1 // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <stdarg.h>
16 #include <sys/param.h> //For max/min
17 #include "esp_attr.h"
18 #include "esp_private/system_internal.h"
19 #include "esp_spi_flash.h" //for ``g_flash_guard_default_ops``
20 #include "esp_flash.h"
21 #include "esp_flash_partitions.h"
22 #include "esp_osal/esp_osal.h"
23 #include "esp_osal/task.h"
24 #include "hal/spi_types.h"
25 #include "sdkconfig.h"
26 #include "esp_log.h"
27
28 #include "esp_rom_sys.h"
29
30 #include "driver/spi_common_internal.h"
31
32 static const char TAG[] = "spi_flash";
33
34 /*
35 * OS functions providing delay service and arbitration among chips, and with the cache.
36 *
37 * The cache needs to be disabled when chips on the SPI1 bus is under operation, hence these functions need to be put
38 * into the IRAM,and their data should be put into the DRAM.
39 */
40
41 typedef struct {
42 spi_bus_lock_dev_handle_t dev_lock;
43 } app_func_arg_t;
44
45 /*
46 * Time yield algorithm:
47 * Every time spi_flash_os_check_yield() is called:
48 *
49 * 1. If the time since last end() function is longer than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS (time
50 * to yield), all counters will be reset, as if the yield has just ends;
51 * 2. If the time since last yield() is longer than CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS, will
52 * return a yield request. When the yield() is called, all counters will be reset.
53 * Note: Short intervals between start() and end() after the last yield() will not reset the
54 * counter mentioned in #2, but still be counted into the time mentioned in #2.
55 */
56 typedef struct {
57 app_func_arg_t common_arg; //shared args, must be the first item
58 bool no_protect; //to decide whether to check protected region (for the main chip) or not.
59 uint32_t acquired_since_us; // Time since last explicit yield()
60 uint32_t released_since_us; // Time since last end() (implicit yield)
61 } spi1_app_func_arg_t;
62
63 static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx);
64 static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx);
65 static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx);
66 static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx);
67
cache_enable(void * arg)68 IRAM_ATTR static void cache_enable(void* arg)
69 {
70 #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND
71 g_flash_guard_default_ops.end();
72 #endif
73 }
74
cache_disable(void * arg)75 IRAM_ATTR static void cache_disable(void* arg)
76 {
77 #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND
78 g_flash_guard_default_ops.start();
79 #endif
80 }
81
spi_start(void * arg)82 static IRAM_ATTR esp_err_t spi_start(void *arg)
83 {
84 spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t *)arg)->dev_lock;
85
86 // wait for other devices (or cache) to finish their operation
87 esp_err_t ret = spi_bus_lock_acquire_start(dev_lock, portMAX_DELAY);
88 if (ret != ESP_OK) {
89 return ret;
90 }
91 spi_bus_lock_touch(dev_lock);
92 return ESP_OK;
93 }
94
spi_end(void * arg)95 static IRAM_ATTR esp_err_t spi_end(void *arg)
96 {
97 return spi_bus_lock_acquire_end(((app_func_arg_t *)arg)->dev_lock);
98 }
99
spi1_start(void * arg)100 static IRAM_ATTR esp_err_t spi1_start(void *arg)
101 {
102 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
103 //use the lock to disable the cache and interrupts before using the SPI bus
104 return spi_start(arg);
105 #else
106 //directly disable the cache and interrupts when lock is not used
107 cache_disable(NULL);
108 on_spi1_acquired((spi1_app_func_arg_t*)arg);
109 return ESP_OK;
110 #endif
111 }
112
spi1_end(void * arg)113 static IRAM_ATTR esp_err_t spi1_end(void *arg)
114 {
115 esp_err_t ret = ESP_OK;
116 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
117 ret = spi_end(arg);
118 #else
119 cache_enable(NULL);
120 #endif
121 on_spi1_released((spi1_app_func_arg_t*)arg);
122 return ret;
123 }
124
spi1_flash_os_check_yield(void * arg,uint32_t chip_status,uint32_t * out_request)125 static IRAM_ATTR esp_err_t spi1_flash_os_check_yield(void *arg, uint32_t chip_status, uint32_t* out_request)
126 {
127 assert (chip_status == 0); //TODO: support suspend
128 esp_err_t ret = ESP_ERR_TIMEOUT; //Nothing happened
129 uint32_t request = 0;
130
131 if (on_spi1_check_yield((spi1_app_func_arg_t *)arg)) {
132 request = SPI_FLASH_YIELD_REQ_YIELD;
133 ret = ESP_OK;
134 }
135 if (out_request) {
136 *out_request = request;
137 }
138 return ret;
139 }
140
spi1_flash_os_yield(void * arg,uint32_t * out_status)141 static IRAM_ATTR esp_err_t spi1_flash_os_yield(void *arg, uint32_t* out_status)
142 {
143 #ifdef CONFIG_SPI_FLASH_ERASE_YIELD_TICKS
144 vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS);
145 #else
146 vTaskDelay(1);
147 #endif
148 on_spi1_yielded((spi1_app_func_arg_t*)arg);
149 return ESP_OK;
150 }
151
delay_us(void * arg,uint32_t us)152 static IRAM_ATTR esp_err_t delay_us(void *arg, uint32_t us)
153 {
154 esp_rom_delay_us(us);
155 return ESP_OK;
156 }
157
get_buffer_malloc(void * arg,size_t reqest_size,size_t * out_size)158 static IRAM_ATTR void* get_buffer_malloc(void* arg, size_t reqest_size, size_t* out_size)
159 {
160 /* Allocate temporary internal buffer to use for the actual read. If the preferred size
161 doesn't fit in free internal memory, allocate the largest available free block.
