;
9073 
9074 	memset(&xdp, 0, sizeof(xdp));
9075 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9076 	xdp.extack = extack;
9077 	xdp.flags = flags;
9078 	xdp.prog = prog;
9079 
9080 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9081 	 * "moved" into driver), so they don't increment it on their own, but
9082 	 * they do decrement refcnt when program is detached or replaced.
9083 	 * Given net_device also owns link/prog, we need to bump refcnt here
9084 	 * to prevent drivers from underflowing it.
9085 	 */
9086 	if (prog)
9087 		bpf_prog_inc(prog);
9088 	err = bpf_op(dev, &xdp);
9089 	if (err) {
9090 		if (prog)
9091 			bpf_prog_put(prog);
9092 		return err;
9093 	}
9094 
9095 	if (mode != XDP_MODE_HW)
9096 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9097 
9098 	return 0;
9099 }
9100 
dev_xdp_uninstall(struct net_device * dev)9101 static void dev_xdp_uninstall(struct net_device *dev)
9102 {
9103 	struct bpf_xdp_link *link;
9104 	struct bpf_prog *prog;
9105 	enum bpf_xdp_mode mode;
9106 	bpf_op_t bpf_op;
9107 
9108 	ASSERT_RTNL();
9109 
9110 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9111 		prog = dev_xdp_prog(dev, mode);
9112 		if (!prog)
9113 			continue;
9114 
9115 		bpf_op = dev_xdp_bpf_op(dev, mode);
9116 		if (!bpf_op)
9117 			continue;
9118 
9119 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9120 
9121 		/* auto-detach link from net device */
9122 		link = dev_xdp_link(dev, mode);
9123 		if (link)
9124 			link->dev = NULL;
9125 		else
9126 			bpf_prog_put(prog);
9127 
9128 		dev_xdp_set_link(dev, mode, NULL);
9129 	}
9130 }
9131 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9132 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9133 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9134 			  struct bpf_prog *old_prog, u32 flags)
9135 {
9136 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9137 	struct bpf_prog *cur_prog;
9138 	enum bpf_xdp_mode mode;
9139 	bpf_op_t bpf_op;
9140 	int err;
9141 
9142 	ASSERT_RTNL();
9143 
9144 	/* either link or prog attachment, never both */
9145 	if (link && (new_prog || old_prog))
9146 		return -EINVAL;
9147 	/* link supports only XDP mode flags */
9148 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9149 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9150 		return -EINVAL;
9151 	}
9152 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9153 	if (num_modes > 1) {
9154 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9155 		return -EINVAL;
9156 	}
9157 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9158 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9159 		NL_SET_ERR_MSG(extack,
9160 			       "More than one program loaded, unset mode is ambiguous");
9161 		return -EINVAL;
9162 	}
9163 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9164 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9165 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9166 		return -EINVAL;
9167 	}
9168 
9169 	mode = dev_xdp_mode(dev, flags);
9170 	/* can't replace attached link */
9171 	if (dev_xdp_link(dev, mode)) {
9172 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9173 		return -EBUSY;
9174 	}
9175 
9176 	cur_prog = dev_xdp_prog(dev, mode);
9177 	/* can't replace attached prog with link */
9178 	if (link && cur_prog) {
9179 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9180 		return -EBUSY;
9181 	}
9182 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9183 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9184 		return -EEXIST;
9185 	}
9186 
9187 	/* put effective new program into new_prog */
9188 	if (link)
9189 		new_prog = link->link.prog;
9190 
9191 	if (new_prog) {
9192 		bool offload = mode == XDP_MODE_HW;
9193 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9194 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9195 
9196 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9197 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9198 			return -EBUSY;
9199 		}
9200 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9201 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9202 			return -EEXIST;
9203 		}
9204 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9205 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9206 			return -EINVAL;
9207 		}
9208 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9209 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9210 			return -EINVAL;
9211 		}
9212 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9213 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9214 			return -EINVAL;
9215 		}
9216 	}
9217 
9218 	/* don't call drivers if the effective program didn't change */
9219 	if (new_prog != cur_prog) {
9220 		bpf_op = dev_xdp_bpf_op(dev, mode);
9221 		if (!bpf_op) {
9222 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9223 			return -EOPNOTSUPP;
9224 		}
9225 
9226 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9227 		if (err)
9228 			return err;
9229 	}
9230 
9231 	if (link)
9232 		dev_xdp_set_link(dev, mode, link);
9233 	else
9234 		dev_xdp_set_prog(dev, mode, new_prog);
9235 	if (cur_prog)
9236 		bpf_prog_put(cur_prog);
9237 
9238 	return 0;
9239 }
9240 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9241 static int dev_xdp_attach_link(struct net_device *dev,
9242 			       struct netlink_ext_ack *extack,
9243 			       struct bpf_xdp_link *link)
9244 {
9245 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9246 }
9247 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9248 static int dev_xdp_detach_link(struct net_device *dev,
9249 			       struct netlink_ext_ack *extack,
9250 			       struct bpf_xdp_link *link)
9251 {
9252 	enum bpf_xdp_mode mode;
9253 	bpf_op_t bpf_op;
9254 
9255 	ASSERT_RTNL();
9256 
9257 	mode = dev_xdp_mode(dev, link->flags);
9258 	if (dev_xdp_link(dev, mode) != link)
9259 		return -EINVAL;
9260 
9261 	bpf_op = dev_xdp_bpf_op(dev, mode);
9262 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9263 	dev_xdp_set_link(dev, mode, NULL);
9264 	return 0;
9265 }
9266 
bpf_xdp_link_release(struct bpf_link * link)9267 static void bpf_xdp_link_release(struct bpf_link *link)
9268 {
9269 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9270 
9271 	rtnl_lock();
9272 
9273 	/* if racing with net_device's tear down, xdp_link->dev might be
9274 	 * already NULL, in which case link was already auto-detached
9275 	 */
9276 	if (xdp_link->dev) {
9277 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9278 		xdp_link->dev = NULL;
9279 	}
9280 
9281 	rtnl_unlock();
9282 }
9283 
bpf_xdp_link_detach(struct bpf_link * link)9284 static int bpf_xdp_link_detach(struct bpf_link *link)
9285 {
9286 	bpf_xdp_link_release(link);
9287 	return 0;
9288 }
9289 
bpf_xdp_link_dealloc(struct bpf_link * link)9290 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9291 {
9292 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9293 
9294 	kfree(xdp_link);
9295 }
9296 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9297 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9298 				     struct seq_file *seq)
9299 {
9300 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9301 	u32 ifindex = 0;
9302 
9303 	rtnl_lock();
9304 	if (xdp_link->dev)
9305 		ifindex = xdp_link->dev->ifindex;
9306 	rtnl_unlock();
9307 
9308 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9309 }
9310 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9311 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9312 				       struct bpf_link_info *info)
9313 {
9314 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9315 	u32 ifindex = 0;
9316 
9317 	rtnl_lock();
9318 	if (xdp_link->dev)
9319 		ifindex = xdp_link->dev->ifindex;
9320 	rtnl_unlock();
9321 
9322 	info->xdp.ifindex = ifindex;
9323 	return 0;
9324 }
9325 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9326 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9327 			       struct bpf_prog *old_prog)
9328 {
9329 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330 	enum bpf_xdp_mode mode;
9331 	bpf_op_t bpf_op;
9332 	int err = 0;
9333 
9334 	rtnl_lock();
9335 
9336 	/* link might have been auto-released already, so fail */
9337 	if (!xdp_link->dev) {
9338 		err = -ENOLINK;
9339 		goto out_unlock;
9340 	}
9341 
9342 	if (old_prog && link->prog != old_prog) {
9343 		err = -EPERM;
9344 		goto out_unlock;
9345 	}
9346 	old_prog = link->prog;
9347 	if (old_prog->type != new_prog->type ||
9348 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9349 		err = -EINVAL;
9350 		goto out_unlock;
9351 	}
9352 
9353 	if (old_prog == new_prog) {
9354 		/* no-op, don't disturb drivers */
9355 		bpf_prog_put(new_prog);
9356 		goto out_unlock;
9357 	}
9358 
9359 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9360 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9361 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9362 			      xdp_link->flags, new_prog);
9363 	if (err)
9364 		goto out_unlock;
9365 
9366 	old_prog = xchg(&link->prog, new_prog);
9367 	bpf_prog_put(old_prog);
9368 
9369 out_unlock:
9370 	rtnl_unlock();
9371 	return err;
9372 }
9373 
9374 static const struct bpf_link_ops bpf_xdp_link_lops = {
9375 	.release = bpf_xdp_link_release,
9376 	.dealloc = bpf_xdp_link_dealloc,
9377 	.detach = bpf_xdp_link_detach,
9378 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9379 	.fill_link_info = bpf_xdp_link_fill_link_info,
9380 	.update_prog = bpf_xdp_link_update,
9381 };
9382 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9383 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9384 {
9385 	struct net *net = current->nsproxy->net_ns;
9386 	struct bpf_link_primer link_primer;
9387 	struct bpf_xdp_link *link;
9388 	struct net_device *dev;
9389 	int err, fd;
9390 
9391 	rtnl_lock();
