1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for sunxi SD/MMC host controllers
4 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7 * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9 * (C) Copyright 2017 Sootech SA
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/reset.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38
39 /* register offset definitions */
40 #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
41 #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
42 #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
43 #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
44 #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
45 #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
46 #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
47 #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
48 #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
49 #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
50 #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
51 #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
52 #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
53 #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
54 #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
55 #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
56 #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
57 #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
58 #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
59 #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
60 #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
61 #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
62 #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
63 #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
64 #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
65 #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
66 #define SDXC_REG_CHDA (0x90)
67 #define SDXC_REG_CBDA (0x94)
68
69 /* New registers introduced in A64 */
70 #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
71 #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
72 #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
73 #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
74 #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
75
76 #define mmc_readl(host, reg) \
77 readl((host)->reg_base + SDXC_##reg)
78 #define mmc_writel(host, reg, value) \
79 writel((value), (host)->reg_base + SDXC_##reg)
80
81 /* global control register bits */
82 #define SDXC_SOFT_RESET BIT(0)
83 #define SDXC_FIFO_RESET BIT(1)
84 #define SDXC_DMA_RESET BIT(2)
85 #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
86 #define SDXC_DMA_ENABLE_BIT BIT(5)
87 #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
88 #define SDXC_POSEDGE_LATCH_DATA BIT(9)
89 #define SDXC_DDR_MODE BIT(10)
90 #define SDXC_MEMORY_ACCESS_DONE BIT(29)
91 #define SDXC_ACCESS_DONE_DIRECT BIT(30)
92 #define SDXC_ACCESS_BY_AHB BIT(31)
93 #define SDXC_ACCESS_BY_DMA (0 << 31)
94 #define SDXC_HARDWARE_RESET \
95 (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
96
97 /* clock control bits */
98 #define SDXC_MASK_DATA0 BIT(31)
99 #define SDXC_CARD_CLOCK_ON BIT(16)
100 #define SDXC_LOW_POWER_ON BIT(17)
101
102 /* bus width */
103 #define SDXC_WIDTH1 0
104 #define SDXC_WIDTH4 1
105 #define SDXC_WIDTH8 2
106
107 /* smc command bits */
108 #define SDXC_RESP_EXPIRE BIT(6)
109 #define SDXC_LONG_RESPONSE BIT(7)
110 #define SDXC_CHECK_RESPONSE_CRC BIT(8)
111 #define SDXC_DATA_EXPIRE BIT(9)
112 #define SDXC_WRITE BIT(10)
113 #define SDXC_SEQUENCE_MODE BIT(11)
114 #define SDXC_SEND_AUTO_STOP BIT(12)
115 #define SDXC_WAIT_PRE_OVER BIT(13)
116 #define SDXC_STOP_ABORT_CMD BIT(14)
117 #define SDXC_SEND_INIT_SEQUENCE BIT(15)
118 #define SDXC_UPCLK_ONLY BIT(21)
119 #define SDXC_READ_CEATA_DEV BIT(22)
120 #define SDXC_CCS_EXPIRE BIT(23)
121 #define SDXC_ENABLE_BIT_BOOT BIT(24)
122 #define SDXC_ALT_BOOT_OPTIONS BIT(25)
123 #define SDXC_BOOT_ACK_EXPIRE BIT(26)
124 #define SDXC_BOOT_ABORT BIT(27)
125 #define SDXC_VOLTAGE_SWITCH BIT(28)
126 #define SDXC_USE_HOLD_REGISTER BIT(29)
127 #define SDXC_START BIT(31)
128
129 /* interrupt bits */
130 #define SDXC_RESP_ERROR BIT(1)
131 #define SDXC_COMMAND_DONE BIT(2)
132 #define SDXC_DATA_OVER BIT(3)
133 #define SDXC_TX_DATA_REQUEST BIT(4)
134 #define SDXC_RX_DATA_REQUEST BIT(5)
135 #define SDXC_RESP_CRC_ERROR BIT(6)
136 #define SDXC_DATA_CRC_ERROR BIT(7)
137 #define SDXC_RESP_TIMEOUT BIT(8)
138 #define SDXC_DATA_TIMEOUT BIT(9)
139 #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
140 #define SDXC_FIFO_RUN_ERROR BIT(11)
141 #define SDXC_HARD_WARE_LOCKED BIT(12)
142 #define SDXC_START_BIT_ERROR BIT(13)
143 #define SDXC_AUTO_COMMAND_DONE BIT(14)
144 #define SDXC_END_BIT_ERROR BIT(15)
145 #define SDXC_SDIO_INTERRUPT BIT(16)
146 #define SDXC_CARD_INSERT BIT(30)
147 #define SDXC_CARD_REMOVE BIT(31)
148 #define SDXC_INTERRUPT_ERROR_BIT \
149 (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
150 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
151 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
152 #define SDXC_INTERRUPT_DONE_BIT \
153 (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
154 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
155
156 /* status */
157 #define SDXC_RXWL_FLAG BIT(0)
158 #define SDXC_TXWL_FLAG BIT(1)
159 #define SDXC_FIFO_EMPTY BIT(2)
160 #define SDXC_FIFO_FULL BIT(3)
161 #define SDXC_CARD_PRESENT BIT(8)
162 #define SDXC_CARD_DATA_BUSY BIT(9)
163 #define SDXC_DATA_FSM_BUSY BIT(10)
164 #define SDXC_DMA_REQUEST BIT(31)
165 #define SDXC_FIFO_SIZE 16
166
167 /* Function select */
168 #define SDXC_CEATA_ON (0xceaa << 16)
169 #define SDXC_SEND_IRQ_RESPONSE BIT(0)
170 #define SDXC_SDIO_READ_WAIT BIT(1)
171 #define SDXC_ABORT_READ_DATA BIT(2)
172 #define SDXC_SEND_CCSD BIT(8)
173 #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
174 #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
175
176 /* IDMA controller bus mod bit field */
177 #define SDXC_IDMAC_SOFT_RESET BIT(0)
178 #define SDXC_IDMAC_FIX_BURST BIT(1)
179 #define SDXC_IDMAC_IDMA_ON BIT(7)
180 #define SDXC_IDMAC_REFETCH_DES BIT(31)
181
182 /* IDMA status bit field */
183 #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
184 #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
185 #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
186 #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
187 #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
188 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
189 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
190 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
191 #define SDXC_IDMAC_IDLE (0 << 13)
192 #define SDXC_IDMAC_SUSPEND (1 << 13)
193 #define SDXC_IDMAC_DESC_READ (2 << 13)
194 #define SDXC_IDMAC_DESC_CHECK (3 << 13)
195 #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
196 #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
197 #define SDXC_IDMAC_READ (6 << 13)
198 #define SDXC_IDMAC_WRITE (7 << 13)
199 #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
200
201 /*
202 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
203 * Bits 0-12: buf1 size
204 * Bits 13-25: buf2 size
205 * Bits 26-31: not used
206 * Since we only ever set buf1 size, we can simply store it directly.