162
163 (May need to shrink read_chunk_size and retry due to race conditions with other tasks
164 also allocating from the heap.)
165 */
166 void* ret = NULL;
167 unsigned retries = 5;
168 size_t read_chunk_size = reqest_size;
169 while(ret == NULL && retries--) {
170 read_chunk_size = MIN(read_chunk_size, heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
171 read_chunk_size = (read_chunk_size + 3) & ~3;
172 ret = heap_caps_malloc(read_chunk_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
173 }
174 ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", ret, read_chunk_size);
175 *out_size = (ret != NULL? read_chunk_size: 0);
176 return ret;
177 }
178
release_buffer_malloc(void * arg,void * temp_buf)179 static IRAM_ATTR void release_buffer_malloc(void* arg, void *temp_buf)
180 {
181 free(temp_buf);
182 }
183
main_flash_region_protected(void * arg,size_t start_addr,size_t size)184 static IRAM_ATTR esp_err_t main_flash_region_protected(void* arg, size_t start_addr, size_t size)
185 {
186 if (((spi1_app_func_arg_t*)arg)->no_protect || esp_partition_main_flash_region_safe(start_addr, size)) {
187 //ESP_OK = 0, also means protected==0
188 return ESP_OK;
189 } else {
190 return ESP_ERR_NOT_SUPPORTED;
191 }
192 }
193
194 static DRAM_ATTR spi1_app_func_arg_t main_flash_arg = {};
195
196 //for SPI1, we have to disable the cache and interrupts before using the SPI bus
197 static const DRAM_ATTR esp_flash_os_functions_t esp_flash_spi1_default_os_functions = {
198 .start = spi1_start,
199 .end = spi1_end,
200 .region_protected = main_flash_region_protected,
201 .delay_us = delay_us,
202 .get_temp_buffer = get_buffer_malloc,
203 .release_temp_buffer = release_buffer_malloc,
204 .check_yield = spi1_flash_os_check_yield,
205 .yield = spi1_flash_os_yield,
206 };
207
208 static const esp_flash_os_functions_t esp_flash_spi23_default_os_functions = {
209 .start = spi_start,
210 .end = spi_end,
211 .delay_us = delay_us,
212 .get_temp_buffer = get_buffer_malloc,
213 .release_temp_buffer = release_buffer_malloc,
214 .region_protected = NULL,
215 .check_yield = NULL,
216 .yield = NULL,
217 };
218
register_dev(int host_id)219 static spi_bus_lock_dev_handle_t register_dev(int host_id)
220 {
221 spi_bus_lock_handle_t lock = spi_bus_lock_get_by_id(host_id);
222 spi_bus_lock_dev_handle_t dev_handle;
223 spi_bus_lock_dev_config_t config = {.flags = SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED};
224 esp_err_t err = spi_bus_lock_register_dev(lock, &config, &dev_handle);
225 if (err != ESP_OK) {
226 return NULL;
227 }
228 return dev_handle;
229 }
230
esp_flash_init_os_functions(esp_flash_t * chip,int host_id,int * out_dev_id)231 esp_err_t esp_flash_init_os_functions(esp_flash_t *chip, int host_id, int* out_dev_id)
232 {
233 spi_bus_lock_dev_handle_t dev_handle = NULL;
234
235 // Skip initializing the bus lock when the bus is SPI1 and the bus is not shared with SPI Master
236 // driver, leaving dev_handle = NULL
237 bool skip_register_dev = (host_id == SPI1_HOST);
238 #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS
239 skip_register_dev = false;
240 #endif
241 if (!skip_register_dev) {
242 dev_handle = register_dev(host_id);
243 }
244
245 if (host_id == SPI1_HOST) {
246 //SPI1
247 chip->os_func = &esp_flash_spi1_default_os_functions;
248 chip->os_func_data = heap_caps_malloc(sizeof(spi1_app_func_arg_t),
249 MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
250 if (chip->os_func_data == NULL) {
251 return ESP_ERR_NO_MEM;
252 }
253 *(spi1_app_func_arg_t*) chip->os_func_data = (spi1_app_func_arg_t) {
254 .common_arg = {
255 .dev_lock = dev_handle,
256 },
257 .no_protect = true,
258 };
259 } else if (host_id == SPI2_HOST || host_id == SPI3_HOST) {
260 //SPI2, SPI3
261 chip->os_func = &esp_flash_spi23_default_os_functions;
262 chip->os_func_data = heap_caps_malloc(sizeof(app_func_arg_t),
263 MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
264 if (chip->os_func_data == NULL) {
265 return ESP_ERR_NO_MEM;
266 }
267 *(app_func_arg_t*) chip->os_func_data = (app_func_arg_t) {
268 .dev_lock = dev_handle,
269 };
270 } else {
271 return ESP_ERR_INVALID_ARG;
272 }
273
274 // Bus lock not initialized, the device ID should be directly given by application.
