1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef GrFragmentProcessor_DEFINED
9 #define GrFragmentProcessor_DEFINED
10
11 #include "include/private/SkMacros.h"
12 #include "include/private/SkSLSampleUsage.h"
13 #include "include/private/SkSLString.h"
14 #include "src/gpu/GrProcessor.h"
15 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
16
17 #include <tuple>
18
19 class GrGLSLFPFragmentBuilder;
20 class GrGLSLProgramDataManager;
21 class GrPaint;
22 class GrPipeline;
23 class GrProcessorKeyBuilder;
24 class GrShaderCaps;
25 class GrSwizzle;
26 class GrTextureEffect;
27
28 /**
29 * Some fragment-processor creation methods have preconditions that might not be satisfied by the
30 * calling code. Those methods can return a `GrFPResult` from their factory methods. If creation
31 * succeeds, the new fragment processor is created and `success` is true. If a precondition is not
32 * met, `success` is set to false and the input FP is returned unchanged.
33 */
34 class GrFragmentProcessor;
35 using GrFPResult = std::tuple<bool /*success*/, std::unique_ptr<GrFragmentProcessor>>;
36
37 /** Provides custom fragment shader code. Fragment processors receive an input position and
38 produce an output color. They may contain uniforms and may have children fragment processors
39 that are sampled.
40 */
41 class GrFragmentProcessor : public GrProcessor {
42 public:
43 /**
44 * Every GrFragmentProcessor must be capable of creating a subclass of ProgramImpl. The
45 * ProgramImpl emits the fragment shader code that implements the GrFragmentProcessor, is
46 * attached to the generated backend API pipeline/program and used to extract uniform data from
47 * GrFragmentProcessor instances.
48 */
49 class ProgramImpl;
50
51 /** Always returns 'color'. */
52 static std::unique_ptr<GrFragmentProcessor> MakeColor(SkPMColor4f color);
53
54 /**
55 * Returns the input color, modulated by the child's alpha.
56 *
57 * output = input * child.a
58 */
59 static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha(
60 std::unique_ptr<GrFragmentProcessor> child);
61
62 /**
63 * Invokes child with an opaque version of the input color, then applies the input alpha to
64 * the result. Used to incorporate paint alpha to the evaluation of an SkShader tree FP.
65 */
66 static std::unique_ptr<GrFragmentProcessor> ApplyPaintAlpha(
67 std::unique_ptr<GrFragmentProcessor> child);
68
69 /**
70 * Returns a fragment processor that generates the passed-in color, modulated by the child's
71 * RGBA color. The child's input color will be the parent's fInputColor. (Pass a null FP to use
72 * the color from fInputColor instead of a child FP.)
73 */
74 static std::unique_ptr<GrFragmentProcessor> ModulateRGBA(
75 std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color);
76
77 /**
78 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
79 * The parent will ignore its input color and instead feed the passed in color as input to the
80 * child.
81 */
82 static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>,
83 const SkPMColor4f&);
84
85 /**
86 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
87 * The parent will simply return the child's color, but disable the coverage-as-alpha
88 * optimization.
89 */
90 static std::unique_ptr<GrFragmentProcessor> DisableCoverageAsAlpha(
91 std::unique_ptr<GrFragmentProcessor>);
92
93 /**
94 * Returns a fragment processor which samples the passed-in fragment processor using
95 * `args.fDestColor` as its input color. Pass a null FP to access `args.fDestColor` directly.
96 * (This is only meaningful in contexts like blenders, which use a source and dest color.)
97 */
98 static std::unique_ptr<GrFragmentProcessor> UseDestColorAsInput(
99 std::unique_ptr<GrFragmentProcessor>);
100
101 /**
102 * Returns a fragment processor that calls the passed in fragment processor, and then swizzles
103 * the output.
104 */
105 static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>,
106 const GrSwizzle&);
107
108 /**
109 * Returns a fragment processor that calls the passed in fragment processor, and then clamps
110 * the output to [0, 1].
111 */
112 static std::unique_ptr<GrFragmentProcessor> ClampOutput(std::unique_ptr<GrFragmentProcessor>);
113
114 /**
115 * Returns a fragment processor that composes two fragment processors `f` and `g` into f(g(x)).
116 * This is equivalent to running them in series (`g`, then `f`). This is not the same as
117 * transfer-mode composition; there is no blending step.
