1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * efi.c - EFI subsystem
4 *
5 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
6 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
7 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
8 *
9 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
10 * allowing the efivarfs to be mounted or the efivars module to be loaded.
11 * The existance of /sys/firmware/efi may also be used by userspace to
12 * determine that the system supports EFI.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/kobject.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/io.h>
25 #include <linux/kexec.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/reboot.h>
29 #include <linux/slab.h>
30 #include <linux/acpi.h>
31 #include <linux/ucs2_string.h>
32 #include <linux/memblock.h>
33 #include <linux/security.h>
34
35 #include <asm/early_ioremap.h>
36
37 struct efi __read_mostly efi = {
38 .runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .esrt = EFI_INVALID_TABLE_ADDR,
44 .tpm_log = EFI_INVALID_TABLE_ADDR,
45 .tpm_final_log = EFI_INVALID_TABLE_ADDR,
46 #ifdef CONFIG_LOAD_UEFI_KEYS
47 .mokvar_table = EFI_INVALID_TABLE_ADDR,
48 #endif
49 };
50 EXPORT_SYMBOL(efi);
51
52 unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
53 static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
54 static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
55
56 struct mm_struct efi_mm = {
57 .mm_rb = RB_ROOT,
58 .mm_users = ATOMIC_INIT(2),
59 .mm_count = ATOMIC_INIT(1),
60 .write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq),
61 MMAP_LOCK_INITIALIZER(efi_mm)
62 .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
63 .mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
64 .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
65 };
66
67 struct workqueue_struct *efi_rts_wq;
68
69 static bool disable_runtime;
setup_noefi(char * arg)70 static int __init setup_noefi(char *arg)
71 {
72 disable_runtime = true;
73 return 0;
74 }
75 early_param("noefi", setup_noefi);
76
efi_runtime_disabled(void)77 bool efi_runtime_disabled(void)
78 {
79 return disable_runtime;
80 }
81
__efi_soft_reserve_enabled(void)82 bool __pure __efi_soft_reserve_enabled(void)
83 {
84 return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
85 }
86
parse_efi_cmdline(char * str)87 static int __init parse_efi_cmdline(char *str)
88 {
89 if (!str) {
90 pr_warn("need at least one option\n");
91 return -EINVAL;
92 }
93
94 if (parse_option_str(str, "debug"))
95 set_bit(EFI_DBG, &efi.flags);
96
97 if (parse_option_str(str, "noruntime"))
98 disable_runtime = true;
99
100 if (parse_option_str(str, "nosoftreserve"))
101 set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
102
103 return 0;
104 }
105 early_param("efi", parse_efi_cmdline);
106
107 struct kobject *efi_kobj;
108
109 /*
110 * Let's not leave out systab information that snuck into
111 * the efivars driver
112 * Note, do not add more fields in systab sysfs file as it breaks sysfs
113 * one value per file rule!
114 */
systab_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)115 static ssize_t systab_show(struct kobject *kobj,
116 struct kobj_attribute *attr, char *buf)
117 {
118 char *str = buf;
119
120 if (!kobj || !buf)
121 return -EINVAL;
122
123 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
124 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
125 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
126 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
127 /*
128 * If both SMBIOS and SMBIOS3 entry points are implemented, the
129 * SMBIOS3 entry point shall be preferred, so we list it first to
130 * let applications stop parsing after the first match.
