• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  /*
3   *	Definitions for the 'struct sk_buff' memory handlers.
4   *
5   *	Authors:
6   *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7   *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8   */
9  
10  #ifndef _LINUX_SKBUFF_H
11  #define _LINUX_SKBUFF_H
12  
13  #include <linux/kernel.h>
14  #include <linux/compiler.h>
15  #include <linux/time.h>
16  #include <linux/bug.h>
17  #include <linux/bvec.h>
18  #include <linux/cache.h>
19  #include <linux/rbtree.h>
20  #include <linux/socket.h>
21  #include <linux/refcount.h>
22  
23  #include <linux/atomic.h>
24  #include <asm/types.h>
25  #include <linux/spinlock.h>
26  #include <linux/net.h>
27  #include <linux/textsearch.h>
28  #include <net/checksum.h>
29  #include <linux/rcupdate.h>
30  #include <linux/hrtimer.h>
31  #include <linux/dma-mapping.h>
32  #include <linux/netdev_features.h>
33  #include <linux/sched.h>
34  #include <linux/sched/clock.h>
35  #include <net/flow_dissector.h>
36  #include <linux/splice.h>
37  #include <linux/in6.h>
38  #include <linux/if_packet.h>
39  #include <net/flow.h>
40  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41  #include <linux/netfilter/nf_conntrack_common.h>
42  #endif
43  
44  /* The interface for checksum offload between the stack and networking drivers
45   * is as follows...
46   *
47   * A. IP checksum related features
48   *
49   * Drivers advertise checksum offload capabilities in the features of a device.
50   * From the stack's point of view these are capabilities offered by the driver.
51   * A driver typically only advertises features that it is capable of offloading
52   * to its device.
53   *
54   * The checksum related features are:
55   *
56   *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57   *			  IP (one's complement) checksum for any combination
58   *			  of protocols or protocol layering. The checksum is
59   *			  computed and set in a packet per the CHECKSUM_PARTIAL
60   *			  interface (see below).
61   *
62   *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63   *			  TCP or UDP packets over IPv4. These are specifically
64   *			  unencapsulated packets of the form IPv4|TCP or
65   *			  IPv4|UDP where the Protocol field in the IPv4 header
66   *			  is TCP or UDP. The IPv4 header may contain IP options.
67   *			  This feature cannot be set in features for a device
68   *			  with NETIF_F_HW_CSUM also set. This feature is being
69   *			  DEPRECATED (see below).
70   *
71   *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72   *			  TCP or UDP packets over IPv6. These are specifically
73   *			  unencapsulated packets of the form IPv6|TCP or
74   *			  IPv6|UDP where the Next Header field in the IPv6
75   *			  header is either TCP or UDP. IPv6 extension headers
76   *			  are not supported with this feature. This feature
77   *			  cannot be set in features for a device with
78   *			  NETIF_F_HW_CSUM also set. This feature is being
79   *			  DEPRECATED (see below).
80   *
81   *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82   *			 This flag is only used to disable the RX checksum
83   *			 feature for a device. The stack will accept receive
84   *			 checksum indication in packets received on a device
85   *			 regardless of whether NETIF_F_RXCSUM is set.
86   *
87   * B. Checksumming of received packets by device. Indication of checksum
88   *    verification is set in skb->ip_summed. Possible values are:
89   *
90   * CHECKSUM_NONE:
91   *
92   *   Device did not checksum this packet e.g. due to lack of capabilities.
93   *   The packet contains full (though not verified) checksum in packet but
94   *   not in skb->csum. Thus, skb->csum is undefined in this case.
95   *
96   * CHECKSUM_UNNECESSARY:
97   *
98   *   The hardware you're dealing with doesn't calculate the full checksum
99   *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100   *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101   *   if their checksums are okay. skb->csum is still undefined in this case
102   *   though. A driver or device must never modify the checksum field in the
103   *   packet even if checksum is verified.
104   *
105   *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106   *     TCP: IPv6 and IPv4.
107   *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108   *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109   *       may perform further validation in this case.
110   *     GRE: only if the checksum is present in the header.
111   *     SCTP: indicates the CRC in SCTP header has been validated.
112   *     FCOE: indicates the CRC in FC frame has been validated.
113   *
114   *   skb->csum_level indicates the number of consecutive checksums found in
115   *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116   *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117   *   and a device is able to verify the checksums for UDP (possibly zero),
118   *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119   *   two. If the device were only able to verify the UDP checksum and not
120   *   GRE, either because it doesn't support GRE checksum or because GRE
121   *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122   *   not considered in this case).
123   *
124   * CHECKSUM_COMPLETE:
125   *
126   *   This is the most generic way. The device supplied checksum of the _whole_
127   *   packet as seen by netif_rx() and fills in skb->csum. This means the
128   *   hardware doesn't need to parse L3/L4 headers to implement this.
129   *
130   *   Notes:
131   *   - Even if device supports only some protocols, but is able to produce
132   *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133   *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134   *
135   * CHECKSUM_PARTIAL:
136   *
137   *   A checksum is set up to be offloaded to a device as described in the
138   *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139   *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140   *   on the same host, or it may be set in the input path in GRO or remote
141   *   checksum offload. For the purposes of checksum verification, the checksum
142   *   referred to by skb->csum_start + skb->csum_offset and any preceding
143   *   checksums in the packet are considered verified. Any checksums in the
144   *   packet that are after the checksum being offloaded are not considered to
145   *   be verified.
146   *
147   * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148   *    in the skb->ip_summed for a packet. Values are:
149   *
150   * CHECKSUM_PARTIAL:
151   *
152   *   The driver is required to checksum the packet as seen by hard_start_xmit()
153   *   from skb->csum_start up to the end, and to record/write the checksum at
154   *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155   *   csum_start and csum_offset values are valid values given the length and
156   *   offset of the packet, but it should not attempt to validate that the
157   *   checksum refers to a legitimate transport layer checksum -- it is the
158   *   purview of the stack to validate that csum_start and csum_offset are set
159   *   correctly.
160   *
161   *   When the stack requests checksum offload for a packet, the driver MUST
162   *   ensure that the checksum is set correctly. A driver can either offload the
163   *   checksum calculation to the device, or call skb_checksum_help (in the case
164   *   that the device does not support offload for a particular checksum).
165   *
166   *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167   *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168   *   checksum offload capability.
169   *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170   *   on network device checksumming capabilities: if a packet does not match
171   *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172   *   csum_not_inet, see item D.) is called to resolve the checksum.
173   *
174   * CHECKSUM_NONE:
175   *
176   *   The skb was already checksummed by the protocol, or a checksum is not
177   *   required.
178   *
179   * CHECKSUM_UNNECESSARY:
180   *
181   *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182   *   output.
183   *
184   * CHECKSUM_COMPLETE:
185   *   Not used in checksum output. If a driver observes a packet with this value
186   *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187   *
188   * D. Non-IP checksum (CRC) offloads
189   *
190   *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191   *     offloading the SCTP CRC in a packet. To perform this offload the stack
192   *     will set csum_start and csum_offset accordingly, set ip_summed to
193   *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194   *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195   *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196   *     must verify which offload is configured for a packet by testing the
197   *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198   *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199   *
200   *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201   *     offloading the FCOE CRC in a packet. To perform this offload the stack
202   *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203   *     accordingly. Note that there is no indication in the skbuff that the
204   *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205   *     both IP checksum offload and FCOE CRC offload must verify which offload
206   *     is configured for a packet, presumably by inspecting packet headers.
207   *
208   * E. Checksumming on output with GSO.
209   *
210   * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211   * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212   * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213   * part of the GSO operation is implied. If a checksum is being offloaded
214   * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215   * csum_offset are set to refer to the outermost checksum being offloaded
216   * (two offloaded checksums are possible with UDP encapsulation).
217   */
218  
219  /* Don't change this without changing skb_csum_unnecessary! */
220  #define CHECKSUM_NONE		0
221  #define CHECKSUM_UNNECESSARY	1
222  #define CHECKSUM_COMPLETE	2
223  #define CHECKSUM_PARTIAL	3
224  
225  /* Maximum value in skb->csum_level */
226  #define SKB_MAX_CSUM_LEVEL	3
227  
228  #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229  #define SKB_WITH_OVERHEAD(X)	\
230  	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231  #define SKB_MAX_ORDER(X, ORDER) \
232  	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233  #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234  #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235  
236  /* return minimum truesize of one skb containing X bytes of data */
237  #define SKB_TRUESIZE(X) ((X) +						\
238  			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239  			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240  
241  struct ahash_request;
242  struct net_device;
243  struct scatterlist;
244  struct pipe_inode_info;
245  struct iov_iter;
246  struct napi_struct;
247  struct bpf_prog;
248  union bpf_attr;
249  struct skb_ext;
250  
251  #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252  struct nf_bridge_info {
253  	enum {
254  		BRNF_PROTO_UNCHANGED,
255  		BRNF_PROTO_8021Q,
256  		BRNF_PROTO_PPPOE
257  	} orig_proto:8;
258  	u8			pkt_otherhost:1;
259  	u8			in_prerouting:1;
260  	u8			bridged_dnat:1;
261  	__u16			frag_max_size;
262  	struct net_device	*physindev;
263  
264  	/* always valid & non-NULL from FORWARD on, for physdev match */
265  	struct net_device	*physoutdev;
266  	union {
267  		/* prerouting: detect dnat in orig/reply direction */
268  		__be32          ipv4_daddr;
269  		struct in6_addr ipv6_daddr;
270  
271  		/* after prerouting + nat detected: store original source
272  		 * mac since neigh resolution overwrites it, only used while
273  		 * skb is out in neigh layer.
274  		 */
275  		char neigh_header[8];
276  	};
277  };
278  #endif
279  
280  #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281  /* Chain in tc_skb_ext will be used to share the tc chain with
282   * ovs recirc_id. It will be set to the current chain by tc
283   * and read by ovs to recirc_id.
284   */
285  struct tc_skb_ext {
286  	__u32 chain;
287  	__u16 mru;
288  };
289  #endif
290  
291  struct sk_buff_head {
292  	/* These two members must be first. */
293  	struct sk_buff	*next;
294  	struct sk_buff	*prev;
295  
296  	__u32		qlen;
297  	spinlock_t	lock;
298  };
299  
300  struct sk_buff;
301  
302  /* To allow 64K frame to be packed as single skb without frag_list we
303   * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304   * buffers which do not start on a page boundary.
305   *
306   * Since GRO uses frags we allocate at least 16 regardless of page
307   * size.
308   */
309  #if (65536/PAGE_SIZE + 1) < 16
310  #define MAX_SKB_FRAGS 16UL
311  #else
312  #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313  #endif
314  extern int sysctl_max_skb_frags;
315  
316  /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317   * segment using its current segmentation instead.
318   */
319  #define GSO_BY_FRAGS	0xFFFF
320  
321  typedef struct bio_vec skb_frag_t;
322  
323  /**
324   * skb_frag_size() - Returns the size of a skb fragment
325   * @frag: skb fragment
326   */
skb_frag_size(const skb_frag_t * frag)327  static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328  {
329  	return frag->bv_len;
330  }
331  
332  /**
333   * skb_frag_size_set() - Sets the size of a skb fragment
334   * @frag: skb fragment
335   * @size: size of fragment
336   */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)337  static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338  {
339  	frag->bv_len = size;
340  }
341  
342  /**
343   * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344   * @frag: skb fragment
345   * @delta: value to add
346   */
skb_frag_size_add(skb_frag_t * frag,int delta)347  static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348  {
349  	frag->bv_len += delta;
350  }
351  
352  /**
353   * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354   * @frag: skb fragment
355   * @delta: value to subtract
356   */
skb_frag_size_sub(skb_frag_t * frag,int delta)357  static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358  {
359  	frag->bv_len -= delta;
360  }
361  
362  /**
363   * skb_frag_must_loop - Test if %p is a high memory page
364   * @p: fragment's page
365   */
skb_frag_must_loop(struct page * p)366  static inline bool skb_frag_must_loop(struct page *p)
367  {
368  #if defined(CONFIG_HIGHMEM)
369  	if (PageHighMem(p))
370  		return true;
371  #endif
372  	return false;
373  }
374  
375  /**
376   *	skb_frag_foreach_page - loop over pages in a fragment
377   *
378   *	@f:		skb frag to operate on
379   *	@f_off:		offset from start of f->bv_page
380   *	@f_len:		length from f_off to loop over
381   *	@p:		(temp var) current page
382   *	@p_off:		(temp var) offset from start of current page,
383   *	                           non-zero only on first page.
384   *	@p_len:		(temp var) length in current page,
385   *				   < PAGE_SIZE only on first and last page.
386   *	@copied:	(temp var) length so far, excluding current p_len.
387   *
388   *	A fragment can hold a compound page, in which case per-page
389   *	operations, notably kmap_atomic, must be called for each
390   *	regular page.
391   */
392  #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
393  	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
394  	     p_off = (f_off) & (PAGE_SIZE - 1),				\
395  	     p_len = skb_frag_must_loop(p) ?				\
396  	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
397  	     copied = 0;						\
398  	     copied < f_len;						\
399  	     copied += p_len, p++, p_off = 0,				\
400  	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
401  
402  #define HAVE_HW_TIME_STAMP
403  
404  /**
405   * struct skb_shared_hwtstamps - hardware time stamps
406   * @hwtstamp:	hardware time stamp transformed into duration
407   *		since arbitrary point in time
408   *
409   * Software time stamps generated by ktime_get_real() are stored in
410   * skb->tstamp.
411   *
412   * hwtstamps can only be compared against other hwtstamps from
413   * the same device.
414   *
415   * This structure is attached to packets as part of the
416   * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417   */
418  struct skb_shared_hwtstamps {
419  	ktime_t	hwtstamp;
420  };
421  
422  /* Definitions for tx_flags in struct skb_shared_info */
423  enum {
424  	/* generate hardware time stamp */
425  	SKBTX_HW_TSTAMP = 1 << 0,
426  
427  	/* generate software time stamp when queueing packet to NIC */
428  	SKBTX_SW_TSTAMP = 1 << 1,
429  
430  	/* device driver is going to provide hardware time stamp */
431  	SKBTX_IN_PROGRESS = 1 << 2,
432  
433  	/* device driver supports TX zero-copy buffers */
434  	SKBTX_DEV_ZEROCOPY = 1 << 3,
435  
436  	/* generate wifi status information (where possible) */
437  	SKBTX_WIFI_STATUS = 1 << 4,
438  
439  	/* This indicates at least one fragment might be overwritten
440  	 * (as in vmsplice(), sendfile() ...)
441  	 * If we need to compute a TX checksum, we'll need to copy
442  	 * all frags to avoid possible bad checksum
443  	 */
444  	SKBTX_SHARED_FRAG = 1 << 5,
445  
446  	/* generate software time stamp when entering packet scheduling */
447  	SKBTX_SCHED_TSTAMP = 1 << 6,
448  };
449  
450  #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451  #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
452  				 SKBTX_SCHED_TSTAMP)
453  #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454  
455  /*
456   * The callback notifies userspace to release buffers when skb DMA is done in
457   * lower device, the skb last reference should be 0 when calling this.
458   * The zerocopy_success argument is true if zero copy transmit occurred,
459   * false on data copy or out of memory error caused by data copy attempt.
460   * The ctx field is used to track device context.
461   * The desc field is used to track userspace buffer index.
462   */
463  struct ubuf_info {
464  	void (*callback)(struct ubuf_info *, bool zerocopy_success);
465  	union {
466  		struct {
467  			unsigned long desc;
468  			void *ctx;
469  		};
470  		struct {
471  			u32 id;
472  			u16 len;
473  			u16 zerocopy:1;
474  			u32 bytelen;
475  		};
476  	};
477  	refcount_t refcnt;
478  
479  	struct mmpin {
480  		struct user_struct *user;
481  		unsigned int num_pg;
482  	} mmp;
483  };
484  
485  #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486  
487  int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488  void mm_unaccount_pinned_pages(struct mmpin *mmp);
489  
490  struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491  struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492  					struct ubuf_info *uarg);
493  
sock_zerocopy_get(struct ubuf_info * uarg)494  static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495  {
496  	refcount_inc(&uarg->refcnt);
497  }
498  
499  void sock_zerocopy_put(struct ubuf_info *uarg);
500  void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501  
502  void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503  
504  int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505  int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506  			     struct msghdr *msg, int len,
507  			     struct ubuf_info *uarg);
508  
509  /* This data is invariant across clones and lives at
510   * the end of the header data, ie. at skb->end.
511   */
512  struct skb_shared_info {
513  	__u8		__unused;
514  	__u8		meta_len;
515  	__u8		nr_frags;
516  	__u8		tx_flags;
517  	unsigned short	gso_size;
518  	/* Warning: this field is not always filled in (UFO)! */
519  	unsigned short	gso_segs;
520  	struct sk_buff	*frag_list;
521  	struct skb_shared_hwtstamps hwtstamps;
522  	unsigned int	gso_type;
523  	u32		tskey;
524  
525  	/*
526  	 * Warning : all fields before dataref are cleared in __alloc_skb()
527  	 */
528  	atomic_t	dataref;
529  
530  	/* Intermediate layers must ensure that destructor_arg
531  	 * remains valid until skb destructor */
532  	void *		destructor_arg;
533  
534  	/* must be last field, see pskb_expand_head() */
535  	skb_frag_t	frags[MAX_SKB_FRAGS];
536  };
537  
538  /* We divide dataref into two halves.  The higher 16 bits hold references
539   * to the payload part of skb->data.  The lower 16 bits hold references to
540   * the entire skb->data.  A clone of a headerless skb holds the length of
541   * the header in skb->hdr_len.
542   *
543   * All users must obey the rule that the skb->data reference count must be
544   * greater than or equal to the payload reference count.
545   *
546   * Holding a reference to the payload part means that the user does not
547   * care about modifications to the header part of skb->data.