118 */
119 static std::unique_ptr<GrFragmentProcessor> Compose(std::unique_ptr<GrFragmentProcessor> f,
120 std::unique_ptr<GrFragmentProcessor> g);
121
122 /*
123 * Returns a fragment processor that calls the passed in fragment processor, then runs the
124 * resulting color through the supplied color matrix.
125 */
126 static std::unique_ptr<GrFragmentProcessor> ColorMatrix(
127 std::unique_ptr<GrFragmentProcessor> child,
128 const float matrix[20],
129 bool unpremulInput,
130 bool clampRGBOutput,
131 bool premulOutput);
132
133 /**
134 * Returns a fragment processor that reads back the color on the surface being painted; that is,
135 * sampling this will return the color of the pixel that is currently being painted over.
136 */
137 static std::unique_ptr<GrFragmentProcessor> SurfaceColor();
138
139 /**
140 * Returns a fragment processor that calls the passed in fragment processor, but evaluates it
141 * in device-space (rather than local space).
142 */
143 static std::unique_ptr<GrFragmentProcessor> DeviceSpace(std::unique_ptr<GrFragmentProcessor>);
144
145 /**
146 * "Shape" FPs, often used for clipping. Each one evaluates a particular kind of shape (rect,
147 * circle, ellipse), and modulates the coverage of that shape against the results of the input
148 * FP. GrClipEdgeType is used to select inverse/normal fill, and AA or non-AA edges.
149 */
150 static std::unique_ptr<GrFragmentProcessor> Rect(std::unique_ptr<GrFragmentProcessor>,
151 GrClipEdgeType,
152 SkRect);
153
154 static GrFPResult Circle(std::unique_ptr<GrFragmentProcessor>,
155 GrClipEdgeType,
156 SkPoint center,
157 float radius);
158
159 static GrFPResult Ellipse(std::unique_ptr<GrFragmentProcessor>,
160 GrClipEdgeType,
161 SkPoint center,
162 SkPoint radii,
163 const GrShaderCaps&);
164
165 /**
166 * Returns a fragment processor that calls the passed in fragment processor, but ensures the
167 * entire program is compiled with high-precision types.
168 */
169 static std::unique_ptr<GrFragmentProcessor> HighPrecision(std::unique_ptr<GrFragmentProcessor>);
170
171 /**
172 * Makes a copy of this fragment processor that draws equivalently to the original.
173 * If the processor has child processors they are cloned as well.
174 */
175 virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0;
176
177 // The FP this was registered with as a child function. This will be null if this is a root.
parent()178 const GrFragmentProcessor* parent() const { return fParent; }
179
180 std::unique_ptr<ProgramImpl> makeProgramImpl() const;
181
addToKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b)182 void addToKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
183 this->onAddToKey(caps, b);
184 for (const auto& child : fChildProcessors) {
185 if (child) {
186 child->addToKey(caps, b);
187 }
188 }
189 }
190
numChildProcessors()191 int numChildProcessors() const { return fChildProcessors.count(); }
192 int numNonNullChildProcessors() const;
193
childProcessor(int index)194 GrFragmentProcessor* childProcessor(int index) { return fChildProcessors[index].get(); }
childProcessor(int index)195 const GrFragmentProcessor* childProcessor(int index) const {
196 return fChildProcessors[index].get();
197 }
198
SkDEBUGCODE(bool isInstantiated ()const;)199 SkDEBUGCODE(bool isInstantiated() const;)
200
201 /** Do any of the FPs in this tree read back the color from the destination surface? */
202 bool willReadDstColor() const {
203 return SkToBool(fFlags & kWillReadDstColor_Flag);
204 }
205
206 /** Does the SkSL for this FP take two colors as its input arguments? */
isBlendFunction()207 bool isBlendFunction() const {
208 return SkToBool(fFlags & kIsBlendFunction_Flag);
209 }
210
211 /**
212 * True if this FP refers directly to the sample coordinate parameter of its function
213 * (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is decided at FP-tree construction
214 * time and is not affected by lifting coords to varyings.
215 */
usesSampleCoordsDirectly()216 bool usesSampleCoordsDirectly() const {
217 return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag);
218 }
219
220 /**
221 * True if this FP uses its input coordinates or if any descendant FP uses them through a chain
222 * of non-explicit sample usages. (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is
223 * decided at FP-tree construction time and is not affected by lifting coords to varyings.