131 */
132 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
133 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
134 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
135 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
136
137 if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
138 str = efi_systab_show_arch(str);
139
140 return str - buf;
141 }
142
143 static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
144
fw_platform_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)145 static ssize_t fw_platform_size_show(struct kobject *kobj,
146 struct kobj_attribute *attr, char *buf)
147 {
148 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
149 }
150
151 extern __weak struct kobj_attribute efi_attr_fw_vendor;
152 extern __weak struct kobj_attribute efi_attr_runtime;
153 extern __weak struct kobj_attribute efi_attr_config_table;
154 static struct kobj_attribute efi_attr_fw_platform_size =
155 __ATTR_RO(fw_platform_size);
156
157 static struct attribute *efi_subsys_attrs[] = {
158 &efi_attr_systab.attr,
159 &efi_attr_fw_platform_size.attr,
160 &efi_attr_fw_vendor.attr,
161 &efi_attr_runtime.attr,
162 &efi_attr_config_table.attr,
163 NULL,
164 };
165
efi_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)166 umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
167 int n)
168 {
169 return attr->mode;
170 }
171
172 static const struct attribute_group efi_subsys_attr_group = {
173 .attrs = efi_subsys_attrs,
174 .is_visible = efi_attr_is_visible,
175 };
176
177 static struct efivars generic_efivars;
178 static struct efivar_operations generic_ops;
179
generic_ops_register(void)180 static int generic_ops_register(void)
181 {
182 generic_ops.get_variable = efi.get_variable;
183 generic_ops.get_next_variable = efi.get_next_variable;
184 generic_ops.query_variable_store = efi_query_variable_store;
185
186 if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
187 generic_ops.set_variable = efi.set_variable;
188 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
189 }
190 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
191 }
192
generic_ops_unregister(void)193 static void generic_ops_unregister(void)
194 {
195 efivars_unregister(&generic_efivars);
196 }
197
198 #ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
199 #define EFIVAR_SSDT_NAME_MAX 16
200 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
efivar_ssdt_setup(char * str)201 static int __init efivar_ssdt_setup(char *str)
202 {
203 int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
204
205 if (ret)
206 return ret;
207
208 if (strlen(str) < sizeof(efivar_ssdt))
209 memcpy(efivar_ssdt, str, strlen(str));
210 else
211 pr_warn("efivar_ssdt: name too long: %s\n", str);
212 return 1;
213 }
214 __setup("efivar_ssdt=", efivar_ssdt_setup);
215
efivar_ssdt_iter(efi_char16_t * name,efi_guid_t vendor,unsigned long name_size,void * data)216 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
217 unsigned long name_size, void *data)
218 {
219 struct efivar_entry *entry;
220 struct list_head *list = data;
221 char utf8_name[EFIVAR_SSDT_NAME_MAX];
222 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
223
224 ucs2_as_utf8(utf8_name, name, limit - 1);
225 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
226 return 0;
227
228 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
229 if (!entry)
230 return 0;
231
232 memcpy(entry->var.VariableName, name, name_size);
233 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
234
235 efivar_entry_add(entry, list);
236
237 return 0;
238 }
239
efivar_ssdt_load(void)240 static __init int efivar_ssdt_load(void)
241 {
242 LIST_HEAD(entries);
243 struct efivar_entry *entry, *aux;
244 unsigned long size;
245 void *data;
246 int ret;
247
248 if (!efivar_ssdt[0])
249 return 0;
250
251 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
252
253 list_for_each_entry_safe(entry, aux, &entries, list) {
254 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
255 &entry->var.VendorGuid);
256
257 list_del(&entry->list);
258
259 ret = efivar_entry_size(entry, &size);
260 if (ret) {
261 pr_err("failed to get var size\n");
262 goto free_entry;
263 }
264
265 data = kmalloc(size, GFP_KERNEL);
266 if (!data) {
267 ret = -ENOMEM;
268 goto free_entry;
269 }
270
271 ret = efivar_entry_get(entry, NULL, &size, data);
272 if (ret) {
273 pr_err("failed to get var data\n");
274 goto free_data;
275 }
276
277 ret = acpi_load_table(data, NULL);
278 if (ret) {
279 pr_err("failed to load table: %d\n", ret);
