• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27     return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38     DMA_COMPLETE,
39     DMA_IN_PROGRESS,
40     DMA_PAUSED,
41     DMA_ERROR,
42     DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52     DMA_MEMCPY,
53     DMA_XOR,
54     DMA_PQ,
55     DMA_XOR_VAL,
56     DMA_PQ_VAL,
57     DMA_MEMSET,
58     DMA_MEMSET_SG,
59     DMA_INTERRUPT,
60     DMA_PRIVATE,
61     DMA_ASYNC_TX,
62     DMA_SLAVE,
63     DMA_CYCLIC,
64     DMA_INTERLEAVE,
65     DMA_COMPLETION_NO_ORDER,
66     DMA_REPEAT,
67     DMA_LOAD_EOT,
68     /* last transaction type for creation of the capabilities mask */
69     DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80     DMA_MEM_TO_MEM,
81     DMA_MEM_TO_DEV,
82     DMA_DEV_TO_MEM,
83     DMA_DEV_TO_DEV,
84     DMA_TRANS_NONE,
85 };
86 
87 /**
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *      size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *     chunk and before first src/dst address for next chunk.
116  *     Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *     Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *     chunk and before the first dst address for next chunk.
120  *     Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *     chunk and before the first src address for next chunk.
123  *     Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126     size_t size;
127     size_t icg;
128     size_t dst_icg;
129     size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *     and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *        Otherwise, source is read contiguously (icg ignored).
142  *        Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *        Otherwise, destination is filled contiguously (icg ignored).
145  *        Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151     dma_addr_t src_start;
152     dma_addr_t dst_start;
153     enum dma_transfer_direction dir;
154     bool src_inc;
155     bool dst_inc;
156     bool src_sgl;
157     bool dst_sgl;
158     size_t numf;
159     size_t frame_size;
160     struct data_chunk sgl[];
161 };
162 
163 /**
164  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165  *  control completion, and communicate status.
166  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167  *  this transaction
168  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169  *  acknowledges receipt, i.e. has a chance to establish any dependency
170  *  chains
171  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174  *  sources that were the result of a previous operation, in the case of a PQ
175  *  operation it continues the calculation with new sources
176  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177  *  on the result of this operation
178  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179  *  cleared or freed
180  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181  *  data and the descriptor should be in different format from normal
182  *  data descriptors.
183  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184  *  repeated when it ends until a transaction is issued on the same channel
185  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186  *  interleaved transactions and is ignored for all other transaction types.
187  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189  *  repeated transaction ends. Not setting this flag when the previously queued
190  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191  *  to never be processed and stay in the issued queue forever. The flag is
192  *  ignored if the previous transaction is not a repeated transaction.
193  */
194 enum dma_ctrl_flags {
195     DMA_PREP_INTERRUPT = (1 << 0),
196     DMA_CTRL_ACK = (1 << 1),
197     DMA_PREP_PQ_DISABLE_P = (1 << 2),
198     DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199     DMA_PREP_CONTINUE = (1 << 4),
200     DMA_PREP_FENCE = (1 << 5),
201     DMA_CTRL_REUSE = (1 << 6),
202     DMA_PREP_CMD = (1 << 7),
203     DMA_PREP_REPEAT = (1 << 8),
204     DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206 
207 /**
208  * enum sum_check_bits - bit position of pq_check_flags
209  */
210 enum sum_check_bits {
211     SUM_CHECK_P = 0,
212     SUM_CHECK_Q = 1,
213 };
214 
215 /**
216  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219  */
220 enum sum_check_flags {
221     SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222     SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224 
225 /**
226  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
227  * See linux/cpumask.h
228  */
229 typedef struct {
230     DECLARE_BITMAP(bits, DMA_TX_TYPE_END);
231 } dma_cap_mask_t;
232 
233 /**
234  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
235  * @memcpy_count: transaction counter
236  * @bytes_transferred: byte counter
237  */
238 
239 /**
240  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
241  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
242  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
243  *  helper) to the descriptor.
244  *
245  * Client drivers interested to use this mode can follow:
246  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
247  *   1. prepare the descriptor (dmaengine_prep_*)
248  *    construct the metadata in the client's buffer
249  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
250  *    descriptor
251  *   3. submit the transfer
252  * - DMA_DEV_TO_MEM:
253  *   1. prepare the descriptor (dmaengine_prep_*)
254  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
255  *    descriptor
256  *   3. submit the transfer
257  *   4. when the transfer is completed, the metadata should be available in the
258  *    attached buffer
259  *
260  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
261  *  driver. The client driver can ask for the pointer, maximum size and the
262  *  currently used size of the metadata and can directly update or read it.
263  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
264  *  provided as helper functions.
265  *
266  *  Note: the metadata area for the descriptor is no longer valid after the
267  *  transfer has been completed (valid up to the point when the completion
268  *  callback returns if used).
269  *
270  * Client drivers interested to use this mode can follow:
271  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
272  *   1. prepare the descriptor (dmaengine_prep_*)
273  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
274  *    metadata area
275  *   3. update the metadata at the pointer
276  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
277  *    of data the client has placed into the metadata buffer
278  *   5. submit the transfer
279  * - DMA_DEV_TO_MEM:
280  *   1. prepare the descriptor (dmaengine_prep_*)
281  *   2. submit the transfer
282  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
283  *    pointer to the engine's metadata area
284  *   4. Read out the metadata from the pointer
285  *
286  * Note: the two mode is not compatible and clients must use one mode for a
287  * descriptor.