548   */
549  #define SKB_DATAREF_SHIFT 16
550  #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551  
552  
553  enum {
554  	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
555  	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
556  	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
557  };
558  
559  enum {
560  	SKB_GSO_TCPV4 = 1 << 0,
561  
562  	/* This indicates the skb is from an untrusted source. */
563  	SKB_GSO_DODGY = 1 << 1,
564  
565  	/* This indicates the tcp segment has CWR set. */
566  	SKB_GSO_TCP_ECN = 1 << 2,
567  
568  	SKB_GSO_TCP_FIXEDID = 1 << 3,
569  
570  	SKB_GSO_TCPV6 = 1 << 4,
571  
572  	SKB_GSO_FCOE = 1 << 5,
573  
574  	SKB_GSO_GRE = 1 << 6,
575  
576  	SKB_GSO_GRE_CSUM = 1 << 7,
577  
578  	SKB_GSO_IPXIP4 = 1 << 8,
579  
580  	SKB_GSO_IPXIP6 = 1 << 9,
581  
582  	SKB_GSO_UDP_TUNNEL = 1 << 10,
583  
584  	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585  
586  	SKB_GSO_PARTIAL = 1 << 12,
587  
588  	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589  
590  	SKB_GSO_SCTP = 1 << 14,
591  
592  	SKB_GSO_ESP = 1 << 15,
593  
594  	SKB_GSO_UDP = 1 << 16,
595  
596  	SKB_GSO_UDP_L4 = 1 << 17,
597  
598  	SKB_GSO_FRAGLIST = 1 << 18,
599  };
600  
601  #if BITS_PER_LONG > 32
602  #define NET_SKBUFF_DATA_USES_OFFSET 1
603  #endif
604  
605  #ifdef NET_SKBUFF_DATA_USES_OFFSET
606  typedef unsigned int sk_buff_data_t;
607  #else
608  typedef unsigned char *sk_buff_data_t;
609  #endif
610  
611  /**
612   *	struct sk_buff - socket buffer
613   *	@next: Next buffer in list
614   *	@prev: Previous buffer in list
615   *	@tstamp: Time we arrived/left
616   *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617   *		for retransmit timer
618   *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
619   *	@list: queue head
620   *	@sk: Socket we are owned by
621   *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622   *		fragmentation management
623   *	@dev: Device we arrived on/are leaving by
624   *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625   *	@cb: Control buffer. Free for use by every layer. Put private vars here
626   *	@_skb_refdst: destination entry (with norefcount bit)
627   *	@sp: the security path, used for xfrm
628   *	@len: Length of actual data
629   *	@data_len: Data length
630   *	@mac_len: Length of link layer header
631   *	@hdr_len: writable header length of cloned skb
632   *	@csum: Checksum (must include start/offset pair)
633   *	@csum_start: Offset from skb->head where checksumming should start
634   *	@csum_offset: Offset from csum_start where checksum should be stored
635   *	@priority: Packet queueing priority
636   *	@ignore_df: allow local fragmentation
637   *	@cloned: Head may be cloned (check refcnt to be sure)
638   *	@ip_summed: Driver fed us an IP checksum
639   *	@nohdr: Payload reference only, must not modify header
640   *	@pkt_type: Packet class
641   *	@fclone: skbuff clone status
642   *	@ipvs_property: skbuff is owned by ipvs
643   *	@inner_protocol_type: whether the inner protocol is
644   *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645   *	@remcsum_offload: remote checksum offload is enabled
646   *	@offload_fwd_mark: Packet was L2-forwarded in hardware
647   *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648   *	@tc_skip_classify: do not classify packet. set by IFB device
649   *	@tc_at_ingress: used within tc_classify to distinguish in/egress
650   *	@redirected: packet was redirected by packet classifier
651   *	@from_ingress: packet was redirected from the ingress path
652   *	@peeked: this packet has been seen already, so stats have been
653   *		done for it, don't do them again
654   *	@nf_trace: netfilter packet trace flag
655   *	@protocol: Packet protocol from driver
656   *	@destructor: Destruct function
657   *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658   *	@_nfct: Associated connection, if any (with nfctinfo bits)
659   *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660   *	@skb_iif: ifindex of device we arrived on
661   *	@tc_index: Traffic control index
662   *	@hash: the packet hash
663   *	@queue_mapping: Queue mapping for multiqueue devices
664   *	@head_frag: skb was allocated from page fragments,
665   *		not allocated by kmalloc() or vmalloc().
666   *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667   *	@active_extensions: active extensions (skb_ext_id types)
668   *	@ndisc_nodetype: router type (from link layer)
669   *	@ooo_okay: allow the mapping of a socket to a queue to be changed
670   *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
671   *		ports.
672   *	@sw_hash: indicates hash was computed in software stack
673   *	@wifi_acked_valid: wifi_acked was set
674   *	@wifi_acked: whether frame was acked on wifi or not
675   *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
676   *	@encapsulation: indicates the inner headers in the skbuff are valid
677   *	@encap_hdr_csum: software checksum is needed
678   *	@csum_valid: checksum is already valid
679   *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680   *	@csum_complete_sw: checksum was completed by software
681   *	@csum_level: indicates the number of consecutive checksums found in
682   *		the packet minus one that have been verified as
683   *		CHECKSUM_UNNECESSARY (max 3)
684   *	@scm_io_uring: SKB holds io_uring registered files
685   *	@dst_pending_confirm: need to confirm neighbour
686   *	@decrypted: Decrypted SKB
687   *	@napi_id: id of the NAPI struct this skb came from
688   *	@sender_cpu: (aka @napi_id) source CPU in XPS
689   *	@secmark: security marking
690   *	@mark: Generic packet mark
691   *	@reserved_tailroom: (aka @mark) number of bytes of free space available
692   *		at the tail of an sk_buff
693   *	@vlan_present: VLAN tag is present
694   *	@vlan_proto: vlan encapsulation protocol
695   *	@vlan_tci: vlan tag control information
696   *	@inner_protocol: Protocol (encapsulation)
697   *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
698   *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699   *	@inner_transport_header: Inner transport layer header (encapsulation)
700   *	@inner_network_header: Network layer header (encapsulation)
701   *	@inner_mac_header: Link layer header (encapsulation)
702   *	@transport_header: Transport layer header
703   *	@network_header: Network layer header
704   *	@mac_header: Link layer header
705   *	@kcov_handle: KCOV remote handle for remote coverage collection
706   *	@tail: Tail pointer
707   *	@end: End pointer
708   *	@head: Head of buffer
709   *	@data: Data head pointer
710   *	@truesize: Buffer size
711   *	@users: User count - see {datagram,tcp}.c
712   *	@extensions: allocated extensions, valid if active_extensions is nonzero
713   */
714  
715  struct sk_buff {
716  	union {
717  		struct {
718  			/* These two members must be first. */
719  			struct sk_buff		*next;
720  			struct sk_buff		*prev;
721  
722  			union {
723  				struct net_device	*dev;
724  				/* Some protocols might use this space to store information,
725  				 * while device pointer would be NULL.
726  				 * UDP receive path is one user.
727  				 */
728  				unsigned long		dev_scratch;
729  			};
730  		};
731  		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
732  		struct list_head	list;
733  	};
734  
735  	union {
736  		struct sock		*sk;
737  		int			ip_defrag_offset;
738  	};
739  
740  	union {
741  		ktime_t		tstamp;
742  		u64		skb_mstamp_ns; /* earliest departure time */
743  	};
744  	/*
745  	 * This is the control buffer. It is free to use for every
746  	 * layer. Please put your private variables there. If you
747  	 * want to keep them across layers you have to do a skb_clone()
748  	 * first. This is owned by whoever has the skb queued ATM.
749  	 */
750  	char			cb[48] __aligned(8);
751  
752  	union {
753  		struct {
754  			unsigned long	_skb_refdst;
755  			void		(*destructor)(struct sk_buff *skb);
756  		};
757  		struct list_head	tcp_tsorted_anchor;
758  	};
759  
760  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
761  	unsigned long		 _nfct;
762  #endif
763  	unsigned int		len,
764  				data_len;
765  	__u16			mac_len,
766  				hdr_len;
767  
768  	/* Following fields are _not_ copied in __copy_skb_header()
769  	 * Note that queue_mapping is here mostly to fill a hole.
770  	 */
771  	__u16			queue_mapping;
772  
773  /* if you move cloned around you also must adapt those constants */
774  #ifdef __BIG_ENDIAN_BITFIELD
775  #define CLONED_MASK	(1 << 7)
776  #else
777  #define CLONED_MASK	1
778  #endif
779  #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
780  
781  	/* private: */
782  	__u8			__cloned_offset[0];
783  	/* public: */
784  	__u8			cloned:1,
785  				nohdr:1,
786  				fclone:2,
787  				peeked:1,
788  				head_frag:1,
789  				pfmemalloc:1;
790  #ifdef CONFIG_SKB_EXTENSIONS
791  	__u8			active_extensions;
792  #endif
793  	/* fields enclosed in headers_start/headers_end are copied
794  	 * using a single memcpy() in __copy_skb_header()
795  	 */
796  	/* private: */
797  	__u32			headers_start[0];
798  	/* public: */
799  
800  /* if you move pkt_type around you also must adapt those constants */
801  #ifdef __BIG_ENDIAN_BITFIELD
802  #define PKT_TYPE_MAX	(7 << 5)
803  #else
804  #define PKT_TYPE_MAX	7
805  #endif
806  #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
807  
808  	/* private: */
809  	__u8			__pkt_type_offset[0];
810  	/* public: */
811  	__u8			pkt_type:3;
812  	__u8			ignore_df:1;
813  	__u8			nf_trace:1;
814  	__u8			ip_summed:2;
815  	__u8			ooo_okay:1;
816  
817  	__u8			l4_hash:1;
818  	__u8			sw_hash:1;
819  	__u8			wifi_acked_valid:1;
820  	__u8			wifi_acked:1;
821  	__u8			no_fcs:1;
822  	/* Indicates the inner headers are valid in the skbuff. */
823  	__u8			encapsulation:1;
824  	__u8			encap_hdr_csum:1;
825  	__u8			csum_valid:1;
826  
827  #ifdef __BIG_ENDIAN_BITFIELD
828  #define PKT_VLAN_PRESENT_BIT	7
829  #else
830  #define PKT_VLAN_PRESENT_BIT	0
831  #endif
832  #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
833  	/* private: */
834  	__u8			__pkt_vlan_present_offset[0];
835  	/* public: */
836  	__u8			vlan_present:1;
837  	__u8			csum_complete_sw:1;
838  	__u8			csum_level:2;
839  	__u8			csum_not_inet:1;
840  	__u8			dst_pending_confirm:1;
841  #ifdef CONFIG_IPV6_NDISC_NODETYPE
842  	__u8			ndisc_nodetype:2;
843  #endif
844  
845  	__u8			ipvs_property:1;
846  	__u8			inner_protocol_type:1;
847  	__u8			remcsum_offload:1;
848  #ifdef CONFIG_NET_SWITCHDEV
849  	__u8			offload_fwd_mark:1;
850  	__u8			offload_l3_fwd_mark:1;
851  #endif
852  #ifdef CONFIG_NET_CLS_ACT
853  	__u8			tc_skip_classify:1;
854  	__u8			tc_at_ingress:1;
855  #endif
856  #ifdef CONFIG_NET_REDIRECT
857  	__u8			redirected:1;
858  	__u8			from_ingress:1;
859  #endif
860  #ifdef CONFIG_TLS_DEVICE
861  	__u8			decrypted:1;
862  #endif
863  	__u8			scm_io_uring:1;
864  
865  #ifdef CONFIG_NET_SCHED
866  	__u16			tc_index;	/* traffic control index */
867  #endif
868  
869  	union {
870  		__wsum		csum;
871  		struct {
872  			__u16	csum_start;
873  			__u16	csum_offset;
874  		};
875  	};
876  	__u32			priority;
877  	int			skb_iif;
878  	__u32			hash;
879  	__be16			vlan_proto;
880  	__u16			vlan_tci;
881  #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
882  	union {
883  		unsigned int	napi_id;
884  		unsigned int	sender_cpu;
885  	};
886  #endif
887  #ifdef CONFIG_NETWORK_SECMARK
888  	__u32		secmark;
889  #endif
890  
891  	union {
892  		__u32		mark;
893  		__u32		reserved_tailroom;
894  	};
895  
896  	union {
897  		__be16		inner_protocol;
898  		__u8		inner_ipproto;
899  	};
900  
901  	__u16			inner_transport_header;
902  	__u16			inner_network_header;
903  	__u16			inner_mac_header;
904  
905  	__be16			protocol;
906  	__u16			transport_header;
907  	__u16			network_header;
908  	__u16			mac_header;
909  
910  #ifdef CONFIG_KCOV
911  	u64			kcov_handle;
912  #endif
913  
914  	/* private: */
915  	__u32			headers_end[0];
916  	/* public: */
917  
918  	/* These elements must be at the end, see alloc_skb() for details.  */
919  	sk_buff_data_t		tail;
920  	sk_buff_data_t		end;
921  	unsigned char		*head,
922  				*data;
923  	unsigned int		truesize;
924  	refcount_t		users;
925  
926  #ifdef CONFIG_SKB_EXTENSIONS
927  	/* only useable after checking ->active_extensions != 0 */
928  	struct skb_ext		*extensions;
929  #endif
930  };
931  
932  #ifdef __KERNEL__
933  /*
934   *	Handling routines are only of interest to the kernel
935   */
936  
937  #define SKB_ALLOC_FCLONE	0x01
938  #define SKB_ALLOC_RX		0x02
939  #define SKB_ALLOC_NAPI		0x04
940  
941  /**
942   * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
943   * @skb: buffer
944   */
skb_pfmemalloc(const struct sk_buff * skb)945  static inline bool skb_pfmemalloc(const struct sk_buff *skb)
946  {
947  	return unlikely(skb->pfmemalloc);
948  }
949  
950  /*
951   * skb might have a dst pointer attached, refcounted or not.
952   * _skb_refdst low order bit is set if refcount was _not_ taken
953   */
954  #define SKB_DST_NOREF	1UL
955  #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
956  
957  /**
958   * skb_dst - returns skb dst_entry
959   * @skb: buffer
960   *
961   * Returns skb dst_entry, regardless of reference taken or not.
962   */
skb_dst(const struct sk_buff * skb)963  static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
964  {
965  	/* If refdst was not refcounted, check we still are in a
966  	 * rcu_read_lock section
967  	 */
968  	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
969  		!rcu_read_lock_held() &&
970  		!rcu_read_lock_bh_held());
971  	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
972  }
973  
974  /**
975   * skb_dst_set - sets skb dst
976   * @skb: buffer
977   * @dst: dst entry
978   *
979   * Sets skb dst, assuming a reference was taken on dst and should
980   * be released by skb_dst_drop()
981   */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)982  static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
983  {
984  	skb->_skb_refdst = (unsigned long)dst;
985  }
986  
987  /**
988   * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
989   * @skb: buffer
990   * @dst: dst entry
991   *
992   * Sets skb dst, assuming a reference was not taken on dst.
993   * If dst entry is cached, we do not take reference and dst_release
994   * will be avoided by refdst_drop. If dst entry is not cached, we take
995   * reference, so that last dst_release can destroy the dst immediately.
996   */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)997  static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
998  {
999  	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1000  	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1001  }
1002  
1003  /**
1004   * skb_dst_is_noref - Test if skb dst isn't refcounted
1005   * @skb: buffer
1006   */
skb_dst_is_noref(const struct sk_buff * skb)1007  static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1008  {
1009  	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1010  }
1011  
1012  /**
1013   * skb_rtable - Returns the skb &rtable
1014   * @skb: buffer
1015   */
skb_rtable(const struct sk_buff * skb)1016  static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1017  {
1018  	return (struct rtable *)skb_dst(skb);
1019  }
1020  
1021  /* For mangling skb->pkt_type from user space side from applications
1022   * such as nft, tc, etc, we only allow a conservative subset of
1023   * possible pkt_types to be set.
1024  */
skb_pkt_type_ok(u32 ptype)1025  static inline bool skb_pkt_type_ok(u32 ptype)
1026  {
1027  	return ptype <= PACKET_OTHERHOST;
1028  }
1029  
1030  /**
1031   * skb_napi_id - Returns the skb's NAPI id
1032   * @skb: buffer
1033   */
skb_napi_id(const struct sk_buff * skb)1034  static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1035  {
1036  #ifdef CONFIG_NET_RX_BUSY_POLL
1037  	return skb->napi_id;
1038  #else
1039  	return 0;
1040  #endif
1041  }
1042  
1043  /**
1044   * skb_unref - decrement the skb's reference count
1045   * @skb: buffer
1046   *
1047   * Returns true if we can free the skb.
1048   */
skb_unref(struct sk_buff * skb)1049  static inline bool skb_unref(struct sk_buff *skb)
1050  {
1051  	if (unlikely(!skb))
1052  		return false;
1053  	if (likely(refcount_read(&skb->users) == 1))
1054  		smp_rmb();
1055  	else if (likely(!refcount_dec_and_test(&skb->users)))
1056  		return false;
1057  
1058  	return true;
1059  }
1060  
1061  void skb_release_head_state(struct sk_buff *skb);
1062  void kfree_skb(struct sk_buff *skb);
1063  void kfree_skb_list(struct sk_buff *segs);
1064  void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1065  void skb_tx_error(struct sk_buff *skb);
1066  
1067  #ifdef CONFIG_TRACEPOINTS
1068  void consume_skb(struct sk_buff *skb);
1069  #else
consume_skb(struct sk_buff * skb)1070  static inline void consume_skb(struct sk_buff *skb)
1071  {
1072  	return kfree_skb(skb);
1073  }
1074  #endif
1075  
1076  void __consume_stateless_skb(struct sk_buff *skb);
1077  void  __kfree_skb(struct sk_buff *skb);
1078  extern struct kmem_cache *skbuff_head_cache;
1079  
1080  void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1081  bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1082  		      bool *fragstolen, int *delta_truesize);
1083  
1084  struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1085  			    int node);
1086  struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1087  struct sk_buff *build_skb(void *data, unsigned int frag_size);
1088  struct sk_buff *build_skb_around(struct sk_buff *skb,
1089  				 void *data, unsigned int frag_size);
1090  
1091  /**
1092   * alloc_skb - allocate a network buffer
1093   * @size: size to allocate
1094   * @priority: allocation mask
1095   *
1096   * This function is a convenient wrapper around __alloc_skb().
1097   */
alloc_skb(unsigned int size,gfp_t priority)1098  static inline struct sk_buff *alloc_skb(unsigned int size,
1099  					gfp_t priority)
1100  {
1101  	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1102  }
1103  
1104  struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1105  				     unsigned long data_len,
1106  				     int max_page_order,
1107  				     int *errcode,
1108  				     gfp_t gfp_mask);
1109  struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1110  
1111  /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1112  struct sk_buff_fclones {
1113  	struct sk_buff	skb1;
1114  
1115  	struct sk_buff	skb2;
1116  
1117  	refcount_t	fclone_ref;
1118  };
1119  
1120  /**
1121   *	skb_fclone_busy - check if fclone is busy
1122   *	@sk: socket
1123   *	@skb: buffer
1124   *
1125   * Returns true if skb is a fast clone, and its clone is not freed.