280 goto free_data;
281 }
282
283 goto free_entry;
284
285 free_data:
286 kfree(data);
287
288 free_entry:
289 kfree(entry);
290 }
291
292 return ret;
293 }
294 #else
efivar_ssdt_load(void)295 static inline int efivar_ssdt_load(void) { return 0; }
296 #endif
297
298 #ifdef CONFIG_DEBUG_FS
299
300 #define EFI_DEBUGFS_MAX_BLOBS 32
301
302 static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
303
efi_debugfs_init(void)304 static void __init efi_debugfs_init(void)
305 {
306 struct dentry *efi_debugfs;
307 efi_memory_desc_t *md;
308 char name[32];
309 int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
310 int i = 0;
311
312 efi_debugfs = debugfs_create_dir("efi", NULL);
313 if (IS_ERR_OR_NULL(efi_debugfs))
314 return;
315
316 for_each_efi_memory_desc(md) {
317 switch (md->type) {
318 case EFI_BOOT_SERVICES_CODE:
319 snprintf(name, sizeof(name), "boot_services_code%d",
320 type_count[md->type]++);
321 break;
322 case EFI_BOOT_SERVICES_DATA:
323 snprintf(name, sizeof(name), "boot_services_data%d",
324 type_count[md->type]++);
325 break;
326 default:
327 continue;
328 }
329
330 if (i >= EFI_DEBUGFS_MAX_BLOBS) {
331 pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
332 EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
333 break;
334 }
335
336 debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
337 debugfs_blob[i].data = memremap(md->phys_addr,
338 debugfs_blob[i].size,
339 MEMREMAP_WB);
340 if (!debugfs_blob[i].data)
341 continue;
342
343 debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
344 i++;
345 }
346 }
347 #else
efi_debugfs_init(void)348 static inline void efi_debugfs_init(void) {}
349 #endif
350
351 /*
352 * We register the efi subsystem with the firmware subsystem and the
353 * efivars subsystem with the efi subsystem, if the system was booted with
354 * EFI.
355 */
efisubsys_init(void)356 static int __init efisubsys_init(void)
357 {
358 int error;
359
360 if (!efi_enabled(EFI_RUNTIME_SERVICES))
361 efi.runtime_supported_mask = 0;
362
363 if (!efi_enabled(EFI_BOOT))
364 return 0;
365
366 if (efi.runtime_supported_mask) {
367 /*
368 * Since we process only one efi_runtime_service() at a time, an
369 * ordered workqueue (which creates only one execution context)
370 * should suffice for all our needs.
371 */
372 efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
373 if (!efi_rts_wq) {
374 pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
375 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
376 efi.runtime_supported_mask = 0;
377 return 0;
378 }
379 }
380
381 if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
382 platform_device_register_simple("rtc-efi", 0, NULL, 0);
383
384 /* We register the efi directory at /sys/firmware/efi */
385 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
386 if (!efi_kobj) {
387 pr_err("efi: Firmware registration failed.\n");
388 error = -ENOMEM;
389 goto err_destroy_wq;
390 }
391
392 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
393 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
394 error = generic_ops_register();
395 if (error)
396 goto err_put;
397 efivar_ssdt_load();
398 platform_device_register_simple("efivars", 0, NULL, 0);
399 }
400
401 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
402 if (error) {
403 pr_err("efi: Sysfs attribute export failed with error %d.\n",
404 error);
405 goto err_unregister;
406 }
407
408 error = efi_runtime_map_init(efi_kobj);
409 if (error)
410 goto err_remove_group;
411
412 /* and the standard mountpoint for efivarfs */
413 error = sysfs_create_mount_point(efi_kobj, "efivars");
414 if (error) {
415 pr_err("efivars: Subsystem registration failed.\n");
416 goto err_remove_group;
417 }
418
419 if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
420 efi_debugfs_init();
421
422 return 0;
423
424 err_remove_group:
425 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
426 err_unregister:
427 if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
428 EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
429 generic_ops_unregister();
430 err_put:
431 kobject_put(efi_kobj);
432 err_destroy_wq:
433 if (efi_rts_wq)
434 destroy_workqueue(efi_rts_wq);
435
436 return error;
437 }
438
439 subsys_initcall(efisubsys_init);
440
441 /*
442 * Find the efi memory descriptor for a given physical address. Given a
443 * physical address, determine if it exists within an EFI Memory Map entry,
444 * and if so, populate the supplied memory descriptor with the appropriate
445 * data.
