1 /*
2 * Copyright © Microsoft Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "dxil_module.h"
25 #include "dxil_internal.h"
26
27 #include "util/macros.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/rb_tree.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34
35 void
dxil_module_init(struct dxil_module * m,void * ralloc_ctx)36 dxil_module_init(struct dxil_module *m, void *ralloc_ctx)
37 {
38 assert(ralloc_ctx);
39
40 memset(m, 0, sizeof(struct dxil_module));
41 m->ralloc_ctx = ralloc_ctx;
42
43 dxil_buffer_init(&m->buf, 2);
44 memset(&m->feats, 0, sizeof(m->feats));
45
46 list_inithead(&m->type_list);
47 list_inithead(&m->func_list);
48 list_inithead(&m->func_def_list);
49 list_inithead(&m->attr_set_list);
50 list_inithead(&m->gvar_list);
51 list_inithead(&m->const_list);
52 list_inithead(&m->mdnode_list);
53 list_inithead(&m->md_named_node_list);
54
55 m->functions = rzalloc(ralloc_ctx, struct rb_tree);
56 rb_tree_init(m->functions);
57 }
58
59 void
dxil_module_release(struct dxil_module * m)60 dxil_module_release(struct dxil_module *m)
61 {
62 dxil_buffer_finish(&m->buf);
63 }
64
65 static bool
emit_bits64(struct dxil_buffer * b,uint64_t data,unsigned width)66 emit_bits64(struct dxil_buffer *b, uint64_t data, unsigned width)
67 {
68 if (data > UINT32_MAX) {
69 assert(width > 32);
70 return dxil_buffer_emit_bits(b, (uint32_t)(data & UINT32_MAX), width) &&
71 dxil_buffer_emit_bits(b, (uint32_t)(data >> 32), width - 32);
72 } else
73 return dxil_buffer_emit_bits(b, (uint32_t)data, width);
74 }
75
76 /* See the LLVM documentation for details about what these are all about:
77 * https://www.llvm.org/docs/BitCodeFormat.html#abbreviation-ids
78 */
79 enum dxil_fixed_abbrev {
80 DXIL_END_BLOCK = 0,
81 DXIL_ENTER_SUBBLOCK = 1,
82 DXIL_DEFINE_ABBREV = 2,
83 DXIL_UNABBREV_RECORD = 3,
84 DXIL_FIRST_APPLICATION_ABBREV = 4
85 };
86
87 static bool
enter_subblock(struct dxil_module * m,unsigned id,unsigned abbrev_width)88 enter_subblock(struct dxil_module *m, unsigned id, unsigned abbrev_width)
89 {
90 assert(m->num_blocks < ARRAY_SIZE(m->blocks));
91 m->blocks[m->num_blocks].abbrev_width = m->buf.abbrev_width;
92
93 if (!dxil_buffer_emit_abbrev_id(&m->buf, DXIL_ENTER_SUBBLOCK) ||
94 !dxil_buffer_emit_vbr_bits(&m->buf, id, 8) ||
95 !dxil_buffer_emit_vbr_bits(&m->buf, abbrev_width, 4) ||
96 !dxil_buffer_align(&m->buf))
97 return false;
98
99 m->buf.abbrev_width = abbrev_width;
100 m->blocks[m->num_blocks++].offset = blob_reserve_uint32(&m->buf.blob);
101 return true;
102 }
103
104 static bool
exit_block(struct dxil_module * m)105 exit_block(struct dxil_module *m)
106 {
107 assert(m->num_blocks > 0);
108 assert(m->num_blocks < ARRAY_SIZE(m->blocks));
109
110 if (!dxil_buffer_emit_abbrev_id(&m->buf, DXIL_END_BLOCK) ||
111 !dxil_buffer_align(&m->buf))
112 return false;
113
114 intptr_t size_offset = m->blocks[m->num_blocks - 1].offset;
115 uint32_t size = (m->buf.blob.size - size_offset - 1) / sizeof(uint32_t);
116 if (!blob_overwrite_uint32(&m->buf.blob, size_offset, size))
117 return false;
118
119 m->num_blocks--;
120 m->buf.abbrev_width = m->blocks[m->num_blocks].abbrev_width;
121 return true;
122 }
123
124 static bool
emit_record_no_abbrev(struct dxil_buffer * b,unsigned code,const uint64_t * data,size_t size)125 emit_record_no_abbrev(struct dxil_buffer *b, unsigned code,
126 const uint64_t *data, size_t size)
127 {
128 if (!dxil_buffer_emit_abbrev_id(b, DXIL_UNABBREV_RECORD) ||
129 !dxil_buffer_emit_vbr_bits(b, code, 6) ||
130 !dxil_buffer_emit_vbr_bits(b, size, 6))
131 return false;
132
133 for (size_t i = 0; i < size; ++i)
134 if (!dxil_buffer_emit_vbr_bits(b, data[i], 6))
135 return false;
136
137 return true;
138 }
139
140 static bool
emit_record(struct dxil_module * m,unsigned code,const uint64_t * data,size_t size)141 emit_record(struct dxil_module *m, unsigned code,
142 const uint64_t *data, size_t size)
143 {
144 return emit_record_no_abbrev(&m->buf, code, data, size);
145 }
146
147 static bool
emit_record_int(struct dxil_module * m,unsigned code,int value)148 emit_record_int(struct dxil_module *m, unsigned code, int value)
149 {
150 uint64_t data = value;
151 return emit_record(m, code, &data, 1);
152 }
153
154 static bool
is_char6(char ch)155 is_char6(char ch)
156 {
157 if ((ch >= 'a' && ch <= 'z') ||
158 (ch >= 'A' && ch <= 'Z') ||
159 (ch >= '0' && ch <= '9'))
160 return true;
161
162 switch (ch) {
163 case '.':
164 case '_':
165 return true;
166
167 default:
168 return false;
169 }
170 }
171
172 static bool
is_char6_string(const char * str)173 is_char6_string(const char *str)
174 {
175 while (*str != '\0') {
176 if (!is_char6(*str++))
177 return false;
178 }
179 return true;
180 }
181
182 static bool
is_char7_string(const char * str)183 is_char7_string(const char *str)
184 {
185 while (*str != '\0') {
186 if (*str++ & 0x80)
187 return false;
188 }
189 return true;
190 }
191
192 static unsigned
encode_char6(char ch)193 encode_char6(char ch)
194 {
195 const int letters = 'z' - 'a' + 1;
196
197 if (ch >= 'a' && ch <= 'z')
198 return ch - 'a';
199 else if (ch >= 'A' && ch <= 'Z')
200 return letters + ch - 'A';
201 else if (ch >= '0' && ch <= '9')
202 return 2 * letters + ch - '0';
203
204 switch (ch) {
205 case '.': return 62;
206 case '_': return 63;
207 default:
208 unreachable("invalid char6-character");
209 }
210 }
211
212 static bool
emit_fixed(struct dxil_buffer * b,uint64_t data,unsigned width)213 emit_fixed(struct dxil_buffer *b, uint64_t data, unsigned width)
214 {
215 if (!width)
216 return true;
217
218 return emit_bits64(b, data, width);
219 }
220
221 static bool
emit_vbr(struct dxil_buffer * b,uint64_t data,unsigned width)222 emit_vbr(struct dxil_buffer *b, uint64_t data, unsigned width)
223 {
224 if (!width)
225 return true;
226
227 return dxil_buffer_emit_vbr_bits(b, data, width);
228 }
229
230 static bool
emit_char6(struct dxil_buffer * b,uint64_t data)231 emit_char6(struct dxil_buffer *b, uint64_t data)
232 {
233 return dxil_buffer_emit_bits(b, encode_char6((char)data), 6);
234 }
235
236 struct dxil_abbrev {
237 struct {
238 enum {
239 DXIL_OP_LITERAL = 0,
240 DXIL_OP_FIXED = 1,
241 DXIL_OP_VBR = 2,
242 DXIL_OP_ARRAY = 3,
243 DXIL_OP_CHAR6 = 4,
244 DXIL_OP_BLOB = 5
245 } type;
246 union {
247 uint64_t value;
248 uint64_t encoding_data;
249 };
250 } operands[7];
251 size_t num_operands;
252 };
253
254 static bool
emit_record_abbrev(struct dxil_buffer * b,unsigned abbrev,const struct dxil_abbrev * a,const uint64_t * data,size_t size)255 emit_record_abbrev(struct dxil_buffer *b,
256 unsigned abbrev, const struct dxil_abbrev *a,
257 const uint64_t *data, size_t size)
258 {
259 assert(abbrev >= DXIL_FIRST_APPLICATION_ABBREV);
260
261 if (!dxil_buffer_emit_abbrev_id(b, abbrev))
262 return false;
263
264 size_t curr_data = 0;
265 for (int i = 0; i < a->num_operands; ++i) {
266 switch (a->operands[i].type) {
267 case DXIL_OP_LITERAL:
268 assert(curr_data < size);
269 assert(data[curr_data] == a->operands[i].value);
270 curr_data++;
271 /* literals are no-ops, because their value is defined in the
272 abbrev-definition already */
273 break;
274
275 case DXIL_OP_FIXED:
276 assert(curr_data < size);
277 if (!emit_fixed(b, data[curr_data++], a->operands[i].encoding_data))
278 return false;
279 break;
280
281 case DXIL_OP_VBR:
282 assert(curr_data < size);
283 if (!emit_vbr(b, data[curr_data++], a->operands[i].encoding_data))
284 return false;
285 break;
286
287 case DXIL_OP_ARRAY:
288 assert(i == a->num_operands - 2); /* arrays should always be second to last */
289
290 if (!dxil_buffer_emit_vbr_bits(b, size - curr_data, 6))
291 return false;
292
293 switch (a->operands[i + 1].type) {
294 case DXIL_OP_FIXED:
295 while (curr_data < size)
296 if (!emit_fixed(b, data[curr_data++], a->operands[i + 1].encoding_data))
297 return false;
298 break;
299
300 case DXIL_OP_VBR:
301 while (curr_data < size)
302 if (!emit_vbr(b, data[curr_data++], a->operands[i + 1].encoding_data))
303 return false;
304 break;
305
306 case DXIL_OP_CHAR6:
307 while (curr_data < size)
308 if (!emit_char6(b, data[curr_data++]))
309 return false;
310 break;
311
312 default:
313 unreachable("unexpected operand type");
314 }
315 return true; /* we're done */
316
317 case DXIL_OP_CHAR6:
318 assert(curr_data < size);
319 if (!emit_char6(b, data[curr_data++]))
320 return false;
321 break;
322
323 case DXIL_OP_BLOB:
324 unreachable("HALP, unplement!");
325
326 default:
327 unreachable("unexpected operand type");
328 }
329 }
330
331 assert(curr_data == size);
332 return true;
333 }
334
335
336 static struct dxil_type *
create_type(struct dxil_module * m,enum type_type type)337 create_type(struct dxil_module *m, enum type_type type)
338 {
339 struct dxil_type *ret = rzalloc_size(m->ralloc_ctx,
340 sizeof(struct dxil_type));
341 if (ret) {
342 ret->type = type;
343 ret->id = list_length(&m->type_list);
344 list_addtail(&ret->head, &m->type_list);
345 }
346 return ret;
347 }
348
349 static bool
350 types_equal(const struct dxil_type *lhs, const struct dxil_type *rhs);
351
352 static bool
type_list_equal(const struct dxil_type_list * lhs,const struct dxil_type_list * rhs)353 type_list_equal(const struct dxil_type_list *lhs,
354 const struct dxil_type_list *rhs)
355 {
356 if (lhs->num_types != rhs->num_types)
357 return false;
358 for (unsigned i = 0; i < lhs->num_types; ++i)
359 if (!types_equal(lhs->types[i], rhs->types[i]))
360 return false;
361 return true;
362 }
363
364 static bool
types_equal(const struct dxil_type * lhs,const struct dxil_type * rhs)365 types_equal(const struct dxil_type *lhs, const struct dxil_type *rhs)
366 {
367 if (lhs == rhs)
368 return true;
369
370 /* Below we only assert that different type pointers really define different types
371 * Since this function is only called in asserts, it is not needed to put the code
372 * into a #ifdef NDEBUG statement */
373 if (lhs->type != rhs->type)
374 return false;
375
376 bool retval = false;
377 switch (lhs->type) {
378 case TYPE_VOID:
379 retval = true;
380 break;
381 case TYPE_FLOAT:
382 retval = lhs->float_bits == rhs->float_bits;
383 break;
384 case TYPE_INTEGER:
385 retval = lhs->int_bits == rhs->int_bits;
386 break;
387 case TYPE_POINTER:
388 retval = types_equal(lhs->ptr_target_type, rhs->ptr_target_type);
389 break;
390 case TYPE_ARRAY:
391 case TYPE_VECTOR:
392 retval = (lhs->array_or_vector_def.num_elems == rhs->array_or_vector_def.num_elems) &&
393 types_equal(lhs->array_or_vector_def.elem_type,
394 rhs->array_or_vector_def.elem_type);
395 break;
396 case TYPE_FUNCTION:
397 if (!types_equal(lhs->function_def.ret_type,
398 rhs->function_def.ret_type))
399 return false;
400 retval = type_list_equal(&lhs->function_def.args, &rhs->function_def.args);
401 break;
402 case TYPE_STRUCT:
403 retval = type_list_equal(&lhs->struct_def.elem, &rhs->struct_def.elem);
404 }
405 assert(!retval && "Types are equal in structure but not as pointers");
406 return retval;
407 }
408
409 bool
dxil_value_type_equal_to(const struct dxil_value * value,const struct dxil_type * rhs)410 dxil_value_type_equal_to(const struct dxil_value *value,
411 const struct dxil_type *rhs)
412 {
413 return types_equal(value->type, rhs);
414 }
415
416 nir_alu_type
dxil_type_to_nir_type(const struct dxil_type * type)417 dxil_type_to_nir_type(const struct dxil_type *type)
418 {
419 assert(type);
420 switch (type->type) {
421 case TYPE_INTEGER:
422 return type->int_bits == 1 ? nir_type_bool : nir_type_int;
423 case TYPE_FLOAT:
424 return nir_type_float;
425 default:
426 unreachable("Unexpected type in dxil_type_to_nir_type");
427 }
428 }
429
430 bool
dxil_value_type_bitsize_equal_to(const struct dxil_value * value,unsigned bitsize)431 dxil_value_type_bitsize_equal_to(const struct dxil_value *value, unsigned bitsize)
432 {
433 switch (value->type->type) {
434 case TYPE_INTEGER:
435 return value->type->int_bits == bitsize;
436 case TYPE_FLOAT:
437 return value->type->float_bits == bitsize;
438 default:
439 return false;
440 }
441 }
442
443 const struct dxil_type *
dxil_value_get_type(const struct dxil_value * value)444 dxil_value_get_type(const struct dxil_value *value)
445 {
446 return value->type;
447 }
448
449 const struct dxil_type *
dxil_module_get_void_type(struct dxil_module * m)450 dxil_module_get_void_type(struct dxil_module *m)
451 {
452 if (!m->void_type)
453 m->void_type = create_type(m, TYPE_VOID);
454 return m->void_type;
455 }
456
457 static const struct dxil_type *
create_int_type(struct dxil_module * m,unsigned bit_size)458 create_int_type(struct dxil_module *m, unsigned bit_size)
459 {
460 struct dxil_type *type = create_type(m, TYPE_INTEGER);
461 if (type)
462 type->int_bits = bit_size;
463 return type;
464 }
465
466 static const struct dxil_type *
get_int1_type(struct dxil_module * m)467 get_int1_type(struct dxil_module *m)
468 {
469 if (!m->int1_type)
470 m->int1_type = create_int_type(m, 1);
471 return m->int1_type;
472 }
473
474 static const struct dxil_type *
get_int8_type(struct dxil_module * m)475 get_int8_type(struct dxil_module *m)
476 {
477 if (!m->int8_type)
478 m->int8_type = create_int_type(m, 8);