207 */
208 #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
209 #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
210 #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
211 #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
212 #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
213 #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
214 #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
215
216 #define SDXC_CLK_400K 0
217 #define SDXC_CLK_25M 1
218 #define SDXC_CLK_50M 2
219 #define SDXC_CLK_50M_DDR 3
220 #define SDXC_CLK_50M_DDR_8BIT 4
221
222 #define SDXC_2X_TIMING_MODE BIT(31)
223
224 #define SDXC_CAL_START BIT(15)
225 #define SDXC_CAL_DONE BIT(14)
226 #define SDXC_CAL_DL_SHIFT 8
227 #define SDXC_CAL_DL_SW_EN BIT(7)
228 #define SDXC_CAL_DL_SW_SHIFT 0
229 #define SDXC_CAL_DL_MASK 0x3f
230
231 #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
232
233 struct sunxi_mmc_clk_delay {
234 u32 output;
235 u32 sample;
236 };
237
238 struct sunxi_idma_des {
239 __le32 config;
240 __le32 buf_size;
241 __le32 buf_addr_ptr1;
242 __le32 buf_addr_ptr2;
243 };
244
245 struct sunxi_mmc_cfg {
246 u32 idma_des_size_bits;
247 const struct sunxi_mmc_clk_delay *clk_delays;
248
249 /* does the IP block support autocalibration? */
250 bool can_calibrate;
251
252 /* Does DATA0 needs to be masked while the clock is updated */
253 bool mask_data0;
254
255 /*
256 * hardware only supports new timing mode, either due to lack of
257 * a mode switch in the clock controller, or the mmc controller
258 * is permanently configured in the new timing mode, without the
259 * NTSR mode switch.
260 */
261 bool needs_new_timings;
262
263 /* clock hardware can switch between old and new timing modes */
264 bool ccu_has_timings_switch;
265 };
266
267 struct sunxi_mmc_host {
268 struct device *dev;
269 struct mmc_host *mmc;
270 struct reset_control *reset;
271 const struct sunxi_mmc_cfg *cfg;
272
273 /* IO mapping base */
274 void __iomem *reg_base;
275
276 /* clock management */
277 struct clk *clk_ahb;
278 struct clk *clk_mmc;
279 struct clk *clk_sample;
280 struct clk *clk_output;
281
282 /* irq */
283 spinlock_t lock;
284 int irq;
285 u32 int_sum;
286 u32 sdio_imask;
287
288 /* dma */
289 dma_addr_t sg_dma;
290 void *sg_cpu;
291 bool wait_dma;
292
293 struct mmc_request *mrq;
294 struct mmc_request *manual_stop_mrq;
295 int ferror;
296
297 /* vqmmc */
298 bool vqmmc_enabled;
299
300 /* timings */
301 bool use_new_timings;
302 };
303
sunxi_mmc_reset_host(struct sunxi_mmc_host * host)304 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
305 {
306 unsigned long expire = jiffies + msecs_to_jiffies(250);
307 u32 rval;
308
309 mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
310 do {
311 rval = mmc_readl(host, REG_GCTRL);
312 } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
313
314 if (rval & SDXC_HARDWARE_RESET) {
315 dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
316 return -EIO;
317 }
318
319 return 0;
320 }
321
sunxi_mmc_init_host(struct sunxi_mmc_host * host)322 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
323 {
324 u32 rval;
325
326 if (sunxi_mmc_reset_host(host))
327 return -EIO;
328
329 /*
330 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
331 *
332 * TODO: sun9i has a larger FIFO and supports higher trigger values
333 */
334 mmc_writel(host, REG_FTRGL, 0x20070008);
335 /* Maximum timeout value */
336 mmc_writel(host, REG_TMOUT, 0xffffffff);
337 /* Unmask SDIO interrupt if needed */
338 mmc_writel(host, REG_IMASK, host->sdio_imask);
339 /* Clear all pending interrupts */
340 mmc_writel(host, REG_RINTR, 0xffffffff);
341 /* Debug register? undocumented */
342 mmc_writel(host, REG_DBGC, 0xdeb);
343 /* Enable CEATA support */
344 mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
345 /* Set DMA descriptor list base address */
346 mmc_writel(host, REG_DLBA, host->sg_dma);
347
348 rval = mmc_readl(host, REG_GCTRL);
349 rval |= SDXC_INTERRUPT_ENABLE_BIT;
350 /* Undocumented, but found in Allwinner code */
351 rval &= ~SDXC_ACCESS_DONE_DIRECT;
352 mmc_writel(host, REG_GCTRL, rval);
353
354 return 0;
355 }
356
sunxi_mmc_init_idma_des(struct sunxi_mmc_host * host,struct mmc_data * data)357 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
358 struct mmc_data *data)
359 {
360 struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
361 dma_addr_t next_desc = host->sg_dma;
362 int i, max_len = (1 << host->cfg->idma_des_size_bits);
363
364 for (i = 0; i < data->sg_len; i++) {
365 pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
366 SDXC_IDMAC_DES0_OWN |
367 SDXC_IDMAC_DES0_DIC);
368
369 if (data->sg[i].length == max_len)
370 pdes[i].buf_size = 0; /* 0 == max_len */
371 else
372 pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
373
374 next_desc += sizeof(struct sunxi_idma_des);
375 pdes[i].buf_addr_ptr1 =
376 cpu_to_le32(sg_dma_address(&data->sg[i]));
377 pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
378 }
379
380 pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
381 pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
382 SDXC_IDMAC_DES0_ER);
383 pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
384 pdes[i - 1].buf_addr_ptr2 = 0;
385
386 /*
387 * Avoid the io-store starting the idmac hitting io-mem before the
388 * descriptors hit the main-mem.
