1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/consts_exts.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63
64 using namespace ir_builder;
65
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68 exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74 _mesa_glsl_parse_state *state, ir_variable_mode mode);
75
76 /**
77 * Visitor class that finds the first instance of any write-only variable that
78 * is ever read, if any
79 */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
read_from_write_only_variable_visitor()83 read_from_write_only_variable_visitor() : found(NULL)
84 {
85 }
86
visit(ir_dereference_variable * ir)87 virtual ir_visitor_status visit(ir_dereference_variable *ir)
88 {
89 if (this->in_assignee)
90 return visit_continue;
91
92 ir_variable *var = ir->variable_referenced();
93 /* We can have memory_write_only set on both images and buffer variables,
94 * but in the former there is a distinction between reads from
95 * the variable itself (write_only) and from the memory they point to
96 * (memory_write_only), while in the case of buffer variables there is
97 * no such distinction, that is why this check here is limited to
98 * buffer variables alone.
99 */
100 if (!var || var->data.mode != ir_var_shader_storage)
101 return visit_continue;
102
103 if (var->data.memory_write_only) {
104 found = var;
105 return visit_stop;
106 }
107
108 return visit_continue;
109 }
110
get_variable()111 ir_variable *get_variable() {
112 return found;
113 }
114
visit_enter(ir_expression * ir)115 virtual ir_visitor_status visit_enter(ir_expression *ir)
116 {
117 /* .length() doesn't actually read anything */
118 if (ir->operation == ir_unop_ssbo_unsized_array_length)
119 return visit_continue_with_parent;
120
121 return visit_continue;
122 }
123
124 private:
125 ir_variable *found;
126 };
127
128 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131 _mesa_glsl_initialize_variables(instructions, state);
132
133 state->symbols->separate_function_namespace = state->language_version == 110;
134
135 state->current_function = NULL;
136
137 state->toplevel_ir = instructions;
138
139 state->gs_input_prim_type_specified = false;
140 state->tcs_output_vertices_specified = false;
141 state->cs_input_local_size_specified = false;
142
143 /* Section 4.2 of the GLSL 1.20 specification states:
144 * "The built-in functions are scoped in a scope outside the global scope
145 * users declare global variables in. That is, a shader's global scope,
146 * available for user-defined functions and global variables, is nested
147 * inside the scope containing the built-in functions."
148 *
149 * Since built-in functions like ftransform() access built-in variables,
150 * it follows that those must be in the outer scope as well.
151 *
152 * We push scope here to create this nesting effect...but don't pop.
153 * This way, a shader's globals are still in the symbol table for use
154 * by the linker.
155 */
156 state->symbols->push_scope();
157
158 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159 ast->hir(instructions, state);
160
161 verify_subroutine_associated_funcs(state);
162 detect_recursion_unlinked(state, instructions);
163 detect_conflicting_assignments(state, instructions);
164
165 state->toplevel_ir = NULL;
166
167 /* Move all of the variable declarations to the front of the IR list, and
168 * reverse the order. This has the (intended!) side effect that vertex
169 * shader inputs and fragment shader outputs will appear in the IR in the
170 * same order that they appeared in the shader code. This results in the
171 * locations being assigned in the declared order. Many (arguably buggy)
172 * applications depend on this behavior, and it matches what nearly all
173 * other drivers do.
174 */
175 foreach_in_list_safe(ir_instruction, node, instructions) {
176 ir_variable *const var = node->as_variable();
177
178 if (var == NULL)
179 continue;
180
181 var->remove();
182 instructions->push_head(var);
183 }
184
185 /* Figure out if gl_FragCoord is actually used in fragment shader */
186 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187 if (var != NULL)
188 state->fs_uses_gl_fragcoord = var->data.used;
189
190 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191 *
192 * If multiple shaders using members of a built-in block belonging to
193 * the same interface are linked together in the same program, they
194 * must all redeclare the built-in block in the same way, as described
195 * in section 4.3.7 "Interface Blocks" for interface block matching, or
196 * a link error will result.
197 *
198 * The phrase "using members of a built-in block" implies that if two
199 * shaders are linked together and one of them *does not use* any members
200 * of the built-in block, then that shader does not need to have a matching
201 * redeclaration of the built-in block.
202 *
203 * This appears to be a clarification to the behaviour established for
204 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205 * version.
206 *
207 * The definition of "interface" in section 4.3.7 that applies here is as
208 * follows:
209 *
210 * The boundary between adjacent programmable pipeline stages: This
211 * spans all the outputs in all compilation units of the first stage
212 * and all the inputs in all compilation units of the second stage.
213 *
214 * Therefore this rule applies to both inter- and intra-stage linking.
215 *
216 * The easiest way to implement this is to check whether the shader uses
217 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218 * remove all the relevant variable declaration from the IR, so that the
219 * linker won't see them and complain about mismatches.
220 */
221 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223
224 /* Check that we don't have reads from write-only variables */
225 read_from_write_only_variable_visitor v;
226 v.run(instructions);
227 ir_variable *error_var = v.get_variable();
228 if (error_var) {
229 /* It would be nice to have proper location information, but for that
230 * we would need to check this as we process each kind of AST node
231 */
232 YYLTYPE loc;
233 memset(&loc, 0, sizeof(loc));
234 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235 error_var->name);
236 }
237 }
238
239
240 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242 struct _mesa_glsl_parse_state *state)
243 {
244 switch (to->base_type) {
245 case GLSL_TYPE_FLOAT:
246 switch (from->base_type) {
247 case GLSL_TYPE_INT: return ir_unop_i2f;
248 case GLSL_TYPE_UINT: return ir_unop_u2f;
249 default: return (ir_expression_operation)0;
250 }
251
252 case GLSL_TYPE_UINT:
253 if (!state->has_implicit_int_to_uint_conversion())
254 return (ir_expression_operation)0;
255 switch (from->base_type) {
256 case GLSL_TYPE_INT: return ir_unop_i2u;
257 default: return (ir_expression_operation)0;
258 }
259
260 case GLSL_TYPE_DOUBLE:
261 if (!state->has_double())
262 return (ir_expression_operation)0;
263 switch (from->base_type) {
264 case GLSL_TYPE_INT: return ir_unop_i2d;
265 case GLSL_TYPE_UINT: return ir_unop_u2d;
266 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267 case GLSL_TYPE_INT64: return ir_unop_i642d;
268 case GLSL_TYPE_UINT64: return ir_unop_u642d;
269 default: return (ir_expression_operation)0;
270 }
271
272 case GLSL_TYPE_UINT64:
273 if (!state->has_int64())
274 return (ir_expression_operation)0;
275 switch (from->base_type) {
276 case GLSL_TYPE_INT: return ir_unop_i2u64;
277 case GLSL_TYPE_UINT: return ir_unop_u2u64;
278 case GLSL_TYPE_INT64: return ir_unop_i642u64;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_INT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2i64;
287 default: return (ir_expression_operation)0;
288 }
289
290 default: return (ir_expression_operation)0;
291 }
292 }
293
294
295 /**
296 * If a conversion is available, convert one operand to a different type
297 *
298 * The \c from \c ir_rvalue is converted "in place".
299 *
300 * \param to Type that the operand it to be converted to
301 * \param from Operand that is being converted
302 * \param state GLSL compiler state
303 *
304 * \return
305 * If a conversion is possible (or unnecessary), \c true is returned.
306 * Otherwise \c false is returned.
307 */
308 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310 struct _mesa_glsl_parse_state *state)
311 {
312 void *ctx = state;
313 if (to->base_type == from->type->base_type)
314 return true;
315
316 /* Prior to GLSL 1.20, there are no implicit conversions */
317 if (!state->has_implicit_conversions())
318 return false;
319
320 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321 *
322 * "There are no implicit array or structure conversions. For
323 * example, an array of int cannot be implicitly converted to an
324 * array of float.
325 */
326 if (!to->is_numeric() || !from->type->is_numeric())
327 return false;
328
329 /* We don't actually want the specific type `to`, we want a type
330 * with the same base type as `to`, but the same vector width as
331 * `from`.
332 */
333 to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334 from->type->matrix_columns);
335
336 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337 if (op) {
338 from = new(ctx) ir_expression(op, to, from, NULL);
339 return true;
340 } else {
341 return false;
342 }
343 }
344
345
346 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348 bool multiply,
349 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351 const glsl_type *type_a = value_a->type;
352 const glsl_type *type_b = value_b->type;
353
354 /* From GLSL 1.50 spec, page 56:
355 *
356 * "The arithmetic binary operators add (+), subtract (-),
357 * multiply (*), and divide (/) operate on integer and
358 * floating-point scalars, vectors, and matrices."
359 */
360 if (!type_a->is_numeric() || !type_b->is_numeric()) {
361 _mesa_glsl_error(loc, state,
362 "operands to arithmetic operators must be numeric");
363 return glsl_type::error_type;
364 }
365
366
367 /* "If one operand is floating-point based and the other is
368 * not, then the conversions from Section 4.1.10 "Implicit
369 * Conversions" are applied to the non-floating-point-based operand."
370 */
371 if (!apply_implicit_conversion(type_a, value_b, state)
372 && !apply_implicit_conversion(type_b, value_a, state)) {
373 _mesa_glsl_error(loc, state,
374 "could not implicitly convert operands to "
375 "arithmetic operator");
376 return glsl_type::error_type;
377 }
378 type_a = value_a->type;
379 type_b = value_b->type;
380
381 /* "If the operands are integer types, they must both be signed or
382 * both be unsigned."
383 *
384 * From this rule and the preceeding conversion it can be inferred that
385 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386 * The is_numeric check above already filtered out the case where either
387 * type is not one of these, so now the base types need only be tested for
388 * equality.
389 */
390 if (type_a->base_type != type_b->base_type) {
391 _mesa_glsl_error(loc, state,
392 "base type mismatch for arithmetic operator");
393 return glsl_type::error_type;
394 }
395
396 /* "All arithmetic binary operators result in the same fundamental type
397 * (signed integer, unsigned integer, or floating-point) as the
398 * operands they operate on, after operand type conversion. After
399 * conversion, the following cases are valid
400 *
401 * * The two operands are scalars. In this case the operation is
402 * applied, resulting in a scalar."
403 */
404 if (type_a->is_scalar() && type_b->is_scalar())
405 return type_a;
406
407 /* "* One operand is a scalar, and the other is a vector or matrix.
408 * In this case, the scalar operation is applied independently to each
409 * component of the vector or matrix, resulting in the same size
410 * vector or matrix."
411 */
412 if (type_a->is_scalar()) {
413 if (!type_b->is_scalar())
414 return type_b;
415 } else if (type_b->is_scalar()) {
416 return type_a;
417 }
418
419 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421 * handled.
422 */
423 assert(!type_a->is_scalar());
424 assert(!type_b->is_scalar());
425
426 /* "* The two operands are vectors of the same size. In this case, the
427 * operation is done component-wise resulting in the same size
428 * vector."
429 */
430 if (type_a->is_vector() && type_b->is_vector()) {
431 if (type_a == type_b) {
432 return type_a;
433 } else {
434 _mesa_glsl_error(loc, state,
435 "vector size mismatch for arithmetic operator");
436 return glsl_type::error_type;
437 }
438 }
439
440 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442 * <vector, vector> have been handled. At least one of the operands must
443 * be matrix. Further, since there are no integer matrix types, the base
444 * type of both operands must be float.
445 */
446 assert(type_a->is_matrix() || type_b->is_matrix());
447 assert(type_a->is_float() || type_a->is_double());
448 assert(type_b->is_float() || type_b->is_double());
449
450 /* "* The operator is add (+), subtract (-), or divide (/), and the
451 * operands are matrices with the same number of rows and the same
452 * number of columns. In this case, the operation is done component-
453 * wise resulting in the same size matrix."
454 * * The operator is multiply (*), where both operands are matrices or
455 * one operand is a vector and the other a matrix. A right vector
456 * operand is treated as a column vector and a left vector operand as a
457 * row vector. In all these cases, it is required that the number of
458 * columns of the left operand is equal to the number of rows of the
459 * right operand. Then, the multiply (*) operation does a linear
460 * algebraic multiply, yielding an object that has the same number of
461 * rows as the left operand and the same number of columns as the right
462 * operand. Section 5.10 "Vector and Matrix Operations" explains in
463 * more detail how vectors and matrices are operated on."
464 */
465 if (! multiply) {
466 if (type_a == type_b)
467 return type_a;
468 } else {
469 const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470
471 if (type == glsl_type::error_type) {
472 _mesa_glsl_error(loc, state,
473 "size mismatch for matrix multiplication");
474 }
475
476 return type;
477 }
478
479
480 /* "All other cases are illegal."
481 */
482 _mesa_glsl_error(loc, state, "type mismatch");
483 return glsl_type::error_type;
484 }
485
486
487 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)488 unary_arithmetic_result_type(const struct glsl_type *type,
489 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491 /* From GLSL 1.50 spec, page 57:
492 *
493 * "The arithmetic unary operators negate (-), post- and pre-increment
494 * and decrement (-- and ++) operate on integer or floating-point
495 * values (including vectors and matrices). All unary operators work
496 * component-wise on their operands. These result with the same type
497 * they operated on."
498 */
499 if (!type->is_numeric()) {
500 _mesa_glsl_error(loc, state,
501 "operands to arithmetic operators must be numeric");
502 return glsl_type::error_type;
503 }
504
505 return type;
506 }
507
508 /**
509 * \brief Return the result type of a bit-logic operation.
510 *
511 * If the given types to the bit-logic operator are invalid, return
512 * glsl_type::error_type.
513 *
514 * \param value_a LHS of bit-logic op
515 * \param value_b RHS of bit-logic op
516 */
517 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519 ast_operators op,
520 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522 const glsl_type *type_a = value_a->type;
523 const glsl_type *type_b = value_b->type;
524
525 if (!state->check_bitwise_operations_allowed(loc)) {
526 return glsl_type::error_type;
527 }
528
529 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530 *
531 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532 * (|). The operands must be of type signed or unsigned integers or
533 * integer vectors."
534 */
535 if (!type_a->is_integer_32_64()) {
536 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537 ast_expression::operator_string(op));
538 return glsl_type::error_type;
539 }
540 if (!type_b->is_integer_32_64()) {
541 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542 ast_expression::operator_string(op));
543 return glsl_type::error_type;
544 }
545
546 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547 * make sense for bitwise operations, as they don't operate on floats.
548 *
549 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550 * here. It wasn't clear whether or not we should apply them to bitwise
551 * operations. However, Khronos has decided that they should in future
552 * language revisions. Applications also rely on this behavior. We opt
553 * to apply them in general, but issue a portability warning.
554 *
555 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556 */
557 if (type_a->base_type != type_b->base_type) {
558 if (!apply_implicit_conversion(type_a, value_b, state)
559 && !apply_implicit_conversion(type_b, value_a, state)) {
560 _mesa_glsl_error(loc, state,
561 "could not implicitly convert operands to "
562 "`%s` operator",
563 ast_expression::operator_string(op));
564 return glsl_type::error_type;
565 } else {
566 _mesa_glsl_warning(loc, state,
567 "some implementations may not support implicit "
568 "int -> uint conversions for `%s' operators; "
569 "consider casting explicitly for portability",
570 ast_expression::operator_string(op));
571 }
572 type_a = value_a->type;
573 type_b = value_b->type;
574 }
575
576 /* "The fundamental types of the operands (signed or unsigned) must
577 * match,"
578 */
579 if (type_a->base_type != type_b->base_type) {
580 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581 "base type", ast_expression::operator_string(op));
582 return glsl_type::error_type;
583 }
584
585 /* "The operands cannot be vectors of differing size." */
586 if (type_a->is_vector() &&
587 type_b->is_vector() &&
588 type_a->vector_elements != type_b->vector_elements) {
589 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590 "different sizes", ast_expression::operator_string(op));
591 return glsl_type::error_type;
592 }
593
594 /* "If one operand is a scalar and the other a vector, the scalar is
595 * applied component-wise to the vector, resulting in the same type as
596 * the vector. The fundamental types of the operands [...] will be the
597 * resulting fundamental type."
598 */
599 if (type_a->is_scalar())
600 return type_b;
601 else
602 return type_a;
603 }
604
605 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609 const glsl_type *type_a = value_a->type;
610 const glsl_type *type_b = value_b->type;
611
612 if (!state->EXT_gpu_shader4_enable &&
613 !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614 return glsl_type::error_type;
615 }
616
617 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618 *
619 * "The operator modulus (%) operates on signed or unsigned integers or
620 * integer vectors."
621 */
622 if (!type_a->is_integer_32_64()) {
623 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624 return glsl_type::error_type;
625 }
626 if (!type_b->is_integer_32_64()) {
627 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628 return glsl_type::error_type;
629 }
630
631 /* "If the fundamental types in the operands do not match, then the
632 * conversions from section 4.1.10 "Implicit Conversions" are applied
633 * to create matching types."
634 *
635 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636 * int -> uint conversion rules. Prior to that, there were no implicit
637 * conversions. So it's harmless to apply them universally - no implicit
638 * conversions will exist. If the types don't match, we'll receive false,
639 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640 *
641 * "The operand types must both be signed or unsigned."
642 */
643 if (!apply_implicit_conversion(type_a, value_b, state) &&
644 !apply_implicit_conversion(type_b, value_a, state)) {
645 _mesa_glsl_error(loc, state,
646 "could not implicitly convert operands to "
647 "modulus (%%) operator");
648 return glsl_type::error_type;
649 }
650 type_a = value_a->type;
651 type_b = value_b->type;
652
653 /* "The operands cannot be vectors of differing size. If one operand is
654 * a scalar and the other vector, then the scalar is applied component-
655 * wise to the vector, resulting in the same type as the vector. If both
656 * are vectors of the same size, the result is computed component-wise."
657 */
658 if (type_a->is_vector()) {
659 if (!type_b->is_vector()
660 || (type_a->vector_elements == type_b->vector_elements))
661 return type_a;
662 } else
663 return type_b;
664
665 /* "The operator modulus (%) is not defined for any other data types
666 * (non-integer types)."
667 */
668 _mesa_glsl_error(loc, state, "type mismatch");
669 return glsl_type::error_type;
670 }
671
672
673 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)674 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676 {
677 const glsl_type *type_a = value_a->type;
678 const glsl_type *type_b = value_b->type;
679
680 /* From GLSL 1.50 spec, page 56:
681 * "The relational operators greater than (>), less than (<), greater
682 * than or equal (>=), and less than or equal (<=) operate only on
683 * scalar integer and scalar floating-point expressions."
684 */
685 if (!type_a->is_numeric()
686 || !type_b->is_numeric()
687 || !type_a->is_scalar()
688 || !type_b->is_scalar()) {
689 _mesa_glsl_error(loc, state,
690 "operands to relational operators must be scalar and "
691 "numeric");
692 return glsl_type::error_type;
693 }
694
695 /* "Either the operands' types must match, or the conversions from
696 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
697 * operand, after which the types must match."
698 */
699 if (!apply_implicit_conversion(type_a, value_b, state)
700 && !apply_implicit_conversion(type_b, value_a, state)) {
701 _mesa_glsl_error(loc, state,
702 "could not implicitly convert operands to "
703 "relational operator");
704 return glsl_type::error_type;
705 }
706 type_a = value_a->type;
707 type_b = value_b->type;
708
709 if (type_a->base_type != type_b->base_type) {
710 _mesa_glsl_error(loc, state, "base type mismatch");
711 return glsl_type::error_type;
712 }
713
714 /* "The result is scalar Boolean."
715 */
716 return glsl_type::bool_type;
717 }
718
719 /**
720 * \brief Return the result type of a bit-shift operation.
721 *
722 * If the given types to the bit-shift operator are invalid, return
723 * glsl_type::error_type.
724 *
725 * \param type_a Type of LHS of bit-shift op
726 * \param type_b Type of RHS of bit-shift op
727 */
728 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)729 shift_result_type(const struct glsl_type *type_a,
730 const struct glsl_type *type_b,
731 ast_operators op,
732 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733 {
734 if (!state->check_bitwise_operations_allowed(loc)) {
735 return glsl_type::error_type;
736 }
737
738 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739 *
740 * "The shift operators (<<) and (>>). For both operators, the operands
741 * must be signed or unsigned integers or integer vectors. One operand
742 * can be signed while the other is unsigned."
743 */
744 if (!type_a->is_integer_32_64()) {
745 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746 "integer vector", ast_expression::operator_string(op));
747 return glsl_type::error_type;
748
749 }
750 if (!type_b->is_integer_32()) {
751 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752 "integer vector", ast_expression::operator_string(op));
753 return glsl_type::error_type;
754 }
755
756 /* "If the first operand is a scalar, the second operand has to be
757 * a scalar as well."
758 */
759 if (type_a->is_scalar() && !type_b->is_scalar()) {
760 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761 "second must be scalar as well",
762 ast_expression::operator_string(op));
763 return glsl_type::error_type;
764 }
765
766 /* If both operands are vectors, check that they have same number of
767 * elements.
768 */
769 if (type_a->is_vector() &&
770 type_b->is_vector() &&
771 type_a->vector_elements != type_b->vector_elements) {
772 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773 "have same number of elements",
774 ast_expression::operator_string(op));
775 return glsl_type::error_type;
776 }
777
778 /* "In all cases, the resulting type will be the same type as the left
779 * operand."
780 */
781 return type_a;
782 }
783
784 /**
785 * Returns the innermost array index expression in an rvalue tree.
786 * This is the largest indexing level -- if an array of blocks, then
787 * it is the block index rather than an indexing expression for an
788 * array-typed member of an array of blocks.
789 */
790 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)791 find_innermost_array_index(ir_rvalue *rv)
792 {
793 ir_dereference_array *last = NULL;
794 while (rv) {
795 if (rv->as_dereference_array()) {
796 last = rv->as_dereference_array();
797 rv = last->array;
798 } else if (rv->as_dereference_record())
799 rv = rv->as_dereference_record()->record;
800 else if (rv->as_swizzle())
801 rv = rv->as_swizzle()->val;
802 else
803 rv = NULL;
804 }
805
806 if (last)
807 return last->array_index;
808
809 return NULL;
810 }
811
812 /**
813 * Validates that a value can be assigned to a location with a specified type
814 *
815 * Validates that \c rhs can be assigned to some location. If the types are
816 * not an exact match but an automatic conversion is possible, \c rhs will be
817 * converted.
818 *
819 * \return
820 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821 * Otherwise the actual RHS to be assigned will be returned. This may be
822 * \c rhs, or it may be \c rhs after some type conversion.
823 *
824 * \note
825 * In addition to being used for assignments, this function is used to
826 * type-check return values.
827 */
828 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)829 validate_assignment(struct _mesa_glsl_parse_state *state,
830 YYLTYPE loc, ir_rvalue *lhs,
831 ir_rvalue *rhs, bool is_initializer)
832 {
833 /* If there is already some error in the RHS, just return it. Anything
834 * else will lead to an avalanche of error message back to the user.
835 */
836 if (rhs->type->is_error())
837 return rhs;
838
839 /* In the Tessellation Control Shader:
840 * If a per-vertex output variable is used as an l-value, it is an error
841 * if the expression indicating the vertex number is not the identifier
842 * `gl_InvocationID`.
843 */
844 if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845 ir_variable *var = lhs->variable_referenced();
846 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847 ir_rvalue *index = find_innermost_array_index(lhs);
848 ir_variable *index_var = index ? index->variable_referenced() : NULL;
849 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850 _mesa_glsl_error(&loc, state,
851 "Tessellation control shader outputs can only "
852 "be indexed by gl_InvocationID");
853 return NULL;
854 }
855 }
856 }
857
858 /* If the types are identical, the assignment can trivially proceed.
859 */
860 if (rhs->type == lhs->type)
861 return rhs;
862
863 /* If the array element types are the same and the LHS is unsized,
864 * the assignment is okay for initializers embedded in variable
865 * declarations.
866 *
867 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868 * is handled by ir_dereference::is_lvalue.
869 */
870 const glsl_type *lhs_t = lhs->type;
871 const glsl_type *rhs_t = rhs->type;
872 bool unsized_array = false;
873 while(lhs_t->is_array()) {
874 if (rhs_t == lhs_t)
875 break; /* the rest of the inner arrays match so break out early */
876 if (!rhs_t->is_array()) {
877 unsized_array = false;
878 break; /* number of dimensions mismatch */
879 }
880 if (lhs_t->length == rhs_t->length) {
881 lhs_t = lhs_t->fields.array;
882 rhs_t = rhs_t->fields.array;
883 continue;
884 } else if (lhs_t->is_unsized_array()) {
885 unsized_array = true;
886 } else {
887 unsized_array = false;
888 break; /* sized array mismatch */
889 }
890 lhs_t = lhs_t->fields.array;
891 rhs_t = rhs_t->fields.array;
892 }
893 if (unsized_array) {
894 if (is_initializer) {
895 if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896 return rhs;
897 } else {
898 _mesa_glsl_error(&loc, state,
899 "implicitly sized arrays cannot be assigned");
900 return NULL;
901 }
902 }
903
904 /* Check for implicit conversion in GLSL 1.20 */
905 if (apply_implicit_conversion(lhs->type, rhs, state)) {
906 if (rhs->type == lhs->type)
907 return rhs;
908 }
909
910 _mesa_glsl_error(&loc, state,
911 "%s of type %s cannot be assigned to "
912 "variable of type %s",
913 is_initializer ? "initializer" : "value",
914 rhs->type->name, lhs->type->name);
915
916 return NULL;
917 }
918
919 static void
mark_whole_array_access(ir_rvalue * access)920 mark_whole_array_access(ir_rvalue *access)
921 {
922 ir_dereference_variable *deref = access->as_dereference_variable();
923
924 if (deref && deref->var) {
925 deref->var->data.max_array_access = deref->type->length - 1;
926 }
927 }
928
929 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931 const char *non_lvalue_description,
932 ir_rvalue *lhs, ir_rvalue *rhs,
933 ir_rvalue **out_rvalue, bool needs_rvalue,
934 bool is_initializer,
935 YYLTYPE lhs_loc)
936 {
937 void *ctx = state;
938 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939
940 ir_variable *lhs_var = lhs->variable_referenced();
941 if (lhs_var)
942 lhs_var->data.assigned = true;
943
944 bool omit_assignment = false;
945 if (!error_emitted) {
946 if (non_lvalue_description != NULL) {
947 _mesa_glsl_error(&lhs_loc, state,
948 "assignment to %s",
949 non_lvalue_description);
950 error_emitted = true;
951 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
952 (lhs_var->data.mode == ir_var_shader_storage &&
953 lhs_var->data.memory_read_only))) {
954 /* We can have memory_read_only set on both images and buffer variables,
955 * but in the former there is a distinction between assignments to
956 * the variable itself (read_only) and to the memory they point to
957 * (memory_read_only), while in the case of buffer variables there is
958 * no such distinction, that is why this check here is limited to
959 * buffer variables alone.
960 */
961
962 if (state->ignore_write_to_readonly_var)
963 omit_assignment = true;
964 else {
965 _mesa_glsl_error(&lhs_loc, state,
966 "assignment to read-only variable '%s'",
967 lhs_var->name);
968 error_emitted = true;
969 }
970 } else if (lhs->type->is_array() &&
971 !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
972 300, &lhs_loc,
973 "whole array assignment forbidden")) {
974 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
975 *
976 * "Other binary or unary expressions, non-dereferenced
977 * arrays, function names, swizzles with repeated fields,
978 * and constants cannot be l-values."
979 *
980 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
981 */
982 error_emitted = true;
983 } else if (!lhs->is_lvalue(state)) {
984 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
985 error_emitted = true;
986 }
987 }
988
989 ir_rvalue *new_rhs =
990 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
991 if (new_rhs != NULL) {
992 rhs = new_rhs;
993
994 /* If the LHS array was not declared with a size, it takes it size from
995 * the RHS. If the LHS is an l-value and a whole array, it must be a
996 * dereference of a variable. Any other case would require that the LHS
997 * is either not an l-value or not a whole array.
998 */
999 if (lhs->type->is_unsized_array()) {
1000 ir_dereference *const d = lhs->as_dereference();
1001
1002 assert(d != NULL);
1003
1004 ir_variable *const var = d->variable_referenced();
1005
1006 assert(var != NULL);
1007
1008 if (var->data.max_array_access >= rhs->type->array_size()) {
1009 /* FINISHME: This should actually log the location of the RHS. */
1010 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1011 "previous access",
1012 var->data.max_array_access);
1013 }
1014
1015 var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1016 rhs->type->array_size());
1017 d->type = var->type;
1018 }
1019 if (lhs->type->is_array()) {
1020 mark_whole_array_access(rhs);
1021 mark_whole_array_access(lhs);
1022 }
1023 } else {
1024 error_emitted = true;
1025 }
1026
1027 if (omit_assignment) {
1028 *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1029 return error_emitted;
1030 }
1031
1032 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1033 * but not post_inc) need the converted assigned value as an rvalue
1034 * to handle things like:
1035 *
1036 * i = j += 1;
1037 */
1038 if (needs_rvalue) {
1039 ir_rvalue *rvalue;
1040 if (!error_emitted) {
1041 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1042 ir_var_temporary);
1043 instructions->push_tail(var);
1044 instructions->push_tail(assign(var, rhs));
1045
1046 ir_dereference_variable *deref_var =
1047 new(ctx) ir_dereference_variable(var);
1048 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1049 rvalue = new(ctx) ir_dereference_variable(var);
1050 } else {
1051 rvalue = ir_rvalue::error_value(ctx);
1052 }
1053 *out_rvalue = rvalue;
1054 } else {
1055 if (!error_emitted)
1056 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1057 *out_rvalue = NULL;
1058 }
1059
1060 return error_emitted;
1061 }
1062
1063 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1064 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1065 {
1066 void *ctx = ralloc_parent(lvalue);
1067 ir_variable *var;
1068
1069 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1070 ir_var_temporary);
1071 instructions->push_tail(var);
1072
1073 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1074 lvalue));
1075
1076 return new(ctx) ir_dereference_variable(var);
1077 }
1078
1079
1080 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1081 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1082 {
1083 (void) instructions;
1084 (void) state;
1085
1086 return NULL;
1087 }
1088
1089 bool
has_sequence_subexpression() const1090 ast_node::has_sequence_subexpression() const
1091 {
1092 return false;
1093 }
1094
1095 void
set_is_lhs(bool)1096 ast_node::set_is_lhs(bool /* new_value */)
1097 {
1098 }
1099
1100 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1101 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1102 struct _mesa_glsl_parse_state *state)
1103 {
1104 (void)hir(instructions, state);
1105 }
1106
1107 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1108 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1109 struct _mesa_glsl_parse_state *state)
1110 {
1111 (void)hir(instructions, state);
1112 }
1113
1114 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1115 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1116 {
1117 int join_op;
1118 ir_rvalue *cmp = NULL;
1119
1120 if (operation == ir_binop_all_equal)
1121 join_op = ir_binop_logic_and;
1122 else
1123 join_op = ir_binop_logic_or;
1124
1125 switch (op0->type->base_type) {
1126 case GLSL_TYPE_FLOAT:
1127 case GLSL_TYPE_FLOAT16:
1128 case GLSL_TYPE_UINT:
1129 case GLSL_TYPE_INT:
1130 case GLSL_TYPE_BOOL:
1131 case GLSL_TYPE_DOUBLE:
1132 case GLSL_TYPE_UINT64:
1133 case GLSL_TYPE_INT64:
1134 case GLSL_TYPE_UINT16:
1135 case GLSL_TYPE_INT16:
1136 case GLSL_TYPE_UINT8:
1137 case GLSL_TYPE_INT8:
1138 return new(mem_ctx) ir_expression(operation, op0, op1);
1139
1140 case GLSL_TYPE_ARRAY: {
1141 for (unsigned int i = 0; i < op0->type->length; i++) {
1142 ir_rvalue *e0, *e1, *result;
1143
1144 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1145 new(mem_ctx) ir_constant(i));
1146 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1147 new(mem_ctx) ir_constant(i));
1148 result = do_comparison(mem_ctx, operation, e0, e1);
1149
1150 if (cmp) {
1151 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1152 } else {
1153 cmp = result;
1154 }
1155 }
1156
1157 mark_whole_array_access(op0);
1158 mark_whole_array_access(op1);
1159 break;
1160 }
1161
1162 case GLSL_TYPE_STRUCT: {
1163 for (unsigned int i = 0; i < op0->type->length; i++) {
1164 ir_rvalue *e0, *e1, *result;
1165 const char *field_name = op0->type->fields.structure[i].name;
1166
1167 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1168 field_name);
1169 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1170 field_name);
1171 result = do_comparison(mem_ctx, operation, e0, e1);
1172
1173 if (cmp) {
1174 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1175 } else {
1176 cmp = result;
1177 }
1178 }
1179 break;
1180 }
1181
1182 case GLSL_TYPE_ERROR:
1183 case GLSL_TYPE_VOID:
1184 case GLSL_TYPE_SAMPLER:
1185 case GLSL_TYPE_TEXTURE:
1186 case GLSL_TYPE_IMAGE:
1187 case GLSL_TYPE_INTERFACE:
1188 case GLSL_TYPE_ATOMIC_UINT:
1189 case GLSL_TYPE_SUBROUTINE:
1190 case GLSL_TYPE_FUNCTION:
1191 /* I assume a comparison of a struct containing a sampler just
1192 * ignores the sampler present in the type.
1193 */
1194 break;
1195 }
1196
1197 if (cmp == NULL)
1198 cmp = new(mem_ctx) ir_constant(true);
1199
1200 return cmp;
1201 }
1202
1203 /* For logical operations, we want to ensure that the operands are
1204 * scalar booleans. If it isn't, emit an error and return a constant
1205 * boolean to avoid triggering cascading error messages.
1206 */
1207 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1208 get_scalar_boolean_operand(exec_list *instructions,
1209 struct _mesa_glsl_parse_state *state,
1210 ast_expression *parent_expr,
1211 int operand,
1212 const char *operand_name,
1213 bool *error_emitted)
1214 {
1215 ast_expression *expr = parent_expr->subexpressions[operand];
1216 void *ctx = state;
1217 ir_rvalue *val = expr->hir(instructions, state);
1218
1219 if (val->type->is_boolean() && val->type->is_scalar())
1220 return val;
1221
1222 if (!*error_emitted) {
1223 YYLTYPE loc = expr->get_location();
1224 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1225 operand_name,
1226 parent_expr->operator_string(parent_expr->oper));
1227 *error_emitted = true;
1228 }
1229
1230 return new(ctx) ir_constant(true);
1231 }
1232
1233 /**
1234 * If name refers to a builtin array whose maximum allowed size is less than
1235 * size, report an error and return true. Otherwise return false.
1236 */
1237 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1238 check_builtin_array_max_size(const char *name, unsigned size,
1239 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1240 {
1241 if ((strcmp("gl_TexCoord", name) == 0)
1242 && (size > state->Const.MaxTextureCoords)) {
1243 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1244 *
1245 * "The size [of gl_TexCoord] can be at most
1246 * gl_MaxTextureCoords."
1247 */
1248 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1249 "be larger than gl_MaxTextureCoords (%u)",
1250 state->Const.MaxTextureCoords);
1251 } else if (strcmp("gl_ClipDistance", name) == 0) {
1252 state->clip_dist_size = size;
1253 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1254 /* From section 7.1 (Vertex Shader Special Variables) of the
1255 * GLSL 1.30 spec:
1256 *
1257 * "The gl_ClipDistance array is predeclared as unsized and
1258 * must be sized by the shader either redeclaring it with a
1259 * size or indexing it only with integral constant
1260 * expressions. ... The size can be at most
1261 * gl_MaxClipDistances."
1262 */
1263 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1264 "be larger than gl_MaxClipDistances (%u)",
1265 state->Const.MaxClipPlanes);
1266 }
1267 } else if (strcmp("gl_CullDistance", name) == 0) {
1268 state->cull_dist_size = size;
1269 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1270 /* From the ARB_cull_distance spec:
1271 *
1272 * "The gl_CullDistance array is predeclared as unsized and
1273 * must be sized by the shader either redeclaring it with
1274 * a size or indexing it only with integral constant
1275 * expressions. The size determines the number and set of
1276 * enabled cull distances and can be at most
1277 * gl_MaxCullDistances."
1278 */
1279 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1280 "be larger than gl_MaxCullDistances (%u)",
1281 state->Const.MaxClipPlanes);
1282 }
1283 }
1284 }
1285
1286 /**
1287 * Create the constant 1, of a which is appropriate for incrementing and
1288 * decrementing values of the given GLSL type. For example, if type is vec4,
1289 * this creates a constant value of 1.0 having type float.
1290 *
1291 * If the given type is invalid for increment and decrement operators, return
1292 * a floating point 1--the error will be detected later.