479 return m->int8_type;
480 }
481
482 static const struct dxil_type *
get_int16_type(struct dxil_module * m)483 get_int16_type(struct dxil_module *m)
484 {
485 if (!m->int16_type)
486 m->int16_type = create_int_type(m, 16);
487 return m->int16_type;
488 }
489
490 static const struct dxil_type *
get_int32_type(struct dxil_module * m)491 get_int32_type(struct dxil_module *m)
492 {
493 if (!m->int32_type)
494 m->int32_type = create_int_type(m, 32);
495 return m->int32_type;
496 }
497
498 static const struct dxil_type *
get_int64_type(struct dxil_module * m)499 get_int64_type(struct dxil_module *m)
500 {
501 if (!m->int64_type)
502 m->int64_type = create_int_type(m, 64);
503 return m->int64_type;
504 }
505
506 static const struct dxil_type *
create_float_type(struct dxil_module * m,unsigned bit_size)507 create_float_type(struct dxil_module *m, unsigned bit_size)
508 {
509 struct dxil_type *type = create_type(m, TYPE_FLOAT);
510 if (type)
511 type->float_bits = bit_size;
512 return type;
513 }
514
515 const struct dxil_type *
dxil_module_get_int_type(struct dxil_module * m,unsigned bit_size)516 dxil_module_get_int_type(struct dxil_module *m, unsigned bit_size)
517 {
518 switch (bit_size) {
519 case 1: return get_int1_type(m);
520 case 8: return get_int8_type(m);
521 case 16: return get_int16_type(m);
522 case 32: return get_int32_type(m);
523 case 64: return get_int64_type(m);
524 default:
525 unreachable("unsupported bit-width");
526 }
527 }
528
529 static const struct dxil_type *
get_float16_type(struct dxil_module * m)530 get_float16_type(struct dxil_module *m)
531 {
532 if (!m->float16_type)
533 m->float16_type = create_float_type(m, 16);
534 return m->float16_type;
535 }
536
537 static const struct dxil_type *
get_float32_type(struct dxil_module * m)538 get_float32_type(struct dxil_module *m)
539 {
540 if (!m->float32_type)
541 m->float32_type = create_float_type(m, 32);
542 return m->float32_type;
543 }
544
545 static const struct dxil_type *
get_float64_type(struct dxil_module * m)546 get_float64_type(struct dxil_module *m)
547 {
548 if (!m->float64_type)
549 m->float64_type = create_float_type(m, 64);
550 return m->float64_type;
551 }
552
553 const struct dxil_type *
dxil_module_get_float_type(struct dxil_module * m,unsigned bit_size)554 dxil_module_get_float_type(struct dxil_module *m, unsigned bit_size)
555 {
556 switch (bit_size) {
557 case 16: return get_float16_type(m);
558 case 32: return get_float32_type(m);
559 case 64: return get_float64_type(m);
560 default:
561 unreachable("unsupported bit-width");
562 }
563 return get_float32_type(m);
564 }
565
566 const struct dxil_type *
dxil_module_get_pointer_type(struct dxil_module * m,const struct dxil_type * target)567 dxil_module_get_pointer_type(struct dxil_module *m,
568 const struct dxil_type *target)
569 {
570 struct dxil_type *type;
571 LIST_FOR_EACH_ENTRY(type, &m->type_list, head) {
572 if (type->type == TYPE_POINTER &&
573 type->ptr_target_type == target)
574 return type;
575 }
576
577 type = create_type(m, TYPE_POINTER);
578 if (type)
579 type->ptr_target_type = target;
580 return type;
581 }
582
583 const struct dxil_type *
dxil_module_get_struct_type(struct dxil_module * m,const char * name,const struct dxil_type ** elem_types,size_t num_elem_types)584 dxil_module_get_struct_type(struct dxil_module *m,
585 const char *name,
586 const struct dxil_type **elem_types,
587 size_t num_elem_types)
588 {
589 assert(!name || strlen(name) > 0);
590
591 struct dxil_type *type;
592 LIST_FOR_EACH_ENTRY(type, &m->type_list, head) {
593 if (type->type != TYPE_STRUCT)
594 continue;
595
596 if ((name == NULL) != (type->struct_def.name == NULL))
597 continue;
598
599 if (name && strcmp(type->struct_def.name, name))
600 continue;
601
602 if (type->struct_def.elem.num_types == num_elem_types &&
603 !memcmp(type->struct_def.elem.types, elem_types,
604 sizeof(struct dxil_type *) * num_elem_types))
605 return type;
606 }
607
608 type = create_type(m, TYPE_STRUCT);
609 if (type) {
610 if (name) {
611 type->struct_def.name = ralloc_strdup(type, name);
612 if (!type->struct_def.name)
613 return NULL;
614 } else
615 type->struct_def.name = NULL;
616
617 type->struct_def.elem.types = ralloc_array(type, struct dxil_type *,
618 num_elem_types);
619 if (!type->struct_def.elem.types)
620 return NULL;
621
622 memcpy(type->struct_def.elem.types, elem_types,
623 sizeof(struct dxil_type *) * num_elem_types);
624 type->struct_def.elem.num_types = num_elem_types;
625 }
626 return type;
627 }
628
629 const struct dxil_type *
dxil_module_get_array_type(struct dxil_module * m,const struct dxil_type * elem_type,size_t num_elems)630 dxil_module_get_array_type(struct dxil_module *m,
631 const struct dxil_type *elem_type,
632 size_t num_elems)
633 {
634 struct dxil_type *type;
635 LIST_FOR_EACH_ENTRY(type, &m->type_list, head) {
636 if (type->type != TYPE_ARRAY)
637 continue;
638
639 if (type->array_or_vector_def.elem_type == elem_type &&
640 type->array_or_vector_def.num_elems == num_elems)
641 return type;
642 }
643
644 type = create_type(m, TYPE_ARRAY);
645 if (type) {
646 type->array_or_vector_def.elem_type = elem_type;
647 type->array_or_vector_def.num_elems = num_elems;
648 }
649 return type;
650 }
651
652 const struct dxil_type *
dxil_module_get_vector_type(struct dxil_module * m,const struct dxil_type * elem_type,size_t num_elems)653 dxil_module_get_vector_type(struct dxil_module *m,
654 const struct dxil_type *elem_type,
655 size_t num_elems)
656 {
657 struct dxil_type *type;
658 LIST_FOR_EACH_ENTRY(type, &m->type_list, head) {
659 if (type->type == TYPE_VECTOR &&
660 type->array_or_vector_def.elem_type == elem_type &&
661 type->array_or_vector_def.num_elems == num_elems)
662 return type;
663 }
664
665 type = create_type(m, TYPE_VECTOR);
666 if (!type)
667 return NULL;
668
669 type->array_or_vector_def.elem_type = elem_type;
670 type->array_or_vector_def.num_elems = num_elems;
671 return type;
672 }
673
674 const struct dxil_type *
dxil_get_overload_type(struct dxil_module * mod,enum overload_type overload)675 dxil_get_overload_type(struct dxil_module *mod, enum overload_type overload)
676 {
677 switch (overload) {
678 case DXIL_I16: return get_int16_type(mod);
679 case DXIL_I32: return get_int32_type(mod);
680 case DXIL_I64: return get_int64_type(mod);
681 case DXIL_F16: return get_float16_type(mod);
682 case DXIL_F32: return get_float32_type(mod);
683 case DXIL_F64: return get_float64_type(mod);
684 default:
685 unreachable("unexpected overload type");
686 }
687 }
688
689 const struct dxil_type *
dxil_module_get_handle_type(struct dxil_module * m)690 dxil_module_get_handle_type(struct dxil_module *m)
691 {
692 const struct dxil_type *int8_type = get_int8_type(m);
693 if (!int8_type)
694 return NULL;
695
696 const struct dxil_type *ptr_type = dxil_module_get_pointer_type(m, int8_type);
697 if (!ptr_type)
698 return NULL;
699
700 return dxil_module_get_struct_type(m, "dx.types.Handle", &ptr_type, 1);
701 }
702
703 const struct dxil_type *
dxil_module_get_cbuf_ret_type(struct dxil_module * mod,enum overload_type overload)704 dxil_module_get_cbuf_ret_type(struct dxil_module *mod, enum overload_type overload)
705 {
706 const struct dxil_type *overload_type = dxil_get_overload_type(mod, overload);
707 const struct dxil_type *fields[4] = { overload_type, overload_type, overload_type, overload_type };
708 unsigned num_fields;
709
710 char name[64];
711 snprintf(name, sizeof(name), "dx.types.CBufRet.%s", dxil_overload_suffix(overload));
712
713 switch (overload) {
714 case DXIL_I32:
715 case DXIL_F32:
716 num_fields = 4;
717 break;
718 case DXIL_I64:
719 case DXIL_F64:
720 num_fields = 2;
721 break;
722 default:
723 unreachable("unexpected overload type");
724 }
725
726 return dxil_module_get_struct_type(mod, name, fields, num_fields);
727 }
728
729 const struct dxil_type *
dxil_module_get_split_double_ret_type(struct dxil_module * mod)730 dxil_module_get_split_double_ret_type(struct dxil_module *mod)
731 {
732 const struct dxil_type *int32_type = dxil_module_get_int_type(mod, 32);
733 const struct dxil_type *fields[2] = { int32_type, int32_type };
734
735 return dxil_module_get_struct_type(mod, "dx.types.splitdouble", fields, 2);
736 }
737
738 static const struct dxil_type *
dxil_module_get_type_from_comp_type(struct dxil_module * m,enum dxil_component_type comp_type)739 dxil_module_get_type_from_comp_type(struct dxil_module *m, enum dxil_component_type comp_type)
740 {
741 switch (comp_type) {
742 case DXIL_COMP_TYPE_U32: return get_int32_type(m);
743 case DXIL_COMP_TYPE_I32: return get_int32_type(m);
744 case DXIL_COMP_TYPE_F32: return get_float32_type(m);
745 case DXIL_COMP_TYPE_F64: return get_float64_type(m);
746 case DXIL_COMP_TYPE_U16: return get_int16_type(m);
747 case DXIL_COMP_TYPE_I16: return get_int16_type(m);
748 case DXIL_COMP_TYPE_U64: return get_int64_type(m);
749 case DXIL_COMP_TYPE_I64: return get_int64_type(m);
750 case DXIL_COMP_TYPE_I1: return get_int1_type(m);
751
752 case DXIL_COMP_TYPE_F16:
753 default:
754 unreachable("unexpected component type");
755 }
756 }
757
758 static const char *
get_res_comp_type_name(enum dxil_component_type comp_type)759 get_res_comp_type_name(enum dxil_component_type comp_type)
760 {
761 switch (comp_type) {
762 case DXIL_COMP_TYPE_F64: return "double";
763 case DXIL_COMP_TYPE_F32: return "float";
764 case DXIL_COMP_TYPE_I32: return "int";
765 case DXIL_COMP_TYPE_U32: return "uint";
766 case DXIL_COMP_TYPE_I64: return "int64";
767 case DXIL_COMP_TYPE_U64: return "uint64";
768 default:
769 unreachable("unexpected resource component type");
770 }
771 }
772
773 static const char *
get_res_dimension_type_name(enum dxil_resource_kind kind)774 get_res_dimension_type_name(enum dxil_resource_kind kind)
775 {
776 switch (kind) {
777 case DXIL_RESOURCE_KIND_TYPED_BUFFER: return "Buffer";
778 case DXIL_RESOURCE_KIND_TEXTURE1D: return "Texture1D";
779 case DXIL_RESOURCE_KIND_TEXTURE1D_ARRAY: return "Texture1DArray";
780 case DXIL_RESOURCE_KIND_TEXTURE2D: return "Texture2D";
781 case DXIL_RESOURCE_KIND_TEXTURE2DMS: return "Texture2DMS";
782 case DXIL_RESOURCE_KIND_TEXTURE2D_ARRAY: return "Texture2DArray";
783 case DXIL_RESOURCE_KIND_TEXTURE2DMS_ARRAY: return "Texture2DMSArray";
784 case DXIL_RESOURCE_KIND_TEXTURE3D: return "Texture3D";
785 case DXIL_RESOURCE_KIND_TEXTURECUBE: return "TextureCube";
786 case DXIL_RESOURCE_KIND_TEXTURECUBE_ARRAY: return "TextureCubeArray";
787 default:
788 unreachable("unexpected resource kind");
789 }
790 }
791
792 static const char *
get_res_ms_postfix(enum dxil_resource_kind kind)793 get_res_ms_postfix(enum dxil_resource_kind kind)
794 {
795 switch (kind) {
796 case DXIL_RESOURCE_KIND_TEXTURE2DMS:
797 case DXIL_RESOURCE_KIND_TEXTURE2DMS_ARRAY:
798 return ", 0";
799
800 default:
801 return " ";
802 }
803 }
804 const struct dxil_type *
dxil_module_get_res_type(struct dxil_module * m,enum dxil_resource_kind kind,enum dxil_component_type comp_type,bool readwrite)805 dxil_module_get_res_type(struct dxil_module *m, enum dxil_resource_kind kind,
806 enum dxil_component_type comp_type, bool readwrite)
807 {
808 switch (kind) {
809 case DXIL_RESOURCE_KIND_TYPED_BUFFER:
810 case DXIL_RESOURCE_KIND_TEXTURE1D:
811 case DXIL_RESOURCE_KIND_TEXTURE1D_ARRAY:
812 case DXIL_RESOURCE_KIND_TEXTURE2D:
813 case DXIL_RESOURCE_KIND_TEXTURE2D_ARRAY:
814 case DXIL_RESOURCE_KIND_TEXTURE2DMS:
815 case DXIL_RESOURCE_KIND_TEXTURE2DMS_ARRAY:
816 case DXIL_RESOURCE_KIND_TEXTURE3D:
817 case DXIL_RESOURCE_KIND_TEXTURECUBE:
818 case DXIL_RESOURCE_KIND_TEXTURECUBE_ARRAY:
819 {
820 const struct dxil_type *component_type = dxil_module_get_type_from_comp_type(m, comp_type);
821 const struct dxil_type *vec_type = dxil_module_get_vector_type(m, component_type, 4);
822 char class_name[64] = { 0 };
823 snprintf(class_name, 64, "class.%s%s<vector<%s, 4>%s>",
824 readwrite ? "RW" : "",
825 get_res_dimension_type_name(kind),
826 get_res_comp_type_name(comp_type),
827 get_res_ms_postfix(kind));
828 return dxil_module_get_struct_type(m, class_name, &vec_type, 1);
829 }
830
831 case DXIL_RESOURCE_KIND_RAW_BUFFER:
832 {
833 const struct dxil_type *component_type = dxil_module_get_int_type(m, 32);
834 char class_name[64] = { 0 };
835 snprintf(class_name, 64, "struct.%sByteAddressBuffer", readwrite ? "RW" : "");
836 return dxil_module_get_struct_type(m, class_name, &component_type, 1);
837 }
838
839 default:
840 unreachable("resource type not supported");
841 }
842 }
843
844 const struct dxil_type *
dxil_module_get_resret_type(struct dxil_module * m,enum overload_type overload)845 dxil_module_get_resret_type(struct dxil_module *m, enum overload_type overload)
846 {
847 const struct dxil_type *overload_type = dxil_get_overload_type(m, overload);
848 const struct dxil_type *int32_type = dxil_module_get_int_type(m, 32);
849 const char *name;
850 if (!overload_type)
851 return NULL;
852
853 const struct dxil_type *resret[] =
854 { overload_type, overload_type, overload_type, overload_type, int32_type };
855
856 switch (overload) {
857 case DXIL_I32: name = "dx.types.ResRet.i32"; break;