9392 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9393 	if (!dev) {
9394 		rtnl_unlock();
9395 		return -EINVAL;
9396 	}
9397 
9398 	link = kzalloc(sizeof(*link), GFP_USER);
9399 	if (!link) {
9400 		err = -ENOMEM;
9401 		goto unlock;
9402 	}
9403 
9404 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9405 	link->dev = dev;
9406 	link->flags = attr->link_create.flags;
9407 
9408 	err = bpf_link_prime(&link->link, &link_primer);
9409 	if (err) {
9410 		kfree(link);
9411 		goto unlock;
9412 	}
9413 
9414 	err = dev_xdp_attach_link(dev, NULL, link);
9415 	rtnl_unlock();
9416 
9417 	if (err) {
9418 		link->dev = NULL;
9419 		bpf_link_cleanup(&link_primer);
9420 		goto out_put_dev;
9421 	}
9422 
9423 	fd = bpf_link_settle(&link_primer);
9424 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9425 	dev_put(dev);
9426 	return fd;
9427 
9428 unlock:
9429 	rtnl_unlock();
9430 
9431 out_put_dev:
9432 	dev_put(dev);
9433 	return err;
9434 }
9435 
9436 /**
9437  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9438  *	@dev: device
9439  *	@extack: netlink extended ack
9440  *	@fd: new program fd or negative value to clear
9441  *	@expected_fd: old program fd that userspace expects to replace or clear
9442  *	@flags: xdp-related flags
9443  *
9444  *	Set or clear a bpf program for a device
9445  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9446 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9447 		      int fd, int expected_fd, u32 flags)
9448 {
9449 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9450 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9451 	int err;
9452 
9453 	ASSERT_RTNL();
9454 
9455 	if (fd >= 0) {
9456 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9457 						 mode != XDP_MODE_SKB);
9458 		if (IS_ERR(new_prog))
9459 			return PTR_ERR(new_prog);
9460 	}
9461 
9462 	if (expected_fd >= 0) {
9463 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9464 						 mode != XDP_MODE_SKB);
9465 		if (IS_ERR(old_prog)) {
9466 			err = PTR_ERR(old_prog);
9467 			old_prog = NULL;
9468 			goto err_out;
9469 		}
9470 	}
9471 
9472 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9473 
9474 err_out:
9475 	if (err && new_prog)
9476 		bpf_prog_put(new_prog);
9477 	if (old_prog)
9478 		bpf_prog_put(old_prog);
9479 	return err;
9480 }
9481 
9482 /**
9483  *	dev_new_index	-	allocate an ifindex
9484  *	@net: the applicable net namespace
9485  *
9486  *	Returns a suitable unique value for a new device interface
9487  *	number.  The caller must hold the rtnl semaphore or the
9488  *	dev_base_lock to be sure it remains unique.
9489  */
dev_new_index(struct net * net)9490 static int dev_new_index(struct net *net)
9491 {
9492 	int ifindex = net->ifindex;
9493 
9494 	for (;;) {
9495 		if (++ifindex <= 0)
9496 			ifindex = 1;
9497 		if (!__dev_get_by_index(net, ifindex))
9498 			return net->ifindex = ifindex;
9499 	}
9500 }
9501 
9502 /* Delayed registration/unregisteration */
9503 static LIST_HEAD(net_todo_list);
9504 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9505 
net_set_todo(struct net_device * dev)9506 static void net_set_todo(struct net_device *dev)
9507 {
9508 	list_add_tail(&dev->todo_list, &net_todo_list);
9509 	dev_net(dev)->dev_unreg_count++;
9510 }
9511 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9512 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9513 	struct net_device *upper, netdev_features_t features)
9514 {
9515 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9516 	netdev_features_t feature;
9517 	int feature_bit;
9518 
9519 	for_each_netdev_feature(upper_disables, feature_bit) {
9520 		feature = __NETIF_F_BIT(feature_bit);
9521 		if (!(upper->wanted_features & feature)
9522 		    && (features & feature)) {
9523 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9524 				   &feature, upper->name);
9525 			features &= ~feature;
9526 		}
9527 	}
9528 
9529 	return features;
9530 }
9531 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9532 static void netdev_sync_lower_features(struct net_device *upper,
9533 	struct net_device *lower, netdev_features_t features)
9534 {
9535 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9536 	netdev_features_t feature;
9537 	int feature_bit;
9538 
9539 	for_each_netdev_feature(upper_disables, feature_bit) {
9540 		feature = __NETIF_F_BIT(feature_bit);
9541 		if (!(features & feature) && (lower->features & feature)) {
9542 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9543 				   &feature, lower->name);
9544 			lower->wanted_features &= ~feature;
9545 			__netdev_update_features(lower);
9546 
9547 			if (unlikely(lower->features & feature))
9548 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9549 					    &feature, lower->name);
9550 			else
9551 				netdev_features_change(lower);
9552 		}
9553 	}
9554 }
9555 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9556 static netdev_features_t netdev_fix_features(struct net_device *dev,
9557 	netdev_features_t features)
9558 {
9559 	/* Fix illegal checksum combinations */
9560 	if ((features & NETIF_F_HW_CSUM) &&
9561 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9562 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9563 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9564 	}
9565 
9566 	/* TSO requires that SG is present as well. */
9567 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9568 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9569 		features &= ~NETIF_F_ALL_TSO;
9570 	}
9571 
9572 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9573 					!(features & NETIF_F_IP_CSUM)) {
9574 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9575 		features &= ~NETIF_F_TSO;
9576 		features &= ~NETIF_F_TSO_ECN;
9577 	}
9578 
9579 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9580 					 !(features & NETIF_F_IPV6_CSUM)) {
9581 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9582 		features &= ~NETIF_F_TSO6;
9583 	}
9584 
9585 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9586 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9587 		features &= ~NETIF_F_TSO_MANGLEID;
9588 
9589 	/* TSO ECN requires that TSO is present as well. */
9590 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9591 		features &= ~NETIF_F_TSO_ECN;
9592 
9593 	/* Software GSO depends on SG. */
9594 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9595 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9596 		features &= ~NETIF_F_GSO;
9597 	}
9598 
9599 	/* GSO partial features require GSO partial be set */
9600 	if ((features & dev->gso_partial_features) &&
9601 	    !(features & NETIF_F_GSO_PARTIAL)) {
9602 		netdev_dbg(dev,
9603 			   "Dropping partially supported GSO features since no GSO partial.\n");
9604 		features &= ~dev->gso_partial_features;
9605 	}
9606 
9607 	if (!(features & NETIF_F_RXCSUM)) {
9608 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9609 		 * successfully merged by hardware must also have the
9610 		 * checksum verified by hardware.  If the user does not
9611 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9612 		 */
9613 		if (features & NETIF_F_GRO_HW) {
9614 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9615 			features &= ~NETIF_F_GRO_HW;
9616 		}
9617 	}
9618 
9619 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9620 	if (features & NETIF_F_RXFCS) {
9621 		if (features & NETIF_F_LRO) {
9622 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9623 			features &= ~NETIF_F_LRO;
9624 		}
9625 
9626 		if (features & NETIF_F_GRO_HW) {
9627 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9628 			features &= ~NETIF_F_GRO_HW;
9629 		}
9630 	}
9631 
9632 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9633 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9634 		features &= ~NETIF_F_HW_TLS_RX;
9635 	}
9636 
9637 	return features;
9638 }
9639 
__netdev_update_features(struct net_device * dev)9640 int __netdev_update_features(struct net_device *dev)
9641 {
9642 	struct net_device *upper, *lower;
9643 	netdev_features_t features;
9644 	struct list_head *iter;
9645 	int err = -1;
9646 
9647 	ASSERT_RTNL();
9648 
9649 	features = netdev_get_wanted_features(dev);
9650 
9651 	if (dev->netdev_ops->ndo_fix_features)
9652 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9653 
9654 	/* driver might be less strict about feature dependencies */
9655 	features = netdev_fix_features(dev, features);
9656 
9657 	/* some features can't be enabled if they're off on an upper device */
9658 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9659 		features = netdev_sync_upper_features(dev, upper, features);
9660 
9661 	if (dev->features == features)
9662 		goto sync_lower;
9663 
9664 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9665 		&dev->features, &features);
9666 
9667 	if (dev->netdev_ops->ndo_set_features)
9668 		err = dev->netdev_ops->ndo_set_features(dev, features);
9669 	else
9670 		err = 0;
9671 
9672 	if (unlikely(err < 0)) {
9673 		netdev_err(dev,
9674 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9675 			err, &features, &dev->features);
9676 		/* return non-0 since some features might have changed and
9677 		 * it's better to fire a spurious notification than miss it
9678 		 */
9679 		return -1;
9680 	}
9681 
9682 sync_lower:
9683 	/* some features must be disabled on lower devices when disabled
9684 	 * on an upper device (think: bonding master or bridge)
9685 	 */
9686 	netdev_for_each_lower_dev(dev, lower, iter)
9687 		netdev_sync_lower_features(dev, lower, features);
9688 
9689 	if (!err) {
9690 		netdev_features_t diff = features ^ dev->features;
9691 
9692 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9693 			/* udp_tunnel_{get,drop}_rx_info both need
9694 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9695 			 * device, or they won't do anything.
