1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly; /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0)
206 ;
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
rps_lock(struct softnet_data * sd)221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
rps_unlock(struct softnet_data * sd)228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
netdev_name_node_alloc(struct net_device * dev,const char * name)235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237 {
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247 }
248
249 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
259 }
260
netdev_name_node_free(struct netdev_name_node * name_node)261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 kfree(name_node);
264 }
265
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)266 static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268 {
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271 }
272
netdev_name_node_del(struct netdev_name_node * name_node)273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 hlist_del_rcu(&name_node->hlist);
276 }
277
netdev_name_node_lookup(struct net * net,const char * name)278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280 {
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288 }
289
netdev_name_node_lookup_rcu(struct net * net,const char * name)290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292 {
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300 }
301
netdev_name_node_alt_create(struct net_device * dev,const char * name)302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327 }
328
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
netdev_name_node_alt_flush(struct net_device * dev)349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355 }
356
357 /* Device list insertion */
list_netdevice(struct net_device * dev)358 static void list_netdevice(struct net_device *dev)
359 {
360 struct net *net = dev_net(dev);
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
370
371 dev_base_seq_inc(net);
372 }
373
374 /* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
unlist_netdevice(struct net_device * dev)377 static void unlist_netdevice(struct net_device *dev)
378 {
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
387
388 dev_base_seq_inc(dev_net(dev));
389 }
390
391 /*
392 * Our notifier list
393 */
394
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396
397 /*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
401
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405 #ifdef CONFIG_LOCKDEP
406 /*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410 static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427 static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
netdev_lock_pos(unsigned short dev_type)447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460 {
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466 }
467
netdev_set_addr_lockdep_class(struct net_device * dev)468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476 }
477 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480 {
481 }
482
netdev_set_addr_lockdep_class(struct net_device * dev)483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487
488 /*******************************************************************************
489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
493
494
495 /*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
ptype_head(const struct packet_type * pt)511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519
520 /**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
dev_add_pack(struct packet_type * pt)533 void dev_add_pack(struct packet_type *pt)
534 {
535 struct list_head *head = ptype_head(pt);
536
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542
543 /**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
__dev_remove_pack(struct packet_type * pt)556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
560
561 spin_lock(&ptype_lock);
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575
576 /**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
dev_remove_pack(struct packet_type * pt)588 void dev_remove_pack(struct packet_type *pt)
589 {
590 __dev_remove_pack(pt);
591
592 synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595
596
597 /**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
dev_add_offload(struct packet_offload * po)609 void dev_add_offload(struct packet_offload *po)
610 {
611 struct packet_offload *elem;
612
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622
623 /**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
__dev_remove_offload(struct packet_offload * po)636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
641 spin_lock(&offload_lock);
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 spin_unlock(&offload_lock);
653 }
654
655 /**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
dev_remove_offload(struct packet_offload * po)667 void dev_remove_offload(struct packet_offload *po)
668 {
669 __dev_remove_offload(po);
670
671 synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674
675 /******************************************************************************
676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
680
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684 /**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
netdev_boot_setup_add(char * name,struct ifmap * map)693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710
711 /**
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
714 *
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
719 */
netdev_boot_setup_check(struct net_device * dev)720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
733 }
734 }
735 return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740 /**
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
749 */
netdev_boot_base(const char * prefix,int unit)750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769 }
770
771 /*
772 * Saves at boot time configured settings for any netdevice.
773 */
netdev_boot_setup(char * str)774 int __init netdev_boot_setup(char *str)
775 {
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796 }
797
798 __setup("netdev=", netdev_boot_setup);
799
800 /*******************************************************************************
801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
805
806 /**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
dev_get_iflink(const struct net_device * dev)814 int dev_get_iflink(const struct net_device *dev)
815 {
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
819 return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822
823 /**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849 /**
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
__dev_get_by_name(struct net * net,const char * name)861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 struct netdev_name_node *node_name;
864
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869
870 /**
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
880 */
881
dev_get_by_name_rcu(struct net * net,const char * name)882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 struct netdev_name_node *node_name;
885
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891 /**
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
dev_get_by_name(struct net * net,const char * name)903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 struct net_device *dev;
906
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915
916 /**
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
__dev_get_by_index(struct net * net,int ifindex)928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
932
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
936
937 return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940
941 /**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
dev_get_by_index_rcu(struct net * net,int ifindex)952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966 /**
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989
990 /**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
dev_get_by_napi_id(unsigned int napi_id)1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015 /**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1020 */
netdev_get_name(struct net * net,char * name,int ifindex)1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 struct net_device *dev;
1024 int ret;
1025
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1028
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1033 }
1034
1035 strcpy(name, dev->name);
1036
1037 ret = 0;
1038 out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1042 }
1043
1044 /**
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1055 *
1056 */
1057
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1060 {
1061 struct net_device *dev;
1062
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1067
1068 return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
__dev_getfirstbyhwtype(struct net * net,unsigned short type)1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 struct net_device *dev;
1075
1076 ASSERT_RTNL();
1077 for_each_netdev(net, dev)
1078 if (dev->type == type)
1079 return dev;
1080
1081 return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
dev_getfirstbyhwtype(struct net * net,unsigned short type)1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 struct net_device *dev, *ret = NULL;
1088
1089 rcu_read_lock();
1090 for_each_netdev_rcu(net, dev)
1091 if (dev->type == type) {
1092 dev_hold(dev);
1093 ret = dev;
1094 break;
1095 }
1096 rcu_read_unlock();
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101 /**
1102 * __dev_get_by_flags - find any device with given flags
1103 * @net: the applicable net namespace
1104 * @if_flags: IFF_* values
1105 * @mask: bitmask of bits in if_flags to check
1106 *
1107 * Search for any interface with the given flags. Returns NULL if a device
1108 * is not found or a pointer to the device. Must be called inside
1109 * rtnl_lock(), and result refcount is unchanged.
1110 */
1111
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 unsigned short mask)
1114 {
1115 struct net_device *dev, *ret;
1116
1117 ASSERT_RTNL();
1118
1119 ret = NULL;
1120 for_each_netdev(net, dev) {
1121 if (((dev->flags ^ if_flags) & mask) == 0) {
1122 ret = dev;
1123 break;
1124 }
1125 }
1126 return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130 /**
1131 * dev_valid_name - check if name is okay for network device
1132 * @name: name string
1133 *
1134 * Network device names need to be valid file names to
1135 * allow sysfs to work. We also disallow any kind of
1136 * whitespace.
1137 */
dev_valid_name(const char * name)1138 bool dev_valid_name(const char *name)
1139 {
1140 if (*name == '\0')
1141 return false;
1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 return false;
1144 if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 return false;
1146
1147 while (*name) {
1148 if (*name == '/' || *name == ':' || isspace(*name))
1149 return false;
1150 name++;
1151 }
1152 return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155
1156 /**
1157 * __dev_alloc_name - allocate a name for a device
1158 * @net: network namespace to allocate the device name in
1159 * @name: name format string
1160 * @buf: scratch buffer and result name string
1161 *
1162 * Passed a format string - eg "lt%d" it will try and find a suitable
1163 * id. It scans list of devices to build up a free map, then chooses
1164 * the first empty slot. The caller must hold the dev_base or rtnl lock
1165 * while allocating the name and adding the device in order to avoid
1166 * duplicates.
1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168 * Returns the number of the unit assigned or a negative errno code.
1169 */
1170
__dev_alloc_name(struct net * net,const char * name,char * buf)1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 int i = 0;
1174 const char *p;
1175 const int max_netdevices = 8*PAGE_SIZE;
1176 unsigned long *inuse;
1177 struct net_device *d;
1178
1179 if (!dev_valid_name(name))
1180 return -EINVAL;
1181
1182 p = strchr(name, '%');
1183 if (p) {
1184 /*
1185 * Verify the string as this thing may have come from
1186 * the user. There must be either one "%d" and no other "%"
1187 * characters.
1188 */
1189 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 return -EINVAL;
1191
1192 /* Use one page as a bit array of possible slots */
1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 if (!inuse)
1195 return -ENOMEM;
1196
1197 for_each_netdev(net, d) {
1198 struct netdev_name_node *name_node;
1199 list_for_each_entry(name_node, &d->name_node->list, list) {
1200 if (!sscanf(name_node->name, name, &i))
1201 continue;
1202 if (i < 0 || i >= max_netdevices)
1203 continue;
1204
1205 /* avoid cases where sscanf is not exact inverse of printf */
1206 snprintf(buf, IFNAMSIZ, name, i);
1207 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1208 set_bit(i, inuse);
1209 }
1210 if (!sscanf(d->name, name, &i))
1211 continue;
1212 if (i < 0 || i >= max_netdevices)
1213 continue;
1214
1215 /* avoid cases where sscanf is not exact inverse of printf */
1216 snprintf(buf, IFNAMSIZ, name, i);
1217 if (!strncmp(buf, d->name, IFNAMSIZ))
1218 set_bit(i, inuse);
1219 }
1220
1221 i = find_first_zero_bit(inuse, max_netdevices);
1222 free_page((unsigned long) inuse);
1223 }
1224
1225 snprintf(buf, IFNAMSIZ, name, i);
1226 if (!__dev_get_by_name(net, buf))
1227 return i;
1228
1229 /* It is possible to run out of possible slots
1230 * when the name is long and there isn't enough space left
1231 * for the digits, or if all bits are used.
1232 */
1233 return -ENFILE;
1234 }
1235
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1236 static int dev_alloc_name_ns(struct net *net,
1237 struct net_device *dev,
1238 const char *name)
1239 {
1240 char buf[IFNAMSIZ];
1241 int ret;
1242
1243 BUG_ON(!net);
1244 ret = __dev_alloc_name(net, name, buf);
1245 if (ret >= 0)
1246 strlcpy(dev->name, buf, IFNAMSIZ);
1247 return ret;
1248 }
1249
1250 /**
1251 * dev_alloc_name - allocate a name for a device
1252 * @dev: device
1253 * @name: name format string
1254 *
1255 * Passed a format string - eg "lt%d" it will try and find a suitable
1256 * id. It scans list of devices to build up a free map, then chooses
1257 * the first empty slot. The caller must hold the dev_base or rtnl lock
1258 * while allocating the name and adding the device in order to avoid
1259 * duplicates.
1260 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1261 * Returns the number of the unit assigned or a negative errno code.
1262 */
1263
dev_alloc_name(struct net_device * dev,const char * name)1264 int dev_alloc_name(struct net_device *dev, const char *name)
1265 {
1266 return dev_alloc_name_ns(dev_net(dev), dev, name);
1267 }
1268 EXPORT_SYMBOL(dev_alloc_name);
1269
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1270 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1271 const char *name)
1272 {
1273 BUG_ON(!net);
1274
1275 if (!dev_valid_name(name))
1276 return -EINVAL;
1277
1278 if (strchr(name, '%'))
1279 return dev_alloc_name_ns(net, dev, name);
1280 else if (__dev_get_by_name(net, name))
1281 return -EEXIST;
1282 else if (dev->name != name)
1283 strlcpy(dev->name, name, IFNAMSIZ);
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * dev_change_name - change name of a device
1290 * @dev: device
1291 * @newname: name (or format string) must be at least IFNAMSIZ
1292 *
1293 * Change name of a device, can pass format strings "eth%d".
1294 * for wildcarding.
1295 */
dev_change_name(struct net_device * dev,const char * newname)1296 int dev_change_name(struct net_device *dev, const char *newname)
1297 {
1298 unsigned char old_assign_type;
1299 char oldname[IFNAMSIZ];
1300 int err = 0;
1301 int ret;
1302 struct net *net;
1303
1304 ASSERT_RTNL();
1305 BUG_ON(!dev_net(dev));
1306
1307 net = dev_net(dev);
1308
1309 /* Some auto-enslaved devices e.g. failover slaves are
1310 * special, as userspace might rename the device after
1311 * the interface had been brought up and running since
1312 * the point kernel initiated auto-enslavement. Allow
1313 * live name change even when these slave devices are
1314 * up and running.
1315 *
1316 * Typically, users of these auto-enslaving devices
1317 * don't actually care about slave name change, as
1318 * they are supposed to operate on master interface
1319 * directly.
1320 */
1321 if (dev->flags & IFF_UP &&
1322 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1323 return -EBUSY;
1324
1325 down_write(&devnet_rename_sem);
1326
1327 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1328 up_write(&devnet_rename_sem);
1329 return 0;
1330 }
1331
1332 memcpy(oldname, dev->name, IFNAMSIZ);
1333
1334 err = dev_get_valid_name(net, dev, newname);
1335 if (err < 0) {
1336 up_write(&devnet_rename_sem);
1337 return err;
1338 }
1339
1340 if (oldname[0] && !strchr(oldname, '%'))
1341 netdev_info(dev, "renamed from %s\n", oldname);
1342
1343 old_assign_type = dev->name_assign_type;
1344 dev->name_assign_type = NET_NAME_RENAMED;
1345
1346 rollback:
1347 ret = device_rename(&dev->dev, dev->name);
1348 if (ret) {
1349 memcpy(dev->name, oldname, IFNAMSIZ);
1350 dev->name_assign_type = old_assign_type;
1351 up_write(&devnet_rename_sem);
1352 return ret;
1353 }
1354
1355 up_write(&devnet_rename_sem);
1356
1357 netdev_adjacent_rename_links(dev, oldname);
1358
1359 write_lock_bh(&dev_base_lock);
1360 netdev_name_node_del(dev->name_node);
1361 write_unlock_bh(&dev_base_lock);
1362
1363 synchronize_rcu();
1364
1365 write_lock_bh(&dev_base_lock);
1366 netdev_name_node_add(net, dev->name_node);
1367 write_unlock_bh(&dev_base_lock);
1368
1369 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1370 ret = notifier_to_errno(ret);
1371
1372 if (ret) {
1373 /* err >= 0 after dev_alloc_name() or stores the first errno */
1374 if (err >= 0) {
1375 err = ret;
1376 down_write(&devnet_rename_sem);
1377 memcpy(dev->name, oldname, IFNAMSIZ);
1378 memcpy(oldname, newname, IFNAMSIZ);
1379 dev->name_assign_type = old_assign_type;
1380 old_assign_type = NET_NAME_RENAMED;
1381 goto rollback;
1382 } else {
1383 pr_err("%s: name change rollback failed: %d\n",
1384 dev->name, ret);
1385 }
1386 }
1387
1388 return err;
1389 }
1390
1391 /**
1392 * dev_set_alias - change ifalias of a device
1393 * @dev: device
1394 * @alias: name up to IFALIASZ
1395 * @len: limit of bytes to copy from info
1396 *
1397 * Set ifalias for a device,
1398 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1399 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1400 {
1401 struct dev_ifalias *new_alias = NULL;
1402
1403 if (len >= IFALIASZ)
1404 return -EINVAL;
1405
1406 if (len) {
1407 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1408 if (!new_alias)
1409 return -ENOMEM;
1410
1411 memcpy(new_alias->ifalias, alias, len);
1412 new_alias->ifalias[len] = 0;
1413 }
1414
1415 mutex_lock(&ifalias_mutex);
1416 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1417 mutex_is_locked(&ifalias_mutex));
1418 mutex_unlock(&ifalias_mutex);
1419
1420 if (new_alias)
1421 kfree_rcu(new_alias, rcuhead);
1422
1423 return len;
1424 }
1425 EXPORT_SYMBOL(dev_set_alias);
1426
1427 /**
1428 * dev_get_alias - get ifalias of a device
1429 * @dev: device
1430 * @name: buffer to store name of ifalias
1431 * @len: size of buffer
1432 *
1433 * get ifalias for a device. Caller must make sure dev cannot go
1434 * away, e.g. rcu read lock or own a reference count to device.
1435 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1436 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1437 {
1438 const struct dev_ifalias *alias;
1439 int ret = 0;
1440
1441 rcu_read_lock();
1442 alias = rcu_dereference(dev->ifalias);
1443 if (alias)
1444 ret = snprintf(name, len, "%s", alias->ifalias);
1445 rcu_read_unlock();
1446
1447 return ret;
1448 }
1449
1450 /**
1451 * netdev_features_change - device changes features
1452 * @dev: device to cause notification
1453 *
1454 * Called to indicate a device has changed features.
1455 */
netdev_features_change(struct net_device * dev)1456 void netdev_features_change(struct net_device *dev)
1457 {
1458 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1459 }
1460 EXPORT_SYMBOL(netdev_features_change);
1461
1462 /**
1463 * netdev_state_change - device changes state
1464 * @dev: device to cause notification
1465 *
1466 * Called to indicate a device has changed state. This function calls
1467 * the notifier chains for netdev_chain and sends a NEWLINK message
1468 * to the routing socket.
1469 */
netdev_state_change(struct net_device * dev)1470 void netdev_state_change(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 struct netdev_notifier_change_info change_info = {
1474 .info.dev = dev,
1475 };
1476
1477 call_netdevice_notifiers_info(NETDEV_CHANGE,
1478 &change_info.info);
1479 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1480 }
1481 }
1482 EXPORT_SYMBOL(netdev_state_change);
1483
1484 /**
1485 * netdev_notify_peers - notify network peers about existence of @dev
1486 * @dev: network device
1487 *
1488 * Generate traffic such that interested network peers are aware of
1489 * @dev, such as by generating a gratuitous ARP. This may be used when
1490 * a device wants to inform the rest of the network about some sort of
1491 * reconfiguration such as a failover event or virtual machine
1492 * migration.
1493 */
netdev_notify_peers(struct net_device * dev)1494 void netdev_notify_peers(struct net_device *dev)
1495 {
1496 rtnl_lock();
1497 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1498 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1499 rtnl_unlock();
1500 }
1501 EXPORT_SYMBOL(netdev_notify_peers);
1502
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1503 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1504 {
1505 const struct net_device_ops *ops = dev->netdev_ops;
1506 int ret;
1507
1508 ASSERT_RTNL();
1509
1510 if (!netif_device_present(dev)) {
1511 /* may be detached because parent is runtime-suspended */
1512 if (dev->dev.parent)
1513 pm_runtime_resume(dev->dev.parent);
1514 if (!netif_device_present(dev))
1515 return -ENODEV;
1516 }
1517
1518 /* Block netpoll from trying to do any rx path servicing.
1519 * If we don't do this there is a chance ndo_poll_controller
1520 * or ndo_poll may be running while we open the device
1521 */
1522 netpoll_poll_disable(dev);
1523
1524 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1525 ret = notifier_to_errno(ret);
1526 if (ret)
1527 return ret;
1528
1529 set_bit(__LINK_STATE_START, &dev->state);
1530
1531 if (ops->ndo_validate_addr)
1532 ret = ops->ndo_validate_addr(dev);
1533
1534 if (!ret && ops->ndo_open)
1535 ret = ops->ndo_open(dev);
1536
1537 netpoll_poll_enable(dev);
1538
1539 if (ret)
1540 clear_bit(__LINK_STATE_START, &dev->state);
1541 else {
1542 dev->flags |= IFF_UP;
1543 dev_set_rx_mode(dev);
1544 dev_activate(dev);
1545 add_device_randomness(dev->dev_addr, dev->addr_len);
1546 }
1547
1548 return ret;
1549 }
1550
1551 /**
1552 * dev_open - prepare an interface for use.
1553 * @dev: device to open
1554 * @extack: netlink extended ack
1555 *
1556 * Takes a device from down to up state. The device's private open
1557 * function is invoked and then the multicast lists are loaded. Finally
1558 * the device is moved into the up state and a %NETDEV_UP message is
1559 * sent to the netdev notifier chain.
1560 *
1561 * Calling this function on an active interface is a nop. On a failure
1562 * a negative errno code is returned.
1563 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1564 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1565 {
1566 int ret;
1567
1568 if (dev->flags & IFF_UP)
1569 return 0;
1570
1571 ret = __dev_open(dev, extack);
1572 if (ret < 0)
1573 return ret;
1574
1575 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1576 call_netdevice_notifiers(NETDEV_UP, dev);
1577
1578 return ret;
1579 }
1580 EXPORT_SYMBOL(dev_open);
1581
__dev_close_many(struct list_head * head)1582 static void __dev_close_many(struct list_head *head)
1583 {
1584 struct net_device *dev;
1585
1586 ASSERT_RTNL();
1587 might_sleep();
1588
1589 list_for_each_entry(dev, head, close_list) {
1590 /* Temporarily disable netpoll until the interface is down */
1591 netpoll_poll_disable(dev);
1592
1593 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1594
1595 clear_bit(__LINK_STATE_START, &dev->state);
1596
1597 /* Synchronize to scheduled poll. We cannot touch poll list, it
1598 * can be even on different cpu. So just clear netif_running().
1599 *
1600 * dev->stop() will invoke napi_disable() on all of it's
1601 * napi_struct instances on this device.
1602 */
1603 smp_mb__after_atomic(); /* Commit netif_running(). */
1604 }
1605
1606 dev_deactivate_many(head);
1607
1608 list_for_each_entry(dev, head, close_list) {
1609 const struct net_device_ops *ops = dev->netdev_ops;
1610
1611 /*
1612 * Call the device specific close. This cannot fail.
1613 * Only if device is UP
1614 *
1615 * We allow it to be called even after a DETACH hot-plug
1616 * event.
1617 */
1618 if (ops->ndo_stop)
1619 ops->ndo_stop(dev);
1620
1621 dev->flags &= ~IFF_UP;
1622 netpoll_poll_enable(dev);
1623 }
1624 }
1625
__dev_close(struct net_device * dev)1626 static void __dev_close(struct net_device *dev)
1627 {
1628 LIST_HEAD(single);
1629
1630 list_add(&dev->close_list, &single);
1631 __dev_close_many(&single);
1632 list_del(&single);
1633 }
1634
dev_close_many(struct list_head * head,bool unlink)1635 void dev_close_many(struct list_head *head, bool unlink)
1636 {
1637 struct net_device *dev, *tmp;
1638
1639 /* Remove the devices that don't need to be closed */
1640 list_for_each_entry_safe(dev, tmp, head, close_list)
1641 if (!(dev->flags & IFF_UP))
1642 list_del_init(&dev->close_list);
1643
1644 __dev_close_many(head);
1645
1646 list_for_each_entry_safe(dev, tmp, head, close_list) {
1647 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1648 call_netdevice_notifiers(NETDEV_DOWN, dev);
1649 if (unlink)
1650 list_del_init(&dev->close_list);
1651 }
1652 }
1653 EXPORT_SYMBOL(dev_close_many);
1654
1655 /**
1656 * dev_close - shutdown an interface.
1657 * @dev: device to shutdown
1658 *
1659 * This function moves an active device into down state. A
1660 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1661 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1662 * chain.
1663 */
dev_close(struct net_device * dev)1664 void dev_close(struct net_device *dev)
1665 {
1666 if (dev->flags & IFF_UP) {
1667 LIST_HEAD(single);
1668
1669 list_add(&dev->close_list, &single);
1670 dev_close_many(&single, true);
1671 list_del(&single);
1672 }
1673 }
1674 EXPORT_SYMBOL(dev_close);
1675
1676
1677 /**
1678 * dev_disable_lro - disable Large Receive Offload on a device
1679 * @dev: device
1680 *
1681 * Disable Large Receive Offload (LRO) on a net device. Must be
1682 * called under RTNL. This is needed if received packets may be
1683 * forwarded to another interface.
1684 */
dev_disable_lro(struct net_device * dev)1685 void dev_disable_lro(struct net_device *dev)
1686 {
1687 struct net_device *lower_dev;
1688 struct list_head *iter;
1689
1690 dev->wanted_features &= ~NETIF_F_LRO;
1691 netdev_update_features(dev);
1692
1693 if (unlikely(dev->features & NETIF_F_LRO))
1694 netdev_WARN(dev, "failed to disable LRO!\n");
1695
1696 netdev_for_each_lower_dev(dev, lower_dev, iter)
1697 dev_disable_lro(lower_dev);
1698 }
1699 EXPORT_SYMBOL(dev_disable_lro);
1700
1701 /**
1702 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1703 * @dev: device
1704 *
1705 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1706 * called under RTNL. This is needed if Generic XDP is installed on
1707 * the device.
1708 */
dev_disable_gro_hw(struct net_device * dev)1709 static void dev_disable_gro_hw(struct net_device *dev)
1710 {
1711 dev->wanted_features &= ~NETIF_F_GRO_HW;
1712 netdev_update_features(dev);
1713
1714 if (unlikely(dev->features & NETIF_F_GRO_HW))
1715 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1716 }
1717
netdev_cmd_to_name(enum netdev_cmd cmd)1718 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1719 {
1720 #define N(val) \
1721 case NETDEV_##val: \
1722 return "NETDEV_" __stringify(val);
1723 switch (cmd) {
1724 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1725 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1726 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1727 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1728 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1729 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1730 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1731 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1732 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1733 N(PRE_CHANGEADDR)
1734 }
1735 #undef N
1736 return "UNKNOWN_NETDEV_EVENT";
1737 }
1738 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1739
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1740 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1741 struct net_device *dev)
1742 {
1743 struct netdev_notifier_info info = {
1744 .dev = dev,
1745 };
1746
1747 return nb->notifier_call(nb, val, &info);
1748 }
1749
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1750 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1751 struct net_device *dev)
1752 {
1753 int err;
1754
1755 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1756 err = notifier_to_errno(err);
1757 if (err)
1758 return err;
1759
1760 if (!(dev->flags & IFF_UP))
1761 return 0;
1762
1763 call_netdevice_notifier(nb, NETDEV_UP, dev);
1764 return 0;
1765 }
1766
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1767 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1768 struct net_device *dev)
1769 {
1770 if (dev->flags & IFF_UP) {
1771 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1772 dev);
1773 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1774 }
1775 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1776 }
1777
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1778 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1779 struct net *net)
1780 {
1781 struct net_device *dev;
1782 int err;
1783
1784 for_each_netdev(net, dev) {
1785 err = call_netdevice_register_notifiers(nb, dev);
1786 if (err)
1787 goto rollback;
1788 }
1789 return 0;
1790
1791 rollback:
1792 for_each_netdev_continue_reverse(net, dev)
1793 call_netdevice_unregister_notifiers(nb, dev);
1794 return err;
1795 }
1796
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1797 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1798 struct net *net)
1799 {
1800 struct net_device *dev;
1801
1802 for_each_netdev(net, dev)
1803 call_netdevice_unregister_notifiers(nb, dev);
1804 }
1805
1806 static int dev_boot_phase = 1;
1807
1808 /**
1809 * register_netdevice_notifier - register a network notifier block
1810 * @nb: notifier
1811 *
1812 * Register a notifier to be called when network device events occur.
1813 * The notifier passed is linked into the kernel structures and must
1814 * not be reused until it has been unregistered. A negative errno code
1815 * is returned on a failure.
1816 *
1817 * When registered all registration and up events are replayed
1818 * to the new notifier to allow device to have a race free
1819 * view of the network device list.
1820 */
1821
register_netdevice_notifier(struct notifier_block * nb)1822 int register_netdevice_notifier(struct notifier_block *nb)
1823 {
1824 struct net *net;
1825 int err;
1826
1827 /* Close race with setup_net() and cleanup_net() */
1828 down_write(&pernet_ops_rwsem);
1829 rtnl_lock();
1830 err = raw_notifier_chain_register(&netdev_chain, nb);
1831 if (err)
1832 goto unlock;
1833 if (dev_boot_phase)
1834 goto unlock;
1835 for_each_net(net) {
1836 err = call_netdevice_register_net_notifiers(nb, net);
1837 if (err)
1838 goto rollback;
1839 }
1840
1841 unlock:
1842 rtnl_unlock();
1843 up_write(&pernet_ops_rwsem);
1844 return err;
1845
1846 rollback:
1847 for_each_net_continue_reverse(net)
1848 call_netdevice_unregister_net_notifiers(nb, net);
1849
1850 raw_notifier_chain_unregister(&netdev_chain, nb);
1851 goto unlock;
1852 }
1853 EXPORT_SYMBOL(register_netdevice_notifier);
1854
1855 /**
1856 * unregister_netdevice_notifier - unregister a network notifier block
1857 * @nb: notifier
1858 *
1859 * Unregister a notifier previously registered by
1860 * register_netdevice_notifier(). The notifier is unlinked into the
1861 * kernel structures and may then be reused. A negative errno code
1862 * is returned on a failure.
1863 *
1864 * After unregistering unregister and down device events are synthesized
1865 * for all devices on the device list to the removed notifier to remove
1866 * the need for special case cleanup code.
1867 */
1868
unregister_netdevice_notifier(struct notifier_block * nb)1869 int unregister_netdevice_notifier(struct notifier_block *nb)
1870 {
1871 struct net *net;
1872 int err;
1873
1874 /* Close race with setup_net() and cleanup_net() */
1875 down_write(&pernet_ops_rwsem);
1876 rtnl_lock();
1877 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1878 if (err)
1879 goto unlock;
1880
1881 for_each_net(net)
1882 call_netdevice_unregister_net_notifiers(nb, net);
1883
1884 unlock:
1885 rtnl_unlock();
1886 up_write(&pernet_ops_rwsem);
1887 return err;
1888 }
1889 EXPORT_SYMBOL(unregister_netdevice_notifier);
1890
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1891 static int __register_netdevice_notifier_net(struct net *net,
1892 struct notifier_block *nb,
1893 bool ignore_call_fail)
1894 {
1895 int err;
1896
1897 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1898 if (err)
1899 return err;
1900 if (dev_boot_phase)
1901 return 0;
1902
1903 err = call_netdevice_register_net_notifiers(nb, net);
1904 if (err && !ignore_call_fail)
1905 goto chain_unregister;
1906
1907 return 0;
1908
1909 chain_unregister:
1910 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1911 return err;
1912 }
1913
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1914 static int __unregister_netdevice_notifier_net(struct net *net,
1915 struct notifier_block *nb)
1916 {
1917 int err;
1918
1919 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1920 if (err)
1921 return err;
1922
1923 call_netdevice_unregister_net_notifiers(nb, net);
1924 return 0;
1925 }
1926
1927 /**
1928 * register_netdevice_notifier_net - register a per-netns network notifier block
1929 * @net: network namespace
1930 * @nb: notifier
1931 *
1932 * Register a notifier to be called when network device events occur.
1933 * The notifier passed is linked into the kernel structures and must
1934 * not be reused until it has been unregistered. A negative errno code
1935 * is returned on a failure.
1936 *
1937 * When registered all registration and up events are replayed
1938 * to the new notifier to allow device to have a race free
1939 * view of the network device list.
1940 */
1941
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1943 {
1944 int err;
1945
1946 rtnl_lock();
1947 err = __register_netdevice_notifier_net(net, nb, false);
1948 rtnl_unlock();
1949 return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_net);
1952
1953 /**
1954 * unregister_netdevice_notifier_net - unregister a per-netns
1955 * network notifier block
1956 * @net: network namespace
1957 * @nb: notifier
1958 *
1959 * Unregister a notifier previously registered by
1960 * register_netdevice_notifier(). The notifier is unlinked into the
1961 * kernel structures and may then be reused. A negative errno code
1962 * is returned on a failure.
1963 *
1964 * After unregistering unregister and down device events are synthesized
1965 * for all devices on the device list to the removed notifier to remove
1966 * the need for special case cleanup code.
1967 */
1968
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1969 int unregister_netdevice_notifier_net(struct net *net,
1970 struct notifier_block *nb)
1971 {
1972 int err;
1973
1974 rtnl_lock();
1975 err = __unregister_netdevice_notifier_net(net, nb);
1976 rtnl_unlock();
1977 return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1980
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1981 int register_netdevice_notifier_dev_net(struct net_device *dev,
1982 struct notifier_block *nb,
1983 struct netdev_net_notifier *nn)
1984 {
1985 int err;
1986
1987 rtnl_lock();
1988 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1989 if (!err) {
1990 nn->nb = nb;
1991 list_add(&nn->list, &dev->net_notifier_list);
1992 }
1993 rtnl_unlock();
1994 return err;
1995 }
1996 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1997
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1998 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1999 struct notifier_block *nb,
2000 struct netdev_net_notifier *nn)
2001 {
2002 int err;
2003
2004 rtnl_lock();
2005 list_del(&nn->list);
2006 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2007 rtnl_unlock();
2008 return err;
2009 }
2010 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2011
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2012 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2013 struct net *net)
2014 {
2015 struct netdev_net_notifier *nn;
2016
2017 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2018 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2019 __register_netdevice_notifier_net(net, nn->nb, true);
2020 }
2021 }
2022
2023 /**
2024 * call_netdevice_notifiers_info - call all network notifier blocks
2025 * @val: value passed unmodified to notifier function
2026 * @info: notifier information data
2027 *
2028 * Call all network notifier blocks. Parameters and return value
2029 * are as for raw_notifier_call_chain().
2030 */
2031
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2032 static int call_netdevice_notifiers_info(unsigned long val,
2033 struct netdev_notifier_info *info)
2034 {
2035 struct net *net = dev_net(info->dev);
2036 int ret;
2037
2038 ASSERT_RTNL();
2039
2040 /* Run per-netns notifier block chain first, then run the global one.
2041 * Hopefully, one day, the global one is going to be removed after
2042 * all notifier block registrators get converted to be per-netns.
2043 */
2044 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2045 if (ret & NOTIFY_STOP_MASK)
2046 return ret;
2047 return raw_notifier_call_chain(&netdev_chain, val, info);
2048 }
2049
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2050 static int call_netdevice_notifiers_extack(unsigned long val,
2051 struct net_device *dev,
2052 struct netlink_ext_ack *extack)
2053 {
2054 struct netdev_notifier_info info = {
2055 .dev = dev,
2056 .extack = extack,
2057 };
2058
2059 return call_netdevice_notifiers_info(val, &info);
2060 }
2061
2062 /**
2063 * call_netdevice_notifiers - call all network notifier blocks
2064 * @val: value passed unmodified to notifier function
2065 * @dev: net_device pointer passed unmodified to notifier function
2066 *
2067 * Call all network notifier blocks. Parameters and return value
2068 * are as for raw_notifier_call_chain().
2069 */
2070
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2071 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2072 {
2073 return call_netdevice_notifiers_extack(val, dev, NULL);
2074 }
2075 EXPORT_SYMBOL(call_netdevice_notifiers);
2076
2077 /**
2078 * call_netdevice_notifiers_mtu - call all network notifier blocks
2079 * @val: value passed unmodified to notifier function
2080 * @dev: net_device pointer passed unmodified to notifier function
2081 * @arg: additional u32 argument passed to the notifier function
2082 *
2083 * Call all network notifier blocks. Parameters and return value
2084 * are as for raw_notifier_call_chain().