446 */
efi_mem_desc_lookup(u64 phys_addr,efi_memory_desc_t * out_md)447 int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
448 {
449 efi_memory_desc_t *md;
450
451 if (!efi_enabled(EFI_MEMMAP)) {
452 pr_err_once("EFI_MEMMAP is not enabled.\n");
453 return -EINVAL;
454 }
455
456 if (!out_md) {
457 pr_err_once("out_md is null.\n");
458 return -EINVAL;
459 }
460
461 for_each_efi_memory_desc(md) {
462 u64 size;
463 u64 end;
464
465 size = md->num_pages << EFI_PAGE_SHIFT;
466 end = md->phys_addr + size;
467 if (phys_addr >= md->phys_addr && phys_addr < end) {
468 memcpy(out_md, md, sizeof(*out_md));
469 return 0;
470 }
471 }
472 return -ENOENT;
473 }
474
475 /*
476 * Calculate the highest address of an efi memory descriptor.
477 */
efi_mem_desc_end(efi_memory_desc_t * md)478 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
479 {
480 u64 size = md->num_pages << EFI_PAGE_SHIFT;
481 u64 end = md->phys_addr + size;
482 return end;
483 }
484
efi_arch_mem_reserve(phys_addr_t addr,u64 size)485 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
486
487 /**
488 * efi_mem_reserve - Reserve an EFI memory region
489 * @addr: Physical address to reserve
490 * @size: Size of reservation
491 *
492 * Mark a region as reserved from general kernel allocation and
493 * prevent it being released by efi_free_boot_services().
494 *
495 * This function should be called drivers once they've parsed EFI
496 * configuration tables to figure out where their data lives, e.g.
497 * efi_esrt_init().
498 */
efi_mem_reserve(phys_addr_t addr,u64 size)499 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
500 {
501 if (!memblock_is_region_reserved(addr, size))
502 memblock_reserve(addr, size);
503
504 /*
505 * Some architectures (x86) reserve all boot services ranges
506 * until efi_free_boot_services() because of buggy firmware
507 * implementations. This means the above memblock_reserve() is
508 * superfluous on x86 and instead what it needs to do is
509 * ensure the @start, @size is not freed.
510 */
511 efi_arch_mem_reserve(addr, size);
512 }
513
514 static const efi_config_table_type_t common_tables[] __initconst = {
515 {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
516 {ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
517 {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
518 {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
519 {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
520 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
521 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
522 {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
523 {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
524 {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
525 {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
526 #ifdef CONFIG_EFI_RCI2_TABLE
527 {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
528 #endif
529 #ifdef CONFIG_LOAD_UEFI_KEYS
530 {LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" },
531 #endif
532 {},
533 };
534
match_config_table(const efi_guid_t * guid,unsigned long table,const efi_config_table_type_t * table_types)535 static __init int match_config_table(const efi_guid_t *guid,
536 unsigned long table,
537 const efi_config_table_type_t *table_types)
538 {
539 int i;
540
541 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
542 if (!efi_guidcmp(*guid, table_types[i].guid)) {
543 *(table_types[i].ptr) = table;
544 if (table_types[i].name[0])
545 pr_cont("%s=0x%lx ",
546 table_types[i].name, table);
547 return 1;
548 }
549 }
550
551 return 0;
552 }
553