858 case DXIL_I64: name = "dx.types.ResRet.i64"; break;
859 case DXIL_F32: name = "dx.types.ResRet.f32"; break;
860 case DXIL_F64: name = "dx.types.ResRet.f64"; break;
861 default:
862 unreachable("unexpected overload type");
863 }
864
865 return dxil_module_get_struct_type(m, name, resret, 5);
866 }
867
868 const struct dxil_type *
dxil_module_get_dimret_type(struct dxil_module * m)869 dxil_module_get_dimret_type(struct dxil_module *m)
870 {
871 const struct dxil_type *int32_type = dxil_module_get_int_type(m, 32);
872
873 const struct dxil_type *dimret[] =
874 { int32_type, int32_type, int32_type, int32_type };
875
876 return dxil_module_get_struct_type(m, "dx.types.Dimensions", dimret, 4);
877 }
878
879 const struct dxil_type *
dxil_module_get_samplepos_type(struct dxil_module * m)880 dxil_module_get_samplepos_type(struct dxil_module *m)
881 {
882 const struct dxil_type *float_type = dxil_module_get_float_type(m, 32);
883
884 const struct dxil_type *samplepos[] =
885 { float_type, float_type };
886
887 return dxil_module_get_struct_type(m, "dx.types.SamplePos", samplepos, 2);
888 }
889
890 const struct dxil_type *
dxil_module_add_function_type(struct dxil_module * m,const struct dxil_type * ret_type,const struct dxil_type ** arg_types,size_t num_arg_types)891 dxil_module_add_function_type(struct dxil_module *m,
892 const struct dxil_type *ret_type,
893 const struct dxil_type **arg_types,
894 size_t num_arg_types)
895 {
896 struct dxil_type *type = create_type(m, TYPE_FUNCTION);
897 if (type) {
898 type->function_def.args.types = ralloc_array(type,
899 struct dxil_type *,
900 num_arg_types);
901 if (!type->function_def.args.types)
902 return NULL;
903
904 memcpy(type->function_def.args.types, arg_types,
905 sizeof(struct dxil_type *) * num_arg_types);
906 type->function_def.args.num_types = num_arg_types;
907 type->function_def.ret_type = ret_type;
908 }
909 return type;
910 }
911
912
913 enum type_codes {
914 TYPE_CODE_NUMENTRY = 1,
915 TYPE_CODE_VOID = 2,
916 TYPE_CODE_FLOAT = 3,
917 TYPE_CODE_DOUBLE = 4,
918 TYPE_CODE_LABEL = 5,
919 TYPE_CODE_OPAQUE = 6,
920 TYPE_CODE_INTEGER = 7,
921 TYPE_CODE_POINTER = 8,
922 TYPE_CODE_FUNCTION_OLD = 9,
923 TYPE_CODE_HALF = 10,
924 TYPE_CODE_ARRAY = 11,
925 TYPE_CODE_VECTOR = 12,
926 TYPE_CODE_X86_FP80 = 13,
927 TYPE_CODE_FP128 = 14,
928 TYPE_CODE_PPC_FP128 = 15,
929 TYPE_CODE_METADATA = 16,
930 TYPE_CODE_X86_MMX = 17,
931 TYPE_CODE_STRUCT_ANON = 18,
932 TYPE_CODE_STRUCT_NAME = 19,
933 TYPE_CODE_STRUCT_NAMED = 20,
934 TYPE_CODE_FUNCTION = 21
935 };
936
937 #define LITERAL(x) { DXIL_OP_LITERAL, { (x) } }
938 #define FIXED(x) { DXIL_OP_FIXED, { (x) } }
939 #define VBR(x) { DXIL_OP_VBR, { (x) } }
940 #define ARRAY { DXIL_OP_ARRAY, { 0 } }
941 #define CHAR6 { DXIL_OP_CHAR6, { 0 } }
942 #define BLOB { DXIL_OP_BLOB, { 0 } }
943
944 #define TYPE_INDEX FIXED(32)
945
946 enum type_table_abbrev_id {
947 TYPE_TABLE_ABBREV_POINTER,
948 TYPE_TABLE_ABBREV_FUNCTION,
949 TYPE_TABLE_ABBREV_STRUCT_ANON,
950 TYPE_TABLE_ABBREV_STRUCT_NAME,
951 TYPE_TABLE_ABBREV_STRUCT_NAMED,
952 TYPE_TABLE_ABBREV_ARRAY,
953 TYPE_TABLE_ABBREV_VECTOR,
954 };
955
956 static const struct dxil_abbrev
957 type_table_abbrevs[] = {
958 [TYPE_TABLE_ABBREV_POINTER] = {
959 { LITERAL(TYPE_CODE_POINTER), TYPE_INDEX, LITERAL(0) }, 3
960 },
961 [TYPE_TABLE_ABBREV_FUNCTION] = {
962 { LITERAL(TYPE_CODE_FUNCTION), FIXED(1), ARRAY, TYPE_INDEX }, 4
963 },
964 [TYPE_TABLE_ABBREV_STRUCT_ANON] = {
965 { LITERAL(TYPE_CODE_STRUCT_ANON), FIXED(1), ARRAY, TYPE_INDEX }, 4
966 },
967 [TYPE_TABLE_ABBREV_STRUCT_NAME] = {
968 { LITERAL(TYPE_CODE_STRUCT_NAME), ARRAY, CHAR6 }, 3
969 },
970 [TYPE_TABLE_ABBREV_STRUCT_NAMED] = {
971 { LITERAL(TYPE_CODE_STRUCT_NAMED), FIXED(1), ARRAY, TYPE_INDEX }, 4
972 },
973 [TYPE_TABLE_ABBREV_ARRAY] = {
974 { LITERAL(TYPE_CODE_ARRAY), VBR(8), TYPE_INDEX }, 3
975 },
976 [TYPE_TABLE_ABBREV_VECTOR] = {
977 { LITERAL(TYPE_CODE_VECTOR), VBR(8), TYPE_INDEX }, 3
978 },
979 };
980
981 static bool
emit_type_table_abbrev_record(struct dxil_module * m,enum type_table_abbrev_id abbrev,const uint64_t * data,size_t size)982 emit_type_table_abbrev_record(struct dxil_module *m,
983 enum type_table_abbrev_id abbrev,
984 const uint64_t *data, size_t size)
985 {
986 assert(abbrev < ARRAY_SIZE(type_table_abbrevs));
987 return emit_record_abbrev(&m->buf, abbrev + DXIL_FIRST_APPLICATION_ABBREV,
988 type_table_abbrevs + abbrev, data, size);
989 }
990
991 enum constant_code {
992 CST_CODE_SETTYPE = 1,
993 CST_CODE_NULL = 2,
994 CST_CODE_UNDEF = 3,
995 CST_CODE_INTEGER = 4,
996 CST_CODE_WIDE_INTEGER = 5,
997 CST_CODE_FLOAT = 6,
998 CST_CODE_AGGREGATE = 7,
999 CST_CODE_STRING = 8,
1000 CST_CODE_CSTRING = 9,
1001 CST_CODE_CE_BINOP = 10,
1002 CST_CODE_CE_CAST = 11,
1003 CST_CODE_CE_GEP = 12,
1004 CST_CODE_CE_SELECT = 13,
1005 CST_CODE_CE_EXTRACTELT = 14,
1006 CST_CODE_CE_INSERTELT = 15,
1007 CST_CODE_CE_SHUFFLEVEC = 16,
1008 CST_CODE_CE_CMP = 17,
1009 CST_CODE_INLINEASM_OLD = 18,
1010 CST_CODE_CE_SHUFVEC_EX = 19,
1011 CST_CODE_CE_INBOUNDS_GEP = 20,
1012 CST_CODE_BLOCKADDRESS = 21,
1013 CST_CODE_DATA = 22,
1014 CST_CODE_INLINEASM = 23
1015 };
1016
1017 enum const_abbrev_id {
1018 CONST_ABBREV_SETTYPE,
1019 CONST_ABBREV_INTEGER,
1020 CONST_ABBREV_CE_CAST,
1021 CONST_ABBREV_NULL,
1022 };
1023
1024 static const struct dxil_abbrev
1025 const_abbrevs[] = {
1026 [CONST_ABBREV_SETTYPE] = { { LITERAL(CST_CODE_SETTYPE), TYPE_INDEX }, 2 },
1027 [CONST_ABBREV_INTEGER] = { { LITERAL(CST_CODE_INTEGER), VBR(8) }, 2 },
1028 [CONST_ABBREV_CE_CAST] = {
1029 { LITERAL(CST_CODE_CE_CAST), FIXED(4), TYPE_INDEX, VBR(8) }, 4
1030 },
1031 [CONST_ABBREV_NULL] = { { LITERAL(CST_CODE_NULL) }, 1 },
1032 };
1033
1034 static bool
emit_const_abbrev_record(struct dxil_module * m,enum const_abbrev_id abbrev,const uint64_t * data,size_t size)1035 emit_const_abbrev_record(struct dxil_module *m, enum const_abbrev_id abbrev,
1036 const uint64_t *data, size_t size)
1037 {
1038 assert(abbrev < ARRAY_SIZE(const_abbrevs));
1039
1040 return emit_record_abbrev(&m->buf, abbrev + DXIL_FIRST_APPLICATION_ABBREV,
1041 const_abbrevs + abbrev, data, size);
1042 }
1043
1044 enum function_code {
1045 FUNC_CODE_DECLAREBLOCKS = 1,
1046 FUNC_CODE_INST_BINOP = 2,
1047 FUNC_CODE_INST_CAST = 3,
1048 FUNC_CODE_INST_GEP_OLD = 4,
1049 FUNC_CODE_INST_SELECT = 5,
1050 FUNC_CODE_INST_EXTRACTELT = 6,
1051 FUNC_CODE_INST_INSERTELT = 7,
1052 FUNC_CODE_INST_SHUFFLEVEC = 8,
1053 FUNC_CODE_INST_CMP = 9,
1054 FUNC_CODE_INST_RET = 10,
1055 FUNC_CODE_INST_BR = 11,
1056 FUNC_CODE_INST_SWITCH = 12,
1057 FUNC_CODE_INST_INVOKE = 13,
1058 /* 14: unused */
1059 FUNC_CODE_INST_UNREACHABLE = 15,
1060 FUNC_CODE_INST_PHI = 16,
1061 /* 17-18: unused */
1062 FUNC_CODE_INST_ALLOCA = 19,
1063 FUNC_CODE_INST_LOAD = 20,
1064 /* 21-22: unused */
1065 FUNC_CODE_INST_VAARG = 23,
1066 FUNC_CODE_INST_STORE_OLD = 24,
1067 /* 25: unused */
1068 FUNC_CODE_INST_EXTRACTVAL = 26,
1069 FUNC_CODE_INST_INSERTVAL = 27,
1070 FUNC_CODE_INST_CMP2 = 28,
1071 FUNC_CODE_INST_VSELECT = 29,
1072 FUNC_CODE_INST_INBOUNDS_GEP_OLD = 30,
1073 FUNC_CODE_INST_INDIRECTBR = 31,
1074 /* 32: unused */
1075 FUNC_CODE_DEBUG_LOC_AGAIN = 33,
1076 FUNC_CODE_INST_CALL = 34,
1077 FUNC_CODE_DEBUG_LOC = 35,
1078 FUNC_CODE_INST_FENCE = 36,
1079 FUNC_CODE_INST_CMPXCHG_OLD = 37,
1080 FUNC_CODE_INST_ATOMICRMW = 38,
1081 FUNC_CODE_INST_RESUME = 39,
1082 FUNC_CODE_INST_LANDINGPAD_OLD = 40,
1083 FUNC_CODE_INST_LOADATOMIC = 41,
1084 FUNC_CODE_INST_STOREATOMIC_OLD = 42,
1085 FUNC_CODE_INST_GEP = 43,
1086 FUNC_CODE_INST_STORE = 44,
1087 FUNC_CODE_INST_STOREATOMIC = 45,
1088 FUNC_CODE_INST_CMPXCHG = 46,
1089 FUNC_CODE_INST_LANDINGPAD = 47,
1090 };
1091
1092 enum func_abbrev_id {
1093 FUNC_ABBREV_LOAD,
1094 FUNC_ABBREV_BINOP,
1095 FUNC_ABBREV_BINOP_FLAGS,
1096 FUNC_ABBREV_CAST,
1097 FUNC_ABBREV_RET_VOID,
1098 FUNC_ABBREV_RET_VAL,
1099 FUNC_ABBREV_UNREACHABLE,
1100 FUNC_ABBREV_GEP,
1101 };
1102
1103 static const struct dxil_abbrev
1104 func_abbrevs[] = {
1105 [FUNC_ABBREV_LOAD] = {
1106 { LITERAL(FUNC_CODE_INST_LOAD), VBR(6), TYPE_INDEX, VBR(4),
1107 FIXED(1) }, 5
1108 },
1109 [FUNC_ABBREV_BINOP] = {
1110 { LITERAL(FUNC_CODE_INST_BINOP), VBR(6), VBR(6), FIXED(4) }, 4
1111 },
1112 [FUNC_ABBREV_BINOP_FLAGS] = {
1113 { LITERAL(FUNC_CODE_INST_BINOP), VBR(6), VBR(6), FIXED(4),
1114 FIXED(7) }, 5
1115 },
1116 [FUNC_ABBREV_CAST] = {
1117 { LITERAL(FUNC_CODE_INST_CAST), VBR(6), TYPE_INDEX, FIXED(4) }, 4
1118 },
1119 [FUNC_ABBREV_RET_VOID] = { { LITERAL(FUNC_CODE_INST_RET) }, 1 },
1120 [FUNC_ABBREV_RET_VAL] = { { LITERAL(FUNC_CODE_INST_RET), VBR(6) }, 2 },
1121 [FUNC_ABBREV_UNREACHABLE] = {
1122 { LITERAL(FUNC_CODE_INST_UNREACHABLE) }, 1
1123 },
1124 [FUNC_ABBREV_GEP] = {
1125 { LITERAL(FUNC_CODE_INST_GEP), FIXED(1), TYPE_INDEX, ARRAY,
1126 VBR(6) }, 5
1127 },
1128 };
1129
1130 static bool
emit_func_abbrev_record(struct dxil_module * m,enum func_abbrev_id abbrev,const uint64_t * data,size_t size)1131 emit_func_abbrev_record(struct dxil_module *m, enum func_abbrev_id abbrev,
1132 const uint64_t *data, size_t size)
1133 {
1134 assert(abbrev < ARRAY_SIZE(func_abbrevs));
1135 return emit_record_abbrev(&m->buf, abbrev + DXIL_FIRST_APPLICATION_ABBREV,
1136 func_abbrevs + abbrev, data, size);
1137 }
1138
1139 static bool
define_abbrev(struct dxil_module * m,const struct dxil_abbrev * a)1140 define_abbrev(struct dxil_module *m, const struct dxil_abbrev *a)
1141 {
1142 if (!dxil_buffer_emit_abbrev_id(&m->buf, DXIL_DEFINE_ABBREV) ||
1143 !dxil_buffer_emit_vbr_bits(&m->buf, a->num_operands, 5))
1144 return false;
1145
1146 for (int i = 0; i < a->num_operands; ++i) {
1147 unsigned is_literal = a->operands[i].type == DXIL_OP_LITERAL;
1148 if (!dxil_buffer_emit_bits(&m->buf, is_literal, 1))
1149 return false;
1150 if (a->operands[i].type == DXIL_OP_LITERAL) {
1151 if (!dxil_buffer_emit_vbr_bits(&m->buf, a->operands[i].value, 8))
1152 return false;
1153 } else {
1154 if (!dxil_buffer_emit_bits(&m->buf, a->operands[i].type, 3))
1155 return false;
1156 if (a->operands[i].type == DXIL_OP_FIXED) {
1157 if (!dxil_buffer_emit_vbr_bits(&m->buf,
1158 a->operands[i].encoding_data, 5))
1159 return false;
1160 } else if (a->operands[i].type == DXIL_OP_VBR) {
1161 if (!dxil_buffer_emit_vbr_bits(&m->buf,
1162 a->operands[i].encoding_data, 5))
1163 return false;
1164 }
1165 }
1166 }
1167
1168 return true;
1169 }
1170
1171 enum dxil_blockinfo_code {
1172 DXIL_BLOCKINFO_CODE_SETBID = 1,
1173 DXIL_BLOCKINFO_CODE_BLOCKNAME = 2,
1174 DXIL_BLOCKINFO_CODE_SETRECORDNAME = 3
1175 };
1176
1177 static bool
switch_to_block(struct dxil_module * m,uint32_t block)1178 switch_to_block(struct dxil_module *m, uint32_t block)
1179 {
1180 return emit_record_int(m, DXIL_BLOCKINFO_CODE_SETBID, block);
1181 }
1182
1183 enum dxil_standard_block {
1184 DXIL_BLOCKINFO = 0,
1185 DXIL_FIRST_APPLICATION_BLOCK = 8
1186 };
1187
1188 enum dxil_llvm_block {
1189 DXIL_MODULE = DXIL_FIRST_APPLICATION_BLOCK,
1190 DXIL_PARAMATTR = DXIL_FIRST_APPLICATION_BLOCK + 1,
1191 DXIL_PARAMATTR_GROUP = DXIL_FIRST_APPLICATION_BLOCK + 2,
1192 DXIL_CONST_BLOCK = DXIL_FIRST_APPLICATION_BLOCK + 3,
1193 DXIL_FUNCTION_BLOCK = DXIL_FIRST_APPLICATION_BLOCK + 4,
1194 DXIL_VALUE_SYMTAB_BLOCK = DXIL_FIRST_APPLICATION_BLOCK + 6,
1195 DXIL_METADATA_BLOCK = DXIL_FIRST_APPLICATION_BLOCK + 7,
1196 DXIL_TYPE_BLOCK = DXIL_FIRST_APPLICATION_BLOCK + 9,
1197 };
1198
1199 enum value_symtab_code {
1200 VST_CODE_ENTRY = 1,
1201 VST_CODE_BBENTRY = 2
1202 };
1203
1204 enum value_symtab_abbrev_id {
1205 VST_ABBREV_ENTRY_8,
1206 VST_ABBREV_ENTRY_7,
1207 VST_ABBREV_ENTRY_6,
1208 VST_ABBREV_BBENTRY_6,
1209 };
1210
1211 static struct dxil_abbrev value_symtab_abbrevs[] = {
1212 [VST_ABBREV_ENTRY_8] = { { FIXED(3), VBR(8), ARRAY, FIXED(8) }, 4 },
1213 [VST_ABBREV_ENTRY_7] = {
1214 { LITERAL(VST_CODE_ENTRY), VBR(8), ARRAY, FIXED(7), }, 4
1215 },
1216 [VST_ABBREV_ENTRY_6] = {
1217 { LITERAL(VST_CODE_ENTRY), VBR(8), ARRAY, CHAR6, }, 4
1218 },
1219 [VST_ABBREV_BBENTRY_6] = {
1220 { LITERAL(VST_CODE_BBENTRY), VBR(8), ARRAY, CHAR6, }, 4
1221 },
1222 };
1223
1224 static bool
emit_value_symtab_abbrevs(struct dxil_module * m)1225 emit_value_symtab_abbrevs(struct dxil_module *m)
1226 {
1227 if (!switch_to_block(m, DXIL_VALUE_SYMTAB_BLOCK))
1228 return false;
1229
1230 for (int i = 0; i < ARRAY_SIZE(value_symtab_abbrevs); ++i) {
1231 if (!define_abbrev(m, value_symtab_abbrevs + i))
1232 return false;
1233 }
1234
1235 return true;
1236 }
1237
1238 static bool
emit_const_abbrevs(struct dxil_module * m)1239 emit_const_abbrevs(struct dxil_module *m)
1240 {
1241 if (!switch_to_block(m, DXIL_CONST_BLOCK))
1242 return false;
1243
1244 for (int i = 0; i < ARRAY_SIZE(const_abbrevs); ++i) {
1245 if (!define_abbrev(m, const_abbrevs + i))
1246 return false;
1247 }
1248
1249 return true;
1250 }
1251
1252 static bool
emit_function_abbrevs(struct dxil_module * m)1253 emit_function_abbrevs(struct dxil_module *m)
1254 {
1255 if (!switch_to_block(m, DXIL_FUNCTION_BLOCK))
1256 return false;
1257
1258 for (int i = 0; i < ARRAY_SIZE(func_abbrevs); ++i) {
1259 if (!define_abbrev(m, func_abbrevs + i))
1260 return false;