2085 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2086 static int call_netdevice_notifiers_mtu(unsigned long val,
2087 struct net_device *dev, u32 arg)
2088 {
2089 struct netdev_notifier_info_ext info = {
2090 .info.dev = dev,
2091 .ext.mtu = arg,
2092 };
2093
2094 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2095
2096 return call_netdevice_notifiers_info(val, &info.info);
2097 }
2098
2099 #ifdef CONFIG_NET_INGRESS
2100 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2101
net_inc_ingress_queue(void)2102 void net_inc_ingress_queue(void)
2103 {
2104 static_branch_inc(&ingress_needed_key);
2105 }
2106 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2107
net_dec_ingress_queue(void)2108 void net_dec_ingress_queue(void)
2109 {
2110 static_branch_dec(&ingress_needed_key);
2111 }
2112 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2113 #endif
2114
2115 #ifdef CONFIG_NET_EGRESS
2116 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2117
net_inc_egress_queue(void)2118 void net_inc_egress_queue(void)
2119 {
2120 static_branch_inc(&egress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2123
net_dec_egress_queue(void)2124 void net_dec_egress_queue(void)
2125 {
2126 static_branch_dec(&egress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2129 #endif
2130
2131 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2132 #ifdef CONFIG_JUMP_LABEL
2133 static atomic_t netstamp_needed_deferred;
2134 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2135 static void netstamp_clear(struct work_struct *work)
2136 {
2137 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2138 int wanted;
2139
2140 wanted = atomic_add_return(deferred, &netstamp_wanted);
2141 if (wanted > 0)
2142 static_branch_enable(&netstamp_needed_key);
2143 else
2144 static_branch_disable(&netstamp_needed_key);
2145 }
2146 static DECLARE_WORK(netstamp_work, netstamp_clear);
2147 #endif
2148
net_enable_timestamp(void)2149 void net_enable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 int wanted;
2153
2154 while (1) {
2155 wanted = atomic_read(&netstamp_wanted);
2156 if (wanted <= 0)
2157 break;
2158 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2159 return;
2160 }
2161 atomic_inc(&netstamp_needed_deferred);
2162 schedule_work(&netstamp_work);
2163 #else
2164 static_branch_inc(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_enable_timestamp);
2168
net_disable_timestamp(void)2169 void net_disable_timestamp(void)
2170 {
2171 #ifdef CONFIG_JUMP_LABEL
2172 int wanted;
2173
2174 while (1) {
2175 wanted = atomic_read(&netstamp_wanted);
2176 if (wanted <= 1)
2177 break;
2178 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2179 return;
2180 }
2181 atomic_dec(&netstamp_needed_deferred);
2182 schedule_work(&netstamp_work);
2183 #else
2184 static_branch_dec(&netstamp_needed_key);
2185 #endif
2186 }
2187 EXPORT_SYMBOL(net_disable_timestamp);
2188
net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb)
2190 {
2191 skb->tstamp = 0;
2192 if (static_branch_unlikely(&netstamp_needed_key))
2193 __net_timestamp(skb);
2194 }
2195
2196 #define net_timestamp_check(COND, SKB) \
2197 if (static_branch_unlikely(&netstamp_needed_key)) { \
2198 if ((COND) && !(SKB)->tstamp) \
2199 __net_timestamp(SKB); \
2200 } \
2201
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2202 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2203 {
2204 unsigned int len;
2205
2206 if (!(dev->flags & IFF_UP))
2207 return false;
2208
2209 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2210 if (skb->len <= len)
2211 return true;
2212
2213 /* if TSO is enabled, we don't care about the length as the packet
2214 * could be forwarded without being segmented before
2215 */
2216 if (skb_is_gso(skb))
2217 return true;
2218
2219 return false;
2220 }
2221 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2222
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 int ret = ____dev_forward_skb(dev, skb);
2226
2227 if (likely(!ret)) {
2228 skb->protocol = eth_type_trans(skb, dev);
2229 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2230 }
2231
2232 return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2235
2236 /**
2237 * dev_forward_skb - loopback an skb to another netif
2238 *
2239 * @dev: destination network device
2240 * @skb: buffer to forward
2241 *
2242 * return values:
2243 * NET_RX_SUCCESS (no congestion)
2244 * NET_RX_DROP (packet was dropped, but freed)
2245 *
2246 * dev_forward_skb can be used for injecting an skb from the
2247 * start_xmit function of one device into the receive queue
2248 * of another device.
2249 *
2250 * The receiving device may be in another namespace, so
2251 * we have to clear all information in the skb that could
2252 * impact namespace isolation.
2253 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2254 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2257 }
2258 EXPORT_SYMBOL_GPL(dev_forward_skb);
2259
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2260 static inline int deliver_skb(struct sk_buff *skb,
2261 struct packet_type *pt_prev,
2262 struct net_device *orig_dev)
2263 {
2264 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2265 return -ENOMEM;
2266 refcount_inc(&skb->users);
2267 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2268 }
2269
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2270 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2271 struct packet_type **pt,
2272 struct net_device *orig_dev,
2273 __be16 type,
2274 struct list_head *ptype_list)
2275 {
2276 struct packet_type *ptype, *pt_prev = *pt;
2277
2278 list_for_each_entry_rcu(ptype, ptype_list, list) {
2279 if (ptype->type != type)
2280 continue;
2281 if (pt_prev)
2282 deliver_skb(skb, pt_prev, orig_dev);
2283 pt_prev = ptype;
2284 }
2285 *pt = pt_prev;
2286 }
2287
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2288 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2289 {
2290 if (!ptype->af_packet_priv || !skb->sk)
2291 return false;
2292
2293 if (ptype->id_match)
2294 return ptype->id_match(ptype, skb->sk);
2295 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2296 return true;
2297
2298 return false;
2299 }
2300
2301 /**
2302 * dev_nit_active - return true if any network interface taps are in use
2303 *
2304 * @dev: network device to check for the presence of taps
2305 */
dev_nit_active(struct net_device * dev)2306 bool dev_nit_active(struct net_device *dev)
2307 {
2308 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2309 }
2310 EXPORT_SYMBOL_GPL(dev_nit_active);
2311
2312 /*
2313 * Support routine. Sends outgoing frames to any network
2314 * taps currently in use.
2315 */
2316
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2317 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 struct packet_type *ptype;
2320 struct sk_buff *skb2 = NULL;
2321 struct packet_type *pt_prev = NULL;
2322 struct list_head *ptype_list = &ptype_all;
2323
2324 rcu_read_lock();
2325 again:
2326 list_for_each_entry_rcu(ptype, ptype_list, list) {
2327 if (ptype->ignore_outgoing)
2328 continue;
2329
2330 /* Never send packets back to the socket
2331 * they originated from - MvS (miquels@drinkel.ow.org)
2332 */
2333 if (skb_loop_sk(ptype, skb))
2334 continue;
2335
2336 if (pt_prev) {
2337 deliver_skb(skb2, pt_prev, skb->dev);
2338 pt_prev = ptype;
2339 continue;
2340 }
2341
2342 /* need to clone skb, done only once */
2343 skb2 = skb_clone(skb, GFP_ATOMIC);
2344 if (!skb2)
2345 goto out_unlock;
2346
2347 net_timestamp_set(skb2);
2348
2349 /* skb->nh should be correctly
2350 * set by sender, so that the second statement is
2351 * just protection against buggy protocols.
2352 */
2353 skb_reset_mac_header(skb2);
2354
2355 if (skb_network_header(skb2) < skb2->data ||
2356 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2357 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2358 ntohs(skb2->protocol),
2359 dev->name);
2360 skb_reset_network_header(skb2);
2361 }
2362
2363 skb2->transport_header = skb2->network_header;
2364 skb2->pkt_type = PACKET_OUTGOING;
2365 pt_prev = ptype;
2366 }
2367
2368 if (ptype_list == &ptype_all) {
2369 ptype_list = &dev->ptype_all;
2370 goto again;
2371 }
2372 out_unlock:
2373 if (pt_prev) {
2374 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2375 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2376 else
2377 kfree_skb(skb2);
2378 }
2379 rcu_read_unlock();
2380 }
2381 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2382
2383 /**
2384 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2385 * @dev: Network device
2386 * @txq: number of queues available
2387 *
2388 * If real_num_tx_queues is changed the tc mappings may no longer be
2389 * valid. To resolve this verify the tc mapping remains valid and if
2390 * not NULL the mapping. With no priorities mapping to this
2391 * offset/count pair it will no longer be used. In the worst case TC0
2392 * is invalid nothing can be done so disable priority mappings. If is
2393 * expected that drivers will fix this mapping if they can before
2394 * calling netif_set_real_num_tx_queues.
2395 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2396 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 int i;
2399 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400
2401 /* If TC0 is invalidated disable TC mapping */
2402 if (tc->offset + tc->count > txq) {
2403 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2404 dev->num_tc = 0;
2405 return;
2406 }
2407
2408 /* Invalidated prio to tc mappings set to TC0 */
2409 for (i = 1; i < TC_BITMASK + 1; i++) {
2410 int q = netdev_get_prio_tc_map(dev, i);
2411
2412 tc = &dev->tc_to_txq[q];
2413 if (tc->offset + tc->count > txq) {
2414 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2415 i, q);
2416 netdev_set_prio_tc_map(dev, i, 0);
2417 }
2418 }
2419 }
2420
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2421 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2422 {
2423 if (dev->num_tc) {
2424 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2425 int i;
2426
2427 /* walk through the TCs and see if it falls into any of them */
2428 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2429 if ((txq - tc->offset) < tc->count)
2430 return i;
2431 }
2432
2433 /* didn't find it, just return -1 to indicate no match */
2434 return -1;
2435 }
2436
2437 return 0;
2438 }
2439 EXPORT_SYMBOL(netdev_txq_to_tc);
2440
2441 #ifdef CONFIG_XPS
2442 struct static_key xps_needed __read_mostly;
2443 EXPORT_SYMBOL(xps_needed);
2444 struct static_key xps_rxqs_needed __read_mostly;
2445 EXPORT_SYMBOL(xps_rxqs_needed);
2446 static DEFINE_MUTEX(xps_map_mutex);
2447 #define xmap_dereference(P) \
2448 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2449
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2450 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2451 int tci, u16 index)
2452 {
2453 struct xps_map *map = NULL;
2454 int pos;
2455
2456 if (dev_maps)
2457 map = xmap_dereference(dev_maps->attr_map[tci]);
2458 if (!map)
2459 return false;
2460
2461 for (pos = map->len; pos--;) {
2462 if (map->queues[pos] != index)
2463 continue;
2464
2465 if (map->len > 1) {
2466 map->queues[pos] = map->queues[--map->len];
2467 break;
2468 }
2469
2470 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2471 kfree_rcu(map, rcu);
2472 return false;
2473 }
2474
2475 return true;
2476 }
2477
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2478 static bool remove_xps_queue_cpu(struct net_device *dev,
2479 struct xps_dev_maps *dev_maps,
2480 int cpu, u16 offset, u16 count)
2481 {
2482 int num_tc = dev->num_tc ? : 1;
2483 bool active = false;
2484 int tci;
2485
2486 for (tci = cpu * num_tc; num_tc--; tci++) {
2487 int i, j;
2488
2489 for (i = count, j = offset; i--; j++) {
2490 if (!remove_xps_queue(dev_maps, tci, j))
2491 break;
2492 }
2493
2494 active |= i < 0;
2495 }
2496
2497 return active;
2498 }
2499
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2500 static void reset_xps_maps(struct net_device *dev,
2501 struct xps_dev_maps *dev_maps,
2502 bool is_rxqs_map)
2503 {
2504 if (is_rxqs_map) {
2505 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2506 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2507 } else {
2508 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2509 }
2510 static_key_slow_dec_cpuslocked(&xps_needed);
2511 kfree_rcu(dev_maps, rcu);
2512 }
2513
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2514 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2515 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2516 u16 offset, u16 count, bool is_rxqs_map)
2517 {
2518 bool active = false;
2519 int i, j;
2520
2521 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2522 j < nr_ids;)
2523 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2524 count);
2525 if (!active)
2526 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2527
2528 if (!is_rxqs_map) {
2529 for (i = offset + (count - 1); count--; i--) {
2530 netdev_queue_numa_node_write(
2531 netdev_get_tx_queue(dev, i),
2532 NUMA_NO_NODE);
2533 }
2534 }
2535 }
2536
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2537 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2538 u16 count)
2539 {
2540 const unsigned long *possible_mask = NULL;
2541 struct xps_dev_maps *dev_maps;
2542 unsigned int nr_ids;
2543
2544 if (!static_key_false(&xps_needed))
2545 return;
2546
2547 cpus_read_lock();
2548 mutex_lock(&xps_map_mutex);
2549
2550 if (static_key_false(&xps_rxqs_needed)) {
2551 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2552 if (dev_maps) {
2553 nr_ids = dev->num_rx_queues;
2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2555 offset, count, true);
2556 }
2557 }
2558
2559 dev_maps = xmap_dereference(dev->xps_cpus_map);
2560 if (!dev_maps)
2561 goto out_no_maps;
2562
2563 if (num_possible_cpus() > 1)
2564 possible_mask = cpumask_bits(cpu_possible_mask);
2565 nr_ids = nr_cpu_ids;
2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2567 false);
2568
2569 out_no_maps:
2570 mutex_unlock(&xps_map_mutex);
2571 cpus_read_unlock();
2572 }
2573
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2574 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2575 {
2576 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2577 }
2578
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2579 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2580 u16 index, bool is_rxqs_map)
2581 {
2582 struct xps_map *new_map;
2583 int alloc_len = XPS_MIN_MAP_ALLOC;
2584 int i, pos;
2585
2586 for (pos = 0; map && pos < map->len; pos++) {
2587 if (map->queues[pos] != index)
2588 continue;
2589 return map;
2590 }
2591
2592 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2593 if (map) {
2594 if (pos < map->alloc_len)
2595 return map;
2596
2597 alloc_len = map->alloc_len * 2;
2598 }
2599
2600 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2601 * map
2602 */
2603 if (is_rxqs_map)
2604 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2605 else
2606 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2607 cpu_to_node(attr_index));
2608 if (!new_map)
2609 return NULL;
2610
2611 for (i = 0; i < pos; i++)
2612 new_map->queues[i] = map->queues[i];
2613 new_map->alloc_len = alloc_len;
2614 new_map->len = pos;
2615
2616 return new_map;
2617 }
2618
2619 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2620 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2621 u16 index, bool is_rxqs_map)
2622 {
2623 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2624 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2625 int i, j, tci, numa_node_id = -2;
2626 int maps_sz, num_tc = 1, tc = 0;
2627 struct xps_map *map, *new_map;
2628 bool active = false;
2629 unsigned int nr_ids;
2630
2631 if (dev->num_tc) {
2632 /* Do not allow XPS on subordinate device directly */
2633 num_tc = dev->num_tc;
2634 if (num_tc < 0)
2635 return -EINVAL;
2636
2637 /* If queue belongs to subordinate dev use its map */
2638 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2639
2640 tc = netdev_txq_to_tc(dev, index);
2641 if (tc < 0)
2642 return -EINVAL;
2643 }
2644
2645 mutex_lock(&xps_map_mutex);
2646 if (is_rxqs_map) {
2647 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2648 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2649 nr_ids = dev->num_rx_queues;
2650 } else {
2651 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2652 if (num_possible_cpus() > 1) {
2653 online_mask = cpumask_bits(cpu_online_mask);
2654 possible_mask = cpumask_bits(cpu_possible_mask);
2655 }
2656 dev_maps = xmap_dereference(dev->xps_cpus_map);
2657 nr_ids = nr_cpu_ids;
2658 }
2659
2660 if (maps_sz < L1_CACHE_BYTES)
2661 maps_sz = L1_CACHE_BYTES;
2662
2663 /* allocate memory for queue storage */
2664 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2665 j < nr_ids;) {
2666 if (!new_dev_maps)
2667 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2668 if (!new_dev_maps) {
2669 mutex_unlock(&xps_map_mutex);
2670 return -ENOMEM;
2671 }
2672
2673 tci = j * num_tc + tc;
2674 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2675 NULL;
2676
2677 map = expand_xps_map(map, j, index, is_rxqs_map);
2678 if (!map)
2679 goto error;
2680
2681 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2682 }
2683
2684 if (!new_dev_maps)
2685 goto out_no_new_maps;
2686
2687 if (!dev_maps) {
2688 /* Increment static keys at most once per type */
2689 static_key_slow_inc_cpuslocked(&xps_needed);
2690 if (is_rxqs_map)
2691 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2692 }
2693
2694 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2695 j < nr_ids;) {
2696 /* copy maps belonging to foreign traffic classes */
2697 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2698 /* fill in the new device map from the old device map */
2699 map = xmap_dereference(dev_maps->attr_map[tci]);
2700 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701 }
2702
2703 /* We need to explicitly update tci as prevous loop
2704 * could break out early if dev_maps is NULL.
2705 */
2706 tci = j * num_tc + tc;
2707
2708 if (netif_attr_test_mask(j, mask, nr_ids) &&
2709 netif_attr_test_online(j, online_mask, nr_ids)) {
2710 /* add tx-queue to CPU/rx-queue maps */
2711 int pos = 0;
2712
2713 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 while ((pos < map->len) && (map->queues[pos] != index))
2715 pos++;
2716
2717 if (pos == map->len)
2718 map->queues[map->len++] = index;
2719 #ifdef CONFIG_NUMA
2720 if (!is_rxqs_map) {
2721 if (numa_node_id == -2)
2722 numa_node_id = cpu_to_node(j);
2723 else if (numa_node_id != cpu_to_node(j))
2724 numa_node_id = -1;
2725 }
2726 #endif
2727 } else if (dev_maps) {
2728 /* fill in the new device map from the old device map */
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 }
2732
2733 /* copy maps belonging to foreign traffic classes */
2734 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2735 /* fill in the new device map from the old device map */
2736 map = xmap_dereference(dev_maps->attr_map[tci]);
2737 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2738 }
2739 }
2740
2741 if (is_rxqs_map)
2742 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2743 else
2744 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2745
2746 /* Cleanup old maps */
2747 if (!dev_maps)
2748 goto out_no_old_maps;
2749
2750 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2751 j < nr_ids;) {
2752 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2753 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2754 map = xmap_dereference(dev_maps->attr_map[tci]);
2755 if (map && map != new_map)
2756 kfree_rcu(map, rcu);
2757 }
2758 }
2759
2760 kfree_rcu(dev_maps, rcu);
2761
2762 out_no_old_maps:
2763 dev_maps = new_dev_maps;
2764 active = true;
2765
2766 out_no_new_maps:
2767 if (!is_rxqs_map) {
2768 /* update Tx queue numa node */
2769 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2770 (numa_node_id >= 0) ?
2771 numa_node_id : NUMA_NO_NODE);
2772 }
2773
2774 if (!dev_maps)
2775 goto out_no_maps;
2776
2777 /* removes tx-queue from unused CPUs/rx-queues */
2778 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2779 j < nr_ids;) {
2780 for (i = tc, tci = j * num_tc; i--; tci++)
2781 active |= remove_xps_queue(dev_maps, tci, index);
2782 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2783 !netif_attr_test_online(j, online_mask, nr_ids))
2784 active |= remove_xps_queue(dev_maps, tci, index);
2785 for (i = num_tc - tc, tci++; --i; tci++)
2786 active |= remove_xps_queue(dev_maps, tci, index);
2787 }
2788
2789 /* free map if not active */
2790 if (!active)
2791 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2792
2793 out_no_maps:
2794 mutex_unlock(&xps_map_mutex);
2795
2796 return 0;
2797 error:
2798 /* remove any maps that we added */
2799 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2800 j < nr_ids;) {
2801 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2802 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2803 map = dev_maps ?
2804 xmap_dereference(dev_maps->attr_map[tci]) :
2805 NULL;
2806 if (new_map && new_map != map)
2807 kfree(new_map);
2808 }
2809 }
2810
2811 mutex_unlock(&xps_map_mutex);
2812
2813 kfree(new_dev_maps);
2814 return -ENOMEM;
2815 }
2816 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2817
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2818 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2819 u16 index)
2820 {
2821 int ret;
2822
2823 cpus_read_lock();
2824 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2825 cpus_read_unlock();
2826
2827 return ret;
2828 }
2829 EXPORT_SYMBOL(netif_set_xps_queue);
2830
2831 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2832 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2833 {
2834 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836 /* Unbind any subordinate channels */
2837 while (txq-- != &dev->_tx[0]) {
2838 if (txq->sb_dev)
2839 netdev_unbind_sb_channel(dev, txq->sb_dev);
2840 }
2841 }
2842
netdev_reset_tc(struct net_device * dev)2843 void netdev_reset_tc(struct net_device *dev)
2844 {
2845 #ifdef CONFIG_XPS
2846 netif_reset_xps_queues_gt(dev, 0);
2847 #endif
2848 netdev_unbind_all_sb_channels(dev);
2849
2850 /* Reset TC configuration of device */
2851 dev->num_tc = 0;
2852 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2853 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2854 }
2855 EXPORT_SYMBOL(netdev_reset_tc);
2856
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2858 {
2859 if (tc >= dev->num_tc)
2860 return -EINVAL;
2861
2862 #ifdef CONFIG_XPS
2863 netif_reset_xps_queues(dev, offset, count);
2864 #endif
2865 dev->tc_to_txq[tc].count = count;
2866 dev->tc_to_txq[tc].offset = offset;
2867 return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_set_tc_queue);
2870
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2871 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2872 {
2873 if (num_tc > TC_MAX_QUEUE)
2874 return -EINVAL;
2875
2876 #ifdef CONFIG_XPS
2877 netif_reset_xps_queues_gt(dev, 0);
2878 #endif
2879 netdev_unbind_all_sb_channels(dev);
2880
2881 dev->num_tc = num_tc;
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_num_tc);
2885
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2886 void netdev_unbind_sb_channel(struct net_device *dev,
2887 struct net_device *sb_dev)
2888 {
2889 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2890
2891 #ifdef CONFIG_XPS
2892 netif_reset_xps_queues_gt(sb_dev, 0);
2893 #endif
2894 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2895 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2896
2897 while (txq-- != &dev->_tx[0]) {
2898 if (txq->sb_dev == sb_dev)
2899 txq->sb_dev = NULL;
2900 }
2901 }
2902 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2903
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2904 int netdev_bind_sb_channel_queue(struct net_device *dev,
2905 struct net_device *sb_dev,
2906 u8 tc, u16 count, u16 offset)
2907 {
2908 /* Make certain the sb_dev and dev are already configured */
2909 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2910 return -EINVAL;
2911
2912 /* We cannot hand out queues we don't have */
2913 if ((offset + count) > dev->real_num_tx_queues)
2914 return -EINVAL;
2915
2916 /* Record the mapping */
2917 sb_dev->tc_to_txq[tc].count = count;
2918 sb_dev->tc_to_txq[tc].offset = offset;
2919
2920 /* Provide a way for Tx queue to find the tc_to_txq map or
2921 * XPS map for itself.
2922 */
2923 while (count--)
2924 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2925
2926 return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2929
netdev_set_sb_channel(struct net_device * dev,u16 channel)2930 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2931 {
2932 /* Do not use a multiqueue device to represent a subordinate channel */
2933 if (netif_is_multiqueue(dev))
2934 return -ENODEV;
2935
2936 /* We allow channels 1 - 32767 to be used for subordinate channels.
2937 * Channel 0 is meant to be "native" mode and used only to represent
2938 * the main root device. We allow writing 0 to reset the device back
2939 * to normal mode after being used as a subordinate channel.
2940 */
2941 if (channel > S16_MAX)
2942 return -EINVAL;
2943
2944 dev->num_tc = -channel;
2945
2946 return 0;
2947 }
2948 EXPORT_SYMBOL(netdev_set_sb_channel);
2949
2950 /*
2951 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2952 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2953 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2954 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2955 {
2956 bool disabling;
2957 int rc;
2958
2959 disabling = txq < dev->real_num_tx_queues;
2960
2961 if (txq < 1 || txq > dev->num_tx_queues)
2962 return -EINVAL;
2963
2964 if (dev->reg_state == NETREG_REGISTERED ||
2965 dev->reg_state == NETREG_UNREGISTERING) {
2966 ASSERT_RTNL();
2967
2968 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2969 txq);
2970 if (rc)
2971 return rc;
2972
2973 if (dev->num_tc)
2974 netif_setup_tc(dev, txq);
2975
2976 dev_qdisc_change_real_num_tx(dev, txq);
2977
2978 dev->real_num_tx_queues = txq;
2979
2980 if (disabling) {
2981 synchronize_net();
2982 qdisc_reset_all_tx_gt(dev, txq);
2983 #ifdef CONFIG_XPS
2984 netif_reset_xps_queues_gt(dev, txq);
2985 #endif
2986 }
2987 } else {
2988 dev->real_num_tx_queues = txq;
2989 }
2990
2991 return 0;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2994
2995 #ifdef CONFIG_SYSFS
2996 /**
2997 * netif_set_real_num_rx_queues - set actual number of RX queues used
2998 * @dev: Network device
2999 * @rxq: Actual number of RX queues
3000 *
3001 * This must be called either with the rtnl_lock held or before
3002 * registration of the net device. Returns 0 on success, or a
3003 * negative error code. If called before registration, it always
3004 * succeeds.
3005 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3006 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3007 {
3008 int rc;
3009
3010 if (rxq < 1 || rxq > dev->num_rx_queues)
3011 return -EINVAL;
3012
3013 if (dev->reg_state == NETREG_REGISTERED) {
3014 ASSERT_RTNL();
3015
3016 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3017 rxq);
3018 if (rc)
3019 return rc;
3020 }
3021
3022 dev->real_num_rx_queues = rxq;
3023 return 0;
3024 }
3025 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3026 #endif
3027
3028 /**
3029 * netif_get_num_default_rss_queues - default number of RSS queues
3030 *
3031 * This routine should set an upper limit on the number of RSS queues
3032 * used by default by multiqueue devices.
3033 */
netif_get_num_default_rss_queues(void)3034 int netif_get_num_default_rss_queues(void)
3035 {
3036 return is_kdump_kernel() ?
3037 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3038 }
3039 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3040
__netif_reschedule(struct Qdisc * q)3041 static void __netif_reschedule(struct Qdisc *q)
3042 {
3043 struct softnet_data *sd;
3044 unsigned long flags;
3045
3046 local_irq_save(flags);
3047 sd = this_cpu_ptr(&softnet_data);
3048 q->next_sched = NULL;
3049 *sd->output_queue_tailp = q;
3050 sd->output_queue_tailp = &q->next_sched;
3051 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3052 local_irq_restore(flags);
3053 }
3054
__netif_schedule(struct Qdisc * q)3055 void __netif_schedule(struct Qdisc *q)
3056 {
3057 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3058 __netif_reschedule(q);
3059 }
3060 EXPORT_SYMBOL(__netif_schedule);
3061
3062 struct dev_kfree_skb_cb {
3063 enum skb_free_reason reason;
3064 };
3065
get_kfree_skb_cb(const struct sk_buff * skb)3066 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3067 {
3068 return (struct dev_kfree_skb_cb *)skb->cb;
3069 }
3070
netif_schedule_queue(struct netdev_queue * txq)3071 void netif_schedule_queue(struct netdev_queue *txq)
3072 {
3073 rcu_read_lock();
3074 if (!netif_xmit_stopped(txq)) {
3075 struct Qdisc *q = rcu_dereference(txq->qdisc);
3076
3077 __netif_schedule(q);
3078 }
3079 rcu_read_unlock();
3080 }
3081 EXPORT_SYMBOL(netif_schedule_queue);
3082
netif_tx_wake_queue(struct netdev_queue * dev_queue)3083 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3084 {
3085 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3086 struct Qdisc *q;
3087
3088 rcu_read_lock();
3089 q = rcu_dereference(dev_queue->qdisc);
3090 __netif_schedule(q);
3091 rcu_read_unlock();
3092 }
3093 }
3094 EXPORT_SYMBOL(netif_tx_wake_queue);
3095
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)3096 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 unsigned long flags;
3099
3100 if (unlikely(!skb))
3101 return;
3102
3103 if (likely(refcount_read(&skb->users) == 1)) {
3104 smp_rmb();
3105 refcount_set(&skb->users, 0);
3106 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3107 return;
3108 }
3109 get_kfree_skb_cb(skb)->reason = reason;
3110 local_irq_save(flags);
3111 skb->next = __this_cpu_read(softnet_data.completion_queue);
3112 __this_cpu_write(softnet_data.completion_queue, skb);
3113 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3114 local_irq_restore(flags);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3117
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)3118 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120 if (in_irq() || irqs_disabled())
3121 __dev_kfree_skb_irq(skb, reason);
3122 else
3123 dev_kfree_skb(skb);
3124 }
3125 EXPORT_SYMBOL(__dev_kfree_skb_any);
3126
3127
3128 /**
3129 * netif_device_detach - mark device as removed
3130 * @dev: network device
3131 *
3132 * Mark device as removed from system and therefore no longer available.
3133 */
netif_device_detach(struct net_device * dev)3134 void netif_device_detach(struct net_device *dev)
3135 {
3136 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 netif_running(dev)) {
3138 netif_tx_stop_all_queues(dev);
3139 }
3140 }
3141 EXPORT_SYMBOL(netif_device_detach);
3142
3143 /**
3144 * netif_device_attach - mark device as attached
3145 * @dev: network device
3146 *
3147 * Mark device as attached from system and restart if needed.
3148 */
netif_device_attach(struct net_device * dev)3149 void netif_device_attach(struct net_device *dev)
3150 {
3151 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 netif_running(dev)) {
3153 netif_tx_wake_all_queues(dev);
3154 __netdev_watchdog_up(dev);
3155 }
3156 }
3157 EXPORT_SYMBOL(netif_device_attach);
3158
3159 /*
3160 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3161 * to be used as a distribution range.
3162 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3163 static u16 skb_tx_hash(const struct net_device *dev,
3164 const struct net_device *sb_dev,
3165 struct sk_buff *skb)
3166 {
3167 u32 hash;
3168 u16 qoffset = 0;
3169 u16 qcount = dev->real_num_tx_queues;
3170
3171 if (dev->num_tc) {
3172 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3173
3174 qoffset = sb_dev->tc_to_txq[tc].offset;
3175 qcount = sb_dev->tc_to_txq[tc].count;
3176 if (unlikely(!qcount)) {
3177 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3178 sb_dev->name, qoffset, tc);
3179 qoffset = 0;
3180 qcount = dev->real_num_tx_queues;
3181 }
3182 }
3183
3184 if (skb_rx_queue_recorded(skb)) {
3185 hash = skb_get_rx_queue(skb);
3186 if (hash >= qoffset)
3187 hash -= qoffset;
3188 while (unlikely(hash >= qcount))
3189 hash -= qcount;
3190 return hash + qoffset;
3191 }
3192
3193 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3194 }
3195
skb_warn_bad_offload(const struct sk_buff * skb)3196 static void skb_warn_bad_offload(const struct sk_buff *skb)
3197 {
3198 static const netdev_features_t null_features;
3199 struct net_device *dev = skb->dev;
3200 const char *name = "";
3201
3202 if (!net_ratelimit())
3203 return;
3204
3205 if (dev) {
3206 if (dev->dev.parent)
3207 name = dev_driver_string(dev->dev.parent);
3208 else
3209 name = netdev_name(dev);
3210 }
3211 skb_dump(KERN_WARNING, skb, false);
3212 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3213 name, dev ? &dev->features : &null_features,
3214 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3215 }
3216
3217 /*
3218 * Invalidate hardware checksum when packet is to be mangled, and
3219 * complete checksum manually on outgoing path.
3220 */
skb_checksum_help(struct sk_buff * skb)3221 int skb_checksum_help(struct sk_buff *skb)
3222 {
3223 __wsum csum;
3224 int ret = 0, offset;
3225
3226 if (skb->ip_summed == CHECKSUM_COMPLETE)
3227 goto out_set_summed;
3228
3229 if (unlikely(skb_shinfo(skb)->gso_size)) {
3230 skb_warn_bad_offload(skb);
3231 return -EINVAL;
3232 }
3233
3234 /* Before computing a checksum, we should make sure no frag could
3235 * be modified by an external entity : checksum could be wrong.
3236 */
3237 if (skb_has_shared_frag(skb)) {
3238 ret = __skb_linearize(skb);
3239 if (ret)
3240 goto out;
3241 }
3242
3243 offset = skb_checksum_start_offset(skb);
3244 ret = -EINVAL;
3245 if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3246 goto out;
3247
3248 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3249
3250 offset += skb->csum_offset;
3251 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3252 goto out;
3253
3254 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3255 if (ret)
3256 goto out;
3257
3258 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3259 out_set_summed:
3260 skb->ip_summed = CHECKSUM_NONE;
3261 out:
3262 return ret;
3263 }
3264 EXPORT_SYMBOL(skb_checksum_help);
3265
skb_crc32c_csum_help(struct sk_buff * skb)3266 int skb_crc32c_csum_help(struct sk_buff *skb)
3267 {
3268 __le32 crc32c_csum;
3269 int ret = 0, offset, start;
3270
3271 if (skb->ip_summed != CHECKSUM_PARTIAL)
3272 goto out;
3273
3274 if (unlikely(skb_is_gso(skb)))
3275 goto out;
3276
3277 /* Before computing a checksum, we should make sure no frag could
3278 * be modified by an external entity : checksum could be wrong.
3279 */
3280 if (unlikely(skb_has_shared_frag(skb))) {
3281 ret = __skb_linearize(skb);
3282 if (ret)
3283 goto out;
3284 }
3285 start = skb_checksum_start_offset(skb);
3286 offset = start + offsetof(struct sctphdr, checksum);
3287 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3288 ret = -EINVAL;
3289 goto out;
3290 }
3291
3292 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3293 if (ret)
3294 goto out;
3295
3296 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297 skb->len - start, ~(__u32)0,
3298 crc32c_csum_stub));
3299 *(__le32 *)(skb->data + offset) = crc32c_csum;
3300 skb->ip_summed = CHECKSUM_NONE;
3301 skb->csum_not_inet = 0;
3302 out:
3303 return ret;
3304 }
3305
skb_network_protocol(struct sk_buff * skb,int * depth)3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3307 {
3308 __be16 type = skb->protocol;
3309
3310 /* Tunnel gso handlers can set protocol to ethernet. */
3311 if (type == htons(ETH_P_TEB)) {
3312 struct ethhdr *eth;
3313
3314 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3315 return 0;
3316
3317 eth = (struct ethhdr *)skb->data;
3318 type = eth->h_proto;
3319 }
3320
3321 return __vlan_get_protocol(skb, type, depth);
3322 }
3323
3324 /**
3325 * skb_mac_gso_segment - mac layer segmentation handler.
3326 * @skb: buffer to segment
3327 * @features: features for the output path (see dev->features)
3328 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330 netdev_features_t features)
3331 {
3332 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333 struct packet_offload *ptype;
3334 int vlan_depth = skb->mac_len;
3335 __be16 type = skb_network_protocol(skb, &vlan_depth);
3336
3337 if (unlikely(!type))
3338 return ERR_PTR(-EINVAL);
3339
3340 __skb_pull(skb, vlan_depth);
3341
3342 rcu_read_lock();
3343 list_for_each_entry_rcu(ptype, &offload_base, list) {
3344 if (ptype->type == type && ptype->callbacks.gso_segment) {
3345 segs = ptype->callbacks.gso_segment(skb, features);
3346 break;
3347 }
3348 }
3349 rcu_read_unlock();
3350
3351 __skb_push(skb, skb->data - skb_mac_header(skb));
3352
3353 return segs;
3354 }
3355 EXPORT_SYMBOL(skb_mac_gso_segment);
3356
3357
3358 /* openvswitch calls this on rx path, so we need a different check.
3359 */
skb_needs_check(struct sk_buff * skb,bool tx_path)3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362 if (tx_path)
3363 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364 skb->ip_summed != CHECKSUM_UNNECESSARY;
3365
3366 return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368
3369 /**
3370 * __skb_gso_segment - Perform segmentation on skb.
3371 * @skb: buffer to segment
3372 * @features: features for the output path (see dev->features)
3373 * @tx_path: whether it is called in TX path
3374 *
3375 * This function segments the given skb and returns a list of segments.
3376 *
3377 * It may return NULL if the skb requires no segmentation. This is
3378 * only possible when GSO is used for verifying header integrity.
3379 *
3380 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383 netdev_features_t features, bool tx_path)
3384 {
3385 struct sk_buff *segs;
3386
3387 if (unlikely(skb_needs_check(skb, tx_path))) {
3388 int err;
3389
3390 /* We're going to init ->check field in TCP or UDP header */
3391 err = skb_cow_head(skb, 0);
3392 if (err < 0)
3393 return ERR_PTR(err);
3394 }
3395
3396 /* Only report GSO partial support if it will enable us to
3397 * support segmentation on this frame without needing additional
3398 * work.