efi_config_parse_tables(const efi_config_table_t * config_tables,int count,const efi_config_table_type_t * arch_tables)554 int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
555 int count,
556 const efi_config_table_type_t *arch_tables)
557 {
558 const efi_config_table_64_t *tbl64 = (void *)config_tables;
559 const efi_config_table_32_t *tbl32 = (void *)config_tables;
560 const efi_guid_t *guid;
561 unsigned long table;
562 int i;
563
564 pr_info("");
565 for (i = 0; i < count; i++) {
566 if (!IS_ENABLED(CONFIG_X86)) {
567 guid = &config_tables[i].guid;
568 table = (unsigned long)config_tables[i].table;
569 } else if (efi_enabled(EFI_64BIT)) {
570 guid = &tbl64[i].guid;
571 table = tbl64[i].table;
572
573 if (IS_ENABLED(CONFIG_X86_32) &&
574 tbl64[i].table > U32_MAX) {
575 pr_cont("\n");
576 pr_err("Table located above 4GB, disabling EFI.\n");
577 return -EINVAL;
578 }
579 } else {
580 guid = &tbl32[i].guid;
581 table = tbl32[i].table;
582 }
583
584 if (!match_config_table(guid, table, common_tables) && arch_tables)
585 match_config_table(guid, table, arch_tables);
586 }
587 pr_cont("\n");
588 set_bit(EFI_CONFIG_TABLES, &efi.flags);
589
590 if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
591 struct linux_efi_random_seed *seed;
592 u32 size = 0;
593
594 seed = early_memremap(efi_rng_seed, sizeof(*seed));
595 if (seed != NULL) {
596 size = min_t(u32, seed->size, SZ_1K); // sanity check
597 early_memunmap(seed, sizeof(*seed));
598 } else {
599 pr_err("Could not map UEFI random seed!\n");
600 }
601 if (size > 0) {
602 seed = early_memremap(efi_rng_seed,
603 sizeof(*seed) + size);
604 if (seed != NULL) {
605 add_bootloader_randomness(seed->bits, size);
606 memzero_explicit(seed->bits, size);
607 early_memunmap(seed, sizeof(*seed) + size);
608 } else {
609 pr_err("Could not map UEFI random seed!\n");
610 }
611 }
612 }
613
614 if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
615 efi_memattr_init();
616
617 efi_tpm_eventlog_init();
618
619 if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
620 unsigned long prsv = mem_reserve;
621
622 while (prsv) {
623 struct linux_efi_memreserve *rsv;
624 u8 *p;
625
626 /*
627 * Just map a full page: that is what we will get
628 * anyway, and it permits us to map the entire entry
629 * before knowing its size.
630 */
631 p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
632 PAGE_SIZE);
633 if (p == NULL) {
634 pr_err("Could not map UEFI memreserve entry!\n");
635 return -ENOMEM;
636 }
637
638 rsv = (void *)(p + prsv % PAGE_SIZE);
639
640 /* reserve the entry itself */
641 memblock_reserve(prsv,
642 struct_size(rsv, entry, rsv->size));
643
644 for (i = 0; i < atomic_read(&rsv->count); i++) {
645 memblock_reserve(rsv->entry[i].base,
646 rsv->entry[i].size);
647 }
648
649 prsv = rsv->next;
650 early_memunmap(p, PAGE_SIZE);
651 }
652 }
653
654 if (rt_prop != EFI_INVALID_TABLE_ADDR) {
655 efi_rt_properties_table_t *tbl;
656
657 tbl = early_memremap(rt_prop, sizeof(*tbl));
658 if (tbl) {
659 efi.runtime_supported_mask &= tbl->runtime_services_supported;
660 early_memunmap(tbl, sizeof(*tbl));
661 }
662 }
663
664 return 0;
665 }
666
efi_systab_check_header(const efi_table_hdr_t * systab_hdr,int min_major_version)667 int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
668 int min_major_version)
669 {
670 if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
671 pr_err("System table signature incorrect!\n");
672 return -EINVAL;
673 }
674
675 if ((systab_hdr->revision >> 16) < min_major_version)
676 pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
677 systab_hdr->revision >> 16,
678 systab_hdr->revision & 0xffff,
679 min_major_version);
680
681 return 0;
682 }
683