1261 }
1262
1263 return true;
1264 }
1265
1266 static bool
emit_blockinfo(struct dxil_module * m)1267 emit_blockinfo(struct dxil_module *m)
1268 {
1269 return enter_subblock(m, DXIL_BLOCKINFO, 2) &&
1270 emit_value_symtab_abbrevs(m) &&
1271 emit_const_abbrevs(m) &&
1272 emit_function_abbrevs(m) &&
1273 exit_block(m);
1274 }
1275
1276 enum attribute_codes {
1277 PARAMATTR_GRP_CODE_ENTRY = 3,
1278 PARAMATTR_CODE_ENTRY = 2
1279 };
1280
1281 static bool
emit_attrib_group(struct dxil_module * m,int id,uint32_t slot,const struct dxil_attrib * attrs,size_t num_attrs)1282 emit_attrib_group(struct dxil_module *m, int id, uint32_t slot,
1283 const struct dxil_attrib *attrs, size_t num_attrs)
1284 {
1285 uint64_t record[64];
1286 record[0] = id;
1287 record[1] = slot;
1288 size_t size = 2;
1289
1290 for (int i = 0; i < num_attrs; ++i) {
1291 switch (attrs[i].type) {
1292 case DXIL_ATTR_ENUM:
1293 assert(size < ARRAY_SIZE(record) - 2);
1294 record[size++] = 0;
1295 record[size++] = attrs[i].kind;
1296 break;
1297
1298 default:
1299 unreachable("unsupported attrib type");
1300 }
1301 }
1302
1303 return emit_record(m, PARAMATTR_GRP_CODE_ENTRY, record, size);
1304 }
1305
1306 static bool
emit_attrib_group_table(struct dxil_module * m)1307 emit_attrib_group_table(struct dxil_module *m)
1308 {
1309 if (!enter_subblock(m, DXIL_PARAMATTR_GROUP, 3))
1310 return false;
1311
1312 struct attrib_set *as;
1313 int id = 1;
1314 LIST_FOR_EACH_ENTRY(as, &m->attr_set_list, head) {
1315 if (!emit_attrib_group(m, id, UINT32_MAX, as->attrs, as->num_attrs))
1316 return false;
1317 id++;
1318 }
1319
1320 return exit_block(m);
1321 }
1322
1323 static bool
emit_attribute_table(struct dxil_module * m)1324 emit_attribute_table(struct dxil_module *m)
1325 {
1326 if (!enter_subblock(m, DXIL_PARAMATTR, 3))
1327 return false;
1328
1329 struct attrib_set *as;
1330 int id = 1;
1331 LIST_FOR_EACH_ENTRY(as, &m->attr_set_list, head) {
1332 if (!emit_record_int(m, PARAMATTR_CODE_ENTRY, id))
1333 return false;
1334 id++;
1335 }
1336
1337 return exit_block(m);
1338 }
1339
1340 static bool
emit_type_table_abbrevs(struct dxil_module * m)1341 emit_type_table_abbrevs(struct dxil_module *m)
1342 {
1343 for (int i = 0; i < ARRAY_SIZE(type_table_abbrevs); ++i) {
1344 if (!define_abbrev(m, type_table_abbrevs + i))
1345 return false;
1346 }
1347
1348 return true;
1349 }
1350
1351 static bool
emit_float_type(struct dxil_module * m,unsigned bit_size)1352 emit_float_type(struct dxil_module *m, unsigned bit_size)
1353 {
1354 switch (bit_size) {
1355 case 16: return emit_record(m, TYPE_CODE_HALF, NULL, 0);
1356 case 32: return emit_record(m, TYPE_CODE_FLOAT, NULL, 0);
1357 case 64: return emit_record(m, TYPE_CODE_DOUBLE, NULL, 0);
1358 default:
1359 unreachable("unexpected bit_size for float type");
1360 }
1361 }
1362
1363 static bool
emit_pointer_type(struct dxil_module * m,int type_index)1364 emit_pointer_type(struct dxil_module *m, int type_index)
1365 {
1366 uint64_t data[] = { TYPE_CODE_POINTER, type_index, 0 };
1367 return emit_type_table_abbrev_record(m, TYPE_TABLE_ABBREV_POINTER,
1368 data, ARRAY_SIZE(data));
1369 }
1370
1371 static bool
emit_struct_name(struct dxil_module * m,const char * name)1372 emit_struct_name(struct dxil_module *m, const char *name)
1373 {
1374 uint64_t temp[256];
1375 assert(strlen(name) < ARRAY_SIZE(temp));
1376
1377 for (int i = 0; i < strlen(name); ++i)
1378 temp[i] = name[i];
1379
1380 return emit_record(m, TYPE_CODE_STRUCT_NAME, temp, strlen(name));
1381 }
1382
1383 static bool
emit_struct_name_char6(struct dxil_module * m,const char * name)1384 emit_struct_name_char6(struct dxil_module *m, const char *name)
1385 {
1386 uint64_t temp[256];
1387 assert(strlen(name) < ARRAY_SIZE(temp) - 1);
1388
1389 temp[0] = TYPE_CODE_STRUCT_NAME;
1390 for (int i = 0; i < strlen(name); ++i)
1391 temp[i + 1] = name[i];
1392
1393 return emit_type_table_abbrev_record(m, TYPE_TABLE_ABBREV_STRUCT_NAME,
1394 temp, 1 + strlen(name));
1395 }
1396
1397 static bool
emit_struct_type(struct dxil_module * m,const struct dxil_type * type)1398 emit_struct_type(struct dxil_module *m, const struct dxil_type *type)
1399 {
1400 enum type_table_abbrev_id abbrev = TYPE_TABLE_ABBREV_STRUCT_ANON;
1401 enum type_codes type_code = TYPE_CODE_STRUCT_ANON;
1402 if (type->struct_def.name) {
1403 abbrev = TYPE_TABLE_ABBREV_STRUCT_NAMED;
1404 type_code = TYPE_CODE_STRUCT_NAMED;
1405 if (is_char6_string(type->struct_def.name)) {
1406 if (!emit_struct_name_char6(m, type->struct_def.name))
1407 return false;
1408 } else {
1409 if (!emit_struct_name(m, type->struct_def.name))
1410 return false;
1411 }
1412 }
1413
1414 uint64_t temp[256];
1415 assert(type->struct_def.elem.num_types < ARRAY_SIZE(temp) - 2);
1416 temp[0] = type_code;
1417 temp[1] = 0; /* packed */
1418 for (int i = 0; i < type->struct_def.elem.num_types; ++i) {
1419 assert(type->struct_def.elem.types[i]->id >= 0);
1420 temp[2 + i] = type->struct_def.elem.types[i]->id;
1421 }
1422
1423 return emit_type_table_abbrev_record(m, abbrev, temp,
1424 2 + type->struct_def.elem.num_types);
1425 }
1426
1427 static bool
emit_array_type(struct dxil_module * m,const struct dxil_type * type)1428 emit_array_type(struct dxil_module *m, const struct dxil_type *type)
1429 {
1430 assert(type->array_or_vector_def.elem_type->id >= 0);
1431 uint64_t data[] = {
1432 TYPE_CODE_ARRAY,
1433 type->array_or_vector_def.num_elems,
1434 type->array_or_vector_def.elem_type->id
1435 };
1436 return emit_type_table_abbrev_record(m, TYPE_TABLE_ABBREV_ARRAY, data,
1437 ARRAY_SIZE(data));
1438 }
1439
1440 static bool
emit_function_type(struct dxil_module * m,const struct dxil_type * type)1441 emit_function_type(struct dxil_module *m, const struct dxil_type *type)
1442 {
1443 uint64_t temp[256];
1444 assert(type->function_def.args.num_types < ARRAY_SIZE(temp) - 3);
1445 assert(type->function_def.ret_type->id >= 0);
1446
1447 temp[0] = TYPE_CODE_FUNCTION;
1448 temp[1] = 0; // vararg
1449 temp[2] = type->function_def.ret_type->id;
1450 for (int i = 0; i < type->function_def.args.num_types; ++i) {
1451 assert(type->function_def.args.types[i]->id >= 0);
1452 temp[3 + i] = type->function_def.args.types[i]->id;
1453 }
1454
1455 return emit_type_table_abbrev_record(m, TYPE_TABLE_ABBREV_FUNCTION,
1456 temp, 3 + type->function_def.args.num_types);
1457 }
1458
1459 static bool
emit_vector_type(struct dxil_module * m,const struct dxil_type * type)1460 emit_vector_type(struct dxil_module *m, const struct dxil_type *type)
1461 {
1462 uint64_t temp[3];
1463 temp[0] = TYPE_CODE_VECTOR;
1464 temp[1] = type->array_or_vector_def.num_elems;
1465 temp[2] = type->array_or_vector_def.elem_type->id;
1466
1467 return emit_type_table_abbrev_record(m, TYPE_TABLE_ABBREV_VECTOR , temp, 3);
1468 }
1469
1470 static bool
emit_metadata_type(struct dxil_module * m)1471 emit_metadata_type(struct dxil_module *m)
1472 {
1473 return emit_record(m, TYPE_CODE_METADATA, NULL, 0);
1474 }
1475
1476 static bool
emit_type(struct dxil_module * m,struct dxil_type * type)1477 emit_type(struct dxil_module *m, struct dxil_type *type)
1478 {
1479 switch (type->type) {
1480 case TYPE_VOID:
1481 return emit_record(m, TYPE_CODE_VOID, NULL, 0);
1482
1483 case TYPE_INTEGER:
1484 return emit_record_int(m, TYPE_CODE_INTEGER, type->int_bits);
1485
1486 case TYPE_FLOAT:
1487 return emit_float_type(m, type->float_bits);
1488
1489 case TYPE_POINTER:
1490 return emit_pointer_type(m, type->ptr_target_type->id);
1491
1492 case TYPE_STRUCT:
1493 return emit_struct_type(m, type);
1494
1495 case TYPE_ARRAY:
1496 return emit_array_type(m, type);
1497
1498 case TYPE_FUNCTION:
1499 return emit_function_type(m, type);
1500
1501 case TYPE_VECTOR:
1502 return emit_vector_type(m, type);
1503
1504 default:
1505 unreachable("unexpected type->type");
1506 }
1507 }
1508
1509 static bool
emit_type_table(struct dxil_module * m)1510 emit_type_table(struct dxil_module *m)
1511 {
1512 if (!enter_subblock(m, DXIL_TYPE_BLOCK, 4) ||
1513 !emit_type_table_abbrevs(m) ||
1514 !emit_record_int(m, 1, 1 + list_length(&m->type_list)))
1515 return false;
1516
1517 list_for_each_entry(struct dxil_type, type, &m->type_list, head) {
1518 if (!emit_type(m, type))
1519 return false;
1520 }
1521
1522 return emit_metadata_type(m) &&
1523 exit_block(m);
1524 }
1525
1526 static struct dxil_const *
create_const(struct dxil_module * m,const struct dxil_type * type,bool undef)1527 create_const(struct dxil_module *m, const struct dxil_type *type, bool undef)
1528 {
1529 struct dxil_const *ret = ralloc_size(m->ralloc_ctx,
1530 sizeof(struct dxil_const));
1531 if (ret) {
1532 ret->value.id = -1;
1533 ret->value.type = type;
1534 ret->undef = undef;
1535 list_addtail(&ret->head, &m->const_list);
1536 }
1537 return ret;
1538 }
1539
1540 static const struct dxil_value *
get_int_const(struct dxil_module * m,const struct dxil_type * type,intmax_t value)1541 get_int_const(struct dxil_module *m, const struct dxil_type *type,
1542 intmax_t value)
1543 {
1544 assert(type && type->type == TYPE_INTEGER);
1545
1546 struct dxil_const *c;
1547 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1548 if (c->value.type != type || c->undef)
1549 continue;
1550
1551 if (c->int_value == value)
1552 return &c->value;
1553 }
1554
1555 c = create_const(m, type, false);
1556 if (!c)
1557 return NULL;
1558
1559 c->int_value = value;
1560 return &c->value;
1561 }
1562
1563 const struct dxil_value *
dxil_module_get_int1_const(struct dxil_module * m,bool value)1564 dxil_module_get_int1_const(struct dxil_module *m, bool value)
1565 {
1566 const struct dxil_type *type = get_int1_type(m);
1567 if (!type)
1568 return NULL;
1569
1570 return get_int_const(m, type, value);
1571 }
1572
1573 const struct dxil_value *
dxil_module_get_int8_const(struct dxil_module * m,int8_t value)1574 dxil_module_get_int8_const(struct dxil_module *m, int8_t value)
1575 {
1576 const struct dxil_type *type = get_int8_type(m);
1577 if (!type)
1578 return NULL;
1579
1580 return get_int_const(m, type, value);
1581 }
1582
1583 const struct dxil_value *
dxil_module_get_int16_const(struct dxil_module * m,int16_t value)1584 dxil_module_get_int16_const(struct dxil_module *m, int16_t value)
1585 {
1586 const struct dxil_type *type = get_int16_type(m);
1587 if (!type)
1588 return NULL;
1589
1590 return get_int_const(m, type, value);
1591 }
1592
1593 const struct dxil_value *
dxil_module_get_int32_const(struct dxil_module * m,int32_t value)1594 dxil_module_get_int32_const(struct dxil_module *m, int32_t value)
1595 {
1596 const struct dxil_type *type = get_int32_type(m);
1597 if (!type)
1598 return NULL;
1599
1600 return get_int_const(m, type, value);
1601 }
1602
1603 const struct dxil_value *
dxil_module_get_int64_const(struct dxil_module * m,int64_t value)1604 dxil_module_get_int64_const(struct dxil_module *m, int64_t value)
1605 {
1606 const struct dxil_type *type = get_int64_type(m);
1607 if (!type)
1608 return NULL;
1609
1610 return get_int_const(m, type, value);
1611 }
1612
1613 const struct dxil_value *
dxil_module_get_int_const(struct dxil_module * m,intmax_t value,unsigned bit_size)1614 dxil_module_get_int_const(struct dxil_module *m, intmax_t value,
1615 unsigned bit_size)
1616 {
1617 switch (bit_size) {
1618 case 1:
1619 assert(value == 0 || value == 1);
1620 return dxil_module_get_int1_const(m, value);
1621
1622 case 8:
1623 assert(INT8_MIN <= value && value <= INT8_MAX);
1624 return dxil_module_get_int8_const(m, value);
1625
1626 case 16:
1627 assert(INT16_MIN <= value && value <= INT16_MAX);
1628 return dxil_module_get_int16_const(m, value);
1629
1630 case 32:
1631 assert(INT32_MIN <= value && value <= INT32_MAX);
1632 return dxil_module_get_int32_const(m, value);
1633
1634 case 64:
1635 assert(INT64_MIN <= value && value <= INT64_MAX);
1636 return dxil_module_get_int64_const(m, value);
1637
1638 default:
1639 unreachable("unsupported bit-width");
1640 }
1641 }
1642
1643 const struct dxil_value *
dxil_module_get_float16_const(struct dxil_module * m,uint16_t value)1644 dxil_module_get_float16_const(struct dxil_module *m, uint16_t value)
1645 {
1646 const struct dxil_type *type = get_float16_type(m);
1647 if (!type)
1648 return NULL;
1649
1650 struct dxil_const *c;
1651 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1652 if (c->value.type != type || c->undef)
1653 continue;
1654
1655 if (c->int_value == (uintmax_t)value)
1656 return &c->value;
1657 }
1658
1659 c = create_const(m, type, false);
1660 if (!c)
1661 return NULL;
1662
1663 c->int_value = (uintmax_t)value;
1664 return &c->value;
1665 }
1666
1667 const struct dxil_value *
dxil_module_get_float_const(struct dxil_module * m,float value)1668 dxil_module_get_float_const(struct dxil_module *m, float value)
1669 {
1670 const struct dxil_type *type = get_float32_type(m);
1671 if (!type)
1672 return NULL;
1673
1674 struct dxil_const *c;
1675 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1676 if (c->value.type != type || c->undef)
1677 continue;
1678
1679 if (c->float_value == value)
1680 return &c->value;
1681 }
1682
1683 c = create_const(m, type, false);