224 */
usesSampleCoords()225 bool usesSampleCoords() const {
226 return SkToBool(fFlags & (kUsesSampleCoordsDirectly_Flag |
227 kUsesSampleCoordsIndirectly_Flag));
228 }
229
230 // The SampleUsage describing how this FP is invoked by its parent. This only reflects the
231 // immediate sampling from parent to this FP.
sampleUsage()232 const SkSL::SampleUsage& sampleUsage() const {
233 return fUsage;
234 }
235
236 /**
237 * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color
238 * output under the following scenario:
239 * * all the color fragment processors report true to this query,
240 * * all the coverage fragment processors report true to this query,
241 * * the blend mode arithmetic allows for it it.
242 * To be compatible a fragment processor's output must be a modulation of its input color or
243 * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color
244 * or alpha that is modulated against the input cannot depend on the input's alpha. The computed
245 * value cannot depend on the input's color channels unless it unpremultiplies the input color
246 * channels by the input alpha.
247 */
compatibleWithCoverageAsAlpha()248 bool compatibleWithCoverageAsAlpha() const {
249 return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag);
250 }
251
252 /**
253 * If this is true then all opaque input colors to the processor produce opaque output colors.
254 */
preservesOpaqueInput()255 bool preservesOpaqueInput() const {
256 return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag);
257 }
258
259 /**
260 * Tests whether given a constant input color the processor produces a constant output color
261 * (for all fragments). If true outputColor will contain the constant color produces for
262 * inputColor.
263 */
hasConstantOutputForConstantInput(SkPMColor4f inputColor,SkPMColor4f * outputColor)264 bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const {
265 if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) {
266 *outputColor = this->constantOutputForConstantInput(inputColor);
267 return true;
268 }
269 return false;
270 }
hasConstantOutputForConstantInput()271 bool hasConstantOutputForConstantInput() const {
272 return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag);
273 }
274
275 /** Returns true if this and other processor conservatively draw identically. It can only return
276 true when the two processor are of the same subclass (i.e. they return the same object from
277 from getFactory()).
278
279 A return value of true from isEqual() should not be used to test whether the processor would
280 generate the same shader code. To test for identical code generation use addToKey.
281 */
282 bool isEqual(const GrFragmentProcessor& that) const;
283
284 void visitProxies(const GrVisitProxyFunc&) const;
285
286 void visitTextureEffects(const std::function<void(const GrTextureEffect&)>&) const;
287
288 void visitWithImpls(const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>&,
289 ProgramImpl&) const;
290
291 GrTextureEffect* asTextureEffect();
292 const GrTextureEffect* asTextureEffect() const;
293
294 #if GR_TEST_UTILS
295 // Generates debug info for this processor tree by recursively calling dumpInfo() on this
296 // processor and its children.
297 SkString dumpTreeInfo() const;
298 #endif
299
300 protected:
301 enum OptimizationFlags : uint32_t {
302 kNone_OptimizationFlags,
303 kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1,
304 kPreservesOpaqueInput_OptimizationFlag = 0x2,
305 kConstantOutputForConstantInput_OptimizationFlag = 0x4,
306 kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag |
307 kPreservesOpaqueInput_OptimizationFlag |
308 kConstantOutputForConstantInput_OptimizationFlag
309 };
SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)310 SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)
311
312 /**
313 * Can be used as a helper to decide which fragment processor OptimizationFlags should be set.
314 * This assumes that the subclass output color will be a modulation of the input color with a
315 * value read from a texture of the passed color type and that the texture contains
316 * premultiplied color or alpha values that are in range.
317 *
318 * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped,
319 * callers must determine on their own if the sampling uses a decal strategy in any way, in
320 * which case the texture may become transparent regardless of the color type.
