1 /**
2 * libf2fs.c
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 * Copyright (c) 2019 Google Inc.
7 * http://www.google.com/
8 * Copyright (c) 2020 Google Inc.
9 * Robin Hsu <robinhsu@google.com>
10 * : add quick-buffer for sload compression support
11 *
12 * Dual licensed under the GPL or LGPL version 2 licenses.
13 */
14 #ifndef _LARGEFILE64_SOURCE
15 #define _LARGEFILE64_SOURCE
16 #endif
17
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <errno.h>
22 #include <unistd.h>
23 #include <fcntl.h>
24 #ifdef HAVE_MNTENT_H
25 #include <mntent.h>
26 #endif
27 #include <time.h>
28 #ifdef HAVE_SYS_STAT_H
29 #include <sys/stat.h>
30 #endif
31 #ifdef HAVE_SYS_MOUNT_H
32 #include <sys/mount.h>
33 #endif
34 #ifdef HAVE_SYS_IOCTL_H
35 #include <sys/ioctl.h>
36 #endif
37 #ifdef HAVE_LINUX_HDREG_H
38 #include <linux/hdreg.h>
39 #endif
40
41 #include <stdbool.h>
42 #include <assert.h>
43 #include <inttypes.h>
44 #include "f2fs_fs.h"
45
46 struct f2fs_configuration c;
47
48 #ifdef HAVE_SPARSE_SPARSE_H
49 #include <sparse/sparse.h>
50 struct sparse_file *f2fs_sparse_file;
51 static char **blocks;
52 uint64_t blocks_count;
53 static char *zeroed_block;
54 #endif
55
__get_device_fd(__u64 * offset)56 static int __get_device_fd(__u64 *offset)
57 {
58 __u64 blk_addr = *offset >> F2FS_BLKSIZE_BITS;
59 int i;
60
61 for (i = 0; i < c.ndevs; i++) {
62 if (c.devices[i].start_blkaddr <= blk_addr &&
63 c.devices[i].end_blkaddr >= blk_addr) {
64 *offset -=
65 c.devices[i].start_blkaddr << F2FS_BLKSIZE_BITS;
66 return c.devices[i].fd;
67 }
68 }
69 return -1;
70 }
71
72 #ifndef HAVE_LSEEK64
73 typedef off_t off64_t;
74
lseek64(int fd,__u64 offset,int set)75 static inline off64_t lseek64(int fd, __u64 offset, int set)
76 {
77 return lseek(fd, offset, set);
78 }
79 #endif
80
81 /* ---------- dev_cache, Least Used First (LUF) policy ------------------- */
82 /*
83 * Least used block will be the first victim to be replaced when max hash
84 * collision exceeds
85 */
86 static bool *dcache_valid; /* is the cached block valid? */
87 static off64_t *dcache_blk; /* which block it cached */
88 static uint64_t *dcache_lastused; /* last used ticks for cache entries */
89 static char *dcache_buf; /* cached block data */
90 static uint64_t dcache_usetick; /* current use tick */
91
92 static uint64_t dcache_raccess;
93 static uint64_t dcache_rhit;
94 static uint64_t dcache_rmiss;
95 static uint64_t dcache_rreplace;
96
97 static bool dcache_exit_registered = false;
98
99 /*
100 * Shadow config:
101 *
102 * Active set of the configurations.