3399 */
3400 if (features & NETIF_F_GSO_PARTIAL) {
3401 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402 struct net_device *dev = skb->dev;
3403
3404 partial_features |= dev->features & dev->gso_partial_features;
3405 if (!skb_gso_ok(skb, features | partial_features))
3406 features &= ~NETIF_F_GSO_PARTIAL;
3407 }
3408
3409 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411
3412 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413 SKB_GSO_CB(skb)->encap_level = 0;
3414
3415 skb_reset_mac_header(skb);
3416 skb_reset_mac_len(skb);
3417
3418 segs = skb_mac_gso_segment(skb, features);
3419
3420 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421 skb_warn_bad_offload(skb);
3422
3423 return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 if (net_ratelimit()) {
3432 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433 skb_dump(KERN_ERR, skb, true);
3434 dump_stack();
3435 }
3436 }
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3438 #endif
3439
3440 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442 {
3443 #ifdef CONFIG_HIGHMEM
3444 int i;
3445
3446 if (!(dev->features & NETIF_F_HIGHDMA)) {
3447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449
3450 if (PageHighMem(skb_frag_page(frag)))
3451 return 1;
3452 }
3453 }
3454 #endif
3455 return 0;
3456 }
3457
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459 * instead of standard features for the netdev.
3460 */
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463 netdev_features_t features,
3464 __be16 type)
3465 {
3466 if (eth_p_mpls(type))
3467 features &= skb->dev->mpls_features;
3468
3469 return features;
3470 }
3471 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473 netdev_features_t features,
3474 __be16 type)
3475 {
3476 return features;
3477 }
3478 #endif
3479
harmonize_features(struct sk_buff * skb,netdev_features_t features)3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481 netdev_features_t features)
3482 {
3483 __be16 type;
3484
3485 type = skb_network_protocol(skb, NULL);
3486 features = net_mpls_features(skb, features, type);
3487
3488 if (skb->ip_summed != CHECKSUM_NONE &&
3489 !can_checksum_protocol(features, type)) {
3490 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491 }
3492 if (illegal_highdma(skb->dev, skb))
3493 features &= ~NETIF_F_SG;
3494
3495 return features;
3496 }
3497
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499 struct net_device *dev,
3500 netdev_features_t features)
3501 {
3502 return features;
3503 }
3504 EXPORT_SYMBOL(passthru_features_check);
3505
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507 struct net_device *dev,
3508 netdev_features_t features)
3509 {
3510 return vlan_features_check(skb, features);
3511 }
3512
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514 struct net_device *dev,
3515 netdev_features_t features)
3516 {
3517 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518
3519 if (gso_segs > dev->gso_max_segs)
3520 return features & ~NETIF_F_GSO_MASK;
3521
3522 /* Support for GSO partial features requires software
3523 * intervention before we can actually process the packets
3524 * so we need to strip support for any partial features now
3525 * and we can pull them back in after we have partially
3526 * segmented the frame.
3527 */
3528 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3529 features &= ~dev->gso_partial_features;
3530
3531 /* Make sure to clear the IPv4 ID mangling feature if the
3532 * IPv4 header has the potential to be fragmented.
3533 */
3534 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3535 struct iphdr *iph = skb->encapsulation ?
3536 inner_ip_hdr(skb) : ip_hdr(skb);
3537
3538 if (!(iph->frag_off & htons(IP_DF)))
3539 features &= ~NETIF_F_TSO_MANGLEID;
3540 }
3541
3542 return features;
3543 }
3544
netif_skb_features(struct sk_buff * skb)3545 netdev_features_t netif_skb_features(struct sk_buff *skb)
3546 {
3547 struct net_device *dev = skb->dev;
3548 netdev_features_t features = dev->features;
3549
3550 if (skb_is_gso(skb))
3551 features = gso_features_check(skb, dev, features);
3552
3553 /* If encapsulation offload request, verify we are testing
3554 * hardware encapsulation features instead of standard
3555 * features for the netdev
3556 */
3557 if (skb->encapsulation)
3558 features &= dev->hw_enc_features;
3559
3560 if (skb_vlan_tagged(skb))
3561 features = netdev_intersect_features(features,
3562 dev->vlan_features |
3563 NETIF_F_HW_VLAN_CTAG_TX |
3564 NETIF_F_HW_VLAN_STAG_TX);
3565
3566 if (dev->netdev_ops->ndo_features_check)
3567 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3568 features);
3569 else
3570 features &= dflt_features_check(skb, dev, features);
3571
3572 return harmonize_features(skb, features);
3573 }
3574 EXPORT_SYMBOL(netif_skb_features);
3575
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3576 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3577 struct netdev_queue *txq, bool more)
3578 {
3579 unsigned int len;
3580 int rc;
3581
3582 if (dev_nit_active(dev))
3583 dev_queue_xmit_nit(skb, dev);
3584
3585 len = skb->len;
3586 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3587 trace_net_dev_start_xmit(skb, dev);
3588 rc = netdev_start_xmit(skb, dev, txq, more);
3589 trace_net_dev_xmit(skb, rc, dev, len);
3590
3591 return rc;
3592 }
3593
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 struct netdev_queue *txq, int *ret)
3596 {
3597 struct sk_buff *skb = first;
3598 int rc = NETDEV_TX_OK;
3599
3600 while (skb) {
3601 struct sk_buff *next = skb->next;
3602
3603 skb_mark_not_on_list(skb);
3604 rc = xmit_one(skb, dev, txq, next != NULL);
3605 if (unlikely(!dev_xmit_complete(rc))) {
3606 skb->next = next;
3607 goto out;
3608 }
3609
3610 skb = next;
3611 if (netif_tx_queue_stopped(txq) && skb) {
3612 rc = NETDEV_TX_BUSY;
3613 break;
3614 }
3615 }
3616
3617 out:
3618 *ret = rc;
3619 return skb;
3620 }
3621
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 netdev_features_t features)
3624 {
3625 if (skb_vlan_tag_present(skb) &&
3626 !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 skb = __vlan_hwaccel_push_inside(skb);
3628 return skb;
3629 }
3630
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 const netdev_features_t features)
3633 {
3634 if (unlikely(skb_csum_is_sctp(skb)))
3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 skb_crc32c_csum_help(skb);
3637
3638 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3639 }
3640 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3641
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3642 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3643 {
3644 netdev_features_t features;
3645
3646 features = netif_skb_features(skb);
3647 skb = validate_xmit_vlan(skb, features);
3648 if (unlikely(!skb))
3649 goto out_null;
3650
3651 skb = sk_validate_xmit_skb(skb, dev);
3652 if (unlikely(!skb))
3653 goto out_null;
3654
3655 if (netif_needs_gso(skb, features)) {
3656 struct sk_buff *segs;
3657
3658 segs = skb_gso_segment(skb, features);
3659 if (IS_ERR(segs)) {
3660 goto out_kfree_skb;
3661 } else if (segs) {
3662 consume_skb(skb);
3663 skb = segs;
3664 }
3665 } else {
3666 if (skb_needs_linearize(skb, features) &&
3667 __skb_linearize(skb))
3668 goto out_kfree_skb;
3669
3670 /* If packet is not checksummed and device does not
3671 * support checksumming for this protocol, complete
3672 * checksumming here.
3673 */
3674 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3675 if (skb->encapsulation)
3676 skb_set_inner_transport_header(skb,
3677 skb_checksum_start_offset(skb));
3678 else
3679 skb_set_transport_header(skb,
3680 skb_checksum_start_offset(skb));
3681 if (skb_csum_hwoffload_help(skb, features))
3682 goto out_kfree_skb;
3683 }
3684 }
3685
3686 skb = validate_xmit_xfrm(skb, features, again);
3687
3688 return skb;
3689
3690 out_kfree_skb:
3691 kfree_skb(skb);
3692 out_null:
3693 atomic_long_inc(&dev->tx_dropped);
3694 return NULL;
3695 }
3696
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3697 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3698 {
3699 struct sk_buff *next, *head = NULL, *tail;
3700
3701 for (; skb != NULL; skb = next) {
3702 next = skb->next;
3703 skb_mark_not_on_list(skb);
3704
3705 /* in case skb wont be segmented, point to itself */
3706 skb->prev = skb;
3707
3708 skb = validate_xmit_skb(skb, dev, again);
3709 if (!skb)
3710 continue;
3711
3712 if (!head)
3713 head = skb;
3714 else
3715 tail->next = skb;
3716 /* If skb was segmented, skb->prev points to
3717 * the last segment. If not, it still contains skb.
3718 */
3719 tail = skb->prev;
3720 }
3721 return head;
3722 }
3723 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3724
qdisc_pkt_len_init(struct sk_buff * skb)3725 static void qdisc_pkt_len_init(struct sk_buff *skb)
3726 {
3727 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3728
3729 qdisc_skb_cb(skb)->pkt_len = skb->len;
3730
3731 /* To get more precise estimation of bytes sent on wire,
3732 * we add to pkt_len the headers size of all segments
3733 */
3734 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3735 unsigned int hdr_len;
3736 u16 gso_segs = shinfo->gso_segs;
3737
3738 /* mac layer + network layer */
3739 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3740
3741 /* + transport layer */
3742 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3743 const struct tcphdr *th;
3744 struct tcphdr _tcphdr;
3745
3746 th = skb_header_pointer(skb, skb_transport_offset(skb),
3747 sizeof(_tcphdr), &_tcphdr);
3748 if (likely(th))
3749 hdr_len += __tcp_hdrlen(th);
3750 } else {
3751 struct udphdr _udphdr;
3752
3753 if (skb_header_pointer(skb, skb_transport_offset(skb),
3754 sizeof(_udphdr), &_udphdr))
3755 hdr_len += sizeof(struct udphdr);
3756 }
3757
3758 if (shinfo->gso_type & SKB_GSO_DODGY)
3759 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3760 shinfo->gso_size);
3761
3762 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3763 }
3764 }
3765
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3766 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3767 struct net_device *dev,
3768 struct netdev_queue *txq)
3769 {
3770 spinlock_t *root_lock = qdisc_lock(q);
3771 struct sk_buff *to_free = NULL;
3772 bool contended;
3773 int rc;
3774
3775 qdisc_calculate_pkt_len(skb, q);
3776
3777 if (q->flags & TCQ_F_NOLOCK) {
3778 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3779 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3780 qdisc_run(q);
3781
3782 if (unlikely(to_free))
3783 kfree_skb_list(to_free);
3784 return rc;
3785 }
3786
3787 /*
3788 * Heuristic to force contended enqueues to serialize on a
3789 * separate lock before trying to get qdisc main lock.
3790 * This permits qdisc->running owner to get the lock more
3791 * often and dequeue packets faster.
3792 */
3793 contended = qdisc_is_running(q);
3794 if (unlikely(contended))
3795 spin_lock(&q->busylock);
3796
3797 spin_lock(root_lock);
3798 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3799 __qdisc_drop(skb, &to_free);
3800 rc = NET_XMIT_DROP;
3801 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3802 qdisc_run_begin(q)) {
3803 /*
3804 * This is a work-conserving queue; there are no old skbs
3805 * waiting to be sent out; and the qdisc is not running -
3806 * xmit the skb directly.
3807 */
3808
3809 qdisc_bstats_update(q, skb);
3810
3811 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3812 if (unlikely(contended)) {
3813 spin_unlock(&q->busylock);
3814 contended = false;
3815 }
3816 __qdisc_run(q);
3817 }
3818
3819 qdisc_run_end(q);
3820 rc = NET_XMIT_SUCCESS;
3821 } else {
3822 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3823 if (qdisc_run_begin(q)) {
3824 if (unlikely(contended)) {
3825 spin_unlock(&q->busylock);
3826 contended = false;
3827 }
3828 __qdisc_run(q);
3829 qdisc_run_end(q);
3830 }
3831 }
3832 spin_unlock(root_lock);
3833 if (unlikely(to_free))
3834 kfree_skb_list(to_free);
3835 if (unlikely(contended))
3836 spin_unlock(&q->busylock);
3837 return rc;
3838 }
3839
3840 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3841 static void skb_update_prio(struct sk_buff *skb)
3842 {
3843 const struct netprio_map *map;
3844 const struct sock *sk;
3845 unsigned int prioidx;
3846
3847 if (skb->priority)
3848 return;
3849 map = rcu_dereference_bh(skb->dev->priomap);
3850 if (!map)
3851 return;
3852 sk = skb_to_full_sk(skb);
3853 if (!sk)
3854 return;
3855
3856 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3857
3858 if (prioidx < map->priomap_len)
3859 skb->priority = map->priomap[prioidx];
3860 }
3861 #else
3862 #define skb_update_prio(skb)
3863 #endif
3864
3865 /**
3866 * dev_loopback_xmit - loop back @skb
3867 * @net: network namespace this loopback is happening in
3868 * @sk: sk needed to be a netfilter okfn
3869 * @skb: buffer to transmit
3870 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3871 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3872 {
3873 skb_reset_mac_header(skb);
3874 __skb_pull(skb, skb_network_offset(skb));
3875 skb->pkt_type = PACKET_LOOPBACK;
3876 if (skb->ip_summed == CHECKSUM_NONE)
3877 skb->ip_summed = CHECKSUM_UNNECESSARY;
3878 WARN_ON(!skb_dst(skb));
3879 skb_dst_force(skb);
3880 netif_rx_ni(skb);
3881 return 0;
3882 }
3883 EXPORT_SYMBOL(dev_loopback_xmit);
3884
3885 #ifdef CONFIG_NET_EGRESS
3886 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3887 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3888 {
3889 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3890 struct tcf_result cl_res;
3891
3892 if (!miniq)
3893 return skb;
3894
3895 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3896 qdisc_skb_cb(skb)->mru = 0;
3897 mini_qdisc_bstats_cpu_update(miniq, skb);
3898
3899 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3900 case TC_ACT_OK:
3901 case TC_ACT_RECLASSIFY:
3902 skb->tc_index = TC_H_MIN(cl_res.classid);
3903 break;
3904 case TC_ACT_SHOT:
3905 mini_qdisc_qstats_cpu_drop(miniq);
3906 *ret = NET_XMIT_DROP;
3907 kfree_skb(skb);
3908 return NULL;
3909 case TC_ACT_STOLEN:
3910 case TC_ACT_QUEUED:
3911 case TC_ACT_TRAP:
3912 *ret = NET_XMIT_SUCCESS;
3913 consume_skb(skb);
3914 return NULL;
3915 case TC_ACT_REDIRECT:
3916 /* No need to push/pop skb's mac_header here on egress! */
3917 skb_do_redirect(skb);
3918 *ret = NET_XMIT_SUCCESS;
3919 return NULL;
3920 default:
3921 break;
3922 }
3923
3924 return skb;
3925 }
3926 #endif /* CONFIG_NET_EGRESS */
3927
3928 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3929 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3930 struct xps_dev_maps *dev_maps, unsigned int tci)
3931 {
3932 struct xps_map *map;
3933 int queue_index = -1;
3934
3935 if (dev->num_tc) {
3936 tci *= dev->num_tc;
3937 tci += netdev_get_prio_tc_map(dev, skb->priority);
3938 }
3939
3940 map = rcu_dereference(dev_maps->attr_map[tci]);
3941 if (map) {
3942 if (map->len == 1)
3943 queue_index = map->queues[0];
3944 else
3945 queue_index = map->queues[reciprocal_scale(
3946 skb_get_hash(skb), map->len)];
3947 if (unlikely(queue_index >= dev->real_num_tx_queues))
3948 queue_index = -1;
3949 }
3950 return queue_index;
3951 }
3952 #endif
3953
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3954 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3955 struct sk_buff *skb)
3956 {
3957 #ifdef CONFIG_XPS
3958 struct xps_dev_maps *dev_maps;
3959 struct sock *sk = skb->sk;
3960 int queue_index = -1;
3961
3962 if (!static_key_false(&xps_needed))
3963 return -1;
3964
3965 rcu_read_lock();
3966 if (!static_key_false(&xps_rxqs_needed))
3967 goto get_cpus_map;
3968
3969 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3970 if (dev_maps) {
3971 int tci = sk_rx_queue_get(sk);
3972
3973 if (tci >= 0 && tci < dev->num_rx_queues)
3974 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3975 tci);
3976 }
3977
3978 get_cpus_map:
3979 if (queue_index < 0) {
3980 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3981 if (dev_maps) {
3982 unsigned int tci = skb->sender_cpu - 1;
3983
3984 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3985 tci);
3986 }
3987 }
3988 rcu_read_unlock();
3989
3990 return queue_index;
3991 #else
3992 return -1;
3993 #endif
3994 }
3995
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3996 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3997 struct net_device *sb_dev)
3998 {
3999 return 0;
4000 }
4001 EXPORT_SYMBOL(dev_pick_tx_zero);
4002
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4003 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4004 struct net_device *sb_dev)
4005 {
4006 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4007 }
4008 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4009
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4010 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4011 struct net_device *sb_dev)
4012 {
4013 struct sock *sk = skb->sk;
4014 int queue_index = sk_tx_queue_get(sk);
4015
4016 sb_dev = sb_dev ? : dev;
4017
4018 if (queue_index < 0 || skb->ooo_okay ||
4019 queue_index >= dev->real_num_tx_queues) {
4020 int new_index = get_xps_queue(dev, sb_dev, skb);
4021
4022 if (new_index < 0)
4023 new_index = skb_tx_hash(dev, sb_dev, skb);
4024
4025 if (queue_index != new_index && sk &&
4026 sk_fullsock(sk) &&
4027 rcu_access_pointer(sk->sk_dst_cache))
4028 sk_tx_queue_set(sk, new_index);
4029
4030 queue_index = new_index;
4031 }
4032
4033 return queue_index;
4034 }
4035 EXPORT_SYMBOL(netdev_pick_tx);
4036
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4037 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4038 struct sk_buff *skb,
4039 struct net_device *sb_dev)
4040 {
4041 int queue_index = 0;
4042
4043 #ifdef CONFIG_XPS
4044 u32 sender_cpu = skb->sender_cpu - 1;
4045
4046 if (sender_cpu >= (u32)NR_CPUS)
4047 skb->sender_cpu = raw_smp_processor_id() + 1;
4048 #endif
4049
4050 if (dev->real_num_tx_queues != 1) {
4051 const struct net_device_ops *ops = dev->netdev_ops;
4052
4053 if (ops->ndo_select_queue)
4054 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4055 else
4056 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4057
4058 queue_index = netdev_cap_txqueue(dev, queue_index);
4059 }
4060
4061 skb_set_queue_mapping(skb, queue_index);
4062 return netdev_get_tx_queue(dev, queue_index);
4063 }
4064
4065 /**
4066 * __dev_queue_xmit - transmit a buffer
4067 * @skb: buffer to transmit
4068 * @sb_dev: suboordinate device used for L2 forwarding offload
4069 *
4070 * Queue a buffer for transmission to a network device. The caller must
4071 * have set the device and priority and built the buffer before calling
4072 * this function. The function can be called from an interrupt.
4073 *
4074 * A negative errno code is returned on a failure. A success does not
4075 * guarantee the frame will be transmitted as it may be dropped due
4076 * to congestion or traffic shaping.
4077 *
4078 * -----------------------------------------------------------------------------------
4079 * I notice this method can also return errors from the queue disciplines,
4080 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4081 * be positive.
4082 *
4083 * Regardless of the return value, the skb is consumed, so it is currently
4084 * difficult to retry a send to this method. (You can bump the ref count
4085 * before sending to hold a reference for retry if you are careful.)
4086 *
4087 * When calling this method, interrupts MUST be enabled. This is because
4088 * the BH enable code must have IRQs enabled so that it will not deadlock.
4089 * --BLG
4090 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4091 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4092 {
4093 struct net_device *dev = skb->dev;
4094 struct netdev_queue *txq;
4095 struct Qdisc *q;
4096 int rc = -ENOMEM;
4097 bool again = false;
4098
4099 skb_reset_mac_header(skb);
4100 skb_assert_len(skb);
4101
4102 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4103 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4104
4105 /* Disable soft irqs for various locks below. Also
4106 * stops preemption for RCU.
4107 */
4108 rcu_read_lock_bh();
4109
4110 skb_update_prio(skb);
4111
4112 qdisc_pkt_len_init(skb);
4113 #ifdef CONFIG_NET_CLS_ACT
4114 skb->tc_at_ingress = 0;
4115 # ifdef CONFIG_NET_EGRESS
4116 if (static_branch_unlikely(&egress_needed_key)) {
4117 skb = sch_handle_egress(skb, &rc, dev);
4118 if (!skb)
4119 goto out;
4120 }
4121 # endif
4122 #endif
4123 /* If device/qdisc don't need skb->dst, release it right now while
4124 * its hot in this cpu cache.
4125 */
4126 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4127 skb_dst_drop(skb);
4128 else
4129 skb_dst_force(skb);
4130
4131 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4132 q = rcu_dereference_bh(txq->qdisc);
4133
4134 trace_net_dev_queue(skb);
4135 if (q->enqueue) {
4136 rc = __dev_xmit_skb(skb, q, dev, txq);
4137 goto out;
4138 }
4139
4140 /* The device has no queue. Common case for software devices:
4141 * loopback, all the sorts of tunnels...
4142
4143 * Really, it is unlikely that netif_tx_lock protection is necessary
4144 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4145 * counters.)
4146 * However, it is possible, that they rely on protection
4147 * made by us here.
4148
4149 * Check this and shot the lock. It is not prone from deadlocks.
4150 *Either shot noqueue qdisc, it is even simpler 8)
4151 */
4152 if (dev->flags & IFF_UP) {
4153 int cpu = smp_processor_id(); /* ok because BHs are off */
4154
4155 /* Other cpus might concurrently change txq->xmit_lock_owner
4156 * to -1 or to their cpu id, but not to our id.
4157 */
4158 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4159 if (dev_xmit_recursion())
4160 goto recursion_alert;
4161
4162 skb = validate_xmit_skb(skb, dev, &again);
4163 if (!skb)
4164 goto out;
4165
4166 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4167 HARD_TX_LOCK(dev, txq, cpu);
4168
4169 if (!netif_xmit_stopped(txq)) {
4170 dev_xmit_recursion_inc();
4171 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4172 dev_xmit_recursion_dec();
4173 if (dev_xmit_complete(rc)) {
4174 HARD_TX_UNLOCK(dev, txq);
4175 goto out;
4176 }
4177 }
4178 HARD_TX_UNLOCK(dev, txq);
4179 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4180 dev->name);
4181 } else {
4182 /* Recursion is detected! It is possible,
4183 * unfortunately
4184 */
4185 recursion_alert:
4186 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4187 dev->name);
4188 }
4189 }
4190
4191 rc = -ENETDOWN;
4192 rcu_read_unlock_bh();
4193
4194 atomic_long_inc(&dev->tx_dropped);
4195 kfree_skb_list(skb);
4196 return rc;
4197 out:
4198 rcu_read_unlock_bh();
4199 return rc;
4200 }
4201
dev_queue_xmit(struct sk_buff * skb)4202 int dev_queue_xmit(struct sk_buff *skb)
4203 {
4204 return __dev_queue_xmit(skb, NULL);
4205 }
4206 EXPORT_SYMBOL(dev_queue_xmit);
4207
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)4208 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4209 {
4210 return __dev_queue_xmit(skb, sb_dev);
4211 }
4212 EXPORT_SYMBOL(dev_queue_xmit_accel);
4213
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4214 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4215 {
4216 struct net_device *dev = skb->dev;
4217 struct sk_buff *orig_skb = skb;
4218 struct netdev_queue *txq;
4219 int ret = NETDEV_TX_BUSY;
4220 bool again = false;
4221
4222 if (unlikely(!netif_running(dev) ||
4223 !netif_carrier_ok(dev)))
4224 goto drop;
4225
4226 skb = validate_xmit_skb_list(skb, dev, &again);
4227 if (skb != orig_skb)
4228 goto drop;
4229
4230 skb_set_queue_mapping(skb, queue_id);
4231 txq = skb_get_tx_queue(dev, skb);
4232 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4233
4234 local_bh_disable();
4235
4236 dev_xmit_recursion_inc();
4237 HARD_TX_LOCK(dev, txq, smp_processor_id());
4238 if (!netif_xmit_frozen_or_drv_stopped(txq))
4239 ret = netdev_start_xmit(skb, dev, txq, false);
4240 HARD_TX_UNLOCK(dev, txq);
4241 dev_xmit_recursion_dec();
4242
4243 local_bh_enable();
4244 return ret;
4245 drop:
4246 atomic_long_inc(&dev->tx_dropped);
4247 kfree_skb_list(skb);
4248 return NET_XMIT_DROP;
4249 }
4250 EXPORT_SYMBOL(__dev_direct_xmit);
4251
4252 /*************************************************************************
4253 * Receiver routines
4254 *************************************************************************/
4255
4256 int netdev_max_backlog __read_mostly = 1000;
4257 EXPORT_SYMBOL(netdev_max_backlog);
4258
4259 int netdev_tstamp_prequeue __read_mostly = 1;
4260 int netdev_budget __read_mostly = 300;
4261 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4262 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4263 int weight_p __read_mostly = 64; /* old backlog weight */
4264 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4265 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4266 int dev_rx_weight __read_mostly = 64;
4267 int dev_tx_weight __read_mostly = 64;
4268 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4269 int gro_normal_batch __read_mostly = 8;
4270
4271 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4272 static inline void ____napi_schedule(struct softnet_data *sd,
4273 struct napi_struct *napi)
4274 {
4275 list_add_tail(&napi->poll_list, &sd->poll_list);
4276 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4277 }
4278
4279 #ifdef CONFIG_RPS
4280
4281 /* One global table that all flow-based protocols share. */
4282 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4283 EXPORT_SYMBOL(rps_sock_flow_table);
4284 u32 rps_cpu_mask __read_mostly;
4285 EXPORT_SYMBOL(rps_cpu_mask);
4286
4287 struct static_key_false rps_needed __read_mostly;
4288 EXPORT_SYMBOL(rps_needed);
4289 struct static_key_false rfs_needed __read_mostly;
4290 EXPORT_SYMBOL(rfs_needed);
4291
4292 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4293 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4294 struct rps_dev_flow *rflow, u16 next_cpu)
4295 {
4296 if (next_cpu < nr_cpu_ids) {
4297 #ifdef CONFIG_RFS_ACCEL
4298 struct netdev_rx_queue *rxqueue;
4299 struct rps_dev_flow_table *flow_table;
4300 struct rps_dev_flow *old_rflow;
4301 u32 flow_id;
4302 u16 rxq_index;
4303 int rc;
4304
4305 /* Should we steer this flow to a different hardware queue? */
4306 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4307 !(dev->features & NETIF_F_NTUPLE))
4308 goto out;
4309 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4310 if (rxq_index == skb_get_rx_queue(skb))
4311 goto out;
4312
4313 rxqueue = dev->_rx + rxq_index;
4314 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4315 if (!flow_table)
4316 goto out;
4317 flow_id = skb_get_hash(skb) & flow_table->mask;
4318 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4319 rxq_index, flow_id);
4320 if (rc < 0)
4321 goto out;
4322 old_rflow = rflow;
4323 rflow = &flow_table->flows[flow_id];
4324 rflow->filter = rc;
4325 if (old_rflow->filter == rflow->filter)
4326 old_rflow->filter = RPS_NO_FILTER;
4327 out:
4328 #endif
4329 rflow->last_qtail =
4330 per_cpu(softnet_data, next_cpu).input_queue_head;
4331 }
4332
4333 rflow->cpu = next_cpu;
4334 return rflow;
4335 }
4336
4337 /*
4338 * get_rps_cpu is called from netif_receive_skb and returns the target
4339 * CPU from the RPS map of the receiving queue for a given skb.
4340 * rcu_read_lock must be held on entry.
4341 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4342 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4343 struct rps_dev_flow **rflowp)
4344 {
4345 const struct rps_sock_flow_table *sock_flow_table;
4346 struct netdev_rx_queue *rxqueue = dev->_rx;
4347 struct rps_dev_flow_table *flow_table;
4348 struct rps_map *map;
4349 int cpu = -1;
4350 u32 tcpu;
4351 u32 hash;
4352
4353 if (skb_rx_queue_recorded(skb)) {
4354 u16 index = skb_get_rx_queue(skb);
4355
4356 if (unlikely(index >= dev->real_num_rx_queues)) {
4357 WARN_ONCE(dev->real_num_rx_queues > 1,
4358 "%s received packet on queue %u, but number "
4359 "of RX queues is %u\n",
4360 dev->name, index, dev->real_num_rx_queues);
4361 goto done;
4362 }
4363 rxqueue += index;
4364 }
4365
4366 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4367
4368 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4369 map = rcu_dereference(rxqueue->rps_map);
4370 if (!flow_table && !map)
4371 goto done;
4372
4373 skb_reset_network_header(skb);
4374 hash = skb_get_hash(skb);
4375 if (!hash)
4376 goto done;
4377
4378 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4379 if (flow_table && sock_flow_table) {
4380 struct rps_dev_flow *rflow;
4381 u32 next_cpu;
4382 u32 ident;
4383
4384 /* First check into global flow table if there is a match */
4385 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4386 if ((ident ^ hash) & ~rps_cpu_mask)
4387 goto try_rps;
4388
4389 next_cpu = ident & rps_cpu_mask;
4390
4391 /* OK, now we know there is a match,
4392 * we can look at the local (per receive queue) flow table
4393 */
4394 rflow = &flow_table->flows[hash & flow_table->mask];
4395 tcpu = rflow->cpu;
4396
4397 /*
4398 * If the desired CPU (where last recvmsg was done) is
4399 * different from current CPU (one in the rx-queue flow
4400 * table entry), switch if one of the following holds:
4401 * - Current CPU is unset (>= nr_cpu_ids).
4402 * - Current CPU is offline.
4403 * - The current CPU's queue tail has advanced beyond the
4404 * last packet that was enqueued using this table entry.
4405 * This guarantees that all previous packets for the flow
4406 * have been dequeued, thus preserving in order delivery.
4407 */
4408 if (unlikely(tcpu != next_cpu) &&
4409 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4410 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4411 rflow->last_qtail)) >= 0)) {
4412 tcpu = next_cpu;
4413 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4414 }
4415
4416 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4417 *rflowp = rflow;
4418 cpu = tcpu;
4419 goto done;
4420 }
4421 }
4422
4423 try_rps:
4424
4425 if (map) {
4426 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4427 if (cpu_online(tcpu)) {
4428 cpu = tcpu;
4429 goto done;
4430 }
4431 }
4432
4433 done:
4434 return cpu;
4435 }
4436
4437 #ifdef CONFIG_RFS_ACCEL
4438
4439 /**
4440 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4441 * @dev: Device on which the filter was set
4442 * @rxq_index: RX queue index
4443 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4444 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4445 *
4446 * Drivers that implement ndo_rx_flow_steer() should periodically call
4447 * this function for each installed filter and remove the filters for
4448 * which it returns %true.
4449 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4450 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4451 u32 flow_id, u16 filter_id)
4452 {
4453 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4454 struct rps_dev_flow_table *flow_table;
4455 struct rps_dev_flow *rflow;
4456 bool expire = true;
4457 unsigned int cpu;
4458
4459 rcu_read_lock();
4460 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4461 if (flow_table && flow_id <= flow_table->mask) {
4462 rflow = &flow_table->flows[flow_id];
4463 cpu = READ_ONCE(rflow->cpu);
4464 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4465 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4466 rflow->last_qtail) <
4467 (int)(10 * flow_table->mask)))
4468 expire = false;
4469 }
4470 rcu_read_unlock();
4471 return expire;
4472 }
4473 EXPORT_SYMBOL(rps_may_expire_flow);
4474
4475 #endif /* CONFIG_RFS_ACCEL */
4476
4477 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4478 static void rps_trigger_softirq(void *data)
4479 {
4480 struct softnet_data *sd = data;
4481
4482 ____napi_schedule(sd, &sd->backlog);
4483 sd->received_rps++;
4484 }
4485
4486 #endif /* CONFIG_RPS */
4487
4488 /*
4489 * Check if this softnet_data structure is another cpu one
4490 * If yes, queue it to our IPI list and return 1
4491 * If no, return 0
4492 */
rps_ipi_queued(struct softnet_data * sd)4493 static int rps_ipi_queued(struct softnet_data *sd)
4494 {
4495 #ifdef CONFIG_RPS
4496 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4497
4498 if (sd != mysd) {
4499 sd->rps_ipi_next = mysd->rps_ipi_list;
4500 mysd->rps_ipi_list = sd;
4501
4502 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4503 return 1;
4504 }
4505 #endif /* CONFIG_RPS */
4506 return 0;
4507 }
4508
4509 #ifdef CONFIG_NET_FLOW_LIMIT
4510 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4511 #endif
4512
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4513 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4514 {
4515 #ifdef CONFIG_NET_FLOW_LIMIT
4516 struct sd_flow_limit *fl;
4517 struct softnet_data *sd;
4518 unsigned int old_flow, new_flow;
4519
4520 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4521 return false;
4522
4523 sd = this_cpu_ptr(&softnet_data);
4524
4525 rcu_read_lock();
4526 fl = rcu_dereference(sd->flow_limit);
4527 if (fl) {
4528 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4529 old_flow = fl->history[fl->history_head];
4530 fl->history[fl->history_head] = new_flow;
4531
4532 fl->history_head++;
4533 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4534
4535 if (likely(fl->buckets[old_flow]))
4536 fl->buckets[old_flow]--;
4537
4538 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4539 fl->count++;
4540 rcu_read_unlock();
4541 return true;
4542 }
4543 }
4544 rcu_read_unlock();
4545 #endif
4546 return false;
4547 }
4548
4549 /*
4550 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4551 * queue (may be a remote CPU queue).
4552 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4553 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4554 unsigned int *qtail)
4555 {
4556 struct softnet_data *sd;
4557 unsigned long flags;
4558 unsigned int qlen;
4559
4560 sd = &per_cpu(softnet_data, cpu);
4561
4562 local_irq_save(flags);
4563
4564 rps_lock(sd);
4565 if (!netif_running(skb->dev))
4566 goto drop;
4567 qlen = skb_queue_len(&sd->input_pkt_queue);
4568 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4569 if (qlen) {
4570 enqueue:
4571 __skb_queue_tail(&sd->input_pkt_queue, skb);
4572 input_queue_tail_incr_save(sd, qtail);
4573 rps_unlock(sd);
4574 local_irq_restore(flags);
4575 return NET_RX_SUCCESS;
4576 }
4577
4578 /* Schedule NAPI for backlog device
4579 * We can use non atomic operation since we own the queue lock
4580 */
4581 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4582 if (!rps_ipi_queued(sd))
4583 ____napi_schedule(sd, &sd->backlog);
4584 }
4585 goto enqueue;
4586 }
4587
4588 drop:
4589 sd->dropped++;
4590 rps_unlock(sd);
4591
4592 local_irq_restore(flags);
4593
4594 atomic_long_inc(&skb->dev->rx_dropped);
4595 kfree_skb(skb);
4596 return NET_RX_DROP;
4597 }
4598
netif_get_rxqueue(struct sk_buff * skb)4599 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4600 {
4601 struct net_device *dev = skb->dev;
4602 struct netdev_rx_queue *rxqueue;
4603
4604 rxqueue = dev->_rx;
4605
4606 if (skb_rx_queue_recorded(skb)) {
4607 u16 index = skb_get_rx_queue(skb);
4608
4609 if (unlikely(index >= dev->real_num_rx_queues)) {
4610 WARN_ONCE(dev->real_num_rx_queues > 1,
4611 "%s received packet on queue %u, but number "
4612 "of RX queues is %u\n",
4613 dev->name, index, dev->real_num_rx_queues);
4614
4615 return rxqueue; /* Return first rxqueue */
4616 }
4617 rxqueue += index;
4618 }
4619 return rxqueue;
4620 }
4621
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4622 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4623 struct xdp_buff *xdp,
4624 struct bpf_prog *xdp_prog)
4625 {
4626 struct netdev_rx_queue *rxqueue;
4627 void *orig_data, *orig_data_end;
4628 u32 metalen, act = XDP_DROP;
4629 __be16 orig_eth_type;
4630 struct ethhdr *eth;
4631 bool orig_bcast;
4632 int hlen, off;
4633 u32 mac_len;
4634
4635 /* Reinjected packets coming from act_mirred or similar should
4636 * not get XDP generic processing.
4637 */
4638 if (skb_is_redirected(skb))
4639 return XDP_PASS;
4640
4641 /* XDP packets must be linear and must have sufficient headroom
4642 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4643 * native XDP provides, thus we need to do it here as well.