389 */
390 wmb();
391 }
392
sunxi_mmc_map_dma(struct sunxi_mmc_host * host,struct mmc_data * data)393 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
394 struct mmc_data *data)
395 {
396 u32 i, dma_len;
397 struct scatterlist *sg;
398
399 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
400 mmc_get_dma_dir(data));
401 if (dma_len == 0) {
402 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
403 return -ENOMEM;
404 }
405
406 for_each_sg(data->sg, sg, data->sg_len, i) {
407 if (sg->offset & 3 || sg->length & 3) {
408 dev_err(mmc_dev(host->mmc),
409 "unaligned scatterlist: os %x length %d\n",
410 sg->offset, sg->length);
411 return -EINVAL;
412 }
413 }
414
415 return 0;
416 }
417
sunxi_mmc_start_dma(struct sunxi_mmc_host * host,struct mmc_data * data)418 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
419 struct mmc_data *data)
420 {
421 u32 rval;
422
423 sunxi_mmc_init_idma_des(host, data);
424
425 rval = mmc_readl(host, REG_GCTRL);
426 rval |= SDXC_DMA_ENABLE_BIT;
427 mmc_writel(host, REG_GCTRL, rval);
428 rval |= SDXC_DMA_RESET;
429 mmc_writel(host, REG_GCTRL, rval);
430
431 mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
432
433 if (!(data->flags & MMC_DATA_WRITE))
434 mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
435
436 mmc_writel(host, REG_DMAC,
437 SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
438 }
439
sunxi_mmc_send_manual_stop(struct sunxi_mmc_host * host,struct mmc_request * req)440 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
441 struct mmc_request *req)
442 {
443 u32 arg, cmd_val, ri;
444 unsigned long expire = jiffies + msecs_to_jiffies(1000);
445
446 cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
447 SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
448
449 if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
450 cmd_val |= SD_IO_RW_DIRECT;
451 arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
452 ((req->cmd->arg >> 28) & 0x7);
453 } else {
454 cmd_val |= MMC_STOP_TRANSMISSION;
455 arg = 0;
456 }
457
458 mmc_writel(host, REG_CARG, arg);
459 mmc_writel(host, REG_CMDR, cmd_val);
460
461 do {
462 ri = mmc_readl(host, REG_RINTR);
463 } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
464 time_before(jiffies, expire));
465
466 if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
467 dev_err(mmc_dev(host->mmc), "send stop command failed\n");
468 if (req->stop)
469 req->stop->resp[0] = -ETIMEDOUT;
470 } else {
471 if (req->stop)
472 req->stop->resp[0] = mmc_readl(host, REG_RESP0);
473 }
474
475 mmc_writel(host, REG_RINTR, 0xffff);
476 }
477
sunxi_mmc_dump_errinfo(struct sunxi_mmc_host * host)478 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
479 {
480 struct mmc_command *cmd = host->mrq->cmd;
481 struct mmc_data *data = host->mrq->data;
482
483 /* For some cmds timeout is normal with sd/mmc cards */
484 if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
485 SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
486 cmd->opcode == SD_IO_RW_DIRECT))
487 return;
488
489 dev_dbg(mmc_dev(host->mmc),
490 "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
491 host->mmc->index, cmd->opcode,
492 data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
493 host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
494 host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
495 host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
496 host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
497 host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
498 host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
499 host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
500 host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
501 host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
502 );
503 }
504
505 /* Called in interrupt context! */
sunxi_mmc_finalize_request(struct sunxi_mmc_host * host)506 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
507 {
508 struct mmc_request *mrq = host->mrq;
509 struct mmc_data *data = mrq->data;
510 u32 rval;
511
512 mmc_writel(host, REG_IMASK, host->sdio_imask);
513 mmc_writel(host, REG_IDIE, 0);
514
515 if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
516 sunxi_mmc_dump_errinfo(host);
517 mrq->cmd->error = -ETIMEDOUT;
518
519 if (data) {
520 data->error = -ETIMEDOUT;
521 host->manual_stop_mrq = mrq;
522 }
523
524 if (mrq->stop)
525 mrq->stop->error = -ETIMEDOUT;
526 } else {
527 if (mrq->cmd->flags & MMC_RSP_136) {
528 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
529 mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
530 mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
531 mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
532 } else {
533 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
534 }
535
536 if (data)
537 data->bytes_xfered = data->blocks * data->blksz;
538 }
539
540 if (data) {
541 mmc_writel(host, REG_IDST, 0x337);
542 mmc_writel(host, REG_DMAC, 0);
543 rval = mmc_readl(host, REG_GCTRL);
544 rval |= SDXC_DMA_RESET;
545 mmc_writel(host, REG_GCTRL, rval);
546 rval &= ~SDXC_DMA_ENABLE_BIT;
547 mmc_writel(host, REG_GCTRL, rval);
548 rval |= SDXC_FIFO_RESET;
549 mmc_writel(host, REG_GCTRL, rval);
550 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
551 mmc_get_dma_dir(data));
552 }
553
554 mmc_writel(host, REG_RINTR, 0xffff);
555
556 host->mrq = NULL;
557 host->int_sum = 0;
558 host->wait_dma = false;
559
560 return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
561 }
562
sunxi_mmc_irq(int irq,void * dev_id)563 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
564 {
565 struct sunxi_mmc_host *host = dev_id;
566 struct mmc_request *mrq;
567 u32 msk_int, idma_int;
568 bool finalize = false;
569 bool sdio_int = false;
570 irqreturn_t ret = IRQ_HANDLED;
571
572 spin_lock(&host->lock);
573
574 idma_int = mmc_readl(host, REG_IDST);