288  */
289 enum dma_desc_metadata_mode {
290     DESC_METADATA_NONE = 0,
291     DESC_METADATA_CLIENT = BIT(0),
292     DESC_METADATA_ENGINE = BIT(1),
293 };
294 
295 struct dma_chan_percpu {
296     /* stats */
297     unsigned long memcpy_count;
298     unsigned long bytes_transferred;
299 };
300 
301 /**
302  * struct dma_router - DMA router structure
303  * @dev: pointer to the DMA router device
304  * @route_free: function to be called when the route can be disconnected
305  */
306 struct dma_router {
307     struct device *dev;
308     void (*route_free)(struct device *dev, void *route_data);
309 };
310 
311 /**
312  * struct dma_chan - devices supply DMA channels, clients use them
313  * @device: ptr to the dma device who supplies this channel, always !%NULL
314  * @slave: ptr to the device using this channel
315  * @cookie: last cookie value returned to client
316  * @completed_cookie: last completed cookie for this channel
317  * @chan_id: channel ID for sysfs
318  * @dev: class device for sysfs
319  * @name: backlink name for sysfs
320  * @dbg_client_name: slave name for debugfs in format:
321  *    dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
322  * @device_node: used to add this to the device chan list
323  * @local: per-cpu pointer to a struct dma_chan_percpu
324  * @client_count: how many clients are using this channel
325  * @table_count: number of appearances in the mem-to-mem allocation table
326  * @router: pointer to the DMA router structure
327  * @route_data: channel specific data for the router
328  * @private: private data for certain client-channel associations
329  */
330 struct dma_chan {
331     struct dma_device *device;
332     struct device *slave;
333     dma_cookie_t cookie;
334     dma_cookie_t completed_cookie;
335 
336     /* sysfs */
337     int chan_id;
338     struct dma_chan_dev *dev;
339     const char *name;
340 #ifdef CONFIG_DEBUG_FS
341     char *dbg_client_name;
342 #endif
343 
344     struct list_head device_node;
345     struct dma_chan_percpu __percpu *local;
346     int client_count;
347     int table_count;
348 
349     /* DMA router */
350     struct dma_router *router;
351     void *route_data;
352 
353     void *private;
354 };
355 
356 /**
357  * struct dma_chan_dev - relate sysfs device node to backing channel device
358  * @chan: driver channel device
359  * @device: sysfs device
360  * @dev_id: parent dma_device dev_id
361  */
362 struct dma_chan_dev {
363     struct dma_chan *chan;
364     struct device device;
365     int dev_id;
366 };
367 
368 /**
369  * enum dma_slave_buswidth - defines bus width of the DMA slave
370  * device, source or target buses
371  */
372 enum dma_slave_buswidth {
373     DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
374     DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
375     DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
376     DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
377     DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
378     DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
379     DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
380     DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
381     DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
382 };
383 
384 /**
385  * struct dma_slave_config - dma slave channel runtime config
386  * @direction: whether the data shall go in or out on this slave
387  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
388  * legal values. DEPRECATED, drivers should use the direction argument
389  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
390  * the dir field in the dma_interleaved_template structure.
391  * @src_addr: this is the physical address where DMA slave data
392  * should be read (RX), if the source is memory this argument is
393  * ignored.
394  * @dst_addr: this is the physical address where DMA slave data
395  * should be written (TX), if the source is memory this argument
396  * is ignored.
397  * @src_addr_width: this is the width in bytes of the source (RX)
398  * register where DMA data shall be read. If the source
399  * is memory this may be ignored depending on architecture.
400  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
401  * @dst_addr_width: same as src_addr_width but for destination
402  * target (TX) mutatis mutandis.
403  * @src_maxburst: the maximum number of words (note: words, as in
404  * units of the src_addr_width member, not bytes) that can be sent
405  * in one burst to the device. Typically something like half the
406  * FIFO depth on I/O peripherals so you don't overflow it. This
407  * may or may not be applicable on memory sources.
408  * @dst_maxburst: same as src_maxburst but for destination target
409  * mutatis mutandis.
410  * @src_port_window_size: The length of the register area in words the data need
411  * to be accessed on the device side. It is only used for devices which is using
412  * an area instead of a single register to receive the data. Typically the DMA
413  * loops in this area in order to transfer the data.
414  * @dst_port_window_size: same as src_port_window_size but for the destination
415  * port.
416  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
417  * with 'true' if peripheral should be flow controller. Direction will be
418  * selected at Runtime.
419  * @slave_id: Slave requester id. Only valid for slave channels. The dma
420  * slave peripheral will have unique id as dma requester which need to be
421  * pass as slave config.
422  * @peripheral_config: peripheral configuration for programming peripheral
423  * for dmaengine transfer
424  * @peripheral_size: peripheral configuration buffer size
425  *
426  * This struct is passed in as configuration data to a DMA engine
427  * in order to set up a certain channel for DMA transport at runtime.
428  * The DMA device/engine has to provide support for an additional
429  * callback in the dma_device structure, device_config and this struct
430  * will then be passed in as an argument to the function.
431  *
432  * The rationale for adding configuration information to this struct is as
433  * follows: if it is likely that more than one DMA slave controllers in
434  * the world will support the configuration option, then make it generic.
435  * If not: if it is fixed so that it be sent in static from the platform
436  * data, then prefer to do that.
437  */
438 struct dma_slave_config {
439     enum dma_transfer_direction direction;
440     phys_addr_t src_addr;
441     phys_addr_t dst_addr;
442     enum dma_slave_buswidth src_addr_width;
443     enum dma_slave_buswidth dst_addr_width;
444     u32 src_maxburst;
445     u32 dst_maxburst;
446     u32 src_port_window_size;
447     u32 dst_port_window_size;
448     bool device_fc;
449     unsigned int slave_id;
450     void *peripheral_config;
451     size_t peripheral_size;
452 };
453 
454 /**
455  * enum dma_residue_granularity - Granularity of the reported transfer residue
456  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
457  *  DMA channel is only able to tell whether a descriptor has been completed or
458  *  not, which means residue reporting is not supported by this channel. The
459  *  residue field of the dma_tx_state field will always be 0.
460  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
461  *  completed segment of the transfer (For cyclic transfers this is after each
462  *  period). This is typically implemented by having the hardware generate an
463  *  interrupt after each transferred segment and then the drivers updates the
464  *  outstanding residue by the size of the segment. Another possibility is if
465  *  the hardware supports scatter-gather and the segment descriptor has a field
466  *  which gets set after the segment has been completed. The driver then counts
467  *  the number of segments without the flag set to compute the residue.
468  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
469  *  burst. This is typically only supported if the hardware has a progress
470  *  register of some sort (E.g. a register with the current read/write address
471  *  or a register with the amount of bursts/beats/bytes that have been
472  *  transferred or still need to be transferred).