103 * Global configuration 'dcache_config' will be transferred here when
104 * when dcache_init() is called
105 */
106 static dev_cache_config_t dcache_config = {0, 16, 1};
107 static bool dcache_initialized = false;
108
109 #define MIN_NUM_CACHE_ENTRY 1024L
110 #define MAX_MAX_HASH_COLLISION 16
111
112 static long dcache_relocate_offset0[] = {
113 20, -20, 40, -40, 80, -80, 160, -160,
114 320, -320, 640, -640, 1280, -1280, 2560, -2560,
115 };
116 static int dcache_relocate_offset[16];
117
dcache_print_statistics(void)118 static void dcache_print_statistics(void)
119 {
120 long i;
121 long useCnt;
122
123 /* Number of used cache entries */
124 useCnt = 0;
125 for (i = 0; i < dcache_config.num_cache_entry; i++)
126 if (dcache_valid[i])
127 ++useCnt;
128
129 /*
130 * c: number of cache entries
131 * u: used entries
132 * RA: number of read access blocks
133 * CH: cache hit
134 * CM: cache miss
135 * Repl: read cache replaced
136 */
137 printf ("\nc, u, RA, CH, CM, Repl=\n");
138 printf ("%ld %ld %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
139 dcache_config.num_cache_entry,
140 useCnt,
141 dcache_raccess,
142 dcache_rhit,
143 dcache_rmiss,
144 dcache_rreplace);
145 }
146
dcache_release(void)147 void dcache_release(void)
148 {
149 if (!dcache_initialized)
150 return;
151
152 dcache_initialized = false;
153
154 if (c.cache_config.dbg_en)
155 dcache_print_statistics();
156
157 if (dcache_blk != NULL)
158 free(dcache_blk);
159 if (dcache_lastused != NULL)
160 free(dcache_lastused);
161 if (dcache_buf != NULL)
162 free(dcache_buf);
163 if (dcache_valid != NULL)
164 free(dcache_valid);
165 dcache_config.num_cache_entry = 0;
166 dcache_blk = NULL;
167 dcache_lastused = NULL;
168 dcache_buf = NULL;
169 dcache_valid = NULL;
170 }
171
172 // return 0 for success, error code for failure.
dcache_alloc_all(long n)173 static int dcache_alloc_all(long n)
174 {
175 if (n <= 0)
176 return -1;
177 if ((dcache_blk = (off64_t *) malloc(sizeof(off64_t) * n)) == NULL
178 || (dcache_lastused = (uint64_t *)
179 malloc(sizeof(uint64_t) * n)) == NULL
180 || (dcache_buf = (char *) malloc (F2FS_BLKSIZE * n)) == NULL
181 || (dcache_valid = (bool *) malloc(sizeof(bool) * n)) == NULL)
182 {
183 dcache_release();
184 return -1;
185 }
186 dcache_config.num_cache_entry = n;
187 return 0;
188 }
189
dcache_relocate_init(void)190 static void dcache_relocate_init(void)
191 {
192 int i;
193 int n0 = (sizeof(dcache_relocate_offset0)
194 / sizeof(dcache_relocate_offset0[0]));
195 int n = (sizeof(dcache_relocate_offset)
196 / sizeof(dcache_relocate_offset[0]));
197
198 ASSERT(n == n0);
199 for (i = 0; i < n && i < dcache_config.max_hash_collision; i++) {
200 if (labs(dcache_relocate_offset0[i])
201 > dcache_config.num_cache_entry / 2) {
202 dcache_config.max_hash_collision = i;
203 break;
204 }
205 dcache_relocate_offset[i] =
206 dcache_config.num_cache_entry
207 + dcache_relocate_offset0[i];
208 }
209 }
210
dcache_init(void)211 void dcache_init(void)
212 {
213 long n;
214
215 if (c.cache_config.num_cache_entry <= 0)
216 return;
217
218 /* release previous cache init, if any */
219 dcache_release();
220
221 dcache_blk = NULL;
222 dcache_lastused = NULL;
223 dcache_buf = NULL;
224 dcache_valid = NULL;
225
226 dcache_config = c.cache_config;
227
228 n = max(MIN_NUM_CACHE_ENTRY, dcache_config.num_cache_entry);
229
230 /* halve alloc size until alloc succeed, or min cache reached */
231 while (dcache_alloc_all(n) != 0 && n != MIN_NUM_CACHE_ENTRY)
232 n = max(MIN_NUM_CACHE_ENTRY, n/2);
233
234 /* must be the last: data dependent on num_cache_entry */
235 dcache_relocate_init();
236 dcache_initialized = true;
237
238 if (!dcache_exit_registered) {
239 dcache_exit_registered = true;
240 atexit(dcache_release); /* auto release */
241 }
242
243 dcache_raccess = 0;
244 dcache_rhit = 0;
245 dcache_rmiss = 0;
246 dcache_rreplace = 0;
247 }
248
dcache_addr(long entry)249 static inline char *dcache_addr(long entry)