1293 */
1294 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1295 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1296 {
1297 switch (type->base_type) {
1298 case GLSL_TYPE_UINT:
1299 return new(ctx) ir_constant((unsigned) 1);
1300 case GLSL_TYPE_INT:
1301 return new(ctx) ir_constant(1);
1302 case GLSL_TYPE_UINT64:
1303 return new(ctx) ir_constant((uint64_t) 1);
1304 case GLSL_TYPE_INT64:
1305 return new(ctx) ir_constant((int64_t) 1);
1306 default:
1307 case GLSL_TYPE_FLOAT:
1308 return new(ctx) ir_constant(1.0f);
1309 }
1310 }
1311
1312 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1313 ast_expression::hir(exec_list *instructions,
1314 struct _mesa_glsl_parse_state *state)
1315 {
1316 return do_hir(instructions, state, true);
1317 }
1318
1319 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1320 ast_expression::hir_no_rvalue(exec_list *instructions,
1321 struct _mesa_glsl_parse_state *state)
1322 {
1323 do_hir(instructions, state, false);
1324 }
1325
1326 void
set_is_lhs(bool new_value)1327 ast_expression::set_is_lhs(bool new_value)
1328 {
1329 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1330 * if we lack an identifier we can just skip it.
1331 */
1332 if (this->primary_expression.identifier == NULL)
1333 return;
1334
1335 this->is_lhs = new_value;
1336
1337 /* We need to go through the subexpressions tree to cover cases like
1338 * ast_field_selection
1339 */
1340 if (this->subexpressions[0] != NULL)
1341 this->subexpressions[0]->set_is_lhs(new_value);
1342 }
1343
1344 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1345 ast_expression::do_hir(exec_list *instructions,
1346 struct _mesa_glsl_parse_state *state,
1347 bool needs_rvalue)
1348 {
1349 void *ctx = state;
1350 static const int operations[AST_NUM_OPERATORS] = {
1351 -1, /* ast_assign doesn't convert to ir_expression. */
1352 -1, /* ast_plus doesn't convert to ir_expression. */
1353 ir_unop_neg,
1354 ir_binop_add,
1355 ir_binop_sub,
1356 ir_binop_mul,
1357 ir_binop_div,
1358 ir_binop_mod,
1359 ir_binop_lshift,
1360 ir_binop_rshift,
1361 ir_binop_less,
1362 ir_binop_less, /* This is correct. See the ast_greater case below. */
1363 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1364 ir_binop_gequal,
1365 ir_binop_all_equal,
1366 ir_binop_any_nequal,
1367 ir_binop_bit_and,
1368 ir_binop_bit_xor,
1369 ir_binop_bit_or,
1370 ir_unop_bit_not,
1371 ir_binop_logic_and,
1372 ir_binop_logic_xor,
1373 ir_binop_logic_or,
1374 ir_unop_logic_not,
1375
1376 /* Note: The following block of expression types actually convert
1377 * to multiple IR instructions.
1378 */
1379 ir_binop_mul, /* ast_mul_assign */
1380 ir_binop_div, /* ast_div_assign */
1381 ir_binop_mod, /* ast_mod_assign */
1382 ir_binop_add, /* ast_add_assign */
1383 ir_binop_sub, /* ast_sub_assign */
1384 ir_binop_lshift, /* ast_ls_assign */
1385 ir_binop_rshift, /* ast_rs_assign */
1386 ir_binop_bit_and, /* ast_and_assign */
1387 ir_binop_bit_xor, /* ast_xor_assign */
1388 ir_binop_bit_or, /* ast_or_assign */
1389
1390 -1, /* ast_conditional doesn't convert to ir_expression. */
1391 ir_binop_add, /* ast_pre_inc. */
1392 ir_binop_sub, /* ast_pre_dec. */
1393 ir_binop_add, /* ast_post_inc. */
1394 ir_binop_sub, /* ast_post_dec. */
1395 -1, /* ast_field_selection doesn't conv to ir_expression. */
1396 -1, /* ast_array_index doesn't convert to ir_expression. */
1397 -1, /* ast_function_call doesn't conv to ir_expression. */
1398 -1, /* ast_identifier doesn't convert to ir_expression. */
1399 -1, /* ast_int_constant doesn't convert to ir_expression. */
1400 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1401 -1, /* ast_float_constant doesn't conv to ir_expression. */
1402 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1403 -1, /* ast_sequence doesn't convert to ir_expression. */
1404 -1, /* ast_aggregate shouldn't ever even get here. */
1405 };
1406 ir_rvalue *result = NULL;
1407 ir_rvalue *op[3];
1408 const struct glsl_type *type, *orig_type;
1409 bool error_emitted = false;
1410 YYLTYPE loc;
1411
1412 loc = this->get_location();
1413
1414 switch (this->oper) {
1415 case ast_aggregate:
1416 unreachable("ast_aggregate: Should never get here.");
1417
1418 case ast_assign: {
1419 this->subexpressions[0]->set_is_lhs(true);
1420 op[0] = this->subexpressions[0]->hir(instructions, state);
1421 op[1] = this->subexpressions[1]->hir(instructions, state);
1422
1423 error_emitted =
1424 do_assignment(instructions, state,
1425 this->subexpressions[0]->non_lvalue_description,
1426 op[0], op[1], &result, needs_rvalue, false,
1427 this->subexpressions[0]->get_location());
1428 break;
1429 }
1430
1431 case ast_plus:
1432 op[0] = this->subexpressions[0]->hir(instructions, state);
1433
1434 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1435
1436 error_emitted = type->is_error();
1437
1438 result = op[0];
1439 break;
1440
1441 case ast_neg:
1442 op[0] = this->subexpressions[0]->hir(instructions, state);
1443
1444 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1445
1446 error_emitted = type->is_error();
1447
1448 result = new(ctx) ir_expression(operations[this->oper], type,
1449 op[0], NULL);
1450 break;
1451
1452 case ast_add:
1453 case ast_sub:
1454 case ast_mul:
1455 case ast_div:
1456 op[0] = this->subexpressions[0]->hir(instructions, state);
1457 op[1] = this->subexpressions[1]->hir(instructions, state);
1458
1459 type = arithmetic_result_type(op[0], op[1],
1460 (this->oper == ast_mul),
1461 state, & loc);
1462 error_emitted = type->is_error();
1463
1464 result = new(ctx) ir_expression(operations[this->oper], type,
1465 op[0], op[1]);
1466 break;
1467
1468 case ast_mod:
1469 op[0] = this->subexpressions[0]->hir(instructions, state);
1470 op[1] = this->subexpressions[1]->hir(instructions, state);
1471
1472 type = modulus_result_type(op[0], op[1], state, &loc);
1473
1474 assert(operations[this->oper] == ir_binop_mod);
1475
1476 result = new(ctx) ir_expression(operations[this->oper], type,
1477 op[0], op[1]);
1478 error_emitted = type->is_error();
1479 break;
1480
1481 case ast_lshift:
1482 case ast_rshift:
1483 if (!state->check_bitwise_operations_allowed(&loc)) {
1484 error_emitted = true;
1485 }
1486
1487 op[0] = this->subexpressions[0]->hir(instructions, state);
1488 op[1] = this->subexpressions[1]->hir(instructions, state);
1489 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1490 &loc);
1491 result = new(ctx) ir_expression(operations[this->oper], type,
1492 op[0], op[1]);
1493 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1494 break;
1495
1496 case ast_less:
1497 case ast_greater:
1498 case ast_lequal:
1499 case ast_gequal:
1500 op[0] = this->subexpressions[0]->hir(instructions, state);
1501 op[1] = this->subexpressions[1]->hir(instructions, state);
1502
1503 type = relational_result_type(op[0], op[1], state, & loc);
1504
1505 /* The relational operators must either generate an error or result
1506 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1507 */
1508 assert(type->is_error()
1509 || (type->is_boolean() && type->is_scalar()));
1510
1511 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1512 * the arguments and use < or >=.
1513 */
1514 if (this->oper == ast_greater || this->oper == ast_lequal) {
1515 ir_rvalue *const tmp = op[0];
1516 op[0] = op[1];
1517 op[1] = tmp;
1518 }
1519
1520 result = new(ctx) ir_expression(operations[this->oper], type,
1521 op[0], op[1]);
1522 error_emitted = type->is_error();
1523 break;
1524
1525 case ast_nequal:
1526 case ast_equal:
1527 op[0] = this->subexpressions[0]->hir(instructions, state);
1528 op[1] = this->subexpressions[1]->hir(instructions, state);
1529
1530 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1531 *
1532 * "The equality operators equal (==), and not equal (!=)
1533 * operate on all types. They result in a scalar Boolean. If
1534 * the operand types do not match, then there must be a
1535 * conversion from Section 4.1.10 "Implicit Conversions"
1536 * applied to one operand that can make them match, in which
1537 * case this conversion is done."
1538 */
1539
1540 if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1541 _mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
1542 "no operation `%1$s' exists that takes a left-hand "
1543 "operand of type 'void' or a right operand of type "
1544 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1545 error_emitted = true;
1546 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1547 && !apply_implicit_conversion(op[1]->type, op[0], state))
1548 || (op[0]->type != op[1]->type)) {
1549 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1550 "type", (this->oper == ast_equal) ? "==" : "!=");
1551 error_emitted = true;
1552 } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1553 !state->check_version(120, 300, &loc,
1554 "array comparisons forbidden")) {
1555 error_emitted = true;
1556 } else if ((op[0]->type->contains_subroutine() ||
1557 op[1]->type->contains_subroutine())) {
1558 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1559 error_emitted = true;
1560 } else if ((op[0]->type->contains_opaque() ||
1561 op[1]->type->contains_opaque())) {
1562 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1563 error_emitted = true;
1564 }
1565
1566 if (error_emitted) {
1567 result = new(ctx) ir_constant(false);
1568 } else {
1569 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1570 assert(result->type == glsl_type::bool_type);
1571 }
1572 break;
1573
1574 case ast_bit_and:
1575 case ast_bit_xor:
1576 case ast_bit_or:
1577 op[0] = this->subexpressions[0]->hir(instructions, state);
1578 op[1] = this->subexpressions[1]->hir(instructions, state);
1579 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1580 result = new(ctx) ir_expression(operations[this->oper], type,
1581 op[0], op[1]);
1582 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1583 break;
1584
1585 case ast_bit_not:
1586 op[0] = this->subexpressions[0]->hir(instructions, state);
1587
1588 if (!state->check_bitwise_operations_allowed(&loc)) {
1589 error_emitted = true;
1590 }
1591
1592 if (!op[0]->type->is_integer_32_64()) {
1593 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1594 error_emitted = true;
1595 }
1596
1597 type = error_emitted ? glsl_type::error_type : op[0]->type;
1598 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1599 break;
1600
1601 case ast_logic_and: {
1602 exec_list rhs_instructions;
1603 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1604 "LHS", &error_emitted);
1605 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1606 "RHS", &error_emitted);
1607
1608 if (rhs_instructions.is_empty()) {
1609 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1610 } else {
1611 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1612 "and_tmp",
1613 ir_var_temporary);
1614 instructions->push_tail(tmp);
1615
1616 ir_if *const stmt = new(ctx) ir_if(op[0]);
1617 instructions->push_tail(stmt);
1618
1619 stmt->then_instructions.append_list(&rhs_instructions);
1620 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1621 ir_assignment *const then_assign =
1622 new(ctx) ir_assignment(then_deref, op[1]);
1623 stmt->then_instructions.push_tail(then_assign);
1624
1625 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1626 ir_assignment *const else_assign =
1627 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1628 stmt->else_instructions.push_tail(else_assign);
1629
1630 result = new(ctx) ir_dereference_variable(tmp);
1631 }
1632 break;
1633 }
1634
1635 case ast_logic_or: {
1636 exec_list rhs_instructions;
1637 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1638 "LHS", &error_emitted);
1639 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1640 "RHS", &error_emitted);
1641
1642 if (rhs_instructions.is_empty()) {
1643 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1644 } else {
1645 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1646 "or_tmp",
1647 ir_var_temporary);
1648 instructions->push_tail(tmp);
1649
1650 ir_if *const stmt = new(ctx) ir_if(op[0]);
1651 instructions->push_tail(stmt);
1652
1653 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1654 ir_assignment *const then_assign =
1655 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1656 stmt->then_instructions.push_tail(then_assign);
1657
1658 stmt->else_instructions.append_list(&rhs_instructions);
1659 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1660 ir_assignment *const else_assign =
1661 new(ctx) ir_assignment(else_deref, op[1]);
1662 stmt->else_instructions.push_tail(else_assign);
1663
1664 result = new(ctx) ir_dereference_variable(tmp);
1665 }
1666 break;
1667 }
1668
1669 case ast_logic_xor:
1670 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1671 *
1672 * "The logical binary operators and (&&), or ( | | ), and
1673 * exclusive or (^^). They operate only on two Boolean
1674 * expressions and result in a Boolean expression."
1675 */
1676 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1677 &error_emitted);
1678 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1679 &error_emitted);
1680
1681 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1682 op[0], op[1]);
1683 break;
1684
1685 case ast_logic_not:
1686 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1687 "operand", &error_emitted);
1688
1689 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1690 op[0], NULL);
1691 break;
1692
1693 case ast_mul_assign:
1694 case ast_div_assign:
1695 case ast_add_assign:
1696 case ast_sub_assign: {
1697 this->subexpressions[0]->set_is_lhs(true);
1698 op[0] = this->subexpressions[0]->hir(instructions, state);
1699 op[1] = this->subexpressions[1]->hir(instructions, state);
1700
1701 orig_type = op[0]->type;
1702
1703 /* Break out if operand types were not parsed successfully. */
1704 if ((op[0]->type == glsl_type::error_type ||
1705 op[1]->type == glsl_type::error_type)) {
1706 error_emitted = true;
1707 result = ir_rvalue::error_value(ctx);
1708 break;
1709 }
1710
1711 type = arithmetic_result_type(op[0], op[1],
1712 (this->oper == ast_mul_assign),
1713 state, & loc);
1714
1715 if (type != orig_type) {
1716 _mesa_glsl_error(& loc, state,
1717 "could not implicitly convert "
1718 "%s to %s", type->name, orig_type->name);
1719 type = glsl_type::error_type;
1720 }
1721
1722 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1723 op[0], op[1]);
1724
1725 error_emitted =
1726 do_assignment(instructions, state,
1727 this->subexpressions[0]->non_lvalue_description,
1728 op[0]->clone(ctx, NULL), temp_rhs,
1729 &result, needs_rvalue, false,
1730 this->subexpressions[0]->get_location());
1731
1732 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1733 * explicitly test for this because none of the binary expression
1734 * operators allow array operands either.
1735 */
1736
1737 break;
1738 }
1739
1740 case ast_mod_assign: {
1741 this->subexpressions[0]->set_is_lhs(true);
1742 op[0] = this->subexpressions[0]->hir(instructions, state);
1743 op[1] = this->subexpressions[1]->hir(instructions, state);
1744
1745 /* Break out if operand types were not parsed successfully. */
1746 if ((op[0]->type == glsl_type::error_type ||
1747 op[1]->type == glsl_type::error_type)) {
1748 error_emitted = true;
1749 result = ir_rvalue::error_value(ctx);
1750 break;
1751 }
1752
1753 orig_type = op[0]->type;
1754 type = modulus_result_type(op[0], op[1], state, &loc);
1755
1756 if (type != orig_type) {
1757 _mesa_glsl_error(& loc, state,
1758 "could not implicitly convert "
1759 "%s to %s", type->name, orig_type->name);
1760 type = glsl_type::error_type;
1761 }
1762
1763 assert(operations[this->oper] == ir_binop_mod);
1764
1765 ir_rvalue *temp_rhs;
1766 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1767 op[0], op[1]);
1768
1769 error_emitted =
1770 do_assignment(instructions, state,
1771 this->subexpressions[0]->non_lvalue_description,
1772 op[0]->clone(ctx, NULL), temp_rhs,
1773 &result, needs_rvalue, false,
1774 this->subexpressions[0]->get_location());
1775 break;
1776 }
1777
1778 case ast_ls_assign:
1779 case ast_rs_assign: {
1780 this->subexpressions[0]->set_is_lhs(true);
1781 op[0] = this->subexpressions[0]->hir(instructions, state);
1782 op[1] = this->subexpressions[1]->hir(instructions, state);
1783
1784 /* Break out if operand types were not parsed successfully. */
1785 if ((op[0]->type == glsl_type::error_type ||
1786 op[1]->type == glsl_type::error_type)) {
1787 error_emitted = true;
1788 result = ir_rvalue::error_value(ctx);
1789 break;
1790 }
1791
1792 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1793 &loc);
1794 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1795 type, op[0], op[1]);
1796 error_emitted =
1797 do_assignment(instructions, state,
1798 this->subexpressions[0]->non_lvalue_description,
1799 op[0]->clone(ctx, NULL), temp_rhs,
1800 &result, needs_rvalue, false,
1801 this->subexpressions[0]->get_location());
1802 break;
1803 }
1804
1805 case ast_and_assign:
1806 case ast_xor_assign:
1807 case ast_or_assign: {
1808 this->subexpressions[0]->set_is_lhs(true);
1809 op[0] = this->subexpressions[0]->hir(instructions, state);
1810 op[1] = this->subexpressions[1]->hir(instructions, state);
1811
1812 /* Break out if operand types were not parsed successfully. */
1813 if ((op[0]->type == glsl_type::error_type ||
1814 op[1]->type == glsl_type::error_type)) {
1815 error_emitted = true;
1816 result = ir_rvalue::error_value(ctx);
1817 break;
1818 }
1819
1820 orig_type = op[0]->type;
1821 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1822
1823 if (type != orig_type) {
1824 _mesa_glsl_error(& loc, state,
1825 "could not implicitly convert "
1826 "%s to %s", type->name, orig_type->name);
1827 type = glsl_type::error_type;
1828 }
1829
1830 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1831 type, op[0], op[1]);
1832 error_emitted =
1833 do_assignment(instructions, state,
1834 this->subexpressions[0]->non_lvalue_description,
1835 op[0]->clone(ctx, NULL), temp_rhs,
1836 &result, needs_rvalue, false,
1837 this->subexpressions[0]->get_location());
1838 break;
1839 }
1840
1841 case ast_conditional: {
1842 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1843 *
1844 * "The ternary selection operator (?:). It operates on three
1845 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1846 * first expression, which must result in a scalar Boolean."
1847 */
1848 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1849 "condition", &error_emitted);
1850
1851 /* The :? operator is implemented by generating an anonymous temporary
1852 * followed by an if-statement. The last instruction in each branch of
1853 * the if-statement assigns a value to the anonymous temporary. This
1854 * temporary is the r-value of the expression.
1855 */
1856 exec_list then_instructions;
1857 exec_list else_instructions;
1858
1859 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1860 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1861
1862 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1863 *
1864 * "The second and third expressions can be any type, as
1865 * long their types match, or there is a conversion in
1866 * Section 4.1.10 "Implicit Conversions" that can be applied
1867 * to one of the expressions to make their types match. This
1868 * resulting matching type is the type of the entire
1869 * expression."
1870 */
1871 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1872 && !apply_implicit_conversion(op[2]->type, op[1], state))
1873 || (op[1]->type != op[2]->type)) {
1874 YYLTYPE loc = this->subexpressions[1]->get_location();
1875
1876 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1877 "operator must have matching types");
1878 error_emitted = true;
1879 type = glsl_type::error_type;
1880 } else {
1881 type = op[1]->type;
1882 }
1883
1884 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1885 *
1886 * "The second and third expressions must be the same type, but can
1887 * be of any type other than an array."
1888 */
1889 if (type->is_array() &&
1890 !state->check_version(120, 300, &loc,
1891 "second and third operands of ?: operator "
1892 "cannot be arrays")) {
1893 error_emitted = true;
1894 }
1895
1896 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1897 *
1898 * "Except for array indexing, structure member selection, and
1899 * parentheses, opaque variables are not allowed to be operands in
1900 * expressions; such use results in a compile-time error."
1901 */
1902 if (type->contains_opaque()) {
1903 if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1904 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1905 "operands of the ?: operator", type->name);
1906 error_emitted = true;
1907 }
1908 }
1909
1910 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1911
1912 if (then_instructions.is_empty()
1913 && else_instructions.is_empty()
1914 && cond_val != NULL) {
1915 result = cond_val->value.b[0] ? op[1] : op[2];
1916 } else {
1917 /* The copy to conditional_tmp reads the whole array. */
1918 if (type->is_array()) {
1919 mark_whole_array_access(op[1]);
1920 mark_whole_array_access(op[2]);
1921 }
1922
1923 ir_variable *const tmp =
1924 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1925 instructions->push_tail(tmp);
1926
1927 ir_if *const stmt = new(ctx) ir_if(op[0]);
1928 instructions->push_tail(stmt);
1929
1930 then_instructions.move_nodes_to(& stmt->then_instructions);
1931 ir_dereference *const then_deref =
1932 new(ctx) ir_dereference_variable(tmp);
1933 ir_assignment *const then_assign =
1934 new(ctx) ir_assignment(then_deref, op[1]);
1935 stmt->then_instructions.push_tail(then_assign);
1936
1937 else_instructions.move_nodes_to(& stmt->else_instructions);
1938 ir_dereference *const else_deref =
1939 new(ctx) ir_dereference_variable(tmp);
1940 ir_assignment *const else_assign =
1941 new(ctx) ir_assignment(else_deref, op[2]);
1942 stmt->else_instructions.push_tail(else_assign);
1943
1944 result = new(ctx) ir_dereference_variable(tmp);
1945 }
1946 break;
1947 }
1948
1949 case ast_pre_inc:
1950 case ast_pre_dec: {
1951 this->non_lvalue_description = (this->oper == ast_pre_inc)
1952 ? "pre-increment operation" : "pre-decrement operation";
1953
1954 op[0] = this->subexpressions[0]->hir(instructions, state);
1955 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1956
1957 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1958
1959 ir_rvalue *temp_rhs;
1960 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1961 op[0], op[1]);
1962
1963 error_emitted =
1964 do_assignment(instructions, state,
1965 this->subexpressions[0]->non_lvalue_description,
1966 op[0]->clone(ctx, NULL), temp_rhs,
1967 &result, needs_rvalue, false,
1968 this->subexpressions[0]->get_location());
1969 break;
1970 }
1971
1972 case ast_post_inc:
1973 case ast_post_dec: {
1974 this->non_lvalue_description = (this->oper == ast_post_inc)
1975 ? "post-increment operation" : "post-decrement operation";
1976 op[0] = this->subexpressions[0]->hir(instructions, state);
1977 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1978
1979 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1980
1981 if (error_emitted) {
1982 result = ir_rvalue::error_value(ctx);
1983 break;
1984 }
1985
1986 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1987
1988 ir_rvalue *temp_rhs;
1989 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1990 op[0], op[1]);
1991
1992 /* Get a temporary of a copy of the lvalue before it's modified.
1993 * This may get thrown away later.
1994 */
1995 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1996
1997 ir_rvalue *junk_rvalue;
1998 error_emitted =
1999 do_assignment(instructions, state,
2000 this->subexpressions[0]->non_lvalue_description,
2001 op[0]->clone(ctx, NULL), temp_rhs,
2002 &junk_rvalue, false, false,
2003 this->subexpressions[0]->get_location());
2004
2005 break;
2006 }
2007
2008 case ast_field_selection:
2009 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2010 break;
2011
2012 case ast_array_index: {
2013 YYLTYPE index_loc = subexpressions[1]->get_location();
2014
2015 /* Getting if an array is being used uninitialized is beyond what we get
2016 * from ir_value.data.assigned. Setting is_lhs as true would force to
2017 * not raise a uninitialized warning when using an array
2018 */
2019 subexpressions[0]->set_is_lhs(true);
2020 op[0] = subexpressions[0]->hir(instructions, state);
2021 op[1] = subexpressions[1]->hir(instructions, state);
2022
2023 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2024 loc, index_loc);
2025
2026 if (result->type->is_error())
2027 error_emitted = true;
2028
2029 break;
2030 }
2031
2032 case ast_unsized_array_dim:
2033 unreachable("ast_unsized_array_dim: Should never get here.");
2034
2035 case ast_function_call:
2036 /* Should *NEVER* get here. ast_function_call should always be handled
2037 * by ast_function_expression::hir.
2038 */
2039 unreachable("ast_function_call: handled elsewhere ");
2040
2041 case ast_identifier: {
2042 /* ast_identifier can appear several places in a full abstract syntax
2043 * tree. This particular use must be at location specified in the grammar
2044 * as 'variable_identifier'.
2045 */
2046 ir_variable *var =
2047 state->symbols->get_variable(this->primary_expression.identifier);
2048
2049 if (var == NULL) {
2050 /* the identifier might be a subroutine name */
2051 char *sub_name;
2052 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2053 var = state->symbols->get_variable(sub_name);
2054 ralloc_free(sub_name);
2055 }
2056
2057 if (var != NULL) {
2058 var->data.used = true;
2059 result = new(ctx) ir_dereference_variable(var);
2060
2061 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2062 && !this->is_lhs
2063 && result->variable_referenced()->data.assigned != true
2064 && !is_gl_identifier(var->name)) {
2065 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2066 this->primary_expression.identifier);
2067 }
2068
2069 if (var->is_fb_fetch_color_output()) {
2070 /* From the EXT_shader_framebuffer_fetch spec:
2071 *
2072 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2073 * enabled in addition, it's an error to use gl_LastFragData if it
2074 * hasn't been explicitly redeclared with layout(noncoherent)."
2075 */
2076 if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2077 _mesa_glsl_error(&loc, state,
2078 "invalid use of framebuffer fetch output not "
2079 "qualified with layout(noncoherent)");
2080 }
2081 } else if (var->data.fb_fetch_output) {
2082 /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2083 *
2084 * "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2085 * and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2086 * is specified. This will result in a compile-time error."
2087 */
2088 if (state->fs_early_fragment_tests) {
2089 _mesa_glsl_error(&loc, state,
2090 "invalid use of depth or stencil fetch "
2091 "with early fragment tests enabled");
2092 }
2093 }
2094
2095 } else {
2096 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2097 this->primary_expression.identifier);
2098
2099 result = ir_rvalue::error_value(ctx);
2100 error_emitted = true;
2101 }
2102 break;
2103 }
2104
2105 case ast_int_constant:
2106 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2107 break;
2108
2109 case ast_uint_constant:
2110 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2111 break;
2112
2113 case ast_float_constant:
2114 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2115 break;
2116
2117 case ast_bool_constant:
2118 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2119 break;
2120
2121 case ast_double_constant:
2122 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2123 break;
2124
2125 case ast_uint64_constant:
2126 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2127 break;
2128
2129 case ast_int64_constant:
2130 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2131 break;
2132
2133 case ast_sequence: {
2134 /* It should not be possible to generate a sequence in the AST without
2135 * any expressions in it.
2136 */
2137 assert(!this->expressions.is_empty());
2138
2139 /* The r-value of a sequence is the last expression in the sequence. If
2140 * the other expressions in the sequence do not have side-effects (and
2141 * therefore add instructions to the instruction list), they get dropped
2142 * on the floor.
2143 */
2144 exec_node *previous_tail = NULL;
2145 YYLTYPE previous_operand_loc = loc;
2146
2147 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2148 /* If one of the operands of comma operator does not generate any
2149 * code, we want to emit a warning. At each pass through the loop
2150 * previous_tail will point to the last instruction in the stream
2151 * *before* processing the previous operand. Naturally,
2152 * instructions->get_tail_raw() will point to the last instruction in
2153 * the stream *after* processing the previous operand. If the two
2154 * pointers match, then the previous operand had no effect.
2155 *
2156 * The warning behavior here differs slightly from GCC. GCC will
2157 * only emit a warning if none of the left-hand operands have an
2158 * effect. However, it will emit a warning for each. I believe that
2159 * there are some cases in C (especially with GCC extensions) where
2160 * it is useful to have an intermediate step in a sequence have no
2161 * effect, but I don't think these cases exist in GLSL. Either way,
2162 * it would be a giant hassle to replicate that behavior.
2163 */
2164 if (previous_tail == instructions->get_tail_raw()) {
2165 _mesa_glsl_warning(&previous_operand_loc, state,
2166 "left-hand operand of comma expression has "
2167 "no effect");
2168 }
2169
2170 /* The tail is directly accessed instead of using the get_tail()
2171 * method for performance reasons. get_tail() has extra code to
2172 * return NULL when the list is empty. We don't care about that
2173 * here, so using get_tail_raw() is fine.
2174 */
2175 previous_tail = instructions->get_tail_raw();
2176 previous_operand_loc = ast->get_location();
2177
2178 result = ast->hir(instructions, state);
2179 }
2180
2181 /* Any errors should have already been emitted in the loop above.
2182 */
2183 error_emitted = true;
2184 break;
2185 }
2186 }
2187 type = NULL; /* use result->type, not type. */
2188 assert(error_emitted || (result != NULL || !needs_rvalue));
2189
2190 if (result && result->type->is_error() && !error_emitted)
2191 _mesa_glsl_error(& loc, state, "type mismatch");
2192
2193 return result;
2194 }
2195
2196 bool
has_sequence_subexpression() const2197 ast_expression::has_sequence_subexpression() const
2198 {
2199 switch (this->oper) {
2200 case ast_plus:
2201 case ast_neg:
2202 case ast_bit_not:
2203 case ast_logic_not:
2204 case ast_pre_inc:
2205 case ast_pre_dec:
2206 case ast_post_inc:
2207 case ast_post_dec:
2208 return this->subexpressions[0]->has_sequence_subexpression();
2209
2210 case ast_assign:
2211 case ast_add:
2212 case ast_sub:
2213 case ast_mul:
2214 case ast_div:
2215 case ast_mod:
2216 case ast_lshift:
2217 case ast_rshift:
2218 case ast_less:
2219 case ast_greater:
2220 case ast_lequal:
2221 case ast_gequal:
2222 case ast_nequal:
2223 case ast_equal:
2224 case ast_bit_and:
2225 case ast_bit_xor:
2226 case ast_bit_or:
2227 case ast_logic_and:
2228 case ast_logic_or:
2229 case ast_logic_xor:
2230 case ast_array_index:
2231 case ast_mul_assign:
2232 case ast_div_assign:
2233 case ast_add_assign:
2234 case ast_sub_assign:
2235 case ast_mod_assign:
2236 case ast_ls_assign:
2237 case ast_rs_assign:
2238 case ast_and_assign:
2239 case ast_xor_assign:
2240 case ast_or_assign:
2241 return this->subexpressions[0]->has_sequence_subexpression() ||
2242 this->subexpressions[1]->has_sequence_subexpression();
2243
2244 case ast_conditional:
2245 return this->subexpressions[0]->has_sequence_subexpression() ||
2246 this->subexpressions[1]->has_sequence_subexpression() ||
2247 this->subexpressions[2]->has_sequence_subexpression();
2248
2249 case ast_sequence:
2250 return true;
2251
2252 case ast_field_selection:
2253 case ast_identifier:
2254 case ast_int_constant:
2255 case ast_uint_constant:
2256 case ast_float_constant:
2257 case ast_bool_constant:
2258 case ast_double_constant:
2259 case ast_int64_constant:
2260 case ast_uint64_constant:
2261 return false;
2262
2263 case ast_aggregate:
2264 return false;
2265
2266 case ast_function_call:
2267 unreachable("should be handled by ast_function_expression::hir");
2268
2269 case ast_unsized_array_dim:
2270 unreachable("ast_unsized_array_dim: Should never get here.");
2271 }
2272
2273 return false;
2274 }
2275
2276 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2277 ast_expression_statement::hir(exec_list *instructions,
2278 struct _mesa_glsl_parse_state *state)
2279 {
2280 /* It is possible to have expression statements that don't have an
2281 * expression. This is the solitary semicolon:
2282 *
2283 * for (i = 0; i < 5; i++)
2284 * ;
2285 *
2286 * In this case the expression will be NULL. Test for NULL and don't do
2287 * anything in that case.
2288 */
2289 if (expression != NULL)
2290 expression->hir_no_rvalue(instructions, state);
2291
2292 /* Statements do not have r-values.
2293 */
2294 return NULL;
2295 }
2296
2297
2298 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2299 ast_compound_statement::hir(exec_list *instructions,
2300 struct _mesa_glsl_parse_state *state)
2301 {
2302 if (new_scope)
2303 state->symbols->push_scope();
2304
2305 foreach_list_typed (ast_node, ast, link, &this->statements)
2306 ast->hir(instructions, state);
2307
2308 if (new_scope)
2309 state->symbols->pop_scope();
2310
2311 /* Compound statements do not have r-values.
2312 */
2313 return NULL;
2314 }
2315
2316 /**
2317 * Evaluate the given exec_node (which should be an ast_node representing
2318 * a single array dimension) and return its integer value.
2319 */
2320 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2321 process_array_size(exec_node *node,
2322 struct _mesa_glsl_parse_state *state)
2323 {
2324 void *mem_ctx = state;
2325
2326 exec_list dummy_instructions;
2327
2328 ast_node *array_size = exec_node_data(ast_node, node, link);
2329
2330 /**
2331 * Dimensions other than the outermost dimension can by unsized if they
2332 * are immediately sized by a constructor or initializer.
2333 */
2334 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2335 return 0;
2336
2337 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2338 YYLTYPE loc = array_size->get_location();
2339
2340 if (ir == NULL) {
2341 _mesa_glsl_error(& loc, state,
2342 "array size could not be resolved");
2343 return 0;
2344 }
2345
2346 if (!ir->type->is_integer_32()) {
2347 _mesa_glsl_error(& loc, state,
2348 "array size must be integer type");
2349 return 0;
2350 }
2351
2352 if (!ir->type->is_scalar()) {
2353 _mesa_glsl_error(& loc, state,
2354 "array size must be scalar type");
2355 return 0;
2356 }
2357
2358 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2359 if (size == NULL ||
2360 (state->is_version(120, 300) &&
2361 array_size->has_sequence_subexpression())) {
2362 _mesa_glsl_error(& loc, state, "array size must be a "
2363 "constant valued expression");
2364 return 0;
2365 }
2366
2367 if (size->value.i[0] <= 0) {
2368 _mesa_glsl_error(& loc, state, "array size must be > 0");
2369 return 0;
2370 }
2371
2372 assert(size->type == ir->type);
2373
2374 /* If the array size is const (and we've verified that
2375 * it is) then no instructions should have been emitted
2376 * when we converted it to HIR. If they were emitted,
2377 * then either the array size isn't const after all, or
2378 * we are emitting unnecessary instructions.
2379 */
2380 assert(dummy_instructions.is_empty());
2381
2382 return size->value.u[0];
2383 }
2384
2385 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2386 process_array_type(YYLTYPE *loc, const glsl_type *base,
2387 ast_array_specifier *array_specifier,
2388 struct _mesa_glsl_parse_state *state)
2389 {
2390 const glsl_type *array_type = base;
2391
2392 if (array_specifier != NULL) {
2393 if (base->is_array()) {
2394
2395 /* From page 19 (page 25) of the GLSL 1.20 spec:
2396 *
2397 * "Only one-dimensional arrays may be declared."
2398 */
2399 if (!state->check_arrays_of_arrays_allowed(loc)) {
2400 return glsl_type::error_type;
2401 }
2402 }
2403
2404 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2405 !node->is_head_sentinel(); node = node->prev) {
2406 unsigned array_size = process_array_size(node, state);
2407 array_type = glsl_type::get_array_instance(array_type, array_size);
2408 }
2409 }
2410
2411 return array_type;
2412 }
2413
2414 static bool
precision_qualifier_allowed(const glsl_type * type)2415 precision_qualifier_allowed(const glsl_type *type)
2416 {
2417 /* Precision qualifiers apply to floating point, integer and opaque
2418 * types.
2419 *
2420 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2421 * "Any floating point or any integer declaration can have the type
2422 * preceded by one of these precision qualifiers [...] Literal
2423 * constants do not have precision qualifiers. Neither do Boolean
2424 * variables.
2425 *
2426 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2427 * spec also says:
2428 *
2429 * "Precision qualifiers are added for code portability with OpenGL
2430 * ES, not for functionality. They have the same syntax as in OpenGL
2431 * ES."
2432 *
2433 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2434 *
2435 * "uniform lowp sampler2D sampler;
2436 * highp vec2 coord;
2437 * ...
2438 * lowp vec4 col = texture2D (sampler, coord);
2439 * // texture2D returns lowp"
2440 *
2441 * From this, we infer that GLSL 1.30 (and later) should allow precision
2442 * qualifiers on sampler types just like float and integer types.