473  */
474 enum dma_residue_granularity {
475     DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
476     DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
477     DMA_RESIDUE_GRANULARITY_BURST = 2,
478 };
479 
480 /**
481  * struct dma_slave_caps - expose capabilities of a slave channel only
482  * @src_addr_widths: bit mask of src addr widths the channel supports.
483  *    Width is specified in bytes, e.g. for a channel supporting
484  *    a width of 4 the mask should have BIT(4) set.
485  * @dst_addr_widths: bit mask of dst addr widths the channel supports
486  * @directions: bit mask of slave directions the channel supports.
487  *    Since the enum dma_transfer_direction is not defined as bit flag for
488  *    each type, the dma controller should set BIT(<TYPE>) and same
489  *    should be checked by controller as well
490  * @min_burst: min burst capability per-transfer
491  * @max_burst: max burst capability per-transfer
492  * @max_sg_burst: max number of SG list entries executed in a single burst
493  *    DMA tansaction with no software intervention for reinitialization.
494  *    Zero value means unlimited number of entries.
495  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
496  *           for resume later)
497  * @cmd_resume: true, if resume is supported
498  * @cmd_terminate: true, if terminate cmd is supported
499  * @residue_granularity: granularity of the reported transfer residue
500  * @descriptor_reuse: if a descriptor can be reused by client and
501  * resubmitted multiple times
502  */
503 struct dma_slave_caps {
504     u32 src_addr_widths;
505     u32 dst_addr_widths;
506     u32 directions;
507     u32 min_burst;
508     u32 max_burst;
509     u32 max_sg_burst;
510     bool cmd_pause;
511     bool cmd_resume;
512     bool cmd_terminate;
513     enum dma_residue_granularity residue_granularity;
514     bool descriptor_reuse;
515 };
516 
dma_chan_name(struct dma_chan * chan)517 static inline const char *dma_chan_name(struct dma_chan *chan)
518 {
519     return dev_name(&chan->dev->device);
520 }
521 
522 void dma_chan_cleanup(struct kref *kref);
523 
524 /**
525  * typedef dma_filter_fn - callback filter for dma_request_channel
526  * @chan: channel to be reviewed
527  * @filter_param: opaque parameter passed through dma_request_channel
528  *
529  * When this optional parameter is specified in a call to dma_request_channel a
530  * suitable channel is passed to this routine for further dispositioning before
531  * being returned.  Where 'suitable' indicates a non-busy channel that
532  * satisfies the given capability mask.  It returns 'true' to indicate that the
533  * channel is suitable.
534  */
535 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
536 
537 typedef void (*dma_async_tx_callback)(void *dma_async_param);
538 
539 enum dmaengine_tx_result {
540     DMA_TRANS_NOERROR = 0,  /* SUCCESS */
541     DMA_TRANS_READ_FAILED,  /* Source DMA read failed */
542     DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
543     DMA_TRANS_ABORTED,      /* Op never submitted / aborted */
544 };
545 
546 struct dmaengine_result {
547     enum dmaengine_tx_result result;
548     u32 residue;
549 };
550 
551 typedef void (*dma_async_tx_callback_result)(void *dma_async_param, const struct dmaengine_result *result);
552 
553 struct dmaengine_unmap_data {
554 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
555     u16 map_cnt;
556 #else
557     u8 map_cnt;
558 #endif
559     u8 to_cnt;
560     u8 from_cnt;
561     u8 bidi_cnt;
562     struct device *dev;
563     struct kref kref;
564     size_t len;
565     dma_addr_t addr[];
566 };
567 
568 struct dma_async_tx_descriptor;
569 
570 struct dma_descriptor_metadata_ops {
571     int (*attach)(struct dma_async_tx_descriptor *desc, void *data, size_t len);
572 
573     void *(*get_ptr)(struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len);
574     int (*set_len)(struct dma_async_tx_descriptor *desc, size_t payload_len);
575 };
576 
577 /**
578  * struct dma_async_tx_descriptor - async transaction descriptor
579  * ---dma generic offload fields---
580  * @cookie: tracking cookie for this transaction, set to -EBUSY if
581  *    this tx is sitting on a dependency list
582  * @flags: flags to augment operation preparation, control completion, and
583  *    communicate status
584  * @phys: physical address of the descriptor
585  * @chan: target channel for this operation
586  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
587  * descriptor pending. To be pushed on .issue_pending() call
588  * @callback: routine to call after this operation is complete
589  * @callback_param: general parameter to pass to the callback routine
590  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
591  *    DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
592  *    DESC_METADATA_NONE
593  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
594  *    DMA driver if metadata mode is supported with the descriptor
595  * ---async_tx api specific fields---
596  * @next: at completion submit this descriptor
597  * @parent: pointer to the next level up in the dependency chain
598  * @lock: protect the parent and next pointers
599  */
600 struct dma_async_tx_descriptor {
601     dma_cookie_t cookie;
602     enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
603     dma_addr_t phys;
604     struct dma_chan *chan;
605     dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
606     int (*desc_free)(struct dma_async_tx_descriptor *tx);
607     dma_async_tx_callback callback;
608     dma_async_tx_callback_result callback_result;
609     void *callback_param;
610     struct dmaengine_unmap_data *unmap;
611     enum dma_desc_metadata_mode desc_metadata_mode;
612     struct dma_descriptor_metadata_ops *metadata_ops;
613 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
614     struct dma_async_tx_descriptor *next;
615     struct dma_async_tx_descriptor *parent;
616     spinlock_t lock;
617 #endif
618 };
619 
620 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)621 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap)
622 {
623     kref_get(&unmap->kref);
624     tx->unmap = unmap;
625 }
626 
627 struct dmaengine_unmap_data *dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
628 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
629 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)630 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap)
631 {
632 }
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)633 static inline struct dmaengine_unmap_data *dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
634 {
635     return NULL;
636 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)637 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
638 {
639 }
640 #endif
641 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)642 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
643 {
644     if (!tx->unmap) {
645         return;
646     }
647 
648     dmaengine_unmap_put(tx->unmap);
649     tx->unmap = NULL;
650 }
651 
652 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)653 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
654 {
655 }
txd_unlock(struct dma_async_tx_descriptor * txd)656 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
657 {
658 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)659 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
660 {
661     BUG();
662 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)663 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
664 {
665 }
txd_clear_next(struct dma_async_tx_descriptor * txd)666 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
667 {
668 }
txd_next(struct dma_async_tx_descriptor * txd)669 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
670 {
671     return NULL;
672 }
txd_parent(struct dma_async_tx_descriptor * txd)673 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
674 {
675     return NULL;
676 }
677 
678 #else
txd_lock(struct dma_async_tx_descriptor * txd)679 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
680 {
681     spin_lock_bh(&txd->lock);
682 }
txd_unlock(struct dma_async_tx_descriptor * txd)683 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
684 {
685     spin_unlock_bh(&txd->lock);
686 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)687 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
688 {
689     txd->next = next;
690     next->parent = txd;
691 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)692 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
693 {
694     txd->parent = NULL;
695 }
txd_clear_next(struct dma_async_tx_descriptor * txd)696 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
697 {
698     txd->next = NULL;
699 }
txd_parent(struct dma_async_tx_descriptor * txd)700 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
701 {
702     return txd->parent;
703 }
txd_next(struct dma_async_tx_descriptor * txd)704 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
705 {
706     return txd->next;
707 }
708 #endif
709 
710 /**
711  * struct dma_tx_state - filled in to report the status of
712  * a transfer.