4644 */
4645 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4646 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4647 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4648 int troom = skb->tail + skb->data_len - skb->end;
4649
4650 /* In case we have to go down the path and also linearize,
4651 * then lets do the pskb_expand_head() work just once here.
4652 */
4653 if (pskb_expand_head(skb,
4654 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4655 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4656 goto do_drop;
4657 if (skb_linearize(skb))
4658 goto do_drop;
4659 }
4660
4661 /* The XDP program wants to see the packet starting at the MAC
4662 * header.
4663 */
4664 mac_len = skb->data - skb_mac_header(skb);
4665 hlen = skb_headlen(skb) + mac_len;
4666 xdp->data = skb->data - mac_len;
4667 xdp->data_meta = xdp->data;
4668 xdp->data_end = xdp->data + hlen;
4669 xdp->data_hard_start = skb->data - skb_headroom(skb);
4670
4671 /* SKB "head" area always have tailroom for skb_shared_info */
4672 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4673 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4674
4675 orig_data_end = xdp->data_end;
4676 orig_data = xdp->data;
4677 eth = (struct ethhdr *)xdp->data;
4678 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4679 orig_eth_type = eth->h_proto;
4680
4681 rxqueue = netif_get_rxqueue(skb);
4682 xdp->rxq = &rxqueue->xdp_rxq;
4683
4684 act = bpf_prog_run_xdp(xdp_prog, xdp);
4685
4686 /* check if bpf_xdp_adjust_head was used */
4687 off = xdp->data - orig_data;
4688 if (off) {
4689 if (off > 0)
4690 __skb_pull(skb, off);
4691 else if (off < 0)
4692 __skb_push(skb, -off);
4693
4694 skb->mac_header += off;
4695 skb_reset_network_header(skb);
4696 }
4697
4698 /* check if bpf_xdp_adjust_tail was used */
4699 off = xdp->data_end - orig_data_end;
4700 if (off != 0) {
4701 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4702 skb->len += off; /* positive on grow, negative on shrink */
4703 }
4704
4705 /* check if XDP changed eth hdr such SKB needs update */
4706 eth = (struct ethhdr *)xdp->data;
4707 if ((orig_eth_type != eth->h_proto) ||
4708 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4709 __skb_push(skb, ETH_HLEN);
4710 skb->protocol = eth_type_trans(skb, skb->dev);
4711 }
4712
4713 switch (act) {
4714 case XDP_REDIRECT:
4715 case XDP_TX:
4716 __skb_push(skb, mac_len);
4717 break;
4718 case XDP_PASS:
4719 metalen = xdp->data - xdp->data_meta;
4720 if (metalen)
4721 skb_metadata_set(skb, metalen);
4722 break;
4723 default:
4724 bpf_warn_invalid_xdp_action(act);
4725 fallthrough;
4726 case XDP_ABORTED:
4727 trace_xdp_exception(skb->dev, xdp_prog, act);
4728 fallthrough;
4729 case XDP_DROP:
4730 do_drop:
4731 kfree_skb(skb);
4732 break;
4733 }
4734
4735 return act;
4736 }
4737
4738 /* When doing generic XDP we have to bypass the qdisc layer and the
4739 * network taps in order to match in-driver-XDP behavior.
4740 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4741 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4742 {
4743 struct net_device *dev = skb->dev;
4744 struct netdev_queue *txq;
4745 bool free_skb = true;
4746 int cpu, rc;
4747
4748 txq = netdev_core_pick_tx(dev, skb, NULL);
4749 cpu = smp_processor_id();
4750 HARD_TX_LOCK(dev, txq, cpu);
4751 if (!netif_xmit_stopped(txq)) {
4752 rc = netdev_start_xmit(skb, dev, txq, 0);
4753 if (dev_xmit_complete(rc))
4754 free_skb = false;
4755 }
4756 HARD_TX_UNLOCK(dev, txq);
4757 if (free_skb) {
4758 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4759 kfree_skb(skb);
4760 }
4761 }
4762
4763 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4764
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4765 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4766 {
4767 if (xdp_prog) {
4768 struct xdp_buff xdp;
4769 u32 act;
4770 int err;
4771
4772 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4773 if (act != XDP_PASS) {
4774 switch (act) {
4775 case XDP_REDIRECT:
4776 err = xdp_do_generic_redirect(skb->dev, skb,
4777 &xdp, xdp_prog);
4778 if (err)
4779 goto out_redir;
4780 break;
4781 case XDP_TX:
4782 generic_xdp_tx(skb, xdp_prog);
4783 break;
4784 }
4785 return XDP_DROP;
4786 }
4787 }
4788 return XDP_PASS;
4789 out_redir:
4790 kfree_skb(skb);
4791 return XDP_DROP;
4792 }
4793 EXPORT_SYMBOL_GPL(do_xdp_generic);
4794
netif_rx_internal(struct sk_buff * skb)4795 static int netif_rx_internal(struct sk_buff *skb)
4796 {
4797 int ret;
4798
4799 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4800
4801 trace_netif_rx(skb);
4802
4803 #ifdef CONFIG_RPS
4804 if (static_branch_unlikely(&rps_needed)) {
4805 struct rps_dev_flow voidflow, *rflow = &voidflow;
4806 int cpu;
4807
4808 preempt_disable();
4809 rcu_read_lock();
4810
4811 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4812 if (cpu < 0)
4813 cpu = smp_processor_id();
4814
4815 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4816
4817 rcu_read_unlock();
4818 preempt_enable();
4819 } else
4820 #endif
4821 {
4822 unsigned int qtail;
4823
4824 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4825 put_cpu();
4826 }
4827 return ret;
4828 }
4829
4830 /**
4831 * netif_rx - post buffer to the network code
4832 * @skb: buffer to post
4833 *
4834 * This function receives a packet from a device driver and queues it for
4835 * the upper (protocol) levels to process. It always succeeds. The buffer
4836 * may be dropped during processing for congestion control or by the
4837 * protocol layers.
4838 *
4839 * return values:
4840 * NET_RX_SUCCESS (no congestion)
4841 * NET_RX_DROP (packet was dropped)
4842 *
4843 */
4844
netif_rx(struct sk_buff * skb)4845 int netif_rx(struct sk_buff *skb)
4846 {
4847 int ret;
4848
4849 trace_netif_rx_entry(skb);
4850
4851 ret = netif_rx_internal(skb);
4852 trace_netif_rx_exit(ret);
4853
4854 return ret;
4855 }
4856 EXPORT_SYMBOL(netif_rx);
4857
netif_rx_ni(struct sk_buff * skb)4858 int netif_rx_ni(struct sk_buff *skb)
4859 {
4860 int err;
4861
4862 trace_netif_rx_ni_entry(skb);
4863
4864 preempt_disable();
4865 err = netif_rx_internal(skb);
4866 if (local_softirq_pending())
4867 do_softirq();
4868 preempt_enable();
4869 trace_netif_rx_ni_exit(err);
4870
4871 return err;
4872 }
4873 EXPORT_SYMBOL(netif_rx_ni);
4874
netif_rx_any_context(struct sk_buff * skb)4875 int netif_rx_any_context(struct sk_buff *skb)
4876 {
4877 /*
4878 * If invoked from contexts which do not invoke bottom half
4879 * processing either at return from interrupt or when softrqs are
4880 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4881 * directly.
4882 */
4883 if (in_interrupt())
4884 return netif_rx(skb);
4885 else
4886 return netif_rx_ni(skb);
4887 }
4888 EXPORT_SYMBOL(netif_rx_any_context);
4889
net_tx_action(struct softirq_action * h)4890 static __latent_entropy void net_tx_action(struct softirq_action *h)
4891 {
4892 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4893
4894 if (sd->completion_queue) {
4895 struct sk_buff *clist;
4896
4897 local_irq_disable();
4898 clist = sd->completion_queue;
4899 sd->completion_queue = NULL;
4900 local_irq_enable();
4901
4902 while (clist) {
4903 struct sk_buff *skb = clist;
4904
4905 clist = clist->next;
4906
4907 WARN_ON(refcount_read(&skb->users));
4908 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4909 trace_consume_skb(skb);
4910 else
4911 trace_kfree_skb(skb, net_tx_action);
4912
4913 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4914 __kfree_skb(skb);
4915 else
4916 __kfree_skb_defer(skb);
4917 }
4918
4919 __kfree_skb_flush();
4920 }
4921
4922 if (sd->output_queue) {
4923 struct Qdisc *head;
4924
4925 local_irq_disable();
4926 head = sd->output_queue;
4927 sd->output_queue = NULL;
4928 sd->output_queue_tailp = &sd->output_queue;
4929 local_irq_enable();
4930
4931 rcu_read_lock();
4932
4933 while (head) {
4934 struct Qdisc *q = head;
4935 spinlock_t *root_lock = NULL;
4936
4937 head = head->next_sched;
4938
4939 /* We need to make sure head->next_sched is read
4940 * before clearing __QDISC_STATE_SCHED
4941 */
4942 smp_mb__before_atomic();
4943
4944 if (!(q->flags & TCQ_F_NOLOCK)) {
4945 root_lock = qdisc_lock(q);
4946 spin_lock(root_lock);
4947 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4948 &q->state))) {
4949 /* There is a synchronize_net() between
4950 * STATE_DEACTIVATED flag being set and
4951 * qdisc_reset()/some_qdisc_is_busy() in
4952 * dev_deactivate(), so we can safely bail out
4953 * early here to avoid data race between
4954 * qdisc_deactivate() and some_qdisc_is_busy()
4955 * for lockless qdisc.
4956 */
4957 clear_bit(__QDISC_STATE_SCHED, &q->state);
4958 continue;
4959 }
4960
4961 clear_bit(__QDISC_STATE_SCHED, &q->state);
4962 qdisc_run(q);
4963 if (root_lock)
4964 spin_unlock(root_lock);
4965 }
4966
4967 rcu_read_unlock();
4968 }
4969
4970 xfrm_dev_backlog(sd);
4971 }
4972
4973 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4974 /* This hook is defined here for ATM LANE */
4975 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4976 unsigned char *addr) __read_mostly;
4977 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4978 #endif
4979
4980 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4981 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4982 struct net_device *orig_dev, bool *another)
4983 {
4984 #ifdef CONFIG_NET_CLS_ACT
4985 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4986 struct tcf_result cl_res;
4987
4988 /* If there's at least one ingress present somewhere (so
4989 * we get here via enabled static key), remaining devices
4990 * that are not configured with an ingress qdisc will bail
4991 * out here.
4992 */
4993 if (!miniq)
4994 return skb;
4995
4996 if (*pt_prev) {
4997 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4998 *pt_prev = NULL;
4999 }
5000
5001 qdisc_skb_cb(skb)->pkt_len = skb->len;
5002 qdisc_skb_cb(skb)->mru = 0;
5003 skb->tc_at_ingress = 1;
5004 mini_qdisc_bstats_cpu_update(miniq, skb);
5005
5006 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5007 &cl_res, false)) {
5008 case TC_ACT_OK:
5009 case TC_ACT_RECLASSIFY:
5010 skb->tc_index = TC_H_MIN(cl_res.classid);
5011 break;
5012 case TC_ACT_SHOT:
5013 mini_qdisc_qstats_cpu_drop(miniq);
5014 kfree_skb(skb);
5015 return NULL;
5016 case TC_ACT_STOLEN:
5017 case TC_ACT_QUEUED:
5018 case TC_ACT_TRAP:
5019 consume_skb(skb);
5020 return NULL;
5021 case TC_ACT_REDIRECT:
5022 /* skb_mac_header check was done by cls/act_bpf, so
5023 * we can safely push the L2 header back before
5024 * redirecting to another netdev
5025 */
5026 __skb_push(skb, skb->mac_len);
5027 if (skb_do_redirect(skb) == -EAGAIN) {
5028 __skb_pull(skb, skb->mac_len);
5029 *another = true;
5030 break;
5031 }
5032 return NULL;
5033 case TC_ACT_CONSUMED:
5034 return NULL;
5035 default:
5036 break;
5037 }
5038 #endif /* CONFIG_NET_CLS_ACT */
5039 return skb;
5040 }
5041
5042 /**
5043 * netdev_is_rx_handler_busy - check if receive handler is registered
5044 * @dev: device to check
5045 *
5046 * Check if a receive handler is already registered for a given device.
5047 * Return true if there one.
5048 *
5049 * The caller must hold the rtnl_mutex.
5050 */
netdev_is_rx_handler_busy(struct net_device * dev)5051 bool netdev_is_rx_handler_busy(struct net_device *dev)
5052 {
5053 ASSERT_RTNL();
5054 return dev && rtnl_dereference(dev->rx_handler);
5055 }
5056 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5057
5058 /**
5059 * netdev_rx_handler_register - register receive handler
5060 * @dev: device to register a handler for
5061 * @rx_handler: receive handler to register
5062 * @rx_handler_data: data pointer that is used by rx handler
5063 *
5064 * Register a receive handler for a device. This handler will then be
5065 * called from __netif_receive_skb. A negative errno code is returned
5066 * on a failure.
5067 *
5068 * The caller must hold the rtnl_mutex.
5069 *
5070 * For a general description of rx_handler, see enum rx_handler_result.
5071 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5072 int netdev_rx_handler_register(struct net_device *dev,
5073 rx_handler_func_t *rx_handler,
5074 void *rx_handler_data)
5075 {
5076 if (netdev_is_rx_handler_busy(dev))
5077 return -EBUSY;
5078
5079 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5080 return -EINVAL;
5081
5082 /* Note: rx_handler_data must be set before rx_handler */
5083 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5084 rcu_assign_pointer(dev->rx_handler, rx_handler);
5085
5086 return 0;
5087 }
5088 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5089
5090 /**
5091 * netdev_rx_handler_unregister - unregister receive handler
5092 * @dev: device to unregister a handler from
5093 *
5094 * Unregister a receive handler from a device.
5095 *
5096 * The caller must hold the rtnl_mutex.
5097 */
netdev_rx_handler_unregister(struct net_device * dev)5098 void netdev_rx_handler_unregister(struct net_device *dev)
5099 {
5100
5101 ASSERT_RTNL();
5102 RCU_INIT_POINTER(dev->rx_handler, NULL);
5103 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5104 * section has a guarantee to see a non NULL rx_handler_data
5105 * as well.
5106 */
5107 synchronize_net();
5108 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5109 }
5110 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5111
5112 /*
5113 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5114 * the special handling of PFMEMALLOC skbs.
5115 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5116 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5117 {
5118 switch (skb->protocol) {
5119 case htons(ETH_P_ARP):
5120 case htons(ETH_P_IP):
5121 case htons(ETH_P_IPV6):
5122 case htons(ETH_P_8021Q):
5123 case htons(ETH_P_8021AD):
5124 return true;
5125 default:
5126 return false;
5127 }
5128 }
5129
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5130 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5131 int *ret, struct net_device *orig_dev)
5132 {
5133 if (nf_hook_ingress_active(skb)) {
5134 int ingress_retval;
5135
5136 if (*pt_prev) {
5137 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5138 *pt_prev = NULL;
5139 }
5140
5141 rcu_read_lock();
5142 ingress_retval = nf_hook_ingress(skb);
5143 rcu_read_unlock();
5144 return ingress_retval;
5145 }
5146 return 0;
5147 }
5148
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5149 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5150 struct packet_type **ppt_prev)
5151 {
5152 struct packet_type *ptype, *pt_prev;
5153 rx_handler_func_t *rx_handler;
5154 struct sk_buff *skb = *pskb;
5155 struct net_device *orig_dev;
5156 bool deliver_exact = false;
5157 int ret = NET_RX_DROP;
5158 __be16 type;
5159
5160 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5161
5162 trace_netif_receive_skb(skb);
5163
5164 orig_dev = skb->dev;
5165
5166 skb_reset_network_header(skb);
5167 if (!skb_transport_header_was_set(skb))
5168 skb_reset_transport_header(skb);
5169 skb_reset_mac_len(skb);
5170
5171 pt_prev = NULL;
5172
5173 another_round:
5174 skb->skb_iif = skb->dev->ifindex;
5175
5176 __this_cpu_inc(softnet_data.processed);
5177
5178 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5179 int ret2;
5180
5181 preempt_disable();
5182 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5183 preempt_enable();
5184
5185 if (ret2 != XDP_PASS) {
5186 ret = NET_RX_DROP;
5187 goto out;
5188 }
5189 skb_reset_mac_len(skb);
5190 }
5191
5192 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5193 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5194 skb = skb_vlan_untag(skb);
5195 if (unlikely(!skb))
5196 goto out;
5197 }
5198
5199 if (skb_skip_tc_classify(skb))
5200 goto skip_classify;
5201
5202 if (pfmemalloc)
5203 goto skip_taps;
5204
5205 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5206 if (pt_prev)
5207 ret = deliver_skb(skb, pt_prev, orig_dev);
5208 pt_prev = ptype;
5209 }
5210
5211 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5212 if (pt_prev)
5213 ret = deliver_skb(skb, pt_prev, orig_dev);
5214 pt_prev = ptype;
5215 }
5216
5217 skip_taps:
5218 #ifdef CONFIG_NET_INGRESS
5219 if (static_branch_unlikely(&ingress_needed_key)) {
5220 bool another = false;
5221
5222 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5223 &another);
5224 if (another)
5225 goto another_round;
5226 if (!skb)
5227 goto out;
5228
5229 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5230 goto out;
5231 }
5232 #endif
5233 skb_reset_redirect(skb);
5234 skip_classify:
5235 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5236 goto drop;
5237
5238 if (skb_vlan_tag_present(skb)) {
5239 if (pt_prev) {
5240 ret = deliver_skb(skb, pt_prev, orig_dev);
5241 pt_prev = NULL;
5242 }
5243 if (vlan_do_receive(&skb))
5244 goto another_round;
5245 else if (unlikely(!skb))
5246 goto out;
5247 }
5248
5249 rx_handler = rcu_dereference(skb->dev->rx_handler);
5250 if (rx_handler) {
5251 if (pt_prev) {
5252 ret = deliver_skb(skb, pt_prev, orig_dev);
5253 pt_prev = NULL;
5254 }
5255 switch (rx_handler(&skb)) {
5256 case RX_HANDLER_CONSUMED:
5257 ret = NET_RX_SUCCESS;
5258 goto out;
5259 case RX_HANDLER_ANOTHER:
5260 goto another_round;
5261 case RX_HANDLER_EXACT:
5262 deliver_exact = true;
5263 case RX_HANDLER_PASS:
5264 break;
5265 default:
5266 BUG();
5267 }
5268 }
5269
5270 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5271 check_vlan_id:
5272 if (skb_vlan_tag_get_id(skb)) {
5273 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5274 * find vlan device.
5275 */
5276 skb->pkt_type = PACKET_OTHERHOST;
5277 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5278 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5279 /* Outer header is 802.1P with vlan 0, inner header is
5280 * 802.1Q or 802.1AD and vlan_do_receive() above could
5281 * not find vlan dev for vlan id 0.
5282 */
5283 __vlan_hwaccel_clear_tag(skb);
5284 skb = skb_vlan_untag(skb);
5285 if (unlikely(!skb))
5286 goto out;
5287 if (vlan_do_receive(&skb))
5288 /* After stripping off 802.1P header with vlan 0
5289 * vlan dev is found for inner header.
5290 */
5291 goto another_round;
5292 else if (unlikely(!skb))
5293 goto out;
5294 else
5295 /* We have stripped outer 802.1P vlan 0 header.
5296 * But could not find vlan dev.
5297 * check again for vlan id to set OTHERHOST.
5298 */
5299 goto check_vlan_id;
5300 }
5301 /* Note: we might in the future use prio bits
5302 * and set skb->priority like in vlan_do_receive()
5303 * For the time being, just ignore Priority Code Point
5304 */
5305 __vlan_hwaccel_clear_tag(skb);
5306 }
5307
5308 type = skb->protocol;
5309
5310 /* deliver only exact match when indicated */
5311 if (likely(!deliver_exact)) {
5312 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5313 &ptype_base[ntohs(type) &
5314 PTYPE_HASH_MASK]);
5315 }
5316
5317 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5318 &orig_dev->ptype_specific);
5319
5320 if (unlikely(skb->dev != orig_dev)) {
5321 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322 &skb->dev->ptype_specific);
5323 }
5324
5325 if (pt_prev) {
5326 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5327 goto drop;
5328 *ppt_prev = pt_prev;
5329 } else {
5330 drop:
5331 if (!deliver_exact)
5332 atomic_long_inc(&skb->dev->rx_dropped);
5333 else
5334 atomic_long_inc(&skb->dev->rx_nohandler);
5335 kfree_skb(skb);
5336 /* Jamal, now you will not able to escape explaining
5337 * me how you were going to use this. :-)
5338 */
5339 ret = NET_RX_DROP;
5340 }
5341
5342 out:
5343 /* The invariant here is that if *ppt_prev is not NULL
5344 * then skb should also be non-NULL.
5345 *
5346 * Apparently *ppt_prev assignment above holds this invariant due to
5347 * skb dereferencing near it.
5348 */
5349 *pskb = skb;
5350 return ret;
5351 }
5352
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5353 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5354 {
5355 struct net_device *orig_dev = skb->dev;
5356 struct packet_type *pt_prev = NULL;
5357 int ret;
5358
5359 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5360 if (pt_prev)
5361 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5362 skb->dev, pt_prev, orig_dev);
5363 return ret;
5364 }
5365
5366 /**
5367 * netif_receive_skb_core - special purpose version of netif_receive_skb
5368 * @skb: buffer to process
5369 *
5370 * More direct receive version of netif_receive_skb(). It should
5371 * only be used by callers that have a need to skip RPS and Generic XDP.
5372 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5373 *
5374 * This function may only be called from softirq context and interrupts
5375 * should be enabled.
5376 *
5377 * Return values (usually ignored):
5378 * NET_RX_SUCCESS: no congestion
5379 * NET_RX_DROP: packet was dropped
5380 */
netif_receive_skb_core(struct sk_buff * skb)5381 int netif_receive_skb_core(struct sk_buff *skb)
5382 {
5383 int ret;
5384
5385 rcu_read_lock();
5386 ret = __netif_receive_skb_one_core(skb, false);
5387 rcu_read_unlock();
5388
5389 return ret;
5390 }
5391 EXPORT_SYMBOL(netif_receive_skb_core);
5392
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5393 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5394 struct packet_type *pt_prev,
5395 struct net_device *orig_dev)
5396 {
5397 struct sk_buff *skb, *next;
5398
5399 if (!pt_prev)
5400 return;
5401 if (list_empty(head))
5402 return;
5403 if (pt_prev->list_func != NULL)
5404 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5405 ip_list_rcv, head, pt_prev, orig_dev);
5406 else
5407 list_for_each_entry_safe(skb, next, head, list) {
5408 skb_list_del_init(skb);
5409 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5410 }
5411 }
5412
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5413 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5414 {
5415 /* Fast-path assumptions:
5416 * - There is no RX handler.
5417 * - Only one packet_type matches.
5418 * If either of these fails, we will end up doing some per-packet
5419 * processing in-line, then handling the 'last ptype' for the whole
5420 * sublist. This can't cause out-of-order delivery to any single ptype,
5421 * because the 'last ptype' must be constant across the sublist, and all
5422 * other ptypes are handled per-packet.
5423 */
5424 /* Current (common) ptype of sublist */
5425 struct packet_type *pt_curr = NULL;
5426 /* Current (common) orig_dev of sublist */
5427 struct net_device *od_curr = NULL;
5428 struct list_head sublist;
5429 struct sk_buff *skb, *next;
5430
5431 INIT_LIST_HEAD(&sublist);
5432 list_for_each_entry_safe(skb, next, head, list) {
5433 struct net_device *orig_dev = skb->dev;
5434 struct packet_type *pt_prev = NULL;
5435
5436 skb_list_del_init(skb);
5437 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5438 if (!pt_prev)
5439 continue;
5440 if (pt_curr != pt_prev || od_curr != orig_dev) {
5441 /* dispatch old sublist */
5442 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5443 /* start new sublist */
5444 INIT_LIST_HEAD(&sublist);
5445 pt_curr = pt_prev;
5446 od_curr = orig_dev;
5447 }
5448 list_add_tail(&skb->list, &sublist);
5449 }
5450
5451 /* dispatch final sublist */
5452 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453 }
5454
__netif_receive_skb(struct sk_buff * skb)5455 static int __netif_receive_skb(struct sk_buff *skb)
5456 {
5457 int ret;
5458
5459 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5460 unsigned int noreclaim_flag;
5461
5462 /*
5463 * PFMEMALLOC skbs are special, they should
5464 * - be delivered to SOCK_MEMALLOC sockets only
5465 * - stay away from userspace
5466 * - have bounded memory usage
5467 *
5468 * Use PF_MEMALLOC as this saves us from propagating the allocation
5469 * context down to all allocation sites.
5470 */
5471 noreclaim_flag = memalloc_noreclaim_save();
5472 ret = __netif_receive_skb_one_core(skb, true);
5473 memalloc_noreclaim_restore(noreclaim_flag);
5474 } else
5475 ret = __netif_receive_skb_one_core(skb, false);
5476
5477 return ret;
5478 }
5479
__netif_receive_skb_list(struct list_head * head)5480 static void __netif_receive_skb_list(struct list_head *head)
5481 {
5482 unsigned long noreclaim_flag = 0;
5483 struct sk_buff *skb, *next;
5484 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5485
5486 list_for_each_entry_safe(skb, next, head, list) {
5487 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5488 struct list_head sublist;
5489
5490 /* Handle the previous sublist */
5491 list_cut_before(&sublist, head, &skb->list);
5492 if (!list_empty(&sublist))
5493 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5494 pfmemalloc = !pfmemalloc;
5495 /* See comments in __netif_receive_skb */
5496 if (pfmemalloc)
5497 noreclaim_flag = memalloc_noreclaim_save();
5498 else
5499 memalloc_noreclaim_restore(noreclaim_flag);
5500 }
5501 }
5502 /* Handle the remaining sublist */
5503 if (!list_empty(head))
5504 __netif_receive_skb_list_core(head, pfmemalloc);
5505 /* Restore pflags */
5506 if (pfmemalloc)
5507 memalloc_noreclaim_restore(noreclaim_flag);
5508 }
5509
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5510 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5511 {
5512 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5513 struct bpf_prog *new = xdp->prog;
5514 int ret = 0;
5515
5516 if (new) {
5517 u32 i;
5518
5519 mutex_lock(&new->aux->used_maps_mutex);
5520
5521 /* generic XDP does not work with DEVMAPs that can
5522 * have a bpf_prog installed on an entry
5523 */
5524 for (i = 0; i < new->aux->used_map_cnt; i++) {
5525 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5526 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5527 mutex_unlock(&new->aux->used_maps_mutex);
5528 return -EINVAL;
5529 }
5530 }
5531
5532 mutex_unlock(&new->aux->used_maps_mutex);
5533 }
5534
5535 switch (xdp->command) {
5536 case XDP_SETUP_PROG:
5537 rcu_assign_pointer(dev->xdp_prog, new);
5538 if (old)
5539 bpf_prog_put(old);
5540
5541 if (old && !new) {
5542 static_branch_dec(&generic_xdp_needed_key);
5543 } else if (new && !old) {
5544 static_branch_inc(&generic_xdp_needed_key);
5545 dev_disable_lro(dev);
5546 dev_disable_gro_hw(dev);
5547 }
5548 break;
5549
5550 default:
5551 ret = -EINVAL;
5552 break;
5553 }
5554
5555 return ret;
5556 }
5557
netif_receive_skb_internal(struct sk_buff * skb)5558 static int netif_receive_skb_internal(struct sk_buff *skb)
5559 {
5560 int ret;
5561
5562 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5563
5564 if (skb_defer_rx_timestamp(skb))
5565 return NET_RX_SUCCESS;
5566
5567 rcu_read_lock();
5568 #ifdef CONFIG_RPS
5569 if (static_branch_unlikely(&rps_needed)) {
5570 struct rps_dev_flow voidflow, *rflow = &voidflow;
5571 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5572
5573 if (cpu >= 0) {
5574 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5575 rcu_read_unlock();
5576 return ret;
5577 }
5578 }
5579 #endif
5580 ret = __netif_receive_skb(skb);
5581 rcu_read_unlock();
5582 return ret;
5583 }
5584
netif_receive_skb_list_internal(struct list_head * head)5585 static void netif_receive_skb_list_internal(struct list_head *head)
5586 {
5587 struct sk_buff *skb, *next;
5588 struct list_head sublist;
5589
5590 INIT_LIST_HEAD(&sublist);
5591 list_for_each_entry_safe(skb, next, head, list) {
5592 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5593 skb_list_del_init(skb);
5594 if (!skb_defer_rx_timestamp(skb))
5595 list_add_tail(&skb->list, &sublist);
5596 }
5597 list_splice_init(&sublist, head);
5598
5599 rcu_read_lock();
5600 #ifdef CONFIG_RPS
5601 if (static_branch_unlikely(&rps_needed)) {
5602 list_for_each_entry_safe(skb, next, head, list) {
5603 struct rps_dev_flow voidflow, *rflow = &voidflow;
5604 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5605
5606 if (cpu >= 0) {
5607 /* Will be handled, remove from list */
5608 skb_list_del_init(skb);
5609 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5610 }
5611 }
5612 }
5613 #endif
5614 __netif_receive_skb_list(head);
5615 rcu_read_unlock();
5616 }
5617
5618 /**
5619 * netif_receive_skb - process receive buffer from network
5620 * @skb: buffer to process
5621 *
5622 * netif_receive_skb() is the main receive data processing function.
5623 * It always succeeds. The buffer may be dropped during processing
5624 * for congestion control or by the protocol layers.
5625 *
5626 * This function may only be called from softirq context and interrupts
5627 * should be enabled.
5628 *
5629 * Return values (usually ignored):
5630 * NET_RX_SUCCESS: no congestion
5631 * NET_RX_DROP: packet was dropped
5632 */
netif_receive_skb(struct sk_buff * skb)5633 int netif_receive_skb(struct sk_buff *skb)
5634 {
5635 int ret;
5636
5637 trace_netif_receive_skb_entry(skb);
5638
5639 ret = netif_receive_skb_internal(skb);
5640 trace_netif_receive_skb_exit(ret);
5641
5642 return ret;
5643 }
5644 EXPORT_SYMBOL(netif_receive_skb);
5645
5646 /**
5647 * netif_receive_skb_list - process many receive buffers from network
5648 * @head: list of skbs to process.
5649 *
5650 * Since return value of netif_receive_skb() is normally ignored, and
5651 * wouldn't be meaningful for a list, this function returns void.
5652 *
5653 * This function may only be called from softirq context and interrupts
5654 * should be enabled.
5655 */
netif_receive_skb_list(struct list_head * head)5656 void netif_receive_skb_list(struct list_head *head)
5657 {
5658 struct sk_buff *skb;
5659
5660 if (list_empty(head))
5661 return;
5662 if (trace_netif_receive_skb_list_entry_enabled()) {
5663 list_for_each_entry(skb, head, list)
5664 trace_netif_receive_skb_list_entry(skb);
5665 }
5666 netif_receive_skb_list_internal(head);
5667 trace_netif_receive_skb_list_exit(0);
5668 }
5669 EXPORT_SYMBOL(netif_receive_skb_list);
5670
5671 static DEFINE_PER_CPU(struct work_struct, flush_works);
5672
5673 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5674 static void flush_backlog(struct work_struct *work)
5675 {
5676 struct sk_buff *skb, *tmp;
5677 struct softnet_data *sd;
5678
5679 local_bh_disable();
5680 sd = this_cpu_ptr(&softnet_data);
5681
5682 local_irq_disable();
5683 rps_lock(sd);
5684 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5685 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5686 __skb_unlink(skb, &sd->input_pkt_queue);
5687 dev_kfree_skb_irq(skb);
5688 input_queue_head_incr(sd);
5689 }
5690 }
5691 rps_unlock(sd);
5692 local_irq_enable();
5693
5694 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5695 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696 __skb_unlink(skb, &sd->process_queue);
5697 kfree_skb(skb);
5698 input_queue_head_incr(sd);
5699 }
5700 }
5701 local_bh_enable();
5702 }
5703
flush_required(int cpu)5704 static bool flush_required(int cpu)
5705 {
5706 #if IS_ENABLED(CONFIG_RPS)
5707 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5708 bool do_flush;
5709
5710 local_irq_disable();
5711 rps_lock(sd);
5712
5713 /* as insertion into process_queue happens with the rps lock held,
5714 * process_queue access may race only with dequeue
5715 */
5716 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5717 !skb_queue_empty_lockless(&sd->process_queue);
5718 rps_unlock(sd);
5719 local_irq_enable();
5720
5721 return do_flush;
5722 #endif
5723 /* without RPS we can't safely check input_pkt_queue: during a
5724 * concurrent remote skb_queue_splice() we can detect as empty both
5725 * input_pkt_queue and process_queue even if the latter could end-up
5726 * containing a lot of packets.
5727 */
5728 return true;
5729 }
5730
flush_all_backlogs(void)5731 static void flush_all_backlogs(void)
5732 {
5733 static cpumask_t flush_cpus;
5734 unsigned int cpu;
5735
5736 /* since we are under rtnl lock protection we can use static data
5737 * for the cpumask and avoid allocating on stack the possibly
5738 * large mask
5739 */
5740 ASSERT_RTNL();
5741
5742 get_online_cpus();
5743
5744 cpumask_clear(&flush_cpus);
5745 for_each_online_cpu(cpu) {
5746 if (flush_required(cpu)) {
5747 queue_work_on(cpu, system_highpri_wq,
5748 per_cpu_ptr(&flush_works, cpu));
5749 cpumask_set_cpu(cpu, &flush_cpus);
5750 }
5751 }
5752
5753 /* we can have in flight packet[s] on the cpus we are not flushing,
5754 * synchronize_net() in unregister_netdevice_many() will take care of
5755 * them
5756 */
5757 for_each_cpu(cpu, &flush_cpus)
5758 flush_work(per_cpu_ptr(&flush_works, cpu));
5759
5760 put_online_cpus();
5761 }
5762
5763 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5764 static void gro_normal_list(struct napi_struct *napi)
5765 {
5766 if (!napi->rx_count)
5767 return;
5768 netif_receive_skb_list_internal(&napi->rx_list);
5769 INIT_LIST_HEAD(&napi->rx_list);
5770 napi->rx_count = 0;
5771 }
5772
5773 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5774 * pass the whole batch up to the stack.
5775 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5776 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5777 {
5778 list_add_tail(&skb->list, &napi->rx_list);
5779 napi->rx_count += segs;
5780 if (napi->rx_count >= gro_normal_batch)
5781 gro_normal_list(napi);
5782 }
5783
5784 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5785 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5786 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5787 {
5788 struct packet_offload *ptype;
5789 __be16 type = skb->protocol;
5790 struct list_head *head = &offload_base;
5791 int err = -ENOENT;
5792
5793 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5794
5795 if (NAPI_GRO_CB(skb)->count == 1) {
5796 skb_shinfo(skb)->gso_size = 0;
5797 goto out;
5798 }
5799
5800 rcu_read_lock();
5801 list_for_each_entry_rcu(ptype, head, list) {
5802 if (ptype->type != type || !ptype->callbacks.gro_complete)
5803 continue;
5804
5805 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5806 ipv6_gro_complete, inet_gro_complete,
5807 skb, 0);
5808 break;
5809 }
5810 rcu_read_unlock();
5811
5812 if (err) {
5813 WARN_ON(&ptype->list == head);
5814 kfree_skb(skb);
5815 return NET_RX_SUCCESS;
5816 }
5817
5818 out:
5819 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5820 return NET_RX_SUCCESS;
5821 }
5822
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5823 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5824 bool flush_old)
5825 {
5826 struct list_head *head = &napi->gro_hash[index].list;
5827 struct sk_buff *skb, *p;
5828
5829 list_for_each_entry_safe_reverse(skb, p, head, list) {
5830 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5831 return;
5832 skb_list_del_init(skb);
5833 napi_gro_complete(napi, skb);
5834 napi->gro_hash[index].count--;
5835 }
5836
5837 if (!napi->gro_hash[index].count)
5838 __clear_bit(index, &napi->gro_bitmask);
5839 }
5840
5841 /* napi->gro_hash[].list contains packets ordered by age.