2443 */
2444 const glsl_type *const t = type->without_array();
2445
2446 return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2447 !t->is_struct();
2448 }
2449
2450 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2451 ast_type_specifier::glsl_type(const char **name,
2452 struct _mesa_glsl_parse_state *state) const
2453 {
2454 const struct glsl_type *type;
2455
2456 if (this->type != NULL)
2457 type = this->type;
2458 else if (structure)
2459 type = structure->type;
2460 else
2461 type = state->symbols->get_type(this->type_name);
2462 *name = this->type_name;
2463
2464 YYLTYPE loc = this->get_location();
2465 type = process_array_type(&loc, type, this->array_specifier, state);
2466
2467 return type;
2468 }
2469
2470 /**
2471 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2472 *
2473 * "The precision statement
2474 *
2475 * precision precision-qualifier type;
2476 *
2477 * can be used to establish a default precision qualifier. The type field can
2478 * be either int or float or any of the sampler types, (...) If type is float,
2479 * the directive applies to non-precision-qualified floating point type
2480 * (scalar, vector, and matrix) declarations. If type is int, the directive
2481 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2482 * and unsigned) declarations."
2483 *
2484 * We use the symbol table to keep the values of the default precisions for
2485 * each 'type' in each scope and we use the 'type' string from the precision
2486 * statement as key in the symbol table. When we want to retrieve the default
2487 * precision associated with a given glsl_type we need to know the type string
2488 * associated with it. This is what this function returns.
2489 */
2490 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2491 get_type_name_for_precision_qualifier(const glsl_type *type)
2492 {
2493 switch (type->base_type) {
2494 case GLSL_TYPE_FLOAT:
2495 return "float";
2496 case GLSL_TYPE_UINT:
2497 case GLSL_TYPE_INT:
2498 return "int";
2499 case GLSL_TYPE_ATOMIC_UINT:
2500 return "atomic_uint";
2501 case GLSL_TYPE_IMAGE:
2502 FALLTHROUGH;
2503 case GLSL_TYPE_SAMPLER: {
2504 const unsigned type_idx =
2505 type->sampler_array + 2 * type->sampler_shadow;
2506 const unsigned offset = type->is_sampler() ? 0 : 4;
2507 assert(type_idx < 4);
2508 switch (type->sampled_type) {
2509 case GLSL_TYPE_FLOAT:
2510 switch (type->sampler_dimensionality) {
2511 case GLSL_SAMPLER_DIM_1D: {
2512 assert(type->is_sampler());
2513 static const char *const names[4] = {
2514 "sampler1D", "sampler1DArray",
2515 "sampler1DShadow", "sampler1DArrayShadow"
2516 };
2517 return names[type_idx];
2518 }
2519 case GLSL_SAMPLER_DIM_2D: {
2520 static const char *const names[8] = {
2521 "sampler2D", "sampler2DArray",
2522 "sampler2DShadow", "sampler2DArrayShadow",
2523 "image2D", "image2DArray", NULL, NULL
2524 };
2525 return names[offset + type_idx];
2526 }
2527 case GLSL_SAMPLER_DIM_3D: {
2528 static const char *const names[8] = {
2529 "sampler3D", NULL, NULL, NULL,
2530 "image3D", NULL, NULL, NULL
2531 };
2532 return names[offset + type_idx];
2533 }
2534 case GLSL_SAMPLER_DIM_CUBE: {
2535 static const char *const names[8] = {
2536 "samplerCube", "samplerCubeArray",
2537 "samplerCubeShadow", "samplerCubeArrayShadow",
2538 "imageCube", NULL, NULL, NULL
2539 };
2540 return names[offset + type_idx];
2541 }
2542 case GLSL_SAMPLER_DIM_MS: {
2543 assert(type->is_sampler());
2544 static const char *const names[4] = {
2545 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2546 };
2547 return names[type_idx];
2548 }
2549 case GLSL_SAMPLER_DIM_RECT: {
2550 assert(type->is_sampler());
2551 static const char *const names[4] = {
2552 "samplerRect", NULL, "samplerRectShadow", NULL
2553 };
2554 return names[type_idx];
2555 }
2556 case GLSL_SAMPLER_DIM_BUF: {
2557 static const char *const names[8] = {
2558 "samplerBuffer", NULL, NULL, NULL,
2559 "imageBuffer", NULL, NULL, NULL
2560 };
2561 return names[offset + type_idx];
2562 }
2563 case GLSL_SAMPLER_DIM_EXTERNAL: {
2564 assert(type->is_sampler());
2565 static const char *const names[4] = {
2566 "samplerExternalOES", NULL, NULL, NULL
2567 };
2568 return names[type_idx];
2569 }
2570 default:
2571 unreachable("Unsupported sampler/image dimensionality");
2572 } /* sampler/image float dimensionality */
2573 break;
2574 case GLSL_TYPE_INT:
2575 switch (type->sampler_dimensionality) {
2576 case GLSL_SAMPLER_DIM_1D: {
2577 assert(type->is_sampler());
2578 static const char *const names[4] = {
2579 "isampler1D", "isampler1DArray", NULL, NULL
2580 };
2581 return names[type_idx];
2582 }
2583 case GLSL_SAMPLER_DIM_2D: {
2584 static const char *const names[8] = {
2585 "isampler2D", "isampler2DArray", NULL, NULL,
2586 "iimage2D", "iimage2DArray", NULL, NULL
2587 };
2588 return names[offset + type_idx];
2589 }
2590 case GLSL_SAMPLER_DIM_3D: {
2591 static const char *const names[8] = {
2592 "isampler3D", NULL, NULL, NULL,
2593 "iimage3D", NULL, NULL, NULL
2594 };
2595 return names[offset + type_idx];
2596 }
2597 case GLSL_SAMPLER_DIM_CUBE: {
2598 static const char *const names[8] = {
2599 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2600 "iimageCube", NULL, NULL, NULL
2601 };
2602 return names[offset + type_idx];
2603 }
2604 case GLSL_SAMPLER_DIM_MS: {
2605 assert(type->is_sampler());
2606 static const char *const names[4] = {
2607 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2608 };
2609 return names[type_idx];
2610 }
2611 case GLSL_SAMPLER_DIM_RECT: {
2612 assert(type->is_sampler());
2613 static const char *const names[4] = {
2614 "isamplerRect", NULL, "isamplerRectShadow", NULL
2615 };
2616 return names[type_idx];
2617 }
2618 case GLSL_SAMPLER_DIM_BUF: {
2619 static const char *const names[8] = {
2620 "isamplerBuffer", NULL, NULL, NULL,
2621 "iimageBuffer", NULL, NULL, NULL
2622 };
2623 return names[offset + type_idx];
2624 }
2625 default:
2626 unreachable("Unsupported isampler/iimage dimensionality");
2627 } /* sampler/image int dimensionality */
2628 break;
2629 case GLSL_TYPE_UINT:
2630 switch (type->sampler_dimensionality) {
2631 case GLSL_SAMPLER_DIM_1D: {
2632 assert(type->is_sampler());
2633 static const char *const names[4] = {
2634 "usampler1D", "usampler1DArray", NULL, NULL
2635 };
2636 return names[type_idx];
2637 }
2638 case GLSL_SAMPLER_DIM_2D: {
2639 static const char *const names[8] = {
2640 "usampler2D", "usampler2DArray", NULL, NULL,
2641 "uimage2D", "uimage2DArray", NULL, NULL
2642 };
2643 return names[offset + type_idx];
2644 }
2645 case GLSL_SAMPLER_DIM_3D: {
2646 static const char *const names[8] = {
2647 "usampler3D", NULL, NULL, NULL,
2648 "uimage3D", NULL, NULL, NULL
2649 };
2650 return names[offset + type_idx];
2651 }
2652 case GLSL_SAMPLER_DIM_CUBE: {
2653 static const char *const names[8] = {
2654 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2655 "uimageCube", NULL, NULL, NULL
2656 };
2657 return names[offset + type_idx];
2658 }
2659 case GLSL_SAMPLER_DIM_MS: {
2660 assert(type->is_sampler());
2661 static const char *const names[4] = {
2662 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2663 };
2664 return names[type_idx];
2665 }
2666 case GLSL_SAMPLER_DIM_RECT: {
2667 assert(type->is_sampler());
2668 static const char *const names[4] = {
2669 "usamplerRect", NULL, "usamplerRectShadow", NULL
2670 };
2671 return names[type_idx];
2672 }
2673 case GLSL_SAMPLER_DIM_BUF: {
2674 static const char *const names[8] = {
2675 "usamplerBuffer", NULL, NULL, NULL,
2676 "uimageBuffer", NULL, NULL, NULL
2677 };
2678 return names[offset + type_idx];
2679 }
2680 default:
2681 unreachable("Unsupported usampler/uimage dimensionality");
2682 } /* sampler/image uint dimensionality */
2683 break;
2684 default:
2685 unreachable("Unsupported sampler/image type");
2686 } /* sampler/image type */
2687 break;
2688 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2689 break;
2690 default:
2691 unreachable("Unsupported type");
2692 } /* base type */
2693 }
2694
2695 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2696 select_gles_precision(unsigned qual_precision,
2697 const glsl_type *type,
2698 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2699 {
2700 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2701 * In GLES we take the precision from the type qualifier if present,
2702 * otherwise, if the type of the variable allows precision qualifiers at
2703 * all, we look for the default precision qualifier for that type in the
2704 * current scope.
2705 */
2706 assert(state->es_shader);
2707
2708 unsigned precision = GLSL_PRECISION_NONE;
2709 if (qual_precision) {
2710 precision = qual_precision;
2711 } else if (precision_qualifier_allowed(type)) {
2712 const char *type_name =
2713 get_type_name_for_precision_qualifier(type->without_array());
2714 assert(type_name != NULL);
2715
2716 precision =
2717 state->symbols->get_default_precision_qualifier(type_name);
2718 if (precision == ast_precision_none) {
2719 _mesa_glsl_error(loc, state,
2720 "No precision specified in this scope for type `%s'",
2721 type->name);
2722 }
2723 }
2724
2725
2726 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2727 *
2728 * "The default precision of all atomic types is highp. It is an error to
2729 * declare an atomic type with a different precision or to specify the
2730 * default precision for an atomic type to be lowp or mediump."
2731 */
2732 if (type->is_atomic_uint() && precision != ast_precision_high) {
2733 _mesa_glsl_error(loc, state,
2734 "atomic_uint can only have highp precision qualifier");
2735 }
2736
2737 return precision;
2738 }
2739
2740 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2741 ast_fully_specified_type::glsl_type(const char **name,
2742 struct _mesa_glsl_parse_state *state) const
2743 {
2744 return this->specifier->glsl_type(name, state);
2745 }
2746
2747 /**
2748 * Determine whether a toplevel variable declaration declares a varying. This
2749 * function operates by examining the variable's mode and the shader target,
2750 * so it correctly identifies linkage variables regardless of whether they are
2751 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2752 *
2753 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2754 * this function will produce undefined results.
2755 */
2756 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2757 is_varying_var(ir_variable *var, gl_shader_stage target)
2758 {
2759 switch (target) {
2760 case MESA_SHADER_VERTEX:
2761 return var->data.mode == ir_var_shader_out;
2762 case MESA_SHADER_FRAGMENT:
2763 return var->data.mode == ir_var_shader_in ||
2764 (var->data.mode == ir_var_system_value &&
2765 var->data.location == SYSTEM_VALUE_FRAG_COORD);
2766 default:
2767 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2768 }
2769 }
2770
2771 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2772 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2773 {
2774 if (is_varying_var(var, state->stage))
2775 return true;
2776
2777 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2778 * "Only variables output from a vertex shader can be candidates
2779 * for invariance".
2780 */
2781 if (!state->is_version(130, 100))
2782 return false;
2783
2784 /*
2785 * Later specs remove this language - so allowed invariant
2786 * on fragment shader outputs as well.
2787 */
2788 if (state->stage == MESA_SHADER_FRAGMENT &&
2789 var->data.mode == ir_var_shader_out)
2790 return true;
2791 return false;
2792 }
2793
2794 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2795 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2796 YYLTYPE *loc, const glsl_type *type,
2797 unsigned qual_component)
2798 {
2799 type = type->without_array();
2800 unsigned components = type->component_slots();
2801
2802 if (type->is_matrix() || type->is_struct()) {
2803 _mesa_glsl_error(loc, state, "component layout qualifier "
2804 "cannot be applied to a matrix, a structure, "
2805 "a block, or an array containing any of these.");
2806 } else if (components > 4 && type->is_64bit()) {
2807 _mesa_glsl_error(loc, state, "component layout qualifier "
2808 "cannot be applied to dvec%u.",
2809 components / 2);
2810 } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2811 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2812 (qual_component + components - 1));
2813 } else if (qual_component == 1 && type->is_64bit()) {
2814 /* We don't bother checking for 3 as it should be caught by the
2815 * overflow check above.
2816 */
2817 _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2818 }
2819 }
2820
2821 /**
2822 * Matrix layout qualifiers are only allowed on certain types
2823 */
2824 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2825 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2826 YYLTYPE *loc,
2827 const glsl_type *type,
2828 ir_variable *var)
2829 {
2830 if (var && !var->is_in_buffer_block()) {
2831 /* Layout qualifiers may only apply to interface blocks and fields in
2832 * them.
2833 */
2834 _mesa_glsl_error(loc, state,
2835 "uniform block layout qualifiers row_major and "
2836 "column_major may not be applied to variables "
2837 "outside of uniform blocks");
2838 } else if (!type->without_array()->is_matrix()) {
2839 /* The OpenGL ES 3.0 conformance tests did not originally allow
2840 * matrix layout qualifiers on non-matrices. However, the OpenGL
2841 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2842 * amended to specifically allow these layouts on all types. Emit
2843 * a warning so that people know their code may not be portable.
2844 */
2845 _mesa_glsl_warning(loc, state,
2846 "uniform block layout qualifiers row_major and "
2847 "column_major applied to non-matrix types may "
2848 "be rejected by older compilers");
2849 }
2850 }
2851
2852 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2853 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2854 struct _mesa_glsl_parse_state *state,
2855 unsigned xfb_buffer) {
2856 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2857 _mesa_glsl_error(loc, state,
2858 "invalid xfb_buffer specified %d is larger than "
2859 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2860 xfb_buffer,
2861 state->Const.MaxTransformFeedbackBuffers - 1);
2862 return false;
2863 }
2864
2865 return true;
2866 }
2867
2868 /* From the ARB_enhanced_layouts spec:
2869 *
2870 * "Variables and block members qualified with *xfb_offset* can be
2871 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2872 * The offset must be a multiple of the size of the first component of
2873 * the first qualified variable or block member, or a compile-time error
2874 * results. Further, if applied to an aggregate containing a double,
2875 * the offset must also be a multiple of 8, and the space taken in the
2876 * buffer will be a multiple of 8.
2877 */
2878 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2879 validate_xfb_offset_qualifier(YYLTYPE *loc,
2880 struct _mesa_glsl_parse_state *state,
2881 int xfb_offset, const glsl_type *type,
2882 unsigned component_size) {
2883 const glsl_type *t_without_array = type->without_array();
2884
2885 if (xfb_offset != -1 && type->is_unsized_array()) {
2886 _mesa_glsl_error(loc, state,
2887 "xfb_offset can't be used with unsized arrays.");
2888 return false;
2889 }
2890
2891 /* Make sure nested structs don't contain unsized arrays, and validate
2892 * any xfb_offsets on interface members.
2893 */
2894 if (t_without_array->is_struct() || t_without_array->is_interface())
2895 for (unsigned int i = 0; i < t_without_array->length; i++) {
2896 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2897
2898 /* When the interface block doesn't have an xfb_offset qualifier then
2899 * we apply the component size rules at the member level.
2900 */
2901 if (xfb_offset == -1)
2902 component_size = member_t->contains_double() ? 8 : 4;
2903
2904 int xfb_offset = t_without_array->fields.structure[i].offset;
2905 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2906 component_size);
2907 }
2908
2909 /* Nested structs or interface block without offset may not have had an
2910 * offset applied yet so return.
2911 */
2912 if (xfb_offset == -1) {
2913 return true;
2914 }
2915
2916 if (xfb_offset % component_size) {
2917 _mesa_glsl_error(loc, state,
2918 "invalid qualifier xfb_offset=%d must be a multiple "
2919 "of the first component size of the first qualified "
2920 "variable or block member. Or double if an aggregate "
2921 "that contains a double (%d).",
2922 xfb_offset, component_size);
2923 return false;
2924 }
2925
2926 return true;
2927 }
2928
2929 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2930 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2931 unsigned stream)
2932 {
2933 if (stream >= state->consts->MaxVertexStreams) {
2934 _mesa_glsl_error(loc, state,
2935 "invalid stream specified %d is larger than "
2936 "MAX_VERTEX_STREAMS - 1 (%d).",
2937 stream, state->consts->MaxVertexStreams - 1);
2938 return false;
2939 }
2940
2941 return true;
2942 }
2943
2944 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)2945 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2946 YYLTYPE *loc,
2947 ir_variable *var,
2948 const glsl_type *type,
2949 const ast_type_qualifier *qual)
2950 {
2951 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2952 _mesa_glsl_error(loc, state,
2953 "the \"binding\" qualifier only applies to uniforms and "
2954 "shader storage buffer objects");
2955 return;
2956 }
2957
2958 unsigned qual_binding;
2959 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2960 &qual_binding)) {
2961 return;
2962 }
2963
2964 const struct gl_constants *consts = state->consts;
2965 unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2966 unsigned max_index = qual_binding + elements - 1;
2967 const glsl_type *base_type = type->without_array();
2968
2969 if (base_type->is_interface()) {
2970 /* UBOs. From page 60 of the GLSL 4.20 specification:
2971 * "If the binding point for any uniform block instance is less than zero,
2972 * or greater than or equal to the implementation-dependent maximum
2973 * number of uniform buffer bindings, a compilation error will occur.
2974 * When the binding identifier is used with a uniform block instanced as
2975 * an array of size N, all elements of the array from binding through
2976 * binding + N – 1 must be within this range."
2977 *
2978 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2979 */
2980 if (qual->flags.q.uniform &&
2981 max_index >= consts->MaxUniformBufferBindings) {
2982 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2983 "the maximum number of UBO binding points (%d)",
2984 qual_binding, elements,
2985 consts->MaxUniformBufferBindings);
2986 return;
2987 }
2988
2989 /* SSBOs. From page 67 of the GLSL 4.30 specification:
2990 * "If the binding point for any uniform or shader storage block instance
2991 * is less than zero, or greater than or equal to the
2992 * implementation-dependent maximum number of uniform buffer bindings, a
2993 * compile-time error will occur. When the binding identifier is used
2994 * with a uniform or shader storage block instanced as an array of size
2995 * N, all elements of the array from binding through binding + N – 1 must
2996 * be within this range."
2997 */
2998 if (qual->flags.q.buffer &&
2999 max_index >= consts->MaxShaderStorageBufferBindings) {
3000 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3001 "the maximum number of SSBO binding points (%d)",
3002 qual_binding, elements,
3003 consts->MaxShaderStorageBufferBindings);
3004 return;
3005 }
3006 } else if (base_type->is_sampler()) {
3007 /* Samplers. From page 63 of the GLSL 4.20 specification:
3008 * "If the binding is less than zero, or greater than or equal to the
3009 * implementation-dependent maximum supported number of units, a
3010 * compilation error will occur. When the binding identifier is used
3011 * with an array of size N, all elements of the array from binding
3012 * through binding + N - 1 must be within this range."
3013 */
3014 unsigned limit = consts->MaxCombinedTextureImageUnits;
3015
3016 if (max_index >= limit) {
3017 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3018 "exceeds the maximum number of texture image units "
3019 "(%u)", qual_binding, elements, limit);
3020
3021 return;
3022 }
3023 } else if (base_type->contains_atomic()) {
3024 assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3025 if (qual_binding >= consts->MaxAtomicBufferBindings) {
3026 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3027 "maximum number of atomic counter buffer bindings "
3028 "(%u)", qual_binding,
3029 consts->MaxAtomicBufferBindings);
3030
3031 return;
3032 }
3033 } else if ((state->is_version(420, 310) ||
3034 state->ARB_shading_language_420pack_enable) &&
3035 base_type->is_image()) {
3036 assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3037 if (max_index >= consts->MaxImageUnits) {
3038 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3039 "maximum number of image units (%d)", max_index,
3040 consts->MaxImageUnits);
3041 return;
3042 }
3043
3044 } else {
3045 _mesa_glsl_error(loc, state,
3046 "the \"binding\" qualifier only applies to uniform "
3047 "blocks, storage blocks, opaque variables, or arrays "
3048 "thereof");
3049 return;
3050 }
3051
3052 var->data.explicit_binding = true;
3053 var->data.binding = qual_binding;
3054
3055 return;
3056 }
3057
3058 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3059 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3060 YYLTYPE *loc,
3061 const glsl_interp_mode interpolation,
3062 const struct glsl_type *var_type,
3063 ir_variable_mode mode)
3064 {
3065 if (state->stage != MESA_SHADER_FRAGMENT ||
3066 interpolation == INTERP_MODE_FLAT ||
3067 mode != ir_var_shader_in)
3068 return;
3069
3070 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3071 * so must integer vertex outputs.
3072 *
3073 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3074 * "Fragment shader inputs that are signed or unsigned integers or
3075 * integer vectors must be qualified with the interpolation qualifier
3076 * flat."
3077 *
3078 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3079 * "Fragment shader inputs that are, or contain, signed or unsigned
3080 * integers or integer vectors must be qualified with the
3081 * interpolation qualifier flat."
3082 *
3083 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3084 * "Vertex shader outputs that are, or contain, signed or unsigned
3085 * integers or integer vectors must be qualified with the
3086 * interpolation qualifier flat."
3087 *
3088 * Note that prior to GLSL 1.50, this requirement applied to vertex
3089 * outputs rather than fragment inputs. That creates problems in the
3090 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3091 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3092 * apply the restriction to both vertex outputs and fragment inputs.
3093 *
3094 * Note also that the desktop GLSL specs are missing the text "or
3095 * contain"; this is presumably an oversight, since there is no
3096 * reasonable way to interpolate a fragment shader input that contains
3097 * an integer. See Khronos bug #15671.
3098 */
3099 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3100 && var_type->contains_integer()) {
3101 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3102 "an integer, then it must be qualified with 'flat'");
3103 }
3104
3105 /* Double fragment inputs must be qualified with 'flat'.
3106 *
3107 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3108 * "This extension does not support interpolation of double-precision
3109 * values; doubles used as fragment shader inputs must be qualified as
3110 * "flat"."
3111 *
3112 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3113 * "Fragment shader inputs that are signed or unsigned integers, integer
3114 * vectors, or any double-precision floating-point type must be
3115 * qualified with the interpolation qualifier flat."
3116 *
3117 * Note that the GLSL specs are missing the text "or contain"; this is
3118 * presumably an oversight. See Khronos bug #15671.
3119 *
3120 * The 'double' type does not exist in GLSL ES so far.
3121 */
3122 if (state->has_double()
3123 && var_type->contains_double()) {
3124 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3125 "a double, then it must be qualified with 'flat'");
3126 }
3127
3128 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3129 *
3130 * From section 4.3.4 of the ARB_bindless_texture spec:
3131 *
3132 * "(modify last paragraph, p. 35, allowing samplers and images as
3133 * fragment shader inputs) ... Fragment inputs can only be signed and
3134 * unsigned integers and integer vectors, floating point scalars,
3135 * floating-point vectors, matrices, sampler and image types, or arrays
3136 * or structures of these. Fragment shader inputs that are signed or
3137 * unsigned integers, integer vectors, or any double-precision floating-
3138 * point type, or any sampler or image type must be qualified with the
3139 * interpolation qualifier "flat"."
3140 */
3141 if (state->has_bindless()
3142 && (var_type->contains_sampler() || var_type->contains_image())) {
3143 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3144 "a bindless sampler (or image), then it must be "
3145 "qualified with 'flat'");
3146 }
3147 }
3148
3149 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3150 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3151 YYLTYPE *loc,
3152 const glsl_interp_mode interpolation,
3153 const struct ast_type_qualifier *qual,
3154 const struct glsl_type *var_type,
3155 ir_variable_mode mode)
3156 {
3157 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3158 * not to vertex shader inputs nor fragment shader outputs.
3159 *
3160 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3161 * "Outputs from a vertex shader (out) and inputs to a fragment
3162 * shader (in) can be further qualified with one or more of these
3163 * interpolation qualifiers"
3164 * ...
3165 * "These interpolation qualifiers may only precede the qualifiers in,
3166 * centroid in, out, or centroid out in a declaration. They do not apply
3167 * to the deprecated storage qualifiers varying or centroid
3168 * varying. They also do not apply to inputs into a vertex shader or
3169 * outputs from a fragment shader."
3170 *
3171 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3172 * "Outputs from a shader (out) and inputs to a shader (in) can be
3173 * further qualified with one of these interpolation qualifiers."
3174 * ...
3175 * "These interpolation qualifiers may only precede the qualifiers
3176 * in, centroid in, out, or centroid out in a declaration. They do
3177 * not apply to inputs into a vertex shader or outputs from a
3178 * fragment shader."
3179 */
3180 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3181 && interpolation != INTERP_MODE_NONE) {
3182 const char *i = interpolation_string(interpolation);
3183 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3184 _mesa_glsl_error(loc, state,
3185 "interpolation qualifier `%s' can only be applied to "
3186 "shader inputs or outputs.", i);
3187
3188 switch (state->stage) {
3189 case MESA_SHADER_VERTEX:
3190 if (mode == ir_var_shader_in) {
3191 _mesa_glsl_error(loc, state,
3192 "interpolation qualifier '%s' cannot be applied to "
3193 "vertex shader inputs", i);
3194 }
3195 break;
3196 case MESA_SHADER_FRAGMENT:
3197 if (mode == ir_var_shader_out) {
3198 _mesa_glsl_error(loc, state,
3199 "interpolation qualifier '%s' cannot be applied to "
3200 "fragment shader outputs", i);
3201 }
3202 break;
3203 default:
3204 break;
3205 }
3206 }
3207
3208 /* Interpolation qualifiers cannot be applied to 'centroid' and
3209 * 'centroid varying'.
3210 *
3211 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3212 * "interpolation qualifiers may only precede the qualifiers in,
3213 * centroid in, out, or centroid out in a declaration. They do not apply
3214 * to the deprecated storage qualifiers varying or centroid varying."
3215 *
3216 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3217 *
3218 * GL_EXT_gpu_shader4 allows this.
3219 */
3220 if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3221 && interpolation != INTERP_MODE_NONE
3222 && qual->flags.q.varying) {
3223
3224 const char *i = interpolation_string(interpolation);
3225 const char *s;
3226 if (qual->flags.q.centroid)
3227 s = "centroid varying";
3228 else
3229 s = "varying";
3230
3231 _mesa_glsl_error(loc, state,
3232 "qualifier '%s' cannot be applied to the "
3233 "deprecated storage qualifier '%s'", i, s);
3234 }
3235
3236 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3237 var_type, mode);
3238 }
3239
3240 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3241 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3242 const struct glsl_type *var_type,
3243 ir_variable_mode mode,
3244 struct _mesa_glsl_parse_state *state,
3245 YYLTYPE *loc)
3246 {
3247 glsl_interp_mode interpolation;
3248 if (qual->flags.q.flat)
3249 interpolation = INTERP_MODE_FLAT;
3250 else if (qual->flags.q.noperspective)
3251 interpolation = INTERP_MODE_NOPERSPECTIVE;
3252 else if (qual->flags.q.smooth)
3253 interpolation = INTERP_MODE_SMOOTH;
3254 else
3255 interpolation = INTERP_MODE_NONE;
3256
3257 validate_interpolation_qualifier(state, loc,
3258 interpolation,
3259 qual, var_type, mode);
3260
3261 return interpolation;
3262 }
3263
3264
3265 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3266 apply_explicit_location(const struct ast_type_qualifier *qual,
3267 ir_variable *var,
3268 struct _mesa_glsl_parse_state *state,
3269 YYLTYPE *loc)
3270 {
3271 bool fail = false;
3272
3273 unsigned qual_location;
3274 if (!process_qualifier_constant(state, loc, "location", qual->location,
3275 &qual_location)) {
3276 return;
3277 }
3278
3279 /* Checks for GL_ARB_explicit_uniform_location. */
3280 if (qual->flags.q.uniform) {
3281 if (!state->check_explicit_uniform_location_allowed(loc, var))
3282 return;
3283
3284 const struct gl_constants *consts = state->consts;
3285 unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3286
3287 if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3288 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3289 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3290 consts->MaxUserAssignableUniformLocations);
3291 return;
3292 }
3293
3294 var->data.explicit_location = true;
3295 var->data.location = qual_location;
3296 return;
3297 }
3298
3299 /* Between GL_ARB_explicit_attrib_location an
3300 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3301 * stage can be assigned explicit locations. The checking here associates
3302 * the correct extension with the correct stage's input / output:
3303 *
3304 * input output
3305 * ----- ------
3306 * vertex explicit_loc sso
3307 * tess control sso sso
3308 * tess eval sso sso
3309 * geometry sso sso
3310 * fragment sso explicit_loc
3311 */
3312 switch (state->stage) {
3313 case MESA_SHADER_VERTEX:
3314 if (var->data.mode == ir_var_shader_in) {
3315 if (!state->check_explicit_attrib_location_allowed(loc, var))
3316 return;
3317
3318 break;
3319 }
3320
3321 if (var->data.mode == ir_var_shader_out) {
3322 if (!state->check_separate_shader_objects_allowed(loc, var))
3323 return;
3324
3325 break;
3326 }
3327
3328 fail = true;
3329 break;
3330
3331 case MESA_SHADER_TESS_CTRL:
3332 case MESA_SHADER_TESS_EVAL:
3333 case MESA_SHADER_GEOMETRY:
3334 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3335 if (!state->check_separate_shader_objects_allowed(loc, var))
3336 return;
3337
3338 break;
3339 }
3340
3341 fail = true;
3342 break;
3343
3344 case MESA_SHADER_FRAGMENT:
3345 if (var->data.mode == ir_var_shader_in) {
3346 if (!state->check_separate_shader_objects_allowed(loc, var))
3347 return;
3348
3349 break;
3350 }
3351
3352 if (var->data.mode == ir_var_shader_out) {
3353 if (!state->check_explicit_attrib_location_allowed(loc, var))
3354 return;
3355
3356 break;
3357 }
3358
3359 fail = true;
3360 break;
3361
3362 case MESA_SHADER_COMPUTE:
3363 _mesa_glsl_error(loc, state,
3364 "compute shader variables cannot be given "
3365 "explicit locations");
3366 return;
3367 default:
3368 fail = true;
3369 break;
3370 };
3371
3372 if (fail) {
3373 _mesa_glsl_error(loc, state,
3374 "%s cannot be given an explicit location in %s shader",
3375 mode_string(var),
3376 _mesa_shader_stage_to_string(state->stage));
3377 } else {
3378 var->data.explicit_location = true;
3379
3380 switch (state->stage) {
3381 case MESA_SHADER_VERTEX:
3382 var->data.location = (var->data.mode == ir_var_shader_in)
3383 ? (qual_location + VERT_ATTRIB_GENERIC0)
3384 : (qual_location + VARYING_SLOT_VAR0);
3385 break;
3386
3387 case MESA_SHADER_TESS_CTRL:
3388 case MESA_SHADER_TESS_EVAL:
3389 case MESA_SHADER_GEOMETRY:
3390 if (var->data.patch)
3391 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3392 else
3393 var->data.location = qual_location + VARYING_SLOT_VAR0;
3394 break;
3395
3396 case MESA_SHADER_FRAGMENT:
3397 var->data.location = (var->data.mode == ir_var_shader_out)
3398 ? (qual_location + FRAG_RESULT_DATA0)
3399 : (qual_location + VARYING_SLOT_VAR0);
3400 break;
3401 default:
3402 assert(!"Unexpected shader type");
3403 break;
3404 }
3405
3406 /* Check if index was set for the uniform instead of the function */
3407 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3408 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3409 "used with subroutine functions");
3410 return;
3411 }
3412
3413 unsigned qual_index;
3414 if (qual->flags.q.explicit_index &&
3415 process_qualifier_constant(state, loc, "index", qual->index,
3416 &qual_index)) {
3417 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3418 * Layout Qualifiers):
3419 *
3420 * "It is also a compile-time error if a fragment shader
3421 * sets a layout index to less than 0 or greater than 1."
3422 *
3423 * Older specifications don't mandate a behavior; we take
3424 * this as a clarification and always generate the error.
3425 */
3426 if (qual_index > 1) {
3427 _mesa_glsl_error(loc, state,
3428 "explicit index may only be 0 or 1");
3429 } else {
3430 var->data.explicit_index = true;
3431 var->data.index = qual_index;
3432 }
3433 }
3434 }
3435 }
3436
3437 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3438 validate_storage_for_sampler_image_types(ir_variable *var,
3439 struct _mesa_glsl_parse_state *state,
3440 YYLTYPE *loc)
3441 {
3442 /* From section 4.1.7 of the GLSL 4.40 spec:
3443 *
3444 * "[Opaque types] can only be declared as function
3445 * parameters or uniform-qualified variables."
3446 *
3447 * From section 4.1.7 of the ARB_bindless_texture spec:
3448 *
3449 * "Samplers may be declared as shader inputs and outputs, as uniform
3450 * variables, as temporary variables, and as function parameters."
3451 *
3452 * From section 4.1.X of the ARB_bindless_texture spec:
3453 *
3454 * "Images may be declared as shader inputs and outputs, as uniform
3455 * variables, as temporary variables, and as function parameters."
3456 */
3457 if (state->has_bindless()) {
3458 if (var->data.mode != ir_var_auto &&
3459 var->data.mode != ir_var_uniform &&
3460 var->data.mode != ir_var_shader_in &&
3461 var->data.mode != ir_var_shader_out &&
3462 var->data.mode != ir_var_function_in &&
3463 var->data.mode != ir_var_function_out &&
3464 var->data.mode != ir_var_function_inout) {
3465 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3466 "only be declared as shader inputs and outputs, as "
3467 "uniform variables, as temporary variables and as "
3468 "function parameters");
3469 return false;
3470 }
3471 } else {
3472 if (var->data.mode != ir_var_uniform &&
3473 var->data.mode != ir_var_function_in) {
3474 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3475 "declared as function parameters or "
3476 "uniform-qualified global variables");
3477 return false;
3478 }
3479 }
3480 return true;
3481 }
3482
3483 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3484 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3485 YYLTYPE *loc,
3486 const struct ast_type_qualifier *qual,
3487 const glsl_type *type)
3488 {
3489 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3490 *
3491 * "Memory qualifiers are only supported in the declarations of image
3492 * variables, buffer variables, and shader storage blocks; it is an error
3493 * to use such qualifiers in any other declarations.
3494 */
3495 if (!type->is_image() && !qual->flags.q.buffer) {
3496 if (qual->flags.q.read_only ||
3497 qual->flags.q.write_only ||
3498 qual->flags.q.coherent ||
3499 qual->flags.q._volatile ||
3500 qual->flags.q.restrict_flag) {
3501 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3502 "in the declarations of image variables, buffer "
3503 "variables, and shader storage blocks");
3504 return false;
3505 }
3506 }
3507 return true;
3508 }
3509
3510 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3511 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3512 YYLTYPE *loc,
3513 const struct ast_type_qualifier *qual,
3514 const glsl_type *type)
3515 {
3516 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3517 *
3518 * "Format layout qualifiers can be used on image variable declarations
3519 * (those declared with a basic type having “image ” in its keyword)."
3520 */
3521 if (!type->is_image() && qual->flags.q.explicit_image_format) {
3522 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3523 "applied to images");
3524 return false;
3525 }
3526 return true;
3527 }
3528
3529 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3530 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3531 ir_variable *var,
3532 struct _mesa_glsl_parse_state *state,
3533 YYLTYPE *loc)
3534 {
3535 const glsl_type *base_type = var->type->without_array();
3536
3537 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3538 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3539 return;
3540
3541 if (!base_type->is_image())
3542 return;
3543
3544 if (!validate_storage_for_sampler_image_types(var, state, loc))
3545 return;
3546
3547 var->data.memory_read_only |= qual->flags.q.read_only;
3548 var->data.memory_write_only |= qual->flags.q.write_only;
3549 var->data.memory_coherent |= qual->flags.q.coherent;
3550 var->data.memory_volatile |= qual->flags.q._volatile;
3551 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3552
3553 if (qual->flags.q.explicit_image_format) {
3554 if (var->data.mode == ir_var_function_in) {
3555 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3556 "image function parameters");
3557 }
3558
3559 if (qual->image_base_type != base_type->sampled_type) {
3560 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3561 "data type of the image");
3562 }
3563
3564 var->data.image_format = qual->image_format;
3565 } else if (state->has_image_load_formatted()) {
3566 if (var->data.mode == ir_var_uniform &&
3567 state->EXT_shader_image_load_formatted_warn) {
3568 _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3569 }
3570 } else {
3571 if (var->data.mode == ir_var_uniform) {
3572 if (state->es_shader ||
3573 !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3574 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3575 "format layout qualifier");
3576 } else if (!qual->flags.q.write_only) {
3577 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3578 "`writeonly' must have a format layout qualifier");
3579 }
3580 }
3581 var->data.image_format = PIPE_FORMAT_NONE;
3582 }
3583
3584 /* From page 70 of the GLSL ES 3.1 specification:
3585 *
3586 * "Except for image variables qualified with the format qualifiers r32f,
3587 * r32i, and r32ui, image variables must specify either memory qualifier
3588 * readonly or the memory qualifier writeonly."