575 msk_int = mmc_readl(host, REG_MISTA);
576
577 dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
578 host->mrq, msk_int, idma_int);
579
580 mrq = host->mrq;
581 if (mrq) {
582 if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
583 host->wait_dma = false;
584
585 host->int_sum |= msk_int;
586
587 /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
588 if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
589 !(host->int_sum & SDXC_COMMAND_DONE))
590 mmc_writel(host, REG_IMASK,
591 host->sdio_imask | SDXC_COMMAND_DONE);
592 /* Don't wait for dma on error */
593 else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
594 finalize = true;
595 else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
596 !host->wait_dma)
597 finalize = true;
598 }
599
600 if (msk_int & SDXC_SDIO_INTERRUPT)
601 sdio_int = true;
602
603 mmc_writel(host, REG_RINTR, msk_int);
604 mmc_writel(host, REG_IDST, idma_int);
605
606 if (finalize)
607 ret = sunxi_mmc_finalize_request(host);
608
609 spin_unlock(&host->lock);
610
611 if (finalize && ret == IRQ_HANDLED)
612 mmc_request_done(host->mmc, mrq);
613
614 if (sdio_int)
615 mmc_signal_sdio_irq(host->mmc);
616
617 return ret;
618 }
619
sunxi_mmc_handle_manual_stop(int irq,void * dev_id)620 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
621 {
622 struct sunxi_mmc_host *host = dev_id;
623 struct mmc_request *mrq;
624 unsigned long iflags;
625
626 spin_lock_irqsave(&host->lock, iflags);
627 mrq = host->manual_stop_mrq;
628 spin_unlock_irqrestore(&host->lock, iflags);
629
630 if (!mrq) {
631 dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
632 return IRQ_HANDLED;
633 }
634
635 dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
636
637 /*
638 * We will never have more than one outstanding request,
639 * and we do not complete the request until after
640 * we've cleared host->manual_stop_mrq so we do not need to
641 * spin lock this function.
642 * Additionally we have wait states within this function
643 * so having it in a lock is a very bad idea.
644 */
645 sunxi_mmc_send_manual_stop(host, mrq);
646
647 spin_lock_irqsave(&host->lock, iflags);
648 host->manual_stop_mrq = NULL;
649 spin_unlock_irqrestore(&host->lock, iflags);
650
651 mmc_request_done(host->mmc, mrq);
652
653 return IRQ_HANDLED;
654 }
655
sunxi_mmc_oclk_onoff(struct sunxi_mmc_host * host,u32 oclk_en)656 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
657 {
658 unsigned long expire = jiffies + msecs_to_jiffies(750);
659 u32 rval;
660
661 dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
662 oclk_en ? "en" : "dis");
663
664 rval = mmc_readl(host, REG_CLKCR);
665 rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
666
667 if (oclk_en)
668 rval |= SDXC_CARD_CLOCK_ON;
669 if (host->cfg->mask_data0)
670 rval |= SDXC_MASK_DATA0;
671
672 mmc_writel(host, REG_CLKCR, rval);
673
674 rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
675 mmc_writel(host, REG_CMDR, rval);
676
677 do {
678 rval = mmc_readl(host, REG_CMDR);
679 } while (time_before(jiffies, expire) && (rval & SDXC_START));
680
681 /* clear irq status bits set by the command */
682 mmc_writel(host, REG_RINTR,
683 mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
684
685 if (rval & SDXC_START) {
686 dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
687 return -EIO;
688 }
689
690 if (host->cfg->mask_data0) {
691 rval = mmc_readl(host, REG_CLKCR);
692 mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
693 }
694
695 return 0;
696 }
697
sunxi_mmc_calibrate(struct sunxi_mmc_host * host,int reg_off)698 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
699 {
700 if (!host->cfg->can_calibrate)
701 return 0;
702
703 /*
704 * FIXME:
705 * This is not clear how the calibration is supposed to work
706 * yet. The best rate have been obtained by simply setting the
707 * delay to 0, as Allwinner does in its BSP.
708 *
709 * The only mode that doesn't have such a delay is HS400, that
710 * is in itself a TODO.
711 */
712 writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
713
714 return 0;
715 }
716
sunxi_mmc_clk_set_phase(struct sunxi_mmc_host * host,struct mmc_ios * ios,u32 rate)717 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
718 struct mmc_ios *ios, u32 rate)
719 {
720 int index;
721
722 /* clk controller delays not used under new timings mode */
723 if (host->use_new_timings)
724 return 0;
725
726 /* some old controllers don't support delays */
727 if (!host->cfg->clk_delays)
728 return 0;
729
730 /* determine delays */
731 if (rate <= 400000) {
732 index = SDXC_CLK_400K;
733 } else if (rate <= 25000000) {
734 index = SDXC_CLK_25M;
735 } else if (rate <= 52000000) {
736 if (ios->timing != MMC_TIMING_UHS_DDR50 &&
737 ios->timing != MMC_TIMING_MMC_DDR52) {
738 index = SDXC_CLK_50M;
739 } else if (ios->bus_width == MMC_BUS_WIDTH_8) {
740 index = SDXC_CLK_50M_DDR_8BIT;
741 } else {
742 index = SDXC_CLK_50M_DDR;
743 }
744 } else {
745 dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
746 return -EINVAL;
747 }
748
749 clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
750 clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
751
752 return 0;
753 }
754
sunxi_mmc_clk_set_rate(struct sunxi_mmc_host * host,struct mmc_ios * ios)755 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
756 struct mmc_ios *ios)
757 {
758 struct mmc_host *mmc = host->mmc;
759 long rate;
760 u32 rval, clock = ios->clock, div = 1;
761 int ret;
762
763 ret = sunxi_mmc_oclk_onoff(host, 0);
764 if (ret)
765 return ret;
766
767 /* Our clock is gated now */
768 mmc->actual_clock = 0;
769
770 if (!ios->clock)
771 return 0;
772
773 /*
774 * Under the old timing mode, 8 bit DDR requires the module
775 * clock to be double the card clock. Under the new timing
776 * mode, all DDR modes require a doubled module clock.