5842 * youngest packets at the head of it.
5843 * Complete skbs in reverse order to reduce latencies.
5844 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5845 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5846 {
5847 unsigned long bitmask = napi->gro_bitmask;
5848 unsigned int i, base = ~0U;
5849
5850 while ((i = ffs(bitmask)) != 0) {
5851 bitmask >>= i;
5852 base += i;
5853 __napi_gro_flush_chain(napi, base, flush_old);
5854 }
5855 }
5856 EXPORT_SYMBOL(napi_gro_flush);
5857
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5858 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5859 struct sk_buff *skb)
5860 {
5861 unsigned int maclen = skb->dev->hard_header_len;
5862 u32 hash = skb_get_hash_raw(skb);
5863 struct list_head *head;
5864 struct sk_buff *p;
5865
5866 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5867 list_for_each_entry(p, head, list) {
5868 unsigned long diffs;
5869
5870 NAPI_GRO_CB(p)->flush = 0;
5871
5872 if (hash != skb_get_hash_raw(p)) {
5873 NAPI_GRO_CB(p)->same_flow = 0;
5874 continue;
5875 }
5876
5877 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5878 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5879 if (skb_vlan_tag_present(p))
5880 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5881 diffs |= skb_metadata_dst_cmp(p, skb);
5882 diffs |= skb_metadata_differs(p, skb);
5883 if (maclen == ETH_HLEN)
5884 diffs |= compare_ether_header(skb_mac_header(p),
5885 skb_mac_header(skb));
5886 else if (!diffs)
5887 diffs = memcmp(skb_mac_header(p),
5888 skb_mac_header(skb),
5889 maclen);
5890
5891 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5892 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5893 if (!diffs) {
5894 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5895 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
5896
5897 diffs |= (!!p_ext) ^ (!!skb_ext);
5898 if (!diffs && unlikely(skb_ext))
5899 diffs |= p_ext->chain ^ skb_ext->chain;
5900 }
5901 #endif
5902
5903 NAPI_GRO_CB(p)->same_flow = !diffs;
5904 }
5905
5906 return head;
5907 }
5908
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5909 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5910 {
5911 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5912 const skb_frag_t *frag0 = &pinfo->frags[0];
5913
5914 NAPI_GRO_CB(skb)->data_offset = 0;
5915 NAPI_GRO_CB(skb)->frag0 = NULL;
5916 NAPI_GRO_CB(skb)->frag0_len = 0;
5917
5918 if (!skb_headlen(skb) && pinfo->nr_frags &&
5919 !PageHighMem(skb_frag_page(frag0)) &&
5920 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5921 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5922 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5923 skb_frag_size(frag0),
5924 skb->end - skb->tail);
5925 }
5926 }
5927
gro_pull_from_frag0(struct sk_buff * skb,int grow)5928 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5929 {
5930 struct skb_shared_info *pinfo = skb_shinfo(skb);
5931
5932 BUG_ON(skb->end - skb->tail < grow);
5933
5934 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5935
5936 skb->data_len -= grow;
5937 skb->tail += grow;
5938
5939 skb_frag_off_add(&pinfo->frags[0], grow);
5940 skb_frag_size_sub(&pinfo->frags[0], grow);
5941
5942 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5943 skb_frag_unref(skb, 0);
5944 memmove(pinfo->frags, pinfo->frags + 1,
5945 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5946 }
5947 }
5948
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5949 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5950 {
5951 struct sk_buff *oldest;
5952
5953 oldest = list_last_entry(head, struct sk_buff, list);
5954
5955 /* We are called with head length >= MAX_GRO_SKBS, so this is
5956 * impossible.
5957 */
5958 if (WARN_ON_ONCE(!oldest))
5959 return;
5960
5961 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5962 * SKB to the chain.
5963 */
5964 skb_list_del_init(oldest);
5965 napi_gro_complete(napi, oldest);
5966 }
5967
5968 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5969 struct sk_buff *));
5970 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5971 struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5972 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5973 {
5974 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5975 struct list_head *head = &offload_base;
5976 struct packet_offload *ptype;
5977 __be16 type = skb->protocol;
5978 struct list_head *gro_head;
5979 struct sk_buff *pp = NULL;
5980 enum gro_result ret;
5981 int same_flow;
5982 int grow;
5983
5984 if (netif_elide_gro(skb->dev))
5985 goto normal;
5986
5987 gro_head = gro_list_prepare(napi, skb);
5988
5989 rcu_read_lock();
5990 list_for_each_entry_rcu(ptype, head, list) {
5991 if (ptype->type != type || !ptype->callbacks.gro_receive)
5992 continue;
5993
5994 skb_set_network_header(skb, skb_gro_offset(skb));
5995 skb_reset_mac_len(skb);
5996 NAPI_GRO_CB(skb)->same_flow = 0;
5997 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5998 NAPI_GRO_CB(skb)->free = 0;
5999 NAPI_GRO_CB(skb)->encap_mark = 0;
6000 NAPI_GRO_CB(skb)->recursion_counter = 0;
6001 NAPI_GRO_CB(skb)->is_fou = 0;
6002 NAPI_GRO_CB(skb)->is_atomic = 1;
6003 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6004
6005 /* Setup for GRO checksum validation */
6006 switch (skb->ip_summed) {
6007 case CHECKSUM_COMPLETE:
6008 NAPI_GRO_CB(skb)->csum = skb->csum;
6009 NAPI_GRO_CB(skb)->csum_valid = 1;
6010 NAPI_GRO_CB(skb)->csum_cnt = 0;
6011 break;
6012 case CHECKSUM_UNNECESSARY:
6013 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6014 NAPI_GRO_CB(skb)->csum_valid = 0;
6015 break;
6016 default:
6017 NAPI_GRO_CB(skb)->csum_cnt = 0;
6018 NAPI_GRO_CB(skb)->csum_valid = 0;
6019 }
6020
6021 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6022 ipv6_gro_receive, inet_gro_receive,
6023 gro_head, skb);
6024 break;
6025 }
6026 rcu_read_unlock();
6027
6028 if (&ptype->list == head)
6029 goto normal;
6030
6031 if (PTR_ERR(pp) == -EINPROGRESS) {
6032 ret = GRO_CONSUMED;
6033 goto ok;
6034 }
6035
6036 same_flow = NAPI_GRO_CB(skb)->same_flow;
6037 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6038
6039 if (pp) {
6040 skb_list_del_init(pp);
6041 napi_gro_complete(napi, pp);
6042 napi->gro_hash[hash].count--;
6043 }
6044
6045 if (same_flow)
6046 goto ok;
6047
6048 if (NAPI_GRO_CB(skb)->flush)
6049 goto normal;
6050
6051 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6052 gro_flush_oldest(napi, gro_head);
6053 } else {
6054 napi->gro_hash[hash].count++;
6055 }
6056 NAPI_GRO_CB(skb)->count = 1;
6057 NAPI_GRO_CB(skb)->age = jiffies;
6058 NAPI_GRO_CB(skb)->last = skb;
6059 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6060 list_add(&skb->list, gro_head);
6061 ret = GRO_HELD;
6062
6063 pull:
6064 grow = skb_gro_offset(skb) - skb_headlen(skb);
6065 if (grow > 0)
6066 gro_pull_from_frag0(skb, grow);
6067 ok:
6068 if (napi->gro_hash[hash].count) {
6069 if (!test_bit(hash, &napi->gro_bitmask))
6070 __set_bit(hash, &napi->gro_bitmask);
6071 } else if (test_bit(hash, &napi->gro_bitmask)) {
6072 __clear_bit(hash, &napi->gro_bitmask);
6073 }
6074
6075 return ret;
6076
6077 normal:
6078 ret = GRO_NORMAL;
6079 goto pull;
6080 }
6081
gro_find_receive_by_type(__be16 type)6082 struct packet_offload *gro_find_receive_by_type(__be16 type)
6083 {
6084 struct list_head *offload_head = &offload_base;
6085 struct packet_offload *ptype;
6086
6087 list_for_each_entry_rcu(ptype, offload_head, list) {
6088 if (ptype->type != type || !ptype->callbacks.gro_receive)
6089 continue;
6090 return ptype;
6091 }
6092 return NULL;
6093 }
6094 EXPORT_SYMBOL(gro_find_receive_by_type);
6095
gro_find_complete_by_type(__be16 type)6096 struct packet_offload *gro_find_complete_by_type(__be16 type)
6097 {
6098 struct list_head *offload_head = &offload_base;
6099 struct packet_offload *ptype;
6100
6101 list_for_each_entry_rcu(ptype, offload_head, list) {
6102 if (ptype->type != type || !ptype->callbacks.gro_complete)
6103 continue;
6104 return ptype;
6105 }
6106 return NULL;
6107 }
6108 EXPORT_SYMBOL(gro_find_complete_by_type);
6109
napi_skb_free_stolen_head(struct sk_buff * skb)6110 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6111 {
6112 skb_dst_drop(skb);
6113 skb_ext_put(skb);
6114 kmem_cache_free(skbuff_head_cache, skb);
6115 }
6116
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6117 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6118 struct sk_buff *skb,
6119 gro_result_t ret)
6120 {
6121 switch (ret) {
6122 case GRO_NORMAL:
6123 gro_normal_one(napi, skb, 1);
6124 break;
6125
6126 case GRO_DROP:
6127 kfree_skb(skb);
6128 break;
6129
6130 case GRO_MERGED_FREE:
6131 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6132 napi_skb_free_stolen_head(skb);
6133 else
6134 __kfree_skb(skb);
6135 break;
6136
6137 case GRO_HELD:
6138 case GRO_MERGED:
6139 case GRO_CONSUMED:
6140 break;
6141 }
6142
6143 return ret;
6144 }
6145
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)6146 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6147 {
6148 gro_result_t ret;
6149
6150 skb_mark_napi_id(skb, napi);
6151 trace_napi_gro_receive_entry(skb);
6152
6153 skb_gro_reset_offset(skb, 0);
6154
6155 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6156 trace_napi_gro_receive_exit(ret);
6157
6158 return ret;
6159 }
6160 EXPORT_SYMBOL(napi_gro_receive);
6161
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)6162 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6163 {
6164 if (unlikely(skb->pfmemalloc)) {
6165 consume_skb(skb);
6166 return;
6167 }
6168 __skb_pull(skb, skb_headlen(skb));
6169 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6170 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6171 __vlan_hwaccel_clear_tag(skb);
6172 skb->dev = napi->dev;
6173 skb->skb_iif = 0;
6174
6175 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6176 skb->pkt_type = PACKET_HOST;
6177
6178 skb->encapsulation = 0;
6179 skb_shinfo(skb)->gso_type = 0;
6180 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6181 skb_ext_reset(skb);
6182 nf_reset_ct(skb);
6183
6184 napi->skb = skb;
6185 }
6186
napi_get_frags(struct napi_struct * napi)6187 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6188 {
6189 struct sk_buff *skb = napi->skb;
6190
6191 if (!skb) {
6192 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6193 if (skb) {
6194 napi->skb = skb;
6195 skb_mark_napi_id(skb, napi);
6196 }
6197 }
6198 return skb;
6199 }
6200 EXPORT_SYMBOL(napi_get_frags);
6201
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)6202 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6203 struct sk_buff *skb,
6204 gro_result_t ret)
6205 {
6206 switch (ret) {
6207 case GRO_NORMAL:
6208 case GRO_HELD:
6209 __skb_push(skb, ETH_HLEN);
6210 skb->protocol = eth_type_trans(skb, skb->dev);
6211 if (ret == GRO_NORMAL)
6212 gro_normal_one(napi, skb, 1);
6213 break;
6214
6215 case GRO_DROP:
6216 napi_reuse_skb(napi, skb);
6217 break;
6218
6219 case GRO_MERGED_FREE:
6220 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6221 napi_skb_free_stolen_head(skb);
6222 else
6223 napi_reuse_skb(napi, skb);
6224 break;
6225
6226 case GRO_MERGED:
6227 case GRO_CONSUMED:
6228 break;
6229 }
6230
6231 return ret;
6232 }
6233
6234 /* Upper GRO stack assumes network header starts at gro_offset=0
6235 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6236 * We copy ethernet header into skb->data to have a common layout.
6237 */
napi_frags_skb(struct napi_struct * napi)6238 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6239 {
6240 struct sk_buff *skb = napi->skb;
6241 const struct ethhdr *eth;
6242 unsigned int hlen = sizeof(*eth);
6243
6244 napi->skb = NULL;
6245
6246 skb_reset_mac_header(skb);
6247 skb_gro_reset_offset(skb, hlen);
6248
6249 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6250 eth = skb_gro_header_slow(skb, hlen, 0);
6251 if (unlikely(!eth)) {
6252 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6253 __func__, napi->dev->name);
6254 napi_reuse_skb(napi, skb);
6255 return NULL;
6256 }
6257 } else {
6258 eth = (const struct ethhdr *)skb->data;
6259 gro_pull_from_frag0(skb, hlen);
6260 NAPI_GRO_CB(skb)->frag0 += hlen;
6261 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6262 }
6263 __skb_pull(skb, hlen);
6264
6265 /*
6266 * This works because the only protocols we care about don't require
6267 * special handling.
6268 * We'll fix it up properly in napi_frags_finish()
6269 */
6270 skb->protocol = eth->h_proto;
6271
6272 return skb;
6273 }
6274
napi_gro_frags(struct napi_struct * napi)6275 gro_result_t napi_gro_frags(struct napi_struct *napi)
6276 {
6277 gro_result_t ret;
6278 struct sk_buff *skb = napi_frags_skb(napi);
6279
6280 if (!skb)
6281 return GRO_DROP;
6282
6283 trace_napi_gro_frags_entry(skb);
6284
6285 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6286 trace_napi_gro_frags_exit(ret);
6287
6288 return ret;
6289 }
6290 EXPORT_SYMBOL(napi_gro_frags);
6291
6292 /* Compute the checksum from gro_offset and return the folded value
6293 * after adding in any pseudo checksum.
6294 */
__skb_gro_checksum_complete(struct sk_buff * skb)6295 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6296 {
6297 __wsum wsum;
6298 __sum16 sum;
6299
6300 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6301
6302 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6303 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6304 /* See comments in __skb_checksum_complete(). */
6305 if (likely(!sum)) {
6306 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6307 !skb->csum_complete_sw)
6308 netdev_rx_csum_fault(skb->dev, skb);
6309 }
6310
6311 NAPI_GRO_CB(skb)->csum = wsum;
6312 NAPI_GRO_CB(skb)->csum_valid = 1;
6313
6314 return sum;
6315 }
6316 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6317
net_rps_send_ipi(struct softnet_data * remsd)6318 static void net_rps_send_ipi(struct softnet_data *remsd)
6319 {
6320 #ifdef CONFIG_RPS
6321 while (remsd) {
6322 struct softnet_data *next = remsd->rps_ipi_next;
6323
6324 if (cpu_online(remsd->cpu))
6325 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6326 remsd = next;
6327 }
6328 #endif
6329 }
6330
6331 /*
6332 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6333 * Note: called with local irq disabled, but exits with local irq enabled.
6334 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6335 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6336 {
6337 #ifdef CONFIG_RPS
6338 struct softnet_data *remsd = sd->rps_ipi_list;
6339
6340 if (remsd) {
6341 sd->rps_ipi_list = NULL;
6342
6343 local_irq_enable();
6344
6345 /* Send pending IPI's to kick RPS processing on remote cpus. */
6346 net_rps_send_ipi(remsd);
6347 } else
6348 #endif
6349 local_irq_enable();
6350 }
6351
sd_has_rps_ipi_waiting(struct softnet_data * sd)6352 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6353 {
6354 #ifdef CONFIG_RPS
6355 return sd->rps_ipi_list != NULL;
6356 #else
6357 return false;
6358 #endif
6359 }
6360
process_backlog(struct napi_struct * napi,int quota)6361 static int process_backlog(struct napi_struct *napi, int quota)
6362 {
6363 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6364 bool again = true;
6365 int work = 0;
6366
6367 /* Check if we have pending ipi, its better to send them now,
6368 * not waiting net_rx_action() end.
6369 */
6370 if (sd_has_rps_ipi_waiting(sd)) {
6371 local_irq_disable();
6372 net_rps_action_and_irq_enable(sd);
6373 }
6374
6375 napi->weight = READ_ONCE(dev_rx_weight);
6376 while (again) {
6377 struct sk_buff *skb;
6378
6379 while ((skb = __skb_dequeue(&sd->process_queue))) {
6380 rcu_read_lock();
6381 __netif_receive_skb(skb);
6382 rcu_read_unlock();
6383 input_queue_head_incr(sd);
6384 if (++work >= quota)
6385 return work;
6386
6387 }
6388
6389 local_irq_disable();
6390 rps_lock(sd);
6391 if (skb_queue_empty(&sd->input_pkt_queue)) {
6392 /*
6393 * Inline a custom version of __napi_complete().
6394 * only current cpu owns and manipulates this napi,
6395 * and NAPI_STATE_SCHED is the only possible flag set
6396 * on backlog.
6397 * We can use a plain write instead of clear_bit(),
6398 * and we dont need an smp_mb() memory barrier.
6399 */
6400 napi->state = 0;
6401 again = false;
6402 } else {
6403 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6404 &sd->process_queue);
6405 }
6406 rps_unlock(sd);
6407 local_irq_enable();
6408 }
6409
6410 return work;
6411 }
6412
6413 /**
6414 * __napi_schedule - schedule for receive
6415 * @n: entry to schedule
6416 *
6417 * The entry's receive function will be scheduled to run.
6418 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6419 */
__napi_schedule(struct napi_struct * n)6420 void __napi_schedule(struct napi_struct *n)
6421 {
6422 unsigned long flags;
6423
6424 local_irq_save(flags);
6425 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6426 local_irq_restore(flags);
6427 }
6428 EXPORT_SYMBOL(__napi_schedule);
6429
6430 /**
6431 * napi_schedule_prep - check if napi can be scheduled
6432 * @n: napi context
6433 *
6434 * Test if NAPI routine is already running, and if not mark
6435 * it as running. This is used as a condition variable to
6436 * insure only one NAPI poll instance runs. We also make
6437 * sure there is no pending NAPI disable.
6438 */
napi_schedule_prep(struct napi_struct * n)6439 bool napi_schedule_prep(struct napi_struct *n)
6440 {
6441 unsigned long val, new;
6442
6443 do {
6444 val = READ_ONCE(n->state);
6445 if (unlikely(val & NAPIF_STATE_DISABLE))
6446 return false;
6447 new = val | NAPIF_STATE_SCHED;
6448
6449 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6450 * This was suggested by Alexander Duyck, as compiler
6451 * emits better code than :
6452 * if (val & NAPIF_STATE_SCHED)
6453 * new |= NAPIF_STATE_MISSED;
6454 */
6455 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6456 NAPIF_STATE_MISSED;
6457 } while (cmpxchg(&n->state, val, new) != val);
6458
6459 return !(val & NAPIF_STATE_SCHED);
6460 }
6461 EXPORT_SYMBOL(napi_schedule_prep);
6462
6463 /**
6464 * __napi_schedule_irqoff - schedule for receive
6465 * @n: entry to schedule
6466 *
6467 * Variant of __napi_schedule() assuming hard irqs are masked.
6468 *
6469 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6470 * because the interrupt disabled assumption might not be true
6471 * due to force-threaded interrupts and spinlock substitution.
6472 */
__napi_schedule_irqoff(struct napi_struct * n)6473 void __napi_schedule_irqoff(struct napi_struct *n)
6474 {
6475 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6476 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6477 else
6478 __napi_schedule(n);
6479 }
6480 EXPORT_SYMBOL(__napi_schedule_irqoff);
6481
napi_complete_done(struct napi_struct * n,int work_done)6482 bool napi_complete_done(struct napi_struct *n, int work_done)
6483 {
6484 unsigned long flags, val, new, timeout = 0;
6485 bool ret = true;
6486
6487 /*
6488 * 1) Don't let napi dequeue from the cpu poll list
6489 * just in case its running on a different cpu.
6490 * 2) If we are busy polling, do nothing here, we have
6491 * the guarantee we will be called later.
6492 */
6493 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6494 NAPIF_STATE_IN_BUSY_POLL)))
6495 return false;
6496
6497 if (work_done) {
6498 if (n->gro_bitmask)
6499 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6500 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6501 }
6502 if (n->defer_hard_irqs_count > 0) {
6503 n->defer_hard_irqs_count--;
6504 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6505 if (timeout)
6506 ret = false;
6507 }
6508 if (n->gro_bitmask) {
6509 /* When the NAPI instance uses a timeout and keeps postponing
6510 * it, we need to bound somehow the time packets are kept in
6511 * the GRO layer
6512 */
6513 napi_gro_flush(n, !!timeout);
6514 }
6515
6516 gro_normal_list(n);
6517
6518 if (unlikely(!list_empty(&n->poll_list))) {
6519 /* If n->poll_list is not empty, we need to mask irqs */
6520 local_irq_save(flags);
6521 list_del_init(&n->poll_list);
6522 local_irq_restore(flags);
6523 }
6524
6525 do {
6526 val = READ_ONCE(n->state);
6527
6528 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6529
6530 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6531
6532 /* If STATE_MISSED was set, leave STATE_SCHED set,
6533 * because we will call napi->poll() one more time.
6534 * This C code was suggested by Alexander Duyck to help gcc.
6535 */
6536 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6537 NAPIF_STATE_SCHED;
6538 } while (cmpxchg(&n->state, val, new) != val);
6539
6540 if (unlikely(val & NAPIF_STATE_MISSED)) {
6541 __napi_schedule(n);
6542 return false;
6543 }
6544
6545 if (timeout)
6546 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6547 HRTIMER_MODE_REL_PINNED);
6548 return ret;
6549 }
6550 EXPORT_SYMBOL(napi_complete_done);
6551
6552 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6553 static struct napi_struct *napi_by_id(unsigned int napi_id)
6554 {
6555 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6556 struct napi_struct *napi;
6557
6558 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6559 if (napi->napi_id == napi_id)
6560 return napi;
6561
6562 return NULL;
6563 }
6564
6565 #if defined(CONFIG_NET_RX_BUSY_POLL)
6566
6567 #define BUSY_POLL_BUDGET 8
6568
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6569 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6570 {
6571 int rc;
6572
6573 /* Busy polling means there is a high chance device driver hard irq
6574 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6575 * set in napi_schedule_prep().
6576 * Since we are about to call napi->poll() once more, we can safely
6577 * clear NAPI_STATE_MISSED.
6578 *
6579 * Note: x86 could use a single "lock and ..." instruction
6580 * to perform these two clear_bit()
6581 */
6582 clear_bit(NAPI_STATE_MISSED, &napi->state);
6583 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6584
6585 local_bh_disable();
6586
6587 /* All we really want here is to re-enable device interrupts.
6588 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6589 */
6590 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6591 /* We can't gro_normal_list() here, because napi->poll() might have
6592 * rearmed the napi (napi_complete_done()) in which case it could
6593 * already be running on another CPU.
6594 */
6595 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6596 netpoll_poll_unlock(have_poll_lock);
6597 if (rc == BUSY_POLL_BUDGET) {
6598 /* As the whole budget was spent, we still own the napi so can
6599 * safely handle the rx_list.
6600 */
6601 gro_normal_list(napi);
6602 __napi_schedule(napi);
6603 }
6604 local_bh_enable();
6605 }
6606
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6607 void napi_busy_loop(unsigned int napi_id,
6608 bool (*loop_end)(void *, unsigned long),
6609 void *loop_end_arg)
6610 {
6611 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6612 int (*napi_poll)(struct napi_struct *napi, int budget);
6613 void *have_poll_lock = NULL;
6614 struct napi_struct *napi;
6615
6616 restart:
6617 napi_poll = NULL;
6618
6619 rcu_read_lock();
6620
6621 napi = napi_by_id(napi_id);
6622 if (!napi)
6623 goto out;
6624
6625 preempt_disable();
6626 for (;;) {
6627 int work = 0;
6628
6629 local_bh_disable();
6630 if (!napi_poll) {
6631 unsigned long val = READ_ONCE(napi->state);
6632
6633 /* If multiple threads are competing for this napi,
6634 * we avoid dirtying napi->state as much as we can.
6635 */
6636 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6637 NAPIF_STATE_IN_BUSY_POLL))
6638 goto count;
6639 if (cmpxchg(&napi->state, val,
6640 val | NAPIF_STATE_IN_BUSY_POLL |
6641 NAPIF_STATE_SCHED) != val)
6642 goto count;
6643 have_poll_lock = netpoll_poll_lock(napi);
6644 napi_poll = napi->poll;
6645 }
6646 work = napi_poll(napi, BUSY_POLL_BUDGET);
6647 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6648 gro_normal_list(napi);
6649 count:
6650 if (work > 0)
6651 __NET_ADD_STATS(dev_net(napi->dev),
6652 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6653 local_bh_enable();
6654
6655 if (!loop_end || loop_end(loop_end_arg, start_time))
6656 break;
6657
6658 if (unlikely(need_resched())) {
6659 if (napi_poll)
6660 busy_poll_stop(napi, have_poll_lock);
6661 preempt_enable();
6662 rcu_read_unlock();
6663 cond_resched();
6664 if (loop_end(loop_end_arg, start_time))
6665 return;
6666 goto restart;
6667 }
6668 cpu_relax();
6669 }
6670 if (napi_poll)
6671 busy_poll_stop(napi, have_poll_lock);
6672 preempt_enable();
6673 out:
6674 rcu_read_unlock();
6675 }
6676 EXPORT_SYMBOL(napi_busy_loop);
6677
6678 #endif /* CONFIG_NET_RX_BUSY_POLL */
6679
napi_hash_add(struct napi_struct * napi)6680 static void napi_hash_add(struct napi_struct *napi)
6681 {
6682 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6683 return;
6684
6685 spin_lock(&napi_hash_lock);
6686
6687 /* 0..NR_CPUS range is reserved for sender_cpu use */
6688 do {
6689 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6690 napi_gen_id = MIN_NAPI_ID;
6691 } while (napi_by_id(napi_gen_id));
6692 napi->napi_id = napi_gen_id;
6693
6694 hlist_add_head_rcu(&napi->napi_hash_node,
6695 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6696
6697 spin_unlock(&napi_hash_lock);
6698 }
6699
6700 /* Warning : caller is responsible to make sure rcu grace period
6701 * is respected before freeing memory containing @napi
6702 */
napi_hash_del(struct napi_struct * napi)6703 static void napi_hash_del(struct napi_struct *napi)
6704 {
6705 spin_lock(&napi_hash_lock);
6706
6707 hlist_del_init_rcu(&napi->napi_hash_node);
6708
6709 spin_unlock(&napi_hash_lock);
6710 }
6711
napi_watchdog(struct hrtimer * timer)6712 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6713 {
6714 struct napi_struct *napi;
6715
6716 napi = container_of(timer, struct napi_struct, timer);
6717
6718 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6719 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6720 */
6721 if (!napi_disable_pending(napi) &&
6722 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6723 __napi_schedule_irqoff(napi);
6724
6725 return HRTIMER_NORESTART;
6726 }
6727
init_gro_hash(struct napi_struct * napi)6728 static void init_gro_hash(struct napi_struct *napi)
6729 {
6730 int i;
6731
6732 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6733 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6734 napi->gro_hash[i].count = 0;
6735 }
6736 napi->gro_bitmask = 0;
6737 }
6738
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6739 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6740 int (*poll)(struct napi_struct *, int), int weight)
6741 {
6742 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6743 return;
6744
6745 INIT_LIST_HEAD(&napi->poll_list);
6746 INIT_HLIST_NODE(&napi->napi_hash_node);
6747 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6748 napi->timer.function = napi_watchdog;
6749 init_gro_hash(napi);
6750 napi->skb = NULL;
6751 INIT_LIST_HEAD(&napi->rx_list);
6752 napi->rx_count = 0;
6753 napi->poll = poll;
6754 if (weight > NAPI_POLL_WEIGHT)
6755 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6756 weight);
6757 napi->weight = weight;
6758 napi->dev = dev;
6759 #ifdef CONFIG_NETPOLL
6760 napi->poll_owner = -1;
6761 #endif
6762 set_bit(NAPI_STATE_SCHED, &napi->state);
6763 set_bit(NAPI_STATE_NPSVC, &napi->state);
6764 list_add_rcu(&napi->dev_list, &dev->napi_list);
6765 napi_hash_add(napi);
6766 }
6767 EXPORT_SYMBOL(netif_napi_add);
6768
napi_disable(struct napi_struct * n)6769 void napi_disable(struct napi_struct *n)
6770 {
6771 might_sleep();
6772 set_bit(NAPI_STATE_DISABLE, &n->state);
6773
6774 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6775 msleep(1);
6776 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6777 msleep(1);
6778
6779 hrtimer_cancel(&n->timer);
6780
6781 clear_bit(NAPI_STATE_DISABLE, &n->state);
6782 }
6783 EXPORT_SYMBOL(napi_disable);
6784
flush_gro_hash(struct napi_struct * napi)6785 static void flush_gro_hash(struct napi_struct *napi)
6786 {
6787 int i;
6788
6789 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6790 struct sk_buff *skb, *n;
6791
6792 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6793 kfree_skb(skb);
6794 napi->gro_hash[i].count = 0;
6795 }
6796 }
6797
6798 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6799 void __netif_napi_del(struct napi_struct *napi)
6800 {
6801 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6802 return;
6803
6804 napi_hash_del(napi);
6805 list_del_rcu(&napi->dev_list);
6806 napi_free_frags(napi);
6807
6808 flush_gro_hash(napi);
6809 napi->gro_bitmask = 0;
6810 }
6811 EXPORT_SYMBOL(__netif_napi_del);
6812
napi_poll(struct napi_struct * n,struct list_head * repoll)6813 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6814 {
6815 void *have;
6816 int work, weight;
6817
6818 list_del_init(&n->poll_list);
6819
6820 have = netpoll_poll_lock(n);
6821
6822 weight = n->weight;
6823
6824 /* This NAPI_STATE_SCHED test is for avoiding a race
6825 * with netpoll's poll_napi(). Only the entity which
6826 * obtains the lock and sees NAPI_STATE_SCHED set will
6827 * actually make the ->poll() call. Therefore we avoid
6828 * accidentally calling ->poll() when NAPI is not scheduled.
6829 */
6830 work = 0;
6831 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6832 work = n->poll(n, weight);
6833 trace_napi_poll(n, work, weight);
6834 }
6835
6836 if (unlikely(work > weight))
6837 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6838 n->poll, work, weight);
6839
6840 if (likely(work < weight))
6841 goto out_unlock;
6842
6843 /* Drivers must not modify the NAPI state if they
6844 * consume the entire weight. In such cases this code
6845 * still "owns" the NAPI instance and therefore can
6846 * move the instance around on the list at-will.
6847 */
6848 if (unlikely(napi_disable_pending(n))) {
6849 napi_complete(n);
6850 goto out_unlock;
6851 }
6852
6853 if (n->gro_bitmask) {
6854 /* flush too old packets
6855 * If HZ < 1000, flush all packets.
6856 */
6857 napi_gro_flush(n, HZ >= 1000);
6858 }
6859
6860 gro_normal_list(n);
6861
6862 /* Some drivers may have called napi_schedule
6863 * prior to exhausting their budget.
6864 */
6865 if (unlikely(!list_empty(&n->poll_list))) {
6866 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6867 n->dev ? n->dev->name : "backlog");
6868 goto out_unlock;
6869 }
6870
6871 list_add_tail(&n->poll_list, repoll);
6872
6873 out_unlock:
6874 netpoll_poll_unlock(have);
6875
6876 return work;
6877 }
6878
net_rx_action(struct softirq_action * h)6879 static __latent_entropy void net_rx_action(struct softirq_action *h)
6880 {
6881 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6882 unsigned long time_limit = jiffies +
6883 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6884 int budget = READ_ONCE(netdev_budget);
6885 LIST_HEAD(list);
6886 LIST_HEAD(repoll);
6887
6888 local_irq_disable();
6889 list_splice_init(&sd->poll_list, &list);
6890 local_irq_enable();
6891
6892 for (;;) {
6893 struct napi_struct *n;
6894
6895 if (list_empty(&list)) {
6896 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6897 goto out;
6898 break;
6899 }
6900
6901 n = list_first_entry(&list, struct napi_struct, poll_list);
6902 budget -= napi_poll(n, &repoll);
6903
6904 /* If softirq window is exhausted then punt.
6905 * Allow this to run for 2 jiffies since which will allow
6906 * an average latency of 1.5/HZ.
6907 */
6908 if (unlikely(budget <= 0 ||
6909 time_after_eq(jiffies, time_limit))) {
6910 sd->time_squeeze++;
6911 break;
6912 }
6913 }
6914
6915 local_irq_disable();
6916
6917 list_splice_tail_init(&sd->poll_list, &list);
6918 list_splice_tail(&repoll, &list);
6919 list_splice(&list, &sd->poll_list);
6920 if (!list_empty(&sd->poll_list))
6921 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6922
6923 net_rps_action_and_irq_enable(sd);
6924 out:
6925 __kfree_skb_flush();
6926 }
6927
6928 struct netdev_adjacent {
6929 struct net_device *dev;
6930
6931 /* upper master flag, there can only be one master device per list */
6932 bool master;
6933
6934 /* lookup ignore flag */
6935 bool ignore;
6936
6937 /* counter for the number of times this device was added to us */
6938 u16 ref_nr;
6939
6940 /* private field for the users */
6941 void *private;
6942
6943 struct list_head list;
6944 struct rcu_head rcu;
6945 };
6946
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6947 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6948 struct list_head *adj_list)
6949 {
6950 struct netdev_adjacent *adj;
6951
6952 list_for_each_entry(adj, adj_list, list) {
6953 if (adj->dev == adj_dev)
6954 return adj;
6955 }
6956 return NULL;
6957 }
6958
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6959 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6960 struct netdev_nested_priv *priv)
6961 {
6962 struct net_device *dev = (struct net_device *)priv->data;
6963
6964 return upper_dev == dev;
6965 }
6966
6967 /**
6968 * netdev_has_upper_dev - Check if device is linked to an upper device
6969 * @dev: device
6970 * @upper_dev: upper device to check
6971 *
6972 * Find out if a device is linked to specified upper device and return true
6973 * in case it is. Note that this checks only immediate upper device,
6974 * not through a complete stack of devices. The caller must hold the RTNL lock.
6975 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6976 bool netdev_has_upper_dev(struct net_device *dev,
6977 struct net_device *upper_dev)
6978 {
6979 struct netdev_nested_priv priv = {
6980 .data = (void *)upper_dev,
6981 };
6982
6983 ASSERT_RTNL();
6984
6985 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6986 &priv);
6987 }
6988 EXPORT_SYMBOL(netdev_has_upper_dev);
6989
6990 /**
6991 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6992 * @dev: device
6993 * @upper_dev: upper device to check
6994 *
6995 * Find out if a device is linked to specified upper device and return true
6996 * in case it is. Note that this checks the entire upper device chain.
6997 * The caller must hold rcu lock.
6998 */
6999
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7000 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7001 struct net_device *upper_dev)
7002 {
7003 struct netdev_nested_priv priv = {
7004 .data = (void *)upper_dev,
7005 };
7006
7007 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7008 &priv);
7009 }
7010 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7011
7012 /**
7013 * netdev_has_any_upper_dev - Check if device is linked to some device
7014 * @dev: device
7015 *
7016 * Find out if a device is linked to an upper device and return true in case
7017 * it is. The caller must hold the RTNL lock.
