1 /* 2 * Copyright 2017 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrResourceAllocator_DEFINED 9 #define GrResourceAllocator_DEFINED 10 11 #include "include/private/SkTHash.h" 12 13 #include "src/gpu/GrHashMapWithCache.h" 14 #include "src/gpu/GrSurface.h" 15 #include "src/gpu/GrSurfaceProxy.h" 16 17 #include "src/core/SkArenaAlloc.h" 18 #include "src/core/SkTMultiMap.h" 19 20 class GrDirectContext; 21 22 // Print out explicit allocation information 23 #define GR_ALLOCATION_SPEW 0 24 25 // Print out information about interval creation 26 #define GR_TRACK_INTERVAL_CREATION 0 27 28 /* 29 * The ResourceAllocator explicitly distributes GPU resources at flush time. It operates by 30 * being given the usage intervals of the various proxies. It keeps these intervals in a singly 31 * linked list sorted by increasing start index. (It also maintains a hash table from proxyID 32 * to interval to find proxy reuse). The ResourceAllocator uses Registers (in the sense of register 33 * allocation) to represent a future surface that will be used for each proxy during 34 * `planAssignment`, and then assigns actual surfaces during `assign`. 35 * 36 * Note: the op indices (used in the usage intervals) come from the order of the ops in 37 * their opsTasks after the opsTask DAG has been linearized. 38 * 39 * The planAssignment method traverses the sorted list and: 40 * moves intervals from the active list that have completed (returning their registers 41 * to the free pool) into the finished list (sorted by increasing start) 42 * 43 * allocates a new register (preferably from the free pool) for the new interval 44 * adds the new interval to the active list (that is sorted by increasing end index) 45 * 46 * After assignment planning, the user can choose to call `makeBudgetHeadroom` which: 47 * computes how much VRAM would be needed for new resources for all extant Registers 48 * 49 * asks the resource cache to purge enough resources to get that much free space 50 * 51 * if it's not possible, do nothing and return false. The user may opt to reset 52 * the allocator and start over with a different DAG. 53 * 54 * If the user wants to commit to the current assignment plan, they call `assign` which: 55 * instantiates lazy proxies 56 * 57 * instantantiates new surfaces for all registers that need them 58 * 59 * assigns the surface for each register to all the proxies that will use it 60 * 61 ************************************************************************************************* 62 * How does instantiation failure handling work when explicitly allocating? 63 * 64 * In the gather usage intervals pass all the GrSurfaceProxies used in the flush should be 65 * gathered (i.e., in OpsTask::gatherProxyIntervals). 66 * 67 * During addInterval, read-only lazy proxies are instantiated. If that fails, the resource 68 * allocator will note the failure and ignore pretty much anything else until `reset`. 69 * 70 * During planAssignment, fully-lazy proxies are instantiated so that we can know their size for 71 * budgeting purposes. If this fails, return false. 72 * 73 * During assign, partially-lazy proxies are instantiated and new surfaces are created for all other 74 * proxies. If any of these fails, return false. 75 * 76 * The drawing manager will drop the flush if any proxies fail to instantiate. 77 */ 78 class GrResourceAllocator { 79 public: GrResourceAllocator(GrDirectContext * dContext)80 GrResourceAllocator(GrDirectContext* dContext) 81 : fDContext(dContext) {} 82 83 ~GrResourceAllocator(); 84 curOp()85 unsigned int curOp() const { return fNumOps; } incOps()86 void incOps() { fNumOps++; } 87 88 /** Indicates whether a given call to addInterval represents an actual usage of the 89 * provided proxy. This is mainly here to accommodate deferred proxies attached to opsTasks. 