777 *
778 * We currently only support the standard MMC DDR52 mode.
779 * This block should be updated once support for other DDR
780 * modes is added.
781 */
782 if (ios->timing == MMC_TIMING_MMC_DDR52 &&
783 (host->use_new_timings ||
784 ios->bus_width == MMC_BUS_WIDTH_8)) {
785 div = 2;
786 clock <<= 1;
787 }
788
789 if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
790 ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
791 if (ret) {
792 dev_err(mmc_dev(mmc),
793 "error setting new timing mode\n");
794 return ret;
795 }
796 }
797
798 rate = clk_round_rate(host->clk_mmc, clock);
799 if (rate < 0) {
800 dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
801 clock, rate);
802 return rate;
803 }
804 dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
805 clock, rate);
806
807 /* setting clock rate */
808 ret = clk_set_rate(host->clk_mmc, rate);
809 if (ret) {
810 dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
811 rate, ret);
812 return ret;
813 }
814
815 /* set internal divider */
816 rval = mmc_readl(host, REG_CLKCR);
817 rval &= ~0xff;
818 rval |= div - 1;
819 mmc_writel(host, REG_CLKCR, rval);
820
821 /* update card clock rate to account for internal divider */
822 rate /= div;
823
824 /*
825 * Configure the controller to use the new timing mode if needed.
826 * On controllers that only support the new timing mode, such as
827 * the eMMC controller on the A64, this register does not exist,
828 * and any writes to it are ignored.
829 */
830 if (host->use_new_timings) {
831 /* Don't touch the delay bits */
832 rval = mmc_readl(host, REG_SD_NTSR);
833 rval |= SDXC_2X_TIMING_MODE;
834 mmc_writel(host, REG_SD_NTSR, rval);
835 }
836
837 /* sunxi_mmc_clk_set_phase expects the actual card clock rate */
838 ret = sunxi_mmc_clk_set_phase(host, ios, rate);
839 if (ret)
840 return ret;
841
842 ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
843 if (ret)
844 return ret;
845
846 /*
847 * FIXME:
848 *
849 * In HS400 we'll also need to calibrate the data strobe
850 * signal. This should only happen on the MMC2 controller (at
851 * least on the A64).
852 */
853
854 ret = sunxi_mmc_oclk_onoff(host, 1);
855 if (ret)
856 return ret;
857
858 /* And we just enabled our clock back */
859 mmc->actual_clock = rate;
860
861 return 0;
862 }
863
sunxi_mmc_set_bus_width(struct sunxi_mmc_host * host,unsigned char width)864 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
865 unsigned char width)
866 {
867 switch (width) {
868 case MMC_BUS_WIDTH_1:
869 mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
870 break;
871 case MMC_BUS_WIDTH_4:
872 mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
873 break;
874 case MMC_BUS_WIDTH_8:
875 mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
876 break;
877 }
878 }
879
sunxi_mmc_set_clk(struct sunxi_mmc_host * host,struct mmc_ios * ios)880 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
881 {
882 u32 rval;
883
884 /* set ddr mode */
885 rval = mmc_readl(host, REG_GCTRL);
886 if (ios->timing == MMC_TIMING_UHS_DDR50 ||
887 ios->timing == MMC_TIMING_MMC_DDR52)
888 rval |= SDXC_DDR_MODE;
889 else
890 rval &= ~SDXC_DDR_MODE;
891 mmc_writel(host, REG_GCTRL, rval);
892
893 host->ferror = sunxi_mmc_clk_set_rate(host, ios);
894 /* Android code had a usleep_range(50000, 55000); here */
895 }
896
sunxi_mmc_card_power(struct sunxi_mmc_host * host,struct mmc_ios * ios)897 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
898 struct mmc_ios *ios)
899 {
900 struct mmc_host *mmc = host->mmc;
901
902 switch (ios->power_mode) {
903 case MMC_POWER_UP:
904 dev_dbg(mmc_dev(mmc), "Powering card up\n");
905
906 if (!IS_ERR(mmc->supply.vmmc)) {
907 host->ferror = mmc_regulator_set_ocr(mmc,
908 mmc->supply.vmmc,
909 ios->vdd);
910 if (host->ferror)
911 return;
912 }
913
914 if (!IS_ERR(mmc->supply.vqmmc)) {
915 host->ferror = regulator_enable(mmc->supply.vqmmc);
916 if (host->ferror) {
917 dev_err(mmc_dev(mmc),
918 "failed to enable vqmmc\n");
919 return;
920 }
921 host->vqmmc_enabled = true;
922 }
923 break;
924
925 case MMC_POWER_OFF:
926 dev_dbg(mmc_dev(mmc), "Powering card off\n");
927
928 if (!IS_ERR(mmc->supply.vmmc))
929 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
930
931 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
932 regulator_disable(mmc->supply.vqmmc);
933
934 host->vqmmc_enabled = false;
935 break;
936
937 default:
938 dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
939 break;
940 }
941 }
942
sunxi_mmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)943 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
944 {
945 struct sunxi_mmc_host *host = mmc_priv(mmc);
946
947 sunxi_mmc_card_power(host, ios);
948 sunxi_mmc_set_bus_width(host, ios->bus_width);
949 sunxi_mmc_set_clk(host, ios);
950 }
951
sunxi_mmc_volt_switch(struct mmc_host * mmc,struct mmc_ios * ios)952 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
953 {
954 int ret;
955
956 /* vqmmc regulator is available */
957 if (!IS_ERR(mmc->supply.vqmmc)) {
958 ret = mmc_regulator_set_vqmmc(mmc, ios);
959 return ret < 0 ? ret : 0;
960 }
961
962 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
963 if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
964 return 0;
965
966 return -EINVAL;
967 }
968
sunxi_mmc_enable_sdio_irq(struct mmc_host * mmc,int enable)969 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
970 {
971 struct sunxi_mmc_host *host = mmc_priv(mmc);
972 unsigned long flags;
973 u32 imask;
974
975 if (enable)
976 pm_runtime_get_noresume(host->dev);
977
978 spin_lock_irqsave(&host->lock, flags);
979
980 imask = mmc_readl(host, REG_IMASK);
981 if (enable) {
982 host->sdio_imask = SDXC_SDIO_INTERRUPT;
983 imask |= SDXC_SDIO_INTERRUPT;
984 } else {
985 host->sdio_imask = 0;
986 imask &= ~SDXC_SDIO_INTERRUPT;