250 {
251 return dcache_buf + F2FS_BLKSIZE * entry;
252 }
253
254 /* relocate on (n+1)-th collision */
dcache_relocate(long entry,int n)255 static inline long dcache_relocate(long entry, int n)
256 {
257 assert(dcache_config.num_cache_entry != 0);
258 return (entry + dcache_relocate_offset[n]) %
259 dcache_config.num_cache_entry;
260 }
261
dcache_find(off64_t blk)262 static long dcache_find(off64_t blk)
263 {
264 register long n = dcache_config.num_cache_entry;
265 register unsigned m = dcache_config.max_hash_collision;
266 long entry, least_used, target;
267 unsigned try;
268
269 assert(n > 0);
270 target = least_used = entry = blk % n; /* simple modulo hash */
271
272 for (try = 0; try < m; try++) {
273 if (!dcache_valid[target] || dcache_blk[target] == blk)
274 return target; /* found target or empty cache slot */
275 if (dcache_lastused[target] < dcache_lastused[least_used])
276 least_used = target;
277 target = dcache_relocate(entry, try); /* next target */
278 }
279 return least_used; /* max search reached, return least used slot */
280 }
281
282 /* Physical read into cache */
dcache_io_read(int fd,long entry,off64_t offset,off64_t blk)283 static int dcache_io_read(int fd, long entry, off64_t offset, off64_t blk)
284 {
285 if (lseek64(fd, offset, SEEK_SET) < 0) {
286 MSG(0, "\n lseek64 fail.\n");
287 return -1;
288 }
289 if (read(fd, dcache_buf + entry * F2FS_BLKSIZE, F2FS_BLKSIZE) < 0) {
290 MSG(0, "\n read() fail.\n");
291 return -1;
292 }
293 dcache_lastused[entry] = ++dcache_usetick;
294 dcache_valid[entry] = true;
295 dcache_blk[entry] = blk;
296 return 0;
297 }
298
299 /*
300 * - Note: Read/Write are not symmetric:
301 * For read, we need to do it block by block, due to the cache nature:
302 * some blocks may be cached, and others don't.
303 * For write, since we always do a write-thru, we can join all writes into one,
304 * and write it once at the caller. This function updates the cache for write, but
305 * not the do a physical write. The caller is responsible for the physical write.
306 * - Note: We concentrate read/write together, due to the fact of similar structure to find
307 * the relavant cache entries
308 * - Return values:
309 * 0: success
310 * 1: cache not available (uninitialized)
311 * -1: error
312 */
dcache_update_rw(int fd,void * buf,off64_t offset,size_t byte_count,bool is_write)313 static int dcache_update_rw(int fd, void *buf, off64_t offset,
314 size_t byte_count, bool is_write)
315 {
316 off64_t blk;
317 int addr_in_blk;
318 off64_t start;
319
320 if (!dcache_initialized)
321 dcache_init(); /* auto initialize */
322
323 if (!dcache_initialized)
324 return 1; /* not available */
325
326 blk = offset / F2FS_BLKSIZE;
327 addr_in_blk = offset % F2FS_BLKSIZE;
328 start = blk * F2FS_BLKSIZE;
329
330 while (byte_count != 0) {
331 size_t cur_size = min(byte_count,
332 (size_t)(F2FS_BLKSIZE - addr_in_blk));
333 long entry = dcache_find(blk);
334
335 if (!is_write)
336 ++dcache_raccess;
337
338 if (dcache_valid[entry] && dcache_blk[entry] == blk) {
339 /* cache hit */
340 if (is_write) /* write: update cache */
341 memcpy(dcache_addr(entry) + addr_in_blk,
342 buf, cur_size);
343 else
344 ++dcache_rhit;
345 } else {
346 /* cache miss */
347 if (!is_write) {
348 int err;
349 ++dcache_rmiss;
350 if (dcache_valid[entry])
351 ++dcache_rreplace;
352 /* read: physical I/O read into cache */
353 err = dcache_io_read(fd, entry, start, blk);
354 if (err)
355 return err;
356 }
357 }
358
359 /* read: copy data from cache */
360 /* write: nothing to do, since we don't do physical write. */
361 if (!is_write)
362 memcpy(buf, dcache_addr(entry) + addr_in_blk,
363 cur_size);
364
365 /* next block */
366 ++blk;
367 buf += cur_size;
368 start += F2FS_BLKSIZE;
369 byte_count -= cur_size;
370 addr_in_blk = 0;
371 }
372 return 0;
373 }
374
375 /*
376 * dcache_update_cache() just update cache, won't do physical I/O.