321 */
322 static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) {
323 if (samplingDecal) {
324 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
325 } else {
326 return ModulateForClampedSamplerOptFlags(alphaType);
327 }
328 }
329
330 // As above, but callers should somehow ensure or assert their sampler still uses clamping
ModulateForClampedSamplerOptFlags(SkAlphaType alphaType)331 static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) {
332 if (alphaType == kOpaque_SkAlphaType) {
333 return kCompatibleWithCoverageAsAlpha_OptimizationFlag |
334 kPreservesOpaqueInput_OptimizationFlag;
335 } else {
336 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
337 }
338 }
339
GrFragmentProcessor(ClassID classID,OptimizationFlags optimizationFlags)340 GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags)
341 : INHERITED(classID), fFlags(optimizationFlags) {
342 SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0);
343 }
344
GrFragmentProcessor(const GrFragmentProcessor & src)345 explicit GrFragmentProcessor(const GrFragmentProcessor& src)
346 : INHERITED(src.classID()), fFlags(src.fFlags) {
347 this->cloneAndRegisterAllChildProcessors(src);
348 }
349
optimizationFlags()350 OptimizationFlags optimizationFlags() const {
351 return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags);
352 }
353
354 /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/
ProcessorOptimizationFlags(const GrFragmentProcessor * fp)355 static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) {
356 return fp ? fp->optimizationFlags() : kAll_OptimizationFlags;
357 }
358
359 /**
360 * This allows one subclass to access another subclass's implementation of
361 * constantOutputForConstantInput. It must only be called when
362 * hasConstantOutputForConstantInput() is known to be true.
363 */
ConstantOutputForConstantInput(const GrFragmentProcessor * fp,const SkPMColor4f & input)364 static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor* fp,
365 const SkPMColor4f& input) {
366 if (fp) {
367 SkASSERT(fp->hasConstantOutputForConstantInput());
368 return fp->constantOutputForConstantInput(input);
369 } else {
370 return input;
371 }
372 }
373
374 /**
375 * FragmentProcessor subclasses call this from their constructor to register any child
376 * FragmentProcessors they have. This must be called AFTER all texture accesses and coord
377 * transforms have been added.
378 * This is for processors whose shader code will be composed of nested processors whose output
379 * colors will be combined somehow to produce its output color. Registering these child
380 * processors will allow the ProgramBuilder to automatically handle their transformed coords and
381 * texture accesses and mangle their uniform and output color names.
382 *
383 * The SampleUsage parameter describes all of the ways that the child is sampled by the parent.
384 */
385 void registerChild(std::unique_ptr<GrFragmentProcessor> child,
386 SkSL::SampleUsage sampleUsage = SkSL::SampleUsage::PassThrough());
387
388 /**
389 * This method takes an existing fragment processor, clones all of its children, and registers
390 * the clones as children of this fragment processor.
391 */
392 void cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src);
393
394 // FP implementations must call this function if their matching ProgramImpl's emitCode()
395 // function uses the EmitArgs::fSampleCoord variable in generated SkSL.
setUsesSampleCoordsDirectly()396 void setUsesSampleCoordsDirectly() {
397 fFlags |= kUsesSampleCoordsDirectly_Flag;
398 }
399
400 // FP implementations must set this flag if their ProgramImpl's emitCode() function calls
401 // dstColor() to read back the framebuffer.
setWillReadDstColor()402 void setWillReadDstColor() {
403 fFlags |= kWillReadDstColor_Flag;
404 }
405
406 // FP implementations must set this flag if their ProgramImpl's emitCode() function emits a
407 // blend function (taking two color inputs instead of just one).
setIsBlendFunction()408 void setIsBlendFunction() {
409 fFlags |= kIsBlendFunction_Flag;
410 }
411
mergeOptimizationFlags(OptimizationFlags flags)412 void mergeOptimizationFlags(OptimizationFlags flags) {
413 SkASSERT((flags & ~kAll_OptimizationFlags) == 0);
414 fFlags &= (flags | ~kAll_OptimizationFlags);
415 }
416
417 private:
constantOutputForConstantInput(const SkPMColor4f &)418 virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const {
419 SK_ABORT("Subclass must override this if advertising this optimization.");
420 }
421
422 /**
423 * Returns a new instance of the appropriate ProgramImpl subclass for the given
424 * GrFragmentProcessor. It will emit the appropriate code and live with the cached program
425 * to setup uniform data for each draw that uses the program.
426 */
427 virtual std::unique_ptr<ProgramImpl> onMakeProgramImpl() const = 0;
428
429 virtual void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
430
431 /**
432 * Subclass implements this to support isEqual(). It will only be called if it is known that
433 * the two processors are of the same subclass (i.e. have the same ClassID).
434 */
435 virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
436
437 enum PrivateFlags {
438 kFirstPrivateFlag = kAll_OptimizationFlags + 1,
439
440 // Propagates up the FP tree to either root or first explicit sample usage.
441 kUsesSampleCoordsIndirectly_Flag = kFirstPrivateFlag,
442
443 // Does not propagate at all. It means this FP uses its input sample coords in some way.
