• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2 //!
3 //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4 //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5 //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6 //!
7 //! <br>
8 //!
9 //! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10 //! crate. This library serves two purposes:
11 //!
12 //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13 //!
14 //! - **Bring proc-macro-like functionality to other contexts like build.rs and
15 //!   main.rs.** Types from `proc_macro` are entirely specific to procedural
16 //!   macros and cannot ever exist in code outside of a procedural macro.
17 //!   Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18 //!   By developing foundational libraries like [syn] and [quote] against
19 //!   `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20 //!   becomes easily applicable to many other use cases and we avoid
21 //!   reimplementing non-macro equivalents of those libraries.
22 //!
23 //! - **Make procedural macros unit testable.** As a consequence of being
24 //!   specific to procedural macros, nothing that uses `proc_macro` can be
25 //!   executed from a unit test. In order for helper libraries or components of
26 //!   a macro to be testable in isolation, they must be implemented using
27 //!   `proc_macro2`.
28 //!
29 //! [syn]: https://github.com/dtolnay/syn
30 //! [quote]: https://github.com/dtolnay/quote
31 //!
32 //! # Usage
33 //!
34 //! The skeleton of a typical procedural macro typically looks like this:
35 //!
36 //! ```
37 //! extern crate proc_macro;
38 //!
39 //! # const IGNORE: &str = stringify! {
40 //! #[proc_macro_derive(MyDerive)]
41 //! # };
42 //! # #[cfg(wrap_proc_macro)]
43 //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44 //!     let input = proc_macro2::TokenStream::from(input);
45 //!
46 //!     let output: proc_macro2::TokenStream = {
47 //!         /* transform input */
48 //!         # input
49 //!     };
50 //!
51 //!     proc_macro::TokenStream::from(output)
52 //! }
53 //! ```
54 //!
55 //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56 //! propagate parse errors correctly back to the compiler when parsing fails.
57 //!
58 //! [`parse_macro_input!`]: https://docs.rs/syn/1.0/syn/macro.parse_macro_input.html
59 //!
60 //! # Unstable features
61 //!
62 //! The default feature set of proc-macro2 tracks the most recent stable
63 //! compiler API. Functionality in `proc_macro` that is not yet stable is not
64 //! exposed by proc-macro2 by default.
65 //!
66 //! To opt into the additional APIs available in the most recent nightly
67 //! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68 //! rustc. We will polyfill those nightly-only APIs back to Rust 1.31.0. As
69 //! these are unstable APIs that track the nightly compiler, minor versions of
70 //! proc-macro2 may make breaking changes to them at any time.
71 //!
72 //! ```sh
73 //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74 //! ```
75 //!
76 //! Note that this must not only be done for your crate, but for any crate that
77 //! depends on your crate. This infectious nature is intentional, as it serves
78 //! as a reminder that you are outside of the normal semver guarantees.
79 //!
80 //! Semver exempt methods are marked as such in the proc-macro2 documentation.
81 //!
82 //! # Thread-Safety
83 //!
84 //! Most types in this crate are `!Sync` because the underlying compiler
85 //! types make use of thread-local memory, meaning they cannot be accessed from
86 //! a different thread.
87 
88 // Proc-macro2 types in rustdoc of other crates get linked to here.
89 #![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.53")]
90 #![cfg_attr(
91     any(proc_macro_span, super_unstable),
92     feature(proc_macro_span, proc_macro_span_shrink)
93 )]
94 #![cfg_attr(super_unstable, feature(proc_macro_def_site))]
95 #![cfg_attr(doc_cfg, feature(doc_cfg))]
96 #![allow(
97     clippy::cast_lossless,
98     clippy::cast_possible_truncation,
99     clippy::doc_markdown,
100     clippy::items_after_statements,
101     clippy::let_underscore_untyped,
102     clippy::manual_assert,
103     clippy::must_use_candidate,
104     clippy::needless_doctest_main,
105     clippy::return_self_not_must_use,
106     clippy::shadow_unrelated,
107     clippy::trivially_copy_pass_by_ref,
108     clippy::unnecessary_wraps,
109     clippy::unused_self,
110     clippy::used_underscore_binding,
111     clippy::vec_init_then_push
112 )]
113 
114 #[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
115 compile_error! {"\
116     Something is not right. If you've tried to turn on \
117     procmacro2_semver_exempt, you need to ensure that it \
118     is turned on for the compilation of the proc-macro2 \
119     build script as well.
120 "}
121 
122 #[cfg(use_proc_macro)]
123 extern crate proc_macro;
124 
125 mod marker;
126 mod parse;
127 mod rcvec;
128 
129 #[cfg(wrap_proc_macro)]
130 mod detection;
131 
132 // Public for proc_macro2::fallback::force() and unforce(), but those are quite
133 // a niche use case so we omit it from rustdoc.
134 #[doc(hidden)]
135 pub mod fallback;
136 
137 pub mod extra;
138 
139 #[cfg(not(wrap_proc_macro))]
140 use crate::fallback as imp;
141 #[path = "wrapper.rs"]
142 #[cfg(wrap_proc_macro)]
143 mod imp;
144 
145 #[cfg(span_locations)]
146 mod location;
147 
148 use crate::extra::DelimSpan;
149 use crate::marker::Marker;
150 use core::cmp::Ordering;
151 use core::fmt::{self, Debug, Display};
152 use core::hash::{Hash, Hasher};
153 use core::iter::FromIterator;
154 use core::ops::RangeBounds;
155 use core::str::FromStr;
156 use std::error::Error;
157 #[cfg(procmacro2_semver_exempt)]
158 use std::path::PathBuf;
159 
160 #[cfg(span_locations)]
161 pub use crate::location::LineColumn;
162 
163 /// An abstract stream of tokens, or more concretely a sequence of token trees.
164 ///
165 /// This type provides interfaces for iterating over token trees and for
166 /// collecting token trees into one stream.