377 * Thus even no error, we need normal non-cache I/O for actual write
378 *
379 * return value: 1: cache not available
380 * 0: success, -1: I/O error
381 */
dcache_update_cache(int fd,void * buf,off64_t offset,size_t count)382 int dcache_update_cache(int fd, void *buf, off64_t offset, size_t count)
383 {
384 return dcache_update_rw(fd, buf, offset, count, true);
385 }
386
387 /* handles read into cache + read into buffer */
dcache_read(int fd,void * buf,off64_t offset,size_t count)388 int dcache_read(int fd, void *buf, off64_t offset, size_t count)
389 {
390 return dcache_update_rw(fd, buf, offset, count, false);
391 }
392
393 /*
394 * IO interfaces
395 */
dev_read_version(void * buf,__u64 offset,size_t len)396 int dev_read_version(void *buf, __u64 offset, size_t len)
397 {
398 if (c.sparse_mode)
399 return 0;
400 if (lseek64(c.kd, (off64_t)offset, SEEK_SET) < 0)
401 return -1;
402 if (read(c.kd, buf, len) < 0)
403 return -1;
404 return 0;
405 }
406
407 #ifdef HAVE_SPARSE_SPARSE_H
sparse_read_blk(__u64 block,int count,void * buf)408 static int sparse_read_blk(__u64 block, int count, void *buf)
409 {
410 int i;
411 char *out = buf;
412 __u64 cur_block;
413
414 for (i = 0; i < count; ++i) {
415 cur_block = block + i;
416 if (blocks[cur_block])
417 memcpy(out + (i * F2FS_BLKSIZE),
418 blocks[cur_block], F2FS_BLKSIZE);
419 else if (blocks)
420 memset(out + (i * F2FS_BLKSIZE), 0, F2FS_BLKSIZE);
421 }
422 return 0;
423 }
424
sparse_write_blk(__u64 block,int count,const void * buf)425 static int sparse_write_blk(__u64 block, int count, const void *buf)
426 {
427 int i;
428 __u64 cur_block;
429 const char *in = buf;
430
431 for (i = 0; i < count; ++i) {
432 cur_block = block + i;
433 if (blocks[cur_block] == zeroed_block)
434 blocks[cur_block] = NULL;
435 if (!blocks[cur_block]) {
436 blocks[cur_block] = calloc(1, F2FS_BLKSIZE);
437 if (!blocks[cur_block])
438 return -ENOMEM;
439 }
440 memcpy(blocks[cur_block], in + (i * F2FS_BLKSIZE),
441 F2FS_BLKSIZE);
442 }
443 return 0;
444 }
445
sparse_write_zeroed_blk(__u64 block,int count)446 static int sparse_write_zeroed_blk(__u64 block, int count)
447 {
448 int i;
449 __u64 cur_block;
450
451 for (i = 0; i < count; ++i) {
452 cur_block = block + i;
453 if (blocks[cur_block])
454 continue;
455 blocks[cur_block] = zeroed_block;
456 }
457 return 0;
458 }
459
460 #ifdef SPARSE_CALLBACK_USES_SIZE_T
sparse_import_segment(void * UNUSED (priv),const void * data,size_t len,unsigned int block,unsigned int nr_blocks)461 static int sparse_import_segment(void *UNUSED(priv), const void *data,
462 size_t len, unsigned int block, unsigned int nr_blocks)
463 #else
464 static int sparse_import_segment(void *UNUSED(priv), const void *data, int len,
465 unsigned int block, unsigned int nr_blocks)
466 #endif
467 {
468 /* Ignore chunk headers, only write the data */
469 if (!nr_blocks || len % F2FS_BLKSIZE)
470 return 0;
471
472 return sparse_write_blk(block, nr_blocks, data);
473 }
474