7018 */
netdev_has_any_upper_dev(struct net_device * dev)7019 bool netdev_has_any_upper_dev(struct net_device *dev)
7020 {
7021 ASSERT_RTNL();
7022
7023 return !list_empty(&dev->adj_list.upper);
7024 }
7025 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7026
7027 /**
7028 * netdev_master_upper_dev_get - Get master upper device
7029 * @dev: device
7030 *
7031 * Find a master upper device and return pointer to it or NULL in case
7032 * it's not there. The caller must hold the RTNL lock.
7033 */
netdev_master_upper_dev_get(struct net_device * dev)7034 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7035 {
7036 struct netdev_adjacent *upper;
7037
7038 ASSERT_RTNL();
7039
7040 if (list_empty(&dev->adj_list.upper))
7041 return NULL;
7042
7043 upper = list_first_entry(&dev->adj_list.upper,
7044 struct netdev_adjacent, list);
7045 if (likely(upper->master))
7046 return upper->dev;
7047 return NULL;
7048 }
7049 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7050
__netdev_master_upper_dev_get(struct net_device * dev)7051 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7052 {
7053 struct netdev_adjacent *upper;
7054
7055 ASSERT_RTNL();
7056
7057 if (list_empty(&dev->adj_list.upper))
7058 return NULL;
7059
7060 upper = list_first_entry(&dev->adj_list.upper,
7061 struct netdev_adjacent, list);
7062 if (likely(upper->master) && !upper->ignore)
7063 return upper->dev;
7064 return NULL;
7065 }
7066
7067 /**
7068 * netdev_has_any_lower_dev - Check if device is linked to some device
7069 * @dev: device
7070 *
7071 * Find out if a device is linked to a lower device and return true in case
7072 * it is. The caller must hold the RTNL lock.
7073 */
netdev_has_any_lower_dev(struct net_device * dev)7074 static bool netdev_has_any_lower_dev(struct net_device *dev)
7075 {
7076 ASSERT_RTNL();
7077
7078 return !list_empty(&dev->adj_list.lower);
7079 }
7080
netdev_adjacent_get_private(struct list_head * adj_list)7081 void *netdev_adjacent_get_private(struct list_head *adj_list)
7082 {
7083 struct netdev_adjacent *adj;
7084
7085 adj = list_entry(adj_list, struct netdev_adjacent, list);
7086
7087 return adj->private;
7088 }
7089 EXPORT_SYMBOL(netdev_adjacent_get_private);
7090
7091 /**
7092 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7093 * @dev: device
7094 * @iter: list_head ** of the current position
7095 *
7096 * Gets the next device from the dev's upper list, starting from iter
7097 * position. The caller must hold RCU read lock.
7098 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7099 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7100 struct list_head **iter)
7101 {
7102 struct netdev_adjacent *upper;
7103
7104 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7105
7106 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7107
7108 if (&upper->list == &dev->adj_list.upper)
7109 return NULL;
7110
7111 *iter = &upper->list;
7112
7113 return upper->dev;
7114 }
7115 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7116
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7117 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7118 struct list_head **iter,
7119 bool *ignore)
7120 {
7121 struct netdev_adjacent *upper;
7122
7123 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7124
7125 if (&upper->list == &dev->adj_list.upper)
7126 return NULL;
7127
7128 *iter = &upper->list;
7129 *ignore = upper->ignore;
7130
7131 return upper->dev;
7132 }
7133
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7134 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7135 struct list_head **iter)
7136 {
7137 struct netdev_adjacent *upper;
7138
7139 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7140
7141 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7142
7143 if (&upper->list == &dev->adj_list.upper)
7144 return NULL;
7145
7146 *iter = &upper->list;
7147
7148 return upper->dev;
7149 }
7150
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7151 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7152 int (*fn)(struct net_device *dev,
7153 struct netdev_nested_priv *priv),
7154 struct netdev_nested_priv *priv)
7155 {
7156 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7157 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7158 int ret, cur = 0;
7159 bool ignore;
7160
7161 now = dev;
7162 iter = &dev->adj_list.upper;
7163
7164 while (1) {
7165 if (now != dev) {
7166 ret = fn(now, priv);
7167 if (ret)
7168 return ret;
7169 }
7170
7171 next = NULL;
7172 while (1) {
7173 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7174 if (!udev)
7175 break;
7176 if (ignore)
7177 continue;
7178
7179 next = udev;
7180 niter = &udev->adj_list.upper;
7181 dev_stack[cur] = now;
7182 iter_stack[cur++] = iter;
7183 break;
7184 }
7185
7186 if (!next) {
7187 if (!cur)
7188 return 0;
7189 next = dev_stack[--cur];
7190 niter = iter_stack[cur];
7191 }
7192
7193 now = next;
7194 iter = niter;
7195 }
7196
7197 return 0;
7198 }
7199
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7200 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7201 int (*fn)(struct net_device *dev,
7202 struct netdev_nested_priv *priv),
7203 struct netdev_nested_priv *priv)
7204 {
7205 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7206 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7207 int ret, cur = 0;
7208
7209 now = dev;
7210 iter = &dev->adj_list.upper;
7211
7212 while (1) {
7213 if (now != dev) {
7214 ret = fn(now, priv);
7215 if (ret)
7216 return ret;
7217 }
7218
7219 next = NULL;
7220 while (1) {
7221 udev = netdev_next_upper_dev_rcu(now, &iter);
7222 if (!udev)
7223 break;
7224
7225 next = udev;
7226 niter = &udev->adj_list.upper;
7227 dev_stack[cur] = now;
7228 iter_stack[cur++] = iter;
7229 break;
7230 }
7231
7232 if (!next) {
7233 if (!cur)
7234 return 0;
7235 next = dev_stack[--cur];
7236 niter = iter_stack[cur];
7237 }
7238
7239 now = next;
7240 iter = niter;
7241 }
7242
7243 return 0;
7244 }
7245 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7246
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7247 static bool __netdev_has_upper_dev(struct net_device *dev,
7248 struct net_device *upper_dev)
7249 {
7250 struct netdev_nested_priv priv = {
7251 .flags = 0,
7252 .data = (void *)upper_dev,
7253 };
7254
7255 ASSERT_RTNL();
7256
7257 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7258 &priv);
7259 }
7260
7261 /**
7262 * netdev_lower_get_next_private - Get the next ->private from the
7263 * lower neighbour list
7264 * @dev: device
7265 * @iter: list_head ** of the current position
7266 *
7267 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7268 * list, starting from iter position. The caller must hold either hold the
7269 * RTNL lock or its own locking that guarantees that the neighbour lower
7270 * list will remain unchanged.
7271 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7272 void *netdev_lower_get_next_private(struct net_device *dev,
7273 struct list_head **iter)
7274 {
7275 struct netdev_adjacent *lower;
7276
7277 lower = list_entry(*iter, struct netdev_adjacent, list);
7278
7279 if (&lower->list == &dev->adj_list.lower)
7280 return NULL;
7281
7282 *iter = lower->list.next;
7283
7284 return lower->private;
7285 }
7286 EXPORT_SYMBOL(netdev_lower_get_next_private);
7287
7288 /**
7289 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7290 * lower neighbour list, RCU
7291 * variant
7292 * @dev: device
7293 * @iter: list_head ** of the current position
7294 *
7295 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7296 * list, starting from iter position. The caller must hold RCU read lock.
7297 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7298 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7299 struct list_head **iter)
7300 {
7301 struct netdev_adjacent *lower;
7302
7303 WARN_ON_ONCE(!rcu_read_lock_held());
7304
7305 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7306
7307 if (&lower->list == &dev->adj_list.lower)
7308 return NULL;
7309
7310 *iter = &lower->list;
7311
7312 return lower->private;
7313 }
7314 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7315
7316 /**
7317 * netdev_lower_get_next - Get the next device from the lower neighbour
7318 * list
7319 * @dev: device
7320 * @iter: list_head ** of the current position
7321 *
7322 * Gets the next netdev_adjacent from the dev's lower neighbour
7323 * list, starting from iter position. The caller must hold RTNL lock or
7324 * its own locking that guarantees that the neighbour lower
7325 * list will remain unchanged.
7326 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7327 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7328 {
7329 struct netdev_adjacent *lower;
7330
7331 lower = list_entry(*iter, struct netdev_adjacent, list);
7332
7333 if (&lower->list == &dev->adj_list.lower)
7334 return NULL;
7335
7336 *iter = lower->list.next;
7337
7338 return lower->dev;
7339 }
7340 EXPORT_SYMBOL(netdev_lower_get_next);
7341
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7342 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7343 struct list_head **iter)
7344 {
7345 struct netdev_adjacent *lower;
7346
7347 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7348
7349 if (&lower->list == &dev->adj_list.lower)
7350 return NULL;
7351
7352 *iter = &lower->list;
7353
7354 return lower->dev;
7355 }
7356
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7357 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7358 struct list_head **iter,
7359 bool *ignore)
7360 {
7361 struct netdev_adjacent *lower;
7362
7363 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7364
7365 if (&lower->list == &dev->adj_list.lower)
7366 return NULL;
7367
7368 *iter = &lower->list;
7369 *ignore = lower->ignore;
7370
7371 return lower->dev;
7372 }
7373
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7374 int netdev_walk_all_lower_dev(struct net_device *dev,
7375 int (*fn)(struct net_device *dev,
7376 struct netdev_nested_priv *priv),
7377 struct netdev_nested_priv *priv)
7378 {
7379 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7380 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7381 int ret, cur = 0;
7382
7383 now = dev;
7384 iter = &dev->adj_list.lower;
7385
7386 while (1) {
7387 if (now != dev) {
7388 ret = fn(now, priv);
7389 if (ret)
7390 return ret;
7391 }
7392
7393 next = NULL;
7394 while (1) {
7395 ldev = netdev_next_lower_dev(now, &iter);
7396 if (!ldev)
7397 break;
7398
7399 next = ldev;
7400 niter = &ldev->adj_list.lower;
7401 dev_stack[cur] = now;
7402 iter_stack[cur++] = iter;
7403 break;
7404 }
7405
7406 if (!next) {
7407 if (!cur)
7408 return 0;
7409 next = dev_stack[--cur];
7410 niter = iter_stack[cur];
7411 }
7412
7413 now = next;
7414 iter = niter;
7415 }
7416
7417 return 0;
7418 }
7419 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7420
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7421 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7422 int (*fn)(struct net_device *dev,
7423 struct netdev_nested_priv *priv),
7424 struct netdev_nested_priv *priv)
7425 {
7426 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428 int ret, cur = 0;
7429 bool ignore;
7430
7431 now = dev;
7432 iter = &dev->adj_list.lower;
7433
7434 while (1) {
7435 if (now != dev) {
7436 ret = fn(now, priv);
7437 if (ret)
7438 return ret;
7439 }
7440
7441 next = NULL;
7442 while (1) {
7443 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7444 if (!ldev)
7445 break;
7446 if (ignore)
7447 continue;
7448
7449 next = ldev;
7450 niter = &ldev->adj_list.lower;
7451 dev_stack[cur] = now;
7452 iter_stack[cur++] = iter;
7453 break;
7454 }
7455
7456 if (!next) {
7457 if (!cur)
7458 return 0;
7459 next = dev_stack[--cur];
7460 niter = iter_stack[cur];
7461 }
7462
7463 now = next;
7464 iter = niter;
7465 }
7466
7467 return 0;
7468 }
7469
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7470 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7471 struct list_head **iter)
7472 {
7473 struct netdev_adjacent *lower;
7474
7475 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7476 if (&lower->list == &dev->adj_list.lower)
7477 return NULL;
7478
7479 *iter = &lower->list;
7480
7481 return lower->dev;
7482 }
7483 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7484
__netdev_upper_depth(struct net_device * dev)7485 static u8 __netdev_upper_depth(struct net_device *dev)
7486 {
7487 struct net_device *udev;
7488 struct list_head *iter;
7489 u8 max_depth = 0;
7490 bool ignore;
7491
7492 for (iter = &dev->adj_list.upper,
7493 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7494 udev;
7495 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7496 if (ignore)
7497 continue;
7498 if (max_depth < udev->upper_level)
7499 max_depth = udev->upper_level;
7500 }
7501
7502 return max_depth;
7503 }
7504
__netdev_lower_depth(struct net_device * dev)7505 static u8 __netdev_lower_depth(struct net_device *dev)
7506 {
7507 struct net_device *ldev;
7508 struct list_head *iter;
7509 u8 max_depth = 0;
7510 bool ignore;
7511
7512 for (iter = &dev->adj_list.lower,
7513 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7514 ldev;
7515 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7516 if (ignore)
7517 continue;
7518 if (max_depth < ldev->lower_level)
7519 max_depth = ldev->lower_level;
7520 }
7521
7522 return max_depth;
7523 }
7524
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7525 static int __netdev_update_upper_level(struct net_device *dev,
7526 struct netdev_nested_priv *__unused)
7527 {
7528 dev->upper_level = __netdev_upper_depth(dev) + 1;
7529 return 0;
7530 }
7531
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7532 static int __netdev_update_lower_level(struct net_device *dev,
7533 struct netdev_nested_priv *priv)
7534 {
7535 dev->lower_level = __netdev_lower_depth(dev) + 1;
7536
7537 #ifdef CONFIG_LOCKDEP
7538 if (!priv)
7539 return 0;
7540
7541 if (priv->flags & NESTED_SYNC_IMM)
7542 dev->nested_level = dev->lower_level - 1;
7543 if (priv->flags & NESTED_SYNC_TODO)
7544 net_unlink_todo(dev);
7545 #endif
7546 return 0;
7547 }
7548
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7549 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7550 int (*fn)(struct net_device *dev,
7551 struct netdev_nested_priv *priv),
7552 struct netdev_nested_priv *priv)
7553 {
7554 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7555 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7556 int ret, cur = 0;
7557
7558 now = dev;
7559 iter = &dev->adj_list.lower;
7560
7561 while (1) {
7562 if (now != dev) {
7563 ret = fn(now, priv);
7564 if (ret)
7565 return ret;
7566 }
7567
7568 next = NULL;
7569 while (1) {
7570 ldev = netdev_next_lower_dev_rcu(now, &iter);
7571 if (!ldev)
7572 break;
7573
7574 next = ldev;
7575 niter = &ldev->adj_list.lower;
7576 dev_stack[cur] = now;
7577 iter_stack[cur++] = iter;
7578 break;
7579 }
7580
7581 if (!next) {
7582 if (!cur)
7583 return 0;
7584 next = dev_stack[--cur];
7585 niter = iter_stack[cur];
7586 }
7587
7588 now = next;
7589 iter = niter;
7590 }
7591
7592 return 0;
7593 }
7594 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7595
7596 /**
7597 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7598 * lower neighbour list, RCU
7599 * variant
7600 * @dev: device
7601 *
7602 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7603 * list. The caller must hold RCU read lock.
7604 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7605 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7606 {
7607 struct netdev_adjacent *lower;
7608
7609 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7610 struct netdev_adjacent, list);
7611 if (lower)
7612 return lower->private;
7613 return NULL;
7614 }
7615 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7616
7617 /**
7618 * netdev_master_upper_dev_get_rcu - Get master upper device
7619 * @dev: device
7620 *
7621 * Find a master upper device and return pointer to it or NULL in case
7622 * it's not there. The caller must hold the RCU read lock.
7623 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7624 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7625 {
7626 struct netdev_adjacent *upper;
7627
7628 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7629 struct netdev_adjacent, list);
7630 if (upper && likely(upper->master))
7631 return upper->dev;
7632 return NULL;
7633 }
7634 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7635
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7636 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7637 struct net_device *adj_dev,
7638 struct list_head *dev_list)
7639 {
7640 char linkname[IFNAMSIZ+7];
7641
7642 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7643 "upper_%s" : "lower_%s", adj_dev->name);
7644 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7645 linkname);
7646 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7647 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7648 char *name,
7649 struct list_head *dev_list)
7650 {
7651 char linkname[IFNAMSIZ+7];
7652
7653 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7654 "upper_%s" : "lower_%s", name);
7655 sysfs_remove_link(&(dev->dev.kobj), linkname);
7656 }
7657
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7658 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7659 struct net_device *adj_dev,
7660 struct list_head *dev_list)
7661 {
7662 return (dev_list == &dev->adj_list.upper ||
7663 dev_list == &dev->adj_list.lower) &&
7664 net_eq(dev_net(dev), dev_net(adj_dev));
7665 }
7666
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7667 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7668 struct net_device *adj_dev,
7669 struct list_head *dev_list,
7670 void *private, bool master)
7671 {
7672 struct netdev_adjacent *adj;
7673 int ret;
7674
7675 adj = __netdev_find_adj(adj_dev, dev_list);
7676
7677 if (adj) {
7678 adj->ref_nr += 1;
7679 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7680 dev->name, adj_dev->name, adj->ref_nr);
7681
7682 return 0;
7683 }
7684
7685 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7686 if (!adj)
7687 return -ENOMEM;
7688
7689 adj->dev = adj_dev;
7690 adj->master = master;
7691 adj->ref_nr = 1;
7692 adj->private = private;
7693 adj->ignore = false;
7694 dev_hold(adj_dev);
7695
7696 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7697 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7698
7699 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7700 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7701 if (ret)
7702 goto free_adj;
7703 }
7704
7705 /* Ensure that master link is always the first item in list. */
7706 if (master) {
7707 ret = sysfs_create_link(&(dev->dev.kobj),
7708 &(adj_dev->dev.kobj), "master");
7709 if (ret)
7710 goto remove_symlinks;
7711
7712 list_add_rcu(&adj->list, dev_list);
7713 } else {
7714 list_add_tail_rcu(&adj->list, dev_list);
7715 }
7716
7717 return 0;
7718
7719 remove_symlinks:
7720 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7721 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7722 free_adj:
7723 kfree(adj);
7724 dev_put(adj_dev);
7725
7726 return ret;
7727 }
7728
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7729 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7730 struct net_device *adj_dev,
7731 u16 ref_nr,
7732 struct list_head *dev_list)
7733 {
7734 struct netdev_adjacent *adj;
7735
7736 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7737 dev->name, adj_dev->name, ref_nr);
7738
7739 adj = __netdev_find_adj(adj_dev, dev_list);
7740
7741 if (!adj) {
7742 pr_err("Adjacency does not exist for device %s from %s\n",
7743 dev->name, adj_dev->name);
7744 WARN_ON(1);
7745 return;
7746 }
7747
7748 if (adj->ref_nr > ref_nr) {
7749 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7750 dev->name, adj_dev->name, ref_nr,
7751 adj->ref_nr - ref_nr);
7752 adj->ref_nr -= ref_nr;
7753 return;
7754 }
7755
7756 if (adj->master)
7757 sysfs_remove_link(&(dev->dev.kobj), "master");
7758
7759 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7760 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7761
7762 list_del_rcu(&adj->list);
7763 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7764 adj_dev->name, dev->name, adj_dev->name);
7765 dev_put(adj_dev);
7766 kfree_rcu(adj, rcu);
7767 }
7768
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7769 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7770 struct net_device *upper_dev,
7771 struct list_head *up_list,
7772 struct list_head *down_list,
7773 void *private, bool master)
7774 {
7775 int ret;
7776
7777 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7778 private, master);
7779 if (ret)
7780 return ret;
7781
7782 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7783 private, false);
7784 if (ret) {
7785 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7786 return ret;
7787 }
7788
7789 return 0;
7790 }
7791
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7792 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7793 struct net_device *upper_dev,
7794 u16 ref_nr,
7795 struct list_head *up_list,
7796 struct list_head *down_list)
7797 {
7798 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7799 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7800 }
7801
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7802 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7803 struct net_device *upper_dev,
7804 void *private, bool master)
7805 {
7806 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7807 &dev->adj_list.upper,
7808 &upper_dev->adj_list.lower,
7809 private, master);
7810 }
7811
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7812 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7813 struct net_device *upper_dev)
7814 {
7815 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7816 &dev->adj_list.upper,
7817 &upper_dev->adj_list.lower);
7818 }
7819
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7820 static int __netdev_upper_dev_link(struct net_device *dev,
7821 struct net_device *upper_dev, bool master,
7822 void *upper_priv, void *upper_info,
7823 struct netdev_nested_priv *priv,
7824 struct netlink_ext_ack *extack)
7825 {
7826 struct netdev_notifier_changeupper_info changeupper_info = {
7827 .info = {
7828 .dev = dev,
7829 .extack = extack,
7830 },
7831 .upper_dev = upper_dev,
7832 .master = master,
7833 .linking = true,
7834 .upper_info = upper_info,
7835 };
7836 struct net_device *master_dev;
7837 int ret = 0;
7838
7839 ASSERT_RTNL();
7840
7841 if (dev == upper_dev)
7842 return -EBUSY;
7843
7844 /* To prevent loops, check if dev is not upper device to upper_dev. */
7845 if (__netdev_has_upper_dev(upper_dev, dev))
7846 return -EBUSY;
7847
7848 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7849 return -EMLINK;
7850
7851 if (!master) {
7852 if (__netdev_has_upper_dev(dev, upper_dev))
7853 return -EEXIST;
7854 } else {
7855 master_dev = __netdev_master_upper_dev_get(dev);
7856 if (master_dev)
7857 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7858 }
7859
7860 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7861 &changeupper_info.info);
7862 ret = notifier_to_errno(ret);
7863 if (ret)
7864 return ret;
7865
7866 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7867 master);
7868 if (ret)
7869 return ret;
7870
7871 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7872 &changeupper_info.info);
7873 ret = notifier_to_errno(ret);
7874 if (ret)
7875 goto rollback;
7876
7877 __netdev_update_upper_level(dev, NULL);
7878 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7879
7880 __netdev_update_lower_level(upper_dev, priv);
7881 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7882 priv);
7883
7884 return 0;
7885
7886 rollback:
7887 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7888
7889 return ret;
7890 }
7891
7892 /**
7893 * netdev_upper_dev_link - Add a link to the upper device
7894 * @dev: device
7895 * @upper_dev: new upper device
7896 * @extack: netlink extended ack
7897 *
7898 * Adds a link to device which is upper to this one. The caller must hold
7899 * the RTNL lock. On a failure a negative errno code is returned.
7900 * On success the reference counts are adjusted and the function
7901 * returns zero.
7902 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7903 int netdev_upper_dev_link(struct net_device *dev,
7904 struct net_device *upper_dev,
7905 struct netlink_ext_ack *extack)
7906 {
7907 struct netdev_nested_priv priv = {
7908 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7909 .data = NULL,
7910 };
7911
7912 return __netdev_upper_dev_link(dev, upper_dev, false,
7913 NULL, NULL, &priv, extack);
7914 }
7915 EXPORT_SYMBOL(netdev_upper_dev_link);
7916
7917 /**
7918 * netdev_master_upper_dev_link - Add a master link to the upper device
7919 * @dev: device
7920 * @upper_dev: new upper device
7921 * @upper_priv: upper device private
7922 * @upper_info: upper info to be passed down via notifier
7923 * @extack: netlink extended ack
7924 *
7925 * Adds a link to device which is upper to this one. In this case, only
7926 * one master upper device can be linked, although other non-master devices
7927 * might be linked as well. The caller must hold the RTNL lock.
7928 * On a failure a negative errno code is returned. On success the reference
7929 * counts are adjusted and the function returns zero.
7930 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7931 int netdev_master_upper_dev_link(struct net_device *dev,
7932 struct net_device *upper_dev,
7933 void *upper_priv, void *upper_info,
7934 struct netlink_ext_ack *extack)
7935 {
7936 struct netdev_nested_priv priv = {
7937 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7938 .data = NULL,
7939 };
7940
7941 return __netdev_upper_dev_link(dev, upper_dev, true,
7942 upper_priv, upper_info, &priv, extack);
7943 }
7944 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7945
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7946 static void __netdev_upper_dev_unlink(struct net_device *dev,
7947 struct net_device *upper_dev,
7948 struct netdev_nested_priv *priv)
7949 {
7950 struct netdev_notifier_changeupper_info changeupper_info = {
7951 .info = {
7952 .dev = dev,
7953 },
7954 .upper_dev = upper_dev,
7955 .linking = false,
7956 };
7957
7958 ASSERT_RTNL();
7959
7960 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7961
7962 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7963 &changeupper_info.info);
7964
7965 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7966
7967 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7968 &changeupper_info.info);
7969
7970 __netdev_update_upper_level(dev, NULL);
7971 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7972
7973 __netdev_update_lower_level(upper_dev, priv);
7974 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7975 priv);
7976 }
7977
7978 /**
7979 * netdev_upper_dev_unlink - Removes a link to upper device
7980 * @dev: device
7981 * @upper_dev: new upper device
7982 *
7983 * Removes a link to device which is upper to this one. The caller must hold
7984 * the RTNL lock.
7985 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7986 void netdev_upper_dev_unlink(struct net_device *dev,
7987 struct net_device *upper_dev)
7988 {
7989 struct netdev_nested_priv priv = {
7990 .flags = NESTED_SYNC_TODO,
7991 .data = NULL,
7992 };
7993
7994 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7995 }
7996 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7997
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7998 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7999 struct net_device *lower_dev,
8000 bool val)
8001 {
8002 struct netdev_adjacent *adj;
8003
8004 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8005 if (adj)
8006 adj->ignore = val;
8007
8008 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8009 if (adj)
8010 adj->ignore = val;
8011 }
8012
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8013 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8014 struct net_device *lower_dev)
8015 {
8016 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8017 }
8018
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8019 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8020 struct net_device *lower_dev)
8021 {
8022 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8023 }
8024
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8025 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8026 struct net_device *new_dev,
8027 struct net_device *dev,
8028 struct netlink_ext_ack *extack)
8029 {
8030 struct netdev_nested_priv priv = {
8031 .flags = 0,
8032 .data = NULL,
8033 };
8034 int err;
8035
8036 if (!new_dev)
8037 return 0;
8038
8039 if (old_dev && new_dev != old_dev)
8040 netdev_adjacent_dev_disable(dev, old_dev);
8041 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8042 extack);
8043 if (err) {
8044 if (old_dev && new_dev != old_dev)
8045 netdev_adjacent_dev_enable(dev, old_dev);
8046 return err;
8047 }
8048
8049 return 0;
8050 }
8051 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8052
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8053 void netdev_adjacent_change_commit(struct net_device *old_dev,
8054 struct net_device *new_dev,
8055 struct net_device *dev)
8056 {
8057 struct netdev_nested_priv priv = {
8058 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8059 .data = NULL,
8060 };
8061
8062 if (!new_dev || !old_dev)
8063 return;
8064
8065 if (new_dev == old_dev)
8066 return;
8067
8068 netdev_adjacent_dev_enable(dev, old_dev);
8069 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8070 }
8071 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8072
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8073 void netdev_adjacent_change_abort(struct net_device *old_dev,
8074 struct net_device *new_dev,
8075 struct net_device *dev)
8076 {
8077 struct netdev_nested_priv priv = {
8078 .flags = 0,
8079 .data = NULL,
8080 };
8081
8082 if (!new_dev)
8083 return;
8084
8085 if (old_dev && new_dev != old_dev)
8086 netdev_adjacent_dev_enable(dev, old_dev);
8087
8088 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8089 }
8090 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8091
8092 /**
8093 * netdev_bonding_info_change - Dispatch event about slave change
8094 * @dev: device
8095 * @bonding_info: info to dispatch
8096 *
8097 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8098 * The caller must hold the RTNL lock.
8099 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8100 void netdev_bonding_info_change(struct net_device *dev,
8101 struct netdev_bonding_info *bonding_info)
8102 {
8103 struct netdev_notifier_bonding_info info = {
8104 .info.dev = dev,
8105 };
8106
8107 memcpy(&info.bonding_info, bonding_info,
8108 sizeof(struct netdev_bonding_info));
8109 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8110 &info.info);
8111 }
8112 EXPORT_SYMBOL(netdev_bonding_info_change);
8113
8114 /**
8115 * netdev_get_xmit_slave - Get the xmit slave of master device
8116 * @dev: device
8117 * @skb: The packet
8118 * @all_slaves: assume all the slaves are active
8119 *
8120 * The reference counters are not incremented so the caller must be
8121 * careful with locks. The caller must hold RCU lock.
8122 * %NULL is returned if no slave is found.
8123 */
8124
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8125 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8126 struct sk_buff *skb,
8127 bool all_slaves)
8128 {
8129 const struct net_device_ops *ops = dev->netdev_ops;
8130
8131 if (!ops->ndo_get_xmit_slave)
8132 return NULL;
8133 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8134 }
8135 EXPORT_SYMBOL(netdev_get_xmit_slave);
8136
netdev_adjacent_add_links(struct net_device * dev)8137 static void netdev_adjacent_add_links(struct net_device *dev)
8138 {
8139 struct netdev_adjacent *iter;
8140
8141 struct net *net = dev_net(dev);
8142
8143 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8144 if (!net_eq(net, dev_net(iter->dev)))
8145 continue;
8146 netdev_adjacent_sysfs_add(iter->dev, dev,
8147 &iter->dev->adj_list.lower);
8148 netdev_adjacent_sysfs_add(dev, iter->dev,
8149 &dev->adj_list.upper);
8150 }
8151
8152 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8153 if (!net_eq(net, dev_net(iter->dev)))
8154 continue;
8155 netdev_adjacent_sysfs_add(iter->dev, dev,
8156 &iter->dev->adj_list.upper);
8157 netdev_adjacent_sysfs_add(dev, iter->dev,
8158 &dev->adj_list.lower);
8159 }
8160 }
8161
netdev_adjacent_del_links(struct net_device * dev)8162 static void netdev_adjacent_del_links(struct net_device *dev)
8163 {
8164 struct netdev_adjacent *iter;
8165
8166 struct net *net = dev_net(dev);
8167
8168 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8169 if (!net_eq(net, dev_net(iter->dev)))
8170 continue;
8171 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8172 &iter->dev->adj_list.lower);
8173 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8174 &dev->adj_list.upper);
8175 }
8176
8177 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8178 if (!net_eq(net, dev_net(iter->dev)))
8179 continue;
8180 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8181 &iter->dev->adj_list.upper);
8182 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8183 &dev->adj_list.lower);
8184 }
8185 }
8186
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8187 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8188 {
8189 struct netdev_adjacent *iter;
8190
8191 struct net *net = dev_net(dev);
8192
8193 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8194 if (!net_eq(net, dev_net(iter->dev)))
8195 continue;
8196 netdev_adjacent_sysfs_del(iter->dev, oldname,
8197 &iter->dev->adj_list.lower);
8198 netdev_adjacent_sysfs_add(iter->dev, dev,
8199 &iter->dev->adj_list.lower);
8200 }
8201
8202 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8203 if (!net_eq(net, dev_net(iter->dev)))
8204 continue;
8205 netdev_adjacent_sysfs_del(iter->dev, oldname,
8206 &iter->dev->adj_list.upper);
8207 netdev_adjacent_sysfs_add(iter->dev, dev,
8208 &iter->dev->adj_list.upper);
8209 }
8210 }
8211
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8212 void *netdev_lower_dev_get_private(struct net_device *dev,
8213 struct net_device *lower_dev)
8214 {
8215 struct netdev_adjacent *lower;
8216
8217 if (!lower_dev)
8218 return NULL;
8219 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8220 if (!lower)
8221 return NULL;
8222
8223 return lower->private;
8224 }
8225 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8226
8227
8228 /**
8229 * netdev_lower_change - Dispatch event about lower device state change
8230 * @lower_dev: device
8231 * @lower_state_info: state to dispatch
8232 *
8233 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8234 * The caller must hold the RTNL lock.
8235 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8236 void netdev_lower_state_changed(struct net_device *lower_dev,
8237 void *lower_state_info)
8238 {
8239 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8240 .info.dev = lower_dev,
8241 };
8242
8243 ASSERT_RTNL();
8244 changelowerstate_info.lower_state_info = lower_state_info;
8245 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8246 &changelowerstate_info.info);
8247 }
8248 EXPORT_SYMBOL(netdev_lower_state_changed);
8249
dev_change_rx_flags(struct net_device * dev,int flags)8250 static void dev_change_rx_flags(struct net_device *dev, int flags)
8251 {
8252 const struct net_device_ops *ops = dev->netdev_ops;
8253
8254 if (ops->ndo_change_rx_flags)
8255 ops->ndo_change_rx_flags(dev, flags);
8256 }
8257
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8258 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8259 {
8260 unsigned int old_flags = dev->flags;
8261 kuid_t uid;
8262 kgid_t gid;
8263
8264 ASSERT_RTNL();
8265
8266 dev->flags |= IFF_PROMISC;
8267 dev->promiscuity += inc;
8268 if (dev->promiscuity == 0) {
8269 /*
8270 * Avoid overflow.
8271 * If inc causes overflow, untouch promisc and return error.
8272 */
8273 if (inc < 0)
8274 dev->flags &= ~IFF_PROMISC;
8275 else {
8276 dev->promiscuity -= inc;
8277 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8278 dev->name);
8279 return -EOVERFLOW;
8280 }
8281 }
8282 if (dev->flags != old_flags) {
8283 pr_info("device %s %s promiscuous mode\n",
8284 dev->name,
8285 dev->flags & IFF_PROMISC ? "entered" : "left");
8286 if (audit_enabled) {
8287 current_uid_gid(&uid, &gid);
8288 audit_log(audit_context(), GFP_ATOMIC,
8289 AUDIT_ANOM_PROMISCUOUS,
8290 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8291 dev->name, (dev->flags & IFF_PROMISC),
8292 (old_flags & IFF_PROMISC),
8293 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8294 from_kuid(&init_user_ns, uid),
8295 from_kgid(&init_user_ns, gid),
8296 audit_get_sessionid(current));
8297 }
8298
8299 dev_change_rx_flags(dev, IFF_PROMISC);
8300 }
8301 if (notify)
8302 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8303 return 0;
8304 }
8305
8306 /**
8307 * dev_set_promiscuity - update promiscuity count on a device
8308 * @dev: device
8309 * @inc: modifier
8310 *
8311 * Add or remove promiscuity from a device. While the count in the device
8312 * remains above zero the interface remains promiscuous. Once it hits zero
8313 * the device reverts back to normal filtering operation. A negative inc
8314 * value is used to drop promiscuity on the device.
8315 * Return 0 if successful or a negative errno code on error.
8316 */
dev_set_promiscuity(struct net_device * dev,int inc)8317 int dev_set_promiscuity(struct net_device *dev, int inc)
8318 {
8319 unsigned int old_flags = dev->flags;
8320 int err;
8321
8322 err = __dev_set_promiscuity(dev, inc, true);
8323 if (err < 0)
8324 return err;
8325 if (dev->flags != old_flags)
8326 dev_set_rx_mode(dev);
8327 return err;
8328 }
8329 EXPORT_SYMBOL(dev_set_promiscuity);
8330
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8331 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8332 {
8333 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8334
8335 ASSERT_RTNL();
8336
8337 dev->flags |= IFF_ALLMULTI;
8338 dev->allmulti += inc;
8339 if (dev->allmulti == 0) {
8340 /*
8341 * Avoid overflow.
8342 * If inc causes overflow, untouch allmulti and return error.
8343 */
8344 if (inc < 0)
8345 dev->flags &= ~IFF_ALLMULTI;
8346 else {
8347 dev->allmulti -= inc;
8348 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8349 dev->name);
8350 return -EOVERFLOW;
8351 }
8352 }
8353 if (dev->flags ^ old_flags) {
8354 dev_change_rx_flags(dev, IFF_ALLMULTI);
8355 dev_set_rx_mode(dev);
8356 if (notify)
8357 __dev_notify_flags(dev, old_flags,
8358 dev->gflags ^ old_gflags);
8359 }
8360 return 0;
8361 }
8362
8363 /**
8364 * dev_set_allmulti - update allmulti count on a device
8365 * @dev: device
8366 * @inc: modifier
8367 *
8368 * Add or remove reception of all multicast frames to a device. While the
8369 * count in the device remains above zero the interface remains listening
8370 * to all interfaces. Once it hits zero the device reverts back to normal
8371 * filtering operation. A negative @inc value is used to drop the counter
8372 * when releasing a resource needing all multicasts.