1126   * Some drivers call skb_orphan() in their ndo_start_xmit(),
1127   * so we also check that this didnt happen.
1128   */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1129  static inline bool skb_fclone_busy(const struct sock *sk,
1130  				   const struct sk_buff *skb)
1131  {
1132  	const struct sk_buff_fclones *fclones;
1133  
1134  	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1135  
1136  	return skb->fclone == SKB_FCLONE_ORIG &&
1137  	       refcount_read(&fclones->fclone_ref) > 1 &&
1138  	       fclones->skb2.sk == sk;
1139  }
1140  
1141  /**
1142   * alloc_skb_fclone - allocate a network buffer from fclone cache
1143   * @size: size to allocate
1144   * @priority: allocation mask
1145   *
1146   * This function is a convenient wrapper around __alloc_skb().
1147   */
alloc_skb_fclone(unsigned int size,gfp_t priority)1148  static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1149  					       gfp_t priority)
1150  {
1151  	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1152  }
1153  
1154  struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1155  void skb_headers_offset_update(struct sk_buff *skb, int off);
1156  int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1157  struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1158  void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1159  struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1160  struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1161  				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1162  static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1163  					  gfp_t gfp_mask)
1164  {
1165  	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1166  }
1167  
1168  int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1169  struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1170  				     unsigned int headroom);
1171  struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1172  				int newtailroom, gfp_t priority);
1173  int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1174  				     int offset, int len);
1175  int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1176  			      int offset, int len);
1177  int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1178  int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1179  
1180  /**
1181   *	skb_pad			-	zero pad the tail of an skb
1182   *	@skb: buffer to pad
1183   *	@pad: space to pad
1184   *
1185   *	Ensure that a buffer is followed by a padding area that is zero
1186   *	filled. Used by network drivers which may DMA or transfer data
1187   *	beyond the buffer end onto the wire.
1188   *
1189   *	May return error in out of memory cases. The skb is freed on error.
1190   */
skb_pad(struct sk_buff * skb,int pad)1191  static inline int skb_pad(struct sk_buff *skb, int pad)
1192  {
1193  	return __skb_pad(skb, pad, true);
1194  }
1195  #define dev_kfree_skb(a)	consume_skb(a)
1196  
1197  int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1198  			 int offset, size_t size);
1199  
1200  struct skb_seq_state {
1201  	__u32		lower_offset;
1202  	__u32		upper_offset;
1203  	__u32		frag_idx;
1204  	__u32		stepped_offset;
1205  	struct sk_buff	*root_skb;
1206  	struct sk_buff	*cur_skb;
1207  	__u8		*frag_data;
1208  };
1209  
1210  void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1211  			  unsigned int to, struct skb_seq_state *st);
1212  unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1213  			  struct skb_seq_state *st);
1214  void skb_abort_seq_read(struct skb_seq_state *st);
1215  
1216  unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1217  			   unsigned int to, struct ts_config *config);
1218  
1219  /*
1220   * Packet hash types specify the type of hash in skb_set_hash.
1221   *
1222   * Hash types refer to the protocol layer addresses which are used to
1223   * construct a packet's hash. The hashes are used to differentiate or identify
1224   * flows of the protocol layer for the hash type. Hash types are either
1225   * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1226   *
1227   * Properties of hashes:
1228   *
1229   * 1) Two packets in different flows have different hash values
1230   * 2) Two packets in the same flow should have the same hash value
1231   *
1232   * A hash at a higher layer is considered to be more specific. A driver should
1233   * set the most specific hash possible.
1234   *
1235   * A driver cannot indicate a more specific hash than the layer at which a hash
1236   * was computed. For instance an L3 hash cannot be set as an L4 hash.
1237   *
1238   * A driver may indicate a hash level which is less specific than the
1239   * actual layer the hash was computed on. For instance, a hash computed
1240   * at L4 may be considered an L3 hash. This should only be done if the
1241   * driver can't unambiguously determine that the HW computed the hash at
1242   * the higher layer. Note that the "should" in the second property above
1243   * permits this.
1244   */
1245  enum pkt_hash_types {
1246  	PKT_HASH_TYPE_NONE,	/* Undefined type */
1247  	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1248  	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1249  	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1250  };
1251  
skb_clear_hash(struct sk_buff * skb)1252  static inline void skb_clear_hash(struct sk_buff *skb)
1253  {
1254  	skb->hash = 0;
1255  	skb->sw_hash = 0;
1256  	skb->l4_hash = 0;
1257  }
1258  
skb_clear_hash_if_not_l4(struct sk_buff * skb)1259  static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1260  {
1261  	if (!skb->l4_hash)
1262  		skb_clear_hash(skb);
1263  }
1264  
1265  static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1266  __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1267  {
1268  	skb->l4_hash = is_l4;
1269  	skb->sw_hash = is_sw;
1270  	skb->hash = hash;
1271  }
1272  
1273  static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1274  skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1275  {
1276  	/* Used by drivers to set hash from HW */
1277  	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1278  }
1279  
1280  static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1281  __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1282  {
1283  	__skb_set_hash(skb, hash, true, is_l4);
1284  }
1285  
1286  void __skb_get_hash(struct sk_buff *skb);
1287  u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1288  u32 skb_get_poff(const struct sk_buff *skb);
1289  u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1290  		   const struct flow_keys_basic *keys, int hlen);
1291  __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1292  			    void *data, int hlen_proto);
1293  
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1294  static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1295  					int thoff, u8 ip_proto)
1296  {
1297  	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1298  }
1299  
1300  void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1301  			     const struct flow_dissector_key *key,
1302  			     unsigned int key_count);
1303  
1304  struct bpf_flow_dissector;
1305  bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1306  		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1307  
1308  bool __skb_flow_dissect(const struct net *net,
1309  			const struct sk_buff *skb,
1310  			struct flow_dissector *flow_dissector,
1311  			void *target_container,
1312  			void *data, __be16 proto, int nhoff, int hlen,
1313  			unsigned int flags);
1314  
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1315  static inline bool skb_flow_dissect(const struct sk_buff *skb,
1316  				    struct flow_dissector *flow_dissector,
1317  				    void *target_container, unsigned int flags)
1318  {
1319  	return __skb_flow_dissect(NULL, skb, flow_dissector,
1320  				  target_container, NULL, 0, 0, 0, flags);
1321  }
1322  
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1323  static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1324  					      struct flow_keys *flow,
1325  					      unsigned int flags)
1326  {
1327  	memset(flow, 0, sizeof(*flow));
1328  	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1329  				  flow, NULL, 0, 0, 0, flags);
1330  }
1331  
1332  static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1333  skb_flow_dissect_flow_keys_basic(const struct net *net,
1334  				 const struct sk_buff *skb,
1335  				 struct flow_keys_basic *flow, void *data,
1336  				 __be16 proto, int nhoff, int hlen,
1337  				 unsigned int flags)
1338  {
1339  	memset(flow, 0, sizeof(*flow));
1340  	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1341  				  data, proto, nhoff, hlen, flags);
1342  }
1343  
1344  void skb_flow_dissect_meta(const struct sk_buff *skb,
1345  			   struct flow_dissector *flow_dissector,
1346  			   void *target_container);
1347  
1348  /* Gets a skb connection tracking info, ctinfo map should be a
1349   * map of mapsize to translate enum ip_conntrack_info states
1350   * to user states.
1351   */
1352  void
1353  skb_flow_dissect_ct(const struct sk_buff *skb,
1354  		    struct flow_dissector *flow_dissector,
1355  		    void *target_container,
1356  		    u16 *ctinfo_map,
1357  		    size_t mapsize);
1358  void
1359  skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1360  			     struct flow_dissector *flow_dissector,
1361  			     void *target_container);
1362  
1363  void skb_flow_dissect_hash(const struct sk_buff *skb,
1364  			   struct flow_dissector *flow_dissector,
1365  			   void *target_container);
1366  
skb_get_hash(struct sk_buff * skb)1367  static inline __u32 skb_get_hash(struct sk_buff *skb)
1368  {
1369  	if (!skb->l4_hash && !skb->sw_hash)
1370  		__skb_get_hash(skb);
1371  
1372  	return skb->hash;
1373  }
1374  
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1375  static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1376  {
1377  	if (!skb->l4_hash && !skb->sw_hash) {
1378  		struct flow_keys keys;
1379  		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1380  
1381  		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1382  	}
1383  
1384  	return skb->hash;
1385  }
1386  
1387  __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1388  			   const siphash_key_t *perturb);
1389  
skb_get_hash_raw(const struct sk_buff * skb)1390  static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1391  {
1392  	return skb->hash;
1393  }
1394  
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1395  static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1396  {
1397  	to->hash = from->hash;
1398  	to->sw_hash = from->sw_hash;
1399  	to->l4_hash = from->l4_hash;
1400  };
1401  
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1402  static inline void skb_copy_decrypted(struct sk_buff *to,
1403  				      const struct sk_buff *from)
1404  {
1405  #ifdef CONFIG_TLS_DEVICE
1406  	to->decrypted = from->decrypted;
1407  #endif
1408  }
1409  
1410  #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1411  static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1412  {
1413  	return skb->head + skb->end;
1414  }
1415  
skb_end_offset(const struct sk_buff * skb)1416  static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1417  {
1418  	return skb->end;
1419  }
1420  #else
skb_end_pointer(const struct sk_buff * skb)1421  static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1422  {
1423  	return skb->end;
1424  }
1425  
skb_end_offset(const struct sk_buff * skb)1426  static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1427  {
1428  	return skb->end - skb->head;
1429  }
1430  #endif
1431  
1432  /* Internal */
1433  #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1434  
skb_hwtstamps(struct sk_buff * skb)1435  static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1436  {
1437  	return &skb_shinfo(skb)->hwtstamps;
1438  }
1439  
skb_zcopy(struct sk_buff * skb)1440  static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1441  {
1442  	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1443  
1444  	return is_zcopy ? skb_uarg(skb) : NULL;
1445  }
1446  
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1447  static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1448  				 bool *have_ref)
1449  {
1450  	if (skb && uarg && !skb_zcopy(skb)) {
1451  		if (unlikely(have_ref && *have_ref))
1452  			*have_ref = false;
1453  		else
1454  			sock_zerocopy_get(uarg);
1455  		skb_shinfo(skb)->destructor_arg = uarg;
1456  		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1457  	}
1458  }
1459  
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1460  static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1461  {
1462  	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1463  	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1464  }
1465  
skb_zcopy_is_nouarg(struct sk_buff * skb)1466  static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1467  {
1468  	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1469  }
1470  
skb_zcopy_get_nouarg(struct sk_buff * skb)1471  static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1472  {
1473  	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1474  }
1475  
1476  /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1477  static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1478  {
1479  	struct ubuf_info *uarg = skb_zcopy(skb);
1480  
1481  	if (uarg) {
1482  		if (skb_zcopy_is_nouarg(skb)) {
1483  			/* no notification callback */
1484  		} else if (uarg->callback == sock_zerocopy_callback) {
1485  			uarg->zerocopy = uarg->zerocopy && zerocopy;
1486  			sock_zerocopy_put(uarg);
1487  		} else {
1488  			uarg->callback(uarg, zerocopy);
1489  		}
1490  
1491  		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1492  	}
1493  }
1494  
1495  /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1496  static inline void skb_zcopy_abort(struct sk_buff *skb)
1497  {
1498  	struct ubuf_info *uarg = skb_zcopy(skb);
1499  
1500  	if (uarg) {
1501  		sock_zerocopy_put_abort(uarg, false);
1502  		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1503  	}
1504  }
1505  
skb_mark_not_on_list(struct sk_buff * skb)1506  static inline void skb_mark_not_on_list(struct sk_buff *skb)
1507  {
1508  	skb->next = NULL;
1509  }
1510  
1511  /* Iterate through singly-linked GSO fragments of an skb. */
1512  #define skb_list_walk_safe(first, skb, next_skb)                               \
1513  	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1514  	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1515  
skb_list_del_init(struct sk_buff * skb)1516  static inline void skb_list_del_init(struct sk_buff *skb)
1517  {
1518  	__list_del_entry(&skb->list);
1519  	skb_mark_not_on_list(skb);
1520  }
1521  
1522  /**
1523   *	skb_queue_empty - check if a queue is empty
1524   *	@list: queue head
1525   *
1526   *	Returns true if the queue is empty, false otherwise.
1527   */
skb_queue_empty(const struct sk_buff_head * list)1528  static inline int skb_queue_empty(const struct sk_buff_head *list)
1529  {
1530  	return list->next == (const struct sk_buff *) list;
1531  }
1532  
1533  /**
1534   *	skb_queue_empty_lockless - check if a queue is empty
1535   *	@list: queue head
1536   *
1537   *	Returns true if the queue is empty, false otherwise.
1538   *	This variant can be used in lockless contexts.
1539   */
skb_queue_empty_lockless(const struct sk_buff_head * list)1540  static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1541  {
1542  	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1543  }
1544  
1545  
1546  /**
1547   *	skb_queue_is_last - check if skb is the last entry in the queue
1548   *	@list: queue head
1549   *	@skb: buffer
1550   *
1551   *	Returns true if @skb is the last buffer on the list.
1552   */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1553  static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1554  				     const struct sk_buff *skb)
1555  {
1556  	return skb->next == (const struct sk_buff *) list;
1557  }
1558  
1559  /**
1560   *	skb_queue_is_first - check if skb is the first entry in the queue
1561   *	@list: queue head
1562   *	@skb: buffer
1563   *
1564   *	Returns true if @skb is the first buffer on the list.
1565   */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1566  static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1567  				      const struct sk_buff *skb)
1568  {
1569  	return skb->prev == (const struct sk_buff *) list;
1570  }
1571  
1572  /**
1573   *	skb_queue_next - return the next packet in the queue
1574   *	@list: queue head
1575   *	@skb: current buffer
1576   *
1577   *	Return the next packet in @list after @skb.  It is only valid to
1578   *	call this if skb_queue_is_last() evaluates to false.
1579   */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1580  static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1581  					     const struct sk_buff *skb)
1582  {
1583  	/* This BUG_ON may seem severe, but if we just return then we
1584  	 * are going to dereference garbage.
1585  	 */
1586  	BUG_ON(skb_queue_is_last(list, skb));
1587  	return skb->next;
1588  }
1589  
1590  /**
1591   *	skb_queue_prev - return the prev packet in the queue
1592   *	@list: queue head
1593   *	@skb: current buffer
1594   *
1595   *	Return the prev packet in @list before @skb.  It is only valid to
1596   *	call this if skb_queue_is_first() evaluates to false.
1597   */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1598  static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1599  					     const struct sk_buff *skb)
1600  {
1601  	/* This BUG_ON may seem severe, but if we just return then we
1602  	 * are going to dereference garbage.
1603  	 */
1604  	BUG_ON(skb_queue_is_first(list, skb));
1605  	return skb->prev;
1606  }
1607  
1608  /**
1609   *	skb_get - reference buffer
1610   *	@skb: buffer to reference
1611   *
1612   *	Makes another reference to a socket buffer and returns a pointer
1613   *	to the buffer.
1614   */
skb_get(struct sk_buff * skb)1615  static inline struct sk_buff *skb_get(struct sk_buff *skb)
1616  {
1617  	refcount_inc(&skb->users);
1618  	return skb;
1619  }
1620  
1621  /*
1622   * If users == 1, we are the only owner and can avoid redundant atomic changes.
1623   */
1624  
1625  /**
1626   *	skb_cloned - is the buffer a clone
1627   *	@skb: buffer to check
1628   *
1629   *	Returns true if the buffer was generated with skb_clone() and is
1630   *	one of multiple shared copies of the buffer. Cloned buffers are
1631   *	shared data so must not be written to under normal circumstances.
1632   */
skb_cloned(const struct sk_buff * skb)1633  static inline int skb_cloned(const struct sk_buff *skb)
1634  {
1635  	return skb->cloned &&
1636  	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1637  }
1638  
skb_unclone(struct sk_buff * skb,gfp_t pri)1639  static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1640  {
1641  	might_sleep_if(gfpflags_allow_blocking(pri));
1642  
1643  	if (skb_cloned(skb))
1644  		return pskb_expand_head(skb, 0, 0, pri);
1645  
1646  	return 0;
1647  }
1648  
1649  /**
1650   *	skb_header_cloned - is the header a clone
1651   *	@skb: buffer to check
1652   *
1653   *	Returns true if modifying the header part of the buffer requires
1654   *	the data to be copied.
1655   */
skb_header_cloned(const struct sk_buff * skb)1656  static inline int skb_header_cloned(const struct sk_buff *skb)
1657  {
1658  	int dataref;
1659  
1660  	if (!skb->cloned)
1661  		return 0;
1662  
1663  	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1664  	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1665  	return dataref != 1;
1666  }
1667  
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1668  static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1669  {
1670  	might_sleep_if(gfpflags_allow_blocking(pri));
1671  
1672  	if (skb_header_cloned(skb))
1673  		return pskb_expand_head(skb, 0, 0, pri);
1674  
1675  	return 0;
1676  }
1677  
1678  /**
1679   *	__skb_header_release - release reference to header
1680   *	@skb: buffer to operate on
1681   */
__skb_header_release(struct sk_buff * skb)1682  static inline void __skb_header_release(struct sk_buff *skb)
1683  {
1684  	skb->nohdr = 1;
1685  	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1686  }
1687  
1688  
1689  /**
1690   *	skb_shared - is the buffer shared
1691   *	@skb: buffer to check
1692   *
1693   *	Returns true if more than one person has a reference to this
1694   *	buffer.
1695   */
skb_shared(const struct sk_buff * skb)1696  static inline int skb_shared(const struct sk_buff *skb)
1697  {
1698  	return refcount_read(&skb->users) != 1;
1699  }
1700  
1701  /**
1702   *	skb_share_check - check if buffer is shared and if so clone it
1703   *	@skb: buffer to check
1704   *	@pri: priority for memory allocation
1705   *
1706   *	If the buffer is shared the buffer is cloned and the old copy
1707   *	drops a reference. A new clone with a single reference is returned.
1708   *	If the buffer is not shared the original buffer is returned. When
1709   *	being called from interrupt status or with spinlocks held pri must
1710   *	be GFP_ATOMIC.
1711   *
1712   *	NULL is returned on a memory allocation failure.