sparse_merge_blocks(uint64_t start,uint64_t num,int zero)475 static int sparse_merge_blocks(uint64_t start, uint64_t num, int zero)
476 {
477 char *buf;
478 uint64_t i;
479
480 if (zero) {
481 blocks[start] = NULL;
482 return sparse_file_add_fill(f2fs_sparse_file, 0x0,
483 F2FS_BLKSIZE * num, start);
484 }
485
486 buf = calloc(num, F2FS_BLKSIZE);
487 if (!buf) {
488 fprintf(stderr, "failed to alloc %llu\n",
489 (unsigned long long)num * F2FS_BLKSIZE);
490 return -ENOMEM;
491 }
492
493 for (i = 0; i < num; i++) {
494 memcpy(buf + i * F2FS_BLKSIZE, blocks[start + i], F2FS_BLKSIZE);
495 free(blocks[start + i]);
496 blocks[start + i] = NULL;
497 }
498
499 /* free_sparse_blocks will release this buf. */
500 blocks[start] = buf;
501
502 return sparse_file_add_data(f2fs_sparse_file, blocks[start],
503 F2FS_BLKSIZE * num, start);
504 }
505 #else
sparse_read_blk(__u64 UNUSED (block),int UNUSED (count),void * UNUSED (buf))506 static int sparse_read_blk(__u64 UNUSED(block),
507 int UNUSED(count), void *UNUSED(buf))
508 {
509 return 0;
510 }
511
sparse_write_blk(__u64 UNUSED (block),int UNUSED (count),const void * UNUSED (buf))512 static int sparse_write_blk(__u64 UNUSED(block),
513 int UNUSED(count), const void *UNUSED(buf))
514 {
515 return 0;
516 }
517
sparse_write_zeroed_blk(__u64 UNUSED (block),int UNUSED (count))518 static int sparse_write_zeroed_blk(__u64 UNUSED(block), int UNUSED(count))
519 {
520 return 0;
521 }
522 #endif
523
dev_read(void * buf,__u64 offset,size_t len)524 int dev_read(void *buf, __u64 offset, size_t len)
525 {
526 int fd;
527 int err;
528
529 if (c.max_size < (offset + len))
530 c.max_size = offset + len;
531
532 if (c.sparse_mode)
533 return sparse_read_blk(offset / F2FS_BLKSIZE,
534 len / F2FS_BLKSIZE, buf);
535
536 fd = __get_device_fd(&offset);
537 if (fd < 0)
538 return fd;
539
540 /* err = 1: cache not available, fall back to non-cache R/W */
541 /* err = 0: success, err=-1: I/O error */
542 err = dcache_read(fd, buf, (off64_t)offset, len);
543 if (err <= 0)
544 return err;
545 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
546 return -1;
547 if (read(fd, buf, len) < 0)
548 return -1;
549 return 0;
550 }
551
552 #ifdef POSIX_FADV_WILLNEED
dev_readahead(__u64 offset,size_t len)553 int dev_readahead(__u64 offset, size_t len)
554 #else
555 int dev_readahead(__u64 offset, size_t UNUSED(len))
556 #endif
557 {
558 int fd = __get_device_fd(&offset);
559
560 if (fd < 0)
561 return fd;
562 #ifdef POSIX_FADV_WILLNEED
563 return posix_fadvise(fd, offset, len, POSIX_FADV_WILLNEED);
564 #else
565 return 0;
566 #endif
567 }
568
dev_write(void * buf,__u64 offset,size_t len)569 int dev_write(void *buf, __u64 offset, size_t len)
570 {
571 int fd;
572
573 if (c.max_size < (offset + len))
574 c.max_size = offset + len;
575
576 if (c.dry_run)
577 return 0;
578
579 if (c.sparse_mode)
580 return sparse_write_blk(offset / F2FS_BLKSIZE,
581 len / F2FS_BLKSIZE, buf);
582
583 fd = __get_device_fd(&offset);
584 if (fd < 0)
585 return fd;
586
587 /*
588 * dcache_update_cache() just update cache, won't do I/O.