987 }
988 mmc_writel(host, REG_IMASK, imask);
989 spin_unlock_irqrestore(&host->lock, flags);
990
991 if (!enable)
992 pm_runtime_put_noidle(host->mmc->parent);
993 }
994
sunxi_mmc_hw_reset(struct mmc_host * mmc)995 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
996 {
997 struct sunxi_mmc_host *host = mmc_priv(mmc);
998 mmc_writel(host, REG_HWRST, 0);
999 udelay(10);
1000 mmc_writel(host, REG_HWRST, 1);
1001 udelay(300);
1002 }
1003
sunxi_mmc_request(struct mmc_host * mmc,struct mmc_request * mrq)1004 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1005 {
1006 struct sunxi_mmc_host *host = mmc_priv(mmc);
1007 struct mmc_command *cmd = mrq->cmd;
1008 struct mmc_data *data = mrq->data;
1009 unsigned long iflags;
1010 u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1011 u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1012 bool wait_dma = host->wait_dma;
1013 int ret;
1014
1015 /* Check for set_ios errors (should never happen) */
1016 if (host->ferror) {
1017 mrq->cmd->error = host->ferror;
1018 mmc_request_done(mmc, mrq);
1019 return;
1020 }
1021
1022 if (data) {
1023 ret = sunxi_mmc_map_dma(host, data);
1024 if (ret < 0) {
1025 dev_err(mmc_dev(mmc), "map DMA failed\n");
1026 cmd->error = ret;
1027 data->error = ret;
1028 mmc_request_done(mmc, mrq);
1029 return;
1030 }
1031 }
1032
1033 if (cmd->opcode == MMC_GO_IDLE_STATE) {
1034 cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1035 imask |= SDXC_COMMAND_DONE;
1036 }
1037
1038 if (cmd->flags & MMC_RSP_PRESENT) {
1039 cmd_val |= SDXC_RESP_EXPIRE;
1040 if (cmd->flags & MMC_RSP_136)
1041 cmd_val |= SDXC_LONG_RESPONSE;
1042 if (cmd->flags & MMC_RSP_CRC)
1043 cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1044
1045 if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1046 cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1047
1048 if (cmd->data->stop) {
1049 imask |= SDXC_AUTO_COMMAND_DONE;
1050 cmd_val |= SDXC_SEND_AUTO_STOP;
1051 } else {
1052 imask |= SDXC_DATA_OVER;
1053 }
1054
1055 if (cmd->data->flags & MMC_DATA_WRITE)
1056 cmd_val |= SDXC_WRITE;
1057 else
1058 wait_dma = true;
1059 } else {
1060 imask |= SDXC_COMMAND_DONE;
1061 }
1062 } else {
1063 imask |= SDXC_COMMAND_DONE;
1064 }
1065
1066 dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1067 cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1068 mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1069
1070 spin_lock_irqsave(&host->lock, iflags);
1071
1072 if (host->mrq || host->manual_stop_mrq) {
1073 spin_unlock_irqrestore(&host->lock, iflags);
1074
1075 if (data)
1076 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1077 mmc_get_dma_dir(data));
1078
1079 dev_err(mmc_dev(mmc), "request already pending\n");
1080 mrq->cmd->error = -EBUSY;
1081 mmc_request_done(mmc, mrq);
1082 return;
1083 }
1084
1085 if (data) {
1086 mmc_writel(host, REG_BLKSZ, data->blksz);
1087 mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1088 sunxi_mmc_start_dma(host, data);
1089 }
1090
1091 host->mrq = mrq;
1092 host->wait_dma = wait_dma;
1093 mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1094 mmc_writel(host, REG_CARG, cmd->arg);
1095 mmc_writel(host, REG_CMDR, cmd_val);
1096
1097 spin_unlock_irqrestore(&host->lock, iflags);
1098 }
1099
sunxi_mmc_card_busy(struct mmc_host * mmc)1100 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1101 {
1102 struct sunxi_mmc_host *host = mmc_priv(mmc);
1103
1104 return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1105 }
1106
1107 static const struct mmc_host_ops sunxi_mmc_ops = {
1108 .request = sunxi_mmc_request,
1109 .set_ios = sunxi_mmc_set_ios,
1110 .get_ro = mmc_gpio_get_ro,
1111 .get_cd = mmc_gpio_get_cd,
1112 .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1113 .start_signal_voltage_switch = sunxi_mmc_volt_switch,
1114 .hw_reset = sunxi_mmc_hw_reset,
1115 .card_busy = sunxi_mmc_card_busy,
1116 };
1117
1118 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1119 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1120 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1121 [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
1122 [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
1123 /* Value from A83T "new timing mode". Works but might not be right. */
1124 [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
1125 };
1126
1127 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1128 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1129 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1130 [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
1131 [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
1132 [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
1133 };
1134
1135 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1136 .idma_des_size_bits = 13,
1137 .clk_delays = NULL,
1138 .can_calibrate = false,
1139 };
1140
1141 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1142 .idma_des_size_bits = 16,
1143 .clk_delays = NULL,
1144 .can_calibrate = false,
1145 };
1146
1147 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1148 .idma_des_size_bits = 16,
1149 .clk_delays = sunxi_mmc_clk_delays,
1150 .can_calibrate = false,
1151 };
1152
1153 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1154 .idma_des_size_bits = 16,
1155 .clk_delays = sunxi_mmc_clk_delays,
1156 .can_calibrate = false,
1157 .ccu_has_timings_switch = true,
1158 };
1159
1160 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1161 .idma_des_size_bits = 16,
1162 .clk_delays = sun9i_mmc_clk_delays,
1163 .can_calibrate = false,
1164 };
1165
1166 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1167 .idma_des_size_bits = 16,
1168 .clk_delays = NULL,
1169 .can_calibrate = true,
1170 .mask_data0 = true,
1171 .needs_new_timings = true,
1172 };
1173