1713   */
skb_share_check(struct sk_buff * skb,gfp_t pri)1714  static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1715  {
1716  	might_sleep_if(gfpflags_allow_blocking(pri));
1717  	if (skb_shared(skb)) {
1718  		struct sk_buff *nskb = skb_clone(skb, pri);
1719  
1720  		if (likely(nskb))
1721  			consume_skb(skb);
1722  		else
1723  			kfree_skb(skb);
1724  		skb = nskb;
1725  	}
1726  	return skb;
1727  }
1728  
1729  /*
1730   *	Copy shared buffers into a new sk_buff. We effectively do COW on
1731   *	packets to handle cases where we have a local reader and forward
1732   *	and a couple of other messy ones. The normal one is tcpdumping
1733   *	a packet thats being forwarded.
1734   */
1735  
1736  /**
1737   *	skb_unshare - make a copy of a shared buffer
1738   *	@skb: buffer to check
1739   *	@pri: priority for memory allocation
1740   *
1741   *	If the socket buffer is a clone then this function creates a new
1742   *	copy of the data, drops a reference count on the old copy and returns
1743   *	the new copy with the reference count at 1. If the buffer is not a clone
1744   *	the original buffer is returned. When called with a spinlock held or
1745   *	from interrupt state @pri must be %GFP_ATOMIC
1746   *
1747   *	%NULL is returned on a memory allocation failure.
1748   */
skb_unshare(struct sk_buff * skb,gfp_t pri)1749  static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1750  					  gfp_t pri)
1751  {
1752  	might_sleep_if(gfpflags_allow_blocking(pri));
1753  	if (skb_cloned(skb)) {
1754  		struct sk_buff *nskb = skb_copy(skb, pri);
1755  
1756  		/* Free our shared copy */
1757  		if (likely(nskb))
1758  			consume_skb(skb);
1759  		else
1760  			kfree_skb(skb);
1761  		skb = nskb;
1762  	}
1763  	return skb;
1764  }
1765  
1766  /**
1767   *	skb_peek - peek at the head of an &sk_buff_head
1768   *	@list_: list to peek at
1769   *
1770   *	Peek an &sk_buff. Unlike most other operations you _MUST_
1771   *	be careful with this one. A peek leaves the buffer on the
1772   *	list and someone else may run off with it. You must hold
1773   *	the appropriate locks or have a private queue to do this.
1774   *
1775   *	Returns %NULL for an empty list or a pointer to the head element.
1776   *	The reference count is not incremented and the reference is therefore
1777   *	volatile. Use with caution.
1778   */
skb_peek(const struct sk_buff_head * list_)1779  static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1780  {
1781  	struct sk_buff *skb = list_->next;
1782  
1783  	if (skb == (struct sk_buff *)list_)
1784  		skb = NULL;
1785  	return skb;
1786  }
1787  
1788  /**
1789   *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1790   *	@list_: list to peek at
1791   *
1792   *	Like skb_peek(), but the caller knows that the list is not empty.
1793   */
__skb_peek(const struct sk_buff_head * list_)1794  static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1795  {
1796  	return list_->next;
1797  }
1798  
1799  /**
1800   *	skb_peek_next - peek skb following the given one from a queue
1801   *	@skb: skb to start from
1802   *	@list_: list to peek at
1803   *
1804   *	Returns %NULL when the end of the list is met or a pointer to the
1805   *	next element. The reference count is not incremented and the
1806   *	reference is therefore volatile. Use with caution.
1807   */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1808  static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1809  		const struct sk_buff_head *list_)
1810  {
1811  	struct sk_buff *next = skb->next;
1812  
1813  	if (next == (struct sk_buff *)list_)
1814  		next = NULL;
1815  	return next;
1816  }
1817  
1818  /**
1819   *	skb_peek_tail - peek at the tail of an &sk_buff_head
1820   *	@list_: list to peek at
1821   *
1822   *	Peek an &sk_buff. Unlike most other operations you _MUST_
1823   *	be careful with this one. A peek leaves the buffer on the
1824   *	list and someone else may run off with it. You must hold
1825   *	the appropriate locks or have a private queue to do this.
1826   *
1827   *	Returns %NULL for an empty list or a pointer to the tail element.
1828   *	The reference count is not incremented and the reference is therefore
1829   *	volatile. Use with caution.
1830   */
skb_peek_tail(const struct sk_buff_head * list_)1831  static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1832  {
1833  	struct sk_buff *skb = READ_ONCE(list_->prev);
1834  
1835  	if (skb == (struct sk_buff *)list_)
1836  		skb = NULL;
1837  	return skb;
1838  
1839  }
1840  
1841  /**
1842   *	skb_queue_len	- get queue length
1843   *	@list_: list to measure
1844   *
1845   *	Return the length of an &sk_buff queue.
1846   */
skb_queue_len(const struct sk_buff_head * list_)1847  static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1848  {
1849  	return list_->qlen;
1850  }
1851  
1852  /**
1853   *	skb_queue_len_lockless	- get queue length
1854   *	@list_: list to measure
1855   *
1856   *	Return the length of an &sk_buff queue.
1857   *	This variant can be used in lockless contexts.
1858   */
skb_queue_len_lockless(const struct sk_buff_head * list_)1859  static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1860  {
1861  	return READ_ONCE(list_->qlen);
1862  }
1863  
1864  /**
1865   *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1866   *	@list: queue to initialize
1867   *
1868   *	This initializes only the list and queue length aspects of
1869   *	an sk_buff_head object.  This allows to initialize the list
1870   *	aspects of an sk_buff_head without reinitializing things like
1871   *	the spinlock.  It can also be used for on-stack sk_buff_head
1872   *	objects where the spinlock is known to not be used.
1873   */
__skb_queue_head_init(struct sk_buff_head * list)1874  static inline void __skb_queue_head_init(struct sk_buff_head *list)
1875  {
1876  	list->prev = list->next = (struct sk_buff *)list;
1877  	list->qlen = 0;
1878  }
1879  
1880  /*
1881   * This function creates a split out lock class for each invocation;
1882   * this is needed for now since a whole lot of users of the skb-queue
1883   * infrastructure in drivers have different locking usage (in hardirq)
1884   * than the networking core (in softirq only). In the long run either the
1885   * network layer or drivers should need annotation to consolidate the
1886   * main types of usage into 3 classes.
1887   */
skb_queue_head_init(struct sk_buff_head * list)1888  static inline void skb_queue_head_init(struct sk_buff_head *list)
1889  {
1890  	spin_lock_init(&list->lock);
1891  	__skb_queue_head_init(list);
1892  }
1893  
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1894  static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1895  		struct lock_class_key *class)
1896  {
1897  	skb_queue_head_init(list);
1898  	lockdep_set_class(&list->lock, class);
1899  }
1900  
1901  /*
1902   *	Insert an sk_buff on a list.
1903   *
1904   *	The "__skb_xxxx()" functions are the non-atomic ones that
1905   *	can only be called with interrupts disabled.
1906   */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1907  static inline void __skb_insert(struct sk_buff *newsk,
1908  				struct sk_buff *prev, struct sk_buff *next,
1909  				struct sk_buff_head *list)
1910  {
1911  	/* See skb_queue_empty_lockless() and skb_peek_tail()
1912  	 * for the opposite READ_ONCE()
1913  	 */
1914  	WRITE_ONCE(newsk->next, next);
1915  	WRITE_ONCE(newsk->prev, prev);
1916  	WRITE_ONCE(next->prev, newsk);
1917  	WRITE_ONCE(prev->next, newsk);
1918  	WRITE_ONCE(list->qlen, list->qlen + 1);
1919  }
1920  
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1921  static inline void __skb_queue_splice(const struct sk_buff_head *list,
1922  				      struct sk_buff *prev,
1923  				      struct sk_buff *next)
1924  {
1925  	struct sk_buff *first = list->next;
1926  	struct sk_buff *last = list->prev;
1927  
1928  	WRITE_ONCE(first->prev, prev);
1929  	WRITE_ONCE(prev->next, first);
1930  
1931  	WRITE_ONCE(last->next, next);
1932  	WRITE_ONCE(next->prev, last);
1933  }
1934  
1935  /**
1936   *	skb_queue_splice - join two skb lists, this is designed for stacks
1937   *	@list: the new list to add
1938   *	@head: the place to add it in the first list
1939   */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1940  static inline void skb_queue_splice(const struct sk_buff_head *list,
1941  				    struct sk_buff_head *head)
1942  {
1943  	if (!skb_queue_empty(list)) {
1944  		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1945  		head->qlen += list->qlen;
1946  	}
1947  }
1948  
1949  /**
1950   *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1951   *	@list: the new list to add
1952   *	@head: the place to add it in the first list
1953   *
1954   *	The list at @list is reinitialised
1955   */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1956  static inline void skb_queue_splice_init(struct sk_buff_head *list,
1957  					 struct sk_buff_head *head)
1958  {
1959  	if (!skb_queue_empty(list)) {
1960  		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1961  		head->qlen += list->qlen;
1962  		__skb_queue_head_init(list);
1963  	}
1964  }
1965  
1966  /**
1967   *	skb_queue_splice_tail - join two skb lists, each list being a queue
1968   *	@list: the new list to add
1969   *	@head: the place to add it in the first list
1970   */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1971  static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1972  					 struct sk_buff_head *head)
1973  {
1974  	if (!skb_queue_empty(list)) {
1975  		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1976  		head->qlen += list->qlen;
1977  	}
1978  }
1979  
1980  /**
1981   *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1982   *	@list: the new list to add
1983   *	@head: the place to add it in the first list
1984   *
1985   *	Each of the lists is a queue.
1986   *	The list at @list is reinitialised
1987   */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1988  static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1989  					      struct sk_buff_head *head)
1990  {
1991  	if (!skb_queue_empty(list)) {
1992  		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1993  		head->qlen += list->qlen;
1994  		__skb_queue_head_init(list);
1995  	}
1996  }
1997  
1998  /**
1999   *	__skb_queue_after - queue a buffer at the list head
2000   *	@list: list to use
2001   *	@prev: place after this buffer
2002   *	@newsk: buffer to queue
2003   *
2004   *	Queue a buffer int the middle of a list. This function takes no locks
2005   *	and you must therefore hold required locks before calling it.
2006   *
2007   *	A buffer cannot be placed on two lists at the same time.
2008   */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2009  static inline void __skb_queue_after(struct sk_buff_head *list,
2010  				     struct sk_buff *prev,
2011  				     struct sk_buff *newsk)
2012  {
2013  	__skb_insert(newsk, prev, prev->next, list);
2014  }
2015  
2016  void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2017  		struct sk_buff_head *list);
2018  
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2019  static inline void __skb_queue_before(struct sk_buff_head *list,
2020  				      struct sk_buff *next,
2021  				      struct sk_buff *newsk)
2022  {
2023  	__skb_insert(newsk, next->prev, next, list);
2024  }
2025  
2026  /**
2027   *	__skb_queue_head - queue a buffer at the list head
2028   *	@list: list to use
2029   *	@newsk: buffer to queue
2030   *
2031   *	Queue a buffer at the start of a list. This function takes no locks
2032   *	and you must therefore hold required locks before calling it.
2033   *
2034   *	A buffer cannot be placed on two lists at the same time.
2035   */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2036  static inline void __skb_queue_head(struct sk_buff_head *list,
2037  				    struct sk_buff *newsk)
2038  {
2039  	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2040  }
2041  void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2042  
2043  /**
2044   *	__skb_queue_tail - queue a buffer at the list tail
2045   *	@list: list to use
2046   *	@newsk: buffer to queue
2047   *
2048   *	Queue a buffer at the end of a list. This function takes no locks
2049   *	and you must therefore hold required locks before calling it.
2050   *
2051   *	A buffer cannot be placed on two lists at the same time.
2052   */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2053  static inline void __skb_queue_tail(struct sk_buff_head *list,
2054  				   struct sk_buff *newsk)
2055  {
2056  	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2057  }
2058  void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2059  
2060  /*
2061   * remove sk_buff from list. _Must_ be called atomically, and with
2062   * the list known..
2063   */
2064  void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2065  static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2066  {
2067  	struct sk_buff *next, *prev;
2068  
2069  	WRITE_ONCE(list->qlen, list->qlen - 1);
2070  	next	   = skb->next;
2071  	prev	   = skb->prev;
2072  	skb->next  = skb->prev = NULL;
2073  	WRITE_ONCE(next->prev, prev);
2074  	WRITE_ONCE(prev->next, next);
2075  }
2076  
2077  /**
2078   *	__skb_dequeue - remove from the head of the queue
2079   *	@list: list to dequeue from
2080   *
2081   *	Remove the head of the list. This function does not take any locks
2082   *	so must be used with appropriate locks held only. The head item is
2083   *	returned or %NULL if the list is empty.
2084   */
__skb_dequeue(struct sk_buff_head * list)2085  static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2086  {
2087  	struct sk_buff *skb = skb_peek(list);
2088  	if (skb)
2089  		__skb_unlink(skb, list);
2090  	return skb;
2091  }
2092  struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2093  
2094  /**
2095   *	__skb_dequeue_tail - remove from the tail of the queue
2096   *	@list: list to dequeue from
2097   *
2098   *	Remove the tail of the list. This function does not take any locks
2099   *	so must be used with appropriate locks held only. The tail item is
2100   *	returned or %NULL if the list is empty.
2101   */
__skb_dequeue_tail(struct sk_buff_head * list)2102  static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2103  {
2104  	struct sk_buff *skb = skb_peek_tail(list);
2105  	if (skb)
2106  		__skb_unlink(skb, list);
2107  	return skb;
2108  }
2109  struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2110  
2111  
skb_is_nonlinear(const struct sk_buff * skb)2112  static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2113  {
2114  	return skb->data_len;
2115  }
2116  
skb_headlen(const struct sk_buff * skb)2117  static inline unsigned int skb_headlen(const struct sk_buff *skb)
2118  {
2119  	return skb->len - skb->data_len;
2120  }
2121  
__skb_pagelen(const struct sk_buff * skb)2122  static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2123  {
2124  	unsigned int i, len = 0;
2125  
2126  	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2127  		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2128  	return len;
2129  }
2130  
skb_pagelen(const struct sk_buff * skb)2131  static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2132  {
2133  	return skb_headlen(skb) + __skb_pagelen(skb);
2134  }
2135  
2136  /**
2137   * __skb_fill_page_desc - initialise a paged fragment in an skb
2138   * @skb: buffer containing fragment to be initialised
2139   * @i: paged fragment index to initialise
2140   * @page: the page to use for this fragment
2141   * @off: the offset to the data with @page
2142   * @size: the length of the data
2143   *
2144   * Initialises the @i'th fragment of @skb to point to &size bytes at
2145   * offset @off within @page.
2146   *
2147   * Does not take any additional reference on the fragment.
2148   */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2149  static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2150  					struct page *page, int off, int size)
2151  {
2152  	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2153  
2154  	/*
2155  	 * Propagate page pfmemalloc to the skb if we can. The problem is
2156  	 * that not all callers have unique ownership of the page but rely
2157  	 * on page_is_pfmemalloc doing the right thing(tm).
2158  	 */
2159  	frag->bv_page		  = page;
2160  	frag->bv_offset		  = off;
2161  	skb_frag_size_set(frag, size);
2162  
2163  	page = compound_head(page);
2164  	if (page_is_pfmemalloc(page))
2165  		skb->pfmemalloc	= true;
2166  }
2167  
2168  /**
2169   * skb_fill_page_desc - initialise a paged fragment in an skb
2170   * @skb: buffer containing fragment to be initialised
2171   * @i: paged fragment index to initialise
2172   * @page: the page to use for this fragment
2173   * @off: the offset to the data with @page
2174   * @size: the length of the data
2175   *
2176   * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2177   * @skb to point to @size bytes at offset @off within @page. In
2178   * addition updates @skb such that @i is the last fragment.
2179   *
2180   * Does not take any additional reference on the fragment.
2181   */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2182  static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2183  				      struct page *page, int off, int size)
2184  {
2185  	__skb_fill_page_desc(skb, i, page, off, size);
2186  	skb_shinfo(skb)->nr_frags = i + 1;
2187  }
2188  
2189  void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2190  		     int size, unsigned int truesize);
2191  
2192  void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2193  			  unsigned int truesize);
2194  
2195  #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2196  
2197  #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2198  static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2199  {
2200  	return skb->head + skb->tail;
2201  }
2202  
skb_reset_tail_pointer(struct sk_buff * skb)2203  static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2204  {
2205  	skb->tail = skb->data - skb->head;
2206  }
2207  
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2208  static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2209  {
2210  	skb_reset_tail_pointer(skb);
2211  	skb->tail += offset;
2212  }
2213  
2214  #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2215  static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2216  {
2217  	return skb->tail;
2218  }
2219  
skb_reset_tail_pointer(struct sk_buff * skb)2220  static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2221  {
2222  	skb->tail = skb->data;
2223  }
2224  
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2225  static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2226  {
2227  	skb->tail = skb->data + offset;
2228  }
2229  
2230  #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2231  
skb_assert_len(struct sk_buff * skb)2232  static inline void skb_assert_len(struct sk_buff *skb)
2233  {
2234  #ifdef CONFIG_DEBUG_NET
2235  	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2236  		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2237  #endif /* CONFIG_DEBUG_NET */
2238  }
2239  
2240  /*
2241   *	Add data to an sk_buff
2242   */
2243  void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2244  void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2245  static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2246  {
2247  	void *tmp = skb_tail_pointer(skb);
2248  	SKB_LINEAR_ASSERT(skb);
2249  	skb->tail += len;
2250  	skb->len  += len;
2251  	return tmp;
2252  }
2253  
__skb_put_zero(struct sk_buff * skb,unsigned int len)2254  static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2255  {
2256  	void *tmp = __skb_put(skb, len);
2257  
2258  	memset(tmp, 0, len);
2259  	return tmp;
2260  }
2261  
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2262  static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2263  				   unsigned int len)
2264  {
2265  	void *tmp = __skb_put(skb, len);
2266  
2267  	memcpy(tmp, data, len);
2268  	return tmp;
2269  }
2270  
__skb_put_u8(struct sk_buff * skb,u8 val)2271  static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2272  {
2273  	*(u8 *)__skb_put(skb, 1) = val;
2274  }
2275  
skb_put_zero(struct sk_buff * skb,unsigned int len)2276  static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2277  {
2278  	void *tmp = skb_put(skb, len);
2279  
2280  	memset(tmp, 0, len);
2281  
2282  	return tmp;
2283  }
2284  
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2285  static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2286  				 unsigned int len)
2287  {
2288  	void *tmp = skb_put(skb, len);
2289  
2290  	memcpy(tmp, data, len);
2291  
2292  	return tmp;
2293  }
2294  
skb_put_u8(struct sk_buff * skb,u8 val)2295  static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2296  {
2297  	*(u8 *)skb_put(skb, 1) = val;
2298  }
2299  
2300  void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2301  static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2302  {
2303  	skb->data -= len;
2304  	skb->len  += len;
2305  	return skb->data;
2306  }
2307  
2308  void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2309  static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2310  {
2311  	skb->len -= len;
2312  	BUG_ON(skb->len < skb->data_len);
2313  	return skb->data += len;
2314  }
2315  
skb_pull_inline(struct sk_buff * skb,unsigned int len)2316  static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2317  {
2318  	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2319  }
2320  
2321  void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2322  
__pskb_pull(struct sk_buff * skb,unsigned int len)2323  static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2324  {
2325  	if (len > skb_headlen(skb) &&
2326  	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2327  		return NULL;
2328  	skb->len -= len;
2329  	return skb->data += len;
2330  }
2331  
pskb_pull(struct sk_buff * skb,unsigned int len)2332  static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2333  {
2334  	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2335  }
2336  
pskb_may_pull(struct sk_buff * skb,unsigned int len)2337  static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2338  {
2339  	if (likely(len <= skb_headlen(skb)))
2340  		return true;
2341  	if (unlikely(len > skb->len))
2342  		return false;
2343  	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2344  }
2345  
2346  void skb_condense(struct sk_buff *skb);
2347  
2348  /**
2349   *	skb_headroom - bytes at buffer head
2350   *	@skb: buffer to check
2351   *
2352   *	Return the number of bytes of free space at the head of an &sk_buff.