3589 */
3590 if (state->es_shader &&
3591 var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3592 var->data.image_format != PIPE_FORMAT_R32_SINT &&
3593 var->data.image_format != PIPE_FORMAT_R32_UINT &&
3594 !var->data.memory_read_only &&
3595 !var->data.memory_write_only) {
3596 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3597 "r32i or r32ui must be qualified `readonly' or "
3598 "`writeonly'");
3599 }
3600 }
3601
3602 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3603 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3604 {
3605 if (origin_upper_left && pixel_center_integer)
3606 return "origin_upper_left, pixel_center_integer";
3607 else if (origin_upper_left)
3608 return "origin_upper_left";
3609 else if (pixel_center_integer)
3610 return "pixel_center_integer";
3611 else
3612 return " ";
3613 }
3614
3615 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3616 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3617 const struct ast_type_qualifier *qual)
3618 {
3619 /* If gl_FragCoord was previously declared, and the qualifiers were
3620 * different in any way, return true.
3621 */
3622 if (state->fs_redeclares_gl_fragcoord) {
3623 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3624 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3625 }
3626
3627 return false;
3628 }
3629
3630 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3631 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3632 const struct ast_type_qualifier *qual)
3633 {
3634 if (state->redeclares_gl_layer) {
3635 return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3636 }
3637 return false;
3638 }
3639
3640 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3641 validate_array_dimensions(const glsl_type *t,
3642 struct _mesa_glsl_parse_state *state,
3643 YYLTYPE *loc) {
3644 if (t->is_array()) {
3645 t = t->fields.array;
3646 while (t->is_array()) {
3647 if (t->is_unsized_array()) {
3648 _mesa_glsl_error(loc, state,
3649 "only the outermost array dimension can "
3650 "be unsized",
3651 t->name);
3652 break;
3653 }
3654 t = t->fields.array;
3655 }
3656 }
3657 }
3658
3659 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3660 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3661 ir_variable *var,
3662 struct _mesa_glsl_parse_state *state,
3663 YYLTYPE *loc)
3664 {
3665 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3666 qual->flags.q.bindless_image ||
3667 qual->flags.q.bound_sampler ||
3668 qual->flags.q.bound_image;
3669
3670 /* The ARB_bindless_texture spec says:
3671 *
3672 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3673 * spec"
3674 *
3675 * "If these layout qualifiers are applied to other types of default block
3676 * uniforms, or variables with non-uniform storage, a compile-time error
3677 * will be generated."
3678 */
3679 if (has_local_qualifiers && !qual->flags.q.uniform) {
3680 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3681 "can only be applied to default block uniforms or "
3682 "variables with uniform storage");
3683 return;
3684 }
3685
3686 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3687 * but it makes sense to only allow bindless_sampler/bound_sampler for
3688 * sampler types, and respectively bindless_image/bound_image for image
3689 * types.
3690 */
3691 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3692 !var->type->contains_sampler()) {
3693 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3694 "be applied to sampler types");
3695 return;
3696 }
3697
3698 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3699 !var->type->contains_image()) {
3700 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3701 "applied to image types");
3702 return;
3703 }
3704
3705 /* The bindless_sampler/bindless_image (and respectively
3706 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3707 * local scope.
3708 */
3709 if (var->type->contains_sampler() || var->type->contains_image()) {
3710 var->data.bindless = qual->flags.q.bindless_sampler ||
3711 qual->flags.q.bindless_image ||
3712 state->bindless_sampler_specified ||
3713 state->bindless_image_specified;
3714
3715 var->data.bound = qual->flags.q.bound_sampler ||
3716 qual->flags.q.bound_image ||
3717 state->bound_sampler_specified ||
3718 state->bound_image_specified;
3719 }
3720 }
3721
3722 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3723 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3724 ir_variable *var,
3725 struct _mesa_glsl_parse_state *state,
3726 YYLTYPE *loc)
3727 {
3728 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3729
3730 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3731 *
3732 * "Within any shader, the first redeclarations of gl_FragCoord
3733 * must appear before any use of gl_FragCoord."
3734 *
3735 * Generate a compiler error if above condition is not met by the
3736 * fragment shader.
3737 */
3738 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3739 if (earlier != NULL &&
3740 earlier->data.used &&
3741 !state->fs_redeclares_gl_fragcoord) {
3742 _mesa_glsl_error(loc, state,
3743 "gl_FragCoord used before its first redeclaration "
3744 "in fragment shader");
3745 }
3746
3747 /* Make sure all gl_FragCoord redeclarations specify the same layout
3748 * qualifiers.
3749 */
3750 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3751 const char *const qual_string =
3752 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3753 qual->flags.q.pixel_center_integer);
3754
3755 const char *const state_string =
3756 get_layout_qualifier_string(state->fs_origin_upper_left,
3757 state->fs_pixel_center_integer);
3758
3759 _mesa_glsl_error(loc, state,
3760 "gl_FragCoord redeclared with different layout "
3761 "qualifiers (%s) and (%s) ",
3762 state_string,
3763 qual_string);
3764 }
3765 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3766 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3767 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3768 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3769 state->fs_redeclares_gl_fragcoord =
3770 state->fs_origin_upper_left ||
3771 state->fs_pixel_center_integer ||
3772 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3773 }
3774
3775 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3776 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3777 const char *const qual_string = (qual->flags.q.origin_upper_left)
3778 ? "origin_upper_left" : "pixel_center_integer";
3779
3780 _mesa_glsl_error(loc, state,
3781 "layout qualifier `%s' can only be applied to "
3782 "fragment shader input `gl_FragCoord'",
3783 qual_string);
3784 }
3785
3786 if (qual->flags.q.explicit_location) {
3787 apply_explicit_location(qual, var, state, loc);
3788
3789 if (qual->flags.q.explicit_component) {
3790 unsigned qual_component;
3791 if (process_qualifier_constant(state, loc, "component",
3792 qual->component, &qual_component)) {
3793 validate_component_layout_for_type(state, loc, var->type,
3794 qual_component);
3795 var->data.explicit_component = true;
3796 var->data.location_frac = qual_component;
3797 }
3798 }
3799 } else if (qual->flags.q.explicit_index) {
3800 if (!qual->subroutine_list)
3801 _mesa_glsl_error(loc, state,
3802 "explicit index requires explicit location");
3803 } else if (qual->flags.q.explicit_component) {
3804 _mesa_glsl_error(loc, state,
3805 "explicit component requires explicit location");
3806 }
3807
3808 if (qual->flags.q.explicit_binding) {
3809 apply_explicit_binding(state, loc, var, var->type, qual);
3810 }
3811
3812 if (state->stage == MESA_SHADER_GEOMETRY &&
3813 qual->flags.q.out && qual->flags.q.stream) {
3814 unsigned qual_stream;
3815 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3816 &qual_stream) &&
3817 validate_stream_qualifier(loc, state, qual_stream)) {
3818 var->data.stream = qual_stream;
3819 }
3820 }
3821
3822 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3823 unsigned qual_xfb_buffer;
3824 if (process_qualifier_constant(state, loc, "xfb_buffer",
3825 qual->xfb_buffer, &qual_xfb_buffer) &&
3826 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3827 var->data.xfb_buffer = qual_xfb_buffer;
3828 if (qual->flags.q.explicit_xfb_buffer)
3829 var->data.explicit_xfb_buffer = true;
3830 }
3831 }
3832
3833 if (qual->flags.q.explicit_xfb_offset) {
3834 unsigned qual_xfb_offset;
3835 unsigned component_size = var->type->contains_double() ? 8 : 4;
3836
3837 if (process_qualifier_constant(state, loc, "xfb_offset",
3838 qual->offset, &qual_xfb_offset) &&
3839 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3840 var->type, component_size)) {
3841 var->data.offset = qual_xfb_offset;
3842 var->data.explicit_xfb_offset = true;
3843 }
3844 }
3845
3846 if (qual->flags.q.explicit_xfb_stride) {
3847 unsigned qual_xfb_stride;
3848 if (process_qualifier_constant(state, loc, "xfb_stride",
3849 qual->xfb_stride, &qual_xfb_stride)) {
3850 var->data.xfb_stride = qual_xfb_stride;
3851 var->data.explicit_xfb_stride = true;
3852 }
3853 }
3854
3855 if (var->type->contains_atomic()) {
3856 if (var->data.mode == ir_var_uniform) {
3857 if (var->data.explicit_binding) {
3858 unsigned *offset =
3859 &state->atomic_counter_offsets[var->data.binding];
3860
3861 if (*offset % ATOMIC_COUNTER_SIZE)
3862 _mesa_glsl_error(loc, state,
3863 "misaligned atomic counter offset");
3864
3865 var->data.offset = *offset;
3866 *offset += var->type->atomic_size();
3867
3868 } else {
3869 _mesa_glsl_error(loc, state,
3870 "atomic counters require explicit binding point");
3871 }
3872 } else if (var->data.mode != ir_var_function_in) {
3873 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3874 "function parameters or uniform-qualified "
3875 "global variables");
3876 }
3877 }
3878
3879 if (var->type->contains_sampler() &&
3880 !validate_storage_for_sampler_image_types(var, state, loc))
3881 return;
3882
3883 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3884 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3885 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3886 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3887 * These extensions and all following extensions that add the 'layout'
3888 * keyword have been modified to require the use of 'in' or 'out'.
3889 *
3890 * The following extension do not allow the deprecated keywords:
3891 *
3892 * GL_AMD_conservative_depth
3893 * GL_ARB_conservative_depth
3894 * GL_ARB_gpu_shader5
3895 * GL_ARB_separate_shader_objects
3896 * GL_ARB_tessellation_shader
3897 * GL_ARB_transform_feedback3
3898 * GL_ARB_uniform_buffer_object
3899 *
3900 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3901 * allow layout with the deprecated keywords.
3902 */
3903 const bool relaxed_layout_qualifier_checking =
3904 state->ARB_fragment_coord_conventions_enable;
3905
3906 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3907 || qual->flags.q.varying;
3908 if (qual->has_layout() && uses_deprecated_qualifier) {
3909 if (relaxed_layout_qualifier_checking) {
3910 _mesa_glsl_warning(loc, state,
3911 "`layout' qualifier may not be used with "
3912 "`attribute' or `varying'");
3913 } else {
3914 _mesa_glsl_error(loc, state,
3915 "`layout' qualifier may not be used with "
3916 "`attribute' or `varying'");
3917 }
3918 }
3919
3920 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3921 * AMD_conservative_depth.
3922 */
3923 if (qual->flags.q.depth_type
3924 && !state->is_version(420, 0)
3925 && !state->AMD_conservative_depth_enable
3926 && !state->ARB_conservative_depth_enable) {
3927 _mesa_glsl_error(loc, state,
3928 "extension GL_AMD_conservative_depth or "
3929 "GL_ARB_conservative_depth must be enabled "
3930 "to use depth layout qualifiers");
3931 } else if (qual->flags.q.depth_type
3932 && strcmp(var->name, "gl_FragDepth") != 0) {
3933 _mesa_glsl_error(loc, state,
3934 "depth layout qualifiers can be applied only to "
3935 "gl_FragDepth");
3936 }
3937
3938 switch (qual->depth_type) {
3939 case ast_depth_any:
3940 var->data.depth_layout = ir_depth_layout_any;
3941 break;
3942 case ast_depth_greater:
3943 var->data.depth_layout = ir_depth_layout_greater;
3944 break;
3945 case ast_depth_less:
3946 var->data.depth_layout = ir_depth_layout_less;
3947 break;
3948 case ast_depth_unchanged:
3949 var->data.depth_layout = ir_depth_layout_unchanged;
3950 break;
3951 default:
3952 var->data.depth_layout = ir_depth_layout_none;
3953 break;
3954 }
3955
3956 if (qual->flags.q.std140 ||
3957 qual->flags.q.std430 ||
3958 qual->flags.q.packed ||
3959 qual->flags.q.shared) {
3960 _mesa_glsl_error(loc, state,
3961 "uniform and shader storage block layout qualifiers "
3962 "std140, std430, packed, and shared can only be "
3963 "applied to uniform or shader storage blocks, not "
3964 "members");
3965 }
3966
3967 if (qual->flags.q.row_major || qual->flags.q.column_major) {
3968 validate_matrix_layout_for_type(state, loc, var->type, var);
3969 }
3970
3971 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3972 * Inputs):
3973 *
3974 * "Fragment shaders also allow the following layout qualifier on in only
3975 * (not with variable declarations)
3976 * layout-qualifier-id
3977 * early_fragment_tests
3978 * [...]"
3979 */
3980 if (qual->flags.q.early_fragment_tests) {
3981 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3982 "valid in fragment shader input layout declaration.");
3983 }
3984
3985 if (qual->flags.q.inner_coverage) {
3986 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3987 "valid in fragment shader input layout declaration.");
3988 }
3989
3990 if (qual->flags.q.post_depth_coverage) {
3991 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3992 "valid in fragment shader input layout declaration.");
3993 }
3994
3995 if (state->has_bindless())
3996 apply_bindless_qualifier_to_variable(qual, var, state, loc);
3997
3998 if (qual->flags.q.pixel_interlock_ordered ||
3999 qual->flags.q.pixel_interlock_unordered ||
4000 qual->flags.q.sample_interlock_ordered ||
4001 qual->flags.q.sample_interlock_unordered) {
4002 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4003 "pixel_interlock_ordered, pixel_interlock_unordered, "
4004 "sample_interlock_ordered and sample_interlock_unordered, "
4005 "only valid in fragment shader input layout declaration.");
4006 }
4007
4008 if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4009 if (is_conflicting_layer_redeclaration(state, qual)) {
4010 _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4011 "different viewport_relative setting than earlier");
4012 }
4013 state->redeclares_gl_layer = true;
4014 if (qual->flags.q.viewport_relative) {
4015 state->layer_viewport_relative = true;
4016 }
4017 } else if (qual->flags.q.viewport_relative) {
4018 _mesa_glsl_error(loc, state,
4019 "viewport_relative qualifier "
4020 "can only be applied to gl_Layer.");
4021 }
4022 }
4023
4024 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4025 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4026 ir_variable *var,
4027 struct _mesa_glsl_parse_state *state,
4028 YYLTYPE *loc,
4029 bool is_parameter)
4030 {
4031 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4032
4033 if (qual->flags.q.invariant) {
4034 if (var->data.used) {
4035 _mesa_glsl_error(loc, state,
4036 "variable `%s' may not be redeclared "
4037 "`invariant' after being used",
4038 var->name);
4039 } else {
4040 var->data.explicit_invariant = true;
4041 var->data.invariant = true;
4042 }
4043 }
4044
4045 if (qual->flags.q.precise) {
4046 if (var->data.used) {
4047 _mesa_glsl_error(loc, state,
4048 "variable `%s' may not be redeclared "
4049 "`precise' after being used",
4050 var->name);
4051 } else {
4052 var->data.precise = 1;
4053 }
4054 }
4055
4056 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4057 _mesa_glsl_error(loc, state,
4058 "`subroutine' may only be applied to uniforms, "
4059 "subroutine type declarations, or function definitions");
4060 }
4061
4062 if (qual->flags.q.constant || qual->flags.q.attribute
4063 || qual->flags.q.uniform
4064 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4065 var->data.read_only = 1;
4066
4067 if (qual->flags.q.centroid)
4068 var->data.centroid = 1;
4069
4070 if (qual->flags.q.sample)
4071 var->data.sample = 1;
4072
4073 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4074 if (state->es_shader) {
4075 var->data.precision =
4076 select_gles_precision(qual->precision, var->type, state, loc);
4077 }
4078
4079 if (qual->flags.q.patch)
4080 var->data.patch = 1;
4081
4082 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4083 var->type = glsl_type::error_type;
4084 _mesa_glsl_error(loc, state,
4085 "`attribute' variables may not be declared in the "
4086 "%s shader",
4087 _mesa_shader_stage_to_string(state->stage));
4088 }
4089
4090 /* Disallow layout qualifiers which may only appear on layout declarations. */
4091 if (qual->flags.q.prim_type) {
4092 _mesa_glsl_error(loc, state,
4093 "Primitive type may only be specified on GS input or output "
4094 "layout declaration, not on variables.");
4095 }
4096
4097 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4098 *
4099 * "However, the const qualifier cannot be used with out or inout."
4100 *
4101 * The same section of the GLSL 4.40 spec further clarifies this saying:
4102 *
4103 * "The const qualifier cannot be used with out or inout, or a
4104 * compile-time error results."
4105 */
4106 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4107 _mesa_glsl_error(loc, state,
4108 "`const' may not be applied to `out' or `inout' "
4109 "function parameters");
4110 }
4111
4112 /* If there is no qualifier that changes the mode of the variable, leave
4113 * the setting alone.
4114 */
4115 assert(var->data.mode != ir_var_temporary);
4116 if (qual->flags.q.in && qual->flags.q.out)
4117 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4118 else if (qual->flags.q.in)
4119 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4120 else if (qual->flags.q.attribute
4121 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4122 var->data.mode = ir_var_shader_in;
4123 else if (qual->flags.q.out)
4124 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4125 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4126 var->data.mode = ir_var_shader_out;
4127 else if (qual->flags.q.uniform)
4128 var->data.mode = ir_var_uniform;
4129 else if (qual->flags.q.buffer)
4130 var->data.mode = ir_var_shader_storage;
4131 else if (qual->flags.q.shared_storage)
4132 var->data.mode = ir_var_shader_shared;
4133
4134 if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4135 if (state->has_framebuffer_fetch()) {
4136 if (state->is_version(130, 300))
4137 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4138 else
4139 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4140 }
4141
4142 if (state->has_framebuffer_fetch_zs() &&
4143 (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4144 strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4145 var->data.fb_fetch_output = 1;
4146 }
4147 }
4148
4149 if (var->data.fb_fetch_output)
4150 var->data.assigned = true;
4151
4152 if (var->is_fb_fetch_color_output()) {
4153 var->data.memory_coherent = !qual->flags.q.non_coherent;
4154
4155 /* From the EXT_shader_framebuffer_fetch spec:
4156 *
4157 * "It is an error to declare an inout fragment output not qualified
4158 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4159 * extension hasn't been enabled."
4160 */
4161 if (var->data.memory_coherent &&
4162 !state->EXT_shader_framebuffer_fetch_enable)
4163 _mesa_glsl_error(loc, state,
4164 "invalid declaration of framebuffer fetch output not "
4165 "qualified with layout(noncoherent)");
4166
4167 } else {
4168 /* From the EXT_shader_framebuffer_fetch spec:
4169 *
4170 * "Fragment outputs declared inout may specify the following layout
4171 * qualifier: [...] noncoherent"
4172 */
4173 if (qual->flags.q.non_coherent)
4174 _mesa_glsl_error(loc, state,
4175 "invalid layout(noncoherent) qualifier not part of "
4176 "framebuffer fetch output declaration");
4177 }
4178
4179 if (!is_parameter && is_varying_var(var, state->stage)) {
4180 /* User-defined ins/outs are not permitted in compute shaders. */
4181 if (state->stage == MESA_SHADER_COMPUTE) {
4182 _mesa_glsl_error(loc, state,
4183 "user-defined input and output variables are not "
4184 "permitted in compute shaders");
4185 }
4186
4187 /* This variable is being used to link data between shader stages (in
4188 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4189 * that is allowed for such purposes.
4190 *
4191 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4192 *
4193 * "The varying qualifier can be used only with the data types
4194 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4195 * these."
4196 *
4197 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4198 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4199 *
4200 * "Fragment inputs can only be signed and unsigned integers and
4201 * integer vectors, float, floating-point vectors, matrices, or
4202 * arrays of these. Structures cannot be input.
4203 *
4204 * Similar text exists in the section on vertex shader outputs.
4205 *
4206 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4207 * 3.00 spec allows structs as well. Varying structs are also allowed
4208 * in GLSL 1.50.
4209 *
4210 * From section 4.3.4 of the ARB_bindless_texture spec:
4211 *
4212 * "(modify third paragraph of the section to allow sampler and image
4213 * types) ... Vertex shader inputs can only be float,
4214 * single-precision floating-point scalars, single-precision
4215 * floating-point vectors, matrices, signed and unsigned integers
4216 * and integer vectors, sampler and image types."
4217 *
4218 * From section 4.3.6 of the ARB_bindless_texture spec:
4219 *
4220 * "Output variables can only be floating-point scalars,
4221 * floating-point vectors, matrices, signed or unsigned integers or
4222 * integer vectors, sampler or image types, or arrays or structures
4223 * of any these."
4224 */
4225 switch (var->type->without_array()->base_type) {
4226 case GLSL_TYPE_FLOAT:
4227 /* Ok in all GLSL versions */
4228 break;
4229 case GLSL_TYPE_UINT:
4230 case GLSL_TYPE_INT:
4231 if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4232 break;
4233 _mesa_glsl_error(loc, state,
4234 "varying variables must be of base type float in %s",
4235 state->get_version_string());
4236 break;
4237 case GLSL_TYPE_STRUCT:
4238 if (state->is_version(150, 300))
4239 break;
4240 _mesa_glsl_error(loc, state,
4241 "varying variables may not be of type struct");
4242 break;
4243 case GLSL_TYPE_DOUBLE:
4244 case GLSL_TYPE_UINT64:
4245 case GLSL_TYPE_INT64:
4246 break;
4247 case GLSL_TYPE_SAMPLER:
4248 case GLSL_TYPE_TEXTURE:
4249 case GLSL_TYPE_IMAGE:
4250 if (state->has_bindless())
4251 break;
4252 FALLTHROUGH;
4253 default:
4254 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4255 break;
4256 }
4257 }
4258
4259 if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4260 var->data.explicit_invariant = true;
4261 var->data.invariant = true;
4262 }
4263
4264 var->data.interpolation =
4265 interpret_interpolation_qualifier(qual, var->type,
4266 (ir_variable_mode) var->data.mode,
4267 state, loc);
4268
4269 /* Does the declaration use the deprecated 'attribute' or 'varying'
4270 * keywords?
4271 */
4272 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4273 || qual->flags.q.varying;
4274
4275
4276 /* Validate auxiliary storage qualifiers */
4277
4278 /* From section 4.3.4 of the GLSL 1.30 spec:
4279 * "It is an error to use centroid in in a vertex shader."
4280 *
4281 * From section 4.3.4 of the GLSL ES 3.00 spec:
4282 * "It is an error to use centroid in or interpolation qualifiers in
4283 * a vertex shader input."
4284 */
4285
4286 /* Section 4.3.6 of the GLSL 1.30 specification states:
4287 * "It is an error to use centroid out in a fragment shader."
4288 *
4289 * The GL_ARB_shading_language_420pack extension specification states:
4290 * "It is an error to use auxiliary storage qualifiers or interpolation
4291 * qualifiers on an output in a fragment shader."
4292 */
4293 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4294 _mesa_glsl_error(loc, state,
4295 "sample qualifier may only be used on `in` or `out` "
4296 "variables between shader stages");
4297 }
4298 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4299 _mesa_glsl_error(loc, state,
4300 "centroid qualifier may only be used with `in', "
4301 "`out' or `varying' variables between shader stages");
4302 }
4303
4304 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4305 _mesa_glsl_error(loc, state,
4306 "the shared storage qualifiers can only be used with "
4307 "compute shaders");
4308 }
4309
4310 apply_image_qualifier_to_variable(qual, var, state, loc);
4311 }
4312
4313 /**
4314 * Get the variable that is being redeclared by this declaration or if it
4315 * does not exist, the current declared variable.
4316 *
4317 * Semantic checks to verify the validity of the redeclaration are also
4318 * performed. If semantic checks fail, compilation error will be emitted via
4319 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4320 *
4321 * \returns
4322 * A pointer to an existing variable in the current scope if the declaration
4323 * is a redeclaration, current variable otherwise. \c is_declared boolean
4324 * will return \c true if the declaration is a redeclaration, \c false
4325 * otherwise.
4326 */
4327 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4328 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4329 struct _mesa_glsl_parse_state *state,
4330 bool allow_all_redeclarations,
4331 bool *is_redeclaration)
4332 {
4333 ir_variable *var = *var_ptr;
4334
4335 /* Check if this declaration is actually a re-declaration, either to
4336 * resize an array or add qualifiers to an existing variable.
4337 *
4338 * This is allowed for variables in the current scope, or when at
4339 * global scope (for built-ins in the implicit outer scope).
4340 */
4341 ir_variable *earlier = state->symbols->get_variable(var->name);
4342 if (earlier == NULL ||
4343 (state->current_function != NULL &&
4344 !state->symbols->name_declared_this_scope(var->name))) {
4345 *is_redeclaration = false;
4346 return var;
4347 }
4348
4349 *is_redeclaration = true;
4350
4351 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4352 /* Verify that the redeclaration of a built-in does not change the
4353 * storage qualifier. There are a couple special cases.
4354 *
4355 * 1. Some built-in variables that are defined as 'in' in the
4356 * specification are implemented as system values. Allow
4357 * ir_var_system_value -> ir_var_shader_in.
4358 *
4359 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4360 * specification requires that redeclarations omit any qualifier.
4361 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4362 */
4363 if (earlier->data.mode != var->data.mode &&
4364 !(earlier->data.mode == ir_var_system_value &&
4365 var->data.mode == ir_var_shader_in) &&
4366 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4367 var->data.mode == ir_var_auto)) {
4368 _mesa_glsl_error(&loc, state,
4369 "redeclaration cannot change qualification of `%s'",
4370 var->name);
4371 }
4372 }
4373
4374 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4375 *
4376 * "It is legal to declare an array without a size and then
4377 * later re-declare the same name as an array of the same
4378 * type and specify a size."
4379 */
4380 if (earlier->type->is_unsized_array() && var->type->is_array()
4381 && (var->type->fields.array == earlier->type->fields.array)) {
4382 const int size = var->type->array_size();
4383 check_builtin_array_max_size(var->name, size, loc, state);
4384 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4385 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4386 "previous access",
4387 earlier->data.max_array_access);
4388 }
4389
4390 earlier->type = var->type;
4391 delete var;
4392 var = NULL;
4393 *var_ptr = NULL;
4394 } else if (earlier->type != var->type) {
4395 _mesa_glsl_error(&loc, state,
4396 "redeclaration of `%s' has incorrect type",
4397 var->name);
4398 } else if ((state->ARB_fragment_coord_conventions_enable ||
4399 state->is_version(150, 0))
4400 && strcmp(var->name, "gl_FragCoord") == 0) {
4401 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4402 * qualifiers.
4403 *
4404 * We don't really need to do anything here, just allow the
4405 * redeclaration. Any error on the gl_FragCoord is handled on the ast
4406 * level at apply_layout_qualifier_to_variable using the
4407 * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4408 * linker.cpp.
4409 */
4410 /* According to section 4.3.7 of the GLSL 1.30 spec,
4411 * the following built-in varaibles can be redeclared with an
4412 * interpolation qualifier:
4413 * * gl_FrontColor
4414 * * gl_BackColor
4415 * * gl_FrontSecondaryColor
4416 * * gl_BackSecondaryColor
4417 * * gl_Color
4418 * * gl_SecondaryColor
4419 */
4420 } else if (state->is_version(130, 0)
4421 && (strcmp(var->name, "gl_FrontColor") == 0
4422 || strcmp(var->name, "gl_BackColor") == 0
4423 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4424 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4425 || strcmp(var->name, "gl_Color") == 0
4426 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4427 earlier->data.interpolation = var->data.interpolation;
4428
4429 /* Layout qualifiers for gl_FragDepth. */
4430 } else if ((state->is_version(420, 0) ||
4431 state->AMD_conservative_depth_enable ||
4432 state->ARB_conservative_depth_enable)
4433 && strcmp(var->name, "gl_FragDepth") == 0) {
4434
4435 /** From the AMD_conservative_depth spec:
4436 * Within any shader, the first redeclarations of gl_FragDepth
4437 * must appear before any use of gl_FragDepth.
4438 */
4439 if (earlier->data.used) {
4440 _mesa_glsl_error(&loc, state,
4441 "the first redeclaration of gl_FragDepth "
4442 "must appear before any use of gl_FragDepth");
4443 }
4444
4445 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4446 if (earlier->data.depth_layout != ir_depth_layout_none
4447 && earlier->data.depth_layout != var->data.depth_layout) {
4448 _mesa_glsl_error(&loc, state,
4449 "gl_FragDepth: depth layout is declared here "
4450 "as '%s, but it was previously declared as "
4451 "'%s'",
4452 depth_layout_string(var->data.depth_layout),
4453 depth_layout_string(earlier->data.depth_layout));
4454 }
4455
4456 earlier->data.depth_layout = var->data.depth_layout;
4457
4458 } else if (state->has_framebuffer_fetch() &&
4459 strcmp(var->name, "gl_LastFragData") == 0 &&
4460 var->data.mode == ir_var_auto) {
4461 /* According to the EXT_shader_framebuffer_fetch spec:
4462 *
4463 * "By default, gl_LastFragData is declared with the mediump precision
4464 * qualifier. This can be changed by redeclaring the corresponding
4465 * variables with the desired precision qualifier."
4466 *
4467 * "Fragment shaders may specify the following layout qualifier only for
4468 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4469 */
4470 earlier->data.precision = var->data.precision;
4471 earlier->data.memory_coherent = var->data.memory_coherent;
4472
4473 } else if (state->NV_viewport_array2_enable &&
4474 strcmp(var->name, "gl_Layer") == 0 &&
4475 earlier->data.how_declared == ir_var_declared_implicitly) {
4476 /* No need to do anything, just allow it. Qualifier is stored in state */
4477
4478 } else if (state->is_version(0, 300) &&
4479 state->has_separate_shader_objects() &&
4480 (strcmp(var->name, "gl_Position") == 0 ||
4481 strcmp(var->name, "gl_PointSize") == 0)) {
4482
4483 /* EXT_separate_shader_objects spec says:
4484 *
4485 * "The following vertex shader outputs may be redeclared
4486 * at global scope to specify a built-in output interface,
4487 * with or without special qualifiers:
4488 *
4489 * gl_Position
4490 * gl_PointSize
4491 *
4492 * When compiling shaders using either of the above variables,
4493 * both such variables must be redeclared prior to use."
4494 */
4495 if (earlier->data.used) {
4496 _mesa_glsl_error(&loc, state, "the first redeclaration of "
4497 "%s must appear before any use", var->name);
4498 }
4499 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4500 state->allow_builtin_variable_redeclaration) ||
4501 allow_all_redeclarations) {
4502 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4503 * valid, but some applications do it.
4504 */
4505 } else {
4506 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4507 }
4508
4509 return earlier;
4510 }
4511
4512 /**
4513 * Generate the IR for an initializer in a variable declaration
4514 */
4515 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4516 process_initializer(ir_variable *var, ast_declaration *decl,
4517 ast_fully_specified_type *type,
4518 exec_list *initializer_instructions,
4519 struct _mesa_glsl_parse_state *state)
4520 {
4521 void *mem_ctx = state;
4522 ir_rvalue *result = NULL;
4523
4524 YYLTYPE initializer_loc = decl->initializer->get_location();
4525
4526 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4527 *
4528 * "All uniform variables are read-only and are initialized either
4529 * directly by an application via API commands, or indirectly by
4530 * OpenGL."
4531 */
4532 if (var->data.mode == ir_var_uniform) {
4533 state->check_version(120, 0, &initializer_loc,
4534 "cannot initialize uniform %s",
4535 var->name);
4536 }
4537
4538 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4539 *
4540 * "Buffer variables cannot have initializers."
4541 */
4542 if (var->data.mode == ir_var_shader_storage) {
4543 _mesa_glsl_error(&initializer_loc, state,
4544 "cannot initialize buffer variable %s",
4545 var->name);
4546 }
4547
4548 /* From section 4.1.7 of the GLSL 4.40 spec:
4549 *
4550 * "Opaque variables [...] are initialized only through the
4551 * OpenGL API; they cannot be declared with an initializer in a
4552 * shader."
4553 *
4554 * From section 4.1.7 of the ARB_bindless_texture spec:
4555 *
4556 * "Samplers may be declared as shader inputs and outputs, as uniform
4557 * variables, as temporary variables, and as function parameters."
4558 *
4559 * From section 4.1.X of the ARB_bindless_texture spec:
4560 *
4561 * "Images may be declared as shader inputs and outputs, as uniform
4562 * variables, as temporary variables, and as function parameters."
4563 */
4564 if (var->type->contains_atomic() ||
4565 (!state->has_bindless() && var->type->contains_opaque())) {
4566 _mesa_glsl_error(&initializer_loc, state,
4567 "cannot initialize %s variable %s",
4568 var->name, state->has_bindless() ? "atomic" : "opaque");
4569 }
4570
4571 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4572 _mesa_glsl_error(&initializer_loc, state,
4573 "cannot initialize %s shader input / %s %s",
4574 _mesa_shader_stage_to_string(state->stage),
4575 (state->stage == MESA_SHADER_VERTEX)
4576 ? "attribute" : "varying",
4577 var->name);
4578 }
4579
4580 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4581 _mesa_glsl_error(&initializer_loc, state,
4582 "cannot initialize %s shader output %s",
4583 _mesa_shader_stage_to_string(state->stage),
4584 var->name);
4585 }
4586
4587 /* If the initializer is an ast_aggregate_initializer, recursively store
4588 * type information from the LHS into it, so that its hir() function can do
4589 * type checking.
4590 */
4591 if (decl->initializer->oper == ast_aggregate)
4592 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4593
4594 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4595 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4596
4597 /* Calculate the constant value if this is a const or uniform
4598 * declaration.
4599 *
4600 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4601 *
4602 * "Declarations of globals without a storage qualifier, or with
4603 * just the const qualifier, may include initializers, in which case
4604 * they will be initialized before the first line of main() is
4605 * executed. Such initializers must be a constant expression."
4606 *
4607 * The same section of the GLSL ES 3.00.4 spec has similar language.
4608 */
4609 if (type->qualifier.flags.q.constant
4610 || type->qualifier.flags.q.uniform
4611 || (state->es_shader && state->current_function == NULL)) {
4612 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4613 lhs, rhs, true);
4614 if (new_rhs != NULL) {
4615 rhs = new_rhs;
4616
4617 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4618 * says:
4619 *
4620 * "A constant expression is one of
4621 *
4622 * ...
4623 *
4624 * - an expression formed by an operator on operands that are
4625 * all constant expressions, including getting an element of
4626 * a constant array, or a field of a constant structure, or
4627 * components of a constant vector. However, the sequence
4628 * operator ( , ) and the assignment operators ( =, +=, ...)
4629 * are not included in the operators that can create a
4630 * constant expression."
4631 *
4632 * Section 12.43 (Sequence operator and constant expressions) says:
4633 *
4634 * "Should the following construct be allowed?
4635 *
4636 * float a[2,3];
4637 *
4638 * The expression within the brackets uses the sequence operator
4639 * (',') and returns the integer 3 so the construct is declaring
4640 * a single-dimensional array of size 3. In some languages, the
4641 * construct declares a two-dimensional array. It would be
4642 * preferable to make this construct illegal to avoid confusion.
4643 *
4644 * One possibility is to change the definition of the sequence
4645 * operator so that it does not return a constant-expression and
4646 * hence cannot be used to declare an array size.
4647 *
4648 * RESOLUTION: The result of a sequence operator is not a
4649 * constant-expression."
4650 *
4651 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4652 * contains language almost identical to the section 4.3.3 in the
4653 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4654 * versions.
4655 */
4656 ir_constant *constant_value =
4657 rhs->constant_expression_value(mem_ctx);
4658
4659 if (!constant_value ||
4660 (state->is_version(430, 300) &&
4661 decl->initializer->has_sequence_subexpression())) {
4662 const char *const variable_mode =
4663 (type->qualifier.flags.q.constant)
4664 ? "const"
4665 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4666
4667 /* If ARB_shading_language_420pack is enabled, initializers of
4668 * const-qualified local variables do not have to be constant
4669 * expressions. Const-qualified global variables must still be
4670 * initialized with constant expressions.