9696 			 * Thus we need to update dev->features
9697 			 * *before* calling udp_tunnel_get_rx_info,
9698 			 * but *after* calling udp_tunnel_drop_rx_info.
9699 			 */
9700 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9701 				dev->features = features;
9702 				udp_tunnel_get_rx_info(dev);
9703 			} else {
9704 				udp_tunnel_drop_rx_info(dev);
9705 			}
9706 		}
9707 
9708 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9709 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9710 				dev->features = features;
9711 				err |= vlan_get_rx_ctag_filter_info(dev);
9712 			} else {
9713 				vlan_drop_rx_ctag_filter_info(dev);
9714 			}
9715 		}
9716 
9717 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9718 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9719 				dev->features = features;
9720 				err |= vlan_get_rx_stag_filter_info(dev);
9721 			} else {
9722 				vlan_drop_rx_stag_filter_info(dev);
9723 			}
9724 		}
9725 
9726 		dev->features = features;
9727 	}
9728 
9729 	return err < 0 ? 0 : 1;
9730 }
9731 
9732 /**
9733  *	netdev_update_features - recalculate device features
9734  *	@dev: the device to check
9735  *
9736  *	Recalculate dev->features set and send notifications if it
9737  *	has changed. Should be called after driver or hardware dependent
9738  *	conditions might have changed that influence the features.
9739  */
netdev_update_features(struct net_device * dev)9740 void netdev_update_features(struct net_device *dev)
9741 {
9742 	if (__netdev_update_features(dev))
9743 		netdev_features_change(dev);
9744 }
9745 EXPORT_SYMBOL(netdev_update_features);
9746 
9747 /**
9748  *	netdev_change_features - recalculate device features
9749  *	@dev: the device to check
9750  *
9751  *	Recalculate dev->features set and send notifications even
9752  *	if they have not changed. Should be called instead of
9753  *	netdev_update_features() if also dev->vlan_features might
9754  *	have changed to allow the changes to be propagated to stacked
9755  *	VLAN devices.
9756  */
netdev_change_features(struct net_device * dev)9757 void netdev_change_features(struct net_device *dev)
9758 {
9759 	__netdev_update_features(dev);
9760 	netdev_features_change(dev);
9761 }
9762 EXPORT_SYMBOL(netdev_change_features);
9763 
9764 /**
9765  *	netif_stacked_transfer_operstate -	transfer operstate
9766  *	@rootdev: the root or lower level device to transfer state from
9767  *	@dev: the device to transfer operstate to
9768  *
9769  *	Transfer operational state from root to device. This is normally
9770  *	called when a stacking relationship exists between the root
9771  *	device and the device(a leaf device).
9772  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9773 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9774 					struct net_device *dev)
9775 {
9776 	if (rootdev->operstate == IF_OPER_DORMANT)
9777 		netif_dormant_on(dev);
9778 	else
9779 		netif_dormant_off(dev);
9780 
9781 	if (rootdev->operstate == IF_OPER_TESTING)
9782 		netif_testing_on(dev);
9783 	else
9784 		netif_testing_off(dev);
9785 
9786 	if (netif_carrier_ok(rootdev))
9787 		netif_carrier_on(dev);
9788 	else
9789 		netif_carrier_off(dev);
9790 }
9791 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9792 
netif_alloc_rx_queues(struct net_device * dev)9793 static int netif_alloc_rx_queues(struct net_device *dev)
9794 {
9795 	unsigned int i, count = dev->num_rx_queues;
9796 	struct netdev_rx_queue *rx;
9797 	size_t sz = count * sizeof(*rx);
9798 	int err = 0;
9799 
9800 	BUG_ON(count < 1);
9801 
9802 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9803 	if (!rx)
9804 		return -ENOMEM;
9805 
9806 	dev->_rx = rx;
9807 
9808 	for (i = 0; i < count; i++) {
9809 		rx[i].dev = dev;
9810 
9811 		/* XDP RX-queue setup */
9812 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9813 		if (err < 0)
9814 			goto err_rxq_info;
9815 	}
9816 	return 0;
9817 
9818 err_rxq_info:
9819 	/* Rollback successful reg's and free other resources */
9820 	while (i--)
9821 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9822 	kvfree(dev->_rx);
9823 	dev->_rx = NULL;
9824 	return err;
9825 }
9826 
netif_free_rx_queues(struct net_device * dev)9827 static void netif_free_rx_queues(struct net_device *dev)
9828 {
9829 	unsigned int i, count = dev->num_rx_queues;
9830 
9831 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9832 	if (!dev->_rx)
9833 		return;
9834 
9835 	for (i = 0; i < count; i++)
9836 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9837 
9838 	kvfree(dev->_rx);
9839 }
9840 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9841 static void netdev_init_one_queue(struct net_device *dev,
9842 				  struct netdev_queue *queue, void *_unused)
9843 {
9844 	/* Initialize queue lock */
9845 	spin_lock_init(&queue->_xmit_lock);
9846 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9847 	queue->xmit_lock_owner = -1;
9848 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9849 	queue->dev = dev;
9850 #ifdef CONFIG_BQL
9851 	dql_init(&queue->dql, HZ);
9852 #endif
9853 }
9854 
netif_free_tx_queues(struct net_device * dev)9855 static void netif_free_tx_queues(struct net_device *dev)
9856 {
9857 	kvfree(dev->_tx);
9858 }
9859 
netif_alloc_netdev_queues(struct net_device * dev)9860 static int netif_alloc_netdev_queues(struct net_device *dev)
9861 {
9862 	unsigned int count = dev->num_tx_queues;
9863 	struct netdev_queue *tx;
9864 	size_t sz = count * sizeof(*tx);
9865 
9866 	if (count < 1 || count > 0xffff)
9867 		return -EINVAL;
9868 
9869 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9870 	if (!tx)
9871 		return -ENOMEM;
9872 
9873 	dev->_tx = tx;
9874 
9875 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9876 	spin_lock_init(&dev->tx_global_lock);
9877 
9878 	return 0;
9879 }
9880 
netif_tx_stop_all_queues(struct net_device * dev)9881 void netif_tx_stop_all_queues(struct net_device *dev)
9882 {
9883 	unsigned int i;
9884 
9885 	for (i = 0; i < dev->num_tx_queues; i++) {
9886 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9887 
9888 		netif_tx_stop_queue(txq);
9889 	}
9890 }
9891 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9892 
9893 /**
9894  *	register_netdevice	- register a network device
9895  *	@dev: device to register
9896  *
9897  *	Take a completed network device structure and add it to the kernel
9898  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9899  *	chain. 0 is returned on success. A negative errno code is returned
9900  *	on a failure to set up the device, or if the name is a duplicate.
9901  *
9902  *	Callers must hold the rtnl semaphore. You may want
9903  *	register_netdev() instead of this.
9904  *
9905  *	BUGS:
9906  *	The locking appears insufficient to guarantee two parallel registers
9907  *	will not get the same name.
9908  */
9909 
register_netdevice(struct net_device * dev)9910 int register_netdevice(struct net_device *dev)
9911 {
9912 	int ret;
9913 	struct net *net = dev_net(dev);
9914 
9915 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9916 		     NETDEV_FEATURE_COUNT);
9917 	BUG_ON(dev_boot_phase);
9918 	ASSERT_RTNL();
9919 
9920 	might_sleep();
9921 
9922 	/* When net_device's are persistent, this will be fatal. */
9923 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9924 	BUG_ON(!net);
9925 
9926 	ret = ethtool_check_ops(dev->ethtool_ops);
9927 	if (ret)
9928 		return ret;
9929 
9930 	spin_lock_init(&dev->addr_list_lock);
9931 	netdev_set_addr_lockdep_class(dev);
9932 
9933 	ret = dev_get_valid_name(net, dev, dev->name);
9934 	if (ret < 0)
9935 		goto out;
9936 
9937 	ret = -ENOMEM;
9938 	dev->name_node = netdev_name_node_head_alloc(dev);
9939 	if (!dev->name_node)
9940 		goto out;
9941 
9942 	/* Init, if this function is available */
9943 	if (dev->netdev_ops->ndo_init) {
9944 		ret = dev->netdev_ops->ndo_init(dev);
9945 		if (ret) {
9946 			if (ret > 0)
9947 				ret = -EIO;
9948 			goto err_free_name;
9949 		}
9950 	}
9951 
9952 	if (((dev->hw_features | dev->features) &
9953 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9954 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9955 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9956 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9957 		ret = -EINVAL;
9958 		goto err_uninit;
9959 	}
9960 
9961 	ret = -EBUSY;
9962 	if (!dev->ifindex)
9963 		dev->ifindex = dev_new_index(net);
9964 	else if (__dev_get_by_index(net, dev->ifindex))
9965 		goto err_uninit;
9966 
9967 	/* Transfer changeable features to wanted_features and enable
9968 	 * software offloads (GSO and GRO).