444 // Note passthrough and matrix sampling of children don't count as a usage of the coords.
445 // Because indirect sampling stops at an explicit sample usage it is imperative that a FP
446 // that calculates explicit coords for its children using its own sample coords sets this.
447 kUsesSampleCoordsDirectly_Flag = kFirstPrivateFlag << 1,
448
449 // Does not propagate at all.
450 kIsBlendFunction_Flag = kFirstPrivateFlag << 2,
451
452 // Propagates up the FP tree to the root.
453 kWillReadDstColor_Flag = kFirstPrivateFlag << 3,
454 };
455
456 SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors;
457 const GrFragmentProcessor* fParent = nullptr;
458 uint32_t fFlags = 0;
459 SkSL::SampleUsage fUsage;
460
461 using INHERITED = GrProcessor;
462 };
463
464 //////////////////////////////////////////////////////////////////////////////
465
466 class GrFragmentProcessor::ProgramImpl {
467 public:
468 ProgramImpl() = default;
469
470 virtual ~ProgramImpl() = default;
471
472 using UniformHandle = GrGLSLUniformHandler::UniformHandle;
473 using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
474
475 /** Called when the program stage should insert its code into the shaders. The code in each
476 shader will be in its own block ({}) and so locally scoped names will not collide across
477 stages.
478
479 @param fragBuilder Interface used to emit code in the shaders.
480 @param uniformHandler Interface used for accessing information about our uniforms
481 @param caps The capabilities of the GPU which will render this FP
482 @param fp The processor that generated this program stage.
483 @param inputColor A half4 that holds the input color to the stage in the FS (or the
484 source color, for blend processors). nullptr inputs are converted
485 to "half4(1.0)" (solid white) during construction.
486 TODO: Better system for communicating optimization info
487 (e.g. input color is solid white, trans black, known to be opaque,
488 etc.) that allows the processor to communicate back similar known
489 info about its output.
490 @param destColor A half4 that holds the dest color to the stage. Only meaningful
491 when the "is blend processor" FP flag is set.
492 @param sampleCoord The name of a local coord reference to a float2 variable. Only
493 meaningful when the "references sample coords" FP flag is set.
494 */
495 struct EmitArgs {
EmitArgsEmitArgs496 EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
497 GrGLSLUniformHandler* uniformHandler,
498 const GrShaderCaps* caps,
499 const GrFragmentProcessor& fp,
500 const char* inputColor,
501 const char* destColor,
502 const char* sampleCoord)
503 : fFragBuilder(fragBuilder)
504 , fUniformHandler(uniformHandler)
505 , fShaderCaps(caps)
506 , fFp(fp)
507 , fInputColor(inputColor ? inputColor : "half4(1.0)")
508 , fDestColor(destColor)
509 , fSampleCoord(sampleCoord) {}
510 GrGLSLFPFragmentBuilder* fFragBuilder;
511 GrGLSLUniformHandler* fUniformHandler;
512 const GrShaderCaps* fShaderCaps;
513 const GrFragmentProcessor& fFp;
514 const char* fInputColor;
515 const char* fDestColor;
516 const char* fSampleCoord;
517 };
518
519 virtual void emitCode(EmitArgs&) = 0;
520
521 // This does not recurse to any attached child processors. Recursing the entire processor tree
522 // is the responsibility of the caller.