2353   */
skb_headroom(const struct sk_buff * skb)2354  static inline unsigned int skb_headroom(const struct sk_buff *skb)
2355  {
2356  	return skb->data - skb->head;
2357  }
2358  
2359  /**
2360   *	skb_tailroom - bytes at buffer end
2361   *	@skb: buffer to check
2362   *
2363   *	Return the number of bytes of free space at the tail of an sk_buff
2364   */
skb_tailroom(const struct sk_buff * skb)2365  static inline int skb_tailroom(const struct sk_buff *skb)
2366  {
2367  	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2368  }
2369  
2370  /**
2371   *	skb_availroom - bytes at buffer end
2372   *	@skb: buffer to check
2373   *
2374   *	Return the number of bytes of free space at the tail of an sk_buff
2375   *	allocated by sk_stream_alloc()
2376   */
skb_availroom(const struct sk_buff * skb)2377  static inline int skb_availroom(const struct sk_buff *skb)
2378  {
2379  	if (skb_is_nonlinear(skb))
2380  		return 0;
2381  
2382  	return skb->end - skb->tail - skb->reserved_tailroom;
2383  }
2384  
2385  /**
2386   *	skb_reserve - adjust headroom
2387   *	@skb: buffer to alter
2388   *	@len: bytes to move
2389   *
2390   *	Increase the headroom of an empty &sk_buff by reducing the tail
2391   *	room. This is only allowed for an empty buffer.
2392   */
skb_reserve(struct sk_buff * skb,int len)2393  static inline void skb_reserve(struct sk_buff *skb, int len)
2394  {
2395  	skb->data += len;
2396  	skb->tail += len;
2397  }
2398  
2399  /**
2400   *	skb_tailroom_reserve - adjust reserved_tailroom
2401   *	@skb: buffer to alter
2402   *	@mtu: maximum amount of headlen permitted
2403   *	@needed_tailroom: minimum amount of reserved_tailroom
2404   *
2405   *	Set reserved_tailroom so that headlen can be as large as possible but
2406   *	not larger than mtu and tailroom cannot be smaller than
2407   *	needed_tailroom.
2408   *	The required headroom should already have been reserved before using
2409   *	this function.
2410   */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2411  static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2412  					unsigned int needed_tailroom)
2413  {
2414  	SKB_LINEAR_ASSERT(skb);
2415  	if (mtu < skb_tailroom(skb) - needed_tailroom)
2416  		/* use at most mtu */
2417  		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2418  	else
2419  		/* use up to all available space */
2420  		skb->reserved_tailroom = needed_tailroom;
2421  }
2422  
2423  #define ENCAP_TYPE_ETHER	0
2424  #define ENCAP_TYPE_IPPROTO	1
2425  
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2426  static inline void skb_set_inner_protocol(struct sk_buff *skb,
2427  					  __be16 protocol)
2428  {
2429  	skb->inner_protocol = protocol;
2430  	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2431  }
2432  
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2433  static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2434  					 __u8 ipproto)
2435  {
2436  	skb->inner_ipproto = ipproto;
2437  	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2438  }
2439  
skb_reset_inner_headers(struct sk_buff * skb)2440  static inline void skb_reset_inner_headers(struct sk_buff *skb)
2441  {
2442  	skb->inner_mac_header = skb->mac_header;
2443  	skb->inner_network_header = skb->network_header;
2444  	skb->inner_transport_header = skb->transport_header;
2445  }
2446  
skb_reset_mac_len(struct sk_buff * skb)2447  static inline void skb_reset_mac_len(struct sk_buff *skb)
2448  {
2449  	skb->mac_len = skb->network_header - skb->mac_header;
2450  }
2451  
skb_inner_transport_header(const struct sk_buff * skb)2452  static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2453  							*skb)
2454  {
2455  	return skb->head + skb->inner_transport_header;
2456  }
2457  
skb_inner_transport_offset(const struct sk_buff * skb)2458  static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2459  {
2460  	return skb_inner_transport_header(skb) - skb->data;
2461  }
2462  
skb_reset_inner_transport_header(struct sk_buff * skb)2463  static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2464  {
2465  	skb->inner_transport_header = skb->data - skb->head;
2466  }
2467  
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2468  static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2469  						   const int offset)
2470  {
2471  	skb_reset_inner_transport_header(skb);
2472  	skb->inner_transport_header += offset;
2473  }
2474  
skb_inner_network_header(const struct sk_buff * skb)2475  static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2476  {
2477  	return skb->head + skb->inner_network_header;
2478  }
2479  
skb_reset_inner_network_header(struct sk_buff * skb)2480  static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2481  {
2482  	skb->inner_network_header = skb->data - skb->head;
2483  }
2484  
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2485  static inline void skb_set_inner_network_header(struct sk_buff *skb,
2486  						const int offset)
2487  {
2488  	skb_reset_inner_network_header(skb);
2489  	skb->inner_network_header += offset;
2490  }
2491  
skb_inner_mac_header(const struct sk_buff * skb)2492  static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2493  {
2494  	return skb->head + skb->inner_mac_header;
2495  }
2496  
skb_reset_inner_mac_header(struct sk_buff * skb)2497  static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2498  {
2499  	skb->inner_mac_header = skb->data - skb->head;
2500  }
2501  
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2502  static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2503  					    const int offset)
2504  {
2505  	skb_reset_inner_mac_header(skb);
2506  	skb->inner_mac_header += offset;
2507  }
skb_transport_header_was_set(const struct sk_buff * skb)2508  static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2509  {
2510  	return skb->transport_header != (typeof(skb->transport_header))~0U;
2511  }
2512  
skb_transport_header(const struct sk_buff * skb)2513  static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2514  {
2515  	return skb->head + skb->transport_header;
2516  }
2517  
skb_reset_transport_header(struct sk_buff * skb)2518  static inline void skb_reset_transport_header(struct sk_buff *skb)
2519  {
2520  	skb->transport_header = skb->data - skb->head;
2521  }
2522  
skb_set_transport_header(struct sk_buff * skb,const int offset)2523  static inline void skb_set_transport_header(struct sk_buff *skb,
2524  					    const int offset)
2525  {
2526  	skb_reset_transport_header(skb);
2527  	skb->transport_header += offset;
2528  }
2529  
skb_network_header(const struct sk_buff * skb)2530  static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2531  {
2532  	return skb->head + skb->network_header;
2533  }
2534  
skb_reset_network_header(struct sk_buff * skb)2535  static inline void skb_reset_network_header(struct sk_buff *skb)
2536  {
2537  	skb->network_header = skb->data - skb->head;
2538  }
2539  
skb_set_network_header(struct sk_buff * skb,const int offset)2540  static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2541  {
2542  	skb_reset_network_header(skb);
2543  	skb->network_header += offset;
2544  }
2545  
skb_mac_header(const struct sk_buff * skb)2546  static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2547  {
2548  	return skb->head + skb->mac_header;
2549  }
2550  
skb_mac_offset(const struct sk_buff * skb)2551  static inline int skb_mac_offset(const struct sk_buff *skb)
2552  {
2553  	return skb_mac_header(skb) - skb->data;
2554  }
2555  
skb_mac_header_len(const struct sk_buff * skb)2556  static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2557  {
2558  	return skb->network_header - skb->mac_header;
2559  }
2560  
skb_mac_header_was_set(const struct sk_buff * skb)2561  static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2562  {
2563  	return skb->mac_header != (typeof(skb->mac_header))~0U;
2564  }
2565  
skb_unset_mac_header(struct sk_buff * skb)2566  static inline void skb_unset_mac_header(struct sk_buff *skb)
2567  {
2568  	skb->mac_header = (typeof(skb->mac_header))~0U;
2569  }
2570  
skb_reset_mac_header(struct sk_buff * skb)2571  static inline void skb_reset_mac_header(struct sk_buff *skb)
2572  {
2573  	skb->mac_header = skb->data - skb->head;
2574  }
2575  
skb_set_mac_header(struct sk_buff * skb,const int offset)2576  static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2577  {
2578  	skb_reset_mac_header(skb);
2579  	skb->mac_header += offset;
2580  }
2581  
skb_pop_mac_header(struct sk_buff * skb)2582  static inline void skb_pop_mac_header(struct sk_buff *skb)
2583  {
2584  	skb->mac_header = skb->network_header;
2585  }
2586  
skb_probe_transport_header(struct sk_buff * skb)2587  static inline void skb_probe_transport_header(struct sk_buff *skb)
2588  {
2589  	struct flow_keys_basic keys;
2590  
2591  	if (skb_transport_header_was_set(skb))
2592  		return;
2593  
2594  	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2595  					     NULL, 0, 0, 0, 0))
2596  		skb_set_transport_header(skb, keys.control.thoff);
2597  }
2598  
skb_mac_header_rebuild(struct sk_buff * skb)2599  static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2600  {
2601  	if (skb_mac_header_was_set(skb)) {
2602  		const unsigned char *old_mac = skb_mac_header(skb);
2603  
2604  		skb_set_mac_header(skb, -skb->mac_len);
2605  		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2606  	}
2607  }
2608  
skb_checksum_start_offset(const struct sk_buff * skb)2609  static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2610  {
2611  	return skb->csum_start - skb_headroom(skb);
2612  }
2613  
skb_checksum_start(const struct sk_buff * skb)2614  static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2615  {
2616  	return skb->head + skb->csum_start;
2617  }
2618  
skb_transport_offset(const struct sk_buff * skb)2619  static inline int skb_transport_offset(const struct sk_buff *skb)
2620  {
2621  	return skb_transport_header(skb) - skb->data;
2622  }
2623  
skb_network_header_len(const struct sk_buff * skb)2624  static inline u32 skb_network_header_len(const struct sk_buff *skb)
2625  {
2626  	return skb->transport_header - skb->network_header;
2627  }
2628  
skb_inner_network_header_len(const struct sk_buff * skb)2629  static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2630  {
2631  	return skb->inner_transport_header - skb->inner_network_header;
2632  }
2633  
skb_network_offset(const struct sk_buff * skb)2634  static inline int skb_network_offset(const struct sk_buff *skb)
2635  {
2636  	return skb_network_header(skb) - skb->data;
2637  }
2638  
skb_inner_network_offset(const struct sk_buff * skb)2639  static inline int skb_inner_network_offset(const struct sk_buff *skb)
2640  {
2641  	return skb_inner_network_header(skb) - skb->data;
2642  }
2643  
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2644  static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2645  {
2646  	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2647  }
2648  
2649  /*
2650   * CPUs often take a performance hit when accessing unaligned memory
2651   * locations. The actual performance hit varies, it can be small if the
2652   * hardware handles it or large if we have to take an exception and fix it
2653   * in software.
2654   *
2655   * Since an ethernet header is 14 bytes network drivers often end up with
2656   * the IP header at an unaligned offset. The IP header can be aligned by
2657   * shifting the start of the packet by 2 bytes. Drivers should do this
2658   * with:
2659   *
2660   * skb_reserve(skb, NET_IP_ALIGN);
2661   *
2662   * The downside to this alignment of the IP header is that the DMA is now
2663   * unaligned. On some architectures the cost of an unaligned DMA is high
2664   * and this cost outweighs the gains made by aligning the IP header.
2665   *
2666   * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2667   * to be overridden.
2668   */
2669  #ifndef NET_IP_ALIGN
2670  #define NET_IP_ALIGN	2
2671  #endif
2672  
2673  /*
2674   * The networking layer reserves some headroom in skb data (via
2675   * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2676   * the header has to grow. In the default case, if the header has to grow
2677   * 32 bytes or less we avoid the reallocation.
2678   *
2679   * Unfortunately this headroom changes the DMA alignment of the resulting
2680   * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2681   * on some architectures. An architecture can override this value,
2682   * perhaps setting it to a cacheline in size (since that will maintain
2683   * cacheline alignment of the DMA). It must be a power of 2.
2684   *
2685   * Various parts of the networking layer expect at least 32 bytes of
2686   * headroom, you should not reduce this.
2687   *
2688   * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2689   * to reduce average number of cache lines per packet.
2690   * get_rps_cpu() for example only access one 64 bytes aligned block :
2691   * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2692   */
2693  #ifndef NET_SKB_PAD
2694  #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2695  #endif
2696  
2697  int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2698  
__skb_set_length(struct sk_buff * skb,unsigned int len)2699  static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2700  {
2701  	if (WARN_ON(skb_is_nonlinear(skb)))
2702  		return;
2703  	skb->len = len;
2704  	skb_set_tail_pointer(skb, len);
2705  }
2706  
__skb_trim(struct sk_buff * skb,unsigned int len)2707  static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2708  {
2709  	__skb_set_length(skb, len);
2710  }
2711  
2712  void skb_trim(struct sk_buff *skb, unsigned int len);
2713  
__pskb_trim(struct sk_buff * skb,unsigned int len)2714  static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2715  {
2716  	if (skb->data_len)
2717  		return ___pskb_trim(skb, len);
2718  	__skb_trim(skb, len);
2719  	return 0;
2720  }
2721  
pskb_trim(struct sk_buff * skb,unsigned int len)2722  static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2723  {
2724  	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2725  }
2726  
2727  /**
2728   *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2729   *	@skb: buffer to alter
2730   *	@len: new length
2731   *
2732   *	This is identical to pskb_trim except that the caller knows that
2733   *	the skb is not cloned so we should never get an error due to out-
2734   *	of-memory.
2735   */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2736  static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2737  {
2738  	int err = pskb_trim(skb, len);
2739  	BUG_ON(err);
2740  }
2741  
__skb_grow(struct sk_buff * skb,unsigned int len)2742  static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2743  {
2744  	unsigned int diff = len - skb->len;
2745  
2746  	if (skb_tailroom(skb) < diff) {
2747  		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2748  					   GFP_ATOMIC);
2749  		if (ret)
2750  			return ret;
2751  	}
2752  	__skb_set_length(skb, len);
2753  	return 0;
2754  }
2755  
2756  /**
2757   *	skb_orphan - orphan a buffer
2758   *	@skb: buffer to orphan
2759   *
2760   *	If a buffer currently has an owner then we call the owner's
2761   *	destructor function and make the @skb unowned. The buffer continues
2762   *	to exist but is no longer charged to its former owner.
2763   */
skb_orphan(struct sk_buff * skb)2764  static inline void skb_orphan(struct sk_buff *skb)
2765  {
2766  	if (skb->destructor) {
2767  		skb->destructor(skb);
2768  		skb->destructor = NULL;
2769  		skb->sk		= NULL;
2770  	} else {
2771  		BUG_ON(skb->sk);
2772  	}
2773  }
2774  
2775  /**
2776   *	skb_orphan_frags - orphan the frags contained in a buffer
2777   *	@skb: buffer to orphan frags from
2778   *	@gfp_mask: allocation mask for replacement pages
2779   *
2780   *	For each frag in the SKB which needs a destructor (i.e. has an
2781   *	owner) create a copy of that frag and release the original
2782   *	page by calling the destructor.
2783   */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2784  static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2785  {
2786  	if (likely(!skb_zcopy(skb)))
2787  		return 0;
2788  	if (!skb_zcopy_is_nouarg(skb) &&
2789  	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2790  		return 0;
2791  	return skb_copy_ubufs(skb, gfp_mask);
2792  }
2793  
2794  /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2795  static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2796  {
2797  	if (likely(!skb_zcopy(skb)))
2798  		return 0;
2799  	return skb_copy_ubufs(skb, gfp_mask);
2800  }
2801  
2802  /**
2803   *	__skb_queue_purge - empty a list
2804   *	@list: list to empty
2805   *
2806   *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2807   *	the list and one reference dropped. This function does not take the
2808   *	list lock and the caller must hold the relevant locks to use it.
2809   */
__skb_queue_purge(struct sk_buff_head * list)2810  static inline void __skb_queue_purge(struct sk_buff_head *list)
2811  {
2812  	struct sk_buff *skb;
2813  	while ((skb = __skb_dequeue(list)) != NULL)
2814  		kfree_skb(skb);
2815  }
2816  void skb_queue_purge(struct sk_buff_head *list);
2817  
2818  unsigned int skb_rbtree_purge(struct rb_root *root);
2819  
2820  void *netdev_alloc_frag(unsigned int fragsz);
2821  
2822  struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2823  				   gfp_t gfp_mask);
2824  
2825  /**
2826   *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2827   *	@dev: network device to receive on
2828   *	@length: length to allocate
2829   *
2830   *	Allocate a new &sk_buff and assign it a usage count of one. The
2831   *	buffer has unspecified headroom built in. Users should allocate
2832   *	the headroom they think they need without accounting for the
2833   *	built in space. The built in space is used for optimisations.
2834   *
2835   *	%NULL is returned if there is no free memory. Although this function
2836   *	allocates memory it can be called from an interrupt.