4671 */
4672 if (!state->has_420pack()
4673 || state->current_function == NULL) {
4674 _mesa_glsl_error(& initializer_loc, state,
4675 "initializer of %s variable `%s' must be a "
4676 "constant expression",
4677 variable_mode,
4678 decl->identifier);
4679 if (var->type->is_numeric()) {
4680 /* Reduce cascading errors. */
4681 var->constant_value = type->qualifier.flags.q.constant
4682 ? ir_constant::zero(state, var->type) : NULL;
4683 }
4684 }
4685 } else {
4686 rhs = constant_value;
4687 var->constant_value = type->qualifier.flags.q.constant
4688 ? constant_value : NULL;
4689 }
4690 } else {
4691 if (var->type->is_numeric()) {
4692 /* Reduce cascading errors. */
4693 rhs = var->constant_value = type->qualifier.flags.q.constant
4694 ? ir_constant::zero(state, var->type) : NULL;
4695 }
4696 }
4697 }
4698
4699 if (rhs && !rhs->type->is_error()) {
4700 bool temp = var->data.read_only;
4701 if (type->qualifier.flags.q.constant)
4702 var->data.read_only = false;
4703
4704 /* Never emit code to initialize a uniform.
4705 */
4706 const glsl_type *initializer_type;
4707 bool error_emitted = false;
4708 if (!type->qualifier.flags.q.uniform) {
4709 error_emitted =
4710 do_assignment(initializer_instructions, state,
4711 NULL, lhs, rhs,
4712 &result, true, true,
4713 type->get_location());
4714 initializer_type = result->type;
4715 } else
4716 initializer_type = rhs->type;
4717
4718 if (!error_emitted) {
4719 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4720 var->data.has_initializer = true;
4721 var->data.is_implicit_initializer = false;
4722
4723 /* If the declared variable is an unsized array, it must inherrit
4724 * its full type from the initializer. A declaration such as
4725 *
4726 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4727 *
4728 * becomes
4729 *
4730 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4731 *
4732 * The assignment generated in the if-statement (below) will also
4733 * automatically handle this case for non-uniforms.
4734 *
4735 * If the declared variable is not an array, the types must
4736 * already match exactly. As a result, the type assignment
4737 * here can be done unconditionally. For non-uniforms the call
4738 * to do_assignment can change the type of the initializer (via
4739 * the implicit conversion rules). For uniforms the initializer
4740 * must be a constant expression, and the type of that expression
4741 * was validated above.
4742 */
4743 var->type = initializer_type;
4744 }
4745
4746 var->data.read_only = temp;
4747 }
4748
4749 return result;
4750 }
4751
4752 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4753 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4754 YYLTYPE loc, ir_variable *var,
4755 unsigned num_vertices,
4756 unsigned *size,
4757 const char *var_category)
4758 {
4759 if (var->type->is_unsized_array()) {
4760 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4761 *
4762 * All geometry shader input unsized array declarations will be
4763 * sized by an earlier input layout qualifier, when present, as per
4764 * the following table.
4765 *
4766 * Followed by a table mapping each allowed input layout qualifier to
4767 * the corresponding input length.
4768 *
4769 * Similarly for tessellation control shader outputs.
4770 */
4771 if (num_vertices != 0)
4772 var->type = glsl_type::get_array_instance(var->type->fields.array,
4773 num_vertices);
4774 } else {
4775 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4776 * includes the following examples of compile-time errors:
4777 *
4778 * // code sequence within one shader...
4779 * in vec4 Color1[]; // size unknown
4780 * ...Color1.length()...// illegal, length() unknown
4781 * in vec4 Color2[2]; // size is 2
4782 * ...Color1.length()...// illegal, Color1 still has no size
4783 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4784 * layout(lines) in; // legal, input size is 2, matching
4785 * in vec4 Color4[3]; // illegal, contradicts layout
4786 * ...
4787 *
4788 * To detect the case illustrated by Color3, we verify that the size of
4789 * an explicitly-sized array matches the size of any previously declared
4790 * explicitly-sized array. To detect the case illustrated by Color4, we
4791 * verify that the size of an explicitly-sized array is consistent with
4792 * any previously declared input layout.
4793 */
4794 if (num_vertices != 0 && var->type->length != num_vertices) {
4795 _mesa_glsl_error(&loc, state,
4796 "%s size contradicts previously declared layout "
4797 "(size is %u, but layout requires a size of %u)",
4798 var_category, var->type->length, num_vertices);
4799 } else if (*size != 0 && var->type->length != *size) {
4800 _mesa_glsl_error(&loc, state,
4801 "%s sizes are inconsistent (size is %u, but a "
4802 "previous declaration has size %u)",
4803 var_category, var->type->length, *size);
4804 } else {
4805 *size = var->type->length;
4806 }
4807 }
4808 }
4809
4810 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4811 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4812 YYLTYPE loc, ir_variable *var)
4813 {
4814 unsigned num_vertices = 0;
4815
4816 if (state->tcs_output_vertices_specified) {
4817 if (!state->out_qualifier->vertices->
4818 process_qualifier_constant(state, "vertices",
4819 &num_vertices, false)) {
4820 return;
4821 }
4822
4823 if (num_vertices > state->Const.MaxPatchVertices) {
4824 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4825 "GL_MAX_PATCH_VERTICES", num_vertices);
4826 return;
4827 }
4828 }
4829
4830 if (!var->type->is_array() && !var->data.patch) {
4831 _mesa_glsl_error(&loc, state,
4832 "tessellation control shader outputs must be arrays");
4833
4834 /* To avoid cascading failures, short circuit the checks below. */
4835 return;
4836 }
4837
4838 if (var->data.patch)
4839 return;
4840
4841 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4842 &state->tcs_output_size,
4843 "tessellation control shader output");
4844 }
4845
4846 /**
4847 * Do additional processing necessary for tessellation control/evaluation shader
4848 * input declarations. This covers both interface block arrays and bare input
4849 * variables.
4850 */
4851 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4852 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4853 YYLTYPE loc, ir_variable *var)
4854 {
4855 if (!var->type->is_array() && !var->data.patch) {
4856 _mesa_glsl_error(&loc, state,
4857 "per-vertex tessellation shader inputs must be arrays");
4858 /* Avoid cascading failures. */
4859 return;
4860 }
4861
4862 if (var->data.patch)
4863 return;
4864
4865 /* The ARB_tessellation_shader spec says:
4866 *
4867 * "Declaring an array size is optional. If no size is specified, it
4868 * will be taken from the implementation-dependent maximum patch size
4869 * (gl_MaxPatchVertices). If a size is specified, it must match the
4870 * maximum patch size; otherwise, a compile or link error will occur."
4871 *
4872 * This text appears twice, once for TCS inputs, and again for TES inputs.
4873 */
4874 if (var->type->is_unsized_array()) {
4875 var->type = glsl_type::get_array_instance(var->type->fields.array,
4876 state->Const.MaxPatchVertices);
4877 } else if (var->type->length != state->Const.MaxPatchVertices) {
4878 _mesa_glsl_error(&loc, state,
4879 "per-vertex tessellation shader input arrays must be "
4880 "sized to gl_MaxPatchVertices (%d).",
4881 state->Const.MaxPatchVertices);
4882 }
4883 }
4884
4885
4886 /**
4887 * Do additional processing necessary for geometry shader input declarations
4888 * (this covers both interface blocks arrays and bare input variables).
4889 */
4890 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4891 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4892 YYLTYPE loc, ir_variable *var)
4893 {
4894 unsigned num_vertices = 0;
4895
4896 if (state->gs_input_prim_type_specified) {
4897 num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4898 }
4899
4900 /* Geometry shader input variables must be arrays. Caller should have
4901 * reported an error for this.
4902 */
4903 if (!var->type->is_array()) {
4904 assert(state->error);
4905
4906 /* To avoid cascading failures, short circuit the checks below. */
4907 return;
4908 }
4909
4910 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4911 &state->gs_input_size,
4912 "geometry shader input");
4913 }
4914
4915 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4916 validate_identifier(const char *identifier, YYLTYPE loc,
4917 struct _mesa_glsl_parse_state *state)
4918 {
4919 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4920 *
4921 * "Identifiers starting with "gl_" are reserved for use by
4922 * OpenGL, and may not be declared in a shader as either a
4923 * variable or a function."
4924 */
4925 if (is_gl_identifier(identifier)) {
4926 _mesa_glsl_error(&loc, state,
4927 "identifier `%s' uses reserved `gl_' prefix",
4928 identifier);
4929 } else if (strstr(identifier, "__")) {
4930 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4931 * spec:
4932 *
4933 * "In addition, all identifiers containing two
4934 * consecutive underscores (__) are reserved as
4935 * possible future keywords."
4936 *
4937 * The intention is that names containing __ are reserved for internal
4938 * use by the implementation, and names prefixed with GL_ are reserved
4939 * for use by Khronos. Names simply containing __ are dangerous to use,
4940 * but should be allowed.
4941 *
4942 * A future version of the GLSL specification will clarify this.
4943 */
4944 _mesa_glsl_warning(&loc, state,
4945 "identifier `%s' uses reserved `__' string",
4946 identifier);
4947 }
4948 }
4949
4950 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)4951 ast_declarator_list::hir(exec_list *instructions,
4952 struct _mesa_glsl_parse_state *state)
4953 {
4954 void *ctx = state;
4955 const struct glsl_type *decl_type;
4956 const char *type_name = NULL;
4957 ir_rvalue *result = NULL;
4958 YYLTYPE loc = this->get_location();
4959
4960 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4961 *
4962 * "To ensure that a particular output variable is invariant, it is
4963 * necessary to use the invariant qualifier. It can either be used to
4964 * qualify a previously declared variable as being invariant
4965 *
4966 * invariant gl_Position; // make existing gl_Position be invariant"
4967 *
4968 * In these cases the parser will set the 'invariant' flag in the declarator
4969 * list, and the type will be NULL.
4970 */
4971 if (this->invariant) {
4972 assert(this->type == NULL);
4973
4974 if (state->current_function != NULL) {
4975 _mesa_glsl_error(& loc, state,
4976 "all uses of `invariant' keyword must be at global "
4977 "scope");
4978 }
4979
4980 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4981 assert(decl->array_specifier == NULL);
4982 assert(decl->initializer == NULL);
4983
4984 ir_variable *const earlier =
4985 state->symbols->get_variable(decl->identifier);
4986 if (earlier == NULL) {
4987 _mesa_glsl_error(& loc, state,
4988 "undeclared variable `%s' cannot be marked "
4989 "invariant", decl->identifier);
4990 } else if (!is_allowed_invariant(earlier, state)) {
4991 _mesa_glsl_error(&loc, state,
4992 "`%s' cannot be marked invariant; interfaces between "
4993 "shader stages only.", decl->identifier);
4994 } else if (earlier->data.used) {
4995 _mesa_glsl_error(& loc, state,
4996 "variable `%s' may not be redeclared "
4997 "`invariant' after being used",
4998 earlier->name);
4999 } else {
5000 earlier->data.explicit_invariant = true;
5001 earlier->data.invariant = true;
5002 }
5003 }
5004
5005 /* Invariant redeclarations do not have r-values.
5006 */
5007 return NULL;
5008 }
5009
5010 if (this->precise) {
5011 assert(this->type == NULL);
5012
5013 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5014 assert(decl->array_specifier == NULL);
5015 assert(decl->initializer == NULL);
5016
5017 ir_variable *const earlier =
5018 state->symbols->get_variable(decl->identifier);
5019 if (earlier == NULL) {
5020 _mesa_glsl_error(& loc, state,
5021 "undeclared variable `%s' cannot be marked "
5022 "precise", decl->identifier);
5023 } else if (state->current_function != NULL &&
5024 !state->symbols->name_declared_this_scope(decl->identifier)) {
5025 /* Note: we have to check if we're in a function, since
5026 * builtins are treated as having come from another scope.
5027 */
5028 _mesa_glsl_error(& loc, state,
5029 "variable `%s' from an outer scope may not be "
5030 "redeclared `precise' in this scope",
5031 earlier->name);
5032 } else if (earlier->data.used) {
5033 _mesa_glsl_error(& loc, state,
5034 "variable `%s' may not be redeclared "
5035 "`precise' after being used",
5036 earlier->name);
5037 } else {
5038 earlier->data.precise = true;
5039 }
5040 }
5041
5042 /* Precise redeclarations do not have r-values either. */
5043 return NULL;
5044 }
5045
5046 assert(this->type != NULL);
5047 assert(!this->invariant);
5048 assert(!this->precise);
5049
5050 /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5051 * indicate that it needs to be updated later (see glsl_parser.yy).
5052 * This is done here, based on the layout qualifier and the type of the image var
5053 */
5054 if (this->type->qualifier.flags.q.explicit_image_format &&
5055 this->type->specifier->type->is_image() &&
5056 this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5057 /* "The ARB_shader_image_load_store says:
5058 * If both extensions are enabled in the shading language, the "size*" layout
5059 * qualifiers are treated as format qualifiers, and are mapped to equivalent
5060 * format qualifiers in the table below, according to the type of image
5061 * variable.
5062 * image* iimage* uimage*
5063 * -------- -------- --------
5064 * size1x8 n/a r8i r8ui
5065 * size1x16 r16f r16i r16ui
5066 * size1x32 r32f r32i r32ui
5067 * size2x32 rg32f rg32i rg32ui
5068 * size4x32 rgba32f rgba32i rgba32ui"
5069 */
5070 if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5071 switch (this->type->qualifier.image_format) {
5072 case PIPE_FORMAT_R8_SINT:
5073 /* The GL_EXT_shader_image_load_store spec says:
5074 * A layout of "size1x8" is illegal for image variables associated
5075 * with floating-point data types.
5076 */
5077 _mesa_glsl_error(& loc, state,
5078 "size1x8 is illegal for image variables "
5079 "with floating-point data types.");
5080 return NULL;
5081 case PIPE_FORMAT_R16_SINT:
5082 this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5083 break;
5084 case PIPE_FORMAT_R32_SINT:
5085 this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5086 break;
5087 case PIPE_FORMAT_R32G32_SINT:
5088 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5089 break;
5090 case PIPE_FORMAT_R32G32B32A32_SINT:
5091 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5092 break;
5093 default:
5094 unreachable("Unknown image format");
5095 }
5096 this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5097 } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5098 switch (this->type->qualifier.image_format) {
5099 case PIPE_FORMAT_R8_SINT:
5100 this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5101 break;
5102 case PIPE_FORMAT_R16_SINT:
5103 this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5104 break;
5105 case PIPE_FORMAT_R32_SINT:
5106 this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5107 break;
5108 case PIPE_FORMAT_R32G32_SINT:
5109 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5110 break;
5111 case PIPE_FORMAT_R32G32B32A32_SINT:
5112 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5113 break;
5114 default:
5115 unreachable("Unknown image format");
5116 }
5117 this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5118 } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5119 this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5120 } else {
5121 assert(false);
5122 }
5123 }
5124
5125 /* The type specifier may contain a structure definition. Process that
5126 * before any of the variable declarations.
5127 */
5128 (void) this->type->specifier->hir(instructions, state);
5129
5130 decl_type = this->type->glsl_type(& type_name, state);
5131
5132 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5133 * "Buffer variables may only be declared inside interface blocks
5134 * (section 4.3.9 “Interface Blocks”), which are then referred to as
5135 * shader storage blocks. It is a compile-time error to declare buffer
5136 * variables at global scope (outside a block)."
5137 */
5138 if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
5139 _mesa_glsl_error(&loc, state,
5140 "buffer variables cannot be declared outside "
5141 "interface blocks");
5142 }
5143
5144 /* An offset-qualified atomic counter declaration sets the default
5145 * offset for the next declaration within the same atomic counter
5146 * buffer.
5147 */
5148 if (decl_type && decl_type->contains_atomic()) {
5149 if (type->qualifier.flags.q.explicit_binding &&
5150 type->qualifier.flags.q.explicit_offset) {
5151 unsigned qual_binding;
5152 unsigned qual_offset;
5153 if (process_qualifier_constant(state, &loc, "binding",
5154 type->qualifier.binding,
5155 &qual_binding)
5156 && process_qualifier_constant(state, &loc, "offset",
5157 type->qualifier.offset,
5158 &qual_offset)) {
5159 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5160 state->atomic_counter_offsets[qual_binding] = qual_offset;
5161 }
5162 }
5163
5164 ast_type_qualifier allowed_atomic_qual_mask;
5165 allowed_atomic_qual_mask.flags.i = 0;
5166 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5167 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5168 allowed_atomic_qual_mask.flags.q.uniform = 1;
5169
5170 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5171 "invalid layout qualifier for",
5172 "atomic_uint");
5173 }
5174
5175 if (this->declarations.is_empty()) {
5176 /* If there is no structure involved in the program text, there are two
5177 * possible scenarios:
5178 *
5179 * - The program text contained something like 'vec4;'. This is an
5180 * empty declaration. It is valid but weird. Emit a warning.
5181 *
5182 * - The program text contained something like 'S;' and 'S' is not the
5183 * name of a known structure type. This is both invalid and weird.
5184 * Emit an error.
5185 *
5186 * - The program text contained something like 'mediump float;'
5187 * when the programmer probably meant 'precision mediump
5188 * float;' Emit a warning with a description of what they
5189 * probably meant to do.
5190 *
5191 * Note that if decl_type is NULL and there is a structure involved,
5192 * there must have been some sort of error with the structure. In this
5193 * case we assume that an error was already generated on this line of
5194 * code for the structure. There is no need to generate an additional,
5195 * confusing error.
5196 */
5197 assert(this->type->specifier->structure == NULL || decl_type != NULL
5198 || state->error);
5199
5200 if (decl_type == NULL) {
5201 _mesa_glsl_error(&loc, state,
5202 "invalid type `%s' in empty declaration",
5203 type_name);
5204 } else {
5205 if (decl_type->is_array()) {
5206 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5207 * spec:
5208 *
5209 * "... any declaration that leaves the size undefined is
5210 * disallowed as this would add complexity and there are no
5211 * use-cases."
5212 */
5213 if (state->es_shader && decl_type->is_unsized_array()) {
5214 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5215 "or implicitly defined");
5216 }
5217
5218 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5219 *
5220 * "The combinations of types and qualifiers that cause
5221 * compile-time or link-time errors are the same whether or not
5222 * the declaration is empty."
5223 */
5224 validate_array_dimensions(decl_type, state, &loc);
5225 }
5226
5227 if (decl_type->is_atomic_uint()) {
5228 /* Empty atomic counter declarations are allowed and useful
5229 * to set the default offset qualifier.
5230 */
5231 return NULL;
5232 } else if (this->type->qualifier.precision != ast_precision_none) {
5233 if (this->type->specifier->structure != NULL) {
5234 _mesa_glsl_error(&loc, state,
5235 "precision qualifiers can't be applied "
5236 "to structures");
5237 } else {
5238 static const char *const precision_names[] = {
5239 "highp",
5240 "highp",
5241 "mediump",
5242 "lowp"
5243 };
5244
5245 _mesa_glsl_warning(&loc, state,
5246 "empty declaration with precision "
5247 "qualifier, to set the default precision, "
5248 "use `precision %s %s;'",
5249 precision_names[this->type->
5250 qualifier.precision],
5251 type_name);
5252 }
5253 } else if (this->type->specifier->structure == NULL) {
5254 _mesa_glsl_warning(&loc, state, "empty declaration");
5255 }
5256 }
5257 }
5258
5259 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5260 const struct glsl_type *var_type;
5261 ir_variable *var;
5262 const char *identifier = decl->identifier;
5263 /* FINISHME: Emit a warning if a variable declaration shadows a
5264 * FINISHME: declaration at a higher scope.
5265 */
5266
5267 if ((decl_type == NULL) || decl_type->is_void()) {
5268 if (type_name != NULL) {
5269 _mesa_glsl_error(& loc, state,
5270 "invalid type `%s' in declaration of `%s'",
5271 type_name, decl->identifier);
5272 } else {
5273 _mesa_glsl_error(& loc, state,
5274 "invalid type in declaration of `%s'",
5275 decl->identifier);
5276 }
5277 continue;
5278 }
5279
5280 if (this->type->qualifier.is_subroutine_decl()) {
5281 const glsl_type *t;
5282 const char *name;
5283
5284 t = state->symbols->get_type(this->type->specifier->type_name);
5285 if (!t)
5286 _mesa_glsl_error(& loc, state,
5287 "invalid type in declaration of `%s'",
5288 decl->identifier);
5289 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5290
5291 identifier = name;
5292
5293 }
5294 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5295 state);
5296
5297 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5298
5299 /* The 'varying in' and 'varying out' qualifiers can only be used with
5300 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5301 * yet.
5302 */
5303 if (this->type->qualifier.flags.q.varying) {
5304 if (this->type->qualifier.flags.q.in) {
5305 _mesa_glsl_error(& loc, state,
5306 "`varying in' qualifier in declaration of "
5307 "`%s' only valid for geometry shaders using "
5308 "ARB_geometry_shader4 or EXT_geometry_shader4",
5309 decl->identifier);
5310 } else if (this->type->qualifier.flags.q.out) {
5311 _mesa_glsl_error(& loc, state,
5312 "`varying out' qualifier in declaration of "
5313 "`%s' only valid for geometry shaders using "
5314 "ARB_geometry_shader4 or EXT_geometry_shader4",
5315 decl->identifier);
5316 }
5317 }
5318
5319 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5320 *
5321 * "Global variables can only use the qualifiers const,
5322 * attribute, uniform, or varying. Only one may be
5323 * specified.
5324 *
5325 * Local variables can only use the qualifier const."
5326 *
5327 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5328 * any extension that adds the 'layout' keyword.
5329 */
5330 if (!state->is_version(130, 300)
5331 && !state->has_explicit_attrib_location()
5332 && !state->has_separate_shader_objects()
5333 && !state->ARB_fragment_coord_conventions_enable) {
5334 /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5335 * outputs. (the varying flag is not set by the parser)
5336 */
5337 if (this->type->qualifier.flags.q.out &&
5338 (!state->EXT_gpu_shader4_enable ||
5339 state->stage != MESA_SHADER_FRAGMENT)) {
5340 _mesa_glsl_error(& loc, state,
5341 "`out' qualifier in declaration of `%s' "
5342 "only valid for function parameters in %s",
5343 decl->identifier, state->get_version_string());
5344 }
5345 if (this->type->qualifier.flags.q.in) {
5346 _mesa_glsl_error(& loc, state,
5347 "`in' qualifier in declaration of `%s' "
5348 "only valid for function parameters in %s",
5349 decl->identifier, state->get_version_string());
5350 }
5351 /* FINISHME: Test for other invalid qualifiers. */
5352 }
5353
5354 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5355 & loc, false);
5356 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5357 &loc);
5358
5359 if ((state->zero_init & (1u << var->data.mode)) &&
5360 (var->type->is_numeric() || var->type->is_boolean())) {
5361 const ir_constant_data data = { { 0 } };
5362 var->data.has_initializer = true;
5363 var->data.is_implicit_initializer = true;
5364 var->constant_initializer = new(var) ir_constant(var->type, &data);
5365 }
5366
5367 if (this->type->qualifier.flags.q.invariant) {
5368 if (!is_allowed_invariant(var, state)) {
5369 _mesa_glsl_error(&loc, state,
5370 "`%s' cannot be marked invariant; interfaces between "
5371 "shader stages only", var->name);
5372 }
5373 }
5374
5375 if (state->current_function != NULL) {
5376 const char *mode = NULL;
5377 const char *extra = "";
5378
5379 /* There is no need to check for 'inout' here because the parser will
5380 * only allow that in function parameter lists.
5381 */
5382 if (this->type->qualifier.flags.q.attribute) {
5383 mode = "attribute";
5384 } else if (this->type->qualifier.is_subroutine_decl()) {
5385 mode = "subroutine uniform";
5386 } else if (this->type->qualifier.flags.q.uniform) {
5387 mode = "uniform";
5388 } else if (this->type->qualifier.flags.q.varying) {
5389 mode = "varying";
5390 } else if (this->type->qualifier.flags.q.in) {
5391 mode = "in";
5392 extra = " or in function parameter list";
5393 } else if (this->type->qualifier.flags.q.out) {
5394 mode = "out";
5395 extra = " or in function parameter list";
5396 }
5397
5398 if (mode) {
5399 _mesa_glsl_error(& loc, state,
5400 "%s variable `%s' must be declared at "
5401 "global scope%s",
5402 mode, var->name, extra);
5403 }
5404 } else if (var->data.mode == ir_var_shader_in) {
5405 var->data.read_only = true;
5406
5407 if (state->stage == MESA_SHADER_VERTEX) {
5408 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5409 *
5410 * "Vertex shader inputs can only be float, floating-point
5411 * vectors, matrices, signed and unsigned integers and integer
5412 * vectors. Vertex shader inputs can also form arrays of these
5413 * types, but not structures."
5414 *
5415 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5416 *
5417 * "Vertex shader inputs can only be float, floating-point
5418 * vectors, matrices, signed and unsigned integers and integer
5419 * vectors. They cannot be arrays or structures."
5420 *
5421 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5422 *
5423 * "The attribute qualifier can be used only with float,
5424 * floating-point vectors, and matrices. Attribute variables
5425 * cannot be declared as arrays or structures."
5426 *
5427 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5428 *
5429 * "Vertex shader inputs can only be float, floating-point
5430 * vectors, matrices, signed and unsigned integers and integer
5431 * vectors. Vertex shader inputs cannot be arrays or
5432 * structures."
5433 *
5434 * From section 4.3.4 of the ARB_bindless_texture spec:
5435 *
5436 * "(modify third paragraph of the section to allow sampler and
5437 * image types) ... Vertex shader inputs can only be float,
5438 * single-precision floating-point scalars, single-precision
5439 * floating-point vectors, matrices, signed and unsigned
5440 * integers and integer vectors, sampler and image types."
5441 */
5442 const glsl_type *check_type = var->type->without_array();
5443
5444 bool error = false;
5445 switch (check_type->base_type) {
5446 case GLSL_TYPE_FLOAT:
5447 break;
5448 case GLSL_TYPE_UINT64:
5449 case GLSL_TYPE_INT64:
5450 break;
5451 case GLSL_TYPE_UINT:
5452 case GLSL_TYPE_INT:
5453 error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5454 break;
5455 case GLSL_TYPE_DOUBLE:
5456 error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5457 break;
5458 case GLSL_TYPE_SAMPLER:
5459 case GLSL_TYPE_TEXTURE:
5460 case GLSL_TYPE_IMAGE:
5461 error = !state->has_bindless();
5462 break;
5463 default:
5464 error = true;
5465 }
5466
5467 if (error) {
5468 _mesa_glsl_error(& loc, state,
5469 "vertex shader input / attribute cannot have "
5470 "type %s`%s'",
5471 var->type->is_array() ? "array of " : "",
5472 check_type->name);
5473 } else if (var->type->is_array() &&
5474 !state->check_version(150, 0, &loc,
5475 "vertex shader input / attribute "
5476 "cannot have array type")) {
5477 }
5478 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5479 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5480 *
5481 * Geometry shader input variables get the per-vertex values
5482 * written out by vertex shader output variables of the same
5483 * names. Since a geometry shader operates on a set of
5484 * vertices, each input varying variable (or input block, see
5485 * interface blocks below) needs to be declared as an array.
5486 */
5487 if (!var->type->is_array()) {
5488 _mesa_glsl_error(&loc, state,
5489 "geometry shader inputs must be arrays");
5490 }
5491
5492 handle_geometry_shader_input_decl(state, loc, var);
5493 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5494 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5495 *
5496 * It is a compile-time error to declare a fragment shader
5497 * input with, or that contains, any of the following types:
5498 *
5499 * * A boolean type
5500 * * An opaque type
5501 * * An array of arrays
5502 * * An array of structures
5503 * * A structure containing an array
5504 * * A structure containing a structure
5505 */
5506 if (state->es_shader) {
5507 const glsl_type *check_type = var->type->without_array();
5508 if (check_type->is_boolean() ||
5509 check_type->contains_opaque()) {
5510 _mesa_glsl_error(&loc, state,
5511 "fragment shader input cannot have type %s",
5512 check_type->name);
5513 }
5514 if (var->type->is_array() &&
5515 var->type->fields.array->is_array()) {
5516 _mesa_glsl_error(&loc, state,
5517 "%s shader output "
5518 "cannot have an array of arrays",
5519 _mesa_shader_stage_to_string(state->stage));
5520 }
5521 if (var->type->is_array() &&
5522 var->type->fields.array->is_struct()) {
5523 _mesa_glsl_error(&loc, state,
5524 "fragment shader input "
5525 "cannot have an array of structs");
5526 }
5527 if (var->type->is_struct()) {
5528 for (unsigned i = 0; i < var->type->length; i++) {
5529 if (var->type->fields.structure[i].type->is_array() ||
5530 var->type->fields.structure[i].type->is_struct())
5531 _mesa_glsl_error(&loc, state,
5532 "fragment shader input cannot have "
5533 "a struct that contains an "
5534 "array or struct");
5535 }
5536 }
5537 }
5538 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5539 state->stage == MESA_SHADER_TESS_EVAL) {
5540 handle_tess_shader_input_decl(state, loc, var);
5541 }
5542 } else if (var->data.mode == ir_var_shader_out) {
5543 const glsl_type *check_type = var->type->without_array();
5544
5545 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5546 *
5547 * It is a compile-time error to declare a fragment shader output
5548 * that contains any of the following:
5549 *
5550 * * A Boolean type (bool, bvec2 ...)
5551 * * A double-precision scalar or vector (double, dvec2 ...)
5552 * * An opaque type
5553 * * Any matrix type
5554 * * A structure
5555 */
5556 if (state->stage == MESA_SHADER_FRAGMENT) {
5557 if (check_type->is_struct() || check_type->is_matrix())
5558 _mesa_glsl_error(&loc, state,
5559 "fragment shader output "
5560 "cannot have struct or matrix type");
5561 switch (check_type->base_type) {
5562 case GLSL_TYPE_UINT:
5563 case GLSL_TYPE_INT:
5564 case GLSL_TYPE_FLOAT:
5565 break;
5566 default:
5567 _mesa_glsl_error(&loc, state,
5568 "fragment shader output cannot have "
5569 "type %s", check_type->name);
5570 }
5571 }
5572
5573 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5574 *
5575 * It is a compile-time error to declare a vertex shader output
5576 * with, or that contains, any of the following types:
5577 *
5578 * * A boolean type
5579 * * An opaque type
5580 * * An array of arrays
5581 * * An array of structures
5582 * * A structure containing an array
5583 * * A structure containing a structure
5584 *
5585 * It is a compile-time error to declare a fragment shader output
5586 * with, or that contains, any of the following types:
5587 *
5588 * * A boolean type
5589 * * An opaque type
5590 * * A matrix
5591 * * A structure
5592 * * An array of array
5593 *
5594 * ES 3.20 updates this to apply to tessellation and geometry shaders
5595 * as well. Because there are per-vertex arrays in the new stages,
5596 * it strikes the "array of..." rules and replaces them with these:
5597 *
5598 * * For per-vertex-arrayed variables (applies to tessellation
5599 * control, tessellation evaluation and geometry shaders):
5600 *
5601 * * Per-vertex-arrayed arrays of arrays
5602 * * Per-vertex-arrayed arrays of structures
5603 *
5604 * * For non-per-vertex-arrayed variables:
5605 *
5606 * * An array of arrays
5607 * * An array of structures
5608 *
5609 * which basically says to unwrap the per-vertex aspect and apply
5610 * the old rules.
5611 */
5612 if (state->es_shader) {
5613 if (var->type->is_array() &&
5614 var->type->fields.array->is_array()) {
5615 _mesa_glsl_error(&loc, state,
5616 "%s shader output "
5617 "cannot have an array of arrays",
5618 _mesa_shader_stage_to_string(state->stage));
5619 }
5620 if (state->stage <= MESA_SHADER_GEOMETRY) {
5621 const glsl_type *type = var->type;
5622
5623 if (state->stage == MESA_SHADER_TESS_CTRL &&
5624 !var->data.patch && var->type->is_array()) {
5625 type = var->type->fields.array;
5626 }
5627
5628 if (type->is_array() && type->fields.array->is_struct()) {
5629 _mesa_glsl_error(&loc, state,
5630 "%s shader output cannot have "
5631 "an array of structs",
5632 _mesa_shader_stage_to_string(state->stage));
5633 }
5634 if (type->is_struct()) {
5635 for (unsigned i = 0; i < type->length; i++) {
5636 if (type->fields.structure[i].type->is_array() ||
5637 type->fields.structure[i].type->is_struct())
5638 _mesa_glsl_error(&loc, state,
5639 "%s shader output cannot have a "
5640 "struct that contains an "
5641 "array or struct",
5642 _mesa_shader_stage_to_string(state->stage));
5643 }
5644 }
5645 }
5646 }
5647
5648 if (state->stage == MESA_SHADER_TESS_CTRL) {
5649 handle_tess_ctrl_shader_output_decl(state, loc, var);
5650 }
5651 } else if (var->type->contains_subroutine()) {
5652 /* declare subroutine uniforms as hidden */
5653 var->data.how_declared = ir_var_hidden;
5654 }
5655
5656 /* From section 4.3.4 of the GLSL 4.00 spec:
5657 * "Input variables may not be declared using the patch in qualifier
5658 * in tessellation control or geometry shaders."
5659 *
5660 * From section 4.3.6 of the GLSL 4.00 spec:
5661 * "It is an error to use patch out in a vertex, tessellation
5662 * evaluation, or geometry shader."
5663 *
5664 * This doesn't explicitly forbid using them in a fragment shader, but
5665 * that's probably just an oversight.
5666 */
5667 if (state->stage != MESA_SHADER_TESS_EVAL
5668 && this->type->qualifier.flags.q.patch
5669 && this->type->qualifier.flags.q.in) {
5670
5671 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5672 "tessellation evaluation shader");
5673 }
5674
5675 if (state->stage != MESA_SHADER_TESS_CTRL
5676 && this->type->qualifier.flags.q.patch
5677 && this->type->qualifier.flags.q.out) {
5678
5679 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5680 "tessellation control shader");
5681 }
5682
5683 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5684 */
5685 if (this->type->qualifier.precision != ast_precision_none) {
5686 state->check_precision_qualifiers_allowed(&loc);
5687 }
5688
5689 if (this->type->qualifier.precision != ast_precision_none &&
5690 !precision_qualifier_allowed(var->type)) {
5691 _mesa_glsl_error(&loc, state,
5692 "precision qualifiers apply only to floating point"
5693 ", integer and opaque types");
5694 }
5695
5696 /* From section 4.1.7 of the GLSL 4.40 spec:
5697 *
5698 * "[Opaque types] can only be declared as function
5699 * parameters or uniform-qualified variables."
5700 *
5701 * From section 4.1.7 of the ARB_bindless_texture spec:
5702 *
5703 * "Samplers may be declared as shader inputs and outputs, as uniform
5704 * variables, as temporary variables, and as function parameters."
5705 *
5706 * From section 4.1.X of the ARB_bindless_texture spec:
5707 *
5708 * "Images may be declared as shader inputs and outputs, as uniform
5709 * variables, as temporary variables, and as function parameters."
5710 */
5711 if (!this->type->qualifier.flags.q.uniform &&
5712 (var_type->contains_atomic() ||
5713 (!state->has_bindless() && var_type->contains_opaque()))) {
5714 _mesa_glsl_error(&loc, state,
5715 "%s variables must be declared uniform",
5716 state->has_bindless() ? "atomic" : "opaque");
5717 }
5718
5719 /* Process the initializer and add its instructions to a temporary
5720 * list. This list will be added to the instruction stream (below) after
5721 * the declaration is added. This is done because in some cases (such as
5722 * redeclarations) the declaration may not actually be added to the
5723 * instruction stream.
5724 */
5725 exec_list initializer_instructions;
5726
5727 /* Examine var name here since var may get deleted in the next call */
5728 bool var_is_gl_id = is_gl_identifier(var->name);
5729
5730 bool is_redeclaration;
5731 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5732 false /* allow_all_redeclarations */,
5733 &is_redeclaration);
5734 if (is_redeclaration) {
5735 if (var_is_gl_id &&
5736 var->data.how_declared == ir_var_declared_in_block) {
5737 _mesa_glsl_error(&loc, state,
5738 "`%s' has already been redeclared using "
5739 "gl_PerVertex", var->name);
5740 }
5741 var->data.how_declared = ir_var_declared_normally;
5742 }
5743
5744 if (decl->initializer != NULL) {
5745 result = process_initializer(var,
5746 decl, this->type,
5747 &initializer_instructions, state);
5748 } else {
5749 validate_array_dimensions(var_type, state, &loc);
5750 }
5751
5752 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5753 *
5754 * "It is an error to write to a const variable outside of
5755 * its declaration, so they must be initialized when
5756 * declared."