167 ///
168 /// Token stream is both the input and output of `#[proc_macro]`,
169 /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
170 #[derive(Clone)]
171 pub struct TokenStream {
172     inner: imp::TokenStream,
173     _marker: Marker,
174 }
175 
176 /// Error returned from `TokenStream::from_str`.
177 pub struct LexError {
178     inner: imp::LexError,
179     _marker: Marker,
180 }
181 
182 impl TokenStream {
_new(inner: imp::TokenStream) -> Self183     fn _new(inner: imp::TokenStream) -> Self {
184         TokenStream {
185             inner,
186             _marker: Marker,
187         }
188     }
189 
_new_fallback(inner: fallback::TokenStream) -> Self190     fn _new_fallback(inner: fallback::TokenStream) -> Self {
191         TokenStream {
192             inner: inner.into(),
193             _marker: Marker,
194         }
195     }
196 
197     /// Returns an empty `TokenStream` containing no token trees.
new() -> Self198     pub fn new() -> Self {
199         TokenStream::_new(imp::TokenStream::new())
200     }
201 
202     /// Checks if this `TokenStream` is empty.
is_empty(&self) -> bool203     pub fn is_empty(&self) -> bool {
204         self.inner.is_empty()
205     }
206 }
207 
208 /// `TokenStream::default()` returns an empty stream,
209 /// i.e. this is equivalent with `TokenStream::new()`.
210 impl Default for TokenStream {
default() -> Self211     fn default() -> Self {
212         TokenStream::new()
213     }
214 }
215 
216 /// Attempts to break the string into tokens and parse those tokens into a token
217 /// stream.
218 ///
219 /// May fail for a number of reasons, for example, if the string contains
220 /// unbalanced delimiters or characters not existing in the language.
221 ///
222 /// NOTE: Some errors may cause panics instead of returning `LexError`. We
223 /// reserve the right to change these errors into `LexError`s later.
224 impl FromStr for TokenStream {
225     type Err = LexError;
226 
from_str(src: &str) -> Result<TokenStream, LexError>227     fn from_str(src: &str) -> Result<TokenStream, LexError> {
228         let e = src.parse().map_err(|e| LexError {
229             inner: e,
230             _marker: Marker,
231         })?;
232         Ok(TokenStream::_new(e))
233     }
234 }
235 
236 #[cfg(use_proc_macro)]
237 impl From<proc_macro::TokenStream> for TokenStream {
from(inner: proc_macro::TokenStream) -> Self238     fn from(inner: proc_macro::TokenStream) -> Self {
239         TokenStream::_new(inner.into())
240     }
241 }
242 
243 #[cfg(use_proc_macro)]
244 impl From<TokenStream> for proc_macro::TokenStream {
from(inner: TokenStream) -> Self245     fn from(inner: TokenStream) -> Self {
246         inner.inner.into()
247     }
248 }
249 
250 impl From<TokenTree> for TokenStream {
from(token: TokenTree) -> Self251     fn from(token: TokenTree) -> Self {
252         TokenStream::_new(imp::TokenStream::from(token))
253     }
254 }
255 
256 impl Extend<TokenTree> for TokenStream {
extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I)257     fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
258         self.inner.extend(streams);
259     }
260 }
261 
262 impl Extend<TokenStream> for TokenStream {
extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I)263     fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
264         self.inner
265             .extend(streams.into_iter().map(|stream| stream.inner));
266     }
267 }
268 
269 /// Collects a number of token trees into a single stream.
270 impl FromIterator<TokenTree> for TokenStream {
from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self271     fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
272         TokenStream::_new(streams.into_iter().collect())
273     }
274 }
275 impl FromIterator<TokenStream> for TokenStream {
from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self276     fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
277         TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
278     }
279 }
280 
281 /// Prints the token stream as a string that is supposed to be losslessly
282 /// convertible back into the same token stream (modulo spans), except for
283 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
284 /// numeric literals.
285 impl Display for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result286     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
287         Display::fmt(&self.inner, f)
288     }
289 }
290 
291 /// Prints token in a form convenient for debugging.
292 impl Debug for TokenStream {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result293     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
294         Debug::fmt(&self.inner, f)
295     }
296 }
297 
298 impl LexError {
span(&self) -> Span299     pub fn span(&self) -> Span {
300         Span::_new(self.inner.span())
301     }
302 }
303 
304 impl Debug for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result305     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
306         Debug::fmt(&self.inner, f)
307     }
308 }
309 
310 impl Display for LexError {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result311     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
312         Display::fmt(&self.inner, f)
313     }
314 }
315 
316 impl Error for LexError {}
317 
318 /// The source file of a given `Span`.
319 ///
320 /// This type is semver exempt and not exposed by default.
321 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
322 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
323 #[derive(Clone, PartialEq, Eq)]
324 pub struct SourceFile {
325     inner: imp::SourceFile,
326     _marker: Marker,
327 }
328 
329 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
330 impl SourceFile {
_new(inner: imp::SourceFile) -> Self331     fn _new(inner: imp::SourceFile) -> Self {
332         SourceFile {
333             inner,
334             _marker: Marker,
335         }
336     }
337 
338     /// Get the path to this source file.
339     ///
340     /// ### Note
341     ///
342     /// If the code span associated with this `SourceFile` was generated by an
343     /// external macro, this may not be an actual path on the filesystem. Use
344     /// [`is_real`] to check.
345     ///
346     /// Also note that even if `is_real` returns `true`, if
347     /// `--remap-path-prefix` was passed on the command line, the path as given
348     /// may not actually be valid.