9969 	 */
9970 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9971 	dev->features |= NETIF_F_SOFT_FEATURES;
9972 
9973 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9974 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9975 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9976 	}
9977 
9978 	dev->wanted_features = dev->features & dev->hw_features;
9979 
9980 	if (!(dev->flags & IFF_LOOPBACK))
9981 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9982 
9983 	/* If IPv4 TCP segmentation offload is supported we should also
9984 	 * allow the device to enable segmenting the frame with the option
9985 	 * of ignoring a static IP ID value.  This doesn't enable the
9986 	 * feature itself but allows the user to enable it later.
9987 	 */
9988 	if (dev->hw_features & NETIF_F_TSO)
9989 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9990 	if (dev->vlan_features & NETIF_F_TSO)
9991 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9992 	if (dev->mpls_features & NETIF_F_TSO)
9993 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9994 	if (dev->hw_enc_features & NETIF_F_TSO)
9995 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9996 
9997 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9998 	 */
9999 	dev->vlan_features |= NETIF_F_HIGHDMA;
10000 
10001 	/* Make NETIF_F_SG inheritable to tunnel devices.
10002 	 */
10003 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10004 
10005 	/* Make NETIF_F_SG inheritable to MPLS.
10006 	 */
10007 	dev->mpls_features |= NETIF_F_SG;
10008 
10009 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10010 	ret = notifier_to_errno(ret);
10011 	if (ret)
10012 		goto err_uninit;
10013 
10014 	ret = netdev_register_kobject(dev);
10015 	if (ret) {
10016 		dev->reg_state = NETREG_UNREGISTERED;
10017 		goto err_uninit;
10018 	}
10019 	dev->reg_state = NETREG_REGISTERED;
10020 
10021 	__netdev_update_features(dev);
10022 
10023 	/*
10024 	 *	Default initial state at registry is that the
10025 	 *	device is present.
10026 	 */
10027 
10028 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10029 
10030 	linkwatch_init_dev(dev);
10031 
10032 	dev_init_scheduler(dev);
10033 	dev_hold(dev);
10034 	list_netdevice(dev);
10035 	add_device_randomness(dev->dev_addr, dev->addr_len);
10036 
10037 	/* If the device has permanent device address, driver should
10038 	 * set dev_addr and also addr_assign_type should be set to
10039 	 * NET_ADDR_PERM (default value).
10040 	 */
10041 	if (dev->addr_assign_type == NET_ADDR_PERM)
10042 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10043 
10044 	/* Notify protocols, that a new device appeared. */
10045 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10046 	ret = notifier_to_errno(ret);
10047 	if (ret) {
10048 		/* Expect explicit free_netdev() on failure */
10049 		dev->needs_free_netdev = false;
10050 		unregister_netdevice_queue(dev, NULL);
10051 		goto out;
10052 	}
10053 	/*
10054 	 *	Prevent userspace races by waiting until the network
10055 	 *	device is fully setup before sending notifications.
10056 	 */
10057 	if (!dev->rtnl_link_ops ||
10058 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10059 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10060 
10061 out:
10062 	return ret;
10063 
10064 err_uninit:
10065 	if (dev->netdev_ops->ndo_uninit)
10066 		dev->netdev_ops->ndo_uninit(dev);
10067 	if (dev->priv_destructor)
10068 		dev->priv_destructor(dev);
10069 err_free_name:
10070 	netdev_name_node_free(dev->name_node);
10071 	goto out;
10072 }
10073 EXPORT_SYMBOL(register_netdevice);
10074 
10075 /**
10076  *	init_dummy_netdev	- init a dummy network device for NAPI
10077  *	@dev: device to init
10078  *
10079  *	This takes a network device structure and initialize the minimum
10080  *	amount of fields so it can be used to schedule NAPI polls without
10081  *	registering a full blown interface. This is to be used by drivers
10082  *	that need to tie several hardware interfaces to a single NAPI
10083  *	poll scheduler due to HW limitations.
10084  */
init_dummy_netdev(struct net_device * dev)10085 int init_dummy_netdev(struct net_device *dev)
10086 {
10087 	/* Clear everything. Note we don't initialize spinlocks
10088 	 * are they aren't supposed to be taken by any of the
10089 	 * NAPI code and this dummy netdev is supposed to be
10090 	 * only ever used for NAPI polls
10091 	 */
10092 	memset(dev, 0, sizeof(struct net_device));
10093 
10094 	/* make sure we BUG if trying to hit standard
10095 	 * register/unregister code path
10096 	 */
10097 	dev->reg_state = NETREG_DUMMY;
10098 
10099 	/* NAPI wants this */
10100 	INIT_LIST_HEAD(&dev->napi_list);
10101 
10102 	/* a dummy interface is started by default */
10103 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10104 	set_bit(__LINK_STATE_START, &dev->state);
10105 
10106 	/* napi_busy_loop stats accounting wants this */
10107 	dev_net_set(dev, &init_net);
10108 
10109 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10110 	 * because users of this 'device' dont need to change
10111 	 * its refcount.
10112 	 */
10113 
10114 	return 0;
10115 }
10116 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10117 
10118 
10119 /**
10120  *	register_netdev	- register a network device
10121  *	@dev: device to register
10122  *
10123  *	Take a completed network device structure and add it to the kernel
10124  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10125  *	chain. 0 is returned on success. A negative errno code is returned
10126  *	on a failure to set up the device, or if the name is a duplicate.
10127  *
10128  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10129  *	and expands the device name if you passed a format string to
10130  *	alloc_netdev.
10131  */
register_netdev(struct net_device * dev)10132 int register_netdev(struct net_device *dev)
10133 {
10134 	int err;
10135 
10136 	if (rtnl_lock_killable())
10137 		return -EINTR;
10138 	err = register_netdevice(dev);
10139 	rtnl_unlock();
10140 	return err;
10141 }
10142 EXPORT_SYMBOL(register_netdev);
10143 
netdev_refcnt_read(const struct net_device * dev)10144 int netdev_refcnt_read(const struct net_device *dev)
10145 {
10146 	int i, refcnt = 0;
10147 
10148 	for_each_possible_cpu(i)
10149 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10150 	return refcnt;
10151 }
10152 EXPORT_SYMBOL(netdev_refcnt_read);
10153 
10154 #define WAIT_REFS_MIN_MSECS 1
10155 #define WAIT_REFS_MAX_MSECS 250
10156 /**
10157  * netdev_wait_allrefs - wait until all references are gone.
10158  * @dev: target net_device
10159  *
10160  * This is called when unregistering network devices.
10161  *
10162  * Any protocol or device that holds a reference should register
10163  * for netdevice notification, and cleanup and put back the
10164  * reference if they receive an UNREGISTER event.
10165  * We can get stuck here if buggy protocols don't correctly
10166  * call dev_put.
10167  */
netdev_wait_allrefs(struct net_device * dev)10168 static void netdev_wait_allrefs(struct net_device *dev)
10169 {
10170 	unsigned long rebroadcast_time, warning_time;
10171 	int wait = 0, refcnt;
10172 
10173 	linkwatch_forget_dev(dev);
10174 
10175 	rebroadcast_time = warning_time = jiffies;
10176 	refcnt = netdev_refcnt_read(dev);
10177 
10178 	while (refcnt != 0) {
10179 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10180 			rtnl_lock();
10181 
10182 			/* Rebroadcast unregister notification */
10183 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10184 
10185 			__rtnl_unlock();
10186 			rcu_barrier();
10187 			rtnl_lock();
10188 
10189 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10190 				     &dev->state)) {
10191 				/* We must not have linkwatch events
10192 				 * pending on unregister. If this
10193 				 * happens, we simply run the queue
10194 				 * unscheduled, resulting in a noop
10195 				 * for this device.
10196 				 */
10197 				linkwatch_run_queue();
10198 			}
10199 
10200 			__rtnl_unlock();
10201 
10202 			rebroadcast_time = jiffies;
10203 		}
10204 
10205 		if (!wait) {
10206 			rcu_barrier();
10207 			wait = WAIT_REFS_MIN_MSECS;
10208 		} else {
10209 			msleep(wait);
10210 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10211 		}
10212 
10213 		refcnt = netdev_refcnt_read(dev);
10214 
10215 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10216 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10217 				 dev->name, refcnt);
10218 			warning_time = jiffies;
10219 		}
10220 	}
10221 }
10222 
10223 /* The sequence is:
10224  *
10225  *	rtnl_lock();
10226  *	...
10227  *	register_netdevice(x1);
10228  *	register_netdevice(x2);
10229  *	...
10230  *	unregister_netdevice(y1);
10231  *	unregister_netdevice(y2);
10232  *      ...
10233  *	rtnl_unlock();
10234  *	free_netdev(y1);
10235  *	free_netdev(y2);
10236  *
10237  * We are invoked by rtnl_unlock().
10238  * This allows us to deal with problems:
10239  * 1) We can delete sysfs objects which invoke hotplug
10240  *    without deadlocking with linkwatch via keventd.
10241  * 2) Since we run with the RTNL semaphore not held, we can sleep
10242  *    safely in order to wait for the netdev refcnt to drop to zero.
10243  *
10244  * We must not return until all unregister events added during
10245  * the interval the lock was held have been completed.