684 #ifndef CONFIG_IA64
map_fw_vendor(unsigned long fw_vendor,size_t size)685 static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
686 size_t size)
687 {
688 const efi_char16_t *ret;
689
690 ret = early_memremap_ro(fw_vendor, size);
691 if (!ret)
692 pr_err("Could not map the firmware vendor!\n");
693 return ret;
694 }
695
unmap_fw_vendor(const void * fw_vendor,size_t size)696 static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
697 {
698 early_memunmap((void *)fw_vendor, size);
699 }
700 #else
701 #define map_fw_vendor(p, s) __va(p)
702 #define unmap_fw_vendor(v, s)
703 #endif
704
efi_systab_report_header(const efi_table_hdr_t * systab_hdr,unsigned long fw_vendor)705 void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
706 unsigned long fw_vendor)
707 {
708 char vendor[100] = "unknown";
709 const efi_char16_t *c16;
710 size_t i;
711
712 c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
713 if (c16) {
714 for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
715 vendor[i] = c16[i];
716 vendor[i] = '\0';
717
718 unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
719 }
720
721 pr_info("EFI v%u.%.02u by %s\n",
722 systab_hdr->revision >> 16,
723 systab_hdr->revision & 0xffff,
724 vendor);
725
726 if (IS_ENABLED(CONFIG_X86_64) &&
727 systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
728 !strcmp(vendor, "Apple")) {
729 pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
730 efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
731 }
732 }
733
734 static __initdata char memory_type_name[][13] = {
735 "Reserved",
736 "Loader Code",
737 "Loader Data",
738 "Boot Code",
739 "Boot Data",
740 "Runtime Code",
741 "Runtime Data",
742 "Conventional",
743 "Unusable",
744 "ACPI Reclaim",
745 "ACPI Mem NVS",
746 "MMIO",
747 "MMIO Port",
748 "PAL Code",
749 "Persistent",
750 };
751
efi_md_typeattr_format(char * buf,size_t size,const efi_memory_desc_t * md)752 char * __init efi_md_typeattr_format(char *buf, size_t size,
753 const efi_memory_desc_t *md)
754 {
755 char *pos;
756 int type_len;
757 u64 attr;
758
759 pos = buf;
760 if (md->type >= ARRAY_SIZE(memory_type_name))
761 type_len = snprintf(pos, size, "[type=%u", md->type);
762 else
763 type_len = snprintf(pos, size, "[%-*s",
764 (int)(sizeof(memory_type_name[0]) - 1),
765 memory_type_name[md->type]);
766 if (type_len >= size)
767 return buf;
768
769 pos += type_len;
770 size -= type_len;
771
772 attr = md->attribute;
773 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
774 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
775 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
776 EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
777 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
778 snprintf(pos, size, "|attr=0x%016llx]",
779 (unsigned long long)attr);
780 else
781 snprintf(pos, size,
782 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
783 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
784 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
785 attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "",
786 attr & EFI_MEMORY_SP ? "SP" : "",
787 attr & EFI_MEMORY_NV ? "NV" : "",
788 attr & EFI_MEMORY_XP ? "XP" : "",
789 attr & EFI_MEMORY_RP ? "RP" : "",
790 attr & EFI_MEMORY_WP ? "WP" : "",
791 attr & EFI_MEMORY_RO ? "RO" : "",
792 attr & EFI_MEMORY_UCE ? "UCE" : "",
793 attr & EFI_MEMORY_WB ? "WB" : "",
794 attr & EFI_MEMORY_WT ? "WT" : "",
795 attr & EFI_MEMORY_WC ? "WC" : "",
796 attr & EFI_MEMORY_UC ? "UC" : "");
797 return buf;
798 }
799
800 /*
801 * IA64 has a funky EFI memory map that doesn't work the same way as
802 * other architectures.