349     ///
350     /// [`is_real`]: #method.is_real
path(&self) -> PathBuf351     pub fn path(&self) -> PathBuf {
352         self.inner.path()
353     }
354 
355     /// Returns `true` if this source file is a real source file, and not
356     /// generated by an external macro's expansion.
is_real(&self) -> bool357     pub fn is_real(&self) -> bool {
358         self.inner.is_real()
359     }
360 }
361 
362 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
363 impl Debug for SourceFile {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result364     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
365         Debug::fmt(&self.inner, f)
366     }
367 }
368 
369 /// A region of source code, along with macro expansion information.
370 #[derive(Copy, Clone)]
371 pub struct Span {
372     inner: imp::Span,
373     _marker: Marker,
374 }
375 
376 impl Span {
_new(inner: imp::Span) -> Self377     fn _new(inner: imp::Span) -> Self {
378         Span {
379             inner,
380             _marker: Marker,
381         }
382     }
383 
_new_fallback(inner: fallback::Span) -> Self384     fn _new_fallback(inner: fallback::Span) -> Self {
385         Span {
386             inner: inner.into(),
387             _marker: Marker,
388         }
389     }
390 
391     /// The span of the invocation of the current procedural macro.
392     ///
393     /// Identifiers created with this span will be resolved as if they were
394     /// written directly at the macro call location (call-site hygiene) and
395     /// other code at the macro call site will be able to refer to them as well.
call_site() -> Self396     pub fn call_site() -> Self {
397         Span::_new(imp::Span::call_site())
398     }
399 
400     /// The span located at the invocation of the procedural macro, but with
401     /// local variables, labels, and `$crate` resolved at the definition site
402     /// of the macro. This is the same hygiene behavior as `macro_rules`.
403     ///
404     /// This function requires Rust 1.45 or later.
405     #[cfg(not(no_hygiene))]
mixed_site() -> Self406     pub fn mixed_site() -> Self {
407         Span::_new(imp::Span::mixed_site())
408     }
409 
410     /// A span that resolves at the macro definition site.
411     ///
412     /// This method is semver exempt and not exposed by default.
413     #[cfg(procmacro2_semver_exempt)]
414     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
def_site() -> Self415     pub fn def_site() -> Self {
416         Span::_new(imp::Span::def_site())
417     }
418 
419     /// Creates a new span with the same line/column information as `self` but
420     /// that resolves symbols as though it were at `other`.
resolved_at(&self, other: Span) -> Span421     pub fn resolved_at(&self, other: Span) -> Span {
422         Span::_new(self.inner.resolved_at(other.inner))
423     }
424 
425     /// Creates a new span with the same name resolution behavior as `self` but
426     /// with the line/column information of `other`.
located_at(&self, other: Span) -> Span427     pub fn located_at(&self, other: Span) -> Span {
428         Span::_new(self.inner.located_at(other.inner))
429     }
430 
431     /// Convert `proc_macro2::Span` to `proc_macro::Span`.
432     ///
433     /// This method is available when building with a nightly compiler, or when
434     /// building with rustc 1.29+ *without* semver exempt features.
435     ///
436     /// # Panics
437     ///
438     /// Panics if called from outside of a procedural macro. Unlike
439     /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
440     /// the context of a procedural macro invocation.
441     #[cfg(wrap_proc_macro)]
unwrap(self) -> proc_macro::Span442     pub fn unwrap(self) -> proc_macro::Span {
443         self.inner.unwrap()
444     }
445 
446     // Soft deprecated. Please use Span::unwrap.
447     #[cfg(wrap_proc_macro)]
448     #[doc(hidden)]
unstable(self) -> proc_macro::Span449     pub fn unstable(self) -> proc_macro::Span {
450         self.unwrap()
451     }
452 
453     /// The original source file into which this span points.
454     ///
455     /// This method is semver exempt and not exposed by default.
456     #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
457     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
source_file(&self) -> SourceFile458     pub fn source_file(&self) -> SourceFile {
459         SourceFile::_new(self.inner.source_file())
460     }
461 
462     /// Get the starting line/column in the source file for this span.
463     ///
464     /// This method requires the `"span-locations"` feature to be enabled.
465     ///
466     /// When executing in a procedural macro context, the returned line/column
467     /// are only meaningful if compiled with a nightly toolchain. The stable
468     /// toolchain does not have this information available. When executing
469     /// outside of a procedural macro, such as main.rs or build.rs, the
470     /// line/column are always meaningful regardless of toolchain.
471     #[cfg(span_locations)]
472     #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
start(&self) -> LineColumn473     pub fn start(&self) -> LineColumn {
474         self.inner.start()
475     }
476 
477     /// Get the ending line/column in the source file for this span.
478     ///
479     /// This method requires the `"span-locations"` feature to be enabled.
480     ///
481     /// When executing in a procedural macro context, the returned line/column
482     /// are only meaningful if compiled with a nightly toolchain. The stable
483     /// toolchain does not have this information available. When executing
484     /// outside of a procedural macro, such as main.rs or build.rs, the
485     /// line/column are always meaningful regardless of toolchain.
486     #[cfg(span_locations)]
487     #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))]
end(&self) -> LineColumn488     pub fn end(&self) -> LineColumn {
489         self.inner.end()
490     }
491 
492     /// Creates an empty span pointing to directly before this span.
493     ///
494     /// This method is semver exempt and not exposed by default.
495     #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
496     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
before(&self) -> Span497     pub fn before(&self) -> Span {
498         Span::_new(self.inner.before())
499     }
500 
501     /// Creates an empty span pointing to directly after this span.
502     ///
503     /// This method is semver exempt and not exposed by default.
504     #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
505     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
after(&self) -> Span506     pub fn after(&self) -> Span {
507         Span::_new(self.inner.after())
508     }
509 
510     /// Create a new span encompassing `self` and `other`.
511     ///
512     /// Returns `None` if `self` and `other` are from different files.
513     ///
514     /// Warning: the underlying [`proc_macro::Span::join`] method is
515     /// nightly-only. When called from within a procedural macro not using a
516     /// nightly compiler, this method will always return `None`.