10246  */
netdev_run_todo(void)10247 void netdev_run_todo(void)
10248 {
10249 	struct list_head list;
10250 #ifdef CONFIG_LOCKDEP
10251 	struct list_head unlink_list;
10252 
10253 	list_replace_init(&net_unlink_list, &unlink_list);
10254 
10255 	while (!list_empty(&unlink_list)) {
10256 		struct net_device *dev = list_first_entry(&unlink_list,
10257 							  struct net_device,
10258 							  unlink_list);
10259 		list_del_init(&dev->unlink_list);
10260 		dev->nested_level = dev->lower_level - 1;
10261 	}
10262 #endif
10263 
10264 	/* Snapshot list, allow later requests */
10265 	list_replace_init(&net_todo_list, &list);
10266 
10267 	__rtnl_unlock();
10268 
10269 
10270 	/* Wait for rcu callbacks to finish before next phase */
10271 	if (!list_empty(&list))
10272 		rcu_barrier();
10273 
10274 	while (!list_empty(&list)) {
10275 		struct net_device *dev
10276 			= list_first_entry(&list, struct net_device, todo_list);
10277 		list_del(&dev->todo_list);
10278 
10279 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10280 			pr_err("network todo '%s' but state %d\n",
10281 			       dev->name, dev->reg_state);
10282 			dump_stack();
10283 			continue;
10284 		}
10285 
10286 		dev->reg_state = NETREG_UNREGISTERED;
10287 
10288 		netdev_wait_allrefs(dev);
10289 
10290 		/* paranoia */
10291 		BUG_ON(netdev_refcnt_read(dev));
10292 		BUG_ON(!list_empty(&dev->ptype_all));
10293 		BUG_ON(!list_empty(&dev->ptype_specific));
10294 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10295 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10296 #if IS_ENABLED(CONFIG_DECNET)
10297 		WARN_ON(dev->dn_ptr);
10298 #endif
10299 		if (dev->priv_destructor)
10300 			dev->priv_destructor(dev);
10301 		if (dev->needs_free_netdev)
10302 			free_netdev(dev);
10303 
10304 		/* Report a network device has been unregistered */
10305 		rtnl_lock();
10306 		dev_net(dev)->dev_unreg_count--;
10307 		__rtnl_unlock();
10308 		wake_up(&netdev_unregistering_wq);
10309 
10310 		/* Free network device */
10311 		kobject_put(&dev->dev.kobj);
10312 	}
10313 }
10314 
10315 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10316  * all the same fields in the same order as net_device_stats, with only
10317  * the type differing, but rtnl_link_stats64 may have additional fields
10318  * at the end for newer counters.
10319  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10320 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10321 			     const struct net_device_stats *netdev_stats)
10322 {
10323 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10324 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10325 	u64 *dst = (u64 *)stats64;
10326 
10327 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10328 	for (i = 0; i < n; i++)
10329 		dst[i] = atomic_long_read(&src[i]);
10330 	/* zero out counters that only exist in rtnl_link_stats64 */
10331 	memset((char *)stats64 + n * sizeof(u64), 0,
10332 	       sizeof(*stats64) - n * sizeof(u64));
10333 }
10334 EXPORT_SYMBOL(netdev_stats_to_stats64);
10335 
10336 /**
10337  *	dev_get_stats	- get network device statistics
10338  *	@dev: device to get statistics from
10339  *	@storage: place to store stats
10340  *
10341  *	Get network statistics from device. Return @storage.
10342  *	The device driver may provide its own method by setting
10343  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10344  *	otherwise the internal statistics structure is used.
10345  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10346 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10347 					struct rtnl_link_stats64 *storage)
10348 {
10349 	const struct net_device_ops *ops = dev->netdev_ops;
10350 
10351 	if (ops->ndo_get_stats64) {
10352 		memset(storage, 0, sizeof(*storage));
10353 		ops->ndo_get_stats64(dev, storage);
10354 	} else if (ops->ndo_get_stats) {
10355 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10356 	} else {
10357 		netdev_stats_to_stats64(storage, &dev->stats);
10358 	}
10359 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10360 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10361 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10362 	return storage;
10363 }
10364 EXPORT_SYMBOL(dev_get_stats);
10365 
10366 /**
10367  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10368  *	@s: place to store stats
10369  *	@netstats: per-cpu network stats to read from
10370  *
10371  *	Read per-cpu network statistics and populate the related fields in @s.
10372  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10373 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10374 			   const struct pcpu_sw_netstats __percpu *netstats)
10375 {
10376 	int cpu;
10377 
10378 	for_each_possible_cpu(cpu) {
10379 		const struct pcpu_sw_netstats *stats;
10380 		struct pcpu_sw_netstats tmp;
10381 		unsigned int start;
10382 
10383 		stats = per_cpu_ptr(netstats, cpu);
10384 		do {
10385 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10386 			tmp.rx_packets = stats->rx_packets;
10387 			tmp.rx_bytes   = stats->rx_bytes;
10388 			tmp.tx_packets = stats->tx_packets;
10389 			tmp.tx_bytes   = stats->tx_bytes;
10390 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10391 
10392 		s->rx_packets += tmp.rx_packets;
10393 		s->rx_bytes   += tmp.rx_bytes;
10394 		s->tx_packets += tmp.tx_packets;
10395 		s->tx_bytes   += tmp.tx_bytes;
10396 	}
10397 }
10398 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10399 
dev_ingress_queue_create(struct net_device * dev)10400 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10401 {
10402 	struct netdev_queue *queue = dev_ingress_queue(dev);
10403 
10404 #ifdef CONFIG_NET_CLS_ACT
10405 	if (queue)
10406 		return queue;
10407 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10408 	if (!queue)
10409 		return NULL;
10410 	netdev_init_one_queue(dev, queue, NULL);
10411 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10412 	queue->qdisc_sleeping = &noop_qdisc;
10413 	rcu_assign_pointer(dev->ingress_queue, queue);
10414 #endif
10415 	return queue;
10416 }
10417 
10418 static const struct ethtool_ops default_ethtool_ops;
10419 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10420 void netdev_set_default_ethtool_ops(struct net_device *dev,
10421 				    const struct ethtool_ops *ops)
10422 {
10423 	if (dev->ethtool_ops == &default_ethtool_ops)
10424 		dev->ethtool_ops = ops;
10425 }
10426 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10427 
netdev_freemem(struct net_device * dev)10428 void netdev_freemem(struct net_device *dev)
10429 {
10430 	char *addr = (char *)dev - dev->padded;
10431 
10432 	kvfree(addr);
10433 }
10434 
10435 /**
10436  * alloc_netdev_mqs - allocate network device
10437  * @sizeof_priv: size of private data to allocate space for
10438  * @name: device name format string
10439  * @name_assign_type: origin of device name
10440  * @setup: callback to initialize device
10441  * @txqs: the number of TX subqueues to allocate
10442  * @rxqs: the number of RX subqueues to allocate
10443  *
10444  * Allocates a struct net_device with private data area for driver use
10445  * and performs basic initialization.  Also allocates subqueue structs
10446  * for each queue on the device.