275 if (dev_handle) {
276 *out_dev_id = spi_bus_lock_get_dev_id(dev_handle);
277 }
278
279 return ESP_OK;
280 }
281
esp_flash_deinit_os_functions(esp_flash_t * chip)282 esp_err_t esp_flash_deinit_os_functions(esp_flash_t* chip)
283 {
284 if (chip->os_func_data) {
285 spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t*)chip->os_func_data)->dev_lock;
286 // SPI bus lock is possible not used on SPI1 bus
287 if (dev_lock) {
288 spi_bus_lock_unregister_dev(dev_lock);
289 }
290 free(chip->os_func_data);
291 }
292 chip->os_func = NULL;
293 chip->os_func_data = NULL;
294 return ESP_OK;
295 }
296
esp_flash_init_main_bus_lock(void)297 esp_err_t esp_flash_init_main_bus_lock(void)
298 {
299 spi_bus_lock_init_main_bus();
300 spi_bus_lock_set_bg_control(g_main_spi_bus_lock, cache_enable, cache_disable, NULL);
301
302 esp_err_t err = spi_bus_lock_init_main_dev();
303 if (err != ESP_OK) {
304 return err;
305 }
306 return ESP_OK;
307 }
308
esp_flash_app_enable_os_functions(esp_flash_t * chip)309 esp_err_t esp_flash_app_enable_os_functions(esp_flash_t* chip)
310 {
311 main_flash_arg = (spi1_app_func_arg_t) {
312 .common_arg = {
313 .dev_lock = g_spi_lock_main_flash_dev, //for SPI1,
314 },
315 .no_protect = false,
316 };
317 chip->os_func = &esp_flash_spi1_default_os_functions;
318 chip->os_func_data = &main_flash_arg;
319 return ESP_OK;
320 }
321
322 // The goal of this part is to manually insert one valid task execution interval, if the time since
323 // last valid interval exceed the limitation (CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS).
324 //
325 // Valid task execution interval: continuous time with the cache enabled, which is longer than
326 // CONFIG_SPI_FLASH_ERASE_YIELD_TICKS. Yield time shorter than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS is
327 // not treated as valid interval.
on_spi1_check_yield(spi1_app_func_arg_t * ctx)328 static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx)
329 {
330 #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
331 uint32_t time = esp_system_get_time();
332 // We handle the reset here instead of in `on_spi1_acquired()`, when acquire() and release() is
333 // larger than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, to save one `esp_system_get_time()` call
334 if ((time - ctx->released_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_TICKS * portTICK_PERIOD_MS * 1000) {
335 // Reset the acquired time as if the yield has just happened.
336 ctx->acquired_since_us = time;
337 } else if ((time - ctx->acquired_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS * 1000) {
338 return true;
339 }
340 #endif
341 return false;
342 }
on_spi1_released(spi1_app_func_arg_t * ctx)343 static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx)
344 {
345 #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
346 ctx->released_since_us = esp_system_get_time();
347 #endif
348 }
349
on_spi1_acquired(spi1_app_func_arg_t * ctx)350 static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx)
351 {
352 // Ideally, when the time after `on_spi1_released()` before this function is called is larger
353 // than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, the acquired time should be reset. We assume the
354 // time after `on_spi1_check_yield()` before this function is so short that we can do the reset
355 // in that function instead.
356 }
357
on_spi1_yielded(spi1_app_func_arg_t * ctx)358 static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx)
359 {
360 uint32_t time = esp_system_get_time();
361 ctx->acquired_since_us = time;
362 }
363