1684 if (!c)
1685 return NULL;
1686
1687 c->float_value = value;
1688 return &c->value;
1689 }
1690
1691 const struct dxil_value *
dxil_module_get_double_const(struct dxil_module * m,double value)1692 dxil_module_get_double_const(struct dxil_module *m, double value)
1693 {
1694 const struct dxil_type *type = get_float64_type(m);
1695 if (!type)
1696 return NULL;
1697
1698 struct dxil_const *c;
1699 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1700 if (c->value.type != type || c->undef)
1701 continue;
1702
1703 if (c->float_value == value)
1704 return &c->value;
1705 }
1706
1707 c = create_const(m, type, false);
1708 if (!c)
1709 return NULL;
1710
1711 c->float_value = value;
1712 return &c->value;
1713 }
1714
1715 const struct dxil_value *
dxil_module_get_array_const(struct dxil_module * m,const struct dxil_type * type,const struct dxil_value ** values)1716 dxil_module_get_array_const(struct dxil_module *m, const struct dxil_type *type,
1717 const struct dxil_value **values)
1718 {
1719 assert(type->type == TYPE_ARRAY);
1720 unsigned int num_values = type->array_or_vector_def.num_elems;
1721
1722 struct dxil_const *c;
1723 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1724 if (c->value.type != type || c->undef)
1725 continue;
1726
1727 if (!memcmp(c->array_values, values, sizeof(*values) * num_values))
1728 return &c->value;
1729 }
1730
1731 c = create_const(m, type, false);
1732 if (!c)
1733 return NULL;
1734 void *tmp =
1735 ralloc_array(m->ralloc_ctx, struct dxil_value *, num_values);
1736 memcpy(tmp, values, sizeof(*values) * num_values);
1737 c->array_values = tmp;
1738
1739 return &c->value;
1740 }
1741
1742 const struct dxil_value *
dxil_module_get_undef(struct dxil_module * m,const struct dxil_type * type)1743 dxil_module_get_undef(struct dxil_module *m, const struct dxil_type *type)
1744 {
1745 assert(type != NULL);
1746
1747 struct dxil_const *c;
1748 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
1749 if (c->value.type != type)
1750 continue;
1751
1752 if (c->undef)
1753 return &c->value;
1754 }
1755
1756 c = create_const(m, type, true);
1757 return c ? &c->value : NULL;
1758 }
1759
1760 enum dxil_module_code {
1761 DXIL_MODULE_CODE_VERSION = 1,
1762 DXIL_MODULE_CODE_TRIPLE = 2,
1763 DXIL_MODULE_CODE_DATALAYOUT = 3,
1764 DXIL_MODULE_CODE_ASM = 4,
1765 DXIL_MODULE_CODE_SECTIONNAME = 5,
1766 DXIL_MODULE_CODE_DEPLIB = 6,
1767 DXIL_MODULE_CODE_GLOBALVAR = 7,
1768 DXIL_MODULE_CODE_FUNCTION = 8,
1769 DXIL_MODULE_CODE_ALIAS = 9,
1770 DXIL_MODULE_CODE_PURGEVALS = 10,
1771 DXIL_MODULE_CODE_GCNAME = 11,
1772 DXIL_MODULE_CODE_COMDAT = 12,
1773 };
1774
1775 static bool
emit_target_triple(struct dxil_module * m,const char * triple)1776 emit_target_triple(struct dxil_module *m, const char *triple)
1777 {
1778 uint64_t temp[256];
1779 assert(strlen(triple) < ARRAY_SIZE(temp));
1780
1781 for (int i = 0; i < strlen(triple); ++i)
1782 temp[i] = triple[i];
1783
1784 return emit_record(m, DXIL_MODULE_CODE_TRIPLE, temp, strlen(triple));
1785 }
1786
1787 static bool
emit_datalayout(struct dxil_module * m,const char * datalayout)1788 emit_datalayout(struct dxil_module *m, const char *datalayout)
1789 {
1790 uint64_t temp[256];
1791 assert(strlen(datalayout) < ARRAY_SIZE(temp));
1792
1793 for (int i = 0; i < strlen(datalayout); ++i)
1794 temp[i] = datalayout[i];
1795
1796 return emit_record(m, DXIL_MODULE_CODE_DATALAYOUT,
1797 temp, strlen(datalayout));
1798 }
1799
1800 static const struct dxil_value *
add_gvar(struct dxil_module * m,const char * name,const struct dxil_type * type,const struct dxil_type * value_type,enum dxil_address_space as,int align,const struct dxil_value * value)1801 add_gvar(struct dxil_module *m, const char *name,
1802 const struct dxil_type *type, const struct dxil_type *value_type,
1803 enum dxil_address_space as, int align, const struct dxil_value *value)
1804 {
1805 struct dxil_gvar *gvar = ralloc_size(m->ralloc_ctx,
1806 sizeof(struct dxil_gvar));
1807 if (!gvar)
1808 return NULL;
1809
1810 gvar->type = type;
1811 gvar->name = ralloc_strdup(m->ralloc_ctx, name);
1812 gvar->as = as;
1813 gvar->align = align;
1814 gvar->constant = !!value;
1815 gvar->initializer = value;
1816
1817 gvar->value.id = -1;
1818 gvar->value.type = value_type;
1819
1820 list_addtail(&gvar->head, &m->gvar_list);
1821 return &gvar->value;
1822 }
1823
1824 const struct dxil_value *
dxil_add_global_var(struct dxil_module * m,const char * name,const struct dxil_type * type,enum dxil_address_space as,int align,const struct dxil_value * value)1825 dxil_add_global_var(struct dxil_module *m, const char *name,
1826 const struct dxil_type *type,
1827 enum dxil_address_space as, int align,
1828 const struct dxil_value *value)
1829 {
1830 return add_gvar(m, name, type, type, as, align, value);
1831 }
1832
1833 const struct dxil_value *
dxil_add_global_ptr_var(struct dxil_module * m,const char * name,const struct dxil_type * type,enum dxil_address_space as,int align,const struct dxil_value * value)1834 dxil_add_global_ptr_var(struct dxil_module *m, const char *name,
1835 const struct dxil_type *type,
1836 enum dxil_address_space as, int align,
1837 const struct dxil_value *value)
1838 {
1839 return add_gvar(m, name, type, dxil_module_get_pointer_type(m, type),
1840 as, align, value);
1841 }
1842
1843 static const struct dxil_func *
add_function(struct dxil_module * m,const char * name,const struct dxil_type * type,bool decl,unsigned attr_set)1844 add_function(struct dxil_module *m, const char *name,
1845 const struct dxil_type *type,
1846 bool decl, unsigned attr_set)
1847 {
1848 assert(type->type == TYPE_FUNCTION);
1849
1850 struct dxil_func *func = ralloc_size(m->ralloc_ctx,
1851 sizeof(struct dxil_func));
1852 if (!func)
1853 return NULL;
1854
1855 /* Truncate function name to make emit_symtab_entry() happy. */
1856 func->name = ralloc_strndup(func, name, 253);
1857 if (!func->name) {
1858 return NULL;
1859 }
1860
1861 func->type = type;
1862 func->decl = decl;
1863 func->attr_set = attr_set;
1864
1865 func->value.id = -1;
1866 func->value.type = type->function_def.ret_type;
1867 list_addtail(&func->head, &m->func_list);
1868 return func;
1869 }
1870
1871 struct dxil_func_def *
dxil_add_function_def(struct dxil_module * m,const char * name,const struct dxil_type * type,unsigned num_blocks)1872 dxil_add_function_def(struct dxil_module *m, const char *name,
1873 const struct dxil_type *type, unsigned num_blocks)
1874 {
1875 struct dxil_func_def *def = ralloc_size(m->ralloc_ctx, sizeof(struct dxil_func_def));
1876
1877 def->func = add_function(m, name, type, false, 0);
1878 if (!def->func)
1879 return NULL;
1880
1881 list_inithead(&def->instr_list);
1882 def->curr_block = 0;
1883
1884 assert(num_blocks > 0);
1885 def->basic_block_ids = rzalloc_array(m->ralloc_ctx, int,
1886 num_blocks);
1887 if (!def->basic_block_ids)
1888 return NULL;
1889
1890 for (int i = 0; i < num_blocks; ++i)
1891 def->basic_block_ids[i] = -1;
1892 def->num_basic_block_ids = num_blocks;
1893
1894 list_addtail(&def->head, &m->func_def_list);
1895 m->cur_emitting_func = def;
1896
1897 return def;
1898 }
1899
1900 static unsigned
get_attr_set(struct dxil_module * m,enum dxil_attr_kind attr)1901 get_attr_set(struct dxil_module *m, enum dxil_attr_kind attr)
1902 {
1903 struct dxil_attrib attrs[2] = {
1904 { DXIL_ATTR_ENUM, { DXIL_ATTR_KIND_NO_UNWIND } },
1905 { DXIL_ATTR_ENUM, { attr } }
1906 };
1907
1908 int index = 1;
1909 struct attrib_set *as;
1910 LIST_FOR_EACH_ENTRY(as, &m->attr_set_list, head) {
1911 if (!memcmp(as->attrs, attrs, sizeof(attrs)))
1912 return index;
1913 index++;
1914 }
1915
1916 as = ralloc_size(m->ralloc_ctx, sizeof(struct attrib_set));
1917 if (!as)
1918 return 0;
1919
1920 memcpy(as->attrs, attrs, sizeof(attrs));
1921 as->num_attrs = 1;
1922 if (attr != DXIL_ATTR_KIND_NONE)
1923 as->num_attrs++;
1924
1925 list_addtail(&as->head, &m->attr_set_list);
1926 assert(list_length(&m->attr_set_list) == index);
1927 return index;
1928 }
1929
1930 const struct dxil_func *
dxil_add_function_decl(struct dxil_module * m,const char * name,const struct dxil_type * type,enum dxil_attr_kind attr)1931 dxil_add_function_decl(struct dxil_module *m, const char *name,
1932 const struct dxil_type *type,
1933 enum dxil_attr_kind attr)
1934 {
1935 unsigned attr_set = get_attr_set(m, attr);
1936 if (!attr_set)
1937 return NULL;
1938
1939 return add_function(m, name, type, true, attr_set);
1940 }
1941
1942 static bool
emit_module_info_function(struct dxil_module * m,int type,bool declaration,int attr_set_index)1943 emit_module_info_function(struct dxil_module *m, int type, bool declaration,
1944 int attr_set_index)
1945 {
1946 uint64_t data[] = {
1947 type, 0/* address space */, declaration, 0/* linkage */,
1948 attr_set_index, 0/* alignment */, 0 /* section */, 0 /* visibility */,
1949 0 /* GC */, 0 /* unnamed addr */, 0 /* prologue data */,
1950 0 /* storage class */, 0 /* comdat */, 0 /* prefix-data */,
1951 0 /* personality */
1952 };
1953 return emit_record(m, DXIL_MODULE_CODE_FUNCTION, data, ARRAY_SIZE(data));
1954 }
1955
1956 enum gvar_var_flags {
1957 GVAR_FLAG_CONSTANT = (1 << 0),
1958 GVAR_FLAG_EXPLICIT_TYPE = (1 << 1),
1959 };
1960
1961 enum gvar_var_linkage {
1962 GVAR_LINKAGE_EXTERNAL = 0,
1963 GVAR_LINKAGE_APPENDING = 2,
1964 GVAR_LINKAGE_INTERNAL = 3,
1965 GVAR_LINKAGE_EXTERNAL_WEAK = 7,
1966 GVAR_LINKAGE_COMMON = 8,
1967 GVAR_LINKAGE_PRIVATE = 9,
1968 GVAR_LINKAGE_AVAILABLE_EXTERNALLY = 12,
1969 GVAR_LINKAGE_WEAK_ANY = 16,
1970 GVAR_LINKAGE_WEAK_ODR = 17,
1971 GVAR_LINKAGE_LINK_ONCE_ODR = 19,
1972 };
1973
1974 static bool
emit_module_info_global(struct dxil_module * m,const struct dxil_gvar * gvar,const struct dxil_abbrev * simple_gvar_abbr)1975 emit_module_info_global(struct dxil_module *m, const struct dxil_gvar *gvar,
1976 const struct dxil_abbrev *simple_gvar_abbr)
1977 {
1978 uint64_t data[] = {
1979 DXIL_MODULE_CODE_GLOBALVAR,
1980 gvar->type->id,
1981 (gvar->as << 2) | GVAR_FLAG_EXPLICIT_TYPE |
1982 (gvar->constant ? GVAR_FLAG_CONSTANT : 0),
1983 gvar->initializer ? gvar->initializer->id + 1 : 0,
1984 (gvar->initializer ? GVAR_LINKAGE_INTERNAL : GVAR_LINKAGE_EXTERNAL),
1985 util_logbase2(gvar->align) + 1,
1986 0
1987 };
1988 return emit_record_abbrev(&m->buf, 4, simple_gvar_abbr,
1989 data, ARRAY_SIZE(data));
1990 }
1991
1992 static bool
emit_module_info(struct dxil_module * m)1993 emit_module_info(struct dxil_module *m)
1994 {
1995 struct dxil_gvar *gvar;
1996 int max_global_type = 0;
1997 int max_alignment = 0;
1998 LIST_FOR_EACH_ENTRY(gvar, &m->gvar_list, head) {
1999 assert(gvar->type->id >= 0);
2000 max_global_type = MAX2(max_global_type, gvar->type->id);
2001 max_alignment = MAX2(max_alignment, gvar->align);
2002 }
2003
2004 struct dxil_abbrev simple_gvar_abbr = {
2005 { LITERAL(DXIL_MODULE_CODE_GLOBALVAR),
2006 FIXED(util_logbase2(max_global_type) + 1),
2007 VBR(6), VBR(6), FIXED(5),
2008 FIXED(util_logbase2(max_alignment) + 1),
2009 LITERAL(0) }, 7
2010 };
2011
2012 if (!emit_target_triple(m, "dxil-ms-dx") ||
2013 !emit_datalayout(m, "e-m:e-p:32:32-i1:32-i8:32-i16:32-i32:32-i64:64-f16:32-f32:32-f64:64-n8:16:32:64") ||
2014 !define_abbrev(m, &simple_gvar_abbr))
2015 return false;
2016
2017 LIST_FOR_EACH_ENTRY(gvar, &m->gvar_list, head) {
2018 assert(gvar->type->id >= 0);
2019 if (!emit_module_info_global(m, gvar, &simple_gvar_abbr))
2020 return false;
2021 }
2022
2023 struct dxil_func *func;
2024 LIST_FOR_EACH_ENTRY(func, &m->func_list, head) {
2025 assert(func->type->id >= 0);
2026 if (!emit_module_info_function(m, func->type->id, func->decl,
2027 func->attr_set))
2028 return false;
2029 }
2030
2031 return true;
2032 }
2033
2034 static bool
emit_module_const_abbrevs(struct dxil_module * m)2035 emit_module_const_abbrevs(struct dxil_module *m)
2036 {
2037 /* these are unused for now, so let's not even record them */
2038 struct dxil_abbrev abbrevs[] = {
2039 { { LITERAL(CST_CODE_AGGREGATE), ARRAY, FIXED(5) }, 3 },
2040 { { LITERAL(CST_CODE_STRING), ARRAY, FIXED(8) }, 3 },
2041 { { LITERAL(CST_CODE_CSTRING), ARRAY, FIXED(7) }, 3 },
2042 { { LITERAL(CST_CODE_CSTRING), ARRAY, CHAR6 }, 3 },
2043 };
2044
2045 for (int i = 0; i < ARRAY_SIZE(abbrevs); ++i) {
2046 if (!define_abbrev(m, abbrevs + i))
2047 return false;
2048 }
2049
2050 return true;
2051 }
2052
2053 static bool
emit_set_type(struct dxil_module * m,unsigned type_index)2054 emit_set_type(struct dxil_module *m, unsigned type_index)
2055 {
2056 uint64_t data[] = { CST_CODE_SETTYPE, type_index };
2057 return emit_const_abbrev_record(m, CONST_ABBREV_SETTYPE,
2058 data, ARRAY_SIZE(data));
2059 }
2060
2061 static bool
emit_null_value(struct dxil_module * m)2062 emit_null_value(struct dxil_module *m)
2063 {
2064 return emit_record_no_abbrev(&m->buf, CST_CODE_NULL, NULL, 0);
2065 }
2066
2067 static bool
emit_undef_value(struct dxil_module * m)2068 emit_undef_value(struct dxil_module *m)
2069 {
2070 return emit_record_no_abbrev(&m->buf, CST_CODE_UNDEF, NULL, 0);
2071 }
2072
2073 static uint64_t
encode_signed(int64_t value)2074 encode_signed(int64_t value)
2075 {
2076 return value >= 0 ?