10447  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10449 		unsigned char name_assign_type,
10450 		void (*setup)(struct net_device *),
10451 		unsigned int txqs, unsigned int rxqs)
10452 {
10453 	struct net_device *dev;
10454 	unsigned int alloc_size;
10455 	struct net_device *p;
10456 
10457 	BUG_ON(strlen(name) >= sizeof(dev->name));
10458 
10459 	if (txqs < 1) {
10460 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10461 		return NULL;
10462 	}
10463 
10464 	if (rxqs < 1) {
10465 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10466 		return NULL;
10467 	}
10468 
10469 	alloc_size = sizeof(struct net_device);
10470 	if (sizeof_priv) {
10471 		/* ensure 32-byte alignment of private area */
10472 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10473 		alloc_size += sizeof_priv;
10474 	}
10475 	/* ensure 32-byte alignment of whole construct */
10476 	alloc_size += NETDEV_ALIGN - 1;
10477 
10478 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10479 	if (!p)
10480 		return NULL;
10481 
10482 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10483 	dev->padded = (char *)dev - (char *)p;
10484 
10485 	dev->pcpu_refcnt = alloc_percpu(int);
10486 	if (!dev->pcpu_refcnt)
10487 		goto free_dev;
10488 
10489 	if (dev_addr_init(dev))
10490 		goto free_pcpu;
10491 
10492 	dev_mc_init(dev);
10493 	dev_uc_init(dev);
10494 
10495 	dev_net_set(dev, &init_net);
10496 
10497 	dev->gso_max_size = GSO_MAX_SIZE;
10498 	dev->gso_max_segs = GSO_MAX_SEGS;
10499 	dev->upper_level = 1;
10500 	dev->lower_level = 1;
10501 #ifdef CONFIG_LOCKDEP
10502 	dev->nested_level = 0;
10503 	INIT_LIST_HEAD(&dev->unlink_list);
10504 #endif
10505 
10506 	INIT_LIST_HEAD(&dev->napi_list);
10507 	INIT_LIST_HEAD(&dev->unreg_list);
10508 	INIT_LIST_HEAD(&dev->close_list);
10509 	INIT_LIST_HEAD(&dev->link_watch_list);
10510 	INIT_LIST_HEAD(&dev->adj_list.upper);
10511 	INIT_LIST_HEAD(&dev->adj_list.lower);
10512 	INIT_LIST_HEAD(&dev->ptype_all);
10513 	INIT_LIST_HEAD(&dev->ptype_specific);
10514 	INIT_LIST_HEAD(&dev->net_notifier_list);
10515 #ifdef CONFIG_NET_SCHED
10516 	hash_init(dev->qdisc_hash);
10517 #endif
10518 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10519 	setup(dev);
10520 
10521 	if (!dev->tx_queue_len) {
10522 		dev->priv_flags |= IFF_NO_QUEUE;
10523 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10524 	}
10525 
10526 	dev->num_tx_queues = txqs;
10527 	dev->real_num_tx_queues = txqs;
10528 	if (netif_alloc_netdev_queues(dev))
10529 		goto free_all;
10530 
10531 	dev->num_rx_queues = rxqs;
10532 	dev->real_num_rx_queues = rxqs;
10533 	if (netif_alloc_rx_queues(dev))
10534 		goto free_all;
10535 
10536 	strcpy(dev->name, name);
10537 	dev->name_assign_type = name_assign_type;
10538 	dev->group = INIT_NETDEV_GROUP;
10539 	if (!dev->ethtool_ops)
10540 		dev->ethtool_ops = &default_ethtool_ops;
10541 
10542 	nf_hook_ingress_init(dev);
10543 
10544 	return dev;
10545 
10546 free_all:
10547 	free_netdev(dev);
10548 	return NULL;
10549 
10550 free_pcpu:
10551 	free_percpu(dev->pcpu_refcnt);
10552 free_dev:
10553 	netdev_freemem(dev);
10554 	return NULL;
10555 }
10556 EXPORT_SYMBOL(alloc_netdev_mqs);
10557 
10558 /**
10559  * free_netdev - free network device
10560  * @dev: device
10561  *
10562  * This function does the last stage of destroying an allocated device
10563  * interface. The reference to the device object is released. If this
10564  * is the last reference then it will be freed.Must be called in process
10565  * context.
10566  */
free_netdev(struct net_device * dev)10567 void free_netdev(struct net_device *dev)
10568 {
10569 	struct napi_struct *p, *n;
10570 
10571 	might_sleep();
10572 
10573 	/* When called immediately after register_netdevice() failed the unwind
10574 	 * handling may still be dismantling the device. Handle that case by
10575 	 * deferring the free.
10576 	 */
10577 	if (dev->reg_state == NETREG_UNREGISTERING) {
10578 		ASSERT_RTNL();
10579 		dev->needs_free_netdev = true;
10580 		return;
10581 	}
10582 
10583 	netif_free_tx_queues(dev);
10584 	netif_free_rx_queues(dev);
10585 
10586 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10587 
10588 	/* Flush device addresses */
10589 	dev_addr_flush(dev);
10590 
10591 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10592 		netif_napi_del(p);
10593 
10594 	free_percpu(dev->pcpu_refcnt);
10595 	dev->pcpu_refcnt = NULL;
10596 	free_percpu(dev->xdp_bulkq);
10597 	dev->xdp_bulkq = NULL;
10598 
10599 	/*  Compatibility with error handling in drivers */
10600 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10601 		netdev_freemem(dev);
10602 		return;
10603 	}
10604 
10605 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10606 	dev->reg_state = NETREG_RELEASED;
10607 
10608 	/* will free via device release */
10609 	put_device(&dev->dev);
10610 }
10611 EXPORT_SYMBOL(free_netdev);
10612 
10613 /**
10614  *	synchronize_net -  Synchronize with packet receive processing
10615  *
10616  *	Wait for packets currently being received to be done.
10617  *	Does not block later packets from starting.
10618  */
synchronize_net(void)10619 void synchronize_net(void)
10620 {
10621 	might_sleep();
10622 	if (rtnl_is_locked())
10623 		synchronize_rcu_expedited();
10624 	else
10625 		synchronize_rcu();
10626 }
10627 EXPORT_SYMBOL(synchronize_net);
10628 
10629 /**
10630  *	unregister_netdevice_queue - remove device from the kernel
10631  *	@dev: device
10632  *	@head: list
10633  *
10634  *	This function shuts down a device interface and removes it
10635  *	from the kernel tables.
10636  *	If head not NULL, device is queued to be unregistered later.
10637  *
10638  *	Callers must hold the rtnl semaphore.  You may want
10639  *	unregister_netdev() instead of this.
10640  */
10641 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10642 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10643 {
10644 	ASSERT_RTNL();
10645 
10646 	if (head) {
10647 		list_move_tail(&dev->unreg_list, head);
10648 	} else {
10649 		LIST_HEAD(single);
10650 
10651 		list_add(&dev->unreg_list, &single);
10652 		unregister_netdevice_many(&single);
10653 	}
10654 }
10655 EXPORT_SYMBOL(unregister_netdevice_queue);
10656 
10657 /**
10658  *	unregister_netdevice_many - unregister many devices
10659  *	@head: list of devices
10660  *
10661  *  Note: As most callers use a stack allocated list_head,
10662  *  we force a list_del() to make sure stack wont be corrupted later.
10663  */
unregister_netdevice_many(struct list_head * head)10664 void unregister_netdevice_many(struct list_head *head)
10665 {
10666 	struct net_device *dev, *tmp;
10667 	LIST_HEAD(close_head);
10668 
10669 	BUG_ON(dev_boot_phase);
10670 	ASSERT_RTNL();
10671 
10672 	if (list_empty(head))
10673 		return;
10674 
10675 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10676 		/* Some devices call without registering
10677 		 * for initialization unwind. Remove those
10678 		 * devices and proceed with the remaining.
10679 		 */
10680 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10681 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10682 				 dev->name, dev);
10683 
10684 			WARN_ON(1);
10685 			list_del(&dev->unreg_list);
10686 			continue;
10687 		}
10688 		dev->dismantle = true;
10689 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10690 	}
10691 
10692 	/* If device is running, close it first. */
10693 	list_for_each_entry(dev, head, unreg_list)
10694 		list_add_tail(&dev->close_list, &close_head);
10695 	dev_close_many(&close_head, true);
10696 
10697 	list_for_each_entry(dev, head, unreg_list) {
10698 		/* And unlink it from device chain. */
10699 		unlist_netdevice(dev);
10700 
10701 		dev->reg_state = NETREG_UNREGISTERING;
10702 	}
10703 	flush_all_backlogs();
10704 
10705 	synchronize_net();
10706 
10707 	list_for_each_entry(dev, head, unreg_list) {
10708 		struct sk_buff *skb = NULL;
10709 
10710 		/* Shutdown queueing discipline. */
10711 		dev_shutdown(dev);
10712 
10713 		dev_xdp_uninstall(dev);
10714 
10715 		/* Notify protocols, that we are about to destroy
10716 		 * this device. They should clean all the things.
10717 		 */
10718 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10719 
10720 		if (!dev->rtnl_link_ops ||
10721 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10722 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10723 						     GFP_KERNEL, NULL, 0);
10724 
10725 		/*
10726 		 *	Flush the unicast and multicast chains
10727 		 */
10728 		dev_uc_flush(dev);
10729 		dev_mc_flush(dev);
10730 
10731 		netdev_name_node_alt_flush(dev);
10732 		netdev_name_node_free(dev->name_node);
10733 
10734 		if (dev->netdev_ops->ndo_uninit)
10735 			dev->netdev_ops->ndo_uninit(dev);
10736 
10737 		if (skb)
10738 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10739 
10740 		/* Notifier chain MUST detach us all upper devices. */
10741 		WARN_ON(netdev_has_any_upper_dev(dev));
10742 		WARN_ON(netdev_has_any_lower_dev(dev));
10743 
10744 		/* Remove entries from kobject tree */
10745 		netdev_unregister_kobject(dev);
10746 #ifdef CONFIG_XPS
10747 		/* Remove XPS queueing entries */
10748 		netif_reset_xps_queues_gt(dev, 0);
10749 #endif
10750 	}
10751 
10752 	synchronize_net();
10753 
10754 	list_for_each_entry(dev, head, unreg_list) {
10755 		dev_put(dev);
10756 		net_set_todo(dev);
10757 	}
10758 
10759 	list_del(head);
10760 }
10761 EXPORT_SYMBOL(unregister_netdevice_many);
10762 
10763 /**
10764  *	unregister_netdev - remove device from the kernel
10765  *	@dev: device
10766  *
10767  *	This function shuts down a device interface and removes it
10768  *	from the kernel tables.
10769  *
10770  *	This is just a wrapper for unregister_netdevice that takes
10771  *	the rtnl semaphore.  In general you want to use this and not
10772  *	unregister_netdevice.
10773  */
unregister_netdev(struct net_device * dev)10774 void unregister_netdev(struct net_device *dev)
10775 {
10776 	rtnl_lock();
10777 	unregister_netdevice(dev);
10778 	rtnl_unlock();
10779 }
10780 EXPORT_SYMBOL(unregister_netdev);
10781 
10782 /**
10783  *	dev_change_net_namespace - move device to different nethost namespace
10784  *	@dev: device
10785  *	@net: network namespace
10786  *	@pat: If not NULL name pattern to try if the current device name
10787  *	      is already taken in the destination network namespace.