803 */
804 #ifndef CONFIG_IA64
805 /*
806 * efi_mem_attributes - lookup memmap attributes for physical address
807 * @phys_addr: the physical address to lookup
808 *
809 * Search in the EFI memory map for the region covering
810 * @phys_addr. Returns the EFI memory attributes if the region
811 * was found in the memory map, 0 otherwise.
812 */
efi_mem_attributes(unsigned long phys_addr)813 u64 efi_mem_attributes(unsigned long phys_addr)
814 {
815 efi_memory_desc_t *md;
816
817 if (!efi_enabled(EFI_MEMMAP))
818 return 0;
819
820 for_each_efi_memory_desc(md) {
821 if ((md->phys_addr <= phys_addr) &&
822 (phys_addr < (md->phys_addr +
823 (md->num_pages << EFI_PAGE_SHIFT))))
824 return md->attribute;
825 }
826 return 0;
827 }
828
829 /*
830 * efi_mem_type - lookup memmap type for physical address
831 * @phys_addr: the physical address to lookup
832 *
833 * Search in the EFI memory map for the region covering @phys_addr.
834 * Returns the EFI memory type if the region was found in the memory
835 * map, -EINVAL otherwise.
836 */
efi_mem_type(unsigned long phys_addr)837 int efi_mem_type(unsigned long phys_addr)
838 {
839 const efi_memory_desc_t *md;
840
841 if (!efi_enabled(EFI_MEMMAP))
842 return -ENOTSUPP;
843
844 for_each_efi_memory_desc(md) {
845 if ((md->phys_addr <= phys_addr) &&
846 (phys_addr < (md->phys_addr +
847 (md->num_pages << EFI_PAGE_SHIFT))))
848 return md->type;
849 }
850 return -EINVAL;
851 }
852 #endif
853
efi_status_to_err(efi_status_t status)854 int efi_status_to_err(efi_status_t status)
855 {
856 int err;
857
858 switch (status) {
859 case EFI_SUCCESS:
860 err = 0;
861 break;
862 case EFI_INVALID_PARAMETER:
863 err = -EINVAL;
864 break;
865 case EFI_OUT_OF_RESOURCES:
866 err = -ENOSPC;
867 break;
868 case EFI_DEVICE_ERROR:
869 err = -EIO;
870 break;
871 case EFI_WRITE_PROTECTED:
872 err = -EROFS;
873 break;
874 case EFI_SECURITY_VIOLATION:
875 err = -EACCES;
876 break;
877 case EFI_NOT_FOUND:
878 err = -ENOENT;
879 break;
880 case EFI_ABORTED:
881 err = -EINTR;
882 break;
883 default:
884 err = -EINVAL;
885 }
886
887 return err;
888 }
889
890 static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
891 static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
892
efi_memreserve_map_root(void)893 static int __init efi_memreserve_map_root(void)
894 {
895 if (mem_reserve == EFI_INVALID_TABLE_ADDR)
896 return -ENODEV;
897
898 efi_memreserve_root = memremap(mem_reserve,
899 sizeof(*efi_memreserve_root),
900 MEMREMAP_WB);
901 if (WARN_ON_ONCE(!efi_memreserve_root))
902 return -ENOMEM;
903 return 0;
904 }
905
efi_mem_reserve_iomem(phys_addr_t addr,u64 size)906 static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
907 {
908 struct resource *res, *parent;
909 int ret;
910
911 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
912 if (!res)
913 return -ENOMEM;
914
915 res->name = "reserved";
916 res->flags = IORESOURCE_MEM;
917 res->start = addr;
918 res->end = addr + size - 1;
919
920 /* we expect a conflict with a 'System RAM' region */
921 parent = request_resource_conflict(&iomem_resource, res);
922 ret = parent ? request_resource(parent, res) : 0;
923
924 /*
925 * Given that efi_mem_reserve_iomem() can be called at any
926 * time, only call memblock_reserve() if the architecture
927 * keeps the infrastructure around.