5757 */
5758 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5759 _mesa_glsl_error(& loc, state,
5760 "const declaration of `%s' must be initialized",
5761 decl->identifier);
5762 }
5763
5764 if (state->es_shader) {
5765 const glsl_type *const t = var->type;
5766
5767 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5768 *
5769 * The GL_OES_tessellation_shader spec says about inputs:
5770 *
5771 * "Declaring an array size is optional. If no size is specified,
5772 * it will be taken from the implementation-dependent maximum
5773 * patch size (gl_MaxPatchVertices)."
5774 *
5775 * and about TCS outputs:
5776 *
5777 * "If no size is specified, it will be taken from output patch
5778 * size declared in the shader."
5779 *
5780 * The GL_OES_geometry_shader spec says:
5781 *
5782 * "All geometry shader input unsized array declarations will be
5783 * sized by an earlier input primitive layout qualifier, when
5784 * present, as per the following table."
5785 */
5786 const bool implicitly_sized =
5787 (var->data.mode == ir_var_shader_in &&
5788 state->stage >= MESA_SHADER_TESS_CTRL &&
5789 state->stage <= MESA_SHADER_GEOMETRY) ||
5790 (var->data.mode == ir_var_shader_out &&
5791 state->stage == MESA_SHADER_TESS_CTRL);
5792
5793 if (t->is_unsized_array() && !implicitly_sized)
5794 /* Section 10.17 of the GLSL ES 1.00 specification states that
5795 * unsized array declarations have been removed from the language.
5796 * Arrays that are sized using an initializer are still explicitly
5797 * sized. However, GLSL ES 1.00 does not allow array
5798 * initializers. That is only allowed in GLSL ES 3.00.
5799 *
5800 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5801 *
5802 * "An array type can also be formed without specifying a size
5803 * if the definition includes an initializer:
5804 *
5805 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5806 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5807 *
5808 * float a[5];
5809 * float b[] = a;"
5810 */
5811 _mesa_glsl_error(& loc, state,
5812 "unsized array declarations are not allowed in "
5813 "GLSL ES");
5814 }
5815
5816 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5817 *
5818 * "It is a compile-time error to declare an unsized array of
5819 * atomic_uint"
5820 */
5821 if (var->type->is_unsized_array() &&
5822 var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5823 _mesa_glsl_error(& loc, state,
5824 "Unsized array of atomic_uint is not allowed");
5825 }
5826
5827 /* If the declaration is not a redeclaration, there are a few additional
5828 * semantic checks that must be applied. In addition, variable that was
5829 * created for the declaration should be added to the IR stream.
5830 */
5831 if (!is_redeclaration) {
5832 validate_identifier(decl->identifier, loc, state);
5833
5834 /* Add the variable to the symbol table. Note that the initializer's
5835 * IR was already processed earlier (though it hasn't been emitted
5836 * yet), without the variable in scope.
5837 *
5838 * This differs from most C-like languages, but it follows the GLSL
5839 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5840 * spec:
5841 *
5842 * "Within a declaration, the scope of a name starts immediately
5843 * after the initializer if present or immediately after the name
5844 * being declared if not."
5845 */
5846 if (!state->symbols->add_variable(var)) {
5847 YYLTYPE loc = this->get_location();
5848 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5849 "current scope", decl->identifier);
5850 continue;
5851 }
5852
5853 /* Push the variable declaration to the top. It means that all the
5854 * variable declarations will appear in a funny last-to-first order,
5855 * but otherwise we run into trouble if a function is prototyped, a
5856 * global var is decled, then the function is defined with usage of
5857 * the global var. See glslparsertest's CorrectModule.frag.
5858 */
5859 instructions->push_head(var);
5860 }
5861
5862 instructions->append_list(&initializer_instructions);
5863 }
5864
5865
5866 /* Generally, variable declarations do not have r-values. However,
5867 * one is used for the declaration in
5868 *
5869 * while (bool b = some_condition()) {
5870 * ...
5871 * }
5872 *
5873 * so we return the rvalue from the last seen declaration here.
5874 */
5875 return result;
5876 }
5877
5878
5879 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5880 ast_parameter_declarator::hir(exec_list *instructions,
5881 struct _mesa_glsl_parse_state *state)
5882 {
5883 void *ctx = state;
5884 const struct glsl_type *type;
5885 const char *name = NULL;
5886 YYLTYPE loc = this->get_location();
5887
5888 type = this->type->glsl_type(& name, state);
5889
5890 if (type == NULL) {
5891 if (name != NULL) {
5892 _mesa_glsl_error(& loc, state,
5893 "invalid type `%s' in declaration of `%s'",
5894 name, this->identifier);
5895 } else {
5896 _mesa_glsl_error(& loc, state,
5897 "invalid type in declaration of `%s'",
5898 this->identifier);
5899 }
5900
5901 type = glsl_type::error_type;
5902 }
5903
5904 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5905 *
5906 * "Functions that accept no input arguments need not use void in the
5907 * argument list because prototypes (or definitions) are required and
5908 * therefore there is no ambiguity when an empty argument list "( )" is
5909 * declared. The idiom "(void)" as a parameter list is provided for
5910 * convenience."
5911 *
5912 * Placing this check here prevents a void parameter being set up
5913 * for a function, which avoids tripping up checks for main taking
5914 * parameters and lookups of an unnamed symbol.
5915 */
5916 if (type->is_void()) {
5917 if (this->identifier != NULL)
5918 _mesa_glsl_error(& loc, state,
5919 "named parameter cannot have type `void'");
5920
5921 is_void = true;
5922 return NULL;
5923 }
5924
5925 if (formal_parameter && (this->identifier == NULL)) {
5926 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5927 return NULL;
5928 }
5929
5930 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
5931 * call already handled the "vec4[..] foo" case.
5932 */
5933 type = process_array_type(&loc, type, this->array_specifier, state);
5934
5935 if (!type->is_error() && type->is_unsized_array()) {
5936 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5937 "a declared size");
5938 type = glsl_type::error_type;
5939 }
5940
5941 is_void = false;
5942 ir_variable *var = new(ctx)
5943 ir_variable(type, this->identifier, ir_var_function_in);
5944
5945 /* Apply any specified qualifiers to the parameter declaration. Note that
5946 * for function parameters the default mode is 'in'.
5947 */
5948 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5949 true);
5950
5951 if (((1u << var->data.mode) & state->zero_init) &&
5952 (var->type->is_numeric() || var->type->is_boolean())) {
5953 const ir_constant_data data = { { 0 } };
5954 var->data.has_initializer = true;
5955 var->data.is_implicit_initializer = true;
5956 var->constant_initializer = new(var) ir_constant(var->type, &data);
5957 }
5958
5959 /* From section 4.1.7 of the GLSL 4.40 spec:
5960 *
5961 * "Opaque variables cannot be treated as l-values; hence cannot
5962 * be used as out or inout function parameters, nor can they be
5963 * assigned into."
5964 *
5965 * From section 4.1.7 of the ARB_bindless_texture spec:
5966 *
5967 * "Samplers can be used as l-values, so can be assigned into and used
5968 * as "out" and "inout" function parameters."
5969 *
5970 * From section 4.1.X of the ARB_bindless_texture spec:
5971 *
5972 * "Images can be used as l-values, so can be assigned into and used as
5973 * "out" and "inout" function parameters."
5974 */
5975 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5976 && (type->contains_atomic() ||
5977 (!state->has_bindless() && type->contains_opaque()))) {
5978 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5979 "contain %s variables",
5980 state->has_bindless() ? "atomic" : "opaque");
5981 type = glsl_type::error_type;
5982 }
5983
5984 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5985 *
5986 * "When calling a function, expressions that do not evaluate to
5987 * l-values cannot be passed to parameters declared as out or inout."
5988 *
5989 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5990 *
5991 * "Other binary or unary expressions, non-dereferenced arrays,
5992 * function names, swizzles with repeated fields, and constants
5993 * cannot be l-values."
5994 *
5995 * So for GLSL 1.10, passing an array as an out or inout parameter is not
5996 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
5997 */
5998 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5999 && type->is_array()
6000 && !state->check_version(120, 100, &loc,
6001 "arrays cannot be out or inout parameters")) {
6002 type = glsl_type::error_type;
6003 }
6004
6005 instructions->push_tail(var);
6006
6007 /* Parameter declarations do not have r-values.
6008 */
6009 return NULL;
6010 }
6011
6012
6013 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)6014 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6015 bool formal,
6016 exec_list *ir_parameters,
6017 _mesa_glsl_parse_state *state)
6018 {
6019 ast_parameter_declarator *void_param = NULL;
6020 unsigned count = 0;
6021
6022 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6023 param->formal_parameter = formal;
6024 param->hir(ir_parameters, state);
6025
6026 if (param->is_void)
6027 void_param = param;
6028
6029 count++;
6030 }
6031
6032 if ((void_param != NULL) && (count > 1)) {
6033 YYLTYPE loc = void_param->get_location();
6034
6035 _mesa_glsl_error(& loc, state,
6036 "`void' parameter must be only parameter");
6037 }
6038 }
6039
6040
6041 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6042 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6043 {
6044 /* IR invariants disallow function declarations or definitions
6045 * nested within other function definitions. But there is no
6046 * requirement about the relative order of function declarations
6047 * and definitions with respect to one another. So simply insert
6048 * the new ir_function block at the end of the toplevel instruction
6049 * list.
6050 */
6051 state->toplevel_ir->push_tail(f);
6052 }
6053
6054
6055 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6056 ast_function::hir(exec_list *instructions,
6057 struct _mesa_glsl_parse_state *state)
6058 {
6059 void *ctx = state;
6060 ir_function *f = NULL;
6061 ir_function_signature *sig = NULL;
6062 exec_list hir_parameters;
6063 YYLTYPE loc = this->get_location();
6064
6065 const char *const name = identifier;
6066
6067 /* New functions are always added to the top-level IR instruction stream,
6068 * so this instruction list pointer is ignored. See also emit_function
6069 * (called below).
6070 */
6071 (void) instructions;
6072
6073 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6074 *
6075 * "Function declarations (prototypes) cannot occur inside of functions;
6076 * they must be at global scope, or for the built-in functions, outside
6077 * the global scope."
6078 *
6079 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6080 *
6081 * "User defined functions may only be defined within the global scope."
6082 *
6083 * Note that this language does not appear in GLSL 1.10.
6084 */
6085 if ((state->current_function != NULL) &&
6086 state->is_version(120, 100)) {
6087 YYLTYPE loc = this->get_location();
6088 _mesa_glsl_error(&loc, state,
6089 "declaration of function `%s' not allowed within "
6090 "function body", name);
6091 }
6092
6093 validate_identifier(name, this->get_location(), state);
6094
6095 /* Convert the list of function parameters to HIR now so that they can be
6096 * used below to compare this function's signature with previously seen
6097 * signatures for functions with the same name.
6098 */
6099 ast_parameter_declarator::parameters_to_hir(& this->parameters,
6100 is_definition,
6101 & hir_parameters, state);
6102
6103 const char *return_type_name;
6104 const glsl_type *return_type =
6105 this->return_type->glsl_type(& return_type_name, state);
6106
6107 if (!return_type) {
6108 YYLTYPE loc = this->get_location();
6109 _mesa_glsl_error(&loc, state,
6110 "function `%s' has undeclared return type `%s'",
6111 name, return_type_name);
6112 return_type = glsl_type::error_type;
6113 }
6114
6115 /* ARB_shader_subroutine states:
6116 * "Subroutine declarations cannot be prototyped. It is an error to prepend
6117 * subroutine(...) to a function declaration."
6118 */
6119 if (this->return_type->qualifier.subroutine_list && !is_definition) {
6120 YYLTYPE loc = this->get_location();
6121 _mesa_glsl_error(&loc, state,
6122 "function declaration `%s' cannot have subroutine prepended",
6123 name);
6124 }
6125
6126 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6127 * "No qualifier is allowed on the return type of a function."
6128 */
6129 if (this->return_type->has_qualifiers(state)) {
6130 YYLTYPE loc = this->get_location();
6131 _mesa_glsl_error(& loc, state,
6132 "function `%s' return type has qualifiers", name);
6133 }
6134
6135 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6136 *
6137 * "Arrays are allowed as arguments and as the return type. In both
6138 * cases, the array must be explicitly sized."
6139 */
6140 if (return_type->is_unsized_array()) {
6141 YYLTYPE loc = this->get_location();
6142 _mesa_glsl_error(& loc, state,
6143 "function `%s' return type array must be explicitly "
6144 "sized", name);
6145 }
6146
6147 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6148 *
6149 * "Arrays are allowed as arguments, but not as the return type. [...]
6150 * The return type can also be a structure if the structure does not
6151 * contain an array."
6152 */
6153 if (state->language_version == 100 && return_type->contains_array()) {
6154 YYLTYPE loc = this->get_location();
6155 _mesa_glsl_error(& loc, state,
6156 "function `%s' return type contains an array", name);
6157 }
6158
6159 /* From section 4.1.7 of the GLSL 4.40 spec:
6160 *
6161 * "[Opaque types] can only be declared as function parameters
6162 * or uniform-qualified variables."
6163 *
6164 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6165 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6166 * (Images)", this should be allowed.
6167 */
6168 if (return_type->contains_atomic() ||
6169 (!state->has_bindless() && return_type->contains_opaque())) {
6170 YYLTYPE loc = this->get_location();
6171 _mesa_glsl_error(&loc, state,
6172 "function `%s' return type can't contain an %s type",
6173 name, state->has_bindless() ? "atomic" : "opaque");
6174 }
6175
6176 /**/
6177 if (return_type->is_subroutine()) {
6178 YYLTYPE loc = this->get_location();
6179 _mesa_glsl_error(&loc, state,
6180 "function `%s' return type can't be a subroutine type",
6181 name);
6182 }
6183
6184 /* Get the precision for the return type */
6185 unsigned return_precision;
6186
6187 if (state->es_shader) {
6188 YYLTYPE loc = this->get_location();
6189 return_precision =
6190 select_gles_precision(this->return_type->qualifier.precision,
6191 return_type,
6192 state,
6193 &loc);
6194 } else {
6195 return_precision = GLSL_PRECISION_NONE;
6196 }
6197
6198 /* Create an ir_function if one doesn't already exist. */
6199 f = state->symbols->get_function(name);
6200 if (f == NULL) {
6201 f = new(ctx) ir_function(name);
6202 if (!this->return_type->qualifier.is_subroutine_decl()) {
6203 if (!state->symbols->add_function(f)) {
6204 /* This function name shadows a non-function use of the same name. */
6205 YYLTYPE loc = this->get_location();
6206 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6207 "non-function", name);
6208 return NULL;
6209 }
6210 }
6211 emit_function(state, f);
6212 }
6213
6214 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6215 *
6216 * "A shader cannot redefine or overload built-in functions."
6217 *
6218 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6219 *
6220 * "User code can overload the built-in functions but cannot redefine
6221 * them."
6222 */
6223 if (state->es_shader) {
6224 /* Local shader has no exact candidates; check the built-ins. */
6225 if (state->language_version >= 300 &&
6226 _mesa_glsl_has_builtin_function(state, name)) {
6227 YYLTYPE loc = this->get_location();
6228 _mesa_glsl_error(& loc, state,
6229 "A shader cannot redefine or overload built-in "
6230 "function `%s' in GLSL ES 3.00", name);
6231 return NULL;
6232 }
6233
6234 if (state->language_version == 100) {
6235 ir_function_signature *sig =
6236 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6237 if (sig && sig->is_builtin()) {
6238 _mesa_glsl_error(& loc, state,
6239 "A shader cannot redefine built-in "
6240 "function `%s' in GLSL ES 1.00", name);
6241 }
6242 }
6243 }
6244
6245 /* Verify that this function's signature either doesn't match a previously
6246 * seen signature for a function with the same name, or, if a match is found,
6247 * that the previously seen signature does not have an associated definition.
6248 */
6249 if (state->es_shader || f->has_user_signature()) {
6250 sig = f->exact_matching_signature(state, &hir_parameters);
6251 if (sig != NULL) {
6252 const char *badvar = sig->qualifiers_match(&hir_parameters);
6253 if (badvar != NULL) {
6254 YYLTYPE loc = this->get_location();
6255
6256 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6257 "qualifiers don't match prototype", name, badvar);
6258 }
6259
6260 if (sig->return_type != return_type) {
6261 YYLTYPE loc = this->get_location();
6262
6263 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6264 "match prototype", name);
6265 }
6266
6267 if (sig->return_precision != return_precision) {
6268 YYLTYPE loc = this->get_location();
6269
6270 _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6271 "doesn't match prototype", name);
6272 }
6273
6274 if (sig->is_defined) {
6275 if (is_definition) {
6276 YYLTYPE loc = this->get_location();
6277 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6278 } else {
6279 /* We just encountered a prototype that exactly matches a
6280 * function that's already been defined. This is redundant,
6281 * and we should ignore it.
6282 */
6283 return NULL;
6284 }
6285 } else if (state->language_version == 100 && !is_definition) {
6286 /* From the GLSL 1.00 spec, section 4.2.7:
6287 *
6288 * "A particular variable, structure or function declaration
6289 * may occur at most once within a scope with the exception
6290 * that a single function prototype plus the corresponding
6291 * function definition are allowed."
6292 */
6293 YYLTYPE loc = this->get_location();
6294 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6295 }
6296 }
6297 }
6298
6299 /* Verify the return type of main() */
6300 if (strcmp(name, "main") == 0) {
6301 if (! return_type->is_void()) {
6302 YYLTYPE loc = this->get_location();
6303
6304 _mesa_glsl_error(& loc, state, "main() must return void");
6305 }
6306
6307 if (!hir_parameters.is_empty()) {
6308 YYLTYPE loc = this->get_location();
6309
6310 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6311 }
6312 }
6313
6314 /* Finish storing the information about this new function in its signature.
6315 */
6316 if (sig == NULL) {
6317 sig = new(ctx) ir_function_signature(return_type);
6318 sig->return_precision = return_precision;
6319 f->add_signature(sig);
6320 }
6321
6322 sig->replace_parameters(&hir_parameters);
6323 signature = sig;
6324
6325 if (this->return_type->qualifier.subroutine_list) {
6326 int idx;
6327
6328 if (this->return_type->qualifier.flags.q.explicit_index) {
6329 unsigned qual_index;
6330 if (process_qualifier_constant(state, &loc, "index",
6331 this->return_type->qualifier.index,
6332 &qual_index)) {
6333 if (!state->has_explicit_uniform_location()) {
6334 _mesa_glsl_error(&loc, state, "subroutine index requires "
6335 "GL_ARB_explicit_uniform_location or "
6336 "GLSL 4.30");
6337 } else if (qual_index >= MAX_SUBROUTINES) {
6338 _mesa_glsl_error(&loc, state,
6339 "invalid subroutine index (%d) index must "
6340 "be a number between 0 and "
6341 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6342 MAX_SUBROUTINES - 1);
6343 } else {
6344 f->subroutine_index = qual_index;
6345 }
6346 }
6347 }
6348
6349 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6350 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6351 f->num_subroutine_types);
6352 idx = 0;
6353 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6354 const struct glsl_type *type;
6355 /* the subroutine type must be already declared */
6356 type = state->symbols->get_type(decl->identifier);
6357 if (!type) {
6358 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6359 }
6360
6361 for (int i = 0; i < state->num_subroutine_types; i++) {
6362 ir_function *fn = state->subroutine_types[i];
6363 ir_function_signature *tsig = NULL;
6364
6365 if (strcmp(fn->name, decl->identifier))
6366 continue;
6367
6368 tsig = fn->matching_signature(state, &sig->parameters,
6369 false);
6370 if (!tsig) {
6371 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6372 } else {
6373 if (tsig->return_type != sig->return_type) {
6374 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6375 }
6376 }
6377 }
6378 f->subroutine_types[idx++] = type;
6379 }
6380 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6381 ir_function *,
6382 state->num_subroutines + 1);
6383 state->subroutines[state->num_subroutines] = f;
6384 state->num_subroutines++;
6385
6386 }
6387
6388 if (this->return_type->qualifier.is_subroutine_decl()) {
6389 if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6390 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6391 return NULL;
6392 }
6393 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6394 ir_function *,
6395 state->num_subroutine_types + 1);
6396 state->subroutine_types[state->num_subroutine_types] = f;
6397 state->num_subroutine_types++;
6398
6399 f->is_subroutine = true;
6400 }
6401
6402 /* Function declarations (prototypes) do not have r-values.
6403 */
6404 return NULL;
6405 }
6406
6407
6408 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6409 ast_function_definition::hir(exec_list *instructions,
6410 struct _mesa_glsl_parse_state *state)
6411 {
6412 prototype->is_definition = true;
6413 prototype->hir(instructions, state);
6414
6415 ir_function_signature *signature = prototype->signature;
6416 if (signature == NULL)
6417 return NULL;
6418
6419 assert(state->current_function == NULL);
6420 state->current_function = signature;
6421 state->found_return = false;
6422 state->found_begin_interlock = false;
6423 state->found_end_interlock = false;
6424
6425 /* Duplicate parameters declared in the prototype as concrete variables.
6426 * Add these to the symbol table.
6427 */
6428 state->symbols->push_scope();
6429 foreach_in_list(ir_variable, var, &signature->parameters) {
6430 assert(var->as_variable() != NULL);
6431
6432 /* The only way a parameter would "exist" is if two parameters have
6433 * the same name.
6434 */
6435 if (state->symbols->name_declared_this_scope(var->name)) {
6436 YYLTYPE loc = this->get_location();
6437
6438 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6439 } else {
6440 state->symbols->add_variable(var);
6441 }
6442 }
6443
6444 /* Convert the body of the function to HIR. */
6445 this->body->hir(&signature->body, state);
6446 signature->is_defined = true;
6447
6448 state->symbols->pop_scope();
6449
6450 assert(state->current_function == signature);
6451 state->current_function = NULL;
6452
6453 if (!signature->return_type->is_void() && !state->found_return) {
6454 YYLTYPE loc = this->get_location();
6455 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6456 "%s, but no return statement",
6457 signature->function_name(),
6458 signature->return_type->name);
6459 }
6460
6461 /* Function definitions do not have r-values.
6462 */
6463 return NULL;
6464 }
6465
6466
6467 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6468 ast_jump_statement::hir(exec_list *instructions,
6469 struct _mesa_glsl_parse_state *state)
6470 {
6471 void *ctx = state;
6472
6473 switch (mode) {
6474 case ast_return: {
6475 ir_return *inst;
6476 assert(state->current_function);
6477
6478 if (opt_return_value) {
6479 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6480
6481 /* The value of the return type can be NULL if the shader says
6482 * 'return foo();' and foo() is a function that returns void.
6483 *
6484 * NOTE: The GLSL spec doesn't say that this is an error. The type
6485 * of the return value is void. If the return type of the function is
6486 * also void, then this should compile without error. Seriously.
6487 */
6488 const glsl_type *const ret_type =
6489 (ret == NULL) ? glsl_type::void_type : ret->type;
6490
6491 /* Implicit conversions are not allowed for return values prior to
6492 * ARB_shading_language_420pack.
6493 */
6494 if (state->current_function->return_type != ret_type) {
6495 YYLTYPE loc = this->get_location();
6496
6497 if (state->has_420pack()) {
6498 if (!apply_implicit_conversion(state->current_function->return_type,
6499 ret, state)
6500 || (ret->type != state->current_function->return_type)) {
6501 _mesa_glsl_error(& loc, state,
6502 "could not implicitly convert return value "
6503 "to %s, in function `%s'",
6504 state->current_function->return_type->name,
6505 state->current_function->function_name());
6506 }
6507 } else {
6508 _mesa_glsl_error(& loc, state,
6509 "`return' with wrong type %s, in function `%s' "
6510 "returning %s",
6511 ret_type->name,
6512 state->current_function->function_name(),
6513 state->current_function->return_type->name);
6514 }
6515 } else if (state->current_function->return_type->base_type ==
6516 GLSL_TYPE_VOID) {
6517 YYLTYPE loc = this->get_location();
6518
6519 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6520 * specs add a clarification:
6521 *
6522 * "A void function can only use return without a return argument, even if
6523 * the return argument has void type. Return statements only accept values:
6524 *
6525 * void func1() { }
6526 * void func2() { return func1(); } // illegal return statement"
6527 */
6528 _mesa_glsl_error(& loc, state,
6529 "void functions can only use `return' without a "
6530 "return argument");
6531 }
6532
6533 inst = new(ctx) ir_return(ret);
6534 } else {
6535 if (state->current_function->return_type->base_type !=
6536 GLSL_TYPE_VOID) {
6537 YYLTYPE loc = this->get_location();
6538
6539 _mesa_glsl_error(& loc, state,
6540 "`return' with no value, in function %s returning "
6541 "non-void",
6542 state->current_function->function_name());
6543 }
6544 inst = new(ctx) ir_return;
6545 }
6546
6547 state->found_return = true;
6548 instructions->push_tail(inst);
6549 break;
6550 }
6551
6552 case ast_discard:
6553 if (state->stage != MESA_SHADER_FRAGMENT) {
6554 YYLTYPE loc = this->get_location();
6555
6556 _mesa_glsl_error(& loc, state,
6557 "`discard' may only appear in a fragment shader");
6558 }
6559 instructions->push_tail(new(ctx) ir_discard);
6560 break;
6561
6562 case ast_break:
6563 case ast_continue:
6564 if (mode == ast_continue &&
6565 state->loop_nesting_ast == NULL) {
6566 YYLTYPE loc = this->get_location();
6567
6568 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6569 } else if (mode == ast_break &&
6570 state->loop_nesting_ast == NULL &&
6571 state->switch_state.switch_nesting_ast == NULL) {
6572 YYLTYPE loc = this->get_location();
6573
6574 _mesa_glsl_error(& loc, state,
6575 "break may only appear in a loop or a switch");
6576 } else {
6577 /* For a loop, inline the for loop expression again, since we don't
6578 * know where near the end of the loop body the normal copy of it is
6579 * going to be placed. Same goes for the condition for a do-while
6580 * loop.
6581 */
6582 if (state->loop_nesting_ast != NULL &&
6583 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6584 if (state->loop_nesting_ast->rest_expression) {
6585 clone_ir_list(ctx, instructions,
6586 &state->loop_nesting_ast->rest_instructions);
6587 }
6588 if (state->loop_nesting_ast->mode ==
6589 ast_iteration_statement::ast_do_while) {
6590 state->loop_nesting_ast->condition_to_hir(instructions, state);
6591 }
6592 }
6593
6594 if (state->switch_state.is_switch_innermost &&
6595 mode == ast_continue) {
6596 /* Set 'continue_inside' to true. */
6597 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6598 ir_dereference_variable *deref_continue_inside_var =
6599 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6600 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6601 true_val));
6602
6603 /* Break out from the switch, continue for the loop will
6604 * be called right after switch. */
6605 ir_loop_jump *const jump =
6606 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6607 instructions->push_tail(jump);
6608
6609 } else if (state->switch_state.is_switch_innermost &&
6610 mode == ast_break) {
6611 /* Force break out of switch by inserting a break. */
6612 ir_loop_jump *const jump =
6613 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6614 instructions->push_tail(jump);
6615 } else {
6616 ir_loop_jump *const jump =
6617 new(ctx) ir_loop_jump((mode == ast_break)
6618 ? ir_loop_jump::jump_break
6619 : ir_loop_jump::jump_continue);
6620 instructions->push_tail(jump);
6621 }
6622 }
6623
6624 break;
6625 }
6626
6627 /* Jump instructions do not have r-values.
6628 */
6629 return NULL;
6630 }
6631
6632
6633 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6634 ast_demote_statement::hir(exec_list *instructions,
6635 struct _mesa_glsl_parse_state *state)
6636 {
6637 void *ctx = state;
6638
6639 if (state->stage != MESA_SHADER_FRAGMENT) {
6640 YYLTYPE loc = this->get_location();
6641
6642 _mesa_glsl_error(& loc, state,
6643 "`demote' may only appear in a fragment shader");
6644 }
6645
6646 instructions->push_tail(new(ctx) ir_demote);
6647
6648 return NULL;
6649 }
6650
6651
6652 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6653 ast_selection_statement::hir(exec_list *instructions,
6654 struct _mesa_glsl_parse_state *state)
6655 {
6656 void *ctx = state;
6657
6658 ir_rvalue *const condition = this->condition->hir(instructions, state);
6659
6660 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6661 *
6662 * "Any expression whose type evaluates to a Boolean can be used as the
6663 * conditional expression bool-expression. Vector types are not accepted
6664 * as the expression to if."
6665 *
6666 * The checks are separated so that higher quality diagnostics can be
6667 * generated for cases where both rules are violated.
6668 */
6669 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6670 YYLTYPE loc = this->condition->get_location();
6671
6672 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6673 "boolean");
6674 }
6675
6676 ir_if *const stmt = new(ctx) ir_if(condition);
6677
6678 if (then_statement != NULL) {
6679 state->symbols->push_scope();
6680 then_statement->hir(& stmt->then_instructions, state);
6681 state->symbols->pop_scope();
6682 }
6683
6684 if (else_statement != NULL) {
6685 state->symbols->push_scope();
6686 else_statement->hir(& stmt->else_instructions, state);
6687 state->symbols->pop_scope();
6688 }
6689
6690 instructions->push_tail(stmt);
6691
6692 /* if-statements do not have r-values.
6693 */
6694 return NULL;
6695 }
6696
6697
6698 struct case_label {
6699 /** Value of the case label. */
6700 unsigned value;
6701
6702 /** Does this label occur after the default? */
6703 bool after_default;
6704
6705 /**
6706 * AST for the case label.
6707 *
6708 * This is only used to generate error messages for duplicate labels.
6709 */
6710 ast_expression *ast;
6711 };
6712
6713 /* Used for detection of duplicate case values, compare
6714 * given contents directly.
6715 */
6716 static bool
compare_case_value(const void * a,const void * b)6717 compare_case_value(const void *a, const void *b)
6718 {
6719 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6720 }
6721
6722
6723 /* Used for detection of duplicate case values, just
6724 * returns key contents as is.
6725 */
6726 static unsigned
key_contents(const void * key)6727 key_contents(const void *key)
6728 {
6729 return ((struct case_label *) key)->value;
6730 }
6731
6732 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6733 ast_switch_statement::eval_test_expression(exec_list *instructions,
6734 struct _mesa_glsl_parse_state *state)
6735 {
6736 if (test_val == NULL)
6737 test_val = this->test_expression->hir(instructions, state);
6738 }
6739
6740 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6741 ast_switch_statement::hir(exec_list *instructions,
6742 struct _mesa_glsl_parse_state *state)
6743 {
6744 void *ctx = state;
6745
6746 this->eval_test_expression(instructions, state);
6747
6748 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6749 *
6750 * "The type of init-expression in a switch statement must be a
6751 * scalar integer."
6752 */
6753 if (!test_val->type->is_scalar() ||
6754 !test_val->type->is_integer_32()) {
6755 YYLTYPE loc = this->test_expression->get_location();
6756
6757 _mesa_glsl_error(& loc,
6758 state,
6759 "switch-statement expression must be scalar "
6760 "integer");
6761 return NULL;
6762 }
6763
6764 /* Track the switch-statement nesting in a stack-like manner.
6765 */
6766 struct glsl_switch_state saved = state->switch_state;
6767
6768 state->switch_state.is_switch_innermost = true;
6769 state->switch_state.switch_nesting_ast = this;
6770 state->switch_state.labels_ht =
6771 _mesa_hash_table_create(NULL, key_contents,
6772 compare_case_value);
6773 state->switch_state.previous_default = NULL;
6774
6775 /* Initalize is_fallthru state to false.
6776 */
6777 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6778 state->switch_state.is_fallthru_var =
6779 new(ctx) ir_variable(glsl_type::bool_type,
6780 "switch_is_fallthru_tmp",
6781 ir_var_temporary);
6782 instructions->push_tail(state->switch_state.is_fallthru_var);
6783
6784 ir_dereference_variable *deref_is_fallthru_var =
6785 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6786 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6787 is_fallthru_val));
6788
6789 /* Initialize continue_inside state to false.
6790 */
6791 state->switch_state.continue_inside =
6792 new(ctx) ir_variable(glsl_type::bool_type,
6793 "continue_inside_tmp",
6794 ir_var_temporary);
6795 instructions->push_tail(state->switch_state.continue_inside);
6796
6797 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6798 ir_dereference_variable *deref_continue_inside_var =
6799 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6800 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6801 false_val));
6802
6803 state->switch_state.run_default =
6804 new(ctx) ir_variable(glsl_type::bool_type,
6805 "run_default_tmp",
6806 ir_var_temporary);
6807 instructions->push_tail(state->switch_state.run_default);
6808
6809 /* Loop around the switch is used for flow control. */
6810 ir_loop * loop = new(ctx) ir_loop();
6811 instructions->push_tail(loop);
6812
6813 /* Cache test expression.
6814 */
6815 test_to_hir(&loop->body_instructions, state);
6816
6817 /* Emit code for body of switch stmt.
6818 */
6819 body->hir(&loop->body_instructions, state);
6820
6821 /* Insert a break at the end to exit loop. */
6822 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6823 loop->body_instructions.push_tail(jump);
6824
6825 /* If we are inside loop, check if continue got called inside switch. */
6826 if (state->loop_nesting_ast != NULL) {
6827 ir_dereference_variable *deref_continue_inside =
6828 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6829 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6830 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6831
6832 if (state->loop_nesting_ast != NULL) {
6833 if (state->loop_nesting_ast->rest_expression) {
6834 clone_ir_list(ctx, &irif->then_instructions,
6835 &state->loop_nesting_ast->rest_instructions);
6836 }
6837 if (state->loop_nesting_ast->mode ==
6838 ast_iteration_statement::ast_do_while) {
6839 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6840 }
6841 }
6842 irif->then_instructions.push_tail(jump);
6843 instructions->push_tail(irif);
6844 }
6845
6846 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6847
6848 state->switch_state = saved;
6849
6850 /* Switch statements do not have r-values. */
6851 return NULL;
6852 }
6853
6854
6855 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6856 ast_switch_statement::test_to_hir(exec_list *instructions,
6857 struct _mesa_glsl_parse_state *state)
6858 {
6859 void *ctx = state;
6860
6861 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6862 * on the switch test case. The first one would be already raised when
6863 * getting the test_expression at ast_switch_statement::hir
6864 */
6865 test_expression->set_is_lhs(true);
6866 /* Cache value of test expression. */
6867 this->eval_test_expression(instructions, state);
6868
6869 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6870 "switch_test_tmp",
6871 ir_var_temporary);
6872 ir_dereference_variable *deref_test_var =
6873 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6874
6875 instructions->push_tail(state->switch_state.test_var);
6876 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6877 }
6878
6879
6880 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6881 ast_switch_body::hir(exec_list *instructions,
6882 struct _mesa_glsl_parse_state *state)
6883 {
6884 if (stmts != NULL) {
6885 state->symbols->push_scope();
6886 stmts->hir(instructions, state);
6887 state->symbols->pop_scope();
6888 }
6889
6890 /* Switch bodies do not have r-values. */
6891 return NULL;
6892 }
6893
6894 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6895 ast_case_statement_list::hir(exec_list *instructions,
6896 struct _mesa_glsl_parse_state *state)
6897 {
6898 exec_list default_case, after_default, tmp;
6899
6900 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6901 case_stmt->hir(&tmp, state);
6902
6903 /* Default case. */
6904 if (state->switch_state.previous_default && default_case.is_empty()) {
6905 default_case.append_list(&tmp);
6906 continue;
6907 }
6908
6909 /* If default case found, append 'after_default' list. */
6910 if (!default_case.is_empty())
6911 after_default.append_list(&tmp);
6912 else
6913 instructions->append_list(&tmp);
6914 }
6915
6916 /* Handle the default case. This is done here because default might not be
6917 * the last case. We need to add checks against following cases first to see
6918 * if default should be chosen or not.
6919 */
6920 if (!default_case.is_empty()) {
6921 ir_factory body(instructions, state);
6922
6923 ir_expression *cmp = NULL;
6924
6925 hash_table_foreach(state->switch_state.labels_ht, entry) {
6926 const struct case_label *const l = (struct case_label *) entry->data;
6927
6928 /* If the switch init-value is the value of one of the labels that
6929 * occurs after the default case, disable execution of the default
6930 * case.