523 void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
524
numChildProcessors()525 int numChildProcessors() const { return fChildProcessors.count(); }
526
childProcessor(int index)527 ProgramImpl* childProcessor(int index) const { return fChildProcessors[index].get(); }
528
setFunctionName(SkString name)529 void setFunctionName(SkString name) {
530 SkASSERT(fFunctionName.isEmpty());
531 fFunctionName = std::move(name);
532 }
533
functionName()534 const char* functionName() const {
535 SkASSERT(!fFunctionName.isEmpty());
536 return fFunctionName.c_str();
537 }
538
539 // Invoke the child with the default input and destination colors (solid white)
540 inline SkString invokeChild(int childIndex,
541 EmitArgs& parentArgs,
542 SkSL::String skslCoords = "") {
543 return this->invokeChild(childIndex,
544 /*inputColor=*/nullptr,
545 /*destColor=*/nullptr,
546 parentArgs,
547 skslCoords);
548 }
549
invokeChildWithMatrix(int childIndex,EmitArgs & parentArgs)550 inline SkString invokeChildWithMatrix(int childIndex, EmitArgs& parentArgs) {
551 return this->invokeChildWithMatrix(childIndex,
552 /*inputColor=*/nullptr,
553 /*destColor=*/nullptr,
554 parentArgs);
555 }
556
557 // Invoke the child with the default destination color (solid white)
558 inline SkString invokeChild(int childIndex,
559 const char* inputColor,
560 EmitArgs& parentArgs,
561 SkSL::String skslCoords = "") {
562 return this->invokeChild(childIndex,
563 inputColor,
564 /*destColor=*/nullptr,
565 parentArgs,
566 skslCoords);
567 }
568
invokeChildWithMatrix(int childIndex,const char * inputColor,EmitArgs & parentArgs)569 inline SkString invokeChildWithMatrix(int childIndex,
570 const char* inputColor,
571 EmitArgs& parentArgs) {
572 return this->invokeChildWithMatrix(childIndex,
573 inputColor,
574 /*destColor=*/nullptr,
575 parentArgs);
576 }
577
578 /** Invokes a child proc in its own scope. Pass in the parent's EmitArgs and invokeChild will
579 * automatically extract the coords and samplers of that child and pass them on to the child's
580 * emitCode(). Also, any uniforms or functions emitted by the child will have their names
581 * mangled to prevent redefinitions. The returned string contains the output color (as a call
582 * to the child's helper function). It is legal to pass nullptr as inputColor, since all
583 * fragment processors are required to work without an input color.
584 *
585 * When skslCoords is empty, the child is invoked at the sample coordinates from parentArgs.
586 * When skslCoords is not empty, is must be an SkSL expression that evaluates to a float2.
587 * That expression is passed to the child's processor function as the "_coords" argument.
588 */
589 SkString invokeChild(int childIndex,
590 const char* inputColor,
591 const char* destColor,
592 EmitArgs& parentArgs,
593 SkSL::String skslCoords = "");
594
595 /**
596 * As invokeChild, but transforms the coordinates according to the matrix expression attached
597 * to the child's SampleUsage object. This is only valid if the child is sampled with a
598 * const-uniform matrix.
599 */
600 SkString invokeChildWithMatrix(int childIndex,
601 const char* inputColor,
602 const char* destColor,
603 EmitArgs& parentArgs);
604
605 /**
606 * Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
607 * GLSLFPS. If initialized with an array color followed by coverage processors installed in a
608 * program thenthe iteration order will agree with a GrFragmentProcessor::Iter initialized with
609 * a GrPipeline that produces the same program key.
610 */
611 class Iter {
612 public:
613 Iter(std::unique_ptr<ProgramImpl> fps[], int cnt);
Iter(ProgramImpl & fp)614 Iter(ProgramImpl& fp) { fFPStack.push_back(&fp); }
615
616 ProgramImpl& operator*() const;
617 ProgramImpl* operator->() const;
618 Iter& operator++();
619 operator bool() const { return !fFPStack.empty(); }
620
621 // Because each iterator carries a stack we want to avoid copies.
622 Iter(const Iter&) = delete;
623 Iter& operator=(const Iter&) = delete;
624
625 private:
626 SkSTArray<4, ProgramImpl*, true> fFPStack;
627 };
628
629 private:
630 /**
631 * A ProgramImpl instance can be reused with any GrFragmentProcessor that produces the same
632 * the same key; this function reads data from a GrFragmentProcessor and uploads any
633 * uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
634 * parameter is guaranteed to be of the same type that created this ProgramImpl and
635 * to have an identical key as the one that created this ProgramImpl.
636 */
onSetData(const GrGLSLProgramDataManager &,const GrFragmentProcessor &)637 virtual void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) {}
638
639 // The (mangled) name of our entry-point function
640 SkString fFunctionName;
641
642 SkTArray<std::unique_ptr<ProgramImpl>, true> fChildProcessors;
643
644 friend class GrFragmentProcessor;
645 };
646
647 //////////////////////////////////////////////////////////////////////////////
648
SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)649 SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)
650
651 static inline GrFPResult GrFPFailure(std::unique_ptr<GrFragmentProcessor> fp) {
652 return {false, std::move(fp)};
653 }
GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp)654 static inline GrFPResult GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp) {
655 SkASSERT(fp);
656 return {true, std::move(fp)};
657 }
658
659 #endif
660