1174 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1175 .idma_des_size_bits = 13,
1176 .clk_delays = NULL,
1177 .can_calibrate = true,
1178 .needs_new_timings = true,
1179 };
1180
1181 static const struct of_device_id sunxi_mmc_of_match[] = {
1182 { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1183 { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1184 { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1185 { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1186 { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1187 { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1188 { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1189 { /* sentinel */ }
1190 };
1191 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1192
sunxi_mmc_enable(struct sunxi_mmc_host * host)1193 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1194 {
1195 int ret;
1196
1197 if (!IS_ERR(host->reset)) {
1198 ret = reset_control_reset(host->reset);
1199 if (ret) {
1200 dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1201 ret);
1202 return ret;
1203 }
1204 }
1205
1206 ret = clk_prepare_enable(host->clk_ahb);
1207 if (ret) {
1208 dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1209 goto error_assert_reset;
1210 }
1211
1212 ret = clk_prepare_enable(host->clk_mmc);
1213 if (ret) {
1214 dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1215 goto error_disable_clk_ahb;
1216 }
1217
1218 ret = clk_prepare_enable(host->clk_output);
1219 if (ret) {
1220 dev_err(host->dev, "Enable output clk err %d\n", ret);
1221 goto error_disable_clk_mmc;
1222 }
1223
1224 ret = clk_prepare_enable(host->clk_sample);
1225 if (ret) {
1226 dev_err(host->dev, "Enable sample clk err %d\n", ret);
1227 goto error_disable_clk_output;
1228 }
1229
1230 /*
1231 * Sometimes the controller asserts the irq on boot for some reason,
1232 * make sure the controller is in a sane state before enabling irqs.
1233 */
1234 ret = sunxi_mmc_reset_host(host);
1235 if (ret)
1236 goto error_disable_clk_sample;
1237
1238 return 0;
1239
1240 error_disable_clk_sample:
1241 clk_disable_unprepare(host->clk_sample);
1242 error_disable_clk_output:
1243 clk_disable_unprepare(host->clk_output);
1244 error_disable_clk_mmc:
1245 clk_disable_unprepare(host->clk_mmc);
1246 error_disable_clk_ahb:
1247 clk_disable_unprepare(host->clk_ahb);
1248 error_assert_reset:
1249 if (!IS_ERR(host->reset))
1250 reset_control_assert(host->reset);
1251 return ret;
1252 }
1253
sunxi_mmc_disable(struct sunxi_mmc_host * host)1254 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1255 {
1256 sunxi_mmc_reset_host(host);
1257
1258 clk_disable_unprepare(host->clk_sample);
1259 clk_disable_unprepare(host->clk_output);
1260 clk_disable_unprepare(host->clk_mmc);
1261 clk_disable_unprepare(host->clk_ahb);
1262
1263 if (!IS_ERR(host->reset))
1264 reset_control_assert(host->reset);
1265 }
1266
sunxi_mmc_resource_request(struct sunxi_mmc_host * host,struct platform_device * pdev)1267 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1268 struct platform_device *pdev)
1269 {
1270 int ret;
1271
1272 host->cfg = of_device_get_match_data(&pdev->dev);
1273 if (!host->cfg)
1274 return -EINVAL;
1275
1276 ret = mmc_regulator_get_supply(host->mmc);
1277 if (ret)
1278 return ret;
1279
1280 host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1281 if (IS_ERR(host->reg_base))
1282 return PTR_ERR(host->reg_base);
1283
1284 host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1285 if (IS_ERR(host->clk_ahb)) {
1286 dev_err(&pdev->dev, "Could not get ahb clock\n");
1287 return PTR_ERR(host->clk_ahb);
1288 }
1289
1290 host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1291 if (IS_ERR(host->clk_mmc)) {
1292 dev_err(&pdev->dev, "Could not get mmc clock\n");
1293 return PTR_ERR(host->clk_mmc);
1294 }
1295
1296 if (host->cfg->clk_delays) {
1297 host->clk_output = devm_clk_get(&pdev->dev, "output");
1298 if (IS_ERR(host->clk_output)) {
1299 dev_err(&pdev->dev, "Could not get output clock\n");
1300 return PTR_ERR(host->clk_output);
1301 }
1302
1303 host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1304 if (IS_ERR(host->clk_sample)) {
1305 dev_err(&pdev->dev, "Could not get sample clock\n");
1306 return PTR_ERR(host->clk_sample);
1307 }
1308 }
1309
1310 host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1311 "ahb");
1312 if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1313 return PTR_ERR(host->reset);
1314
1315 ret = sunxi_mmc_enable(host);
1316 if (ret)
1317 return ret;
1318
1319 host->irq = platform_get_irq(pdev, 0);
1320 if (host->irq <= 0) {
1321 ret = -EINVAL;
1322 goto error_disable_mmc;
1323 }
1324
1325 return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1326 sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1327
1328 error_disable_mmc:
1329 sunxi_mmc_disable(host);
1330 return ret;
1331 }
1332
sunxi_mmc_probe(struct platform_device * pdev)1333 static int sunxi_mmc_probe(struct platform_device *pdev)
1334 {
1335 struct sunxi_mmc_host *host;
1336 struct mmc_host *mmc;
1337 int ret;
1338
1339 mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1340 if (!mmc) {
1341 dev_err(&pdev->dev, "mmc alloc host failed\n");
1342 return -ENOMEM;
1343 }
1344 platform_set_drvdata(pdev, mmc);
1345
1346 host = mmc_priv(mmc);
1347 host->dev = &pdev->dev;
1348 host->mmc = mmc;
1349 spin_lock_init(&host->lock);
1350
1351 ret = sunxi_mmc_resource_request(host, pdev);
1352 if (ret)
1353 goto error_free_host;
1354
1355 host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1356 &host->sg_dma, GFP_KERNEL);
1357 if (!host->sg_cpu) {
1358 dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1359 ret = -ENOMEM;
1360 goto error_free_host;
1361 }
1362
1363 if (host->cfg->ccu_has_timings_switch) {
1364 /*
1365 * Supports both old and new timing modes.