928 */
929 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
930 memblock_reserve(addr, size);
931
932 return ret;
933 }
934
efi_mem_reserve_persistent(phys_addr_t addr,u64 size)935 int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
936 {
937 struct linux_efi_memreserve *rsv;
938 unsigned long prsv;
939 int rc, index;
940
941 if (efi_memreserve_root == (void *)ULONG_MAX)
942 return -ENODEV;
943
944 if (!efi_memreserve_root) {
945 rc = efi_memreserve_map_root();
946 if (rc)
947 return rc;
948 }
949
950 /* first try to find a slot in an existing linked list entry */
951 for (prsv = efi_memreserve_root->next; prsv; ) {
952 rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
953 index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
954 if (index < rsv->size) {
955 rsv->entry[index].base = addr;
956 rsv->entry[index].size = size;
957
958 memunmap(rsv);
959 return efi_mem_reserve_iomem(addr, size);
960 }
961 prsv = rsv->next;
962 memunmap(rsv);
963 }
964
965 /* no slot found - allocate a new linked list entry */
966 rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
967 if (!rsv)
968 return -ENOMEM;
969
970 rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
971 if (rc) {
972 free_page((unsigned long)rsv);
973 return rc;
974 }
975
976 /*
977 * The memremap() call above assumes that a linux_efi_memreserve entry
978 * never crosses a page boundary, so let's ensure that this remains true
979 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
980 * using SZ_4K explicitly in the size calculation below.
981 */
982 rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
983 atomic_set(&rsv->count, 1);
984 rsv->entry[0].base = addr;
985 rsv->entry[0].size = size;
986
987 spin_lock(&efi_mem_reserve_persistent_lock);
988 rsv->next = efi_memreserve_root->next;
989 efi_memreserve_root->next = __pa(rsv);
990 spin_unlock(&efi_mem_reserve_persistent_lock);
991
992 return efi_mem_reserve_iomem(addr, size);
993 }
994
efi_memreserve_root_init(void)995 static int __init efi_memreserve_root_init(void)
996 {
997 if (efi_memreserve_root)
998 return 0;
999 if (efi_memreserve_map_root())
1000 efi_memreserve_root = (void *)ULONG_MAX;
1001 return 0;
1002 }
1003 early_initcall(efi_memreserve_root_init);
1004
1005 #ifdef CONFIG_KEXEC
update_efi_random_seed(struct notifier_block * nb,unsigned long code,void * unused)1006 static int update_efi_random_seed(struct notifier_block *nb,
1007 unsigned long code, void *unused)
1008 {
1009 struct linux_efi_random_seed *seed;
1010 u32 size = 0;
1011
1012 if (!kexec_in_progress)
1013 return NOTIFY_DONE;
1014
1015 seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
1016 if (seed != NULL) {
1017 size = min(seed->size, EFI_RANDOM_SEED_SIZE);
1018 memunmap(seed);
1019 } else {
1020 pr_err("Could not map UEFI random seed!\n");
1021 }
1022 if (size > 0) {
1023 seed = memremap(efi_rng_seed, sizeof(*seed) + size,
1024 MEMREMAP_WB);
1025 if (seed != NULL) {
1026 seed->size = size;
1027 get_random_bytes(seed->bits, seed->size);
1028 memunmap(seed);
1029 } else {
1030 pr_err("Could not map UEFI random seed!\n");
1031 }
1032 }
1033 return NOTIFY_DONE;
1034 }
1035
1036 static struct notifier_block efi_random_seed_nb = {
1037 .notifier_call = update_efi_random_seed,
1038 };
1039
register_update_efi_random_seed(void)1040 static int __init register_update_efi_random_seed(void)
1041 {
1042 if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
1043 return 0;
1044 return register_reboot_notifier(&efi_random_seed_nb);
1045 }
1046 late_initcall(register_update_efi_random_seed);
1047 #endif
1048