8373 * Return 0 if successful or a negative errno code on error.
8374 */
8375
dev_set_allmulti(struct net_device * dev,int inc)8376 int dev_set_allmulti(struct net_device *dev, int inc)
8377 {
8378 return __dev_set_allmulti(dev, inc, true);
8379 }
8380 EXPORT_SYMBOL(dev_set_allmulti);
8381
8382 /*
8383 * Upload unicast and multicast address lists to device and
8384 * configure RX filtering. When the device doesn't support unicast
8385 * filtering it is put in promiscuous mode while unicast addresses
8386 * are present.
8387 */
__dev_set_rx_mode(struct net_device * dev)8388 void __dev_set_rx_mode(struct net_device *dev)
8389 {
8390 const struct net_device_ops *ops = dev->netdev_ops;
8391
8392 /* dev_open will call this function so the list will stay sane. */
8393 if (!(dev->flags&IFF_UP))
8394 return;
8395
8396 if (!netif_device_present(dev))
8397 return;
8398
8399 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8400 /* Unicast addresses changes may only happen under the rtnl,
8401 * therefore calling __dev_set_promiscuity here is safe.
8402 */
8403 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8404 __dev_set_promiscuity(dev, 1, false);
8405 dev->uc_promisc = true;
8406 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8407 __dev_set_promiscuity(dev, -1, false);
8408 dev->uc_promisc = false;
8409 }
8410 }
8411
8412 if (ops->ndo_set_rx_mode)
8413 ops->ndo_set_rx_mode(dev);
8414 }
8415
dev_set_rx_mode(struct net_device * dev)8416 void dev_set_rx_mode(struct net_device *dev)
8417 {
8418 netif_addr_lock_bh(dev);
8419 __dev_set_rx_mode(dev);
8420 netif_addr_unlock_bh(dev);
8421 }
8422
8423 /**
8424 * dev_get_flags - get flags reported to userspace
8425 * @dev: device
8426 *
8427 * Get the combination of flag bits exported through APIs to userspace.
8428 */
dev_get_flags(const struct net_device * dev)8429 unsigned int dev_get_flags(const struct net_device *dev)
8430 {
8431 unsigned int flags;
8432
8433 flags = (dev->flags & ~(IFF_PROMISC |
8434 IFF_ALLMULTI |
8435 IFF_RUNNING |
8436 IFF_LOWER_UP |
8437 IFF_DORMANT)) |
8438 (dev->gflags & (IFF_PROMISC |
8439 IFF_ALLMULTI));
8440
8441 if (netif_running(dev)) {
8442 if (netif_oper_up(dev))
8443 flags |= IFF_RUNNING;
8444 if (netif_carrier_ok(dev))
8445 flags |= IFF_LOWER_UP;
8446 if (netif_dormant(dev))
8447 flags |= IFF_DORMANT;
8448 }
8449
8450 return flags;
8451 }
8452 EXPORT_SYMBOL(dev_get_flags);
8453
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8454 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8455 struct netlink_ext_ack *extack)
8456 {
8457 unsigned int old_flags = dev->flags;
8458 int ret;
8459
8460 ASSERT_RTNL();
8461
8462 /*
8463 * Set the flags on our device.
8464 */
8465
8466 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8467 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8468 IFF_AUTOMEDIA)) |
8469 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8470 IFF_ALLMULTI));
8471
8472 /*
8473 * Load in the correct multicast list now the flags have changed.
8474 */
8475
8476 if ((old_flags ^ flags) & IFF_MULTICAST)
8477 dev_change_rx_flags(dev, IFF_MULTICAST);
8478
8479 dev_set_rx_mode(dev);
8480
8481 /*
8482 * Have we downed the interface. We handle IFF_UP ourselves
8483 * according to user attempts to set it, rather than blindly
8484 * setting it.
8485 */
8486
8487 ret = 0;
8488 if ((old_flags ^ flags) & IFF_UP) {
8489 if (old_flags & IFF_UP)
8490 __dev_close(dev);
8491 else
8492 ret = __dev_open(dev, extack);
8493 }
8494
8495 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8496 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8497 unsigned int old_flags = dev->flags;
8498
8499 dev->gflags ^= IFF_PROMISC;
8500
8501 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8502 if (dev->flags != old_flags)
8503 dev_set_rx_mode(dev);
8504 }
8505
8506 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8507 * is important. Some (broken) drivers set IFF_PROMISC, when
8508 * IFF_ALLMULTI is requested not asking us and not reporting.
8509 */
8510 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8511 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8512
8513 dev->gflags ^= IFF_ALLMULTI;
8514 __dev_set_allmulti(dev, inc, false);
8515 }
8516
8517 return ret;
8518 }
8519
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)8520 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8521 unsigned int gchanges)
8522 {
8523 unsigned int changes = dev->flags ^ old_flags;
8524
8525 if (gchanges)
8526 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8527
8528 if (changes & IFF_UP) {
8529 if (dev->flags & IFF_UP)
8530 call_netdevice_notifiers(NETDEV_UP, dev);
8531 else
8532 call_netdevice_notifiers(NETDEV_DOWN, dev);
8533 }
8534
8535 if (dev->flags & IFF_UP &&
8536 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8537 struct netdev_notifier_change_info change_info = {
8538 .info = {
8539 .dev = dev,
8540 },
8541 .flags_changed = changes,
8542 };
8543
8544 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8545 }
8546 }
8547
8548 /**
8549 * dev_change_flags - change device settings
8550 * @dev: device
8551 * @flags: device state flags
8552 * @extack: netlink extended ack
8553 *
8554 * Change settings on device based state flags. The flags are
8555 * in the userspace exported format.
8556 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8557 int dev_change_flags(struct net_device *dev, unsigned int flags,
8558 struct netlink_ext_ack *extack)
8559 {
8560 int ret;
8561 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8562
8563 ret = __dev_change_flags(dev, flags, extack);
8564 if (ret < 0)
8565 return ret;
8566
8567 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8568 __dev_notify_flags(dev, old_flags, changes);
8569 return ret;
8570 }
8571 EXPORT_SYMBOL(dev_change_flags);
8572
__dev_set_mtu(struct net_device * dev,int new_mtu)8573 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8574 {
8575 const struct net_device_ops *ops = dev->netdev_ops;
8576
8577 if (ops->ndo_change_mtu)
8578 return ops->ndo_change_mtu(dev, new_mtu);
8579
8580 /* Pairs with all the lockless reads of dev->mtu in the stack */
8581 WRITE_ONCE(dev->mtu, new_mtu);
8582 return 0;
8583 }
8584 EXPORT_SYMBOL(__dev_set_mtu);
8585
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8586 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8587 struct netlink_ext_ack *extack)
8588 {
8589 /* MTU must be positive, and in range */
8590 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8591 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8592 return -EINVAL;
8593 }
8594
8595 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8596 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8597 return -EINVAL;
8598 }
8599 return 0;
8600 }
8601
8602 /**
8603 * dev_set_mtu_ext - Change maximum transfer unit
8604 * @dev: device
8605 * @new_mtu: new transfer unit
8606 * @extack: netlink extended ack
8607 *
8608 * Change the maximum transfer size of the network device.
8609 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8610 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8611 struct netlink_ext_ack *extack)
8612 {
8613 int err, orig_mtu;
8614
8615 if (new_mtu == dev->mtu)
8616 return 0;
8617
8618 err = dev_validate_mtu(dev, new_mtu, extack);
8619 if (err)
8620 return err;
8621
8622 if (!netif_device_present(dev))
8623 return -ENODEV;
8624
8625 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8626 err = notifier_to_errno(err);
8627 if (err)
8628 return err;
8629
8630 orig_mtu = dev->mtu;
8631 err = __dev_set_mtu(dev, new_mtu);
8632
8633 if (!err) {
8634 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8635 orig_mtu);
8636 err = notifier_to_errno(err);
8637 if (err) {
8638 /* setting mtu back and notifying everyone again,
8639 * so that they have a chance to revert changes.
8640 */
8641 __dev_set_mtu(dev, orig_mtu);
8642 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8643 new_mtu);
8644 }
8645 }
8646 return err;
8647 }
8648
dev_set_mtu(struct net_device * dev,int new_mtu)8649 int dev_set_mtu(struct net_device *dev, int new_mtu)
8650 {
8651 struct netlink_ext_ack extack;
8652 int err;
8653
8654 memset(&extack, 0, sizeof(extack));
8655 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8656 if (err && extack._msg)
8657 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8658 return err;
8659 }
8660 EXPORT_SYMBOL(dev_set_mtu);
8661
8662 /**
8663 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8664 * @dev: device
8665 * @new_len: new tx queue length
8666 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8667 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8668 {
8669 unsigned int orig_len = dev->tx_queue_len;
8670 int res;
8671
8672 if (new_len != (unsigned int)new_len)
8673 return -ERANGE;
8674
8675 if (new_len != orig_len) {
8676 dev->tx_queue_len = new_len;
8677 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8678 res = notifier_to_errno(res);
8679 if (res)
8680 goto err_rollback;
8681 res = dev_qdisc_change_tx_queue_len(dev);
8682 if (res)
8683 goto err_rollback;
8684 }
8685
8686 return 0;
8687
8688 err_rollback:
8689 netdev_err(dev, "refused to change device tx_queue_len\n");
8690 dev->tx_queue_len = orig_len;
8691 return res;
8692 }
8693
8694 /**
8695 * dev_set_group - Change group this device belongs to
8696 * @dev: device
8697 * @new_group: group this device should belong to
8698 */
dev_set_group(struct net_device * dev,int new_group)8699 void dev_set_group(struct net_device *dev, int new_group)
8700 {
8701 dev->group = new_group;
8702 }
8703 EXPORT_SYMBOL(dev_set_group);
8704
8705 /**
8706 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8707 * @dev: device
8708 * @addr: new address
8709 * @extack: netlink extended ack
8710 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8711 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8712 struct netlink_ext_ack *extack)
8713 {
8714 struct netdev_notifier_pre_changeaddr_info info = {
8715 .info.dev = dev,
8716 .info.extack = extack,
8717 .dev_addr = addr,
8718 };
8719 int rc;
8720
8721 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8722 return notifier_to_errno(rc);
8723 }
8724 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8725
8726 /**
8727 * dev_set_mac_address - Change Media Access Control Address
8728 * @dev: device
8729 * @sa: new address
8730 * @extack: netlink extended ack
8731 *
8732 * Change the hardware (MAC) address of the device
8733 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8734 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8735 struct netlink_ext_ack *extack)
8736 {
8737 const struct net_device_ops *ops = dev->netdev_ops;
8738 int err;
8739
8740 if (!ops->ndo_set_mac_address)
8741 return -EOPNOTSUPP;
8742 if (sa->sa_family != dev->type)
8743 return -EINVAL;
8744 if (!netif_device_present(dev))
8745 return -ENODEV;
8746 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8747 if (err)
8748 return err;
8749 err = ops->ndo_set_mac_address(dev, sa);
8750 if (err)
8751 return err;
8752 dev->addr_assign_type = NET_ADDR_SET;
8753 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8754 add_device_randomness(dev->dev_addr, dev->addr_len);
8755 return 0;
8756 }
8757 EXPORT_SYMBOL(dev_set_mac_address);
8758
8759 static DECLARE_RWSEM(dev_addr_sem);
8760
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8761 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8762 struct netlink_ext_ack *extack)
8763 {
8764 int ret;
8765
8766 down_write(&dev_addr_sem);
8767 ret = dev_set_mac_address(dev, sa, extack);
8768 up_write(&dev_addr_sem);
8769 return ret;
8770 }
8771 EXPORT_SYMBOL(dev_set_mac_address_user);
8772
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8773 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8774 {
8775 size_t size = sizeof(sa->sa_data);
8776 struct net_device *dev;
8777 int ret = 0;
8778
8779 down_read(&dev_addr_sem);
8780 rcu_read_lock();
8781
8782 dev = dev_get_by_name_rcu(net, dev_name);
8783 if (!dev) {
8784 ret = -ENODEV;
8785 goto unlock;
8786 }
8787 if (!dev->addr_len)
8788 memset(sa->sa_data, 0, size);
8789 else
8790 memcpy(sa->sa_data, dev->dev_addr,
8791 min_t(size_t, size, dev->addr_len));
8792 sa->sa_family = dev->type;
8793
8794 unlock:
8795 rcu_read_unlock();
8796 up_read(&dev_addr_sem);
8797 return ret;
8798 }
8799 EXPORT_SYMBOL(dev_get_mac_address);
8800
8801 /**
8802 * dev_change_carrier - Change device carrier
8803 * @dev: device
8804 * @new_carrier: new value
8805 *
8806 * Change device carrier
8807 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8808 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8809 {
8810 const struct net_device_ops *ops = dev->netdev_ops;
8811
8812 if (!ops->ndo_change_carrier)
8813 return -EOPNOTSUPP;
8814 if (!netif_device_present(dev))
8815 return -ENODEV;
8816 return ops->ndo_change_carrier(dev, new_carrier);
8817 }
8818 EXPORT_SYMBOL(dev_change_carrier);
8819
8820 /**
8821 * dev_get_phys_port_id - Get device physical port ID
8822 * @dev: device
8823 * @ppid: port ID
8824 *
8825 * Get device physical port ID
8826 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8827 int dev_get_phys_port_id(struct net_device *dev,
8828 struct netdev_phys_item_id *ppid)
8829 {
8830 const struct net_device_ops *ops = dev->netdev_ops;
8831
8832 if (!ops->ndo_get_phys_port_id)
8833 return -EOPNOTSUPP;
8834 return ops->ndo_get_phys_port_id(dev, ppid);
8835 }
8836 EXPORT_SYMBOL(dev_get_phys_port_id);
8837
8838 /**
8839 * dev_get_phys_port_name - Get device physical port name
8840 * @dev: device
8841 * @name: port name
8842 * @len: limit of bytes to copy to name
8843 *
8844 * Get device physical port name
8845 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8846 int dev_get_phys_port_name(struct net_device *dev,
8847 char *name, size_t len)
8848 {
8849 const struct net_device_ops *ops = dev->netdev_ops;
8850 int err;
8851
8852 if (ops->ndo_get_phys_port_name) {
8853 err = ops->ndo_get_phys_port_name(dev, name, len);
8854 if (err != -EOPNOTSUPP)
8855 return err;
8856 }
8857 return devlink_compat_phys_port_name_get(dev, name, len);
8858 }
8859 EXPORT_SYMBOL(dev_get_phys_port_name);
8860
8861 /**
8862 * dev_get_port_parent_id - Get the device's port parent identifier
8863 * @dev: network device
8864 * @ppid: pointer to a storage for the port's parent identifier
8865 * @recurse: allow/disallow recursion to lower devices
8866 *
8867 * Get the devices's port parent identifier
8868 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8869 int dev_get_port_parent_id(struct net_device *dev,
8870 struct netdev_phys_item_id *ppid,
8871 bool recurse)
8872 {
8873 const struct net_device_ops *ops = dev->netdev_ops;
8874 struct netdev_phys_item_id first = { };
8875 struct net_device *lower_dev;
8876 struct list_head *iter;
8877 int err;
8878
8879 if (ops->ndo_get_port_parent_id) {
8880 err = ops->ndo_get_port_parent_id(dev, ppid);
8881 if (err != -EOPNOTSUPP)
8882 return err;
8883 }
8884
8885 err = devlink_compat_switch_id_get(dev, ppid);
8886 if (!err || err != -EOPNOTSUPP)
8887 return err;
8888
8889 if (!recurse)
8890 return -EOPNOTSUPP;
8891
8892 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8893 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8894 if (err)
8895 break;
8896 if (!first.id_len)
8897 first = *ppid;
8898 else if (memcmp(&first, ppid, sizeof(*ppid)))
8899 return -EOPNOTSUPP;
8900 }
8901
8902 return err;
8903 }
8904 EXPORT_SYMBOL(dev_get_port_parent_id);
8905
8906 /**
8907 * netdev_port_same_parent_id - Indicate if two network devices have
8908 * the same port parent identifier
8909 * @a: first network device
8910 * @b: second network device
8911 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8912 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8913 {
8914 struct netdev_phys_item_id a_id = { };
8915 struct netdev_phys_item_id b_id = { };
8916
8917 if (dev_get_port_parent_id(a, &a_id, true) ||
8918 dev_get_port_parent_id(b, &b_id, true))
8919 return false;
8920
8921 return netdev_phys_item_id_same(&a_id, &b_id);
8922 }
8923 EXPORT_SYMBOL(netdev_port_same_parent_id);
8924
8925 /**
8926 * dev_change_proto_down - update protocol port state information
8927 * @dev: device
8928 * @proto_down: new value
8929 *
8930 * This info can be used by switch drivers to set the phys state of the
8931 * port.
8932 */
dev_change_proto_down(struct net_device * dev,bool proto_down)8933 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8934 {
8935 const struct net_device_ops *ops = dev->netdev_ops;
8936
8937 if (!ops->ndo_change_proto_down)
8938 return -EOPNOTSUPP;
8939 if (!netif_device_present(dev))
8940 return -ENODEV;
8941 return ops->ndo_change_proto_down(dev, proto_down);
8942 }
8943 EXPORT_SYMBOL(dev_change_proto_down);
8944
8945 /**
8946 * dev_change_proto_down_generic - generic implementation for
8947 * ndo_change_proto_down that sets carrier according to
8948 * proto_down.
8949 *
8950 * @dev: device
8951 * @proto_down: new value
8952 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8953 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8954 {
8955 if (proto_down)
8956 netif_carrier_off(dev);
8957 else
8958 netif_carrier_on(dev);
8959 dev->proto_down = proto_down;
8960 return 0;
8961 }
8962 EXPORT_SYMBOL(dev_change_proto_down_generic);
8963
8964 /**
8965 * dev_change_proto_down_reason - proto down reason
8966 *
8967 * @dev: device
8968 * @mask: proto down mask
8969 * @value: proto down value
8970 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)8971 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8972 u32 value)
8973 {
8974 int b;
8975
8976 if (!mask) {
8977 dev->proto_down_reason = value;
8978 } else {
8979 for_each_set_bit(b, &mask, 32) {
8980 if (value & (1 << b))
8981 dev->proto_down_reason |= BIT(b);
8982 else
8983 dev->proto_down_reason &= ~BIT(b);
8984 }
8985 }
8986 }
8987 EXPORT_SYMBOL(dev_change_proto_down_reason);
8988
8989 struct bpf_xdp_link {
8990 struct bpf_link link;
8991 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8992 int flags;
8993 };
8994
dev_xdp_mode(struct net_device * dev,u32 flags)8995 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8996 {
8997 if (flags & XDP_FLAGS_HW_MODE)
8998 return XDP_MODE_HW;
8999 if (flags & XDP_FLAGS_DRV_MODE)
9000 return XDP_MODE_DRV;
9001 if (flags & XDP_FLAGS_SKB_MODE)
9002 return XDP_MODE_SKB;
9003 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9004 }
9005
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9006 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9007 {
9008 switch (mode) {
9009 case XDP_MODE_SKB:
9010 return generic_xdp_install;
9011 case XDP_MODE_DRV:
9012 case XDP_MODE_HW:
9013 return dev->netdev_ops->ndo_bpf;
9014 default:
9015 return NULL;
9016 };
9017 }
9018
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9019 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9020 enum bpf_xdp_mode mode)
9021 {
9022 return dev->xdp_state[mode].link;
9023 }
9024
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9025 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9026 enum bpf_xdp_mode mode)
9027 {
9028 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9029
9030 if (link)
9031 return link->link.prog;
9032 return dev->xdp_state[mode].prog;
9033 }
9034
dev_xdp_prog_count(struct net_device * dev)9035 static u8 dev_xdp_prog_count(struct net_device *dev)
9036 {
9037 u8 count = 0;
9038 int i;
9039
9040 for (i = 0; i < __MAX_XDP_MODE; i++)
9041 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9042 count++;
9043 return count;
9044 }
9045
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9046 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9047 {
9048 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9049
9050 return prog ? prog->aux->id : 0;
9051 }
9052
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9053 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9054 struct bpf_xdp_link *link)
9055 {
9056 dev->xdp_state[mode].link = link;
9057 dev->xdp_state[mode].prog = NULL;
9058 }
9059
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9060 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9061 struct bpf_prog *prog)
9062 {
9063 dev->xdp_state[mode].link = NULL;
9064 dev->xdp_state[mode].prog = prog;
9065 }
9066
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9067 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9068 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9069 u32 flags, struct bpf_prog *prog)
9070 {
9071 struct netdev_bpf xdp;
9072 int err;
9073
9074 memset(&xdp, 0, sizeof(xdp));
9075 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9076 xdp.extack = extack;
9077 xdp.flags = flags;
9078 xdp.prog = prog;
9079
9080 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9081 * "moved" into driver), so they don't increment it on their own, but
9082 * they do decrement refcnt when program is detached or replaced.
9083 * Given net_device also owns link/prog, we need to bump refcnt here
9084 * to prevent drivers from underflowing it.
9085 */
9086 if (prog)
9087 bpf_prog_inc(prog);
9088 err = bpf_op(dev, &xdp);
9089 if (err) {
9090 if (prog)
9091 bpf_prog_put(prog);
9092 return err;
9093 }
9094
9095 if (mode != XDP_MODE_HW)
9096 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9097
9098 return 0;
9099 }
9100
dev_xdp_uninstall(struct net_device * dev)9101 static void dev_xdp_uninstall(struct net_device *dev)
9102 {
9103 struct bpf_xdp_link *link;
9104 struct bpf_prog *prog;
9105 enum bpf_xdp_mode mode;
9106 bpf_op_t bpf_op;
9107
9108 ASSERT_RTNL();
9109
9110 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9111 prog = dev_xdp_prog(dev, mode);
9112 if (!prog)
9113 continue;
9114
9115 bpf_op = dev_xdp_bpf_op(dev, mode);
9116 if (!bpf_op)
9117 continue;
9118
9119 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9120
9121 /* auto-detach link from net device */
9122 link = dev_xdp_link(dev, mode);
9123 if (link)
9124 link->dev = NULL;
9125 else
9126 bpf_prog_put(prog);
9127
9128 dev_xdp_set_link(dev, mode, NULL);
9129 }
9130 }
9131
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9132 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9133 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9134 struct bpf_prog *old_prog, u32 flags)
9135 {
9136 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9137 struct bpf_prog *cur_prog;
9138 enum bpf_xdp_mode mode;
9139 bpf_op_t bpf_op;
9140 int err;
9141
9142 ASSERT_RTNL();
9143
9144 /* either link or prog attachment, never both */
9145 if (link && (new_prog || old_prog))
9146 return -EINVAL;
9147 /* link supports only XDP mode flags */
9148 if (link && (flags & ~XDP_FLAGS_MODES)) {
9149 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9150 return -EINVAL;
9151 }
9152 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9153 if (num_modes > 1) {
9154 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9155 return -EINVAL;
9156 }
9157 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9158 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9159 NL_SET_ERR_MSG(extack,
9160 "More than one program loaded, unset mode is ambiguous");
9161 return -EINVAL;
9162 }
9163 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9164 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9165 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9166 return -EINVAL;
9167 }
9168
9169 mode = dev_xdp_mode(dev, flags);
9170 /* can't replace attached link */
9171 if (dev_xdp_link(dev, mode)) {
9172 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9173 return -EBUSY;
9174 }
9175
9176 cur_prog = dev_xdp_prog(dev, mode);
9177 /* can't replace attached prog with link */
9178 if (link && cur_prog) {
9179 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9180 return -EBUSY;
9181 }
9182 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9183 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9184 return -EEXIST;
9185 }
9186
9187 /* put effective new program into new_prog */
9188 if (link)
9189 new_prog = link->link.prog;
9190
9191 if (new_prog) {
9192 bool offload = mode == XDP_MODE_HW;
9193 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9194 ? XDP_MODE_DRV : XDP_MODE_SKB;
9195
9196 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9197 NL_SET_ERR_MSG(extack, "XDP program already attached");
9198 return -EBUSY;
9199 }
9200 if (!offload && dev_xdp_prog(dev, other_mode)) {
9201 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9202 return -EEXIST;
9203 }
9204 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9205 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9206 return -EINVAL;
9207 }
9208 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9209 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9210 return -EINVAL;
9211 }
9212 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9213 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9214 return -EINVAL;
9215 }
9216 }
9217
9218 /* don't call drivers if the effective program didn't change */
9219 if (new_prog != cur_prog) {
9220 bpf_op = dev_xdp_bpf_op(dev, mode);
9221 if (!bpf_op) {
9222 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9223 return -EOPNOTSUPP;
9224 }
9225
9226 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9227 if (err)
9228 return err;
9229 }
9230
9231 if (link)
9232 dev_xdp_set_link(dev, mode, link);
9233 else
9234 dev_xdp_set_prog(dev, mode, new_prog);
9235 if (cur_prog)
9236 bpf_prog_put(cur_prog);
9237
9238 return 0;
9239 }
9240
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9241 static int dev_xdp_attach_link(struct net_device *dev,
9242 struct netlink_ext_ack *extack,
9243 struct bpf_xdp_link *link)
9244 {
9245 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9246 }
9247
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9248 static int dev_xdp_detach_link(struct net_device *dev,
9249 struct netlink_ext_ack *extack,
9250 struct bpf_xdp_link *link)
9251 {
9252 enum bpf_xdp_mode mode;
9253 bpf_op_t bpf_op;
9254
9255 ASSERT_RTNL();
9256
9257 mode = dev_xdp_mode(dev, link->flags);
9258 if (dev_xdp_link(dev, mode) != link)
9259 return -EINVAL;
9260
9261 bpf_op = dev_xdp_bpf_op(dev, mode);
9262 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9263 dev_xdp_set_link(dev, mode, NULL);
9264 return 0;
9265 }
9266
bpf_xdp_link_release(struct bpf_link * link)9267 static void bpf_xdp_link_release(struct bpf_link *link)
9268 {
9269 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9270
9271 rtnl_lock();
9272
9273 /* if racing with net_device's tear down, xdp_link->dev might be
9274 * already NULL, in which case link was already auto-detached
9275 */
9276 if (xdp_link->dev) {
9277 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9278 xdp_link->dev = NULL;
9279 }
9280
9281 rtnl_unlock();
9282 }
9283
bpf_xdp_link_detach(struct bpf_link * link)9284 static int bpf_xdp_link_detach(struct bpf_link *link)
9285 {
9286 bpf_xdp_link_release(link);
9287 return 0;
9288 }
9289
bpf_xdp_link_dealloc(struct bpf_link * link)9290 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9291 {
9292 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9293
9294 kfree(xdp_link);
9295 }
9296
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9297 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9298 struct seq_file *seq)
9299 {
9300 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9301 u32 ifindex = 0;
9302
9303 rtnl_lock();
9304 if (xdp_link->dev)
9305 ifindex = xdp_link->dev->ifindex;
9306 rtnl_unlock();
9307
9308 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9309 }
9310
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9311 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9312 struct bpf_link_info *info)
9313 {
9314 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9315 u32 ifindex = 0;
9316
9317 rtnl_lock();
9318 if (xdp_link->dev)
9319 ifindex = xdp_link->dev->ifindex;
9320 rtnl_unlock();
9321
9322 info->xdp.ifindex = ifindex;
9323 return 0;
9324 }
9325
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9326 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9327 struct bpf_prog *old_prog)
9328 {
9329 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330 enum bpf_xdp_mode mode;
9331 bpf_op_t bpf_op;
9332 int err = 0;
9333
9334 rtnl_lock();
9335
9336 /* link might have been auto-released already, so fail */
9337 if (!xdp_link->dev) {
9338 err = -ENOLINK;
9339 goto out_unlock;
9340 }
9341
9342 if (old_prog && link->prog != old_prog) {
9343 err = -EPERM;
9344 goto out_unlock;
9345 }
9346 old_prog = link->prog;
9347 if (old_prog->type != new_prog->type ||
9348 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9349 err = -EINVAL;
9350 goto out_unlock;
9351 }
9352
9353 if (old_prog == new_prog) {
9354 /* no-op, don't disturb drivers */
9355 bpf_prog_put(new_prog);
9356 goto out_unlock;
9357 }
9358
9359 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9360 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9361 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9362 xdp_link->flags, new_prog);
9363 if (err)
9364 goto out_unlock;
9365
9366 old_prog = xchg(&link->prog, new_prog);
9367 bpf_prog_put(old_prog);
9368
9369 out_unlock:
9370 rtnl_unlock();
9371 return err;
9372 }
9373
9374 static const struct bpf_link_ops bpf_xdp_link_lops = {
9375 .release = bpf_xdp_link_release,
9376 .dealloc = bpf_xdp_link_dealloc,
9377 .detach = bpf_xdp_link_detach,
9378 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9379 .fill_link_info = bpf_xdp_link_fill_link_info,
9380 .update_prog = bpf_xdp_link_update,
9381 };
9382
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9383 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9384 {
9385 struct net *net = current->nsproxy->net_ns;
9386 struct bpf_link_primer link_primer;
9387 struct bpf_xdp_link *link;
9388 struct net_device *dev;
9389 int err, fd;
9390
9391 rtnl_lock();
9392 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9393 if (!dev) {
9394 rtnl_unlock();
9395 return -EINVAL;
9396 }
9397
9398 link = kzalloc(sizeof(*link), GFP_USER);
9399 if (!link) {
9400 err = -ENOMEM;
9401 goto unlock;
9402 }
9403
9404 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9405 link->dev = dev;
9406 link->flags = attr->link_create.flags;
9407
9408 err = bpf_link_prime(&link->link, &link_primer);
9409 if (err) {
9410 kfree(link);
9411 goto unlock;
9412 }
9413
9414 err = dev_xdp_attach_link(dev, NULL, link);
9415 rtnl_unlock();
9416
9417 if (err) {
9418 link->dev = NULL;
9419 bpf_link_cleanup(&link_primer);
9420 goto out_put_dev;
9421 }
9422
9423 fd = bpf_link_settle(&link_primer);
9424 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9425 dev_put(dev);
9426 return fd;
9427
9428 unlock:
9429 rtnl_unlock();
9430
9431 out_put_dev:
9432 dev_put(dev);
9433 return err;
9434 }
9435
9436 /**
9437 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9438 * @dev: device
9439 * @extack: netlink extended ack
9440 * @fd: new program fd or negative value to clear
9441 * @expected_fd: old program fd that userspace expects to replace or clear
9442 * @flags: xdp-related flags
9443 *
9444 * Set or clear a bpf program for a device
9445 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9446 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9447 int fd, int expected_fd, u32 flags)
9448 {
9449 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9450 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9451 int err;
9452
9453 ASSERT_RTNL();
9454
9455 if (fd >= 0) {
9456 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9457 mode != XDP_MODE_SKB);
9458 if (IS_ERR(new_prog))
9459 return PTR_ERR(new_prog);
9460 }
9461
9462 if (expected_fd >= 0) {
9463 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9464 mode != XDP_MODE_SKB);
9465 if (IS_ERR(old_prog)) {
9466 err = PTR_ERR(old_prog);
9467 old_prog = NULL;
9468 goto err_out;
9469 }
9470 }
9471
9472 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9473
9474 err_out:
9475 if (err && new_prog)
9476 bpf_prog_put(new_prog);
9477 if (old_prog)
9478 bpf_prog_put(old_prog);
9479 return err;
9480 }
9481
9482 /**
9483 * dev_new_index - allocate an ifindex
9484 * @net: the applicable net namespace
9485 *
9486 * Returns a suitable unique value for a new device interface
9487 * number. The caller must hold the rtnl semaphore or the
9488 * dev_base_lock to be sure it remains unique.
9489 */
dev_new_index(struct net * net)9490 static int dev_new_index(struct net *net)
9491 {
9492 int ifindex = net->ifindex;
9493
9494 for (;;) {
9495 if (++ifindex <= 0)
9496 ifindex = 1;
9497 if (!__dev_get_by_index(net, ifindex))
9498 return net->ifindex = ifindex;
9499 }
9500 }
9501
9502 /* Delayed registration/unregisteration */
9503 static LIST_HEAD(net_todo_list);
9504 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9505
net_set_todo(struct net_device * dev)9506 static void net_set_todo(struct net_device *dev)
9507 {
9508 list_add_tail(&dev->todo_list, &net_todo_list);
9509 dev_net(dev)->dev_unreg_count++;
9510 }
9511
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9512 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9513 struct net_device *upper, netdev_features_t features)
9514 {
9515 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9516 netdev_features_t feature;
9517 int feature_bit;
9518
9519 for_each_netdev_feature(upper_disables, feature_bit) {
9520 feature = __NETIF_F_BIT(feature_bit);
9521 if (!(upper->wanted_features & feature)
9522 && (features & feature)) {
9523 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9524 &feature, upper->name);
9525 features &= ~feature;
9526 }
9527 }
9528
9529 return features;
9530 }
9531
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9532 static void netdev_sync_lower_features(struct net_device *upper,
9533 struct net_device *lower, netdev_features_t features)
9534 {
9535 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9536 netdev_features_t feature;
9537 int feature_bit;
9538
9539 for_each_netdev_feature(upper_disables, feature_bit) {
9540 feature = __NETIF_F_BIT(feature_bit);
9541 if (!(features & feature) && (lower->features & feature)) {
9542 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9543 &feature, lower->name);
9544 lower->wanted_features &= ~feature;
9545 __netdev_update_features(lower);
9546
9547 if (unlikely(lower->features & feature))
9548 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9549 &feature, lower->name);
9550 else
9551 netdev_features_change(lower);
9552 }
9553 }
9554 }
9555
netdev_fix_features(struct net_device * dev,netdev_features_t features)9556 static netdev_features_t netdev_fix_features(struct net_device *dev,
9557 netdev_features_t features)
9558 {
9559 /* Fix illegal checksum combinations */
9560 if ((features & NETIF_F_HW_CSUM) &&
9561 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9562 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9563 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9564 }
9565
9566 /* TSO requires that SG is present as well. */
9567 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9568 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9569 features &= ~NETIF_F_ALL_TSO;
9570 }
9571
9572 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9573 !(features & NETIF_F_IP_CSUM)) {
9574 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9575 features &= ~NETIF_F_TSO;
9576 features &= ~NETIF_F_TSO_ECN;
9577 }
9578
9579 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9580 !(features & NETIF_F_IPV6_CSUM)) {
9581 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9582 features &= ~NETIF_F_TSO6;
9583 }
9584
9585 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9586 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9587 features &= ~NETIF_F_TSO_MANGLEID;
9588
9589 /* TSO ECN requires that TSO is present as well. */
9590 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9591 features &= ~NETIF_F_TSO_ECN;
9592
9593 /* Software GSO depends on SG. */
9594 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9595 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9596 features &= ~NETIF_F_GSO;
9597 }
9598
9599 /* GSO partial features require GSO partial be set */
9600 if ((features & dev->gso_partial_features) &&
9601 !(features & NETIF_F_GSO_PARTIAL)) {
9602 netdev_dbg(dev,
9603 "Dropping partially supported GSO features since no GSO partial.\n");
9604 features &= ~dev->gso_partial_features;
9605 }
9606
9607 if (!(features & NETIF_F_RXCSUM)) {
9608 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9609 * successfully merged by hardware must also have the
9610 * checksum verified by hardware. If the user does not
9611 * want to enable RXCSUM, logically, we should disable GRO_HW.