2837   */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2838  static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2839  					       unsigned int length)
2840  {
2841  	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2842  }
2843  
2844  /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2845  static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2846  					      gfp_t gfp_mask)
2847  {
2848  	return __netdev_alloc_skb(NULL, length, gfp_mask);
2849  }
2850  
2851  /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2852  static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2853  {
2854  	return netdev_alloc_skb(NULL, length);
2855  }
2856  
2857  
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2858  static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2859  		unsigned int length, gfp_t gfp)
2860  {
2861  	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2862  
2863  	if (NET_IP_ALIGN && skb)
2864  		skb_reserve(skb, NET_IP_ALIGN);
2865  	return skb;
2866  }
2867  
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2868  static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2869  		unsigned int length)
2870  {
2871  	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2872  }
2873  
skb_free_frag(void * addr)2874  static inline void skb_free_frag(void *addr)
2875  {
2876  	page_frag_free(addr);
2877  }
2878  
2879  void *napi_alloc_frag(unsigned int fragsz);
2880  struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2881  				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2882  static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2883  					     unsigned int length)
2884  {
2885  	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2886  }
2887  void napi_consume_skb(struct sk_buff *skb, int budget);
2888  
2889  void __kfree_skb_flush(void);
2890  void __kfree_skb_defer(struct sk_buff *skb);
2891  
2892  /**
2893   * __dev_alloc_pages - allocate page for network Rx
2894   * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2895   * @order: size of the allocation
2896   *
2897   * Allocate a new page.
2898   *
2899   * %NULL is returned if there is no free memory.
2900  */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2901  static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2902  					     unsigned int order)
2903  {
2904  	/* This piece of code contains several assumptions.
2905  	 * 1.  This is for device Rx, therefor a cold page is preferred.
2906  	 * 2.  The expectation is the user wants a compound page.
2907  	 * 3.  If requesting a order 0 page it will not be compound
2908  	 *     due to the check to see if order has a value in prep_new_page
2909  	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2910  	 *     code in gfp_to_alloc_flags that should be enforcing this.
2911  	 */
2912  	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2913  
2914  	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2915  }
2916  
dev_alloc_pages(unsigned int order)2917  static inline struct page *dev_alloc_pages(unsigned int order)
2918  {
2919  	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2920  }
2921  
2922  /**
2923   * __dev_alloc_page - allocate a page for network Rx
2924   * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2925   *
2926   * Allocate a new page.
2927   *
2928   * %NULL is returned if there is no free memory.
2929   */
__dev_alloc_page(gfp_t gfp_mask)2930  static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2931  {
2932  	return __dev_alloc_pages(gfp_mask, 0);
2933  }
2934  
dev_alloc_page(void)2935  static inline struct page *dev_alloc_page(void)
2936  {
2937  	return dev_alloc_pages(0);
2938  }
2939  
2940  /**
2941   *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2942   *	@page: The page that was allocated from skb_alloc_page
2943   *	@skb: The skb that may need pfmemalloc set
2944   */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2945  static inline void skb_propagate_pfmemalloc(struct page *page,
2946  					     struct sk_buff *skb)
2947  {
2948  	if (page_is_pfmemalloc(page))
2949  		skb->pfmemalloc = true;
2950  }
2951  
2952  /**
2953   * skb_frag_off() - Returns the offset of a skb fragment
2954   * @frag: the paged fragment
2955   */
skb_frag_off(const skb_frag_t * frag)2956  static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2957  {
2958  	return frag->bv_offset;
2959  }
2960  
2961  /**
2962   * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2963   * @frag: skb fragment
2964   * @delta: value to add
2965   */
skb_frag_off_add(skb_frag_t * frag,int delta)2966  static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2967  {
2968  	frag->bv_offset += delta;
2969  }
2970  
2971  /**
2972   * skb_frag_off_set() - Sets the offset of a skb fragment
2973   * @frag: skb fragment
2974   * @offset: offset of fragment
2975   */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2976  static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2977  {
2978  	frag->bv_offset = offset;
2979  }
2980  
2981  /**
2982   * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2983   * @fragto: skb fragment where offset is set
2984   * @fragfrom: skb fragment offset is copied from
2985   */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2986  static inline void skb_frag_off_copy(skb_frag_t *fragto,
2987  				     const skb_frag_t *fragfrom)
2988  {
2989  	fragto->bv_offset = fragfrom->bv_offset;
2990  }
2991  
2992  /**
2993   * skb_frag_page - retrieve the page referred to by a paged fragment
2994   * @frag: the paged fragment
2995   *
2996   * Returns the &struct page associated with @frag.
2997   */
skb_frag_page(const skb_frag_t * frag)2998  static inline struct page *skb_frag_page(const skb_frag_t *frag)
2999  {
3000  	return frag->bv_page;
3001  }
3002  
3003  /**
3004   * __skb_frag_ref - take an addition reference on a paged fragment.
3005   * @frag: the paged fragment
3006   *
3007   * Takes an additional reference on the paged fragment @frag.
3008   */
__skb_frag_ref(skb_frag_t * frag)3009  static inline void __skb_frag_ref(skb_frag_t *frag)
3010  {
3011  	get_page(skb_frag_page(frag));
3012  }
3013  
3014  /**
3015   * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3016   * @skb: the buffer
3017   * @f: the fragment offset.
3018   *
3019   * Takes an additional reference on the @f'th paged fragment of @skb.
3020   */
skb_frag_ref(struct sk_buff * skb,int f)3021  static inline void skb_frag_ref(struct sk_buff *skb, int f)
3022  {
3023  	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3024  }
3025  
3026  /**
3027   * __skb_frag_unref - release a reference on a paged fragment.
3028   * @frag: the paged fragment
3029   *
3030   * Releases a reference on the paged fragment @frag.
3031   */
__skb_frag_unref(skb_frag_t * frag)3032  static inline void __skb_frag_unref(skb_frag_t *frag)
3033  {
3034  	put_page(skb_frag_page(frag));
3035  }
3036  
3037  /**
3038   * skb_frag_unref - release a reference on a paged fragment of an skb.
3039   * @skb: the buffer
3040   * @f: the fragment offset
3041   *
3042   * Releases a reference on the @f'th paged fragment of @skb.
3043   */
skb_frag_unref(struct sk_buff * skb,int f)3044  static inline void skb_frag_unref(struct sk_buff *skb, int f)
3045  {
3046  	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3047  }
3048  
3049  /**
3050   * skb_frag_address - gets the address of the data contained in a paged fragment
3051   * @frag: the paged fragment buffer
3052   *
3053   * Returns the address of the data within @frag. The page must already
3054   * be mapped.
3055   */
skb_frag_address(const skb_frag_t * frag)3056  static inline void *skb_frag_address(const skb_frag_t *frag)
3057  {
3058  	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3059  }
3060  
3061  /**
3062   * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3063   * @frag: the paged fragment buffer
3064   *
3065   * Returns the address of the data within @frag. Checks that the page
3066   * is mapped and returns %NULL otherwise.
3067   */
skb_frag_address_safe(const skb_frag_t * frag)3068  static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3069  {
3070  	void *ptr = page_address(skb_frag_page(frag));
3071  	if (unlikely(!ptr))
3072  		return NULL;
3073  
3074  	return ptr + skb_frag_off(frag);
3075  }
3076  
3077  /**
3078   * skb_frag_page_copy() - sets the page in a fragment from another fragment
3079   * @fragto: skb fragment where page is set
3080   * @fragfrom: skb fragment page is copied from
3081   */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3082  static inline void skb_frag_page_copy(skb_frag_t *fragto,
3083  				      const skb_frag_t *fragfrom)
3084  {
3085  	fragto->bv_page = fragfrom->bv_page;
3086  }
3087  
3088  /**
3089   * __skb_frag_set_page - sets the page contained in a paged fragment
3090   * @frag: the paged fragment
3091   * @page: the page to set
3092   *
3093   * Sets the fragment @frag to contain @page.
3094   */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3095  static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3096  {
3097  	frag->bv_page = page;
3098  }
3099  
3100  /**
3101   * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3102   * @skb: the buffer
3103   * @f: the fragment offset
3104   * @page: the page to set
3105   *
3106   * Sets the @f'th fragment of @skb to contain @page.
3107   */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3108  static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3109  				     struct page *page)
3110  {
3111  	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3112  }
3113  
3114  bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3115  
3116  /**
3117   * skb_frag_dma_map - maps a paged fragment via the DMA API
3118   * @dev: the device to map the fragment to
3119   * @frag: the paged fragment to map
3120   * @offset: the offset within the fragment (starting at the
3121   *          fragment's own offset)
3122   * @size: the number of bytes to map
3123   * @dir: the direction of the mapping (``PCI_DMA_*``)
3124   *
3125   * Maps the page associated with @frag to @device.
3126   */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3127  static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3128  					  const skb_frag_t *frag,
3129  					  size_t offset, size_t size,
3130  					  enum dma_data_direction dir)
3131  {
3132  	return dma_map_page(dev, skb_frag_page(frag),
3133  			    skb_frag_off(frag) + offset, size, dir);
3134  }
3135  
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3136  static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3137  					gfp_t gfp_mask)
3138  {
3139  	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3140  }
3141  
3142  
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3143  static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3144  						  gfp_t gfp_mask)
3145  {
3146  	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3147  }
3148  
3149  
3150  /**
3151   *	skb_clone_writable - is the header of a clone writable
3152   *	@skb: buffer to check
3153   *	@len: length up to which to write
3154   *
3155   *	Returns true if modifying the header part of the cloned buffer
3156   *	does not requires the data to be copied.
3157   */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3158  static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3159  {
3160  	return !skb_header_cloned(skb) &&
3161  	       skb_headroom(skb) + len <= skb->hdr_len;
3162  }
3163  
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3164  static inline int skb_try_make_writable(struct sk_buff *skb,
3165  					unsigned int write_len)
3166  {
3167  	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3168  	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3169  }
3170  
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3171  static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3172  			    int cloned)
3173  {
3174  	int delta = 0;
3175  
3176  	if (headroom > skb_headroom(skb))
3177  		delta = headroom - skb_headroom(skb);
3178  
3179  	if (delta || cloned)
3180  		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3181  					GFP_ATOMIC);
3182  	return 0;
3183  }
3184  
3185  /**
3186   *	skb_cow - copy header of skb when it is required
3187   *	@skb: buffer to cow
3188   *	@headroom: needed headroom
3189   *
3190   *	If the skb passed lacks sufficient headroom or its data part
3191   *	is shared, data is reallocated. If reallocation fails, an error
3192   *	is returned and original skb is not changed.
3193   *
3194   *	The result is skb with writable area skb->head...skb->tail
3195   *	and at least @headroom of space at head.
3196   */
skb_cow(struct sk_buff * skb,unsigned int headroom)3197  static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3198  {
3199  	return __skb_cow(skb, headroom, skb_cloned(skb));
3200  }
3201  
3202  /**
3203   *	skb_cow_head - skb_cow but only making the head writable
3204   *	@skb: buffer to cow
3205   *	@headroom: needed headroom
3206   *
3207   *	This function is identical to skb_cow except that we replace the
3208   *	skb_cloned check by skb_header_cloned.  It should be used when
3209   *	you only need to push on some header and do not need to modify
3210   *	the data.
3211   */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3212  static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3213  {
3214  	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3215  }
3216  
3217  /**
3218   *	skb_padto	- pad an skbuff up to a minimal size
3219   *	@skb: buffer to pad
3220   *	@len: minimal length
3221   *
3222   *	Pads up a buffer to ensure the trailing bytes exist and are
3223   *	blanked. If the buffer already contains sufficient data it
3224   *	is untouched. Otherwise it is extended. Returns zero on
3225   *	success. The skb is freed on error.
3226   */
skb_padto(struct sk_buff * skb,unsigned int len)3227  static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3228  {
3229  	unsigned int size = skb->len;
3230  	if (likely(size >= len))
3231  		return 0;
3232  	return skb_pad(skb, len - size);
3233  }
3234  
3235  /**
3236   *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3237   *	@skb: buffer to pad
3238   *	@len: minimal length
3239   *	@free_on_error: free buffer on error
3240   *
3241   *	Pads up a buffer to ensure the trailing bytes exist and are
3242   *	blanked. If the buffer already contains sufficient data it
3243   *	is untouched. Otherwise it is extended. Returns zero on
3244   *	success. The skb is freed on error if @free_on_error is true.
3245   */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3246  static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3247  					       unsigned int len,
3248  					       bool free_on_error)
3249  {
3250  	unsigned int size = skb->len;
3251  
3252  	if (unlikely(size < len)) {
3253  		len -= size;
3254  		if (__skb_pad(skb, len, free_on_error))
3255  			return -ENOMEM;
3256  		__skb_put(skb, len);
3257  	}
3258  	return 0;
3259  }
3260  
3261  /**
3262   *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3263   *	@skb: buffer to pad
3264   *	@len: minimal length
3265   *
3266   *	Pads up a buffer to ensure the trailing bytes exist and are
3267   *	blanked. If the buffer already contains sufficient data it
3268   *	is untouched. Otherwise it is extended. Returns zero on
3269   *	success. The skb is freed on error.
3270   */
skb_put_padto(struct sk_buff * skb,unsigned int len)3271  static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3272  {
3273  	return __skb_put_padto(skb, len, true);
3274  }
3275  
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3276  static inline int skb_add_data(struct sk_buff *skb,
3277  			       struct iov_iter *from, int copy)
3278  {
3279  	const int off = skb->len;
3280  
3281  	if (skb->ip_summed == CHECKSUM_NONE) {
3282  		__wsum csum = 0;
3283  		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3284  					         &csum, from)) {
3285  			skb->csum = csum_block_add(skb->csum, csum, off);
3286  			return 0;
3287  		}
3288  	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3289  		return 0;
3290  
3291  	__skb_trim(skb, off);
3292  	return -EFAULT;
3293  }
3294  
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3295  static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3296  				    const struct page *page, int off)
3297  {
3298  	if (skb_zcopy(skb))
3299  		return false;
3300  	if (i) {
3301  		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3302  
3303  		return page == skb_frag_page(frag) &&
3304  		       off == skb_frag_off(frag) + skb_frag_size(frag);
3305  	}
3306  	return false;
3307  }
3308  
__skb_linearize(struct sk_buff * skb)3309  static inline int __skb_linearize(struct sk_buff *skb)
3310  {
3311  	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3312  }
3313  
3314  /**
3315   *	skb_linearize - convert paged skb to linear one
3316   *	@skb: buffer to linarize
3317   *
3318   *	If there is no free memory -ENOMEM is returned, otherwise zero
3319   *	is returned and the old skb data released.
3320   */
skb_linearize(struct sk_buff * skb)3321  static inline int skb_linearize(struct sk_buff *skb)
3322  {
3323  	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3324  }
3325  
3326  /**
3327   * skb_has_shared_frag - can any frag be overwritten
3328   * @skb: buffer to test
3329   *
3330   * Return true if the skb has at least one frag that might be modified
3331   * by an external entity (as in vmsplice()/sendfile())
3332   */
skb_has_shared_frag(const struct sk_buff * skb)3333  static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3334  {
3335  	return skb_is_nonlinear(skb) &&
3336  	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3337  }
3338  
3339  /**
3340   *	skb_linearize_cow - make sure skb is linear and writable
3341   *	@skb: buffer to process
3342   *
3343   *	If there is no free memory -ENOMEM is returned, otherwise zero
3344   *	is returned and the old skb data released.
3345   */
skb_linearize_cow(struct sk_buff * skb)3346  static inline int skb_linearize_cow(struct sk_buff *skb)
3347  {
3348  	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3349  	       __skb_linearize(skb) : 0;
3350  }
3351  
3352  static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3353  __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3354  		     unsigned int off)
3355  {
3356  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3357  		skb->csum = csum_block_sub(skb->csum,
3358  					   csum_partial(start, len, 0), off);
3359  	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3360  		 skb_checksum_start_offset(skb) < 0)
3361  		skb->ip_summed = CHECKSUM_NONE;
3362  }
3363  
3364  /**
3365   *	skb_postpull_rcsum - update checksum for received skb after pull
3366   *	@skb: buffer to update
3367   *	@start: start of data before pull
3368   *	@len: length of data pulled
3369   *
3370   *	After doing a pull on a received packet, you need to call this to
3371   *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3372   *	CHECKSUM_NONE so that it can be recomputed from scratch.
3373   */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3374  static inline void skb_postpull_rcsum(struct sk_buff *skb,
3375  				      const void *start, unsigned int len)
3376  {
3377  	__skb_postpull_rcsum(skb, start, len, 0);
3378  }
3379  
3380  static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3381  __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3382  		     unsigned int off)
3383  {
3384  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3385  		skb->csum = csum_block_add(skb->csum,
3386  					   csum_partial(start, len, 0), off);
3387  }
3388  
3389  /**
3390   *	skb_postpush_rcsum - update checksum for received skb after push
3391   *	@skb: buffer to update
3392   *	@start: start of data after push
3393   *	@len: length of data pushed
3394   *
3395   *	After doing a push on a received packet, you need to call this to
3396   *	update the CHECKSUM_COMPLETE checksum.
3397   */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3398  static inline void skb_postpush_rcsum(struct sk_buff *skb,
3399  				      const void *start, unsigned int len)
3400  {
3401  	__skb_postpush_rcsum(skb, start, len, 0);
3402  }
3403  
3404  void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3405  
3406  /**
3407   *	skb_push_rcsum - push skb and update receive checksum
3408   *	@skb: buffer to update
3409   *	@len: length of data pulled
3410   *
3411   *	This function performs an skb_push on the packet and updates
3412   *	the CHECKSUM_COMPLETE checksum.  It should be used on
3413   *	receive path processing instead of skb_push unless you know
3414   *	that the checksum difference is zero (e.g., a valid IP header)
3415   *	or you are setting ip_summed to CHECKSUM_NONE.
3416   */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3417  static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3418  {
3419  	skb_push(skb, len);
3420  	skb_postpush_rcsum(skb, skb->data, len);
3421  	return skb->data;
3422  }
3423  
3424  int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3425  /**
3426   *	pskb_trim_rcsum - trim received skb and update checksum
3427   *	@skb: buffer to trim
3428   *	@len: new length
3429   *
3430   *	This is exactly the same as pskb_trim except that it ensures the
3431   *	checksum of received packets are still valid after the operation.
3432   *	It can change skb pointers.