517     ///
518     /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
join(&self, other: Span) -> Option<Span>519     pub fn join(&self, other: Span) -> Option<Span> {
520         self.inner.join(other.inner).map(Span::_new)
521     }
522 
523     /// Compares two spans to see if they're equal.
524     ///
525     /// This method is semver exempt and not exposed by default.
526     #[cfg(procmacro2_semver_exempt)]
527     #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))]
eq(&self, other: &Span) -> bool528     pub fn eq(&self, other: &Span) -> bool {
529         self.inner.eq(&other.inner)
530     }
531 
532     /// Returns the source text behind a span. This preserves the original
533     /// source code, including spaces and comments. It only returns a result if
534     /// the span corresponds to real source code.
535     ///
536     /// Note: The observable result of a macro should only rely on the tokens
537     /// and not on this source text. The result of this function is a best
538     /// effort to be used for diagnostics only.
source_text(&self) -> Option<String>539     pub fn source_text(&self) -> Option<String> {
540         self.inner.source_text()
541     }
542 }
543 
544 /// Prints a span in a form convenient for debugging.
545 impl Debug for Span {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result546     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
547         Debug::fmt(&self.inner, f)
548     }
549 }
550 
551 /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
552 #[derive(Clone)]
553 pub enum TokenTree {
554     /// A token stream surrounded by bracket delimiters.
555     Group(Group),
556     /// An identifier.
557     Ident(Ident),
558     /// A single punctuation character (`+`, `,`, `$`, etc.).
559     Punct(Punct),
560     /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
561     Literal(Literal),
562 }
563 
564 impl TokenTree {
565     /// Returns the span of this tree, delegating to the `span` method of
566     /// the contained token or a delimited stream.
span(&self) -> Span567     pub fn span(&self) -> Span {
568         match self {
569             TokenTree::Group(t) => t.span(),
570             TokenTree::Ident(t) => t.span(),
571             TokenTree::Punct(t) => t.span(),
572             TokenTree::Literal(t) => t.span(),
573         }
574     }
575 
576     /// Configures the span for *only this token*.
577     ///
578     /// Note that if this token is a `Group` then this method will not configure
579     /// the span of each of the internal tokens, this will simply delegate to
580     /// the `set_span` method of each variant.
set_span(&mut self, span: Span)581     pub fn set_span(&mut self, span: Span) {
582         match self {
583             TokenTree::Group(t) => t.set_span(span),
584             TokenTree::Ident(t) => t.set_span(span),
585             TokenTree::Punct(t) => t.set_span(span),
586             TokenTree::Literal(t) => t.set_span(span),
587         }
588     }
589 }
590 
591 impl From<Group> for TokenTree {
from(g: Group) -> Self592     fn from(g: Group) -> Self {
593         TokenTree::Group(g)
594     }
595 }
596 
597 impl From<Ident> for TokenTree {
from(g: Ident) -> Self598     fn from(g: Ident) -> Self {
599         TokenTree::Ident(g)
600     }
601 }
602 
603 impl From<Punct> for TokenTree {
from(g: Punct) -> Self604     fn from(g: Punct) -> Self {
605         TokenTree::Punct(g)
606     }
607 }
608 
609 impl From<Literal> for TokenTree {
from(g: Literal) -> Self610     fn from(g: Literal) -> Self {
611         TokenTree::Literal(g)
612     }
613 }
614 
615 /// Prints the token tree as a string that is supposed to be losslessly
616 /// convertible back into the same token tree (modulo spans), except for
617 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
618 /// numeric literals.
619 impl Display for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result620     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
621         match self {
622             TokenTree::Group(t) => Display::fmt(t, f),
623             TokenTree::Ident(t) => Display::fmt(t, f),
624             TokenTree::Punct(t) => Display::fmt(t, f),
625             TokenTree::Literal(t) => Display::fmt(t, f),
626         }
627     }
628 }
629 
630 /// Prints token tree in a form convenient for debugging.
631 impl Debug for TokenTree {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result632     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
633         // Each of these has the name in the struct type in the derived debug,
634         // so don't bother with an extra layer of indirection
635         match self {
636             TokenTree::Group(t) => Debug::fmt(t, f),
637             TokenTree::Ident(t) => {
638                 let mut debug = f.debug_struct("Ident");
639                 debug.field("sym", &format_args!("{}", t));
640                 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
641                 debug.finish()
642             }
643             TokenTree::Punct(t) => Debug::fmt(t, f),
644             TokenTree::Literal(t) => Debug::fmt(t, f),
645         }
646     }
647 }
648 
649 /// A delimited token stream.
650 ///
651 /// A `Group` internally contains a `TokenStream` which is surrounded by
652 /// `Delimiter`s.
653 #[derive(Clone)]
654 pub struct Group {
655     inner: imp::Group,
656 }
657 
658 /// Describes how a sequence of token trees is delimited.
659 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
660 pub enum Delimiter {
661     /// `( ... )`
662     Parenthesis,
663     /// `{ ... }`
664     Brace,
665     /// `[ ... ]`
666     Bracket,
667     /// `Ø ... Ø`
668     ///
669     /// An implicit delimiter, that may, for example, appear around tokens
670     /// coming from a "macro variable" `$var`. It is important to preserve
671     /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
672     /// Implicit delimiters may not survive roundtrip of a token stream through
673     /// a string.
674     None,
675 }
676 
677 impl Group {
_new(inner: imp::Group) -> Self678     fn _new(inner: imp::Group) -> Self {
679         Group { inner }
680     }
681 
_new_fallback(inner: fallback::Group) -> Self682     fn _new_fallback(inner: fallback::Group) -> Self {
683         Group {
684             inner: inner.into(),
685         }
686     }
687 
688     /// Creates a new `Group` with the given delimiter and token stream.