90 * In that case we need to create an extra long interval for them (due to the upload) but 91 * don't want to count that usage/reference towards the proxy's recyclability. 92 */ 93 enum class ActualUse : bool { 94 kNo = false, 95 kYes = true 96 }; 97 98 // Add a usage interval from 'start' to 'end' inclusive. This is usually used for renderTargets. 99 // If an existing interval already exists it will be expanded to include the new range. 100 void addInterval(GrSurfaceProxy*, unsigned int start, unsigned int end, ActualUse actualUse 101 SkDEBUGCODE(, bool isDirectDstRead = false)); 102 failedInstantiation()103 bool failedInstantiation() const { return fFailedInstantiation; } 104 105 // Generate an internal plan for resource allocation. After this you can optionally call 106 // `makeBudgetHeadroom` to check whether that plan would go over our memory budget. 107 // Fully-lazy proxies are also instantiated at this point so that their size can 108 // be known accurately. Returns false if any lazy proxy failed to instantiate, true otherwise. 109 bool planAssignment(); 110 111 // Figure out how much VRAM headroom this plan requires. If there's enough purgeable resources, 112 // purge them and return true. Otherwise return false. 113 bool makeBudgetHeadroom(); 114 115 // Clear all internal state in preparation for a new set of intervals. 116 void reset(); 117 118 // Instantiate and assign resources to all proxies. 119 bool assign(); 120 121 #if GR_ALLOCATION_SPEW 122 void dumpIntervals(); 123 #endif 124 125 private: 126 class Interval; 127 class Register; 128 129 // Remove dead intervals from the active list 130 void expire(unsigned int curIndex); 131 132 // These two methods wrap the interactions with the free pool 133 void recycleRegister(Register* r); 134 Register* findOrCreateRegisterFor(GrSurfaceProxy* proxy); 135 136 struct FreePoolTraits { GetKeyFreePoolTraits137 static const GrScratchKey& GetKey(const Register& r) { 138 return r.scratchKey(); 139 } 140 HashFreePoolTraits141 static uint32_t Hash(const GrScratchKey& key) { return key.hash(); } OnFreeFreePoolTraits142 static void OnFree(Register* r) { } 143 }; 144 typedef SkTMultiMap<Register, GrScratchKey, FreePoolTraits> FreePoolMultiMap; 145 146 typedef SkTHashMap<uint32_t, Interval*, GrCheapHash> IntvlHash; 147 148 struct UniqueKeyHash { operatorUniqueKeyHash149 uint32_t operator()(const GrUniqueKey& key) const { return key.hash(); } 150 }; 151 typedef SkTHashMap<GrUniqueKey, Register*, UniqueKeyHash> UniqueKeyRegisterHash; 152 153 // Each proxy – with some exceptions – is assigned a register. After all assignments are made, 154 // another pass is performed to instantiate and assign actual surfaces to the proxies. Right 155 // now these are performed in one call, but in the future they will be separable and the user 156 // will be able to query re: memory cost before committing to surface creation. 157 class Register { 158 public: 159 // It's OK to pass an invalid scratch key iff the proxy has a unique key. 160 Register(GrSurfaceProxy* originatingProxy, GrScratchKey, GrResourceProvider*); 161 scratchKey()162 const GrScratchKey& scratchKey() const { return fScratchKey; } uniqueKey()163 const GrUniqueKey& uniqueKey() const { return fOriginatingProxy->getUniqueKey(); } 164 accountedForInBudget()165 bool accountedForInBudget() const { return fAccountedForInBudget; } setAccountedForInBudget()166 void setAccountedForInBudget() { fAccountedForInBudget = true; } 167 existingSurface()168 GrSurface* existingSurface() const { return fExistingSurface.get(); } 169 170 // Can this register be used by other proxies after this one? 171 bool isRecyclable(const GrCaps&, GrSurfaceProxy* proxy, int knownUseCount) const; 172 173 // Resolve the register allocation to an actual GrSurface. 'fOriginatingProxy' 174 // is used to cache the allocation when a given register is used by multiple 175 // proxies. 