713  * @last: last completed DMA cookie
714  * @used: last issued DMA cookie (i.e. the one in progress)
715  * @residue: the remaining number of bytes left to transmit
716  *    on the selected transfer for states DMA_IN_PROGRESS and
717  *    DMA_PAUSED if this is implemented in the driver, else 0
718  * @in_flight_bytes: amount of data in bytes cached by the DMA.
719  */
720 struct dma_tx_state {
721     dma_cookie_t last;
722     dma_cookie_t used;
723     u32 residue;
724     u32 in_flight_bytes;
725 };
726 
727 /**
728  * enum dmaengine_alignment - defines alignment of the DMA async tx
729  * buffers
730  */
731 enum dmaengine_alignment {
732     DMAENGINE_ALIGN_1_BYTE = 0,
733     DMAENGINE_ALIGN_2_BYTES = 1,
734     DMAENGINE_ALIGN_4_BYTES = 2,
735     DMAENGINE_ALIGN_8_BYTES = 3,
736     DMAENGINE_ALIGN_16_BYTES = 4,
737     DMAENGINE_ALIGN_32_BYTES = 5,
738     DMAENGINE_ALIGN_64_BYTES = 6,
739 };
740 
741 /**
742  * struct dma_slave_map - associates slave device and it's slave channel with
743  * parameter to be used by a filter function
744  * @devname: name of the device
745  * @slave: slave channel name
746  * @param: opaque parameter to pass to struct dma_filter.fn
747  */
748 struct dma_slave_map {
749     const char *devname;
750     const char *slave;
751     void *param;
752 };
753 
754 /**
755  * struct dma_filter - information for slave device/channel to filter_fn/param
756  * mapping
757  * @fn: filter function callback
758  * @mapcnt: number of slave device/channel in the map
759  * @map: array of channel to filter mapping data
760  */
761 struct dma_filter {
762     dma_filter_fn fn;
763     int mapcnt;
764     const struct dma_slave_map *map;
765 };
766 
767 /**
768  * struct dma_device - info on the entity supplying DMA services
769  * @chancnt: how many DMA channels are supported
770  * @privatecnt: how many DMA channels are requested by dma_request_channel
771  * @channels: the list of struct dma_chan
772  * @global_node: list_head for global dma_device_list
773  * @filter: information for device/slave to filter function/param mapping
774  * @cap_mask: one or more dma_capability flags
775  * @desc_metadata_modes: supported metadata modes by the DMA device
776  * @max_xor: maximum number of xor sources, 0 if no capability
777  * @max_pq: maximum number of PQ sources and PQ-continue capability
778  * @copy_align: alignment shift for memcpy operations
779  * @xor_align: alignment shift for xor operations
780  * @pq_align: alignment shift for pq operations
781  * @fill_align: alignment shift for memset operations
782  * @dev_id: unique device ID
783  * @dev: struct device reference for dma mapping api
784  * @owner: owner module (automatically set based on the provided dev)
785  * @src_addr_widths: bit mask of src addr widths the device supports
786  *    Width is specified in bytes, e.g. for a device supporting
787  *    a width of 4 the mask should have BIT(4) set.
788  * @dst_addr_widths: bit mask of dst addr widths the device supports
789  * @directions: bit mask of slave directions the device supports.
790  *    Since the enum dma_transfer_direction is not defined as bit flag for
791  *    each type, the dma controller should set BIT(<TYPE>) and same
792  *    should be checked by controller as well
793  * @min_burst: min burst capability per-transfer
794  * @max_burst: max burst capability per-transfer
795  * @max_sg_burst: max number of SG list entries executed in a single burst
796  *    DMA tansaction with no software intervention for reinitialization.
797  *    Zero value means unlimited number of entries.
798  * @residue_granularity: granularity of the transfer residue reported
799  *    by tx_status
800  * @device_alloc_chan_resources: allocate resources and return the
801  *    number of allocated descriptors
802  * @device_free_chan_resources: release DMA channel's resources
803  * @device_prep_dma_memcpy: prepares a memcpy operation
804  * @device_prep_dma_xor: prepares a xor operation
805  * @device_prep_dma_xor_val: prepares a xor validation operation
806  * @device_prep_dma_pq: prepares a pq operation
807  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
808  * @device_prep_dma_memset: prepares a memset operation
809  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
810  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
811  * @device_prep_slave_sg: prepares a slave dma operation
812  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
813  *    The function takes a buffer of size buf_len. The callback function will
814  *    be called after period_len bytes have been transferred.
815  * @device_prep_interleaved_dma: Transfer expression in a generic way.