689     ///
690     /// This constructor will set the span for this group to
691     /// `Span::call_site()`. To change the span you can use the `set_span`
692     /// method below.
new(delimiter: Delimiter, stream: TokenStream) -> Self693     pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
694         Group {
695             inner: imp::Group::new(delimiter, stream.inner),
696         }
697     }
698 
699     /// Returns the punctuation used as the delimiter for this group: a set of
700     /// parentheses, square brackets, or curly braces.
delimiter(&self) -> Delimiter701     pub fn delimiter(&self) -> Delimiter {
702         self.inner.delimiter()
703     }
704 
705     /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
706     ///
707     /// Note that the returned token stream does not include the delimiter
708     /// returned above.
stream(&self) -> TokenStream709     pub fn stream(&self) -> TokenStream {
710         TokenStream::_new(self.inner.stream())
711     }
712 
713     /// Returns the span for the delimiters of this token stream, spanning the
714     /// entire `Group`.
715     ///
716     /// ```text
717     /// pub fn span(&self) -> Span {
718     ///            ^^^^^^^
719     /// ```
span(&self) -> Span720     pub fn span(&self) -> Span {
721         Span::_new(self.inner.span())
722     }
723 
724     /// Returns the span pointing to the opening delimiter of this group.
725     ///
726     /// ```text
727     /// pub fn span_open(&self) -> Span {
728     ///                 ^
729     /// ```
span_open(&self) -> Span730     pub fn span_open(&self) -> Span {
731         Span::_new(self.inner.span_open())
732     }
733 
734     /// Returns the span pointing to the closing delimiter of this group.
735     ///
736     /// ```text
737     /// pub fn span_close(&self) -> Span {
738     ///                        ^
739     /// ```
span_close(&self) -> Span740     pub fn span_close(&self) -> Span {
741         Span::_new(self.inner.span_close())
742     }
743 
744     /// Returns an object that holds this group's `span_open()` and
745     /// `span_close()` together (in a more compact representation than holding
746     /// those 2 spans individually).
delim_span(&self) -> DelimSpan747     pub fn delim_span(&self) -> DelimSpan {
748         DelimSpan::new(&self.inner)
749     }
750 
751     /// Configures the span for this `Group`'s delimiters, but not its internal
752     /// tokens.
753     ///
754     /// This method will **not** set the span of all the internal tokens spanned
755     /// by this group, but rather it will only set the span of the delimiter
756     /// tokens at the level of the `Group`.
set_span(&mut self, span: Span)757     pub fn set_span(&mut self, span: Span) {
758         self.inner.set_span(span.inner);
759     }
760 }
761 
762 /// Prints the group as a string that should be losslessly convertible back
763 /// into the same group (modulo spans), except for possibly `TokenTree::Group`s
764 /// with `Delimiter::None` delimiters.
765 impl Display for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result766     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
767         Display::fmt(&self.inner, formatter)
768     }
769 }
770 
771 impl Debug for Group {
fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result772     fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
773         Debug::fmt(&self.inner, formatter)
774     }
775 }
776 
777 /// A `Punct` is a single punctuation character like `+`, `-` or `#`.
778 ///
779 /// Multicharacter operators like `+=` are represented as two instances of
780 /// `Punct` with different forms of `Spacing` returned.
781 #[derive(Clone)]
782 pub struct Punct {
783     ch: char,
784     spacing: Spacing,
785     span: Span,
786 }
787 
788 /// Whether a `Punct` is followed immediately by another `Punct` or followed by
789 /// another token or whitespace.
790 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
791 pub enum Spacing {
792     /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
793     Alone,
794     /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
795     ///
796     /// Additionally, single quote `'` can join with identifiers to form
797     /// lifetimes `'ident`.
798     Joint,
799 }
800 
801 impl Punct {
802     /// Creates a new `Punct` from the given character and spacing.
803     ///
804     /// The `ch` argument must be a valid punctuation character permitted by the
805     /// language, otherwise the function will panic.
806     ///
807     /// The returned `Punct` will have the default span of `Span::call_site()`
808     /// which can be further configured with the `set_span` method below.
new(ch: char, spacing: Spacing) -> Self809     pub fn new(ch: char, spacing: Spacing) -> Self {
810         Punct {
811             ch,
812             spacing,
813             span: Span::call_site(),
814         }
815     }
816 
817     /// Returns the value of this punctuation character as `char`.
as_char(&self) -> char818     pub fn as_char(&self) -> char {
819         self.ch
820     }
821 
822     /// Returns the spacing of this punctuation character, indicating whether
823     /// it's immediately followed by another `Punct` in the token stream, so
824     /// they can potentially be combined into a multicharacter operator
825     /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
826     /// so the operator has certainly ended.
spacing(&self) -> Spacing827     pub fn spacing(&self) -> Spacing {
828         self.spacing
829     }
830 
831     /// Returns the span for this punctuation character.
span(&self) -> Span832     pub fn span(&self) -> Span {
833         self.span
834     }
835 
836     /// Configure the span for this punctuation character.
set_span(&mut self, span: Span)837     pub fn set_span(&mut self, span: Span) {
838         self.span = span;
839     }
840 }
841 
842 /// Prints the punctuation character as a string that should be losslessly
843 /// convertible back into the same character.
844 impl Display for Punct {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result845     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
846         Display::fmt(&self.ch, f)
847     }
848 }
849 
850 impl Debug for Punct {
fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result851     fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
852         let mut debug = fmt.debug_struct("Punct");
853         debug.field("char", &self.ch);
854         debug.field("spacing", &self.spacing);
855         imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
856         debug.finish()
857     }
858 }
859 
860 /// A word of Rust code, which may be a keyword or legal variable name.
861 ///
862 /// An identifier consists of at least one Unicode code point, the first of
863 /// which has the XID_Start property and the rest of which have the XID_Continue
864 /// property.
865 ///
866 /// - The empty string is not an identifier. Use `Option<Ident>`.