10788  *
10789  *	This function shuts down a device interface and moves it
10790  *	to a new network namespace. On success 0 is returned, on
10791  *	a failure a netagive errno code is returned.
10792  *
10793  *	Callers must hold the rtnl semaphore.
10794  */
10795 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10796 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10797 {
10798 	struct net *net_old = dev_net(dev);
10799 	int err, new_nsid, new_ifindex;
10800 
10801 	ASSERT_RTNL();
10802 
10803 	/* Don't allow namespace local devices to be moved. */
10804 	err = -EINVAL;
10805 	if (dev->features & NETIF_F_NETNS_LOCAL)
10806 		goto out;
10807 
10808 	/* Ensure the device has been registrered */
10809 	if (dev->reg_state != NETREG_REGISTERED)
10810 		goto out;
10811 
10812 	/* Get out if there is nothing todo */
10813 	err = 0;
10814 	if (net_eq(net_old, net))
10815 		goto out;
10816 
10817 	/* Pick the destination device name, and ensure
10818 	 * we can use it in the destination network namespace.
10819 	 */
10820 	err = -EEXIST;
10821 	if (__dev_get_by_name(net, dev->name)) {
10822 		/* We get here if we can't use the current device name */
10823 		if (!pat)
10824 			goto out;
10825 		err = dev_get_valid_name(net, dev, pat);
10826 		if (err < 0)
10827 			goto out;
10828 	}
10829 
10830 	/*
10831 	 * And now a mini version of register_netdevice unregister_netdevice.
10832 	 */
10833 
10834 	/* If device is running close it first. */
10835 	dev_close(dev);
10836 
10837 	/* And unlink it from device chain */
10838 	unlist_netdevice(dev);
10839 
10840 	synchronize_net();
10841 
10842 	/* Shutdown queueing discipline. */
10843 	dev_shutdown(dev);
10844 
10845 	/* Notify protocols, that we are about to destroy
10846 	 * this device. They should clean all the things.
10847 	 *
10848 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10849 	 * This is wanted because this way 8021q and macvlan know
10850 	 * the device is just moving and can keep their slaves up.
10851 	 */
10852 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10853 	rcu_barrier();
10854 
10855 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10856 	/* If there is an ifindex conflict assign a new one */
10857 	if (__dev_get_by_index(net, dev->ifindex))
10858 		new_ifindex = dev_new_index(net);
10859 	else
10860 		new_ifindex = dev->ifindex;
10861 
10862 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10863 			    new_ifindex);
10864 
10865 	/*
10866 	 *	Flush the unicast and multicast chains
10867 	 */
10868 	dev_uc_flush(dev);
10869 	dev_mc_flush(dev);
10870 
10871 	/* Send a netdev-removed uevent to the old namespace */
10872 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10873 	netdev_adjacent_del_links(dev);
10874 
10875 	/* Move per-net netdevice notifiers that are following the netdevice */
10876 	move_netdevice_notifiers_dev_net(dev, net);
10877 
10878 	/* Actually switch the network namespace */
10879 	dev_net_set(dev, net);
10880 	dev->ifindex = new_ifindex;
10881 
10882 	/* Send a netdev-add uevent to the new namespace */
10883 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10884 	netdev_adjacent_add_links(dev);
10885 
10886 	/* Fixup kobjects */
10887 	err = device_rename(&dev->dev, dev->name);
10888 	WARN_ON(err);
10889 
10890 	/* Adapt owner in case owning user namespace of target network
10891 	 * namespace is different from the original one.
10892 	 */
10893 	err = netdev_change_owner(dev, net_old, net);
10894 	WARN_ON(err);
10895 
10896 	/* Add the device back in the hashes */
10897 	list_netdevice(dev);
10898 
10899 	/* Notify protocols, that a new device appeared. */
10900 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10901 
10902 	/*
10903 	 *	Prevent userspace races by waiting until the network
10904 	 *	device is fully setup before sending notifications.
10905 	 */
10906 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10907 
10908 	synchronize_net();
10909 	err = 0;
10910 out:
10911 	return err;
10912 }
10913 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10914 
dev_cpu_dead(unsigned int oldcpu)10915 static int dev_cpu_dead(unsigned int oldcpu)
10916 {
10917 	struct sk_buff **list_skb;
10918 	struct sk_buff *skb;
10919 	unsigned int cpu;
10920 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10921 
10922 	local_irq_disable();
10923 	cpu = smp_processor_id();
10924 	sd = &per_cpu(softnet_data, cpu);
10925 	oldsd = &per_cpu(softnet_data, oldcpu);
10926 
10927 	/* Find end of our completion_queue. */
10928 	list_skb = &sd->completion_queue;
10929 	while (*list_skb)
10930 		list_skb = &(*list_skb)->next;
10931 	/* Append completion queue from offline CPU. */
10932 	*list_skb = oldsd->completion_queue;
10933 	oldsd->completion_queue = NULL;
10934 
10935 	/* Append output queue from offline CPU. */
10936 	if (oldsd->output_queue) {
10937 		*sd->output_queue_tailp = oldsd->output_queue;
10938 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10939 		oldsd->output_queue = NULL;
10940 		oldsd->output_queue_tailp = &oldsd->output_queue;
10941 	}
10942 	/* Append NAPI poll list from offline CPU, with one exception :
10943 	 * process_backlog() must be called by cpu owning percpu backlog.
10944 	 * We properly handle process_queue & input_pkt_queue later.
10945 	 */
10946 	while (!list_empty(&oldsd->poll_list)) {
10947 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10948 							    struct napi_struct,
10949 							    poll_list);
10950 
10951 		list_del_init(&napi->poll_list);
10952 		if (napi->poll == process_backlog)
10953 			napi->state = 0;
10954 		else
10955 			____napi_schedule(sd, napi);
10956 	}
10957 
10958 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10959 	local_irq_enable();
10960 
10961 #ifdef CONFIG_RPS
10962 	remsd = oldsd->rps_ipi_list;
10963 	oldsd->rps_ipi_list = NULL;
10964 #endif
10965 	/* send out pending IPI's on offline CPU */
10966 	net_rps_send_ipi(remsd);
10967 
10968 	/* Process offline CPU's input_pkt_queue */
10969 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10970 		netif_rx_ni(skb);
10971 		input_queue_head_incr(oldsd);
10972 	}
10973 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10974 		netif_rx_ni(skb);
10975 		input_queue_head_incr(oldsd);
10976 	}
10977 
10978 	return 0;
10979 }
10980 
10981 /**
10982  *	netdev_increment_features - increment feature set by one
10983  *	@all: current feature set
10984  *	@one: new feature set
10985  *	@mask: mask feature set
10986  *
10987  *	Computes a new feature set after adding a device with feature set
10988  *	@one to the master device with current feature set @all.  Will not
10989  *	enable anything that is off in @mask. Returns the new feature set.
10990  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10991 netdev_features_t netdev_increment_features(netdev_features_t all,
10992 	netdev_features_t one, netdev_features_t mask)
10993 {
10994 	if (mask & NETIF_F_HW_CSUM)
10995 		mask |= NETIF_F_CSUM_MASK;
10996 	mask |= NETIF_F_VLAN_CHALLENGED;
10997 
10998 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10999 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11000 
11001 	/* If one device supports hw checksumming, set for all. */
11002 	if (all & NETIF_F_HW_CSUM)
11003 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11004 
11005 	return all;
11006 }
11007 EXPORT_SYMBOL(netdev_increment_features);
11008 
netdev_create_hash(void)11009 static struct hlist_head * __net_init netdev_create_hash(void)
11010 {
11011 	int i;
11012 	struct hlist_head *hash;
11013 
11014 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11015 	if (hash != NULL)
11016 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11017 			INIT_HLIST_HEAD(&hash[i]);
11018 
11019 	return hash;
11020 }
11021 
11022 /* Initialize per network namespace state */
netdev_init(struct net * net)11023 static int __net_init netdev_init(struct net *net)
11024 {
11025 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11026 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11027 
11028 	if (net != &init_net)
11029 		INIT_LIST_HEAD(&net->dev_base_head);
11030 
11031 	net->dev_name_head = netdev_create_hash();
11032 	if (net->dev_name_head == NULL)
11033 		goto err_name;
11034 
11035 	net->dev_index_head = netdev_create_hash();
11036 	if (net->dev_index_head == NULL)
11037 		goto err_idx;
11038 
11039 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11040 
11041 	return 0;
11042 
11043 err_idx:
11044 	kfree(net->dev_name_head);
11045 err_name:
11046 	return -ENOMEM;
11047 }
11048 
11049 /**
11050  *	netdev_drivername - network driver for the device
11051  *	@dev: network device
11052  *
11053  *	Determine network driver for device.