6931 */
6932 if (l->after_default) {
6933 ir_constant *const cnst =
6934 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6935 ? body.constant(unsigned(l->value))
6936 : body.constant(int(l->value));
6937
6938 cmp = cmp == NULL
6939 ? equal(cnst, state->switch_state.test_var)
6940 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6941 }
6942 }
6943
6944 if (cmp != NULL)
6945 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6946 else
6947 body.emit(assign(state->switch_state.run_default, body.constant(true)));
6948
6949 /* Append default case and all cases after it. */
6950 instructions->append_list(&default_case);
6951 instructions->append_list(&after_default);
6952 }
6953
6954 /* Case statements do not have r-values. */
6955 return NULL;
6956 }
6957
6958 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6959 ast_case_statement::hir(exec_list *instructions,
6960 struct _mesa_glsl_parse_state *state)
6961 {
6962 labels->hir(instructions, state);
6963
6964 /* Guard case statements depending on fallthru state. */
6965 ir_dereference_variable *const deref_fallthru_guard =
6966 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6967 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6968
6969 foreach_list_typed (ast_node, stmt, link, & this->stmts)
6970 stmt->hir(& test_fallthru->then_instructions, state);
6971
6972 instructions->push_tail(test_fallthru);
6973
6974 /* Case statements do not have r-values. */
6975 return NULL;
6976 }
6977
6978
6979 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6980 ast_case_label_list::hir(exec_list *instructions,
6981 struct _mesa_glsl_parse_state *state)
6982 {
6983 foreach_list_typed (ast_case_label, label, link, & this->labels)
6984 label->hir(instructions, state);
6985
6986 /* Case labels do not have r-values. */
6987 return NULL;
6988 }
6989
6990 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6991 ast_case_label::hir(exec_list *instructions,
6992 struct _mesa_glsl_parse_state *state)
6993 {
6994 ir_factory body(instructions, state);
6995
6996 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6997
6998 /* If not default case, ... */
6999 if (this->test_value != NULL) {
7000 /* Conditionally set fallthru state based on
7001 * comparison of cached test expression value to case label.
7002 */
7003 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7004 ir_constant *label_const =
7005 label_rval->constant_expression_value(body.mem_ctx);
7006
7007 if (!label_const) {
7008 YYLTYPE loc = this->test_value->get_location();
7009
7010 _mesa_glsl_error(& loc, state,
7011 "switch statement case label must be a "
7012 "constant expression");
7013
7014 /* Stuff a dummy value in to allow processing to continue. */
7015 label_const = body.constant(0);
7016 } else {
7017 hash_entry *entry =
7018 _mesa_hash_table_search(state->switch_state.labels_ht,
7019 &label_const->value.u[0]);
7020
7021 if (entry) {
7022 const struct case_label *const l =
7023 (struct case_label *) entry->data;
7024 const ast_expression *const previous_label = l->ast;
7025 YYLTYPE loc = this->test_value->get_location();
7026
7027 _mesa_glsl_error(& loc, state, "duplicate case value");
7028
7029 loc = previous_label->get_location();
7030 _mesa_glsl_error(& loc, state, "this is the previous case label");
7031 } else {
7032 struct case_label *l = ralloc(state->switch_state.labels_ht,
7033 struct case_label);
7034
7035 l->value = label_const->value.u[0];
7036 l->after_default = state->switch_state.previous_default != NULL;
7037 l->ast = this->test_value;
7038
7039 _mesa_hash_table_insert(state->switch_state.labels_ht,
7040 &label_const->value.u[0],
7041 l);
7042 }
7043 }
7044
7045 /* Create an r-value version of the ir_constant label here (after we may
7046 * have created a fake one in error cases) that can be passed to
7047 * apply_implicit_conversion below.
7048 */
7049 ir_rvalue *label = label_const;
7050
7051 ir_rvalue *deref_test_var =
7052 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7053
7054 /*
7055 * From GLSL 4.40 specification section 6.2 ("Selection"):
7056 *
7057 * "The type of the init-expression value in a switch statement must
7058 * be a scalar int or uint. The type of the constant-expression value
7059 * in a case label also must be a scalar int or uint. When any pair
7060 * of these values is tested for "equal value" and the types do not
7061 * match, an implicit conversion will be done to convert the int to a
7062 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
7063 * is done."
7064 */
7065 if (label->type != state->switch_state.test_var->type) {
7066 YYLTYPE loc = this->test_value->get_location();
7067
7068 const glsl_type *type_a = label->type;
7069 const glsl_type *type_b = state->switch_state.test_var->type;
7070
7071 /* Check if int->uint implicit conversion is supported. */
7072 bool integer_conversion_supported =
7073 glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
7074 state);
7075
7076 if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
7077 !integer_conversion_supported) {
7078 _mesa_glsl_error(&loc, state, "type mismatch with switch "
7079 "init-expression and case label (%s != %s)",
7080 type_a->name, type_b->name);
7081 } else {
7082 /* Conversion of the case label. */
7083 if (type_a->base_type == GLSL_TYPE_INT) {
7084 if (!apply_implicit_conversion(glsl_type::uint_type,
7085 label, state))
7086 _mesa_glsl_error(&loc, state, "implicit type conversion error");
7087 } else {
7088 /* Conversion of the init-expression value. */
7089 if (!apply_implicit_conversion(glsl_type::uint_type,
7090 deref_test_var, state))
7091 _mesa_glsl_error(&loc, state, "implicit type conversion error");
7092 }
7093 }
7094
7095 /* If the implicit conversion was allowed, the types will already be
7096 * the same. If the implicit conversion wasn't allowed, smash the
7097 * type of the label anyway. This will prevent the expression
7098 * constructor (below) from failing an assertion.
7099 */
7100 label->type = deref_test_var->type;
7101 }
7102
7103 body.emit(assign(fallthru_var,
7104 logic_or(fallthru_var, equal(label, deref_test_var))));
7105 } else { /* default case */
7106 if (state->switch_state.previous_default) {
7107 YYLTYPE loc = this->get_location();
7108 _mesa_glsl_error(& loc, state,
7109 "multiple default labels in one switch");
7110
7111 loc = state->switch_state.previous_default->get_location();
7112 _mesa_glsl_error(& loc, state, "this is the first default label");
7113 }
7114 state->switch_state.previous_default = this;
7115
7116 /* Set fallthru condition on 'run_default' bool. */
7117 body.emit(assign(fallthru_var,
7118 logic_or(fallthru_var,
7119 state->switch_state.run_default)));
7120 }
7121
7122 /* Case statements do not have r-values. */
7123 return NULL;
7124 }
7125
7126 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7127 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7128 struct _mesa_glsl_parse_state *state)
7129 {
7130 void *ctx = state;
7131
7132 if (condition != NULL) {
7133 ir_rvalue *const cond =
7134 condition->hir(instructions, state);
7135
7136 if ((cond == NULL)
7137 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
7138 YYLTYPE loc = condition->get_location();
7139
7140 _mesa_glsl_error(& loc, state,
7141 "loop condition must be scalar boolean");
7142 } else {
7143 /* As the first code in the loop body, generate a block that looks
7144 * like 'if (!condition) break;' as the loop termination condition.
7145 */
7146 ir_rvalue *const not_cond =
7147 new(ctx) ir_expression(ir_unop_logic_not, cond);
7148
7149 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7150
7151 ir_jump *const break_stmt =
7152 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7153
7154 if_stmt->then_instructions.push_tail(break_stmt);
7155 instructions->push_tail(if_stmt);
7156 }
7157 }
7158 }
7159
7160
7161 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7162 ast_iteration_statement::hir(exec_list *instructions,
7163 struct _mesa_glsl_parse_state *state)
7164 {
7165 void *ctx = state;
7166
7167 /* For-loops and while-loops start a new scope, but do-while loops do not.
7168 */
7169 if (mode != ast_do_while)
7170 state->symbols->push_scope();
7171
7172 if (init_statement != NULL)
7173 init_statement->hir(instructions, state);
7174
7175 ir_loop *const stmt = new(ctx) ir_loop();
7176 instructions->push_tail(stmt);
7177
7178 /* Track the current loop nesting. */
7179 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7180
7181 state->loop_nesting_ast = this;
7182
7183 /* Likewise, indicate that following code is closest to a loop,
7184 * NOT closest to a switch.
7185 */
7186 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7187 state->switch_state.is_switch_innermost = false;
7188
7189 if (mode != ast_do_while)
7190 condition_to_hir(&stmt->body_instructions, state);
7191
7192 if (rest_expression != NULL)
7193 rest_expression->hir(&rest_instructions, state);
7194
7195 if (body != NULL) {
7196 if (mode == ast_do_while)
7197 state->symbols->push_scope();
7198
7199 body->hir(& stmt->body_instructions, state);
7200
7201 if (mode == ast_do_while)
7202 state->symbols->pop_scope();
7203 }
7204
7205 if (rest_expression != NULL)
7206 stmt->body_instructions.append_list(&rest_instructions);
7207
7208 if (mode == ast_do_while)
7209 condition_to_hir(&stmt->body_instructions, state);
7210
7211 if (mode != ast_do_while)
7212 state->symbols->pop_scope();
7213
7214 /* Restore previous nesting before returning. */
7215 state->loop_nesting_ast = nesting_ast;
7216 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7217
7218 /* Loops do not have r-values.
7219 */
7220 return NULL;
7221 }
7222
7223
7224 /**
7225 * Determine if the given type is valid for establishing a default precision
7226 * qualifier.
7227 *
7228 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7229 *
7230 * "The precision statement
7231 *
7232 * precision precision-qualifier type;
7233 *
7234 * can be used to establish a default precision qualifier. The type field
7235 * can be either int or float or any of the sampler types, and the
7236 * precision-qualifier can be lowp, mediump, or highp."
7237 *
7238 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
7239 * qualifiers on sampler types, but this seems like an oversight (since the
7240 * intention of including these in GLSL 1.30 is to allow compatibility with ES
7241 * shaders). So we allow int, float, and all sampler types regardless of GLSL
7242 * version.
7243 */
7244 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7245 is_valid_default_precision_type(const struct glsl_type *const type)
7246 {
7247 if (type == NULL)
7248 return false;
7249
7250 switch (type->base_type) {
7251 case GLSL_TYPE_INT:
7252 case GLSL_TYPE_FLOAT:
7253 /* "int" and "float" are valid, but vectors and matrices are not. */
7254 return type->vector_elements == 1 && type->matrix_columns == 1;
7255 case GLSL_TYPE_SAMPLER:
7256 case GLSL_TYPE_TEXTURE:
7257 case GLSL_TYPE_IMAGE:
7258 case GLSL_TYPE_ATOMIC_UINT:
7259 return true;
7260 default:
7261 return false;
7262 }
7263 }
7264
7265
7266 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7267 ast_type_specifier::hir(exec_list *instructions,
7268 struct _mesa_glsl_parse_state *state)
7269 {
7270 if (this->default_precision == ast_precision_none && this->structure == NULL)
7271 return NULL;
7272
7273 YYLTYPE loc = this->get_location();
7274
7275 /* If this is a precision statement, check that the type to which it is
7276 * applied is either float or int.
7277 *
7278 * From section 4.5.3 of the GLSL 1.30 spec:
7279 * "The precision statement
7280 * precision precision-qualifier type;
7281 * can be used to establish a default precision qualifier. The type
7282 * field can be either int or float [...]. Any other types or
7283 * qualifiers will result in an error.
7284 */
7285 if (this->default_precision != ast_precision_none) {
7286 if (!state->check_precision_qualifiers_allowed(&loc))
7287 return NULL;
7288
7289 if (this->structure != NULL) {
7290 _mesa_glsl_error(&loc, state,
7291 "precision qualifiers do not apply to structures");
7292 return NULL;
7293 }
7294
7295 if (this->array_specifier != NULL) {
7296 _mesa_glsl_error(&loc, state,
7297 "default precision statements do not apply to "
7298 "arrays");
7299 return NULL;
7300 }
7301
7302 const struct glsl_type *const type =
7303 state->symbols->get_type(this->type_name);
7304 if (!is_valid_default_precision_type(type)) {
7305 _mesa_glsl_error(&loc, state,
7306 "default precision statements apply only to "
7307 "float, int, and opaque types");
7308 return NULL;
7309 }
7310
7311 if (state->es_shader) {
7312 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7313 * spec says:
7314 *
7315 * "Non-precision qualified declarations will use the precision
7316 * qualifier specified in the most recent precision statement
7317 * that is still in scope. The precision statement has the same
7318 * scoping rules as variable declarations. If it is declared
7319 * inside a compound statement, its effect stops at the end of
7320 * the innermost statement it was declared in. Precision
7321 * statements in nested scopes override precision statements in
7322 * outer scopes. Multiple precision statements for the same basic
7323 * type can appear inside the same scope, with later statements
7324 * overriding earlier statements within that scope."
7325 *
7326 * Default precision specifications follow the same scope rules as
7327 * variables. So, we can track the state of the default precision
7328 * qualifiers in the symbol table, and the rules will just work. This
7329 * is a slight abuse of the symbol table, but it has the semantics
7330 * that we want.
7331 */
7332 state->symbols->add_default_precision_qualifier(this->type_name,
7333 this->default_precision);
7334 }
7335
7336 /* FINISHME: Translate precision statements into IR. */
7337 return NULL;
7338 }
7339
7340 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7341 * process_record_constructor() can do type-checking on C-style initializer
7342 * expressions of structs, but ast_struct_specifier should only be translated
7343 * to HIR if it is declaring the type of a structure.
7344 *
7345 * The ->is_declaration field is false for initializers of variables
7346 * declared separately from the struct's type definition.
7347 *
7348 * struct S { ... }; (is_declaration = true)
7349 * struct T { ... } t = { ... }; (is_declaration = true)
7350 * S s = { ... }; (is_declaration = false)
7351 */
7352 if (this->structure != NULL && this->structure->is_declaration)
7353 return this->structure->hir(instructions, state);
7354
7355 return NULL;
7356 }
7357
7358
7359 /**
7360 * Process a structure or interface block tree into an array of structure fields
7361 *
7362 * After parsing, where there are some syntax differnces, structures and
7363 * interface blocks are almost identical. They are similar enough that the
7364 * AST for each can be processed the same way into a set of
7365 * \c glsl_struct_field to describe the members.
7366 *
7367 * If we're processing an interface block, var_mode should be the type of the
7368 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7369 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7370 * ir_var_auto.
7371 *
7372 * \return
7373 * The number of fields processed. A pointer to the array structure fields is
7374 * stored in \c *fields_ret.
7375 */
7376 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7377 ast_process_struct_or_iface_block_members(exec_list *instructions,
7378 struct _mesa_glsl_parse_state *state,
7379 exec_list *declarations,
7380 glsl_struct_field **fields_ret,
7381 bool is_interface,
7382 enum glsl_matrix_layout matrix_layout,
7383 bool allow_reserved_names,
7384 ir_variable_mode var_mode,
7385 ast_type_qualifier *layout,
7386 unsigned block_stream,
7387 unsigned block_xfb_buffer,
7388 unsigned block_xfb_offset,
7389 unsigned expl_location,
7390 unsigned expl_align)
7391 {
7392 unsigned decl_count = 0;
7393 unsigned next_offset = 0;
7394
7395 /* Make an initial pass over the list of fields to determine how
7396 * many there are. Each element in this list is an ast_declarator_list.
7397 * This means that we actually need to count the number of elements in the
7398 * 'declarations' list in each of the elements.
7399 */
7400 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7401 decl_count += decl_list->declarations.length();
7402 }
7403
7404 /* Allocate storage for the fields and process the field
7405 * declarations. As the declarations are processed, try to also convert
7406 * the types to HIR. This ensures that structure definitions embedded in
7407 * other structure definitions or in interface blocks are processed.
7408 */
7409 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7410 decl_count);
7411
7412 bool first_member = true;
7413 bool first_member_has_explicit_location = false;
7414
7415 unsigned i = 0;
7416 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7417 const char *type_name;
7418 YYLTYPE loc = decl_list->get_location();
7419
7420 decl_list->type->specifier->hir(instructions, state);
7421
7422 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7423 *
7424 * "Anonymous structures are not supported; so embedded structures
7425 * must have a declarator. A name given to an embedded struct is
7426 * scoped at the same level as the struct it is embedded in."
7427 *
7428 * The same section of the GLSL 1.20 spec says:
7429 *
7430 * "Anonymous structures are not supported. Embedded structures are
7431 * not supported."
7432 *
7433 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7434 * embedded structures in 1.10 only.
7435 */
7436 if (state->language_version != 110 &&
7437 decl_list->type->specifier->structure != NULL)
7438 _mesa_glsl_error(&loc, state,
7439 "embedded structure declarations are not allowed");
7440
7441 const glsl_type *decl_type =
7442 decl_list->type->glsl_type(& type_name, state);
7443
7444 const struct ast_type_qualifier *const qual =
7445 &decl_list->type->qualifier;
7446
7447 /* From section 4.3.9 of the GLSL 4.40 spec:
7448 *
7449 * "[In interface blocks] opaque types are not allowed."
7450 *
7451 * It should be impossible for decl_type to be NULL here. Cases that
7452 * might naturally lead to decl_type being NULL, especially for the
7453 * is_interface case, will have resulted in compilation having
7454 * already halted due to a syntax error.
7455 */
7456 assert(decl_type);
7457
7458 if (is_interface) {
7459 /* From section 4.3.7 of the ARB_bindless_texture spec:
7460 *
7461 * "(remove the following bullet from the last list on p. 39,
7462 * thereby permitting sampler types in interface blocks; image
7463 * types are also permitted in blocks by this extension)"
7464 *
7465 * * sampler types are not allowed
7466 */
7467 if (decl_type->contains_atomic() ||
7468 (!state->has_bindless() && decl_type->contains_opaque())) {
7469 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7470 "interface block contains %s variable",
7471 state->has_bindless() ? "atomic" : "opaque");
7472 }
7473 } else {
7474 if (decl_type->contains_atomic()) {
7475 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7476 *
7477 * "Members of structures cannot be declared as atomic counter
7478 * types."
7479 */
7480 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7481 }
7482
7483 if (!state->has_bindless() && decl_type->contains_image()) {
7484 /* FINISHME: Same problem as with atomic counters.
7485 * FINISHME: Request clarification from Khronos and add
7486 * FINISHME: spec quotation here.
7487 */
7488 _mesa_glsl_error(&loc, state, "image in structure");
7489 }
7490 }
7491
7492 if (qual->flags.q.explicit_binding) {
7493 _mesa_glsl_error(&loc, state,
7494 "binding layout qualifier cannot be applied "
7495 "to struct or interface block members");
7496 }
7497
7498 if (is_interface) {
7499 if (!first_member) {
7500 if (!layout->flags.q.explicit_location &&
7501 ((first_member_has_explicit_location &&
7502 !qual->flags.q.explicit_location) ||
7503 (!first_member_has_explicit_location &&
7504 qual->flags.q.explicit_location))) {
7505 _mesa_glsl_error(&loc, state,
7506 "when block-level location layout qualifier "
7507 "is not supplied either all members must "
7508 "have a location layout qualifier or all "
7509 "members must not have a location layout "
7510 "qualifier");
7511 }
7512 } else {
7513 first_member = false;
7514 first_member_has_explicit_location =
7515 qual->flags.q.explicit_location;
7516 }
7517 }
7518
7519 if (qual->flags.q.std140 ||
7520 qual->flags.q.std430 ||
7521 qual->flags.q.packed ||
7522 qual->flags.q.shared) {
7523 _mesa_glsl_error(&loc, state,
7524 "uniform/shader storage block layout qualifiers "
7525 "std140, std430, packed, and shared can only be "
7526 "applied to uniform/shader storage blocks, not "
7527 "members");
7528 }
7529
7530 if (qual->flags.q.constant) {
7531 _mesa_glsl_error(&loc, state,
7532 "const storage qualifier cannot be applied "
7533 "to struct or interface block members");
7534 }
7535
7536 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7537 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7538
7539 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7540 *
7541 * "A block member may be declared with a stream identifier, but
7542 * the specified stream must match the stream associated with the
7543 * containing block."
7544 */
7545 if (qual->flags.q.explicit_stream) {
7546 unsigned qual_stream;
7547 if (process_qualifier_constant(state, &loc, "stream",
7548 qual->stream, &qual_stream) &&
7549 qual_stream != block_stream) {
7550 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7551 "interface block member does not match "
7552 "the interface block (%u vs %u)", qual_stream,
7553 block_stream);
7554 }
7555 }
7556
7557 int xfb_buffer;
7558 unsigned explicit_xfb_buffer = 0;
7559 if (qual->flags.q.explicit_xfb_buffer) {
7560 unsigned qual_xfb_buffer;
7561 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7562 qual->xfb_buffer, &qual_xfb_buffer)) {
7563 explicit_xfb_buffer = 1;
7564 if (qual_xfb_buffer != block_xfb_buffer)
7565 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7566 "interface block member does not match "
7567 "the interface block (%u vs %u)",
7568 qual_xfb_buffer, block_xfb_buffer);
7569 }
7570 xfb_buffer = (int) qual_xfb_buffer;
7571 } else {
7572 if (layout)
7573 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7574 xfb_buffer = (int) block_xfb_buffer;
7575 }
7576
7577 int xfb_stride = -1;
7578 if (qual->flags.q.explicit_xfb_stride) {
7579 unsigned qual_xfb_stride;
7580 if (process_qualifier_constant(state, &loc, "xfb_stride",
7581 qual->xfb_stride, &qual_xfb_stride)) {
7582 xfb_stride = (int) qual_xfb_stride;
7583 }
7584 }
7585
7586 if (qual->flags.q.uniform && qual->has_interpolation()) {
7587 _mesa_glsl_error(&loc, state,
7588 "interpolation qualifiers cannot be used "
7589 "with uniform interface blocks");
7590 }
7591
7592 if ((qual->flags.q.uniform || !is_interface) &&
7593 qual->has_auxiliary_storage()) {
7594 _mesa_glsl_error(&loc, state,
7595 "auxiliary storage qualifiers cannot be used "
7596 "in uniform blocks or structures.");
7597 }
7598
7599 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7600 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7601 _mesa_glsl_error(&loc, state,
7602 "row_major and column_major can only be "
7603 "applied to interface blocks");
7604 } else
7605 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7606 }
7607
7608 foreach_list_typed (ast_declaration, decl, link,
7609 &decl_list->declarations) {
7610 YYLTYPE loc = decl->get_location();
7611
7612 if (!allow_reserved_names)
7613 validate_identifier(decl->identifier, loc, state);
7614
7615 const struct glsl_type *field_type =
7616 process_array_type(&loc, decl_type, decl->array_specifier, state);
7617 validate_array_dimensions(field_type, state, &loc);
7618 fields[i].type = field_type;
7619 fields[i].name = decl->identifier;
7620 fields[i].interpolation =
7621 interpret_interpolation_qualifier(qual, field_type,
7622 var_mode, state, &loc);
7623 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7624 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7625 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7626 fields[i].offset = -1;
7627 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7628 fields[i].xfb_buffer = xfb_buffer;
7629 fields[i].xfb_stride = xfb_stride;
7630
7631 if (qual->flags.q.explicit_location) {
7632 unsigned qual_location;
7633 if (process_qualifier_constant(state, &loc, "location",
7634 qual->location, &qual_location)) {
7635 fields[i].location = qual_location +
7636 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7637 expl_location = fields[i].location +
7638 fields[i].type->count_attribute_slots(false);
7639 }
7640 } else {
7641 if (layout && layout->flags.q.explicit_location) {
7642 fields[i].location = expl_location;
7643 expl_location += fields[i].type->count_attribute_slots(false);
7644 } else {
7645 fields[i].location = -1;
7646 }
7647 }
7648
7649 if (qual->flags.q.explicit_component) {
7650 unsigned qual_component;
7651 if (process_qualifier_constant(state, &loc, "component",
7652 qual->component, &qual_component)) {
7653 validate_component_layout_for_type(state, &loc, fields[i].type,
7654 qual_component);
7655 fields[i].component = qual_component;
7656 }
7657 } else {
7658 fields[i].component = -1;
7659 }
7660
7661 /* Offset can only be used with std430 and std140 layouts an initial
7662 * value of 0 is used for error detection.
7663 */
7664 unsigned align = 0;
7665 unsigned size = 0;
7666 if (layout) {
7667 bool row_major;
7668 if (qual->flags.q.row_major ||
7669 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7670 row_major = true;
7671 } else {
7672 row_major = false;
7673 }
7674
7675 if(layout->flags.q.std140) {
7676 align = field_type->std140_base_alignment(row_major);
7677 size = field_type->std140_size(row_major);
7678 } else if (layout->flags.q.std430) {
7679 align = field_type->std430_base_alignment(row_major);
7680 size = field_type->std430_size(row_major);
7681 }
7682 }
7683
7684 if (qual->flags.q.explicit_offset) {
7685 unsigned qual_offset;
7686 if (process_qualifier_constant(state, &loc, "offset",
7687 qual->offset, &qual_offset)) {
7688 if (align != 0 && size != 0) {
7689 if (next_offset > qual_offset)
7690 _mesa_glsl_error(&loc, state, "layout qualifier "
7691 "offset overlaps previous member");
7692
7693 if (qual_offset % align) {
7694 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7695 "must be a multiple of the base "
7696 "alignment of %s", field_type->name);
7697 }
7698 fields[i].offset = qual_offset;
7699 next_offset = qual_offset + size;
7700 } else {
7701 _mesa_glsl_error(&loc, state, "offset can only be used "
7702 "with std430 and std140 layouts");
7703 }
7704 }
7705 }
7706
7707 if (qual->flags.q.explicit_align || expl_align != 0) {
7708 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7709 next_offset;
7710 if (align == 0 || size == 0) {
7711 _mesa_glsl_error(&loc, state, "align can only be used with "
7712 "std430 and std140 layouts");
7713 } else if (qual->flags.q.explicit_align) {
7714 unsigned member_align;
7715 if (process_qualifier_constant(state, &loc, "align",
7716 qual->align, &member_align)) {
7717 if (member_align == 0 ||
7718 member_align & (member_align - 1)) {
7719 _mesa_glsl_error(&loc, state, "align layout qualifier "
7720 "is not a power of 2");
7721 } else {
7722 fields[i].offset = glsl_align(offset, member_align);
7723 next_offset = fields[i].offset + size;
7724 }
7725 }
7726 } else {
7727 fields[i].offset = glsl_align(offset, expl_align);
7728 next_offset = fields[i].offset + size;
7729 }
7730 } else if (!qual->flags.q.explicit_offset) {
7731 if (align != 0 && size != 0)
7732 next_offset = glsl_align(next_offset, align) + size;
7733 }
7734
7735 /* From the ARB_enhanced_layouts spec:
7736 *
7737 * "The given offset applies to the first component of the first
7738 * member of the qualified entity. Then, within the qualified
7739 * entity, subsequent components are each assigned, in order, to
7740 * the next available offset aligned to a multiple of that
7741 * component's size. Aggregate types are flattened down to the
7742 * component level to get this sequence of components."
7743 */
7744 if (qual->flags.q.explicit_xfb_offset) {
7745 unsigned xfb_offset;
7746 if (process_qualifier_constant(state, &loc, "xfb_offset",
7747 qual->offset, &xfb_offset)) {
7748 fields[i].offset = xfb_offset;
7749 block_xfb_offset = fields[i].offset +
7750 4 * field_type->component_slots();
7751 }
7752 } else {
7753 if (layout && layout->flags.q.explicit_xfb_offset) {
7754 unsigned align = field_type->is_64bit() ? 8 : 4;
7755 fields[i].offset = glsl_align(block_xfb_offset, align);
7756 block_xfb_offset += 4 * field_type->component_slots();
7757 }
7758 }
7759
7760 /* Propogate row- / column-major information down the fields of the
7761 * structure or interface block. Structures need this data because
7762 * the structure may contain a structure that contains ... a matrix
7763 * that need the proper layout.
7764 */
7765 if (is_interface && layout &&
7766 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7767 (field_type->without_array()->is_matrix()
7768 || field_type->without_array()->is_struct())) {
7769 /* If no layout is specified for the field, inherit the layout
7770 * from the block.
7771 */
7772 fields[i].matrix_layout = matrix_layout;
7773
7774 if (qual->flags.q.row_major)
7775 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7776 else if (qual->flags.q.column_major)
7777 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7778
7779 /* If we're processing an uniform or buffer block, the matrix
7780 * layout must be decided by this point.
7781 */
7782 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7783 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7784 }
7785
7786 /* Memory qualifiers are allowed on buffer and image variables, while
7787 * the format qualifier is only accepted for images.
7788 */
7789 if (var_mode == ir_var_shader_storage ||
7790 field_type->without_array()->is_image()) {
7791 /* For readonly and writeonly qualifiers the field definition,
7792 * if set, overwrites the layout qualifier.
7793 */
7794 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7795 fields[i].memory_read_only = qual->flags.q.read_only;
7796 fields[i].memory_write_only = qual->flags.q.write_only;
7797 } else {
7798 fields[i].memory_read_only =
7799 layout ? layout->flags.q.read_only : 0;
7800 fields[i].memory_write_only =
7801 layout ? layout->flags.q.write_only : 0;
7802 }
7803
7804 /* For other qualifiers, we set the flag if either the layout
7805 * qualifier or the field qualifier are set
7806 */
7807 fields[i].memory_coherent = qual->flags.q.coherent ||
7808 (layout && layout->flags.q.coherent);
7809 fields[i].memory_volatile = qual->flags.q._volatile ||
7810 (layout && layout->flags.q._volatile);
7811 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7812 (layout && layout->flags.q.restrict_flag);
7813
7814 if (field_type->without_array()->is_image()) {
7815 if (qual->flags.q.explicit_image_format) {
7816 if (qual->image_base_type !=
7817 field_type->without_array()->sampled_type) {
7818 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7819 "match the base data type of the image");
7820 }
7821
7822 fields[i].image_format = qual->image_format;
7823 } else {
7824 if (!qual->flags.q.write_only) {
7825 _mesa_glsl_error(&loc, state, "image not qualified with "
7826 "`writeonly' must have a format layout "
7827 "qualifier");
7828 }
7829
7830 fields[i].image_format = PIPE_FORMAT_NONE;
7831 }
7832 }
7833 }
7834
7835 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7836 if (state->es_shader) {
7837 fields[i].precision = select_gles_precision(qual->precision,
7838 field_type,
7839 state,
7840 &loc);
7841 } else {
7842 fields[i].precision = qual->precision;
7843 }
7844
7845 i++;
7846 }
7847 }
7848
7849 assert(i == decl_count);
7850
7851 *fields_ret = fields;
7852 return decl_count;
7853 }
7854
7855
7856 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7857 ast_struct_specifier::hir(exec_list *instructions,
7858 struct _mesa_glsl_parse_state *state)
7859 {
7860 YYLTYPE loc = this->get_location();
7861
7862 unsigned expl_location = 0;
7863 if (layout && layout->flags.q.explicit_location) {
7864 if (!process_qualifier_constant(state, &loc, "location",
7865 layout->location, &expl_location)) {
7866 return NULL;
7867 } else {
7868 expl_location = VARYING_SLOT_VAR0 + expl_location;
7869 }
7870 }
7871
7872 glsl_struct_field *fields;
7873 unsigned decl_count =
7874 ast_process_struct_or_iface_block_members(instructions,
7875 state,
7876 &this->declarations,
7877 &fields,
7878 false,
7879 GLSL_MATRIX_LAYOUT_INHERITED,
7880 false /* allow_reserved_names */,
7881 ir_var_auto,
7882 layout,
7883 0, /* for interface only */
7884 0, /* for interface only */
7885 0, /* for interface only */
7886 expl_location,
7887 0 /* for interface only */);
7888
7889 validate_identifier(this->name, loc, state);
7890
7891 type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7892
7893 if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7894 const glsl_type *match = state->symbols->get_type(name);
7895 /* allow struct matching for desktop GL - older UE4 does this */
7896 if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7897 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7898 else
7899 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7900 } else {
7901 const glsl_type **s = reralloc(state, state->user_structures,
7902 const glsl_type *,
7903 state->num_user_structures + 1);
7904 if (s != NULL) {
7905 s[state->num_user_structures] = type;
7906 state->user_structures = s;
7907 state->num_user_structures++;
7908 }
7909 }
7910
7911 /* Structure type definitions do not have r-values.
7912 */
7913 return NULL;
7914 }
7915
7916
7917 /**
7918 * Visitor class which detects whether a given interface block has been used.
7919 */
7920 class interface_block_usage_visitor : public ir_hierarchical_visitor
7921 {
7922 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)7923 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7924 : mode(mode), block(block), found(false)
7925 {
7926 }
7927
visit(ir_dereference_variable * ir)7928 virtual ir_visitor_status visit(ir_dereference_variable *ir)
7929 {
7930 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7931 found = true;
7932 return visit_stop;
7933 }
7934 return visit_continue;
7935 }
7936
usage_found() const7937 bool usage_found() const
7938 {
7939 return this->found;
7940 }
7941
7942 private:
7943 ir_variable_mode mode;
7944 const glsl_type *block;
7945 bool found;
7946 };
7947
7948 static bool
is_unsized_array_last_element(ir_variable * v)7949 is_unsized_array_last_element(ir_variable *v)
7950 {
7951 const glsl_type *interface_type = v->get_interface_type();
7952 int length = interface_type->length;
7953
7954 assert(v->type->is_unsized_array());
7955
7956 /* Check if it is the last element of the interface */
7957 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7958 return true;
7959 return false;
7960 }
7961
7962 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)7963 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7964 {
7965 var->data.memory_read_only = field.memory_read_only;
7966 var->data.memory_write_only = field.memory_write_only;
7967 var->data.memory_coherent = field.memory_coherent;
7968 var->data.memory_volatile = field.memory_volatile;
7969 var->data.memory_restrict = field.memory_restrict;
7970 }
7971
7972 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7973 ast_interface_block::hir(exec_list *instructions,
7974 struct _mesa_glsl_parse_state *state)
7975 {
7976 YYLTYPE loc = this->get_location();
7977
7978 /* Interface blocks must be declared at global scope */
7979 if (state->current_function != NULL) {
7980 _mesa_glsl_error(&loc, state,
7981 "Interface block `%s' must be declared "
7982 "at global scope",
7983 this->block_name);
7984 }
7985
7986 /* Validate qualifiers:
7987 *
7988 * - Layout Qualifiers as per the table in Section 4.4
7989 * ("Layout Qualifiers") of the GLSL 4.50 spec.
7990 *
7991 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7992 * GLSL 4.50 spec:
7993 *
7994 * "Additionally, memory qualifiers may also be used in the declaration
7995 * of shader storage blocks"
7996 *
7997 * Note the table in Section 4.4 says std430 is allowed on both uniform and
7998 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7999 * Layout Qualifiers) of the GLSL 4.50 spec says:
8000 *
8001 * "The std430 qualifier is supported only for shader storage blocks;
8002 * using std430 on a uniform block will result in a compile-time error."
8003 */
8004 ast_type_qualifier allowed_blk_qualifiers;
8005 allowed_blk_qualifiers.flags.i = 0;
8006 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8007 allowed_blk_qualifiers.flags.q.shared = 1;
8008 allowed_blk_qualifiers.flags.q.packed = 1;
8009 allowed_blk_qualifiers.flags.q.std140 = 1;
8010 allowed_blk_qualifiers.flags.q.row_major = 1;
8011 allowed_blk_qualifiers.flags.q.column_major = 1;
8012 allowed_blk_qualifiers.flags.q.explicit_align = 1;
8013 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8014 if (this->layout.flags.q.buffer) {
8015 allowed_blk_qualifiers.flags.q.buffer = 1;
8016 allowed_blk_qualifiers.flags.q.std430 = 1;
8017 allowed_blk_qualifiers.flags.q.coherent = 1;
8018 allowed_blk_qualifiers.flags.q._volatile = 1;
8019 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8020 allowed_blk_qualifiers.flags.q.read_only = 1;
8021 allowed_blk_qualifiers.flags.q.write_only = 1;
8022 } else {
8023 allowed_blk_qualifiers.flags.q.uniform = 1;
8024 }
8025 } else {
8026 /* Interface block */
8027 assert(this->layout.flags.q.in || this->layout.flags.q.out);
8028
8029 allowed_blk_qualifiers.flags.q.explicit_location = 1;
8030 if (this->layout.flags.q.out) {
8031 allowed_blk_qualifiers.flags.q.out = 1;
8032 if (state->stage == MESA_SHADER_GEOMETRY ||
8033 state->stage == MESA_SHADER_TESS_CTRL ||
8034 state->stage == MESA_SHADER_TESS_EVAL ||
8035 state->stage == MESA_SHADER_VERTEX ) {
8036 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8037 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8038 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8039 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8040 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8041 }
8042 if (state->stage == MESA_SHADER_GEOMETRY) {
8043 allowed_blk_qualifiers.flags.q.stream = 1;
8044 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8045 }
8046 if (state->stage == MESA_SHADER_TESS_CTRL) {
8047 allowed_blk_qualifiers.flags.q.patch = 1;
8048 }
8049 } else {
8050 allowed_blk_qualifiers.flags.q.in = 1;
8051 if (state->stage == MESA_SHADER_TESS_EVAL) {
8052 allowed_blk_qualifiers.flags.q.patch = 1;
8053 }
8054 }
8055 }
8056
8057 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8058 "invalid qualifier for block",
8059 this->block_name);
8060
8061 enum glsl_interface_packing packing;
8062 if (this->layout.flags.q.std140) {
8063 packing = GLSL_INTERFACE_PACKING_STD140;
8064 } else if (this->layout.flags.q.packed) {
8065 packing = GLSL_INTERFACE_PACKING_PACKED;
8066 } else if (this->layout.flags.q.std430) {
8067 packing = GLSL_INTERFACE_PACKING_STD430;
8068 } else {
8069 /* The default layout is shared.