2077 (value << 1) :
2078 ((-value << 1) | 1);
2079 }
2080
2081 static bool
emit_int_value(struct dxil_module * m,int64_t value)2082 emit_int_value(struct dxil_module *m, int64_t value)
2083 {
2084 if (!value)
2085 return emit_null_value(m);
2086
2087 uint64_t data[] = { CST_CODE_INTEGER, encode_signed(value) };
2088 return emit_const_abbrev_record(m, CONST_ABBREV_INTEGER,
2089 data, ARRAY_SIZE(data));
2090 }
2091
2092 static bool
emit_float16_value(struct dxil_module * m,uint16_t value)2093 emit_float16_value(struct dxil_module *m, uint16_t value)
2094 {
2095 if (!value)
2096 return emit_null_value(m);
2097 uint64_t data = value;
2098 return emit_record_no_abbrev(&m->buf, CST_CODE_FLOAT, &data, 1);
2099 }
2100
2101 static bool
emit_float_value(struct dxil_module * m,float value)2102 emit_float_value(struct dxil_module *m, float value)
2103 {
2104 uint64_t data = fui(value);
2105 if (data == UINT32_C(0))
2106 return emit_null_value(m);
2107 return emit_record_no_abbrev(&m->buf, CST_CODE_FLOAT, &data, 1);
2108 }
2109
2110 static bool
emit_double_value(struct dxil_module * m,double value)2111 emit_double_value(struct dxil_module *m, double value)
2112 {
2113 union di u;
2114 u.d = value;
2115 if (u.ui == UINT64_C(0))
2116 return emit_null_value(m);
2117 return emit_record_no_abbrev(&m->buf, CST_CODE_FLOAT, &u.ui, 1);
2118 }
2119
2120 static bool
emit_aggregate_values(struct dxil_module * m,const struct dxil_value ** values,int num_values)2121 emit_aggregate_values(struct dxil_module *m, const struct dxil_value **values,
2122 int num_values)
2123 {
2124 uint64_t *value_ids = ralloc_array(m->ralloc_ctx, uint64_t, num_values);
2125 int i;
2126
2127 for (i = 0; i < num_values; i++)
2128 value_ids[i] = values[i]->id;
2129
2130 return emit_record_no_abbrev(&m->buf, CST_CODE_AGGREGATE, value_ids,
2131 num_values);
2132 }
2133
2134 static bool
emit_consts(struct dxil_module * m)2135 emit_consts(struct dxil_module *m)
2136 {
2137 const struct dxil_type *curr_type = NULL;
2138 struct dxil_const *c;
2139 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
2140 assert(c->value.id >= 0);
2141 assert(c->value.type != NULL);
2142 if (curr_type != c->value.type) {
2143 assert(c->value.type->id >= 0);
2144 if (!emit_set_type(m, c->value.type->id))
2145 return false;
2146 curr_type = c->value.type;
2147 }
2148
2149 if (c->undef) {
2150 if (!emit_undef_value(m))
2151 return false;
2152 continue;
2153 }
2154
2155 switch (curr_type->type) {
2156 case TYPE_INTEGER:
2157 if (!emit_int_value(m, c->int_value))
2158 return false;
2159 break;
2160
2161 case TYPE_FLOAT:
2162 switch (curr_type->float_bits) {
2163 case 16:
2164 if (!emit_float16_value(m, (uint16_t)(uintmax_t)c->int_value))
2165 return false;
2166 break;
2167 case 32:
2168 if (!emit_float_value(m, c->float_value))
2169 return false;
2170 break;
2171 case 64:
2172 if (!emit_double_value(m, c->float_value))
2173 return false;
2174 break;
2175 default:
2176 unreachable("unexpected float_bits");
2177 }
2178 break;
2179
2180 case TYPE_ARRAY:
2181 if (!emit_aggregate_values(m, c->array_values,
2182 c->value.type->array_or_vector_def.num_elems))
2183 return false;
2184 break;
2185
2186 default:
2187 unreachable("unsupported constant type");
2188 }
2189 }
2190
2191 return true;
2192 }
2193
2194 static bool
emit_module_consts(struct dxil_module * m)2195 emit_module_consts(struct dxil_module *m)
2196 {
2197 return enter_subblock(m, DXIL_CONST_BLOCK, 4) &&
2198 emit_module_const_abbrevs(m) &&
2199 emit_consts(m) &&
2200 exit_block(m);
2201 }
2202
2203 static bool
emit_value_symtab_abbrev_record(struct dxil_module * m,enum value_symtab_abbrev_id abbrev,const uint64_t * data,size_t size)2204 emit_value_symtab_abbrev_record(struct dxil_module *m,
2205 enum value_symtab_abbrev_id abbrev,
2206 const uint64_t *data, size_t size)
2207 {
2208 assert(abbrev < ARRAY_SIZE(value_symtab_abbrevs));
2209 return emit_record_abbrev(&m->buf, abbrev + DXIL_FIRST_APPLICATION_ABBREV,
2210 value_symtab_abbrevs + abbrev, data, size);
2211 }
2212
2213 static bool
emit_symtab_entry(struct dxil_module * m,unsigned value,const char * name)2214 emit_symtab_entry(struct dxil_module *m, unsigned value, const char *name)
2215 {
2216 uint64_t temp[256];
2217 assert(strlen(name) < ARRAY_SIZE(temp) - 2);
2218
2219 temp[0] = VST_CODE_ENTRY;
2220 temp[1] = value;
2221 for (int i = 0; i < strlen(name); ++i)
2222 temp[i + 2] = (uint8_t)(name[i]);
2223
2224 enum value_symtab_abbrev_id abbrev = VST_ABBREV_ENTRY_8;
2225 if (is_char6_string(name))
2226 abbrev = VST_ABBREV_ENTRY_6;
2227 else if (is_char7_string(name))
2228 abbrev = VST_ABBREV_ENTRY_7;
2229
2230 return emit_value_symtab_abbrev_record(m, abbrev, temp, 2 + strlen(name));
2231 }
2232
2233 static bool
emit_value_symbol_table(struct dxil_module * m)2234 emit_value_symbol_table(struct dxil_module *m)
2235 {
2236 if (!enter_subblock(m, DXIL_VALUE_SYMTAB_BLOCK, 4))
2237 return false;
2238
2239 struct dxil_func *func;
2240 LIST_FOR_EACH_ENTRY(func, &m->func_list, head) {
2241 if (!emit_symtab_entry(m, func->value.id, func->name))
2242 return false;
2243 }
2244 struct dxil_gvar *gvar;
2245 LIST_FOR_EACH_ENTRY(gvar, &m->gvar_list, head) {
2246 if (!emit_symtab_entry(m, gvar->value.id, gvar->name))
2247 return false;
2248 }
2249 return exit_block(m);
2250 }
2251
2252 enum metadata_codes {
2253 METADATA_STRING = 1,
2254 METADATA_VALUE = 2,
2255 METADATA_NODE = 3,
2256 METADATA_NAME = 4,
2257 METADATA_KIND = 6,
2258 METADATA_NAMED_NODE = 10
2259 };
2260
2261 enum metadata_abbrev_id {
2262 METADATA_ABBREV_STRING,
2263 METADATA_ABBREV_NAME
2264 };
2265
2266 static const struct dxil_abbrev metadata_abbrevs[] = {
2267 [METADATA_ABBREV_STRING] = {
2268 { LITERAL(METADATA_STRING), ARRAY, FIXED(8) }, 3
2269 },
2270 [METADATA_ABBREV_NAME] = {
2271 { LITERAL(METADATA_NAME), ARRAY, FIXED(8) }, 3
2272 },
2273 };
2274
2275 static bool
emit_metadata_abbrevs(struct dxil_module * m)2276 emit_metadata_abbrevs(struct dxil_module *m)
2277 {
2278 for (int i = 0; i < ARRAY_SIZE(metadata_abbrevs); ++i) {
2279 if (!define_abbrev(m, metadata_abbrevs + i))
2280 return false;
2281 }
2282 return true;
2283 }
2284
2285 static struct dxil_mdnode *
create_mdnode(struct dxil_module * m,enum mdnode_type type)2286 create_mdnode(struct dxil_module *m, enum mdnode_type type)
2287 {
2288 struct dxil_mdnode *ret = rzalloc_size(m->ralloc_ctx,
2289 sizeof(struct dxil_mdnode));
2290 if (ret) {
2291 ret->type = type;
2292 ret->id = list_length(&m->mdnode_list) + 1; /* zero is reserved for NULL nodes */
2293 list_addtail(&ret->head, &m->mdnode_list);
2294 }
2295 return ret;
2296 }
2297
2298 const struct dxil_mdnode *
dxil_get_metadata_string(struct dxil_module * m,const char * str)2299 dxil_get_metadata_string(struct dxil_module *m, const char *str)
2300 {
2301 assert(str);
2302
2303 struct dxil_mdnode *n;
2304 LIST_FOR_EACH_ENTRY(n, &m->mdnode_list, head) {
2305 if (n->type == MD_STRING &&
2306 !strcmp(n->string, str))
2307 return n;
2308 }
2309
2310 n = create_mdnode(m, MD_STRING);
2311 if (n) {
2312 n->string = ralloc_strdup(n, str);
2313 if (!n->string)
2314 return NULL;
2315 }
2316 return n;
2317 }
2318
2319 const struct dxil_mdnode *
dxil_get_metadata_value(struct dxil_module * m,const struct dxil_type * type,const struct dxil_value * value)2320 dxil_get_metadata_value(struct dxil_module *m, const struct dxil_type *type,
2321 const struct dxil_value *value)
2322 {
2323 struct dxil_mdnode *n;
2324 LIST_FOR_EACH_ENTRY(n, &m->mdnode_list, head) {
2325 if (n->type == MD_VALUE &&
2326 n->value.type == type &&
2327 n->value.value == value)
2328 return n;
2329 }
2330
2331 n = create_mdnode(m, MD_VALUE);
2332 if (n) {
2333 n->value.type = type;
2334 n->value.value = value;
2335 }
2336 return n;
2337 }
2338
2339 const struct dxil_mdnode *
dxil_get_metadata_func(struct dxil_module * m,const struct dxil_func * func)2340 dxil_get_metadata_func(struct dxil_module *m, const struct dxil_func *func)
2341 {
2342 const struct dxil_type *ptr_type =
2343 dxil_module_get_pointer_type(m, func->type);
2344 return dxil_get_metadata_value(m, ptr_type, &func->value);
2345 }
2346
2347 const struct dxil_mdnode *
dxil_get_metadata_node(struct dxil_module * m,const struct dxil_mdnode * subnodes[],size_t num_subnodes)2348 dxil_get_metadata_node(struct dxil_module *m,
2349 const struct dxil_mdnode *subnodes[],
2350 size_t num_subnodes)
2351 {
2352 struct dxil_mdnode *n;
2353 LIST_FOR_EACH_ENTRY(n, &m->mdnode_list, head) {
2354 if (n->type == MD_NODE &&
2355 n->node.num_subnodes == num_subnodes &&
2356 !memcmp(n->node.subnodes, subnodes, sizeof(struct dxil_mdnode *) *
2357 num_subnodes))
2358 return n;
2359 }
2360
2361 n = create_mdnode(m, MD_NODE);
2362 if (n) {
2363 void *tmp = ralloc_array(n, struct dxil_mdnode *, num_subnodes);
2364 if (!tmp)
2365 return NULL;
2366
2367 memcpy(tmp, subnodes, sizeof(struct dxil_mdnode *) * num_subnodes);
2368 n->node.subnodes = tmp;
2369 n->node.num_subnodes = num_subnodes;
2370 }
2371 return n;
2372 }
2373
2374 const struct dxil_mdnode *
dxil_get_metadata_int1(struct dxil_module * m,bool value)2375 dxil_get_metadata_int1(struct dxil_module *m, bool value)
2376 {
2377 const struct dxil_type *type = get_int1_type(m);
2378 if (!type)
2379 return NULL;
2380
2381 const struct dxil_value *const_value = get_int_const(m, type, value);
2382 if (!const_value)
2383 return NULL;
2384
2385 return dxil_get_metadata_value(m, type, const_value);
2386 }
2387
2388 const struct dxil_mdnode *
dxil_get_metadata_int8(struct dxil_module * m,int8_t value)2389 dxil_get_metadata_int8(struct dxil_module *m, int8_t value)
2390 {
2391 const struct dxil_type *type = get_int8_type(m);
2392 if (!type)
2393 return NULL;
2394
2395 const struct dxil_value *const_value = get_int_const(m, type, value);
2396 if (!const_value)
2397 return NULL;
2398
2399 return dxil_get_metadata_value(m, type, const_value);
2400 }
2401
2402 const struct dxil_mdnode *
dxil_get_metadata_int32(struct dxil_module * m,int32_t value)2403 dxil_get_metadata_int32(struct dxil_module *m, int32_t value)
2404 {
2405 const struct dxil_type *type = get_int32_type(m);
2406 if (!type)
2407 return NULL;
2408
2409 const struct dxil_value *const_value = get_int_const(m, type, value);
2410 if (!const_value)
2411 return NULL;
2412
2413 return dxil_get_metadata_value(m, type, const_value);
2414 }
2415
2416 const struct dxil_mdnode *
dxil_get_metadata_int64(struct dxil_module * m,int64_t value)2417 dxil_get_metadata_int64(struct dxil_module *m, int64_t value)
2418 {
2419 const struct dxil_type *type = get_int64_type(m);
2420 if (!type)
2421 return NULL;
2422
2423 const struct dxil_value *const_value = get_int_const(m, type, value);
2424 if (!const_value)
2425 return NULL;
2426
2427 return dxil_get_metadata_value(m, type, const_value);
2428 }
2429
2430 const struct dxil_mdnode *
dxil_get_metadata_float32(struct dxil_module * m,float value)2431 dxil_get_metadata_float32(struct dxil_module *m, float value)
2432 {
2433 const struct dxil_type *type = get_float32_type(m);
2434 if (!type)
2435 return NULL;
2436
2437 const struct dxil_value *const_value = dxil_module_get_float_const(m, value);
2438 if (!const_value)
2439 return NULL;
2440
2441 return dxil_get_metadata_value(m, type, const_value);
2442 }
2443
2444 bool
dxil_add_metadata_named_node(struct dxil_module * m,const char * name,const struct dxil_mdnode * subnodes[],size_t num_subnodes)2445 dxil_add_metadata_named_node(struct dxil_module *m, const char *name,
2446 const struct dxil_mdnode *subnodes[],
2447 size_t num_subnodes)
2448 {
2449 struct dxil_named_node *n = ralloc_size(m->ralloc_ctx,
2450 sizeof(struct dxil_named_node));
2451 if (!n)
2452 return false;
2453
2454 n->name = ralloc_strdup(n, name);
2455 if (!n->name)
2456 return false;
2457
2458 void *tmp = ralloc_array(n, struct dxil_mdnode *, num_subnodes);
2459 if (!tmp)
2460 return false;
2461
2462 memcpy(tmp, subnodes, sizeof(struct dxil_mdnode *) * num_subnodes);
2463 n->subnodes = tmp;
2464 n->num_subnodes = num_subnodes;
2465
2466 list_addtail(&n->head, &m->md_named_node_list);
2467 return true;
2468 }
2469
2470 static bool
emit_metadata_value(struct dxil_module * m,const struct dxil_type * type,const struct dxil_value * value)2471 emit_metadata_value(struct dxil_module *m, const struct dxil_type *type,
2472 const struct dxil_value *value)
2473 {
2474 assert(type->id >= 0 && value->id >= 0);
2475 uint64_t data[2] = { type->id, value->id };
2476 return emit_record(m, METADATA_VALUE, data, ARRAY_SIZE(data));
2477 }
2478
2479 static bool
emit_metadata_abbrev_record(struct dxil_module * m,enum metadata_abbrev_id abbrev,const uint64_t * data,size_t size)2480 emit_metadata_abbrev_record(struct dxil_module *m,
2481 enum metadata_abbrev_id abbrev,
2482 const uint64_t *data, size_t size)
2483 {
2484 assert(abbrev < ARRAY_SIZE(metadata_abbrevs));
2485 return emit_record_abbrev(&m->buf, abbrev + DXIL_FIRST_APPLICATION_ABBREV,
2486 metadata_abbrevs + abbrev, data, size);
2487 }
2488
2489 static bool
emit_metadata_string(struct dxil_module * m,const char * str)2490 emit_metadata_string(struct dxil_module *m, const char *str)
2491 {
2492 uint64_t data[256];
2493 assert(strlen(str) < ARRAY_SIZE(data) - 1);
2494 data[0] = METADATA_STRING;
2495 for (size_t i = 0; i < strlen(str); ++i)
2496 data[i + 1] = (uint8_t)(str[i]);
2497
2498 return emit_metadata_abbrev_record(m, METADATA_ABBREV_STRING,
2499 data, strlen(str) + 1);
2500 }
2501
2502 static bool
emit_metadata_node(struct dxil_module * m,const struct dxil_mdnode * subnodes[],size_t num_subnodes)2503 emit_metadata_node(struct dxil_module *m,
2504 const struct dxil_mdnode *subnodes[],
2505 size_t num_subnodes)
2506 {
2507 uint64_t data[256];
2508 assert(num_subnodes < ARRAY_SIZE(data));
2509 for (size_t i = 0; i < num_subnodes; ++i)
2510 data[i] = subnodes[i] ? subnodes[i]->id : 0;
2511
2512 return emit_record(m, METADATA_NODE, data, num_subnodes);
2513 }
2514
2515 static bool
emit_mdnode(struct dxil_module * m,struct dxil_mdnode * n)2516 emit_mdnode(struct dxil_module *m, struct dxil_mdnode *n)
2517 {
2518 switch (n->type) {
2519 case MD_STRING:
2520 return emit_metadata_string(m, n->string);
2521
2522 case MD_VALUE:
2523 return emit_metadata_value(m, n->value.type, n->value.value);
2524
2525 case MD_NODE:
2526 return emit_metadata_node(m, n->node.subnodes, n->node.num_subnodes);