1366 * Try setting the clk to new timing mode.
1367 */
1368 sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1369
1370 /* And check the result */
1371 ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1372 if (ret < 0) {
1373 /*
1374 * For whatever reason we were not able to get
1375 * the current active mode. Default to old mode.
1376 */
1377 dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1378 host->use_new_timings = false;
1379 } else {
1380 host->use_new_timings = !!ret;
1381 }
1382 } else if (host->cfg->needs_new_timings) {
1383 /* Supports new timing mode only */
1384 host->use_new_timings = true;
1385 }
1386
1387 mmc->ops = &sunxi_mmc_ops;
1388 mmc->max_blk_count = 8192;
1389 mmc->max_blk_size = 4096;
1390 mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
1391 mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
1392 mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
1393 /* 400kHz ~ 52MHz */
1394 mmc->f_min = 400000;
1395 mmc->f_max = 52000000;
1396 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1397 MMC_CAP_SDIO_IRQ;
1398
1399 /*
1400 * Some H5 devices do not have signal traces precise enough to
1401 * use HS DDR mode for their eMMC chips.
1402 *
1403 * We still enable HS DDR modes for all the other controller
1404 * variants that support them.
1405 */
1406 if ((host->cfg->clk_delays || host->use_new_timings) &&
1407 !of_device_is_compatible(pdev->dev.of_node,
1408 "allwinner,sun50i-h5-emmc"))
1409 mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1410
1411 ret = mmc_of_parse(mmc);
1412 if (ret)
1413 goto error_free_dma;
1414
1415 /*
1416 * If we don't support delay chains in the SoC, we can't use any
1417 * of the higher speed modes. Mask them out in case the device
1418 * tree specifies the properties for them, which gets added to
1419 * the caps by mmc_of_parse() above.
1420 */
1421 if (!(host->cfg->clk_delays || host->use_new_timings)) {
1422 mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1423 MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1424 mmc->caps2 &= ~MMC_CAP2_HS200;
1425 }
1426
1427 /* TODO: This driver doesn't support HS400 mode yet */
1428 mmc->caps2 &= ~MMC_CAP2_HS400;
1429
1430 ret = sunxi_mmc_init_host(host);
1431 if (ret)
1432 goto error_free_dma;
1433
1434 pm_runtime_set_active(&pdev->dev);
1435 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1436 pm_runtime_use_autosuspend(&pdev->dev);
1437 pm_runtime_enable(&pdev->dev);
1438
1439 ret = mmc_add_host(mmc);
1440 if (ret)
1441 goto error_free_dma;
1442
1443 dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1444 mmc->max_req_size >> 10,
1445 host->use_new_timings ? ", uses new timings mode" : "");
1446
1447 return 0;
1448
1449 error_free_dma:
1450 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1451 error_free_host:
1452 mmc_free_host(mmc);
1453 return ret;
1454 }
1455
sunxi_mmc_remove(struct platform_device * pdev)1456 static int sunxi_mmc_remove(struct platform_device *pdev)
1457 {
1458 struct mmc_host *mmc = platform_get_drvdata(pdev);
1459 struct sunxi_mmc_host *host = mmc_priv(mmc);
1460
1461 mmc_remove_host(mmc);
1462 pm_runtime_disable(&pdev->dev);
1463 if (!pm_runtime_status_suspended(&pdev->dev)) {
1464 disable_irq(host->irq);
1465 sunxi_mmc_disable(host);
1466 }
1467 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1468 mmc_free_host(mmc);
1469
1470 return 0;
1471 }
1472
1473 #ifdef CONFIG_PM
sunxi_mmc_runtime_resume(struct device * dev)1474 static int sunxi_mmc_runtime_resume(struct device *dev)
1475 {
1476 struct mmc_host *mmc = dev_get_drvdata(dev);
1477 struct sunxi_mmc_host *host = mmc_priv(mmc);
1478 int ret;
1479
1480 ret = sunxi_mmc_enable(host);
1481 if (ret)
1482 return ret;
1483
1484 sunxi_mmc_init_host(host);
1485 sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1486 sunxi_mmc_set_clk(host, &mmc->ios);
1487 enable_irq(host->irq);
1488
1489 return 0;
1490 }
1491
sunxi_mmc_runtime_suspend(struct device * dev)1492 static int sunxi_mmc_runtime_suspend(struct device *dev)
1493 {
1494 struct mmc_host *mmc = dev_get_drvdata(dev);
1495 struct sunxi_mmc_host *host = mmc_priv(mmc);
1496
1497 /*
1498 * When clocks are off, it's possible receiving
1499 * fake interrupts, which will stall the system.
1500 * Disabling the irq will prevent this.
1501 */
1502 disable_irq(host->irq);
1503 sunxi_mmc_reset_host(host);
1504 sunxi_mmc_disable(host);
1505
1506 return 0;
1507 }
1508 #endif
1509
1510 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1511 SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1512 sunxi_mmc_runtime_resume,
1513 NULL)
1514 };
1515
1516 static struct platform_driver sunxi_mmc_driver = {
1517 .driver = {
1518 .name = "sunxi-mmc",
1519 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1520 .of_match_table = of_match_ptr(sunxi_mmc_of_match),
1521 .pm = &sunxi_mmc_pm_ops,
1522 },
1523 .probe = sunxi_mmc_probe,
1524 .remove = sunxi_mmc_remove,
1525 };
1526 module_platform_driver(sunxi_mmc_driver);
1527
1528 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1529 MODULE_LICENSE("GPL v2");
1530 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1531 MODULE_ALIAS("platform:sunxi-mmc");
1532