589 * Thus even no error, we need normal non-cache I/O for actual write
590 */
591 if (dcache_update_cache(fd, buf, (off64_t)offset, len) < 0)
592 return -1;
593 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
594 return -1;
595 if (write(fd, buf, len) < 0)
596 return -1;
597 return 0;
598 }
599
dev_write_block(void * buf,__u64 blk_addr)600 int dev_write_block(void *buf, __u64 blk_addr)
601 {
602 return dev_write(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
603 }
604
dev_write_dump(void * buf,__u64 offset,size_t len)605 int dev_write_dump(void *buf, __u64 offset, size_t len)
606 {
607 if (lseek64(c.dump_fd, (off64_t)offset, SEEK_SET) < 0)
608 return -1;
609 if (write(c.dump_fd, buf, len) < 0)
610 return -1;
611 return 0;
612 }
613
dev_fill(void * buf,__u64 offset,size_t len)614 int dev_fill(void *buf, __u64 offset, size_t len)
615 {
616 int fd;
617
618 if (c.max_size < (offset + len))
619 c.max_size = offset + len;
620
621 if (c.sparse_mode)
622 return sparse_write_zeroed_blk(offset / F2FS_BLKSIZE,
623 len / F2FS_BLKSIZE);
624
625 fd = __get_device_fd(&offset);
626 if (fd < 0)
627 return fd;
628
629 /* Only allow fill to zero */
630 if (*((__u8*)buf))
631 return -1;
632 if (lseek64(fd, (off64_t)offset, SEEK_SET) < 0)
633 return -1;
634 if (write(fd, buf, len) < 0)
635 return -1;
636 return 0;
637 }
638
dev_fill_block(void * buf,__u64 blk_addr)639 int dev_fill_block(void *buf, __u64 blk_addr)
640 {
641 return dev_fill(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
642 }
643
dev_read_block(void * buf,__u64 blk_addr)644 int dev_read_block(void *buf, __u64 blk_addr)
645 {
646 return dev_read(buf, blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
647 }
648
dev_reada_block(__u64 blk_addr)649 int dev_reada_block(__u64 blk_addr)
650 {
651 return dev_readahead(blk_addr << F2FS_BLKSIZE_BITS, F2FS_BLKSIZE);
652 }
653
f2fs_fsync_device(void)654 int f2fs_fsync_device(void)
655 {
656 #ifdef HAVE_FSYNC
657 int i;
658
659 for (i = 0; i < c.ndevs; i++) {
660 if (fsync(c.devices[i].fd) < 0) {
661 MSG(0, "\tError: Could not conduct fsync!!!\n");
662 return -1;
663 }
664 }
665 #endif
666 return 0;
667 }
668
f2fs_init_sparse_file(void)669 int f2fs_init_sparse_file(void)
670 {
671 #ifdef HAVE_SPARSE_SPARSE_H
672 if (c.func == MKFS) {
673 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE, c.device_size);
674 if (!f2fs_sparse_file)
675 return -1;
676 } else {
677 f2fs_sparse_file = sparse_file_import(c.devices[0].fd,
678 true, false);
679 if (!f2fs_sparse_file)
680 return -1;
681
682 c.device_size = sparse_file_len(f2fs_sparse_file, 0, 0);
683 c.device_size &= (~((uint64_t)(F2FS_BLKSIZE - 1)));
684 }
685
686 if (sparse_file_block_size(f2fs_sparse_file) != F2FS_BLKSIZE) {
687 MSG(0, "\tError: Corrupted sparse file\n");
688 return -1;
689 }
690 blocks_count = c.device_size / F2FS_BLKSIZE;
691 blocks = calloc(blocks_count, sizeof(char *));
692 if (!blocks) {
693 MSG(0, "\tError: Calloc Failed for blocks!!!\n");
694 return -1;
695 }
696