11054  */
netdev_drivername(const struct net_device * dev)11055 const char *netdev_drivername(const struct net_device *dev)
11056 {
11057 	const struct device_driver *driver;
11058 	const struct device *parent;
11059 	const char *empty = "";
11060 
11061 	parent = dev->dev.parent;
11062 	if (!parent)
11063 		return empty;
11064 
11065 	driver = parent->driver;
11066 	if (driver && driver->name)
11067 		return driver->name;
11068 	return empty;
11069 }
11070 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11071 static void __netdev_printk(const char *level, const struct net_device *dev,
11072 			    struct va_format *vaf)
11073 {
11074 	if (dev && dev->dev.parent) {
11075 		dev_printk_emit(level[1] - '0',
11076 				dev->dev.parent,
11077 				"%s %s %s%s: %pV",
11078 				dev_driver_string(dev->dev.parent),
11079 				dev_name(dev->dev.parent),
11080 				netdev_name(dev), netdev_reg_state(dev),
11081 				vaf);
11082 	} else if (dev) {
11083 		printk("%s%s%s: %pV",
11084 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11085 	} else {
11086 		printk("%s(NULL net_device): %pV", level, vaf);
11087 	}
11088 }
11089 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11090 void netdev_printk(const char *level, const struct net_device *dev,
11091 		   const char *format, ...)
11092 {
11093 	struct va_format vaf;
11094 	va_list args;
11095 
11096 	va_start(args, format);
11097 
11098 	vaf.fmt = format;
11099 	vaf.va = &args;
11100 
11101 	__netdev_printk(level, dev, &vaf);
11102 
11103 	va_end(args);
11104 }
11105 EXPORT_SYMBOL(netdev_printk);
11106 
11107 #define define_netdev_printk_level(func, level)			\
11108 void func(const struct net_device *dev, const char *fmt, ...)	\
11109 {								\
11110 	struct va_format vaf;					\
11111 	va_list args;						\
11112 								\
11113 	va_start(args, fmt);					\
11114 								\
11115 	vaf.fmt = fmt;						\
11116 	vaf.va = &args;						\
11117 								\
11118 	__netdev_printk(level, dev, &vaf);			\
11119 								\
11120 	va_end(args);						\
11121 }								\
11122 EXPORT_SYMBOL(func);
11123 
11124 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11125 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11126 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11127 define_netdev_printk_level(netdev_err, KERN_ERR);
11128 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11129 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11130 define_netdev_printk_level(netdev_info, KERN_INFO);
11131 
netdev_exit(struct net * net)11132 static void __net_exit netdev_exit(struct net *net)
11133 {
11134 	kfree(net->dev_name_head);
11135 	kfree(net->dev_index_head);
11136 	if (net != &init_net)
11137 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11138 }
11139 
11140 static struct pernet_operations __net_initdata netdev_net_ops = {
11141 	.init = netdev_init,
11142 	.exit = netdev_exit,
11143 };
11144 
default_device_exit(struct net * net)11145 static void __net_exit default_device_exit(struct net *net)
11146 {
11147 	struct net_device *dev, *aux;
11148 	/*
11149 	 * Push all migratable network devices back to the
11150 	 * initial network namespace
11151 	 */
11152 	rtnl_lock();
11153 	for_each_netdev_safe(net, dev, aux) {
11154 		int err;
11155 		char fb_name[IFNAMSIZ];
11156 
11157 		/* Ignore unmoveable devices (i.e. loopback) */
11158 		if (dev->features & NETIF_F_NETNS_LOCAL)
11159 			continue;
11160 
11161 		/* Leave virtual devices for the generic cleanup */
11162 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11163 			continue;
11164 
11165 		/* Push remaining network devices to init_net */
11166 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11167 		if (__dev_get_by_name(&init_net, fb_name))
11168 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11169 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11170 		if (err) {
11171 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11172 				 __func__, dev->name, err);
11173 			BUG();
11174 		}
11175 	}
11176 	rtnl_unlock();
11177 }
11178 
rtnl_lock_unregistering(struct list_head * net_list)11179 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11180 {
11181 	/* Return with the rtnl_lock held when there are no network
11182 	 * devices unregistering in any network namespace in net_list.
11183 	 */
11184 	struct net *net;
11185 	bool unregistering;
11186 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11187 
11188 	add_wait_queue(&netdev_unregistering_wq, &wait);
11189 	for (;;) {
11190 		unregistering = false;
11191 		rtnl_lock();
11192 		list_for_each_entry(net, net_list, exit_list) {
11193 			if (net->dev_unreg_count > 0) {
11194 				unregistering = true;
11195 				break;
11196 			}
11197 		}
11198 		if (!unregistering)
11199 			break;
11200 		__rtnl_unlock();
11201 
11202 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11203 	}
11204 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11205 }
11206 
default_device_exit_batch(struct list_head * net_list)11207 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11208 {
11209 	/* At exit all network devices most be removed from a network
11210 	 * namespace.  Do this in the reverse order of registration.
11211 	 * Do this across as many network namespaces as possible to
11212 	 * improve batching efficiency.
11213 	 */
11214 	struct net_device *dev;
11215 	struct net *net;
11216 	LIST_HEAD(dev_kill_list);
11217 
11218 	/* To prevent network device cleanup code from dereferencing
11219 	 * loopback devices or network devices that have been freed
11220 	 * wait here for all pending unregistrations to complete,
11221 	 * before unregistring the loopback device and allowing the
11222 	 * network namespace be freed.
11223 	 *
11224 	 * The netdev todo list containing all network devices
11225 	 * unregistrations that happen in default_device_exit_batch
11226 	 * will run in the rtnl_unlock() at the end of
11227 	 * default_device_exit_batch.
11228 	 */
11229 	rtnl_lock_unregistering(net_list);
11230 	list_for_each_entry(net, net_list, exit_list) {
11231 		for_each_netdev_reverse(net, dev) {
11232 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11233 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11234 			else
11235 				unregister_netdevice_queue(dev, &dev_kill_list);
11236 		}
11237 	}
11238 	unregister_netdevice_many(&dev_kill_list);
11239 	rtnl_unlock();
11240 }
11241 
11242 static struct pernet_operations __net_initdata default_device_ops = {
11243 	.exit = default_device_exit,
11244 	.exit_batch = default_device_exit_batch,
11245 };
11246 
11247 /*
11248  *	Initialize the DEV module. At boot time this walks the device list and
11249  *	unhooks any devices that fail to initialise (normally hardware not
11250  *	present) and leaves us with a valid list of present and active devices.
11251  *
11252  */
11253 
11254 /*
11255  *       This is called single threaded during boot, so no need
11256  *       to take the rtnl semaphore.
11257  */
net_dev_init(void)11258 static int __init net_dev_init(void)
11259 {
11260 	int i, rc = -ENOMEM;
11261 
11262 	BUG_ON(!dev_boot_phase);
11263 
11264 	if (dev_proc_init())
11265 		goto out;
11266 
11267 	if (netdev_kobject_init())
11268 		goto out;
11269 
11270 	INIT_LIST_HEAD(&ptype_all);
11271 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11272 		INIT_LIST_HEAD(&ptype_base[i]);
11273 
11274 	INIT_LIST_HEAD(&offload_base);
11275 
11276 	if (register_pernet_subsys(&netdev_net_ops))
11277 		goto out;
11278 
11279 	/*
11280 	 *	Initialise the packet receive queues.
11281 	 */
11282 
11283 	for_each_possible_cpu(i) {
11284 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11285 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11286 
11287 		INIT_WORK(flush, flush_backlog);
11288 
11289 		skb_queue_head_init(&sd->input_pkt_queue);
11290 		skb_queue_head_init(&sd->process_queue);
11291 #ifdef CONFIG_XFRM_OFFLOAD
11292 		skb_queue_head_init(&sd->xfrm_backlog);
11293 #endif
11294 		INIT_LIST_HEAD(&sd->poll_list);
11295 		sd->output_queue_tailp = &sd->output_queue;
11296 #ifdef CONFIG_RPS
11297 		sd->csd.func = rps_trigger_softirq;
11298 		sd->csd.info = sd;
11299 		sd->cpu = i;
11300 #endif
11301 
11302 		init_gro_hash(&sd->backlog);
11303 		sd->backlog.poll = process_backlog;
11304 		sd->backlog.weight = weight_p;
11305 	}
11306 
11307 	dev_boot_phase = 0;
11308 
11309 	/* The loopback device is special if any other network devices
11310 	 * is present in a network namespace the loopback device must
11311 	 * be present. Since we now dynamically allocate and free the
11312 	 * loopback device ensure this invariant is maintained by
11313 	 * keeping the loopback device as the first device on the
11314 	 * list of network devices.  Ensuring the loopback devices
11315 	 * is the first device that appears and the last network device
11316 	 * that disappears.
11317 	 */
11318 	if (register_pernet_device(&loopback_net_ops))
11319 		goto out;
11320 
11321 	if (register_pernet_device(&default_device_ops))
11322 		goto out;
11323 
11324 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11325 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11326 
11327 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11328 				       NULL, dev_cpu_dead);
11329 	WARN_ON(rc < 0);
11330 	rc = 0;
11331 out:
11332 	return rc;
11333 }
11334 
11335 subsys_initcall(net_dev_init);
11336