2527
2528 default:
2529 unreachable("unexpected n->type");
2530 }
2531 }
2532
2533 static bool
emit_metadata_nodes(struct dxil_module * m)2534 emit_metadata_nodes(struct dxil_module *m)
2535 {
2536 list_for_each_entry(struct dxil_mdnode, n, &m->mdnode_list, head) {
2537 if (!emit_mdnode(m, n))
2538 return false;
2539 }
2540 return true;
2541 }
2542
2543 static bool
emit_metadata_name(struct dxil_module * m,const char * name)2544 emit_metadata_name(struct dxil_module *m, const char *name)
2545 {
2546 uint64_t data[256];
2547 assert(strlen(name) < ARRAY_SIZE(data) - 1);
2548 data[0] = METADATA_NAME;
2549 for (size_t i = 0; i < strlen(name); ++i)
2550 data[i + 1] = name[i];
2551
2552 return emit_metadata_abbrev_record(m, METADATA_ABBREV_NAME,
2553 data, strlen(name) + 1);
2554 }
2555
2556 static bool
emit_metadata_named_node(struct dxil_module * m,const char * name,const struct dxil_mdnode * subnodes[],size_t num_subnodes)2557 emit_metadata_named_node(struct dxil_module *m, const char *name,
2558 const struct dxil_mdnode *subnodes[],
2559 size_t num_subnodes)
2560 {
2561 uint64_t data[256];
2562 assert(num_subnodes < ARRAY_SIZE(data));
2563 for (size_t i = 0; i < num_subnodes; ++i) {
2564 assert(subnodes[i]->id > 0); /* NULL nodes not allowed */
2565 data[i] = subnodes[i]->id - 1;
2566 }
2567
2568 return emit_metadata_name(m, name) &&
2569 emit_record(m, METADATA_NAMED_NODE, data, num_subnodes);
2570 }
2571
2572 static bool
emit_metadata_named_nodes(struct dxil_module * m)2573 emit_metadata_named_nodes(struct dxil_module *m)
2574 {
2575 struct dxil_named_node *n;
2576 LIST_FOR_EACH_ENTRY(n, &m->md_named_node_list, head) {
2577 if (!emit_metadata_named_node(m, n->name, n->subnodes,
2578 n->num_subnodes))
2579 return false;
2580 }
2581 return true;
2582 }
2583
2584 static bool
emit_metadata(struct dxil_module * m)2585 emit_metadata(struct dxil_module *m)
2586 {
2587 return enter_subblock(m, DXIL_METADATA_BLOCK, 3) &&
2588 emit_metadata_abbrevs(m) &&
2589 emit_metadata_nodes(m) &&
2590 emit_metadata_named_nodes(m) &&
2591 exit_block(m);
2592 }
2593
2594 static struct dxil_instr *
create_instr(struct dxil_module * m,enum instr_type type,const struct dxil_type * ret_type)2595 create_instr(struct dxil_module *m, enum instr_type type,
2596 const struct dxil_type *ret_type)
2597 {
2598 struct dxil_instr *ret = ralloc_size(m->ralloc_ctx,
2599 sizeof(struct dxil_instr));
2600 if (ret) {
2601 ret->type = type;
2602 ret->value.id = -1;
2603 ret->value.type = ret_type;
2604 ret->has_value = false;
2605 list_addtail(&ret->head, &m->cur_emitting_func->instr_list);
2606 }
2607 return ret;
2608 }
2609
2610 static inline bool
legal_arith_type(const struct dxil_type * type)2611 legal_arith_type(const struct dxil_type *type)
2612 {
2613 switch (type->type) {
2614 case TYPE_INTEGER:
2615 return type->int_bits == 1 ||
2616 type->int_bits == 16 ||
2617 type->int_bits == 32 ||
2618 type->int_bits == 64;
2619
2620 case TYPE_FLOAT:
2621 return type->float_bits == 16 ||
2622 type->float_bits == 32 ||
2623 type->float_bits == 64;
2624
2625 default:
2626 return false;
2627 }
2628 }
2629
2630 const struct dxil_value *
dxil_emit_binop(struct dxil_module * m,enum dxil_bin_opcode opcode,const struct dxil_value * op0,const struct dxil_value * op1,enum dxil_opt_flags flags)2631 dxil_emit_binop(struct dxil_module *m, enum dxil_bin_opcode opcode,
2632 const struct dxil_value *op0, const struct dxil_value *op1,
2633 enum dxil_opt_flags flags)
2634 {
2635 assert(types_equal(op0->type, op1->type));
2636 assert(legal_arith_type(op0->type));
2637 struct dxil_instr *instr = create_instr(m, INSTR_BINOP, op0->type);
2638 if (!instr)
2639 return NULL;
2640
2641 instr->binop.opcode = opcode;
2642 instr->binop.operands[0] = op0;
2643 instr->binop.operands[1] = op1;
2644 instr->binop.flags = flags;
2645 instr->has_value = true;
2646 return &instr->value;
2647 }
2648
2649 const struct dxil_value *
dxil_emit_cmp(struct dxil_module * m,enum dxil_cmp_pred pred,const struct dxil_value * op0,const struct dxil_value * op1)2650 dxil_emit_cmp(struct dxil_module *m, enum dxil_cmp_pred pred,
2651 const struct dxil_value *op0, const struct dxil_value *op1)
2652 {
2653 assert(types_equal(op0->type, op1->type));
2654 assert(legal_arith_type(op0->type));
2655 struct dxil_instr *instr = create_instr(m, INSTR_CMP, get_int1_type(m));
2656 if (!instr)
2657 return NULL;
2658
2659 instr->cmp.pred = pred;
2660 instr->cmp.operands[0] = op0;
2661 instr->cmp.operands[1] = op1;
2662 instr->has_value = true;
2663 return &instr->value;
2664 }
2665
2666 const struct dxil_value *
dxil_emit_select(struct dxil_module * m,const struct dxil_value * op0,const struct dxil_value * op1,const struct dxil_value * op2)2667 dxil_emit_select(struct dxil_module *m,
2668 const struct dxil_value *op0,
2669 const struct dxil_value *op1,
2670 const struct dxil_value *op2)
2671 {
2672 assert(types_equal(op0->type, get_int1_type(m)));
2673 assert(types_equal(op1->type, op2->type));
2674 assert(legal_arith_type(op1->type));
2675
2676 struct dxil_instr *instr = create_instr(m, INSTR_SELECT, op1->type);
2677 if (!instr)
2678 return NULL;
2679
2680 instr->select.operands[0] = op0;
2681 instr->select.operands[1] = op1;
2682 instr->select.operands[2] = op2;
2683 instr->has_value = true;
2684 return &instr->value;
2685 }
2686
2687 const struct dxil_value *
dxil_emit_cast(struct dxil_module * m,enum dxil_cast_opcode opcode,const struct dxil_type * type,const struct dxil_value * value)2688 dxil_emit_cast(struct dxil_module *m, enum dxil_cast_opcode opcode,
2689 const struct dxil_type *type,
2690 const struct dxil_value *value)
2691 {
2692 assert(legal_arith_type(value->type));
2693 assert(legal_arith_type(type));
2694
2695 struct dxil_instr *instr = create_instr(m, INSTR_CAST, type);
2696 if (!instr)
2697 return NULL;
2698
2699 instr->cast.opcode = opcode;
2700 instr->cast.type = type;
2701 instr->cast.value = value;
2702 instr->has_value = true;
2703 return &instr->value;
2704 }
2705
2706 bool
dxil_emit_branch(struct dxil_module * m,const struct dxil_value * cond,unsigned true_block,unsigned false_block)2707 dxil_emit_branch(struct dxil_module *m, const struct dxil_value *cond,
2708 unsigned true_block, unsigned false_block)
2709 {
2710 assert(!cond || types_equal(cond->type, get_int1_type(m)));
2711
2712 struct dxil_instr *instr = create_instr(m, INSTR_BR,
2713 dxil_module_get_void_type(m));
2714 if (!instr)
2715 return false;
2716
2717 instr->br.cond = cond;
2718 instr->br.succ[0] = true_block;
2719 instr->br.succ[1] = false_block;
2720 m->cur_emitting_func->curr_block++;
2721 return true;
2722 }
2723
2724 const struct dxil_value *
dxil_instr_get_return_value(struct dxil_instr * instr)2725 dxil_instr_get_return_value(struct dxil_instr *instr)
2726 {
2727 return instr->has_value ? &instr->value : NULL;
2728 }
2729
2730 struct dxil_instr *
dxil_emit_phi(struct dxil_module * m,const struct dxil_type * type)2731 dxil_emit_phi(struct dxil_module *m, const struct dxil_type *type)
2732 {
2733 assert(legal_arith_type(type));
2734
2735 struct dxil_instr *instr = create_instr(m, INSTR_PHI, type);
2736 if (!instr)
2737 return NULL;
2738
2739 instr->phi.type = type;
2740 instr->phi.incoming = NULL;
2741 instr->phi.num_incoming = 0;
2742 instr->has_value = true;
2743
2744 return instr;
2745 }
2746
2747 bool
dxil_phi_add_incoming(struct dxil_instr * instr,const struct dxil_value * incoming_values[],const unsigned incoming_blocks[],size_t num_incoming)2748 dxil_phi_add_incoming(struct dxil_instr *instr,
2749 const struct dxil_value *incoming_values[],
2750 const unsigned incoming_blocks[],
2751 size_t num_incoming)
2752 {
2753 assert(instr->type == INSTR_PHI);
2754 assert(num_incoming > 0);
2755
2756 instr->phi.incoming = reralloc(instr, instr->phi.incoming,
2757 struct dxil_phi_src,
2758 instr->phi.num_incoming + num_incoming);
2759 if (!instr->phi.incoming)
2760 return false;
2761
2762 for (int i = 0; i < num_incoming; ++i) {
2763 assert(incoming_values[i]);
2764 assert(types_equal(incoming_values[i]->type, instr->phi.type));
2765 int dst = instr->phi.num_incoming + i;
2766 instr->phi.incoming[dst].value = incoming_values[i];
2767 instr->phi.incoming[dst].block = incoming_blocks[i];
2768 }
2769 instr->phi.num_incoming += num_incoming;
2770 return true;
2771 }
2772
2773 static struct dxil_instr *
create_call_instr(struct dxil_module * m,const struct dxil_func * func,const struct dxil_value ** args,size_t num_args)2774 create_call_instr(struct dxil_module *m,
2775 const struct dxil_func *func,
2776 const struct dxil_value **args, size_t num_args)
2777 {
2778 assert(num_args == func->type->function_def.args.num_types);
2779 for (size_t i = 0; i < num_args; ++ i)
2780 assert(types_equal(func->type->function_def.args.types[i], args[i]->type));
2781
2782 struct dxil_instr *instr = create_instr(m, INSTR_CALL,
2783 func->type->function_def.ret_type);
2784 if (instr) {
2785 instr->call.func = func;
2786 instr->call.args = ralloc_array(instr, struct dxil_value *, num_args);
2787 if (!args)
2788 return false;
2789 memcpy(instr->call.args, args, sizeof(struct dxil_value *) * num_args);
2790 instr->call.num_args = num_args;
2791 }
2792 return instr;
2793 }
2794
2795 const struct dxil_value *
dxil_emit_call(struct dxil_module * m,const struct dxil_func * func,const struct dxil_value ** args,size_t num_args)2796 dxil_emit_call(struct dxil_module *m,
2797 const struct dxil_func *func,
2798 const struct dxil_value **args, size_t num_args)
2799 {
2800 assert(func->type->function_def.ret_type->type != TYPE_VOID);
2801
2802 struct dxil_instr *instr = create_call_instr(m, func, args, num_args);
2803 if (!instr)
2804 return NULL;
2805
2806 instr->has_value = true;
2807 return &instr->value;
2808 }
2809
2810 bool
dxil_emit_call_void(struct dxil_module * m,const struct dxil_func * func,const struct dxil_value ** args,size_t num_args)2811 dxil_emit_call_void(struct dxil_module *m,
2812 const struct dxil_func *func,
2813 const struct dxil_value **args, size_t num_args)
2814 {
2815 assert(func->type->function_def.ret_type->type == TYPE_VOID);
2816
2817 struct dxil_instr *instr = create_call_instr(m, func, args, num_args);
2818 if (!instr)
2819 return false;
2820
2821 return true;
2822 }
2823
2824 bool
dxil_emit_ret_void(struct dxil_module * m)2825 dxil_emit_ret_void(struct dxil_module *m)
2826 {
2827 struct dxil_instr *instr = create_instr(m, INSTR_RET,
2828 dxil_module_get_void_type(m));
2829 if (!instr)
2830 return false;
2831
2832 instr->ret.value = NULL;
2833 m->cur_emitting_func->curr_block++;
2834 return true;
2835 }
2836
2837 const struct dxil_value *
dxil_emit_extractval(struct dxil_module * m,const struct dxil_value * src,const unsigned int index)2838 dxil_emit_extractval(struct dxil_module *m, const struct dxil_value *src,
2839 const unsigned int index)
2840 {
2841 assert(src->type->type == TYPE_STRUCT);
2842 assert(index < src->type->struct_def.elem.num_types);
2843
2844 struct dxil_instr *instr =
2845 create_instr(m, INSTR_EXTRACTVAL,
2846 src->type->struct_def.elem.types[index]);
2847 if (!instr)
2848 return NULL;
2849
2850 instr->extractval.src = src;
2851 instr->extractval.type = src->type;
2852 instr->extractval.idx = index;
2853 instr->has_value = true;
2854
2855 return &instr->value;
2856 }
2857
2858 const struct dxil_value *
dxil_emit_alloca(struct dxil_module * m,const struct dxil_type * alloc_type,const struct dxil_type * size_type,const struct dxil_value * size,unsigned int align)2859 dxil_emit_alloca(struct dxil_module *m, const struct dxil_type *alloc_type,
2860 const struct dxil_type *size_type,
2861 const struct dxil_value *size,
2862 unsigned int align)
2863 {
2864 assert(size_type && size_type->type == TYPE_INTEGER);
2865
2866 const struct dxil_type *return_type =
2867 dxil_module_get_pointer_type(m, alloc_type);
2868 if (!return_type)
2869 return NULL;
2870
2871 struct dxil_instr *instr = create_instr(m, INSTR_ALLOCA, return_type);
2872 if (!instr)
2873 return NULL;
2874
2875 instr->alloca.alloc_type = alloc_type;
2876 instr->alloca.size_type = size_type;
2877 instr->alloca.size = size;
2878 instr->alloca.align = util_logbase2(align) + 1;
2879 assert(instr->alloca.align < (1 << 5));
2880 instr->alloca.align |= 1 << 6;
2881
2882 instr->has_value = true;
2883 return &instr->value;
2884 }
2885
2886 static const struct dxil_type *
get_deref_type(const struct dxil_type * type)2887 get_deref_type(const struct dxil_type *type)
2888 {
2889 switch (type->type) {
2890 case TYPE_POINTER: return type->ptr_target_type;
2891 case TYPE_ARRAY: return type->array_or_vector_def.elem_type;
2892 default: unreachable("unexpected type");
2893 }
2894 }
2895
2896 const struct dxil_value *
dxil_emit_gep_inbounds(struct dxil_module * m,const struct dxil_value ** operands,size_t num_operands)2897 dxil_emit_gep_inbounds(struct dxil_module *m,
2898 const struct dxil_value **operands,
2899 size_t num_operands)
2900 {
2901 assert(num_operands > 0);
2902 const struct dxil_type *source_elem_type =
2903 get_deref_type(operands[0]->type);
2904
2905 const struct dxil_type *type = operands[0]->type;
2906 for (int i = 1; i < num_operands; ++i) {
2907 assert(operands[i]->type == get_int32_type(m));
2908 type = get_deref_type(type);
2909 }
2910
2911 type = dxil_module_get_pointer_type(m, type);
2912 if (!type)
2913 return NULL;
2914
2915 struct dxil_instr *instr = create_instr(m, INSTR_GEP, type);
2916 if (!instr)
2917 return NULL;
2918
2919 instr->gep.operands = ralloc_array(instr, struct dxil_value *,
2920 num_operands);
2921 if (!instr->gep.operands)
2922 return NULL;
2923
2924 instr->gep.source_elem_type = source_elem_type;
2925 memcpy(instr->gep.operands, operands,
2926 sizeof(struct dxil_value *) * num_operands);
2927 instr->gep.num_operands = num_operands;
2928 instr->gep.inbounds = true;
2929
2930 instr->has_value = true;
2931 return &instr->value;
2932 }
2933
2934 const struct dxil_value *
dxil_emit_load(struct dxil_module * m,const struct dxil_value * ptr,unsigned align,bool is_volatile)2935 dxil_emit_load(struct dxil_module *m, const struct dxil_value *ptr,
2936 unsigned align,
2937 bool is_volatile)
2938 {
2939 assert(ptr->type->type == TYPE_POINTER ||
2940 ptr->type->type == TYPE_ARRAY);
2941 const struct dxil_type *type = ptr->type->type == TYPE_POINTER ?