176 bool instantiateSurface(GrSurfaceProxy*, GrResourceProvider*); 177 178 SkDEBUGCODE(uint32_t uniqueID() const { return fUniqueID; }) 179 180 private: 181 GrSurfaceProxy* fOriginatingProxy; 182 GrScratchKey fScratchKey; // free pool wants a reference to this. 183 sk_sp<GrSurface> fExistingSurface; // queried from resource cache. may be null. 184 bool fAccountedForInBudget = false; 185 186 #ifdef SK_DEBUG 187 uint32_t fUniqueID; 188 189 static uint32_t CreateUniqueID(); 190 #endif 191 }; 192 193 class Interval { 194 public: Interval(GrSurfaceProxy * proxy,unsigned int start,unsigned int end)195 Interval(GrSurfaceProxy* proxy, unsigned int start, unsigned int end) 196 : fProxy(proxy) 197 , fStart(start) 198 , fEnd(end) { 199 SkASSERT(proxy); 200 SkDEBUGCODE(fUniqueID = CreateUniqueID()); 201 #if GR_TRACK_INTERVAL_CREATION 202 SkString proxyStr = proxy->dump(); 203 SkDebugf("New intvl %d: %s [%d, %d]\n", fUniqueID, proxyStr.c_str(), start, end); 204 #endif 205 } 206 proxy()207 const GrSurfaceProxy* proxy() const { return fProxy; } proxy()208 GrSurfaceProxy* proxy() { return fProxy; } 209 start()210 unsigned int start() const { return fStart; } end()211 unsigned int end() const { return fEnd; } 212 setNext(Interval * next)213 void setNext(Interval* next) { fNext = next; } next()214 const Interval* next() const { return fNext; } next()215 Interval* next() { return fNext; } 216 getRegister()217 Register* getRegister() const { return fRegister; } setRegister(Register * r)218 void setRegister(Register* r) { fRegister = r; } 219 addUse()220 void addUse() { fUses++; } uses()221 int uses() const { return fUses; } 222 extendEnd(unsigned int newEnd)223 void extendEnd(unsigned int newEnd) { 224 if (newEnd > fEnd) { 225 fEnd = newEnd; 226 #if GR_TRACK_INTERVAL_CREATION 227 SkDebugf("intvl %d: extending from %d to %d\n", fUniqueID, fEnd, newEnd); 228 #endif 229 } 230 } 231 232 SkDEBUGCODE(uint32_t uniqueID() const { return fUniqueID; }) 233 234 private: 235 GrSurfaceProxy* fProxy; 236 unsigned int fStart; 237 unsigned int fEnd; 238 Interval* fNext = nullptr; 239 unsigned int fUses = 0; 240 Register* fRegister = nullptr; 241 242 #ifdef SK_DEBUG 243 uint32_t fUniqueID; 244 245 static uint32_t CreateUniqueID(); 246 #endif 247 }; 248 249 class IntervalList { 250 public: 251 IntervalList() = default; 252 // N.B. No need for a destructor – the arena allocator will clean up for us. 253 empty()254 bool empty() const { 255 SkASSERT(SkToBool(fHead) == SkToBool(fTail)); 256 return !SkToBool(fHead); 257 } peekHead()258 const Interval* peekHead() const { return fHead; } peekHead()259 Interval* peekHead() { return fHead; } 260 Interval* popHead(); 261 void insertByIncreasingStart(Interval*); 262 void insertByIncreasingEnd(Interval*); 263 264 private: 265 SkDEBUGCODE(void validate() const;) 266 267 Interval* fHead = nullptr; 268 Interval* fTail = nullptr; 269 }; 270 271 // Compositing use cases can create > 80 intervals. 272 static const int kInitialArenaSize = 128 * sizeof(Interval); 273 274 GrDirectContext* fDContext; 275 FreePoolMultiMap fFreePool; // Recently created/used GrSurfaces 276 IntvlHash fIntvlHash; // All the intervals, hashed by proxyID 277 278 IntervalList fIntvlList; // All the intervals sorted by increasing start 279 IntervalList fActiveIntvls; // List of live intervals during assignment 280 // (sorted by increasing end) 281 IntervalList fFinishedIntvls; // All the completed intervals 282 // (sorted by increasing start) 283 UniqueKeyRegisterHash fUniqueKeyRegisters; 284 unsigned int fNumOps = 0; 285 286 SkDEBUGCODE(bool fPlanned = false;) 287 SkDEBUGCODE(bool fAssigned = false;) 288 289 SkSTArenaAllocWithReset<kInitialArenaSize> fInternalAllocator; // intervals & registers 290 bool fFailedInstantiation = false; 291 }; 292 293 #endif // GrResourceAllocator_DEFINED 294