867 /// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
868 ///
869 /// An identifier constructed with `Ident::new` is permitted to be a Rust
870 /// keyword, though parsing one through its [`Parse`] implementation rejects
871 /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
872 /// behaviour of `Ident::new`.
873 ///
874 /// [`Parse`]: https://docs.rs/syn/1.0/syn/parse/trait.Parse.html
875 ///
876 /// # Examples
877 ///
878 /// A new ident can be created from a string using the `Ident::new` function.
879 /// A span must be provided explicitly which governs the name resolution
880 /// behavior of the resulting identifier.
881 ///
882 /// ```
883 /// use proc_macro2::{Ident, Span};
884 ///
885 /// fn main() {
886 ///     let call_ident = Ident::new("calligraphy", Span::call_site());
887 ///
888 ///     println!("{}", call_ident);
889 /// }
890 /// ```
891 ///
892 /// An ident can be interpolated into a token stream using the `quote!` macro.
893 ///
894 /// ```
895 /// use proc_macro2::{Ident, Span};
896 /// use quote::quote;
897 ///
898 /// fn main() {
899 ///     let ident = Ident::new("demo", Span::call_site());
900 ///
901 ///     // Create a variable binding whose name is this ident.
902 ///     let expanded = quote! { let #ident = 10; };
903 ///
904 ///     // Create a variable binding with a slightly different name.
905 ///     let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
906 ///     let expanded = quote! { let #temp_ident = 10; };
907 /// }
908 /// ```
909 ///
910 /// A string representation of the ident is available through the `to_string()`
911 /// method.
912 ///
913 /// ```
914 /// # use proc_macro2::{Ident, Span};
915 /// #
916 /// # let ident = Ident::new("another_identifier", Span::call_site());
917 /// #
918 /// // Examine the ident as a string.
919 /// let ident_string = ident.to_string();
920 /// if ident_string.len() > 60 {
921 ///     println!("Very long identifier: {}", ident_string)
922 /// }
923 /// ```
924 #[derive(Clone)]
925 pub struct Ident {
926     inner: imp::Ident,
927     _marker: Marker,
928 }
929 
930 impl Ident {
_new(inner: imp::Ident) -> Self931     fn _new(inner: imp::Ident) -> Self {
932         Ident {
933             inner,
934             _marker: Marker,
935         }
936     }
937 
938     /// Creates a new `Ident` with the given `string` as well as the specified
939     /// `span`.
940     ///
941     /// The `string` argument must be a valid identifier permitted by the
942     /// language, otherwise the function will panic.
943     ///
944     /// Note that `span`, currently in rustc, configures the hygiene information
945     /// for this identifier.
946     ///
947     /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
948     /// hygiene meaning that identifiers created with this span will be resolved
949     /// as if they were written directly at the location of the macro call, and
950     /// other code at the macro call site will be able to refer to them as well.
951     ///
952     /// Later spans like `Span::def_site()` will allow to opt-in to
953     /// "definition-site" hygiene meaning that identifiers created with this
954     /// span will be resolved at the location of the macro definition and other
955     /// code at the macro call site will not be able to refer to them.
956     ///
957     /// Due to the current importance of hygiene this constructor, unlike other
958     /// tokens, requires a `Span` to be specified at construction.
959     ///
960     /// # Panics
961     ///
962     /// Panics if the input string is neither a keyword nor a legal variable
963     /// name. If you are not sure whether the string contains an identifier and
964     /// need to handle an error case, use
965     /// <a href="https://docs.rs/syn/1.0/syn/fn.parse_str.html"><code
966     ///   style="padding-right:0;">syn::parse_str</code></a><code
967     ///   style="padding-left:0;">::&lt;Ident&gt;</code>
968     /// rather than `Ident::new`.
new(string: &str, span: Span) -> Self969     pub fn new(string: &str, span: Span) -> Self {
970         Ident::_new(imp::Ident::new(string, span.inner))
971     }
972 
973     /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
974     /// `string` argument must be a valid identifier permitted by the language
975     /// (including keywords, e.g. `fn`). Keywords which are usable in path
976     /// segments (e.g. `self`, `super`) are not supported, and will cause a
977     /// panic.
new_raw(string: &str, span: Span) -> Self978     pub fn new_raw(string: &str, span: Span) -> Self {
979         Ident::_new_raw(string, span)
980     }
981 
_new_raw(string: &str, span: Span) -> Self982     fn _new_raw(string: &str, span: Span) -> Self {
983         Ident::_new(imp::Ident::new_raw(string, span.inner))
984     }
985 
986     /// Returns the span of this `Ident`.
span(&self) -> Span987     pub fn span(&self) -> Span {
988         Span::_new(self.inner.span())
989     }
990 
991     /// Configures the span of this `Ident`, possibly changing its hygiene
992     /// context.
set_span(&mut self, span: Span)993     pub fn set_span(&mut self, span: Span) {
994         self.inner.set_span(span.inner);
995     }
996 }
997 
998 impl PartialEq for Ident {
eq(&self, other: &Ident) -> bool999     fn eq(&self, other: &Ident) -> bool {
1000         self.inner == other.inner
1001     }
1002 }
1003 
1004 impl<T> PartialEq<T> for Ident
1005 where
1006     T: ?Sized + AsRef<str>,
1007 {
eq(&self, other: &T) -> bool1008     fn eq(&self, other: &T) -> bool {
1009         self.inner == other
1010     }
1011 }
1012 
1013 impl Eq for Ident {}
1014 
1015 impl PartialOrd for Ident {
partial_cmp(&self, other: &Ident) -> Option<Ordering>1016     fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1017         Some(self.cmp(other))
1018     }
1019 }
1020 
1021 impl Ord for Ident {
cmp(&self, other: &Ident) -> Ordering1022     fn cmp(&self, other: &Ident) -> Ordering {
1023         self.to_string().cmp(&other.to_string())
1024     }
1025 }
1026 
1027 impl Hash for Ident {
hash<H: Hasher>(&self, hasher: &mut H)1028     fn hash<H: Hasher>(&self, hasher: &mut H) {
1029         self.to_string().hash(hasher);
1030     }
1031 }
1032 
1033 /// Prints the identifier as a string that should be losslessly convertible back
1034 /// into the same identifier.