3433   */
3434  
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3435  static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3436  {
3437  	if (likely(len >= skb->len))
3438  		return 0;
3439  	return pskb_trim_rcsum_slow(skb, len);
3440  }
3441  
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3442  static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3443  {
3444  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3445  		skb->ip_summed = CHECKSUM_NONE;
3446  	__skb_trim(skb, len);
3447  	return 0;
3448  }
3449  
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3450  static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3451  {
3452  	if (skb->ip_summed == CHECKSUM_COMPLETE)
3453  		skb->ip_summed = CHECKSUM_NONE;
3454  	return __skb_grow(skb, len);
3455  }
3456  
3457  #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3458  #define skb_rb_first(root) rb_to_skb(rb_first(root))
3459  #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3460  #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3461  #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3462  
3463  #define skb_queue_walk(queue, skb) \
3464  		for (skb = (queue)->next;					\
3465  		     skb != (struct sk_buff *)(queue);				\
3466  		     skb = skb->next)
3467  
3468  #define skb_queue_walk_safe(queue, skb, tmp)					\
3469  		for (skb = (queue)->next, tmp = skb->next;			\
3470  		     skb != (struct sk_buff *)(queue);				\
3471  		     skb = tmp, tmp = skb->next)
3472  
3473  #define skb_queue_walk_from(queue, skb)						\
3474  		for (; skb != (struct sk_buff *)(queue);			\
3475  		     skb = skb->next)
3476  
3477  #define skb_rbtree_walk(skb, root)						\
3478  		for (skb = skb_rb_first(root); skb != NULL;			\
3479  		     skb = skb_rb_next(skb))
3480  
3481  #define skb_rbtree_walk_from(skb)						\
3482  		for (; skb != NULL;						\
3483  		     skb = skb_rb_next(skb))
3484  
3485  #define skb_rbtree_walk_from_safe(skb, tmp)					\
3486  		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3487  		     skb = tmp)
3488  
3489  #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3490  		for (tmp = skb->next;						\
3491  		     skb != (struct sk_buff *)(queue);				\
3492  		     skb = tmp, tmp = skb->next)
3493  
3494  #define skb_queue_reverse_walk(queue, skb) \
3495  		for (skb = (queue)->prev;					\
3496  		     skb != (struct sk_buff *)(queue);				\
3497  		     skb = skb->prev)
3498  
3499  #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3500  		for (skb = (queue)->prev, tmp = skb->prev;			\
3501  		     skb != (struct sk_buff *)(queue);				\
3502  		     skb = tmp, tmp = skb->prev)
3503  
3504  #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3505  		for (tmp = skb->prev;						\
3506  		     skb != (struct sk_buff *)(queue);				\
3507  		     skb = tmp, tmp = skb->prev)
3508  
skb_has_frag_list(const struct sk_buff * skb)3509  static inline bool skb_has_frag_list(const struct sk_buff *skb)
3510  {
3511  	return skb_shinfo(skb)->frag_list != NULL;
3512  }
3513  
skb_frag_list_init(struct sk_buff * skb)3514  static inline void skb_frag_list_init(struct sk_buff *skb)
3515  {
3516  	skb_shinfo(skb)->frag_list = NULL;
3517  }
3518  
3519  #define skb_walk_frags(skb, iter)	\
3520  	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3521  
3522  
3523  int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3524  				int *err, long *timeo_p,
3525  				const struct sk_buff *skb);
3526  struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3527  					  struct sk_buff_head *queue,
3528  					  unsigned int flags,
3529  					  int *off, int *err,
3530  					  struct sk_buff **last);
3531  struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3532  					struct sk_buff_head *queue,
3533  					unsigned int flags, int *off, int *err,
3534  					struct sk_buff **last);
3535  struct sk_buff *__skb_recv_datagram(struct sock *sk,
3536  				    struct sk_buff_head *sk_queue,
3537  				    unsigned int flags, int *off, int *err);
3538  struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3539  				  int *err);
3540  __poll_t datagram_poll(struct file *file, struct socket *sock,
3541  			   struct poll_table_struct *wait);
3542  int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3543  			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3544  static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3545  					struct msghdr *msg, int size)
3546  {
3547  	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3548  }
3549  int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3550  				   struct msghdr *msg);
3551  int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3552  			   struct iov_iter *to, int len,
3553  			   struct ahash_request *hash);
3554  int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3555  				 struct iov_iter *from, int len);
3556  int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3557  void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3558  void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3559  static inline void skb_free_datagram_locked(struct sock *sk,
3560  					    struct sk_buff *skb)
3561  {
3562  	__skb_free_datagram_locked(sk, skb, 0);
3563  }
3564  int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3565  int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3566  int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3567  __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3568  			      int len);
3569  int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3570  		    struct pipe_inode_info *pipe, unsigned int len,
3571  		    unsigned int flags);
3572  int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3573  			 int len);
3574  void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3575  unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3576  int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3577  		 int len, int hlen);
3578  void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3579  int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3580  void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3581  bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3582  bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3583  struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3584  struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3585  				 unsigned int offset);
3586  struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3587  int skb_ensure_writable(struct sk_buff *skb, int write_len);
3588  int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3589  int skb_vlan_pop(struct sk_buff *skb);
3590  int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3591  int skb_eth_pop(struct sk_buff *skb);
3592  int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3593  		 const unsigned char *src);
3594  int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3595  		  int mac_len, bool ethernet);
3596  int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3597  		 bool ethernet);
3598  int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3599  int skb_mpls_dec_ttl(struct sk_buff *skb);
3600  struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3601  			     gfp_t gfp);
3602  
memcpy_from_msg(void * data,struct msghdr * msg,int len)3603  static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3604  {
3605  	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3606  }
3607  
memcpy_to_msg(struct msghdr * msg,void * data,int len)3608  static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3609  {
3610  	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3611  }
3612  
3613  struct skb_checksum_ops {
3614  	__wsum (*update)(const void *mem, int len, __wsum wsum);
3615  	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3616  };
3617  
3618  extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3619  
3620  __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3621  		      __wsum csum, const struct skb_checksum_ops *ops);
3622  __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3623  		    __wsum csum);
3624  
3625  static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3626  __skb_header_pointer(const struct sk_buff *skb, int offset,
3627  		     int len, void *data, int hlen, void *buffer)
3628  {
3629  	if (hlen - offset >= len)
3630  		return data + offset;
3631  
3632  	if (!skb ||
3633  	    skb_copy_bits(skb, offset, buffer, len) < 0)
3634  		return NULL;
3635  
3636  	return buffer;
3637  }
3638  
3639  static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3640  skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3641  {
3642  	return __skb_header_pointer(skb, offset, len, skb->data,
3643  				    skb_headlen(skb), buffer);
3644  }
3645  
3646  /**
3647   *	skb_needs_linearize - check if we need to linearize a given skb
3648   *			      depending on the given device features.
3649   *	@skb: socket buffer to check
3650   *	@features: net device features
3651   *
3652   *	Returns true if either:
3653   *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3654   *	2. skb is fragmented and the device does not support SG.
3655   */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3656  static inline bool skb_needs_linearize(struct sk_buff *skb,
3657  				       netdev_features_t features)
3658  {
3659  	return skb_is_nonlinear(skb) &&
3660  	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3661  		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3662  }
3663  
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3664  static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3665  					     void *to,
3666  					     const unsigned int len)
3667  {
3668  	memcpy(to, skb->data, len);
3669  }
3670  
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3671  static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3672  						    const int offset, void *to,
3673  						    const unsigned int len)
3674  {
3675  	memcpy(to, skb->data + offset, len);
3676  }
3677  
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3678  static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3679  					   const void *from,
3680  					   const unsigned int len)
3681  {
3682  	memcpy(skb->data, from, len);
3683  }
3684  
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3685  static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3686  						  const int offset,
3687  						  const void *from,
3688  						  const unsigned int len)
3689  {
3690  	memcpy(skb->data + offset, from, len);
3691  }
3692  
3693  void skb_init(void);
3694  
skb_get_ktime(const struct sk_buff * skb)3695  static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3696  {
3697  	return skb->tstamp;
3698  }
3699  
3700  /**
3701   *	skb_get_timestamp - get timestamp from a skb
3702   *	@skb: skb to get stamp from
3703   *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3704   *
3705   *	Timestamps are stored in the skb as offsets to a base timestamp.
3706   *	This function converts the offset back to a struct timeval and stores
3707   *	it in stamp.
3708   */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3709  static inline void skb_get_timestamp(const struct sk_buff *skb,
3710  				     struct __kernel_old_timeval *stamp)
3711  {
3712  	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3713  }
3714  
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3715  static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3716  					 struct __kernel_sock_timeval *stamp)
3717  {
3718  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3719  
3720  	stamp->tv_sec = ts.tv_sec;
3721  	stamp->tv_usec = ts.tv_nsec / 1000;
3722  }
3723  
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3724  static inline void skb_get_timestampns(const struct sk_buff *skb,
3725  				       struct __kernel_old_timespec *stamp)
3726  {
3727  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3728  
3729  	stamp->tv_sec = ts.tv_sec;
3730  	stamp->tv_nsec = ts.tv_nsec;
3731  }
3732  
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3733  static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3734  					   struct __kernel_timespec *stamp)
3735  {
3736  	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3737  
3738  	stamp->tv_sec = ts.tv_sec;
3739  	stamp->tv_nsec = ts.tv_nsec;
3740  }
3741  
__net_timestamp(struct sk_buff * skb)3742  static inline void __net_timestamp(struct sk_buff *skb)
3743  {
3744  	skb->tstamp = ktime_get_real();
3745  }
3746  
net_timedelta(ktime_t t)3747  static inline ktime_t net_timedelta(ktime_t t)
3748  {
3749  	return ktime_sub(ktime_get_real(), t);
3750  }
3751  
net_invalid_timestamp(void)3752  static inline ktime_t net_invalid_timestamp(void)
3753  {
3754  	return 0;
3755  }
3756  
skb_metadata_len(const struct sk_buff * skb)3757  static inline u8 skb_metadata_len(const struct sk_buff *skb)
3758  {
3759  	return skb_shinfo(skb)->meta_len;
3760  }
3761  
skb_metadata_end(const struct sk_buff * skb)3762  static inline void *skb_metadata_end(const struct sk_buff *skb)
3763  {
3764  	return skb_mac_header(skb);
3765  }
3766  
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3767  static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3768  					  const struct sk_buff *skb_b,
3769  					  u8 meta_len)
3770  {
3771  	const void *a = skb_metadata_end(skb_a);
3772  	const void *b = skb_metadata_end(skb_b);
3773  	/* Using more efficient varaiant than plain call to memcmp(). */
3774  #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3775  	u64 diffs = 0;
3776  
3777  	switch (meta_len) {
3778  #define __it(x, op) (x -= sizeof(u##op))
3779  #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3780  	case 32: diffs |= __it_diff(a, b, 64);
3781  		fallthrough;
3782  	case 24: diffs |= __it_diff(a, b, 64);
3783  		fallthrough;
3784  	case 16: diffs |= __it_diff(a, b, 64);
3785  		fallthrough;
3786  	case  8: diffs |= __it_diff(a, b, 64);
3787  		break;
3788  	case 28: diffs |= __it_diff(a, b, 64);
3789  		fallthrough;
3790  	case 20: diffs |= __it_diff(a, b, 64);
3791  		fallthrough;
3792  	case 12: diffs |= __it_diff(a, b, 64);
3793  		fallthrough;
3794  	case  4: diffs |= __it_diff(a, b, 32);
3795  		break;
3796  	}
3797  	return diffs;
3798  #else
3799  	return memcmp(a - meta_len, b - meta_len, meta_len);
3800  #endif
3801  }
3802  
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3803  static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3804  					const struct sk_buff *skb_b)
3805  {
3806  	u8 len_a = skb_metadata_len(skb_a);
3807  	u8 len_b = skb_metadata_len(skb_b);
3808  
3809  	if (!(len_a | len_b))
3810  		return false;
3811  
3812  	return len_a != len_b ?
3813  	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3814  }
3815  
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3816  static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3817  {
3818  	skb_shinfo(skb)->meta_len = meta_len;
3819  }
3820  
skb_metadata_clear(struct sk_buff * skb)3821  static inline void skb_metadata_clear(struct sk_buff *skb)
3822  {
3823  	skb_metadata_set(skb, 0);
3824  }
3825  
3826  struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3827  
3828  #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3829  
3830  void skb_clone_tx_timestamp(struct sk_buff *skb);
3831  bool skb_defer_rx_timestamp(struct sk_buff *skb);
3832  
3833  #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3834  
skb_clone_tx_timestamp(struct sk_buff * skb)3835  static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3836  {
3837  }
3838  
skb_defer_rx_timestamp(struct sk_buff * skb)3839  static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3840  {
3841  	return false;
3842  }
3843  
3844  #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3845  
3846  /**
3847   * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3848   *
3849   * PHY drivers may accept clones of transmitted packets for
3850   * timestamping via their phy_driver.txtstamp method. These drivers
3851   * must call this function to return the skb back to the stack with a
3852   * timestamp.
3853   *
3854   * @skb: clone of the original outgoing packet
3855   * @hwtstamps: hardware time stamps
3856   *
3857   */
3858  void skb_complete_tx_timestamp(struct sk_buff *skb,
3859  			       struct skb_shared_hwtstamps *hwtstamps);
3860  
3861  void __skb_tstamp_tx(struct sk_buff *orig_skb,
3862  		     struct skb_shared_hwtstamps *hwtstamps,
3863  		     struct sock *sk, int tstype);
3864  
3865  /**
3866   * skb_tstamp_tx - queue clone of skb with send time stamps
3867   * @orig_skb:	the original outgoing packet
3868   * @hwtstamps:	hardware time stamps, may be NULL if not available
3869   *
3870   * If the skb has a socket associated, then this function clones the
3871   * skb (thus sharing the actual data and optional structures), stores
3872   * the optional hardware time stamping information (if non NULL) or
3873   * generates a software time stamp (otherwise), then queues the clone
3874   * to the error queue of the socket.  Errors are silently ignored.
3875   */
3876  void skb_tstamp_tx(struct sk_buff *orig_skb,
3877  		   struct skb_shared_hwtstamps *hwtstamps);
3878  
3879  /**
3880   * skb_tx_timestamp() - Driver hook for transmit timestamping
3881   *
3882   * Ethernet MAC Drivers should call this function in their hard_xmit()
3883   * function immediately before giving the sk_buff to the MAC hardware.
3884   *
3885   * Specifically, one should make absolutely sure that this function is
3886   * called before TX completion of this packet can trigger.  Otherwise
3887   * the packet could potentially already be freed.
3888   *
3889   * @skb: A socket buffer.
3890   */
skb_tx_timestamp(struct sk_buff * skb)3891  static inline void skb_tx_timestamp(struct sk_buff *skb)
3892  {
3893  	skb_clone_tx_timestamp(skb);
3894  	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3895  		skb_tstamp_tx(skb, NULL);
3896  }
3897  
3898  /**
3899   * skb_complete_wifi_ack - deliver skb with wifi status
3900   *
3901   * @skb: the original outgoing packet
3902   * @acked: ack status
3903   *
3904   */
3905  void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3906  
3907  __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3908  __sum16 __skb_checksum_complete(struct sk_buff *skb);
3909  
skb_csum_unnecessary(const struct sk_buff * skb)3910  static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3911  {
3912  	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3913  		skb->csum_valid ||
3914  		(skb->ip_summed == CHECKSUM_PARTIAL &&
3915  		 skb_checksum_start_offset(skb) >= 0));
3916  }
3917  
3918  /**
3919   *	skb_checksum_complete - Calculate checksum of an entire packet
3920   *	@skb: packet to process
3921   *
3922   *	This function calculates the checksum over the entire packet plus
3923   *	the value of skb->csum.  The latter can be used to supply the
3924   *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3925   *	checksum.
3926   *
3927   *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3928   *	this function can be used to verify that checksum on received
3929   *	packets.  In that case the function should return zero if the
3930   *	checksum is correct.  In particular, this function will return zero
3931   *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3932   *	hardware has already verified the correctness of the checksum.
3933   */
skb_checksum_complete(struct sk_buff * skb)3934  static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3935  {
3936  	return skb_csum_unnecessary(skb) ?
3937  	       0 : __skb_checksum_complete(skb);
3938  }
3939  
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3940  static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3941  {
3942  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3943  		if (skb->csum_level == 0)
3944  			skb->ip_summed = CHECKSUM_NONE;
3945  		else
3946  			skb->csum_level--;
3947  	}
3948  }
3949  
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3950  static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3951  {
3952  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3953  		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3954  			skb->csum_level++;
3955  	} else if (skb->ip_summed == CHECKSUM_NONE) {
3956  		skb->ip_summed = CHECKSUM_UNNECESSARY;
3957  		skb->csum_level = 0;
3958  	}
3959  }
3960  
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3961  static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3962  {
3963  	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3964  		skb->ip_summed = CHECKSUM_NONE;
3965  		skb->csum_level = 0;
3966  	}
3967  }
3968  
3969  /* Check if we need to perform checksum complete validation.
3970   *
3971   * Returns true if checksum complete is needed, false otherwise
3972   * (either checksum is unnecessary or zero checksum is allowed).
3973   */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3974  static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3975  						  bool zero_okay,
3976  						  __sum16 check)
3977  {
3978  	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3979  		skb->csum_valid = 1;
3980  		__skb_decr_checksum_unnecessary(skb);
3981  		return false;
3982  	}
3983  
3984  	return true;
3985  }
3986  
3987  /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3988   * in checksum_init.
3989   */
3990  #define CHECKSUM_BREAK 76
3991  
3992  /* Unset checksum-complete
3993   *
3994   * Unset checksum complete can be done when packet is being modified
3995   * (uncompressed for instance) and checksum-complete value is
3996   * invalidated.
3997   */
skb_checksum_complete_unset(struct sk_buff * skb)3998  static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3999  {
4000  	if (skb->ip_summed == CHECKSUM_COMPLETE)
4001  		skb->ip_summed = CHECKSUM_NONE;
4002  }
4003  
4004  /* Validate (init) checksum based on checksum complete.