816  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
817  * @device_caps: May be used to override the generic DMA slave capabilities
818  *    with per-channel specific ones
819  * @device_config: Pushes a new configuration to a channel, return 0 or an error
820  *    code
821  * @device_pause: Pauses any transfer happening on a channel. Returns
822  *    0 or an error code
823  * @device_resume: Resumes any transfer on a channel previously
824  *    paused. Returns 0 or an error code
825  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
826  *    or an error code
827  * @device_synchronize: Synchronizes the termination of a transfers to the
828  *  current context.
829  * @device_tx_status: poll for transaction completion, the optional
830  *    txstate parameter can be supplied with a pointer to get a
831  *    struct with auxiliary transfer status information, otherwise the call
832  *    will just return a simple status code
833  * @device_issue_pending: push pending transactions to hardware
834  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
835  * @device_release: called sometime atfer dma_async_device_unregister() is
836  *     called and there are no further references to this structure. This
837  *     must be implemented to free resources however many existing drivers
838  *     do not and are therefore not safe to unbind while in use.
839  * @dbg_summary_show: optional routine to show contents in debugfs; default code
840  *     will be used when this is omitted, but custom code can show extra,
841  *     controller specific information.
842  */
843 struct dma_device {
844     struct kref ref;
845     unsigned int chancnt;
846     unsigned int privatecnt;
847     struct list_head channels;
848     struct list_head global_node;
849     struct dma_filter filter;
850     dma_cap_mask_t cap_mask;
851     enum dma_desc_metadata_mode desc_metadata_modes;
852     unsigned short max_xor;
853     unsigned short max_pq;
854     enum dmaengine_alignment copy_align;
855     enum dmaengine_alignment xor_align;
856     enum dmaengine_alignment pq_align;
857     enum dmaengine_alignment fill_align;
858 #define DMA_HAS_PQ_CONTINUE (1 << 15)
859 
860     int dev_id;
861     struct device *dev;
862     struct module *owner;
863     struct ida chan_ida;
864     struct mutex chan_mutex; /* to protect chan_ida */
865 
866     u32 src_addr_widths;
867     u32 dst_addr_widths;
868     u32 directions;
869     u32 min_burst;
870     u32 max_burst;
871     u32 max_sg_burst;
872     bool descriptor_reuse;
873     enum dma_residue_granularity residue_granularity;
874 
875     int (*device_alloc_chan_resources)(struct dma_chan *chan);
876     void (*device_free_chan_resources)(struct dma_chan *chan);
877 
878     struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
879                                                               size_t len, unsigned long flags);
880     struct dma_async_tx_descriptor *(*device_prep_dma_xor)(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
881                                                            unsigned int src_cnt, size_t len, unsigned long flags);
882     struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(struct dma_chan *chan, dma_addr_t *src,
883                                                                unsigned int src_cnt, size_t len,
884                                                                enum sum_check_flags *result, unsigned long flags);
885     struct dma_async_tx_descriptor *(*device_prep_dma_pq)(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
886                                                           unsigned int src_cnt, const unsigned char *scf, size_t len,
887                                                           unsigned long flags);
888     struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
889                                                               unsigned int src_cnt, const unsigned char *scf,
890                                                               size_t len, enum sum_check_flags *pqres,
891                                                               unsigned long flags);
892     struct dma_async_tx_descriptor *(*device_prep_dma_memset)(struct dma_chan *chan, dma_addr_t dest, int value,
893                                                               size_t len, unsigned long flags);
894     struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(struct dma_chan *chan, struct scatterlist *sg,
895                                                                  unsigned int nents, int value, unsigned long flags);
896     struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(struct dma_chan *chan, unsigned long flags);
897 
898     struct dma_async_tx_descriptor *(*device_prep_slave_sg)(struct dma_chan *chan, struct scatterlist *sgl,
899                                                             unsigned int sg_len, enum dma_transfer_direction direction,
900                                                             unsigned long flags, void *context);
901     struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(struct dma_chan *chan, dma_addr_t buf_addr,
902                                                               size_t buf_len, size_t period_len,
903                                                               enum dma_transfer_direction direction,
904                                                               unsigned long flags);
905     struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(struct dma_chan *chan,
906                                                                    struct dma_interleaved_template *xt,
907                                                                    unsigned long flags);
908     struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(struct dma_chan *chan, dma_addr_t dst, u64 data,
909                                                                 unsigned long flags);
910 
911     void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
912     int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
913     int (*device_pause)(struct dma_chan *chan);
914     int (*device_resume)(struct dma_chan *chan);
915     int (*device_terminate_all)(struct dma_chan *chan);
916     void (*device_synchronize)(struct dma_chan *chan);
917 
918     enum dma_status (*device_tx_status)(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate);
919     void (*device_issue_pending)(struct dma_chan *chan);
920     void (*device_release)(struct dma_device *dev);
921     /* debugfs support */
922 #ifdef CONFIG_DEBUG_FS
923     void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
924     struct dentry *dbg_dev_root;
925 #endif
926 };
927 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)928 static inline int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config)
929 {
930     if (chan->device->device_config) {
931         return chan->device->device_config(chan, config);
932     }
933 
934     return -ENOSYS;
935 }
936 
is_slave_direction(enum dma_transfer_direction direction)937 static inline bool is_slave_direction(enum dma_transfer_direction direction)
938 {
939     return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
940 }
941 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)942 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(struct dma_chan *chan, dma_addr_t buf,
943                                                                           size_t len, enum dma_transfer_direction dir,
944                                                                           unsigned long flags)
945 {
946     struct scatterlist sg;
947     sg_init_table(&sg, 1);
948     sg_dma_address(&sg) = buf;
949     sg_dma_len(&sg) = len;
950 
951     if (!chan || !chan->device || !chan->device->device_prep_slave_sg) {
952         return NULL;
953     }
954 
955     return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags, NULL);
956 }
957 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)958 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
959                                                                       unsigned int sg_len,
960                                                                       enum dma_transfer_direction dir,