1035 impl Display for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1036     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1037         Display::fmt(&self.inner, f)
1038     }
1039 }
1040 
1041 impl Debug for Ident {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1042     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1043         Debug::fmt(&self.inner, f)
1044     }
1045 }
1046 
1047 /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1048 /// byte character (`b'a'`), an integer or floating point number with or without
1049 /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1050 ///
1051 /// Boolean literals like `true` and `false` do not belong here, they are
1052 /// `Ident`s.
1053 #[derive(Clone)]
1054 pub struct Literal {
1055     inner: imp::Literal,
1056     _marker: Marker,
1057 }
1058 
1059 macro_rules! suffixed_int_literals {
1060     ($($name:ident => $kind:ident,)*) => ($(
1061         /// Creates a new suffixed integer literal with the specified value.
1062         ///
1063         /// This function will create an integer like `1u32` where the integer
1064         /// value specified is the first part of the token and the integral is
1065         /// also suffixed at the end. Literals created from negative numbers may
1066         /// not survive roundtrips through `TokenStream` or strings and may be
1067         /// broken into two tokens (`-` and positive literal).
1068         ///
1069         /// Literals created through this method have the `Span::call_site()`
1070         /// span by default, which can be configured with the `set_span` method
1071         /// below.
1072         pub fn $name(n: $kind) -> Literal {
1073             Literal::_new(imp::Literal::$name(n))
1074         }
1075     )*)
1076 }
1077 
1078 macro_rules! unsuffixed_int_literals {
1079     ($($name:ident => $kind:ident,)*) => ($(
1080         /// Creates a new unsuffixed integer literal with the specified value.
1081         ///
1082         /// This function will create an integer like `1` where the integer
1083         /// value specified is the first part of the token. No suffix is
1084         /// specified on this token, meaning that invocations like
1085         /// `Literal::i8_unsuffixed(1)` are equivalent to
1086         /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1087         /// may not survive roundtrips through `TokenStream` or strings and may
1088         /// be broken into two tokens (`-` and positive literal).
1089         ///
1090         /// Literals created through this method have the `Span::call_site()`
1091         /// span by default, which can be configured with the `set_span` method
1092         /// below.
1093         pub fn $name(n: $kind) -> Literal {
1094             Literal::_new(imp::Literal::$name(n))
1095         }
1096     )*)
1097 }
1098 
1099 impl Literal {
_new(inner: imp::Literal) -> Self1100     fn _new(inner: imp::Literal) -> Self {
1101         Literal {
1102             inner,
1103             _marker: Marker,
1104         }
1105     }
1106 
_new_fallback(inner: fallback::Literal) -> Self1107     fn _new_fallback(inner: fallback::Literal) -> Self {
1108         Literal {
1109             inner: inner.into(),
1110             _marker: Marker,
1111         }
1112     }
1113 
1114     suffixed_int_literals! {
1115         u8_suffixed => u8,
1116         u16_suffixed => u16,
1117         u32_suffixed => u32,
1118         u64_suffixed => u64,
1119         u128_suffixed => u128,
1120         usize_suffixed => usize,
1121         i8_suffixed => i8,
1122         i16_suffixed => i16,
1123         i32_suffixed => i32,
1124         i64_suffixed => i64,
1125         i128_suffixed => i128,
1126         isize_suffixed => isize,
1127     }
1128 
1129     unsuffixed_int_literals! {
1130         u8_unsuffixed => u8,
1131         u16_unsuffixed => u16,
1132         u32_unsuffixed => u32,
1133         u64_unsuffixed => u64,
1134         u128_unsuffixed => u128,
1135         usize_unsuffixed => usize,
1136         i8_unsuffixed => i8,
1137         i16_unsuffixed => i16,
1138         i32_unsuffixed => i32,
1139         i64_unsuffixed => i64,
1140         i128_unsuffixed => i128,
1141         isize_unsuffixed => isize,
1142     }
1143 
1144     /// Creates a new unsuffixed floating-point literal.
1145     ///
1146     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1147     /// the float's value is emitted directly into the token but no suffix is
1148     /// used, so it may be inferred to be a `f64` later in the compiler.
1149     /// Literals created from negative numbers may not survive round-trips
1150     /// through `TokenStream` or strings and may be broken into two tokens (`-`
1151     /// and positive literal).
1152     ///
1153     /// # Panics
1154     ///
1155     /// This function requires that the specified float is finite, for example
1156     /// if it is infinity or NaN this function will panic.
f64_unsuffixed(f: f64) -> Literal1157     pub fn f64_unsuffixed(f: f64) -> Literal {
1158         assert!(f.is_finite());
1159         Literal::_new(imp::Literal::f64_unsuffixed(f))
1160     }
1161 
1162     /// Creates a new suffixed floating-point literal.
1163     ///
1164     /// This constructor will create a literal like `1.0f64` where the value
1165     /// specified is the preceding part of the token and `f64` is the suffix of
1166     /// the token. This token will always be inferred to be an `f64` in the
1167     /// compiler. Literals created from negative numbers may not survive
1168     /// round-trips through `TokenStream` or strings and may be broken into two
1169     /// tokens (`-` and positive literal).
1170     ///
1171     /// # Panics
1172     ///
1173     /// This function requires that the specified float is finite, for example
1174     /// if it is infinity or NaN this function will panic.
f64_suffixed(f: f64) -> Literal1175     pub fn f64_suffixed(f: f64) -> Literal {
1176         assert!(f.is_finite());
1177         Literal::_new(imp::Literal::f64_suffixed(f))
1178     }
1179 
1180     /// Creates a new unsuffixed floating-point literal.