2942 ptr->type->ptr_target_type :
2943 ptr->type->array_or_vector_def.elem_type;
2944
2945 struct dxil_instr *instr = create_instr(m, INSTR_LOAD, type);
2946 if (!instr)
2947 return false;
2948
2949 instr->load.ptr = ptr;
2950 instr->load.type = type;
2951 instr->load.align = util_logbase2(align) + 1;
2952 instr->load.is_volatile = is_volatile;
2953
2954 instr->has_value = true;
2955 return &instr->value;
2956 }
2957
2958 bool
dxil_emit_store(struct dxil_module * m,const struct dxil_value * value,const struct dxil_value * ptr,unsigned align,bool is_volatile)2959 dxil_emit_store(struct dxil_module *m, const struct dxil_value *value,
2960 const struct dxil_value *ptr, unsigned align,
2961 bool is_volatile)
2962 {
2963 assert(legal_arith_type(value->type));
2964
2965 struct dxil_instr *instr = create_instr(m, INSTR_STORE,
2966 dxil_module_get_void_type(m));
2967 if (!instr)
2968 return false;
2969
2970 instr->store.value = value;
2971 instr->store.ptr = ptr;
2972 instr->store.align = util_logbase2(align) + 1;
2973 instr->store.is_volatile = is_volatile;
2974 return true;
2975 }
2976
2977 const struct dxil_value *
dxil_emit_cmpxchg(struct dxil_module * m,const struct dxil_value * cmpval,const struct dxil_value * newval,const struct dxil_value * ptr,bool is_volatile,enum dxil_atomic_ordering ordering,enum dxil_sync_scope syncscope)2978 dxil_emit_cmpxchg(struct dxil_module *m, const struct dxil_value *cmpval,
2979 const struct dxil_value *newval,
2980 const struct dxil_value *ptr, bool is_volatile,
2981 enum dxil_atomic_ordering ordering,
2982 enum dxil_sync_scope syncscope)
2983 {
2984 assert(ptr->type->type == TYPE_POINTER);
2985
2986 struct dxil_instr *instr = create_instr(m, INSTR_CMPXCHG,
2987 ptr->type->ptr_target_type);
2988 if (!instr)
2989 return false;
2990
2991 instr->cmpxchg.cmpval = cmpval;
2992 instr->cmpxchg.newval = newval;
2993 instr->cmpxchg.ptr = ptr;
2994 instr->cmpxchg.is_volatile = is_volatile;
2995 instr->cmpxchg.ordering = ordering;
2996 instr->cmpxchg.syncscope = syncscope;
2997
2998 instr->has_value = true;
2999 return &instr->value;
3000 }
3001
3002 const struct dxil_value *
dxil_emit_atomicrmw(struct dxil_module * m,const struct dxil_value * value,const struct dxil_value * ptr,enum dxil_rmw_op op,bool is_volatile,enum dxil_atomic_ordering ordering,enum dxil_sync_scope syncscope)3003 dxil_emit_atomicrmw(struct dxil_module *m, const struct dxil_value *value,
3004 const struct dxil_value *ptr, enum dxil_rmw_op op,
3005 bool is_volatile, enum dxil_atomic_ordering ordering,
3006 enum dxil_sync_scope syncscope)
3007 {
3008 assert(ptr->type->type == TYPE_POINTER);
3009
3010 struct dxil_instr *instr = create_instr(m, INSTR_ATOMICRMW,
3011 ptr->type->ptr_target_type);
3012 if (!instr)
3013 return false;
3014
3015 instr->atomicrmw.value = value;
3016 instr->atomicrmw.ptr = ptr;
3017 instr->atomicrmw.op = op;
3018 instr->atomicrmw.is_volatile = is_volatile;
3019 instr->atomicrmw.ordering = ordering;
3020 instr->atomicrmw.syncscope = syncscope;
3021
3022 instr->has_value = true;
3023 return &instr->value;
3024 }
3025
3026 static bool
emit_binop(struct dxil_module * m,struct dxil_instr * instr)3027 emit_binop(struct dxil_module *m, struct dxil_instr *instr)
3028 {
3029 assert(instr->type == INSTR_BINOP);
3030 assert(instr->value.id > instr->binop.operands[0]->id);
3031 assert(instr->value.id > instr->binop.operands[1]->id);
3032
3033 if (instr->binop.flags) {
3034 uint64_t data[] = {
3035 FUNC_CODE_INST_BINOP,
3036 instr->value.id - instr->binop.operands[0]->id,
3037 instr->value.id - instr->binop.operands[1]->id,
3038 instr->binop.opcode,
3039 instr->binop.flags
3040 };
3041 return emit_func_abbrev_record(m, FUNC_ABBREV_BINOP_FLAGS,
3042 data, ARRAY_SIZE(data));
3043 }
3044 uint64_t data[] = {
3045 FUNC_CODE_INST_BINOP,
3046 instr->value.id - instr->binop.operands[0]->id,
3047 instr->value.id - instr->binop.operands[1]->id,
3048 instr->binop.opcode
3049 };
3050 return emit_func_abbrev_record(m, FUNC_ABBREV_BINOP,
3051 data, ARRAY_SIZE(data));
3052 }
3053
3054 static bool
emit_cmp(struct dxil_module * m,struct dxil_instr * instr)3055 emit_cmp(struct dxil_module *m, struct dxil_instr *instr)
3056 {
3057 assert(instr->type == INSTR_CMP);
3058 assert(instr->value.id > instr->cmp.operands[0]->id);
3059 assert(instr->value.id > instr->cmp.operands[1]->id);
3060 uint64_t data[] = {
3061 instr->value.id - instr->cmp.operands[0]->id,
3062 instr->value.id - instr->cmp.operands[1]->id,
3063 instr->cmp.pred
3064 };
3065 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_CMP2,
3066 data, ARRAY_SIZE(data));
3067 }
3068
3069 static bool
emit_select(struct dxil_module * m,struct dxil_instr * instr)3070 emit_select(struct dxil_module *m, struct dxil_instr *instr)
3071 {
3072 assert(instr->type == INSTR_SELECT);
3073 assert(instr->value.id > instr->select.operands[0]->id);
3074 assert(instr->value.id > instr->select.operands[1]->id);
3075 assert(instr->value.id > instr->select.operands[2]->id);
3076 uint64_t data[] = {
3077 instr->value.id - instr->select.operands[1]->id,
3078 instr->value.id - instr->select.operands[2]->id,
3079 instr->value.id - instr->select.operands[0]->id
3080 };
3081 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_VSELECT,
3082 data, ARRAY_SIZE(data));
3083 }
3084
3085 static bool
emit_cast(struct dxil_module * m,struct dxil_instr * instr)3086 emit_cast(struct dxil_module *m, struct dxil_instr *instr)
3087 {
3088 assert(instr->type == INSTR_CAST);
3089 assert(instr->value.id > instr->cast.value->id);
3090 uint64_t data[] = {
3091 FUNC_CODE_INST_CAST,
3092 instr->value.id - instr->cast.value->id,
3093 instr->cast.type->id,
3094 instr->cast.opcode
3095 };
3096 return emit_func_abbrev_record(m, FUNC_ABBREV_CAST,
3097 data, ARRAY_SIZE(data));
3098 }
3099
3100 static bool
emit_branch(struct dxil_module * m,struct dxil_func_def * func,struct dxil_instr * instr)3101 emit_branch(struct dxil_module *m, struct dxil_func_def *func, struct dxil_instr *instr)
3102 {
3103 assert(instr->type == INSTR_BR);
3104 assert(instr->br.succ[0] < func->num_basic_block_ids);
3105 assert(func->basic_block_ids[instr->br.succ[0]] >= 0);
3106
3107 if (!instr->br.cond) {
3108 /* unconditional branch */
3109 uint64_t succ = func->basic_block_ids[instr->br.succ[0]];
3110 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_BR, &succ, 1);
3111 }
3112 /* conditional branch */
3113 assert(instr->value.id > instr->br.cond->id);
3114 assert(instr->br.succ[1] < func->num_basic_block_ids);
3115 assert(func->basic_block_ids[instr->br.succ[1]] >= 0);
3116
3117 uint64_t data[] = {
3118 func->basic_block_ids[instr->br.succ[0]],
3119 func->basic_block_ids[instr->br.succ[1]],
3120 instr->value.id - instr->br.cond->id
3121 };
3122 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_BR,
3123 data, ARRAY_SIZE(data));
3124 }
3125
3126 static bool
emit_phi(struct dxil_module * m,struct dxil_func_def * func,struct dxil_instr * instr)3127 emit_phi(struct dxil_module *m, struct dxil_func_def *func, struct dxil_instr *instr)
3128 {
3129 assert(instr->type == INSTR_PHI);
3130 uint64_t data[128];
3131 data[0] = instr->phi.type->id;
3132 assert(instr->phi.num_incoming > 0);
3133 for (int i = 0; i < instr->phi.num_incoming; ++i) {
3134 int64_t value_delta = instr->value.id - instr->phi.incoming[i].value->id;
3135 data[1 + i * 2] = encode_signed(value_delta);
3136 assert(instr->phi.incoming[i].block < func->num_basic_block_ids);
3137 assert(func->basic_block_ids[instr->phi.incoming[i].block] >= 0);
3138 data[1 + i * 2 + 1] = func->basic_block_ids[instr->phi.incoming[i].block];
3139 }
3140 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_PHI,
3141 data, 1 + 2 * instr->phi.num_incoming);
3142 }
3143
3144 static bool
emit_extractval(struct dxil_module * m,struct dxil_instr * instr)3145 emit_extractval(struct dxil_module *m, struct dxil_instr *instr)
3146 {
3147 assert(instr->type == INSTR_EXTRACTVAL);
3148 assert(instr->value.id > instr->extractval.src->id);
3149 assert(instr->value.id > instr->extractval.type->id);
3150
3151 /* relative value ID, followed by absolute type ID (only if
3152 * forward-declared), followed by n indices */
3153 uint64_t data[] = {
3154 instr->value.id - instr->extractval.src->id,
3155 instr->extractval.idx
3156 };
3157 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_EXTRACTVAL,
3158 data, ARRAY_SIZE(data));
3159 }
3160
3161 static bool
emit_call(struct dxil_module * m,struct dxil_instr * instr)3162 emit_call(struct dxil_module *m, struct dxil_instr *instr)
3163 {
3164 assert(instr->type == INSTR_CALL);
3165 assert(instr->call.func->value.id >= 0 && instr->value.id >= 0);
3166 assert(instr->call.func->type->id >= 0);
3167 assert(instr->call.func->value.id <= instr->value.id);
3168 int value_id_delta = instr->value.id - instr->call.func->value.id;
3169
3170 uint64_t data[256];
3171 data[0] = 0; // attribute id
3172 data[1] = 1 << 15; // calling convention etc
3173 data[2] = instr->call.func->type->id;
3174 data[3] = value_id_delta;
3175
3176 assert(instr->call.num_args < ARRAY_SIZE(data) - 4);
3177 for (size_t i = 0; i < instr->call.num_args; ++i) {
3178 assert(instr->call.args[i]->id >= 0);
3179 data[4 + i] = instr->value.id - instr->call.args[i]->id;
3180 }
3181
3182 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_CALL,
3183 data, 4 + instr->call.num_args);
3184 }
3185
3186 static bool
emit_ret(struct dxil_module * m,struct dxil_instr * instr)3187 emit_ret(struct dxil_module *m, struct dxil_instr *instr)
3188 {
3189 assert(instr->type == INSTR_RET);
3190
3191 if (instr->ret.value) {
3192 assert(instr->ret.value->id >= 0);
3193 uint64_t data[] = { FUNC_CODE_INST_RET, instr->ret.value->id };
3194 return emit_func_abbrev_record(m, FUNC_ABBREV_RET_VAL,
3195 data, ARRAY_SIZE(data));
3196 }
3197
3198 uint64_t data[] = { FUNC_CODE_INST_RET };
3199 return emit_func_abbrev_record(m, FUNC_ABBREV_RET_VOID,
3200 data, ARRAY_SIZE(data));
3201 }
3202
3203 static bool
emit_alloca(struct dxil_module * m,struct dxil_instr * instr)3204 emit_alloca(struct dxil_module *m, struct dxil_instr *instr)
3205 {
3206 assert(instr->type == INSTR_ALLOCA);
3207 assert(instr->alloca.alloc_type->id >= 0);
3208 assert(instr->alloca.size_type->id >= 0);
3209 assert(instr->alloca.size->id >= 0);
3210
3211 uint64_t data[] = {
3212 instr->alloca.alloc_type->id,
3213 instr->alloca.size_type->id,
3214 instr->alloca.size->id,
3215 instr->alloca.align,
3216 };
3217 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_ALLOCA,
3218 data, ARRAY_SIZE(data));
3219 }
3220
3221 static bool
emit_gep(struct dxil_module * m,struct dxil_instr * instr)3222 emit_gep(struct dxil_module *m, struct dxil_instr *instr)
3223 {
3224 assert(instr->type == INSTR_GEP);
3225 assert(instr->gep.source_elem_type->id >= 0);
3226
3227 uint64_t data[256];
3228 data[0] = FUNC_CODE_INST_GEP;
3229 data[1] = instr->gep.inbounds;
3230 data[2] = instr->gep.source_elem_type->id;
3231
3232 assert(instr->gep.num_operands < ARRAY_SIZE(data) - 3);
3233 for (int i = 0; i < instr->gep.num_operands; ++i) {
3234 assert(instr->value.id > instr->gep.operands[i]->id);
3235 data[3 + i] = instr->value.id - instr->gep.operands[i]->id;
3236 }
3237 return emit_func_abbrev_record(m, FUNC_ABBREV_GEP,
3238 data, 3 + instr->gep.num_operands);
3239 }
3240
3241 static bool
emit_load(struct dxil_module * m,struct dxil_instr * instr)3242 emit_load(struct dxil_module *m, struct dxil_instr *instr)
3243 {
3244 assert(instr->type == INSTR_LOAD);
3245 assert(instr->value.id > instr->load.ptr->id);
3246 assert(instr->load.type->id >= 0);
3247
3248 uint64_t data[] = {
3249 instr->value.id - instr->load.ptr->id,
3250 instr->load.type->id,
3251 instr->load.align,
3252 instr->load.is_volatile
3253 };
3254 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_LOAD,
3255 data, ARRAY_SIZE(data));
3256 }
3257 static bool
emit_store(struct dxil_module * m,struct dxil_instr * instr)3258 emit_store(struct dxil_module *m, struct dxil_instr *instr)
3259 {
3260 assert(instr->type == INSTR_STORE);
3261 assert(instr->value.id > instr->store.value->id);
3262 assert(instr->value.id > instr->store.ptr->id);
3263
3264 uint64_t data[] = {
3265 instr->value.id - instr->store.ptr->id,
3266 instr->value.id - instr->store.value->id,
3267 instr->store.align,
3268 instr->store.is_volatile
3269 };
3270 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_STORE,
3271 data, ARRAY_SIZE(data));
3272 }
3273
3274 static bool
emit_cmpxchg(struct dxil_module * m,struct dxil_instr * instr)3275 emit_cmpxchg(struct dxil_module *m, struct dxil_instr *instr)
3276 {
3277 assert(instr->type == INSTR_CMPXCHG);
3278 assert(instr->value.id > instr->cmpxchg.cmpval->id);
3279 assert(instr->value.id > instr->cmpxchg.newval->id);
3280 assert(instr->value.id > instr->cmpxchg.ptr->id);
3281 uint64_t data[] = {
3282 instr->value.id - instr->cmpxchg.ptr->id,
3283 instr->value.id - instr->cmpxchg.cmpval->id,
3284 instr->value.id - instr->cmpxchg.newval->id,
3285 instr->cmpxchg.is_volatile,
3286 instr->cmpxchg.ordering,
3287 instr->cmpxchg.syncscope,
3288 };
3289 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_CMPXCHG_OLD,
3290 data, ARRAY_SIZE(data));
3291 }
3292
3293 static bool
emit_atomicrmw(struct dxil_module * m,struct dxil_instr * instr)3294 emit_atomicrmw(struct dxil_module *m, struct dxil_instr *instr)
3295 {
3296 assert(instr->type == INSTR_ATOMICRMW);
3297 assert(instr->value.id > instr->atomicrmw.value->id);
3298 assert(instr->value.id > instr->atomicrmw.ptr->id);
3299 uint64_t data[] = {
3300 instr->value.id - instr->atomicrmw.ptr->id,
3301 instr->value.id - instr->atomicrmw.value->id,
3302 instr->atomicrmw.op,
3303 instr->atomicrmw.is_volatile,
3304 instr->atomicrmw.ordering,
3305 instr->atomicrmw.syncscope,
3306 };
3307 return emit_record_no_abbrev(&m->buf, FUNC_CODE_INST_ATOMICRMW,
3308 data, ARRAY_SIZE(data));
3309 }
3310
3311 static bool
emit_instr(struct dxil_module * m,struct dxil_func_def * func,struct dxil_instr * instr)3312 emit_instr(struct dxil_module *m, struct dxil_func_def *func, struct dxil_instr *instr)
3313 {
3314 switch (instr->type) {
3315 case INSTR_BINOP:
3316 return emit_binop(m, instr);
3317
3318 case INSTR_CMP:
3319 return emit_cmp(m, instr);
3320
3321 case INSTR_SELECT:
3322 return emit_select(m, instr);
3323
3324 case INSTR_CAST:
3325 return emit_cast(m, instr);
3326
3327 case INSTR_BR:
3328 return emit_branch(m, func, instr);
3329
3330 case INSTR_PHI:
3331 return emit_phi(m, func, instr);
3332
3333 case INSTR_CALL:
3334 return emit_call(m, instr);
3335
3336 case INSTR_RET:
3337 return emit_ret(m, instr);
3338
3339 case INSTR_EXTRACTVAL:
3340 return emit_extractval(m, instr);
3341
3342 case INSTR_ALLOCA:
3343 return emit_alloca(m, instr);
3344
3345 case INSTR_GEP:
3346 return emit_gep(m, instr);
3347
3348 case INSTR_LOAD:
3349 return emit_load(m, instr);
3350
3351 case INSTR_STORE:
3352 return emit_store(m, instr);
3353
3354 case INSTR_ATOMICRMW:
3355 return emit_atomicrmw(m, instr);
3356
3357 case INSTR_CMPXCHG:
3358 return emit_cmpxchg(m, instr);
3359
3360 default:
3361 unreachable("unexpected instruction type");
3362 }
3363 }
3364
3365 static bool
emit_function(struct dxil_module * m,struct dxil_func_def * func)3366 emit_function(struct dxil_module *m, struct dxil_func_def *func)
3367 {
3368 if (!enter_subblock(m, DXIL_FUNCTION_BLOCK, 4) ||
3369 !emit_record_int(m, FUNC_CODE_DECLAREBLOCKS, func->curr_block))
3370 return false;
3371
3372 list_for_each_entry(struct dxil_instr, instr, &func->instr_list, head) {
3373 if (!emit_instr(m, func, instr))
3374 return false;
3375 }
3376
3377 return exit_block(m);
3378 }
3379
3380 static void
assign_values(struct dxil_module * m)3381 assign_values(struct dxil_module *m)
3382 {
3383 int next_value_id = 0;
3384
3385 struct dxil_gvar *gvar;
3386 LIST_FOR_EACH_ENTRY(gvar, &m->gvar_list, head) {
3387 gvar->value.id = next_value_id++;
3388 }
3389
3390 struct dxil_func *func;
3391 LIST_FOR_EACH_ENTRY(func, &m->func_list, head) {
3392 func->value.id = next_value_id++;
3393 }
3394
3395 struct dxil_const *c;
3396 LIST_FOR_EACH_ENTRY(c, &m->const_list, head) {
3397 c->value.id = next_value_id++;
3398 }
3399
3400 /* All functions start at this ID */
3401 unsigned value_id_at_functions_start = next_value_id;
3402
3403 struct dxil_func_def *func_def;
3404 LIST_FOR_EACH_ENTRY(func_def, &m->func_def_list, head) {
3405 struct dxil_instr *instr;
3406 next_value_id = value_id_at_functions_start;
3407 LIST_FOR_EACH_ENTRY(instr, &func_def->instr_list, head) {
3408 instr->value.id = next_value_id;
3409 if (instr->has_value)
3410 next_value_id++;
3411 }
3412 }
3413 }
3414
3415 bool
dxil_emit_module(struct dxil_module * m)3416 dxil_emit_module(struct dxil_module *m)
3417 {
3418 assign_values(m);
3419 if (!(dxil_buffer_emit_bits(&m->buf, 'B', 8) &&
3420 dxil_buffer_emit_bits(&m->buf, 'C', 8) &&
3421 dxil_buffer_emit_bits(&m->buf, 0xC0, 8) &&
3422 dxil_buffer_emit_bits(&m->buf, 0xDE, 8) &&
3423 enter_subblock(m, DXIL_MODULE, 3) &&
3424 emit_record_int(m, DXIL_MODULE_CODE_VERSION, 1) &&
3425 emit_blockinfo(m) &&
3426 emit_attrib_group_table(m) &&
3427 emit_attribute_table(m) &&
3428 emit_type_table(m) &&
3429 emit_module_info(m) &&
3430 emit_module_consts(m) &&
3431 emit_metadata(m) &&
3432 emit_value_symbol_table(m)))
3433 return false;
3434
3435 struct dxil_func_def *func;
3436 LIST_FOR_EACH_ENTRY(func, &m->func_def_list, head) {
3437 if (!emit_function(m, func))
3438 return false;
3439 }
3440
3441 return exit_block(m);
3442 }
3443