961                                                                       unsigned long flags)
962 {
963     if (!chan || !chan->device || !chan->device->device_prep_slave_sg) {
964         return NULL;
965     }
966 
967     return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, NULL);
968 }
969 
970 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
971 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)972 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(struct dma_chan *chan, struct scatterlist *sgl,
973                                                                     unsigned int sg_len,
974                                                                     enum dma_transfer_direction dir,
975                                                                     unsigned long flags, struct rio_dma_ext *rio_ext)
976 {
977     if (!chan || !chan->device || !chan->device->device_prep_slave_sg) {
978         return NULL;
979     }
980 
981     return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, rio_ext);
982 }
983 #endif
984 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)985 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
986                                                                         size_t buf_len, size_t period_len,
987                                                                         enum dma_transfer_direction dir,
988                                                                         unsigned long flags)
989 {
990     if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) {
991         return NULL;
992     }
993 
994     return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, period_len, dir, flags);
995 }
996 
997 static inline struct dma_async_tx_descriptor *
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)998 dmaengine_prep_interleaved_dma(struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags)
999 {
1000     if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) {
1001         return NULL;
1002     }
1003     if (flags & DMA_PREP_REPEAT && !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) {
1004         return NULL;
1005     }
1006 
1007     return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1008 }
1009 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1010 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest,
1011                                                                         int value, size_t len, unsigned long flags)
1012 {
1013     if (!chan || !chan->device || !chan->device->device_prep_dma_memset) {
1014         return NULL;
1015     }
1016 
1017     return chan->device->device_prep_dma_memset(chan, dest, value, len, flags);
1018 }
1019 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1020 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
1021                                                                         dma_addr_t src, size_t len, unsigned long flags)
1022 {
1023     if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) {
1024         return NULL;
1025     }
1026 
1027     return chan->device->device_prep_dma_memcpy(chan, dest, src, len, flags);
1028 }
1029 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1030 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, enum dma_desc_metadata_mode mode)
1031 {
1032     if (!chan) {
1033         return false;
1034     }
1035 
1036     return !!(chan->device->desc_metadata_modes & mode);
1037 }
1038 
1039 #ifdef CONFIG_DMA_ENGINE
1040 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, void *data, size_t len);
1041 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, size_t *payload_len, size_t *max_len);
1042 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, size_t payload_len);
1043 #else  /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1044 static inline int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, void *data, size_t len)
1045 {
1046     return -EINVAL;
1047 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1048 static inline void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, size_t *payload_len,
1049                                                     size_t *max_len)
1050 {
1051     return NULL;
1052 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1053 static inline int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, size_t payload_len)
1054 {
1055     return -EINVAL;
1056 }
1057 #endif /* CONFIG_DMA_ENGINE */
1058 
1059 /**
1060  * dmaengine_terminate_all() - Terminate all active DMA transfers
1061  * @chan: The channel for which to terminate the transfers
1062  *
1063  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1064  * dmaengine_terminate_async() instead.
1065  */
dmaengine_terminate_all(struct dma_chan * chan)1066 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1067 {
1068     if (chan->device->device_terminate_all) {
1069         return chan->device->device_terminate_all(chan);
1070     }
1071 
1072     return -ENOSYS;
1073 }
1074 
1075 /**
1076  * dmaengine_terminate_async() - Terminate all active DMA transfers
1077  * @chan: The channel for which to terminate the transfers
1078  *
1079  * Calling this function will terminate all active and pending descriptors
1080  * that have previously been submitted to the channel. It is not guaranteed
1081  * though that the transfer for the active descriptor has stopped when the
1082  * function returns. Furthermore it is possible the complete callback of a
1083  * submitted transfer is still running when this function returns.
1084  *
1085  * dmaengine_synchronize() needs to be called before it is safe to free
1086  * any memory that is accessed by previously submitted descriptors or before
1087  * freeing any resources accessed from within the completion callback of any
1088  * previously submitted descriptors.
1089  *
1090  * This function can be called from atomic context as well as from within a
1091  * complete callback of a descriptor submitted on the same channel.
1092  *
1093  * If none of the two conditions above apply consider using
1094  * dmaengine_terminate_sync() instead.
1095  */
dmaengine_terminate_async(struct dma_chan * chan)1096 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1097 {
1098     if (chan->device->device_terminate_all) {
1099         return chan->device->device_terminate_all(chan);
1100     }
1101 
1102     return -EINVAL;
1103 }
1104 
1105 /**
1106  * dmaengine_synchronize() - Synchronize DMA channel termination
1107  * @chan: The channel to synchronize
1108  *
1109  * Synchronizes to the DMA channel termination to the current context. When this
1110  * function returns it is guaranteed that all transfers for previously issued
1111  * descriptors have stopped and it is safe to free the memory associated
1112  * with them. Furthermore it is guaranteed that all complete callback functions
1113  * for a previously submitted descriptor have finished running and it is safe to
1114  * free resources accessed from within the complete callbacks.
1115  *
1116  * The behavior of this function is undefined if dma_async_issue_pending() has
1117  * been called between dmaengine_terminate_async() and this function.
1118  *
1119  * This function must only be called from non-atomic context and must not be
1120  * called from within a complete callback of a descriptor submitted on the same
1121  * channel.
1122  */
dmaengine_synchronize(struct dma_chan * chan)1123 static inline void dmaengine_synchronize(struct dma_chan *chan)
1124 {
1125     might_sleep();
1126 
1127     if (chan->device->device_synchronize) {
1128         chan->device->device_synchronize(chan);
1129     }
1130 }
1131 
1132 /**
1133  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1134  * @chan: The channel for which to terminate the transfers
1135  *
1136  * Calling this function will terminate all active and pending transfers
1137  * that have previously been submitted to the channel. It is similar to
1138  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1139  * stopped and that all complete callbacks have finished running when the
1140  * function returns.
1141  *
1142  * This function must only be called from non-atomic context and must not be
1143  * called from within a complete callback of a descriptor submitted on the same
1144  * channel.