1181     ///
1182     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1183     /// the float's value is emitted directly into the token but no suffix is
1184     /// used, so it may be inferred to be a `f64` later in the compiler.
1185     /// Literals created from negative numbers may not survive round-trips
1186     /// through `TokenStream` or strings and may be broken into two tokens (`-`
1187     /// and positive literal).
1188     ///
1189     /// # Panics
1190     ///
1191     /// This function requires that the specified float is finite, for example
1192     /// if it is infinity or NaN this function will panic.
f32_unsuffixed(f: f32) -> Literal1193     pub fn f32_unsuffixed(f: f32) -> Literal {
1194         assert!(f.is_finite());
1195         Literal::_new(imp::Literal::f32_unsuffixed(f))
1196     }
1197 
1198     /// Creates a new suffixed floating-point literal.
1199     ///
1200     /// This constructor will create a literal like `1.0f32` where the value
1201     /// specified is the preceding part of the token and `f32` is the suffix of
1202     /// the token. This token will always be inferred to be an `f32` in the
1203     /// compiler. Literals created from negative numbers may not survive
1204     /// round-trips through `TokenStream` or strings and may be broken into two
1205     /// tokens (`-` and positive literal).
1206     ///
1207     /// # Panics
1208     ///
1209     /// This function requires that the specified float is finite, for example
1210     /// if it is infinity or NaN this function will panic.
f32_suffixed(f: f32) -> Literal1211     pub fn f32_suffixed(f: f32) -> Literal {
1212         assert!(f.is_finite());
1213         Literal::_new(imp::Literal::f32_suffixed(f))
1214     }
1215 
1216     /// String literal.
string(string: &str) -> Literal1217     pub fn string(string: &str) -> Literal {
1218         Literal::_new(imp::Literal::string(string))
1219     }
1220 
1221     /// Character literal.
character(ch: char) -> Literal1222     pub fn character(ch: char) -> Literal {
1223         Literal::_new(imp::Literal::character(ch))
1224     }
1225 
1226     /// Byte string literal.
byte_string(s: &[u8]) -> Literal1227     pub fn byte_string(s: &[u8]) -> Literal {
1228         Literal::_new(imp::Literal::byte_string(s))
1229     }
1230 
1231     /// Returns the span encompassing this literal.
span(&self) -> Span1232     pub fn span(&self) -> Span {
1233         Span::_new(self.inner.span())
1234     }
1235 
1236     /// Configures the span associated for this literal.
set_span(&mut self, span: Span)1237     pub fn set_span(&mut self, span: Span) {
1238         self.inner.set_span(span.inner);
1239     }
1240 
1241     /// Returns a `Span` that is a subset of `self.span()` containing only
1242     /// the source bytes in range `range`. Returns `None` if the would-be
1243     /// trimmed span is outside the bounds of `self`.
1244     ///
1245     /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1246     /// nightly-only. When called from within a procedural macro not using a
1247     /// nightly compiler, this method will always return `None`.
1248     ///
1249     /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span>1250     pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1251         self.inner.subspan(range).map(Span::_new)
1252     }
1253 
1254     // Intended for the `quote!` macro to use when constructing a proc-macro2
1255     // token out of a macro_rules $:literal token, which is already known to be
1256     // a valid literal. This avoids reparsing/validating the literal's string
1257     // representation. This is not public API other than for quote.
1258     #[doc(hidden)]
from_str_unchecked(repr: &str) -> Self1259     pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1260         Literal::_new(imp::Literal::from_str_unchecked(repr))
1261     }
1262 }
1263 
1264 impl FromStr for Literal {
1265     type Err = LexError;
1266 
from_str(repr: &str) -> Result<Self, LexError>1267     fn from_str(repr: &str) -> Result<Self, LexError> {
1268         repr.parse().map(Literal::_new).map_err(|inner| LexError {
1269             inner,
1270             _marker: Marker,
1271         })
1272     }
1273 }
1274 
1275 impl Debug for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1276     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1277         Debug::fmt(&self.inner, f)
1278     }
1279 }
1280 
1281 impl Display for Literal {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1282     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1283         Display::fmt(&self.inner, f)
1284     }
1285 }
1286 
1287 /// Public implementation details for the `TokenStream` type, such as iterators.
1288 pub mod token_stream {
1289     use crate::marker::Marker;
1290     use crate::{imp, TokenTree};
1291     use core::fmt::{self, Debug};
1292 
1293     pub use crate::TokenStream;
1294 
1295     /// An iterator over `TokenStream`'s `TokenTree`s.
1296     ///
1297     /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1298     /// delimited groups, and returns whole groups as token trees.
1299     #[derive(Clone)]
1300     pub struct IntoIter {
1301         inner: imp::TokenTreeIter,
1302         _marker: Marker,
1303     }
1304 
1305     impl Iterator for IntoIter {
1306         type Item = TokenTree;
1307 
next(&mut self) -> Option<TokenTree>1308         fn next(&mut self) -> Option<TokenTree> {
1309             self.inner.next()
1310         }
1311 
size_hint(&self) -> (usize, Option<usize>)1312         fn size_hint(&self) -> (usize, Option<usize>) {
1313             self.inner.size_hint()
1314         }
1315     }
1316 
1317     impl Debug for IntoIter {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1318         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1319             f.write_str("TokenStream ")?;
1320             f.debug_list().entries(self.clone()).finish()
1321         }
1322     }
1323 
1324     impl IntoIterator for TokenStream {
1325         type Item = TokenTree;
1326         type IntoIter = IntoIter;
1327 
into_iter(self) -> IntoIter1328         fn into_iter(self) -> IntoIter {
1329             IntoIter {
1330                 inner: self.inner.into_iter(),
1331                 _marker: Marker,
1332             }
1333         }
1334     }
1335 }
1336