697 zeroed_block = calloc(1, F2FS_BLKSIZE);
698 if (!zeroed_block) {
699 MSG(0, "\tError: Calloc Failed for zeroed block!!!\n");
700 return -1;
701 }
702
703 return sparse_file_foreach_chunk(f2fs_sparse_file, true, false,
704 sparse_import_segment, NULL);
705 #else
706 MSG(0, "\tError: Sparse mode is only supported for android\n");
707 return -1;
708 #endif
709 }
710
f2fs_release_sparse_resource(void)711 void f2fs_release_sparse_resource(void)
712 {
713 #ifdef HAVE_SPARSE_SPARSE_H
714 int j;
715
716 if (c.sparse_mode) {
717 if (f2fs_sparse_file != NULL) {
718 sparse_file_destroy(f2fs_sparse_file);
719 f2fs_sparse_file = NULL;
720 }
721 for (j = 0; j < blocks_count; j++)
722 free(blocks[j]);
723 free(blocks);
724 blocks = NULL;
725 free(zeroed_block);
726 zeroed_block = NULL;
727 }
728 #endif
729 }
730
731 #define MAX_CHUNK_SIZE (1 * 1024 * 1024 * 1024ULL)
732 #define MAX_CHUNK_COUNT (MAX_CHUNK_SIZE / F2FS_BLKSIZE)
f2fs_finalize_device(void)733 int f2fs_finalize_device(void)
734 {
735 int i;
736 int ret = 0;
737
738 #ifdef HAVE_SPARSE_SPARSE_H
739 if (c.sparse_mode) {
740 int64_t chunk_start = (blocks[0] == NULL) ? -1 : 0;
741 uint64_t j;
742
743 if (c.func != MKFS) {
744 sparse_file_destroy(f2fs_sparse_file);
745 ret = ftruncate(c.devices[0].fd, 0);
746 ASSERT(!ret);
747 lseek(c.devices[0].fd, 0, SEEK_SET);
748 f2fs_sparse_file = sparse_file_new(F2FS_BLKSIZE,
749 c.device_size);
750 }
751
752 for (j = 0; j < blocks_count; ++j) {
753 if (chunk_start != -1) {
754 if (j - chunk_start >= MAX_CHUNK_COUNT) {
755 ret = sparse_merge_blocks(chunk_start,
756 j - chunk_start, 0);
757 ASSERT(!ret);
758 chunk_start = -1;
759 }
760 }
761
762 if (chunk_start == -1) {
763 if (!blocks[j])
764 continue;
765
766 if (blocks[j] == zeroed_block) {
767 ret = sparse_merge_blocks(j, 1, 1);
768 ASSERT(!ret);
769 } else {
770 chunk_start = j;
771 }
772 } else {
773 if (blocks[j] && blocks[j] != zeroed_block)
774 continue;
775
776 ret = sparse_merge_blocks(chunk_start,
777 j - chunk_start, 0);
778 ASSERT(!ret);
779
780 if (blocks[j] == zeroed_block) {
781 ret = sparse_merge_blocks(j, 1, 1);
782 ASSERT(!ret);
783 }
784
785 chunk_start = -1;
786 }
787 }
788 if (chunk_start != -1) {
789 ret = sparse_merge_blocks(chunk_start,
790 blocks_count - chunk_start, 0);
791 ASSERT(!ret);
792 }
793
794 sparse_file_write(f2fs_sparse_file, c.devices[0].fd,
795 /*gzip*/0, /*sparse*/1, /*crc*/0);
796
797 f2fs_release_sparse_resource();
798 }
799 #endif
800 /*
801 * We should call fsync() to flush out all the dirty pages
802 * in the block device page cache.
803 */
804 for (i = 0; i < c.ndevs; i++) {
805 #ifdef HAVE_FSYNC
806 ret = fsync(c.devices[i].fd);
807 if (ret < 0) {
808 MSG(0, "\tError: Could not conduct fsync!!!\n");
809 break;
810 }
811 #endif
812 ret = close(c.devices[i].fd);
813 if (ret < 0) {
814 MSG(0, "\tError: Failed to close device file!!!\n");
815 break;
816 }
817 free(c.devices[i].path);
818 free(c.devices[i].zone_cap_blocks);
819 }
820 close(c.kd);
821
822 return ret;
823 }
824