1145  */
dmaengine_terminate_sync(struct dma_chan * chan)1146 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1147 {
1148     int ret;
1149 
1150     ret = dmaengine_terminate_async(chan);
1151     if (ret) {
1152         return ret;
1153     }
1154 
1155     dmaengine_synchronize(chan);
1156 
1157     return 0;
1158 }
1159 
dmaengine_pause(struct dma_chan * chan)1160 static inline int dmaengine_pause(struct dma_chan *chan)
1161 {
1162     if (chan->device->device_pause) {
1163         return chan->device->device_pause(chan);
1164     }
1165 
1166     return -ENOSYS;
1167 }
1168 
dmaengine_resume(struct dma_chan * chan)1169 static inline int dmaengine_resume(struct dma_chan *chan)
1170 {
1171     if (chan->device->device_resume) {
1172         return chan->device->device_resume(chan);
1173     }
1174 
1175     return -ENOSYS;
1176 }
1177 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1178 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1179                                                   struct dma_tx_state *state)
1180 {
1181     return chan->device->device_tx_status(chan, cookie, state);
1182 }
1183 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1184 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1185 {
1186     return desc->tx_submit(desc);
1187 }
1188 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1189 static inline bool dmaengine_check_align(enum dmaengine_alignment align, size_t off1, size_t off2, size_t len)
1190 {
1191     return !(((1 << align) - 1) & (off1 | off2 | len));
1192 }
1193 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1194 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len)
1195 {
1196     return dmaengine_check_align(dev->copy_align, off1, off2, len);
1197 }
1198 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1199 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len)
1200 {
1201     return dmaengine_check_align(dev->xor_align, off1, off2, len);
1202 }
1203 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1204 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len)
1205 {
1206     return dmaengine_check_align(dev->pq_align, off1, off2, len);
1207 }
1208 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1209 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len)
1210 {
1211     return dmaengine_check_align(dev->fill_align, off1, off2, len);
1212 }
1213 
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1214 static inline void dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1215 {
1216     dma->max_pq = maxpq;
1217     if (has_pq_continue) {
1218         dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1219     }
1220 }
1221 
dmaf_continue(enum dma_ctrl_flags flags)1222 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1223 {
1224     return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1225 }
1226 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1227 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1228 {
1229     enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1230 
1231     return (flags & mask) == mask;
1232 }
1233 
dma_dev_has_pq_continue(struct dma_device * dma)1234 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1235 {
1236     return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1237 }
1238 
dma_dev_to_maxpq(struct dma_device * dma)1239 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1240 {
1241     return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1242 }
1243 
1244 /* dma_maxpq - reduce maxpq in the face of continued operations
1245  * @dma - dma device with PQ capability
1246  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1247  *
1248  * When an engine does not support native continuation we need 3 extra
1249  * source slots to reuse P and Q with the following coefficients:
1250  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1251  * 2/ {01} * Q : use Q to continue Q' calculation
1252  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1253  *
1254  * In the case where P is disabled we only need 1 extra source:
1255  * 1/ {01} * Q : use Q to continue Q' calculation
1256  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1257 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1258 {
1259     if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) {
1260         return dma_dev_to_maxpq(dma);
1261     }
1262     if (dmaf_p_disabled_continue(flags)) {
1263         return dma_dev_to_maxpq(dma) - 1;
1264     }
1265     if (dmaf_continue(flags)) {
1266         return dma_dev_to_maxpq(dma) - 3;
1267     }
1268     BUG();
1269 }
1270 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1271 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, size_t dir_icg)
1272 {
1273     if (inc) {
1274         if (dir_icg) {
1275             return dir_icg;
1276         }
1277         if (sgl) {
1278             return icg;
1279         }
1280     }
1281 
1282     return 0;
1283 }
1284 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1285 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk)
1286 {
1287     return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, chunk->icg, chunk->dst_icg);
1288 }
1289 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1290 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk)
1291 {
1292     return dmaengine_get_icg(xt->src_inc, xt->src_sgl, chunk->icg, chunk->src_icg);
1293 }
1294 
1295 /* --- public DMA engine API --- */
1296 
1297 #ifdef CONFIG_DMA_ENGINE
1298 void dmaengine_get(void);
1299 void dmaengine_put(void);
1300 #else
dmaengine_get(void)1301 static inline void dmaengine_get(void)
1302 {
1303 }
dmaengine_put(void)1304 static inline void dmaengine_put(void)
1305 {
1306 }
1307 #endif
1308 
1309 #ifdef CONFIG_ASYNC_TX_DMA
1310 #define async_dmaengine_get() dmaengine_get()
1311 #define async_dmaengine_put() dmaengine_put()
1312 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1313 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1314 #else
1315 #define async_dma_find_channel(type) dma_find_channel(type)
1316 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1317 #else
async_dmaengine_get(void)1318 static inline void async_dmaengine_get(void)
1319 {
1320 }
async_dmaengine_put(void)1321 static inline void async_dmaengine_put(void)
1322 {
1323 }
async_dma_find_channel(enum dma_transaction_type type)1324 static inline struct dma_chan *async_dma_find_channel(enum dma_transaction_type type)
1325 {
1326     return NULL;
1327 }
1328 #endif /* CONFIG_ASYNC_TX_DMA */
1329 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, struct dma_chan *chan);
1330 
async_tx_ack(struct dma_async_tx_descriptor * tx)1331 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1332 {
1333     tx->flags |= DMA_CTRL_ACK;
1334 }
1335 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1336 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1337 {
1338     tx->flags &= ~DMA_CTRL_ACK;
1339 }
1340 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1341 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1342 {
1343     return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1344 }
1345 
1346 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1347 static inline void __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1348 {
1349     set_bit(tx_type, dstp->bits);
1350 }
1351 
1352 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1353 static inline void __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1354 {
1355     clear_bit(tx_type, dstp->bits);
1356 }
1357 
1358 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1359 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1360 {
1361     bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1362 }
1363 
1364 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1365 static inline int __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1366 {
1367     return test_bit(tx_type, srcp->bits);
1368 }
1369 
1370 #define for_each_dma_cap_mask(cap, mask) for_each_set_bit((cap), (mask).bits, DMA_TX_TYPE_END)
1371 
1372 /**
1373  * dma_async_issue_pending - flush pending transactions to HW
1374  * @chan: target DMA channel
1375  *
1376  * This allows drivers to push copies to HW in batches,
1377  * reducing MMIO writes where possible.