4005   *
4006   * Return values:
4007   *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4008   *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4009   *	checksum is stored in skb->csum for use in __skb_checksum_complete
4010   *   non-zero: value of invalid checksum
4011   *
4012   */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4013  static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4014  						       bool complete,
4015  						       __wsum psum)
4016  {
4017  	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4018  		if (!csum_fold(csum_add(psum, skb->csum))) {
4019  			skb->csum_valid = 1;
4020  			return 0;
4021  		}
4022  	}
4023  
4024  	skb->csum = psum;
4025  
4026  	if (complete || skb->len <= CHECKSUM_BREAK) {
4027  		__sum16 csum;
4028  
4029  		csum = __skb_checksum_complete(skb);
4030  		skb->csum_valid = !csum;
4031  		return csum;
4032  	}
4033  
4034  	return 0;
4035  }
4036  
null_compute_pseudo(struct sk_buff * skb,int proto)4037  static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4038  {
4039  	return 0;
4040  }
4041  
4042  /* Perform checksum validate (init). Note that this is a macro since we only
4043   * want to calculate the pseudo header which is an input function if necessary.
4044   * First we try to validate without any computation (checksum unnecessary) and
4045   * then calculate based on checksum complete calling the function to compute
4046   * pseudo header.
4047   *
4048   * Return values:
4049   *   0: checksum is validated or try to in skb_checksum_complete
4050   *   non-zero: value of invalid checksum
4051   */
4052  #define __skb_checksum_validate(skb, proto, complete,			\
4053  				zero_okay, check, compute_pseudo)	\
4054  ({									\
4055  	__sum16 __ret = 0;						\
4056  	skb->csum_valid = 0;						\
4057  	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4058  		__ret = __skb_checksum_validate_complete(skb,		\
4059  				complete, compute_pseudo(skb, proto));	\
4060  	__ret;								\
4061  })
4062  
4063  #define skb_checksum_init(skb, proto, compute_pseudo)			\
4064  	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4065  
4066  #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4067  	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4068  
4069  #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4070  	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4071  
4072  #define skb_checksum_validate_zero_check(skb, proto, check,		\
4073  					 compute_pseudo)		\
4074  	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4075  
4076  #define skb_checksum_simple_validate(skb)				\
4077  	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4078  
__skb_checksum_convert_check(struct sk_buff * skb)4079  static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4080  {
4081  	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4082  }
4083  
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4084  static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4085  {
4086  	skb->csum = ~pseudo;
4087  	skb->ip_summed = CHECKSUM_COMPLETE;
4088  }
4089  
4090  #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4091  do {									\
4092  	if (__skb_checksum_convert_check(skb))				\
4093  		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4094  } while (0)
4095  
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4096  static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4097  					      u16 start, u16 offset)
4098  {
4099  	skb->ip_summed = CHECKSUM_PARTIAL;
4100  	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4101  	skb->csum_offset = offset - start;
4102  }
4103  
4104  /* Update skbuf and packet to reflect the remote checksum offload operation.
4105   * When called, ptr indicates the starting point for skb->csum when
4106   * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4107   * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4108   */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4109  static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4110  				       int start, int offset, bool nopartial)
4111  {
4112  	__wsum delta;
4113  
4114  	if (!nopartial) {
4115  		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4116  		return;
4117  	}
4118  
4119  	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4120  		__skb_checksum_complete(skb);
4121  		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4122  	}
4123  
4124  	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4125  
4126  	/* Adjust skb->csum since we changed the packet */
4127  	skb->csum = csum_add(skb->csum, delta);
4128  }
4129  
skb_nfct(const struct sk_buff * skb)4130  static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4131  {
4132  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4133  	return (void *)(skb->_nfct & NFCT_PTRMASK);
4134  #else
4135  	return NULL;
4136  #endif
4137  }
4138  
skb_get_nfct(const struct sk_buff * skb)4139  static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4140  {
4141  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4142  	return skb->_nfct;
4143  #else
4144  	return 0UL;
4145  #endif
4146  }
4147  
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4148  static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4149  {
4150  #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4151  	skb->_nfct = nfct;
4152  #endif
4153  }
4154  
4155  #ifdef CONFIG_SKB_EXTENSIONS
4156  enum skb_ext_id {
4157  #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4158  	SKB_EXT_BRIDGE_NF,
4159  #endif
4160  #ifdef CONFIG_XFRM
4161  	SKB_EXT_SEC_PATH,
4162  #endif
4163  #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4164  	TC_SKB_EXT,
4165  #endif
4166  #if IS_ENABLED(CONFIG_MPTCP)
4167  	SKB_EXT_MPTCP,
4168  #endif
4169  	SKB_EXT_NUM, /* must be last */
4170  };
4171  
4172  /**
4173   *	struct skb_ext - sk_buff extensions
4174   *	@refcnt: 1 on allocation, deallocated on 0
4175   *	@offset: offset to add to @data to obtain extension address
4176   *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4177   *	@data: start of extension data, variable sized
4178   *
4179   *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4180   *	to use 'u8' types while allowing up to 2kb worth of extension data.
4181   */
4182  struct skb_ext {
4183  	refcount_t refcnt;
4184  	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4185  	u8 chunks;		/* same */
4186  	char data[] __aligned(8);
4187  };
4188  
4189  struct skb_ext *__skb_ext_alloc(gfp_t flags);
4190  void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4191  		    struct skb_ext *ext);
4192  void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4193  void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4194  void __skb_ext_put(struct skb_ext *ext);
4195  
skb_ext_put(struct sk_buff * skb)4196  static inline void skb_ext_put(struct sk_buff *skb)
4197  {
4198  	if (skb->active_extensions)
4199  		__skb_ext_put(skb->extensions);
4200  }
4201  
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4202  static inline void __skb_ext_copy(struct sk_buff *dst,
4203  				  const struct sk_buff *src)
4204  {
4205  	dst->active_extensions = src->active_extensions;
4206  
4207  	if (src->active_extensions) {
4208  		struct skb_ext *ext = src->extensions;
4209  
4210  		refcount_inc(&ext->refcnt);
4211  		dst->extensions = ext;
4212  	}
4213  }
4214  
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4215  static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4216  {
4217  	skb_ext_put(dst);
4218  	__skb_ext_copy(dst, src);
4219  }
4220  
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4221  static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4222  {
4223  	return !!ext->offset[i];
4224  }
4225  
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4226  static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4227  {
4228  	return skb->active_extensions & (1 << id);
4229  }
4230  
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4231  static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4232  {
4233  	if (skb_ext_exist(skb, id))
4234  		__skb_ext_del(skb, id);
4235  }
4236  
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4237  static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4238  {
4239  	if (skb_ext_exist(skb, id)) {
4240  		struct skb_ext *ext = skb->extensions;
4241  
4242  		return (void *)ext + (ext->offset[id] << 3);
4243  	}
4244  
4245  	return NULL;
4246  }
4247  
skb_ext_reset(struct sk_buff * skb)4248  static inline void skb_ext_reset(struct sk_buff *skb)
4249  {
4250  	if (unlikely(skb->active_extensions)) {
4251  		__skb_ext_put(skb->extensions);
4252  		skb->active_extensions = 0;
4253  	}
4254  }
4255  
skb_has_extensions(struct sk_buff * skb)4256  static inline bool skb_has_extensions(struct sk_buff *skb)
4257  {
4258  	return unlikely(skb->active_extensions);
4259  }
4260  #else
skb_ext_put(struct sk_buff * skb)4261  static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4262  static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4263  static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4264  static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4265  static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4266  static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4267  #endif /* CONFIG_SKB_EXTENSIONS */
4268  
nf_reset_ct(struct sk_buff * skb)4269  static inline void nf_reset_ct(struct sk_buff *skb)
4270  {
4271  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4272  	nf_conntrack_put(skb_nfct(skb));
4273  	skb->_nfct = 0;
4274  #endif
4275  }
4276  
nf_reset_trace(struct sk_buff * skb)4277  static inline void nf_reset_trace(struct sk_buff *skb)
4278  {
4279  #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4280  	skb->nf_trace = 0;
4281  #endif
4282  }
4283  
ipvs_reset(struct sk_buff * skb)4284  static inline void ipvs_reset(struct sk_buff *skb)
4285  {
4286  #if IS_ENABLED(CONFIG_IP_VS)
4287  	skb->ipvs_property = 0;
4288  #endif
4289  }
4290  
4291  /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4292  static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4293  			     bool copy)
4294  {
4295  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4296  	dst->_nfct = src->_nfct;
4297  	nf_conntrack_get(skb_nfct(src));
4298  #endif
4299  #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4300  	if (copy)
4301  		dst->nf_trace = src->nf_trace;
4302  #endif
4303  }
4304  
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4305  static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4306  {
4307  #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4308  	nf_conntrack_put(skb_nfct(dst));
4309  #endif
4310  	__nf_copy(dst, src, true);
4311  }
4312  
4313  #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4314  static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4315  {
4316  	to->secmark = from->secmark;
4317  }
4318  
skb_init_secmark(struct sk_buff * skb)4319  static inline void skb_init_secmark(struct sk_buff *skb)
4320  {
4321  	skb->secmark = 0;
4322  }
4323  #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4324  static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4325  { }
4326  
skb_init_secmark(struct sk_buff * skb)4327  static inline void skb_init_secmark(struct sk_buff *skb)
4328  { }
4329  #endif
4330  
secpath_exists(const struct sk_buff * skb)4331  static inline int secpath_exists(const struct sk_buff *skb)
4332  {
4333  #ifdef CONFIG_XFRM
4334  	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4335  #else
4336  	return 0;
4337  #endif
4338  }
4339  
skb_irq_freeable(const struct sk_buff * skb)4340  static inline bool skb_irq_freeable(const struct sk_buff *skb)
4341  {
4342  	return !skb->destructor &&
4343  		!secpath_exists(skb) &&
4344  		!skb_nfct(skb) &&
4345  		!skb->_skb_refdst &&
4346  		!skb_has_frag_list(skb);
4347  }
4348  
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4349  static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4350  {
4351  	skb->queue_mapping = queue_mapping;
4352  }
4353  
skb_get_queue_mapping(const struct sk_buff * skb)4354  static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4355  {
4356  	return skb->queue_mapping;
4357  }
4358  
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4359  static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4360  {
4361  	to->queue_mapping = from->queue_mapping;
4362  }
4363  
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4364  static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4365  {
4366  	skb->queue_mapping = rx_queue + 1;
4367  }
4368  
skb_get_rx_queue(const struct sk_buff * skb)4369  static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4370  {
4371  	return skb->queue_mapping - 1;
4372  }
4373  
skb_rx_queue_recorded(const struct sk_buff * skb)4374  static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4375  {
4376  	return skb->queue_mapping != 0;
4377  }
4378  
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4379  static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4380  {
4381  	skb->dst_pending_confirm = val;
4382  }
4383  
skb_get_dst_pending_confirm(const struct sk_buff * skb)4384  static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4385  {
4386  	return skb->dst_pending_confirm != 0;
4387  }
4388  
skb_sec_path(const struct sk_buff * skb)4389  static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4390  {
4391  #ifdef CONFIG_XFRM
4392  	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4393  #else
4394  	return NULL;
4395  #endif
4396  }
4397  
4398  /* Keeps track of mac header offset relative to skb->head.
4399   * It is useful for TSO of Tunneling protocol. e.g. GRE.
4400   * For non-tunnel skb it points to skb_mac_header() and for
4401   * tunnel skb it points to outer mac header.
4402   * Keeps track of level of encapsulation of network headers.
4403   */
4404  struct skb_gso_cb {
4405  	union {
4406  		int	mac_offset;
4407  		int	data_offset;
4408  	};
4409  	int	encap_level;
4410  	__wsum	csum;
4411  	__u16	csum_start;
4412  };
4413  #define SKB_GSO_CB_OFFSET	32
4414  #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4415  
skb_tnl_header_len(const struct sk_buff * inner_skb)4416  static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4417  {
4418  	return (skb_mac_header(inner_skb) - inner_skb->head) -
4419  		SKB_GSO_CB(inner_skb)->mac_offset;
4420  }
4421  
gso_pskb_expand_head(struct sk_buff * skb,int extra)4422  static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4423  {
4424  	int new_headroom, headroom;
4425  	int ret;
4426  
4427  	headroom = skb_headroom(skb);
4428  	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4429  	if (ret)
4430  		return ret;
4431  
4432  	new_headroom = skb_headroom(skb);
4433  	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4434  	return 0;
4435  }
4436  
gso_reset_checksum(struct sk_buff * skb,__wsum res)4437  static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4438  {
4439  	/* Do not update partial checksums if remote checksum is enabled. */
4440  	if (skb->remcsum_offload)
4441  		return;
4442  
4443  	SKB_GSO_CB(skb)->csum = res;
4444  	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4445  }
4446  
4447  /* Compute the checksum for a gso segment. First compute the checksum value
4448   * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4449   * then add in skb->csum (checksum from csum_start to end of packet).
4450   * skb->csum and csum_start are then updated to reflect the checksum of the
4451   * resultant packet starting from the transport header-- the resultant checksum
4452   * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4453   * header.
4454   */
gso_make_checksum(struct sk_buff * skb,__wsum res)4455  static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4456  {
4457  	unsigned char *csum_start = skb_transport_header(skb);
4458  	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4459  	__wsum partial = SKB_GSO_CB(skb)->csum;
4460  
4461  	SKB_GSO_CB(skb)->csum = res;
4462  	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4463  
4464  	return csum_fold(csum_partial(csum_start, plen, partial));
4465  }
4466  
skb_is_gso(const struct sk_buff * skb)4467  static inline bool skb_is_gso(const struct sk_buff *skb)
4468  {
4469  	return skb_shinfo(skb)->gso_size;
4470  }
4471  
4472  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4473  static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4474  {
4475  	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4476  }
4477  
4478  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4479  static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4480  {
4481  	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4482  }
4483  
4484  /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4485  static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4486  {
4487  	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4488  }
4489  
skb_gso_reset(struct sk_buff * skb)4490  static inline void skb_gso_reset(struct sk_buff *skb)
4491  {
4492  	skb_shinfo(skb)->gso_size = 0;
4493  	skb_shinfo(skb)->gso_segs = 0;
4494  	skb_shinfo(skb)->gso_type = 0;
4495  }
4496  
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4497  static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4498  					 u16 increment)
4499  {
4500  	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4501  		return;
4502  	shinfo->gso_size += increment;
4503  }
4504  
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4505  static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4506  					 u16 decrement)
4507  {
4508  	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4509  		return;
4510  	shinfo->gso_size -= decrement;
4511  }
4512  
4513  void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4514  
skb_warn_if_lro(const struct sk_buff * skb)4515  static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4516  {
4517  	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4518  	 * wanted then gso_type will be set. */
4519  	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4520  
4521  	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4522  	    unlikely(shinfo->gso_type == 0)) {
4523  		__skb_warn_lro_forwarding(skb);
4524  		return true;
4525  	}
4526  	return false;
4527  }
4528  
skb_forward_csum(struct sk_buff * skb)4529  static inline void skb_forward_csum(struct sk_buff *skb)
4530  {
4531  	/* Unfortunately we don't support this one.  Any brave souls? */
4532  	if (skb->ip_summed == CHECKSUM_COMPLETE)
4533  		skb->ip_summed = CHECKSUM_NONE;
4534  }
4535  
4536  /**
4537   * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4538   * @skb: skb to check
4539   *
4540   * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4541   * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4542   * use this helper, to document places where we make this assertion.
4543   */
skb_checksum_none_assert(const struct sk_buff * skb)4544  static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4545  {
4546  #ifdef DEBUG
4547  	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4548  #endif
4549  }
4550  
4551  bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4552  
4553  int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4554  struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4555  				     unsigned int transport_len,
4556  				     __sum16(*skb_chkf)(struct sk_buff *skb));
4557  
4558  /**
4559   * skb_head_is_locked - Determine if the skb->head is locked down
4560   * @skb: skb to check
4561   *
4562   * The head on skbs build around a head frag can be removed if they are
4563   * not cloned.  This function returns true if the skb head is locked down
4564   * due to either being allocated via kmalloc, or by being a clone with
4565   * multiple references to the head.
4566   */
skb_head_is_locked(const struct sk_buff * skb)4567  static inline bool skb_head_is_locked(const struct sk_buff *skb)
4568  {
4569  	return !skb->head_frag || skb_cloned(skb);
4570  }
4571  
4572  /* Local Checksum Offload.
4573   * Compute outer checksum based on the assumption that the
4574   * inner checksum will be offloaded later.
4575   * See Documentation/networking/checksum-offloads.rst for
4576   * explanation of how this works.
4577   * Fill in outer checksum adjustment (e.g. with sum of outer
4578   * pseudo-header) before calling.
4579   * Also ensure that inner checksum is in linear data area.
4580   */
lco_csum(struct sk_buff * skb)4581  static inline __wsum lco_csum(struct sk_buff *skb)
4582  {
4583  	unsigned char *csum_start = skb_checksum_start(skb);
4584  	unsigned char *l4_hdr = skb_transport_header(skb);
4585  	__wsum partial;
4586  
4587  	/* Start with complement of inner checksum adjustment */
4588  	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4589  						    skb->csum_offset));
4590  
4591  	/* Add in checksum of our headers (incl. outer checksum
4592  	 * adjustment filled in by caller) and return result.
4593  	 */
4594  	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4595  }
4596  
skb_is_redirected(const struct sk_buff * skb)4597  static inline bool skb_is_redirected(const struct sk_buff *skb)
4598  {
4599  #ifdef CONFIG_NET_REDIRECT
4600  	return skb->redirected;
4601  #else
4602  	return false;
4603  #endif
4604  }
4605  
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4606  static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4607  {
4608  #ifdef CONFIG_NET_REDIRECT
4609  	skb->redirected = 1;
4610  	skb->from_ingress = from_ingress;
4611  	if (skb->from_ingress)
4612  		skb->tstamp = 0;
4613  #endif
4614  }
4615  
skb_reset_redirect(struct sk_buff * skb)4616  static inline void skb_reset_redirect(struct sk_buff *skb)
4617  {
4618  #ifdef CONFIG_NET_REDIRECT
4619  	skb->redirected = 0;
4620  #endif
4621  }
4622  
skb_csum_is_sctp(struct sk_buff * skb)4623  static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4624  {
4625  	return skb->csum_not_inet;
4626  }
4627  
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4628  static inline void skb_set_kcov_handle(struct sk_buff *skb,
4629  				       const u64 kcov_handle)
4630  {
4631  #ifdef CONFIG_KCOV
4632  	skb->kcov_handle = kcov_handle;
4633  #endif
4634  }
4635  
skb_get_kcov_handle(struct sk_buff * skb)4636  static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4637  {
4638  #ifdef CONFIG_KCOV
4639  	return skb->kcov_handle;
4640  #else
4641  	return 0;
4642  #endif
4643  }
4644  
4645  #endif	/* __KERNEL__ */
4646  #endif	/* _LINUX_SKBUFF_H */
4647