8070 */
8071 packing = GLSL_INTERFACE_PACKING_SHARED;
8072 }
8073
8074 ir_variable_mode var_mode;
8075 const char *iface_type_name;
8076 if (this->layout.flags.q.in) {
8077 var_mode = ir_var_shader_in;
8078 iface_type_name = "in";
8079 } else if (this->layout.flags.q.out) {
8080 var_mode = ir_var_shader_out;
8081 iface_type_name = "out";
8082 } else if (this->layout.flags.q.uniform) {
8083 var_mode = ir_var_uniform;
8084 iface_type_name = "uniform";
8085 } else if (this->layout.flags.q.buffer) {
8086 var_mode = ir_var_shader_storage;
8087 iface_type_name = "buffer";
8088 } else {
8089 var_mode = ir_var_auto;
8090 iface_type_name = "UNKNOWN";
8091 assert(!"interface block layout qualifier not found!");
8092 }
8093
8094 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8095 if (this->layout.flags.q.row_major)
8096 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8097 else if (this->layout.flags.q.column_major)
8098 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8099
8100 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8101 exec_list declared_variables;
8102 glsl_struct_field *fields;
8103
8104 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8105 * that we don't have incompatible qualifiers
8106 */
8107 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8108 _mesa_glsl_error(&loc, state,
8109 "Interface block sets both readonly and writeonly");
8110 }
8111
8112 unsigned qual_stream;
8113 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8114 &qual_stream) ||
8115 !validate_stream_qualifier(&loc, state, qual_stream)) {
8116 /* If the stream qualifier is invalid it doesn't make sense to continue
8117 * on and try to compare stream layouts on member variables against it
8118 * so just return early.
8119 */
8120 return NULL;
8121 }
8122
8123 unsigned qual_xfb_buffer = 0;
8124 if (layout.flags.q.xfb_buffer) {
8125 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8126 layout.xfb_buffer, &qual_xfb_buffer) ||
8127 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8128 return NULL;
8129 }
8130 }
8131
8132 unsigned qual_xfb_offset = 0;
8133 if (layout.flags.q.explicit_xfb_offset) {
8134 if (!process_qualifier_constant(state, &loc, "xfb_offset",
8135 layout.offset, &qual_xfb_offset)) {
8136 return NULL;
8137 }
8138 }
8139
8140 unsigned qual_xfb_stride = 0;
8141 if (layout.flags.q.explicit_xfb_stride) {
8142 if (!process_qualifier_constant(state, &loc, "xfb_stride",
8143 layout.xfb_stride, &qual_xfb_stride)) {
8144 return NULL;
8145 }
8146 }
8147
8148 unsigned expl_location = 0;
8149 if (layout.flags.q.explicit_location) {
8150 if (!process_qualifier_constant(state, &loc, "location",
8151 layout.location, &expl_location)) {
8152 return NULL;
8153 } else {
8154 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8155 : VARYING_SLOT_VAR0;
8156 }
8157 }
8158
8159 unsigned expl_align = 0;
8160 if (layout.flags.q.explicit_align) {
8161 if (!process_qualifier_constant(state, &loc, "align",
8162 layout.align, &expl_align)) {
8163 return NULL;
8164 } else {
8165 if (expl_align == 0 || expl_align & (expl_align - 1)) {
8166 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8167 "power of 2.");
8168 return NULL;
8169 }
8170 }
8171 }
8172
8173 unsigned int num_variables =
8174 ast_process_struct_or_iface_block_members(&declared_variables,
8175 state,
8176 &this->declarations,
8177 &fields,
8178 true,
8179 matrix_layout,
8180 redeclaring_per_vertex,
8181 var_mode,
8182 &this->layout,
8183 qual_stream,
8184 qual_xfb_buffer,
8185 qual_xfb_offset,
8186 expl_location,
8187 expl_align);
8188
8189 if (!redeclaring_per_vertex) {
8190 validate_identifier(this->block_name, loc, state);
8191
8192 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8193 *
8194 * "Block names have no other use within a shader beyond interface
8195 * matching; it is a compile-time error to use a block name at global
8196 * scope for anything other than as a block name."
8197 */
8198 ir_variable *var = state->symbols->get_variable(this->block_name);
8199 if (var && !var->type->is_interface()) {
8200 _mesa_glsl_error(&loc, state, "Block name `%s' is "
8201 "already used in the scope.",
8202 this->block_name);
8203 }
8204 }
8205
8206 const glsl_type *earlier_per_vertex = NULL;
8207 if (redeclaring_per_vertex) {
8208 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
8209 * the named interface block gl_in, we can find it by looking at the
8210 * previous declaration of gl_in. Otherwise we can find it by looking
8211 * at the previous decalartion of any of the built-in outputs,
8212 * e.g. gl_Position.
8213 *
8214 * Also check that the instance name and array-ness of the redeclaration
8215 * are correct.
8216 */
8217 switch (var_mode) {
8218 case ir_var_shader_in:
8219 if (ir_variable *earlier_gl_in =
8220 state->symbols->get_variable("gl_in")) {
8221 earlier_per_vertex = earlier_gl_in->get_interface_type();
8222 } else {
8223 _mesa_glsl_error(&loc, state,
8224 "redeclaration of gl_PerVertex input not allowed "
8225 "in the %s shader",
8226 _mesa_shader_stage_to_string(state->stage));
8227 }
8228 if (this->instance_name == NULL ||
8229 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8230 !this->array_specifier->is_single_dimension()) {
8231 _mesa_glsl_error(&loc, state,
8232 "gl_PerVertex input must be redeclared as "
8233 "gl_in[]");
8234 }
8235 break;
8236 case ir_var_shader_out:
8237 if (ir_variable *earlier_gl_Position =
8238 state->symbols->get_variable("gl_Position")) {
8239 earlier_per_vertex = earlier_gl_Position->get_interface_type();
8240 } else if (ir_variable *earlier_gl_out =
8241 state->symbols->get_variable("gl_out")) {
8242 earlier_per_vertex = earlier_gl_out->get_interface_type();
8243 } else {
8244 _mesa_glsl_error(&loc, state,
8245 "redeclaration of gl_PerVertex output not "
8246 "allowed in the %s shader",
8247 _mesa_shader_stage_to_string(state->stage));
8248 }
8249 if (state->stage == MESA_SHADER_TESS_CTRL) {
8250 if (this->instance_name == NULL ||
8251 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8252 _mesa_glsl_error(&loc, state,
8253 "gl_PerVertex output must be redeclared as "
8254 "gl_out[]");
8255 }
8256 } else {
8257 if (this->instance_name != NULL) {
8258 _mesa_glsl_error(&loc, state,
8259 "gl_PerVertex output may not be redeclared with "
8260 "an instance name");
8261 }
8262 }
8263 break;
8264 default:
8265 _mesa_glsl_error(&loc, state,
8266 "gl_PerVertex must be declared as an input or an "
8267 "output");
8268 break;
8269 }
8270
8271 if (earlier_per_vertex == NULL) {
8272 /* An error has already been reported. Bail out to avoid null
8273 * dereferences later in this function.
8274 */
8275 return NULL;
8276 }
8277
8278 /* Copy locations from the old gl_PerVertex interface block. */
8279 for (unsigned i = 0; i < num_variables; i++) {
8280 int j = earlier_per_vertex->field_index(fields[i].name);
8281 if (j == -1) {
8282 _mesa_glsl_error(&loc, state,
8283 "redeclaration of gl_PerVertex must be a subset "
8284 "of the built-in members of gl_PerVertex");
8285 } else {
8286 fields[i].location =
8287 earlier_per_vertex->fields.structure[j].location;
8288 fields[i].offset =
8289 earlier_per_vertex->fields.structure[j].offset;
8290 fields[i].interpolation =
8291 earlier_per_vertex->fields.structure[j].interpolation;
8292 fields[i].centroid =
8293 earlier_per_vertex->fields.structure[j].centroid;
8294 fields[i].sample =
8295 earlier_per_vertex->fields.structure[j].sample;
8296 fields[i].patch =
8297 earlier_per_vertex->fields.structure[j].patch;
8298 fields[i].precision =
8299 earlier_per_vertex->fields.structure[j].precision;
8300 fields[i].explicit_xfb_buffer =
8301 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8302 fields[i].xfb_buffer =
8303 earlier_per_vertex->fields.structure[j].xfb_buffer;
8304 fields[i].xfb_stride =
8305 earlier_per_vertex->fields.structure[j].xfb_stride;
8306 }
8307 }
8308
8309 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8310 * spec:
8311 *
8312 * If a built-in interface block is redeclared, it must appear in
8313 * the shader before any use of any member included in the built-in
8314 * declaration, or a compilation error will result.
8315 *
8316 * This appears to be a clarification to the behaviour established for
8317 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8318 * regardless of GLSL version.
8319 */
8320 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8321 v.run(instructions);
8322 if (v.usage_found()) {
8323 _mesa_glsl_error(&loc, state,
8324 "redeclaration of a built-in interface block must "
8325 "appear before any use of any member of the "
8326 "interface block");
8327 }
8328 }
8329
8330 const glsl_type *block_type =
8331 glsl_type::get_interface_instance(fields,
8332 num_variables,
8333 packing,
8334 matrix_layout ==
8335 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8336 this->block_name);
8337
8338 unsigned component_size = block_type->contains_double() ? 8 : 4;
8339 int xfb_offset =
8340 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8341 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8342 component_size);
8343
8344 if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8345 YYLTYPE loc = this->get_location();
8346 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8347 "already taken in the current scope",
8348 this->block_name, iface_type_name);
8349 }
8350
8351 /* Since interface blocks cannot contain statements, it should be
8352 * impossible for the block to generate any instructions.
8353 */
8354 assert(declared_variables.is_empty());
8355
8356 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8357 *
8358 * Geometry shader input variables get the per-vertex values written
8359 * out by vertex shader output variables of the same names. Since a
8360 * geometry shader operates on a set of vertices, each input varying
8361 * variable (or input block, see interface blocks below) needs to be
8362 * declared as an array.
8363 */
8364 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8365 var_mode == ir_var_shader_in) {
8366 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8367 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8368 state->stage == MESA_SHADER_TESS_EVAL) &&
8369 !this->layout.flags.q.patch &&
8370 this->array_specifier == NULL &&
8371 var_mode == ir_var_shader_in) {
8372 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8373 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8374 !this->layout.flags.q.patch &&
8375 this->array_specifier == NULL &&
8376 var_mode == ir_var_shader_out) {
8377 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8378 }
8379
8380
8381 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8382 * says:
8383 *
8384 * "If an instance name (instance-name) is used, then it puts all the
8385 * members inside a scope within its own name space, accessed with the
8386 * field selector ( . ) operator (analogously to structures)."
8387 */
8388 if (this->instance_name) {
8389 if (redeclaring_per_vertex) {
8390 /* When a built-in in an unnamed interface block is redeclared,
8391 * get_variable_being_redeclared() calls
8392 * check_builtin_array_max_size() to make sure that built-in array
8393 * variables aren't redeclared to illegal sizes. But we're looking
8394 * at a redeclaration of a named built-in interface block. So we
8395 * have to manually call check_builtin_array_max_size() for all parts
8396 * of the interface that are arrays.
8397 */
8398 for (unsigned i = 0; i < num_variables; i++) {
8399 if (fields[i].type->is_array()) {
8400 const unsigned size = fields[i].type->array_size();
8401 check_builtin_array_max_size(fields[i].name, size, loc, state);
8402 }
8403 }
8404 } else {
8405 validate_identifier(this->instance_name, loc, state);
8406 }
8407
8408 ir_variable *var;
8409
8410 if (this->array_specifier != NULL) {
8411 const glsl_type *block_array_type =
8412 process_array_type(&loc, block_type, this->array_specifier, state);
8413
8414 /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8415 *
8416 * "For some blocks declared as arrays, the location can only be applied
8417 * at the block level: When a block is declared as an array where
8418 * additional locations are needed for each member for each block array
8419 * element, it is a compile-time error to specify locations on the block
8420 * members. That is, when locations would be under specified by applying
8421 * them on block members, they are not allowed on block members. For
8422 * arrayed interfaces (those generally having an extra level of
8423 * arrayness due to interface expansion), the outer array is stripped
8424 * before applying this rule"
8425 *
8426 * From 4.4.1 (Input Layout Qualifiers) and
8427 * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8428 *
8429 * "If an input is declared as an array of blocks, excluding
8430 * per-vertex-arrays as required for tessellation, it is an error
8431 * to declare a member of the block with a location qualifier."
8432 *
8433 * "If an output is declared as an array of blocks, excluding
8434 * per-vertex-arrays as required for tessellation, it is an error
8435 * to declare a member of the block with a location qualifier."
8436 */
8437 if (!redeclaring_per_vertex &&
8438 (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8439 bool allow_location;
8440 switch (state->stage)
8441 {
8442 case MESA_SHADER_TESS_CTRL:
8443 allow_location = this->array_specifier->is_single_dimension();
8444 break;
8445 case MESA_SHADER_TESS_EVAL:
8446 case MESA_SHADER_GEOMETRY:
8447 allow_location = (this->array_specifier->is_single_dimension()
8448 && var_mode == ir_var_shader_in);
8449 break;
8450 default:
8451 allow_location = false;
8452 break;
8453 }
8454
8455 if (!allow_location) {
8456 for (unsigned i = 0; i < num_variables; i++) {
8457 if (fields[i].location != -1) {
8458 _mesa_glsl_error(&loc, state,
8459 "explicit member locations are not allowed in "
8460 "blocks declared as arrays %s shader",
8461 _mesa_shader_stage_to_string(state->stage));
8462 }
8463 }
8464 }
8465 }
8466
8467 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8468 *
8469 * For uniform blocks declared an array, each individual array
8470 * element corresponds to a separate buffer object backing one
8471 * instance of the block. As the array size indicates the number
8472 * of buffer objects needed, uniform block array declarations
8473 * must specify an array size.
8474 *
8475 * And a few paragraphs later:
8476 *
8477 * Geometry shader input blocks must be declared as arrays and
8478 * follow the array declaration and linking rules for all
8479 * geometry shader inputs. All other input and output block
8480 * arrays must specify an array size.
8481 *
8482 * The same applies to tessellation shaders.
8483 *
8484 * The upshot of this is that the only circumstance where an
8485 * interface array size *doesn't* need to be specified is on a
8486 * geometry shader input, tessellation control shader input,
8487 * tessellation control shader output, and tessellation evaluation
8488 * shader input.
8489 */
8490 if (block_array_type->is_unsized_array()) {
8491 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8492 state->stage == MESA_SHADER_TESS_CTRL ||
8493 state->stage == MESA_SHADER_TESS_EVAL;
8494 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8495
8496 if (this->layout.flags.q.in) {
8497 if (!allow_inputs)
8498 _mesa_glsl_error(&loc, state,
8499 "unsized input block arrays not allowed in "
8500 "%s shader",
8501 _mesa_shader_stage_to_string(state->stage));
8502 } else if (this->layout.flags.q.out) {
8503 if (!allow_outputs)
8504 _mesa_glsl_error(&loc, state,
8505 "unsized output block arrays not allowed in "
8506 "%s shader",
8507 _mesa_shader_stage_to_string(state->stage));
8508 } else {
8509 /* by elimination, this is a uniform block array */
8510 _mesa_glsl_error(&loc, state,
8511 "unsized uniform block arrays not allowed in "
8512 "%s shader",
8513 _mesa_shader_stage_to_string(state->stage));
8514 }
8515 }
8516
8517 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8518 *
8519 * * Arrays of arrays of blocks are not allowed
8520 */
8521 if (state->es_shader && block_array_type->is_array() &&
8522 block_array_type->fields.array->is_array()) {
8523 _mesa_glsl_error(&loc, state,
8524 "arrays of arrays interface blocks are "
8525 "not allowed");
8526 }
8527
8528 var = new(state) ir_variable(block_array_type,
8529 this->instance_name,
8530 var_mode);
8531 } else {
8532 var = new(state) ir_variable(block_type,
8533 this->instance_name,
8534 var_mode);
8535 }
8536
8537 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8538 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8539
8540 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8541 var->data.read_only = true;
8542
8543 var->data.patch = this->layout.flags.q.patch;
8544
8545 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8546 handle_geometry_shader_input_decl(state, loc, var);
8547 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8548 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8549 handle_tess_shader_input_decl(state, loc, var);
8550 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8551 handle_tess_ctrl_shader_output_decl(state, loc, var);
8552
8553 for (unsigned i = 0; i < num_variables; i++) {
8554 if (var->data.mode == ir_var_shader_storage)
8555 apply_memory_qualifiers(var, fields[i]);
8556 }
8557
8558 if (ir_variable *earlier =
8559 state->symbols->get_variable(this->instance_name)) {
8560 if (!redeclaring_per_vertex) {
8561 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8562 this->instance_name);
8563 }
8564 earlier->data.how_declared = ir_var_declared_normally;
8565 earlier->type = var->type;
8566 earlier->reinit_interface_type(block_type);
8567 delete var;
8568 } else {
8569 if (this->layout.flags.q.explicit_binding) {
8570 apply_explicit_binding(state, &loc, var, var->type,
8571 &this->layout);
8572 }
8573
8574 var->data.stream = qual_stream;
8575 if (layout.flags.q.explicit_location) {
8576 var->data.location = expl_location;
8577 var->data.explicit_location = true;
8578 }
8579
8580 state->symbols->add_variable(var);
8581 instructions->push_tail(var);
8582 }
8583 } else {
8584 /* In order to have an array size, the block must also be declared with
8585 * an instance name.
8586 */
8587 assert(this->array_specifier == NULL);
8588
8589 for (unsigned i = 0; i < num_variables; i++) {
8590 ir_variable *var =
8591 new(state) ir_variable(fields[i].type,
8592 ralloc_strdup(state, fields[i].name),
8593 var_mode);
8594 var->data.interpolation = fields[i].interpolation;
8595 var->data.centroid = fields[i].centroid;
8596 var->data.sample = fields[i].sample;
8597 var->data.patch = fields[i].patch;
8598 var->data.stream = qual_stream;
8599 var->data.location = fields[i].location;
8600
8601 if (fields[i].location != -1)
8602 var->data.explicit_location = true;
8603
8604 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8605 var->data.xfb_buffer = fields[i].xfb_buffer;
8606
8607 if (fields[i].offset != -1)
8608 var->data.explicit_xfb_offset = true;
8609 var->data.offset = fields[i].offset;
8610
8611 var->init_interface_type(block_type);
8612
8613 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8614 var->data.read_only = true;
8615
8616 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8617 if (state->es_shader) {
8618 var->data.precision =
8619 select_gles_precision(fields[i].precision, fields[i].type,
8620 state, &loc);
8621 }
8622
8623 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8624 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8625 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8626 } else {
8627 var->data.matrix_layout = fields[i].matrix_layout;
8628 }
8629
8630 if (var->data.mode == ir_var_shader_storage)
8631 apply_memory_qualifiers(var, fields[i]);
8632
8633 /* Examine var name here since var may get deleted in the next call */
8634 bool var_is_gl_id = is_gl_identifier(var->name);
8635
8636 if (redeclaring_per_vertex) {
8637 bool is_redeclaration;
8638 var =
8639 get_variable_being_redeclared(&var, loc, state,
8640 true /* allow_all_redeclarations */,
8641 &is_redeclaration);
8642 if (!var_is_gl_id || !is_redeclaration) {
8643 _mesa_glsl_error(&loc, state,
8644 "redeclaration of gl_PerVertex can only "
8645 "include built-in variables");
8646 } else if (var->data.how_declared == ir_var_declared_normally) {
8647 _mesa_glsl_error(&loc, state,
8648 "`%s' has already been redeclared",
8649 var->name);
8650 } else {
8651 var->data.how_declared = ir_var_declared_in_block;
8652 var->reinit_interface_type(block_type);
8653 }
8654 continue;
8655 }
8656
8657 if (state->symbols->get_variable(var->name) != NULL)
8658 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8659
8660 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8661 * The UBO declaration itself doesn't get an ir_variable unless it
8662 * has an instance name. This is ugly.
8663 */
8664 if (this->layout.flags.q.explicit_binding) {
8665 apply_explicit_binding(state, &loc, var,
8666 var->get_interface_type(), &this->layout);
8667 }
8668
8669 if (var->type->is_unsized_array()) {
8670 if (var->is_in_shader_storage_block() &&
8671 is_unsized_array_last_element(var)) {
8672 var->data.from_ssbo_unsized_array = true;
8673 } else {
8674 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8675 *
8676 * "If an array is declared as the last member of a shader storage
8677 * block and the size is not specified at compile-time, it is
8678 * sized at run-time. In all other cases, arrays are sized only
8679 * at compile-time."
8680 *
8681 * In desktop GLSL it is allowed to have unsized-arrays that are
8682 * not last, as long as we can determine that they are implicitly
8683 * sized.
8684 */
8685 if (state->es_shader) {
8686 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8687 "definition: only last member of a shader "
8688 "storage block can be defined as unsized "
8689 "array", fields[i].name);
8690 }
8691 }
8692 }
8693
8694 state->symbols->add_variable(var);
8695 instructions->push_tail(var);
8696 }
8697
8698 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8699 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8700 *
8701 * It is also a compilation error ... to redeclare a built-in
8702 * block and then use a member from that built-in block that was
8703 * not included in the redeclaration.
8704 *
8705 * This appears to be a clarification to the behaviour established
8706 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8707 * behaviour regardless of GLSL version.
8708 *
8709 * To prevent the shader from using a member that was not included in
8710 * the redeclaration, we disable any ir_variables that are still
8711 * associated with the old declaration of gl_PerVertex (since we've
8712 * already updated all of the variables contained in the new
8713 * gl_PerVertex to point to it).
8714 *
8715 * As a side effect this will prevent
8716 * validate_intrastage_interface_blocks() from getting confused and
8717 * thinking there are conflicting definitions of gl_PerVertex in the
8718 * shader.
8719 */
8720 foreach_in_list_safe(ir_instruction, node, instructions) {
8721 ir_variable *const var = node->as_variable();
8722 if (var != NULL &&
8723 var->get_interface_type() == earlier_per_vertex &&
8724 var->data.mode == var_mode) {
8725 if (var->data.how_declared == ir_var_declared_normally) {
8726 _mesa_glsl_error(&loc, state,
8727 "redeclaration of gl_PerVertex cannot "
8728 "follow a redeclaration of `%s'",
8729 var->name);
8730 }
8731 state->symbols->disable_variable(var->name);
8732 var->remove();
8733 }
8734 }
8735 }
8736 }
8737
8738 return NULL;
8739 }
8740
8741
8742 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8743 ast_tcs_output_layout::hir(exec_list *instructions,
8744 struct _mesa_glsl_parse_state *state)
8745 {
8746 YYLTYPE loc = this->get_location();
8747
8748 unsigned num_vertices;
8749 if (!state->out_qualifier->vertices->
8750 process_qualifier_constant(state, "vertices", &num_vertices,
8751 false)) {
8752 /* return here to stop cascading incorrect error messages */
8753 return NULL;
8754 }
8755
8756 /* If any shader outputs occurred before this declaration and specified an
8757 * array size, make sure the size they specified is consistent with the
8758 * primitive type.
8759 */
8760 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8761 _mesa_glsl_error(&loc, state,
8762 "this tessellation control shader output layout "
8763 "specifies %u vertices, but a previous output "
8764 "is declared with size %u",
8765 num_vertices, state->tcs_output_size);
8766 return NULL;
8767 }
8768
8769 state->tcs_output_vertices_specified = true;
8770
8771 /* If any shader outputs occurred before this declaration and did not
8772 * specify an array size, their size is determined now.
8773 */
8774 foreach_in_list (ir_instruction, node, instructions) {
8775 ir_variable *var = node->as_variable();
8776 if (var == NULL || var->data.mode != ir_var_shader_out)
8777 continue;
8778
8779 /* Note: Not all tessellation control shader output are arrays. */
8780 if (!var->type->is_unsized_array() || var->data.patch)
8781 continue;
8782
8783 if (var->data.max_array_access >= (int)num_vertices) {
8784 _mesa_glsl_error(&loc, state,
8785 "this tessellation control shader output layout "
8786 "specifies %u vertices, but an access to element "
8787 "%u of output `%s' already exists", num_vertices,
8788 var->data.max_array_access, var->name);
8789 } else {
8790 var->type = glsl_type::get_array_instance(var->type->fields.array,
8791 num_vertices);
8792 }
8793 }
8794
8795 return NULL;
8796 }
8797
8798
8799 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8800 ast_gs_input_layout::hir(exec_list *instructions,
8801 struct _mesa_glsl_parse_state *state)
8802 {
8803 YYLTYPE loc = this->get_location();
8804
8805 /* Should have been prevented by the parser. */
8806 assert(!state->gs_input_prim_type_specified
8807 || state->in_qualifier->prim_type == this->prim_type);
8808
8809 /* If any shader inputs occurred before this declaration and specified an
8810 * array size, make sure the size they specified is consistent with the
8811 * primitive type.
8812 */
8813 unsigned num_vertices = vertices_per_prim(this->prim_type);
8814 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8815 _mesa_glsl_error(&loc, state,
8816 "this geometry shader input layout implies %u vertices"
8817 " per primitive, but a previous input is declared"
8818 " with size %u", num_vertices, state->gs_input_size);
8819 return NULL;
8820 }
8821
8822 state->gs_input_prim_type_specified = true;
8823
8824 /* If any shader inputs occurred before this declaration and did not
8825 * specify an array size, their size is determined now.
8826 */
8827 foreach_in_list(ir_instruction, node, instructions) {
8828 ir_variable *var = node->as_variable();
8829 if (var == NULL || var->data.mode != ir_var_shader_in)
8830 continue;
8831
8832 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8833 * array; skip it.
8834 */
8835
8836 if (var->type->is_unsized_array()) {
8837 if (var->data.max_array_access >= (int)num_vertices) {
8838 _mesa_glsl_error(&loc, state,
8839 "this geometry shader input layout implies %u"
8840 " vertices, but an access to element %u of input"
8841 " `%s' already exists", num_vertices,
8842 var->data.max_array_access, var->name);
8843 } else {
8844 var->type = glsl_type::get_array_instance(var->type->fields.array,
8845 num_vertices);
8846 }
8847 }
8848 }
8849
8850 return NULL;
8851 }
8852
8853
8854 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8855 ast_cs_input_layout::hir(exec_list *instructions,
8856 struct _mesa_glsl_parse_state *state)
8857 {
8858 YYLTYPE loc = this->get_location();
8859
8860 /* From the ARB_compute_shader specification:
8861 *
8862 * If the local size of the shader in any dimension is greater
8863 * than the maximum size supported by the implementation for that
8864 * dimension, a compile-time error results.
8865 *
8866 * It is not clear from the spec how the error should be reported if
8867 * the total size of the work group exceeds
8868 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8869 * report it at compile time as well.
8870 */
8871 GLuint64 total_invocations = 1;
8872 unsigned qual_local_size[3];
8873 for (int i = 0; i < 3; i++) {
8874
8875 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8876 'x' + i);
8877 /* Infer a local_size of 1 for unspecified dimensions */
8878 if (this->local_size[i] == NULL) {
8879 qual_local_size[i] = 1;
8880 } else if (!this->local_size[i]->
8881 process_qualifier_constant(state, local_size_str,
8882 &qual_local_size[i], false)) {
8883 ralloc_free(local_size_str);
8884 return NULL;
8885 }
8886 ralloc_free(local_size_str);
8887
8888 if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
8889 _mesa_glsl_error(&loc, state,
8890 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8891 " (%d)", 'x' + i,
8892 state->consts->MaxComputeWorkGroupSize[i]);
8893 break;
8894 }
8895 total_invocations *= qual_local_size[i];
8896 if (total_invocations >
8897 state->consts->MaxComputeWorkGroupInvocations) {
8898 _mesa_glsl_error(&loc, state,
8899 "product of local_sizes exceeds "
8900 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8901 state->consts->MaxComputeWorkGroupInvocations);
8902 break;
8903 }
8904 }
8905
8906 /* If any compute input layout declaration preceded this one, make sure it
8907 * was consistent with this one.
8908 */
8909 if (state->cs_input_local_size_specified) {
8910 for (int i = 0; i < 3; i++) {
8911 if (state->cs_input_local_size[i] != qual_local_size[i]) {
8912 _mesa_glsl_error(&loc, state,
8913 "compute shader input layout does not match"
8914 " previous declaration");
8915 return NULL;
8916 }
8917 }
8918 }
8919
8920 /* The ARB_compute_variable_group_size spec says:
8921 *
8922 * If a compute shader including a *local_size_variable* qualifier also
8923 * declares a fixed local group size using the *local_size_x*,
8924 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8925 * results
8926 */
8927 if (state->cs_input_local_size_variable_specified) {
8928 _mesa_glsl_error(&loc, state,
8929 "compute shader can't include both a variable and a "
8930 "fixed local group size");
8931 return NULL;
8932 }
8933
8934 state->cs_input_local_size_specified = true;
8935 for (int i = 0; i < 3; i++)
8936 state->cs_input_local_size[i] = qual_local_size[i];
8937
8938 /* We may now declare the built-in constant gl_WorkGroupSize (see
8939 * builtin_variable_generator::generate_constants() for why we didn't
8940 * declare it earlier).
8941 */
8942 ir_variable *var = new(state->symbols)
8943 ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8944 var->data.how_declared = ir_var_declared_implicitly;
8945 var->data.read_only = true;
8946 instructions->push_tail(var);
8947 state->symbols->add_variable(var);
8948 ir_constant_data data;
8949 memset(&data, 0, sizeof(data));
8950 for (int i = 0; i < 3; i++)
8951 data.u[i] = qual_local_size[i];
8952 var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8953 var->constant_initializer =
8954 new(var) ir_constant(glsl_type::uvec3_type, &data);
8955 var->data.has_initializer = true;
8956 var->data.is_implicit_initializer = false;
8957
8958 return NULL;
8959 }
8960
8961
8962 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)8963 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8964 exec_list *instructions)
8965 {
8966 bool gl_FragColor_assigned = false;
8967 bool gl_FragData_assigned = false;
8968 bool gl_FragSecondaryColor_assigned = false;
8969 bool gl_FragSecondaryData_assigned = false;
8970 bool user_defined_fs_output_assigned = false;
8971 ir_variable *user_defined_fs_output = NULL;
8972
8973 /* It would be nice to have proper location information. */
8974 YYLTYPE loc;
8975 memset(&loc, 0, sizeof(loc));
8976
8977 foreach_in_list(ir_instruction, node, instructions) {
8978 ir_variable *var = node->as_variable();
8979
8980 if (!var || !var->data.assigned)
8981 continue;
8982
8983 if (strcmp(var->name, "gl_FragColor") == 0) {
8984 gl_FragColor_assigned = true;
8985 if (!var->constant_initializer && state->zero_init) {
8986 const ir_constant_data data = { { 0 } };
8987 var->data.has_initializer = true;
8988 var->data.is_implicit_initializer = true;
8989 var->constant_initializer = new(var) ir_constant(var->type, &data);
8990 }
8991 }
8992 else if (strcmp(var->name, "gl_FragData") == 0)
8993 gl_FragData_assigned = true;
8994 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8995 gl_FragSecondaryColor_assigned = true;
8996 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8997 gl_FragSecondaryData_assigned = true;
8998 else if (!is_gl_identifier(var->name)) {
8999 if (state->stage == MESA_SHADER_FRAGMENT &&
9000 var->data.mode == ir_var_shader_out) {
9001 user_defined_fs_output_assigned = true;
9002 user_defined_fs_output = var;
9003 }
9004 }
9005 }
9006
9007 /* From the GLSL 1.30 spec:
9008 *
9009 * "If a shader statically assigns a value to gl_FragColor, it
9010 * may not assign a value to any element of gl_FragData. If a
9011 * shader statically writes a value to any element of
9012 * gl_FragData, it may not assign a value to
9013 * gl_FragColor. That is, a shader may assign values to either
9014 * gl_FragColor or gl_FragData, but not both. Multiple shaders
9015 * linked together must also consistently write just one of
9016 * these variables. Similarly, if user declared output
9017 * variables are in use (statically assigned to), then the
9018 * built-in variables gl_FragColor and gl_FragData may not be
9019 * assigned to. These incorrect usages all generate compile
9020 * time errors."
9021 */
9022 if (gl_FragColor_assigned && gl_FragData_assigned) {
9023 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9024 "`gl_FragColor' and `gl_FragData'");
9025 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9026 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9027 "`gl_FragColor' and `%s'",
9028 user_defined_fs_output->name);
9029 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9030 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9031 "`gl_FragSecondaryColorEXT' and"
9032 " `gl_FragSecondaryDataEXT'");
9033 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9034 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9035 "`gl_FragColor' and"
9036 " `gl_FragSecondaryDataEXT'");
9037 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9038 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9039 "`gl_FragData' and"
9040 " `gl_FragSecondaryColorEXT'");
9041 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9042 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9043 "`gl_FragData' and `%s'",
9044 user_defined_fs_output->name);
9045 }
9046
9047 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9048 !state->EXT_blend_func_extended_enable) {
9049 _mesa_glsl_error(&loc, state,
9050 "Dual source blending requires EXT_blend_func_extended");
9051 }
9052 }
9053
9054 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)9055 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9056 {
9057 YYLTYPE loc;
9058 memset(&loc, 0, sizeof(loc));
9059
9060 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9061 *
9062 * "A program will fail to compile or link if any shader
9063 * or stage contains two or more functions with the same
9064 * name if the name is associated with a subroutine type."
9065 */
9066
9067 for (int i = 0; i < state->num_subroutines; i++) {
9068 unsigned definitions = 0;
9069 ir_function *fn = state->subroutines[i];
9070 /* Calculate number of function definitions with the same name */
9071 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9072 if (sig->is_defined) {
9073 if (++definitions > 1) {
9074 _mesa_glsl_error(&loc, state,
9075 "%s shader contains two or more function "
9076 "definitions with name `%s', which is "
9077 "associated with a subroutine type.\n",
9078 _mesa_shader_stage_to_string(state->stage),
9079 fn->name);
9080 return;
9081 }
9082 }
9083 }
9084 }
9085 }
9086
9087 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9088 remove_per_vertex_blocks(exec_list *instructions,
9089 _mesa_glsl_parse_state *state, ir_variable_mode mode)
9090 {
9091 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9092 * if it exists in this shader type.
9093 */
9094 const glsl_type *per_vertex = NULL;
9095 switch (mode) {
9096 case ir_var_shader_in:
9097 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9098 per_vertex = gl_in->get_interface_type();
9099 break;
9100 case ir_var_shader_out:
9101 if (ir_variable *gl_Position =
9102 state->symbols->get_variable("gl_Position")) {
9103 per_vertex = gl_Position->get_interface_type();
9104 }
9105 break;
9106 default:
9107 assert(!"Unexpected mode");
9108 break;
9109 }
9110
9111 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9112 * need to do anything.
9113 */
9114 if (per_vertex == NULL)
9115 return;
9116
9117 /* If the interface block is used by the shader, then we don't need to do
9118 * anything.
9119 */
9120 interface_block_usage_visitor v(mode, per_vertex);
9121 v.run(instructions);
9122 if (v.usage_found())
9123 return;
9124
9125 /* Remove any ir_variable declarations that refer to the interface block
9126 * we're removing.
9127 */
9128 foreach_in_list_safe(ir_instruction, node, instructions) {
9129 ir_variable *const var = node->as_variable();
9130 if (var != NULL && var->get_interface_type() == per_vertex &&
9131 var->data.mode == mode) {
9132 state->symbols->disable_variable(var->name);
9133 var->remove();
9134 }
9135 }
9136 }
9137
9138 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9139 ast_warnings_toggle::hir(exec_list *,
9140 struct _mesa_glsl_parse_state *state)
9141 {
9142 state->warnings_enabled = enable;
9143 return NULL;
9144 }
9145