1378  */
dma_async_issue_pending(struct dma_chan * chan)1379 static inline void dma_async_issue_pending(struct dma_chan *chan)
1380 {
1381     chan->device->device_issue_pending(chan);
1382 }
1383 
1384 /**
1385  * dma_async_is_tx_complete - poll for transaction completion
1386  * @chan: DMA channel
1387  * @cookie: transaction identifier to check status of
1388  * @last: returns last completed cookie, can be NULL
1389  * @used: returns last issued cookie, can be NULL
1390  *
1391  * If @last and @used are passed in, upon return they reflect the driver
1392  * internal state and can be used with dma_async_is_complete() to check
1393  * the status of multiple cookies without re-checking hardware state.
1394  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1395 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *last,
1396                                                        dma_cookie_t *used)
1397 {
1398     struct dma_tx_state state;
1399     enum dma_status status;
1400 
1401     status = chan->device->device_tx_status(chan, cookie, &state);
1402     if (last) {
1403         *last = state.last;
1404     }
1405     if (used) {
1406         *used = state.used;
1407     }
1408     return status;
1409 }
1410 
1411 /**
1412  * dma_async_is_complete - test a cookie against chan state
1413  * @cookie: transaction identifier to test status of
1414  * @last_complete: last know completed transaction
1415  * @last_used: last cookie value handed out
1416  *
1417  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1418  * the test logic is separated for lightweight testing of multiple cookies
1419  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1420 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, dma_cookie_t last_complete,
1421                                                     dma_cookie_t last_used)
1422 {
1423     if (last_complete <= last_used) {
1424         if ((cookie <= last_complete) || (cookie > last_used)) {
1425             return DMA_COMPLETE;
1426         }
1427     } else {
1428         if ((cookie <= last_complete) && (cookie > last_used)) {
1429             return DMA_COMPLETE;
1430         }
1431     }
1432     return DMA_IN_PROGRESS;
1433 }
1434 
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1435 static inline void dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1436 {
1437     if (!st) {
1438         return;
1439     }
1440 
1441     st->last = last;
1442     st->used = used;
1443     st->residue = residue;
1444 }
1445 
1446 #ifdef CONFIG_DMA_ENGINE
1447 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1448 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1449 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1450 void dma_issue_pending_all(void);
1451 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param,
1452                                        struct device_node *np);
1453 
1454 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1455 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1456 
1457 void dma_release_channel(struct dma_chan *chan);
1458 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1459 #else
dma_find_channel(enum dma_transaction_type tx_type)1460 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1461 {
1462     return NULL;
1463 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1464 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1465 {
1466     return DMA_COMPLETE;
1467 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1468 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1469 {
1470     return DMA_COMPLETE;
1471 }
dma_issue_pending_all(void)1472 static inline void dma_issue_pending_all(void)
1473 {
1474 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1475 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param,
1476                                                      struct device_node *np)
1477 {
1478     return NULL;
1479 }
dma_request_chan(struct device * dev,const char * name)1480 static inline struct dma_chan *dma_request_chan(struct device *dev, const char *name)
1481 {
1482     return ERR_PTR(-ENODEV);
1483 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1484 static inline struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
1485 {
1486     return ERR_PTR(-ENODEV);
1487 }
dma_release_channel(struct dma_chan * chan)1488 static inline void dma_release_channel(struct dma_chan *chan)
1489 {
1490 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1491 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
1492 {
1493     return -ENXIO;
1494 }
1495 #endif
1496 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1497 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1498 {
1499     struct dma_slave_caps caps;
1500     int ret;
1501 
1502     ret = dma_get_slave_caps(tx->chan, &caps);
1503     if (ret) {
1504         return ret;
1505     }
1506 
1507     if (!caps.descriptor_reuse) {
1508         return -EPERM;
1509     }
1510 
1511     tx->flags |= DMA_CTRL_REUSE;
1512     return 0;
1513 }
1514 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1515 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1516 {
1517     tx->flags &= ~DMA_CTRL_REUSE;
1518 }
1519 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1520 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1521 {
1522     return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1523 }
1524 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1525 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1526 {
1527     /* this is supported for reusable desc, so check that */
1528     if (!dmaengine_desc_test_reuse(desc)) {
1529         return -EPERM;
1530     }
1531 
1532     return desc->desc_free(desc);
1533 }
1534 
1535 /* --- DMA device --- */
1536 
1537 int dma_async_device_register(struct dma_device *device);
1538 int dmaenginem_async_device_register(struct dma_device *device);
1539 void dma_async_device_unregister(struct dma_device *device);
1540 int dma_async_device_channel_register(struct dma_device *device, struct dma_chan *chan);
1541 void dma_async_device_channel_unregister(struct dma_device *device, struct dma_chan *chan);
1542 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1543 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y, NULL)
1544 
1545 /* Deprecated, please use dma_request_chan() directly */
dma_request_slave_channel(struct device * dev,const char * name)1546 static inline struct dma_chan *__deprecated dma_request_slave_channel(struct device *dev, const char *name)
1547 {
1548     struct dma_chan *ch = dma_request_chan(dev, name);
1549 
1550     return IS_ERR(ch) ? NULL : ch;
1551 }
1552 
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1553 static inline struct dma_chan *dma_request_slave_channel_compat(const dma_cap_mask_t mask, dma_filter_fn fn,
1554                                                                 void *fn_param, struct device *dev, const char *name)
1555 {
1556     struct dma_chan *chan;
1557 
1558     chan = dma_request_slave_channel(dev, name);
1559     if (chan) {
1560         return chan;
1561     }
1562 
1563     if (!fn || !fn_param) {
1564         return NULL;
1565     }
1566 
1567     return __dma_request_channel(&mask, fn, fn_param, NULL);
1568 }
1569 
dmaengine_get_direction_text(enum dma_transfer_direction dir)1570 static inline char *dmaengine_get_direction_text(enum dma_transfer_direction dir)
1571 {
1572     switch (dir) {
1573         case DMA_DEV_TO_MEM:
1574             return "DEV_TO_MEM";
1575         case DMA_MEM_TO_DEV:
1576             return "MEM_TO_DEV";
1577         case DMA_MEM_TO_MEM:
1578             return "MEM_TO_MEM";
1579         case DMA_DEV_TO_DEV:
1580             return "DEV_TO_DEV";
1581         default:
1582             return "invalid";
1583     }
1584 }
1585 #endif /* DMAENGINE_H */
1586