9612 */
9613 if (features & NETIF_F_GRO_HW) {
9614 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9615 features &= ~NETIF_F_GRO_HW;
9616 }
9617 }
9618
9619 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9620 if (features & NETIF_F_RXFCS) {
9621 if (features & NETIF_F_LRO) {
9622 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9623 features &= ~NETIF_F_LRO;
9624 }
9625
9626 if (features & NETIF_F_GRO_HW) {
9627 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9628 features &= ~NETIF_F_GRO_HW;
9629 }
9630 }
9631
9632 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9633 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9634 features &= ~NETIF_F_HW_TLS_RX;
9635 }
9636
9637 return features;
9638 }
9639
__netdev_update_features(struct net_device * dev)9640 int __netdev_update_features(struct net_device *dev)
9641 {
9642 struct net_device *upper, *lower;
9643 netdev_features_t features;
9644 struct list_head *iter;
9645 int err = -1;
9646
9647 ASSERT_RTNL();
9648
9649 features = netdev_get_wanted_features(dev);
9650
9651 if (dev->netdev_ops->ndo_fix_features)
9652 features = dev->netdev_ops->ndo_fix_features(dev, features);
9653
9654 /* driver might be less strict about feature dependencies */
9655 features = netdev_fix_features(dev, features);
9656
9657 /* some features can't be enabled if they're off on an upper device */
9658 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9659 features = netdev_sync_upper_features(dev, upper, features);
9660
9661 if (dev->features == features)
9662 goto sync_lower;
9663
9664 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9665 &dev->features, &features);
9666
9667 if (dev->netdev_ops->ndo_set_features)
9668 err = dev->netdev_ops->ndo_set_features(dev, features);
9669 else
9670 err = 0;
9671
9672 if (unlikely(err < 0)) {
9673 netdev_err(dev,
9674 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9675 err, &features, &dev->features);
9676 /* return non-0 since some features might have changed and
9677 * it's better to fire a spurious notification than miss it
9678 */
9679 return -1;
9680 }
9681
9682 sync_lower:
9683 /* some features must be disabled on lower devices when disabled
9684 * on an upper device (think: bonding master or bridge)
9685 */
9686 netdev_for_each_lower_dev(dev, lower, iter)
9687 netdev_sync_lower_features(dev, lower, features);
9688
9689 if (!err) {
9690 netdev_features_t diff = features ^ dev->features;
9691
9692 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9693 /* udp_tunnel_{get,drop}_rx_info both need
9694 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9695 * device, or they won't do anything.
9696 * Thus we need to update dev->features
9697 * *before* calling udp_tunnel_get_rx_info,
9698 * but *after* calling udp_tunnel_drop_rx_info.
9699 */
9700 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9701 dev->features = features;
9702 udp_tunnel_get_rx_info(dev);
9703 } else {
9704 udp_tunnel_drop_rx_info(dev);
9705 }
9706 }
9707
9708 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9709 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9710 dev->features = features;
9711 err |= vlan_get_rx_ctag_filter_info(dev);
9712 } else {
9713 vlan_drop_rx_ctag_filter_info(dev);
9714 }
9715 }
9716
9717 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9718 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9719 dev->features = features;
9720 err |= vlan_get_rx_stag_filter_info(dev);
9721 } else {
9722 vlan_drop_rx_stag_filter_info(dev);
9723 }
9724 }
9725
9726 dev->features = features;
9727 }
9728
9729 return err < 0 ? 0 : 1;
9730 }
9731
9732 /**
9733 * netdev_update_features - recalculate device features
9734 * @dev: the device to check
9735 *
9736 * Recalculate dev->features set and send notifications if it
9737 * has changed. Should be called after driver or hardware dependent
9738 * conditions might have changed that influence the features.
9739 */
netdev_update_features(struct net_device * dev)9740 void netdev_update_features(struct net_device *dev)
9741 {
9742 if (__netdev_update_features(dev))
9743 netdev_features_change(dev);
9744 }
9745 EXPORT_SYMBOL(netdev_update_features);
9746
9747 /**
9748 * netdev_change_features - recalculate device features
9749 * @dev: the device to check
9750 *
9751 * Recalculate dev->features set and send notifications even
9752 * if they have not changed. Should be called instead of
9753 * netdev_update_features() if also dev->vlan_features might
9754 * have changed to allow the changes to be propagated to stacked
9755 * VLAN devices.
9756 */
netdev_change_features(struct net_device * dev)9757 void netdev_change_features(struct net_device *dev)
9758 {
9759 __netdev_update_features(dev);
9760 netdev_features_change(dev);
9761 }
9762 EXPORT_SYMBOL(netdev_change_features);
9763
9764 /**
9765 * netif_stacked_transfer_operstate - transfer operstate
9766 * @rootdev: the root or lower level device to transfer state from
9767 * @dev: the device to transfer operstate to
9768 *
9769 * Transfer operational state from root to device. This is normally
9770 * called when a stacking relationship exists between the root
9771 * device and the device(a leaf device).
9772 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9773 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9774 struct net_device *dev)
9775 {
9776 if (rootdev->operstate == IF_OPER_DORMANT)
9777 netif_dormant_on(dev);
9778 else
9779 netif_dormant_off(dev);
9780
9781 if (rootdev->operstate == IF_OPER_TESTING)
9782 netif_testing_on(dev);
9783 else
9784 netif_testing_off(dev);
9785
9786 if (netif_carrier_ok(rootdev))
9787 netif_carrier_on(dev);
9788 else
9789 netif_carrier_off(dev);
9790 }
9791 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9792
netif_alloc_rx_queues(struct net_device * dev)9793 static int netif_alloc_rx_queues(struct net_device *dev)
9794 {
9795 unsigned int i, count = dev->num_rx_queues;
9796 struct netdev_rx_queue *rx;
9797 size_t sz = count * sizeof(*rx);
9798 int err = 0;
9799
9800 BUG_ON(count < 1);
9801
9802 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9803 if (!rx)
9804 return -ENOMEM;
9805
9806 dev->_rx = rx;
9807
9808 for (i = 0; i < count; i++) {
9809 rx[i].dev = dev;
9810
9811 /* XDP RX-queue setup */
9812 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9813 if (err < 0)
9814 goto err_rxq_info;
9815 }
9816 return 0;
9817
9818 err_rxq_info:
9819 /* Rollback successful reg's and free other resources */
9820 while (i--)
9821 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9822 kvfree(dev->_rx);
9823 dev->_rx = NULL;
9824 return err;
9825 }
9826
netif_free_rx_queues(struct net_device * dev)9827 static void netif_free_rx_queues(struct net_device *dev)
9828 {
9829 unsigned int i, count = dev->num_rx_queues;
9830
9831 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9832 if (!dev->_rx)
9833 return;
9834
9835 for (i = 0; i < count; i++)
9836 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9837
9838 kvfree(dev->_rx);
9839 }
9840
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9841 static void netdev_init_one_queue(struct net_device *dev,
9842 struct netdev_queue *queue, void *_unused)
9843 {
9844 /* Initialize queue lock */
9845 spin_lock_init(&queue->_xmit_lock);
9846 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9847 queue->xmit_lock_owner = -1;
9848 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9849 queue->dev = dev;
9850 #ifdef CONFIG_BQL
9851 dql_init(&queue->dql, HZ);
9852 #endif
9853 }
9854
netif_free_tx_queues(struct net_device * dev)9855 static void netif_free_tx_queues(struct net_device *dev)
9856 {
9857 kvfree(dev->_tx);
9858 }
9859
netif_alloc_netdev_queues(struct net_device * dev)9860 static int netif_alloc_netdev_queues(struct net_device *dev)
9861 {
9862 unsigned int count = dev->num_tx_queues;
9863 struct netdev_queue *tx;
9864 size_t sz = count * sizeof(*tx);
9865
9866 if (count < 1 || count > 0xffff)
9867 return -EINVAL;
9868
9869 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9870 if (!tx)
9871 return -ENOMEM;
9872
9873 dev->_tx = tx;
9874
9875 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9876 spin_lock_init(&dev->tx_global_lock);
9877
9878 return 0;
9879 }
9880
netif_tx_stop_all_queues(struct net_device * dev)9881 void netif_tx_stop_all_queues(struct net_device *dev)
9882 {
9883 unsigned int i;
9884
9885 for (i = 0; i < dev->num_tx_queues; i++) {
9886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9887
9888 netif_tx_stop_queue(txq);
9889 }
9890 }
9891 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9892
9893 /**
9894 * register_netdevice - register a network device
9895 * @dev: device to register
9896 *
9897 * Take a completed network device structure and add it to the kernel
9898 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9899 * chain. 0 is returned on success. A negative errno code is returned
9900 * on a failure to set up the device, or if the name is a duplicate.
9901 *
9902 * Callers must hold the rtnl semaphore. You may want
9903 * register_netdev() instead of this.
9904 *
9905 * BUGS:
9906 * The locking appears insufficient to guarantee two parallel registers
9907 * will not get the same name.
9908 */
9909
register_netdevice(struct net_device * dev)9910 int register_netdevice(struct net_device *dev)
9911 {
9912 int ret;
9913 struct net *net = dev_net(dev);
9914
9915 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9916 NETDEV_FEATURE_COUNT);
9917 BUG_ON(dev_boot_phase);
9918 ASSERT_RTNL();
9919
9920 might_sleep();
9921
9922 /* When net_device's are persistent, this will be fatal. */
9923 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9924 BUG_ON(!net);
9925
9926 ret = ethtool_check_ops(dev->ethtool_ops);
9927 if (ret)
9928 return ret;
9929
9930 spin_lock_init(&dev->addr_list_lock);
9931 netdev_set_addr_lockdep_class(dev);
9932
9933 ret = dev_get_valid_name(net, dev, dev->name);
9934 if (ret < 0)
9935 goto out;
9936
9937 ret = -ENOMEM;
9938 dev->name_node = netdev_name_node_head_alloc(dev);
9939 if (!dev->name_node)
9940 goto out;
9941
9942 /* Init, if this function is available */
9943 if (dev->netdev_ops->ndo_init) {
9944 ret = dev->netdev_ops->ndo_init(dev);
9945 if (ret) {
9946 if (ret > 0)
9947 ret = -EIO;
9948 goto err_free_name;
9949 }
9950 }
9951
9952 if (((dev->hw_features | dev->features) &
9953 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9954 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9955 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9956 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9957 ret = -EINVAL;
9958 goto err_uninit;
9959 }
9960
9961 ret = -EBUSY;
9962 if (!dev->ifindex)
9963 dev->ifindex = dev_new_index(net);
9964 else if (__dev_get_by_index(net, dev->ifindex))
9965 goto err_uninit;
9966
9967 /* Transfer changeable features to wanted_features and enable
9968 * software offloads (GSO and GRO).
9969 */
9970 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9971 dev->features |= NETIF_F_SOFT_FEATURES;
9972
9973 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9974 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9975 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9976 }
9977
9978 dev->wanted_features = dev->features & dev->hw_features;
9979
9980 if (!(dev->flags & IFF_LOOPBACK))
9981 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9982
9983 /* If IPv4 TCP segmentation offload is supported we should also
9984 * allow the device to enable segmenting the frame with the option
9985 * of ignoring a static IP ID value. This doesn't enable the
9986 * feature itself but allows the user to enable it later.
9987 */
9988 if (dev->hw_features & NETIF_F_TSO)
9989 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9990 if (dev->vlan_features & NETIF_F_TSO)
9991 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9992 if (dev->mpls_features & NETIF_F_TSO)
9993 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9994 if (dev->hw_enc_features & NETIF_F_TSO)
9995 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9996
9997 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9998 */
9999 dev->vlan_features |= NETIF_F_HIGHDMA;
10000
10001 /* Make NETIF_F_SG inheritable to tunnel devices.
10002 */
10003 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10004
10005 /* Make NETIF_F_SG inheritable to MPLS.
10006 */
10007 dev->mpls_features |= NETIF_F_SG;
10008
10009 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10010 ret = notifier_to_errno(ret);
10011 if (ret)
10012 goto err_uninit;
10013
10014 ret = netdev_register_kobject(dev);
10015 if (ret) {
10016 dev->reg_state = NETREG_UNREGISTERED;
10017 goto err_uninit;
10018 }
10019 dev->reg_state = NETREG_REGISTERED;
10020
10021 __netdev_update_features(dev);
10022
10023 /*
10024 * Default initial state at registry is that the
10025 * device is present.
10026 */
10027
10028 set_bit(__LINK_STATE_PRESENT, &dev->state);
10029
10030 linkwatch_init_dev(dev);
10031
10032 dev_init_scheduler(dev);
10033 dev_hold(dev);
10034 list_netdevice(dev);
10035 add_device_randomness(dev->dev_addr, dev->addr_len);
10036
10037 /* If the device has permanent device address, driver should
10038 * set dev_addr and also addr_assign_type should be set to
10039 * NET_ADDR_PERM (default value).
10040 */
10041 if (dev->addr_assign_type == NET_ADDR_PERM)
10042 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10043
10044 /* Notify protocols, that a new device appeared. */
10045 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10046 ret = notifier_to_errno(ret);
10047 if (ret) {
10048 /* Expect explicit free_netdev() on failure */
10049 dev->needs_free_netdev = false;
10050 unregister_netdevice_queue(dev, NULL);
10051 goto out;
10052 }
10053 /*
10054 * Prevent userspace races by waiting until the network
10055 * device is fully setup before sending notifications.
10056 */
10057 if (!dev->rtnl_link_ops ||
10058 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10059 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10060
10061 out:
10062 return ret;
10063
10064 err_uninit:
10065 if (dev->netdev_ops->ndo_uninit)
10066 dev->netdev_ops->ndo_uninit(dev);
10067 if (dev->priv_destructor)
10068 dev->priv_destructor(dev);
10069 err_free_name:
10070 netdev_name_node_free(dev->name_node);
10071 goto out;
10072 }
10073 EXPORT_SYMBOL(register_netdevice);
10074
10075 /**
10076 * init_dummy_netdev - init a dummy network device for NAPI
10077 * @dev: device to init
10078 *
10079 * This takes a network device structure and initialize the minimum
10080 * amount of fields so it can be used to schedule NAPI polls without
10081 * registering a full blown interface. This is to be used by drivers
10082 * that need to tie several hardware interfaces to a single NAPI
10083 * poll scheduler due to HW limitations.
10084 */
init_dummy_netdev(struct net_device * dev)10085 int init_dummy_netdev(struct net_device *dev)
10086 {
10087 /* Clear everything. Note we don't initialize spinlocks
10088 * are they aren't supposed to be taken by any of the
10089 * NAPI code and this dummy netdev is supposed to be
10090 * only ever used for NAPI polls
10091 */
10092 memset(dev, 0, sizeof(struct net_device));
10093
10094 /* make sure we BUG if trying to hit standard
10095 * register/unregister code path
10096 */
10097 dev->reg_state = NETREG_DUMMY;
10098
10099 /* NAPI wants this */
10100 INIT_LIST_HEAD(&dev->napi_list);
10101
10102 /* a dummy interface is started by default */
10103 set_bit(__LINK_STATE_PRESENT, &dev->state);
10104 set_bit(__LINK_STATE_START, &dev->state);
10105
10106 /* napi_busy_loop stats accounting wants this */
10107 dev_net_set(dev, &init_net);
10108
10109 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10110 * because users of this 'device' dont need to change
10111 * its refcount.
10112 */
10113
10114 return 0;
10115 }
10116 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10117
10118
10119 /**
10120 * register_netdev - register a network device
10121 * @dev: device to register
10122 *
10123 * Take a completed network device structure and add it to the kernel
10124 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10125 * chain. 0 is returned on success. A negative errno code is returned
10126 * on a failure to set up the device, or if the name is a duplicate.
10127 *
10128 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10129 * and expands the device name if you passed a format string to
10130 * alloc_netdev.
10131 */
register_netdev(struct net_device * dev)10132 int register_netdev(struct net_device *dev)
10133 {
10134 int err;
10135
10136 if (rtnl_lock_killable())
10137 return -EINTR;
10138 err = register_netdevice(dev);
10139 rtnl_unlock();
10140 return err;
10141 }
10142 EXPORT_SYMBOL(register_netdev);
10143
netdev_refcnt_read(const struct net_device * dev)10144 int netdev_refcnt_read(const struct net_device *dev)
10145 {
10146 int i, refcnt = 0;
10147
10148 for_each_possible_cpu(i)
10149 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10150 return refcnt;
10151 }
10152 EXPORT_SYMBOL(netdev_refcnt_read);
10153
10154 #define WAIT_REFS_MIN_MSECS 1
10155 #define WAIT_REFS_MAX_MSECS 250
10156 /**
10157 * netdev_wait_allrefs - wait until all references are gone.
10158 * @dev: target net_device
10159 *
10160 * This is called when unregistering network devices.
10161 *
10162 * Any protocol or device that holds a reference should register
10163 * for netdevice notification, and cleanup and put back the
10164 * reference if they receive an UNREGISTER event.
10165 * We can get stuck here if buggy protocols don't correctly
10166 * call dev_put.
10167 */
netdev_wait_allrefs(struct net_device * dev)10168 static void netdev_wait_allrefs(struct net_device *dev)
10169 {
10170 unsigned long rebroadcast_time, warning_time;
10171 int wait = 0, refcnt;
10172
10173 linkwatch_forget_dev(dev);
10174
10175 rebroadcast_time = warning_time = jiffies;
10176 refcnt = netdev_refcnt_read(dev);
10177
10178 while (refcnt != 0) {
10179 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10180 rtnl_lock();
10181
10182 /* Rebroadcast unregister notification */
10183 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10184
10185 __rtnl_unlock();
10186 rcu_barrier();
10187 rtnl_lock();
10188
10189 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10190 &dev->state)) {
10191 /* We must not have linkwatch events
10192 * pending on unregister. If this
10193 * happens, we simply run the queue
10194 * unscheduled, resulting in a noop
10195 * for this device.
10196 */
10197 linkwatch_run_queue();
10198 }
10199
10200 __rtnl_unlock();
10201
10202 rebroadcast_time = jiffies;
10203 }
10204
10205 if (!wait) {
10206 rcu_barrier();
10207 wait = WAIT_REFS_MIN_MSECS;
10208 } else {
10209 msleep(wait);
10210 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10211 }
10212
10213 refcnt = netdev_refcnt_read(dev);
10214
10215 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10216 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10217 dev->name, refcnt);
10218 warning_time = jiffies;
10219 }
10220 }
10221 }
10222
10223 /* The sequence is:
10224 *
10225 * rtnl_lock();
10226 * ...
10227 * register_netdevice(x1);
10228 * register_netdevice(x2);
10229 * ...
10230 * unregister_netdevice(y1);
10231 * unregister_netdevice(y2);
10232 * ...
10233 * rtnl_unlock();
10234 * free_netdev(y1);
10235 * free_netdev(y2);
10236 *
10237 * We are invoked by rtnl_unlock().
10238 * This allows us to deal with problems:
10239 * 1) We can delete sysfs objects which invoke hotplug
10240 * without deadlocking with linkwatch via keventd.
10241 * 2) Since we run with the RTNL semaphore not held, we can sleep
10242 * safely in order to wait for the netdev refcnt to drop to zero.
10243 *
10244 * We must not return until all unregister events added during
10245 * the interval the lock was held have been completed.
10246 */
netdev_run_todo(void)10247 void netdev_run_todo(void)
10248 {
10249 struct list_head list;
10250 #ifdef CONFIG_LOCKDEP
10251 struct list_head unlink_list;
10252
10253 list_replace_init(&net_unlink_list, &unlink_list);
10254
10255 while (!list_empty(&unlink_list)) {
10256 struct net_device *dev = list_first_entry(&unlink_list,
10257 struct net_device,
10258 unlink_list);
10259 list_del_init(&dev->unlink_list);
10260 dev->nested_level = dev->lower_level - 1;
10261 }
10262 #endif
10263
10264 /* Snapshot list, allow later requests */
10265 list_replace_init(&net_todo_list, &list);
10266
10267 __rtnl_unlock();
10268
10269
10270 /* Wait for rcu callbacks to finish before next phase */
10271 if (!list_empty(&list))
10272 rcu_barrier();
10273
10274 while (!list_empty(&list)) {
10275 struct net_device *dev
10276 = list_first_entry(&list, struct net_device, todo_list);
10277 list_del(&dev->todo_list);
10278
10279 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10280 pr_err("network todo '%s' but state %d\n",
10281 dev->name, dev->reg_state);
10282 dump_stack();
10283 continue;
10284 }
10285
10286 dev->reg_state = NETREG_UNREGISTERED;
10287
10288 netdev_wait_allrefs(dev);
10289
10290 /* paranoia */
10291 BUG_ON(netdev_refcnt_read(dev));
10292 BUG_ON(!list_empty(&dev->ptype_all));
10293 BUG_ON(!list_empty(&dev->ptype_specific));
10294 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10295 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10296 #if IS_ENABLED(CONFIG_DECNET)
10297 WARN_ON(dev->dn_ptr);
10298 #endif
10299 if (dev->priv_destructor)
10300 dev->priv_destructor(dev);
10301 if (dev->needs_free_netdev)
10302 free_netdev(dev);
10303
10304 /* Report a network device has been unregistered */
10305 rtnl_lock();
10306 dev_net(dev)->dev_unreg_count--;
10307 __rtnl_unlock();
10308 wake_up(&netdev_unregistering_wq);
10309
10310 /* Free network device */
10311 kobject_put(&dev->dev.kobj);
10312 }
10313 }
10314
10315 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10316 * all the same fields in the same order as net_device_stats, with only
10317 * the type differing, but rtnl_link_stats64 may have additional fields
10318 * at the end for newer counters.
10319 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10320 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10321 const struct net_device_stats *netdev_stats)
10322 {
10323 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10324 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10325 u64 *dst = (u64 *)stats64;
10326
10327 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10328 for (i = 0; i < n; i++)
10329 dst[i] = atomic_long_read(&src[i]);
10330 /* zero out counters that only exist in rtnl_link_stats64 */
10331 memset((char *)stats64 + n * sizeof(u64), 0,
10332 sizeof(*stats64) - n * sizeof(u64));
10333 }
10334 EXPORT_SYMBOL(netdev_stats_to_stats64);
10335
10336 /**
10337 * dev_get_stats - get network device statistics
10338 * @dev: device to get statistics from
10339 * @storage: place to store stats
10340 *
10341 * Get network statistics from device. Return @storage.
10342 * The device driver may provide its own method by setting
10343 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10344 * otherwise the internal statistics structure is used.
10345 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10346 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10347 struct rtnl_link_stats64 *storage)
10348 {
10349 const struct net_device_ops *ops = dev->netdev_ops;
10350
10351 if (ops->ndo_get_stats64) {
10352 memset(storage, 0, sizeof(*storage));
10353 ops->ndo_get_stats64(dev, storage);
10354 } else if (ops->ndo_get_stats) {
10355 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10356 } else {
10357 netdev_stats_to_stats64(storage, &dev->stats);
10358 }
10359 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10360 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10361 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10362 return storage;
10363 }
10364 EXPORT_SYMBOL(dev_get_stats);
10365
10366 /**
10367 * dev_fetch_sw_netstats - get per-cpu network device statistics
10368 * @s: place to store stats
10369 * @netstats: per-cpu network stats to read from
10370 *
10371 * Read per-cpu network statistics and populate the related fields in @s.
10372 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10373 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10374 const struct pcpu_sw_netstats __percpu *netstats)
10375 {
10376 int cpu;
10377
10378 for_each_possible_cpu(cpu) {
10379 const struct pcpu_sw_netstats *stats;
10380 struct pcpu_sw_netstats tmp;
10381 unsigned int start;
10382
10383 stats = per_cpu_ptr(netstats, cpu);
10384 do {
10385 start = u64_stats_fetch_begin_irq(&stats->syncp);
10386 tmp.rx_packets = stats->rx_packets;
10387 tmp.rx_bytes = stats->rx_bytes;
10388 tmp.tx_packets = stats->tx_packets;
10389 tmp.tx_bytes = stats->tx_bytes;
10390 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10391
10392 s->rx_packets += tmp.rx_packets;
10393 s->rx_bytes += tmp.rx_bytes;
10394 s->tx_packets += tmp.tx_packets;
10395 s->tx_bytes += tmp.tx_bytes;
10396 }
10397 }
10398 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10399
dev_ingress_queue_create(struct net_device * dev)10400 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10401 {
10402 struct netdev_queue *queue = dev_ingress_queue(dev);
10403
10404 #ifdef CONFIG_NET_CLS_ACT
10405 if (queue)
10406 return queue;
10407 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10408 if (!queue)
10409 return NULL;
10410 netdev_init_one_queue(dev, queue, NULL);
10411 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10412 queue->qdisc_sleeping = &noop_qdisc;
10413 rcu_assign_pointer(dev->ingress_queue, queue);
10414 #endif
10415 return queue;
10416 }
10417
10418 static const struct ethtool_ops default_ethtool_ops;
10419
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10420 void netdev_set_default_ethtool_ops(struct net_device *dev,
10421 const struct ethtool_ops *ops)
10422 {
10423 if (dev->ethtool_ops == &default_ethtool_ops)
10424 dev->ethtool_ops = ops;
10425 }
10426 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10427
netdev_freemem(struct net_device * dev)10428 void netdev_freemem(struct net_device *dev)
10429 {
10430 char *addr = (char *)dev - dev->padded;
10431
10432 kvfree(addr);
10433 }
10434
10435 /**
10436 * alloc_netdev_mqs - allocate network device
10437 * @sizeof_priv: size of private data to allocate space for
10438 * @name: device name format string
10439 * @name_assign_type: origin of device name
10440 * @setup: callback to initialize device
10441 * @txqs: the number of TX subqueues to allocate
10442 * @rxqs: the number of RX subqueues to allocate
10443 *
10444 * Allocates a struct net_device with private data area for driver use
10445 * and performs basic initialization. Also allocates subqueue structs
10446 * for each queue on the device.
10447 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10449 unsigned char name_assign_type,
10450 void (*setup)(struct net_device *),
10451 unsigned int txqs, unsigned int rxqs)
10452 {
10453 struct net_device *dev;
10454 unsigned int alloc_size;
10455 struct net_device *p;
10456
10457 BUG_ON(strlen(name) >= sizeof(dev->name));
10458
10459 if (txqs < 1) {
10460 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10461 return NULL;
10462 }
10463
10464 if (rxqs < 1) {
10465 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10466 return NULL;
10467 }
10468
10469 alloc_size = sizeof(struct net_device);
10470 if (sizeof_priv) {
10471 /* ensure 32-byte alignment of private area */
10472 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10473 alloc_size += sizeof_priv;
10474 }
10475 /* ensure 32-byte alignment of whole construct */
10476 alloc_size += NETDEV_ALIGN - 1;
10477
10478 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10479 if (!p)
10480 return NULL;
10481
10482 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10483 dev->padded = (char *)dev - (char *)p;
10484
10485 dev->pcpu_refcnt = alloc_percpu(int);
10486 if (!dev->pcpu_refcnt)
10487 goto free_dev;
10488
10489 if (dev_addr_init(dev))
10490 goto free_pcpu;
10491
10492 dev_mc_init(dev);
10493 dev_uc_init(dev);
10494
10495 dev_net_set(dev, &init_net);
10496
10497 dev->gso_max_size = GSO_MAX_SIZE;
10498 dev->gso_max_segs = GSO_MAX_SEGS;
10499 dev->upper_level = 1;
10500 dev->lower_level = 1;
10501 #ifdef CONFIG_LOCKDEP
10502 dev->nested_level = 0;
10503 INIT_LIST_HEAD(&dev->unlink_list);
10504 #endif
10505
10506 INIT_LIST_HEAD(&dev->napi_list);
10507 INIT_LIST_HEAD(&dev->unreg_list);
10508 INIT_LIST_HEAD(&dev->close_list);
10509 INIT_LIST_HEAD(&dev->link_watch_list);
10510 INIT_LIST_HEAD(&dev->adj_list.upper);
10511 INIT_LIST_HEAD(&dev->adj_list.lower);
10512 INIT_LIST_HEAD(&dev->ptype_all);
10513 INIT_LIST_HEAD(&dev->ptype_specific);
10514 INIT_LIST_HEAD(&dev->net_notifier_list);
10515 #ifdef CONFIG_NET_SCHED
10516 hash_init(dev->qdisc_hash);
10517 #endif
10518 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10519 setup(dev);
10520
10521 if (!dev->tx_queue_len) {
10522 dev->priv_flags |= IFF_NO_QUEUE;
10523 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10524 }
10525
10526 dev->num_tx_queues = txqs;
10527 dev->real_num_tx_queues = txqs;
10528 if (netif_alloc_netdev_queues(dev))
10529 goto free_all;
10530
10531 dev->num_rx_queues = rxqs;
10532 dev->real_num_rx_queues = rxqs;
10533 if (netif_alloc_rx_queues(dev))
10534 goto free_all;
10535
10536 strcpy(dev->name, name);
10537 dev->name_assign_type = name_assign_type;
10538 dev->group = INIT_NETDEV_GROUP;
10539 if (!dev->ethtool_ops)
10540 dev->ethtool_ops = &default_ethtool_ops;
10541
10542 nf_hook_ingress_init(dev);
10543
10544 return dev;
10545
10546 free_all:
10547 free_netdev(dev);
10548 return NULL;
10549
10550 free_pcpu:
10551 free_percpu(dev->pcpu_refcnt);
10552 free_dev:
10553 netdev_freemem(dev);
10554 return NULL;
10555 }
10556 EXPORT_SYMBOL(alloc_netdev_mqs);
10557
10558 /**
10559 * free_netdev - free network device
10560 * @dev: device
10561 *
10562 * This function does the last stage of destroying an allocated device
10563 * interface. The reference to the device object is released. If this
10564 * is the last reference then it will be freed.Must be called in process
10565 * context.
10566 */
free_netdev(struct net_device * dev)10567 void free_netdev(struct net_device *dev)
10568 {
10569 struct napi_struct *p, *n;
10570
10571 might_sleep();
10572
10573 /* When called immediately after register_netdevice() failed the unwind
10574 * handling may still be dismantling the device. Handle that case by
10575 * deferring the free.
10576 */
10577 if (dev->reg_state == NETREG_UNREGISTERING) {
10578 ASSERT_RTNL();
10579 dev->needs_free_netdev = true;
10580 return;
10581 }
10582
10583 netif_free_tx_queues(dev);
10584 netif_free_rx_queues(dev);
10585
10586 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10587
10588 /* Flush device addresses */
10589 dev_addr_flush(dev);
10590
10591 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10592 netif_napi_del(p);
10593
10594 free_percpu(dev->pcpu_refcnt);
10595 dev->pcpu_refcnt = NULL;
10596 free_percpu(dev->xdp_bulkq);
10597 dev->xdp_bulkq = NULL;
10598
10599 /* Compatibility with error handling in drivers */
10600 if (dev->reg_state == NETREG_UNINITIALIZED) {
10601 netdev_freemem(dev);
10602 return;
10603 }
10604
10605 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10606 dev->reg_state = NETREG_RELEASED;
10607
10608 /* will free via device release */
10609 put_device(&dev->dev);
10610 }
10611 EXPORT_SYMBOL(free_netdev);
10612
10613 /**
10614 * synchronize_net - Synchronize with packet receive processing
10615 *
10616 * Wait for packets currently being received to be done.
10617 * Does not block later packets from starting.
10618 */
synchronize_net(void)10619 void synchronize_net(void)
10620 {
10621 might_sleep();
10622 if (rtnl_is_locked())
10623 synchronize_rcu_expedited();
10624 else
10625 synchronize_rcu();
10626 }
10627 EXPORT_SYMBOL(synchronize_net);
10628
10629 /**
10630 * unregister_netdevice_queue - remove device from the kernel
10631 * @dev: device
10632 * @head: list
10633 *
10634 * This function shuts down a device interface and removes it
10635 * from the kernel tables.
10636 * If head not NULL, device is queued to be unregistered later.
10637 *
10638 * Callers must hold the rtnl semaphore. You may want
10639 * unregister_netdev() instead of this.
10640 */
10641
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10642 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10643 {
10644 ASSERT_RTNL();
10645
10646 if (head) {
10647 list_move_tail(&dev->unreg_list, head);
10648 } else {
10649 LIST_HEAD(single);
10650
10651 list_add(&dev->unreg_list, &single);
10652 unregister_netdevice_many(&single);
10653 }
10654 }
10655 EXPORT_SYMBOL(unregister_netdevice_queue);
10656
10657 /**
10658 * unregister_netdevice_many - unregister many devices
10659 * @head: list of devices
10660 *
10661 * Note: As most callers use a stack allocated list_head,
10662 * we force a list_del() to make sure stack wont be corrupted later.
10663 */
unregister_netdevice_many(struct list_head * head)10664 void unregister_netdevice_many(struct list_head *head)
10665 {
10666 struct net_device *dev, *tmp;
10667 LIST_HEAD(close_head);
10668
10669 BUG_ON(dev_boot_phase);
10670 ASSERT_RTNL();
10671
10672 if (list_empty(head))
10673 return;
10674
10675 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10676 /* Some devices call without registering
10677 * for initialization unwind. Remove those
10678 * devices and proceed with the remaining.
10679 */
10680 if (dev->reg_state == NETREG_UNINITIALIZED) {
10681 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10682 dev->name, dev);
10683
10684 WARN_ON(1);
10685 list_del(&dev->unreg_list);
10686 continue;
10687 }
10688 dev->dismantle = true;
10689 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10690 }
10691
10692 /* If device is running, close it first. */
10693 list_for_each_entry(dev, head, unreg_list)
10694 list_add_tail(&dev->close_list, &close_head);
10695 dev_close_many(&close_head, true);
10696
10697 list_for_each_entry(dev, head, unreg_list) {
10698 /* And unlink it from device chain. */
10699 unlist_netdevice(dev);
10700
10701 dev->reg_state = NETREG_UNREGISTERING;
10702 }
10703 flush_all_backlogs();
10704
10705 synchronize_net();
10706
10707 list_for_each_entry(dev, head, unreg_list) {
10708 struct sk_buff *skb = NULL;
10709
10710 /* Shutdown queueing discipline. */
10711 dev_shutdown(dev);
10712
10713 dev_xdp_uninstall(dev);
10714
10715 /* Notify protocols, that we are about to destroy
10716 * this device. They should clean all the things.
10717 */
10718 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10719
10720 if (!dev->rtnl_link_ops ||
10721 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10722 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10723 GFP_KERNEL, NULL, 0);
10724
10725 /*
10726 * Flush the unicast and multicast chains
10727 */
10728 dev_uc_flush(dev);
10729 dev_mc_flush(dev);
10730
10731 netdev_name_node_alt_flush(dev);
10732 netdev_name_node_free(dev->name_node);
10733
10734 if (dev->netdev_ops->ndo_uninit)
10735 dev->netdev_ops->ndo_uninit(dev);
10736
10737 if (skb)
10738 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10739
10740 /* Notifier chain MUST detach us all upper devices. */
10741 WARN_ON(netdev_has_any_upper_dev(dev));
10742 WARN_ON(netdev_has_any_lower_dev(dev));
10743
10744 /* Remove entries from kobject tree */
10745 netdev_unregister_kobject(dev);
10746 #ifdef CONFIG_XPS
10747 /* Remove XPS queueing entries */
10748 netif_reset_xps_queues_gt(dev, 0);
10749 #endif
10750 }
10751
10752 synchronize_net();
10753
10754 list_for_each_entry(dev, head, unreg_list) {
10755 dev_put(dev);
10756 net_set_todo(dev);
10757 }
10758
10759 list_del(head);
10760 }
10761 EXPORT_SYMBOL(unregister_netdevice_many);
10762
10763 /**
10764 * unregister_netdev - remove device from the kernel
10765 * @dev: device
10766 *
10767 * This function shuts down a device interface and removes it
10768 * from the kernel tables.
10769 *
10770 * This is just a wrapper for unregister_netdevice that takes
10771 * the rtnl semaphore. In general you want to use this and not
10772 * unregister_netdevice.
10773 */
unregister_netdev(struct net_device * dev)10774 void unregister_netdev(struct net_device *dev)
10775 {
10776 rtnl_lock();
10777 unregister_netdevice(dev);
10778 rtnl_unlock();
10779 }
10780 EXPORT_SYMBOL(unregister_netdev);
10781
10782 /**
10783 * dev_change_net_namespace - move device to different nethost namespace
10784 * @dev: device
10785 * @net: network namespace
10786 * @pat: If not NULL name pattern to try if the current device name
10787 * is already taken in the destination network namespace.
10788 *
10789 * This function shuts down a device interface and moves it
10790 * to a new network namespace. On success 0 is returned, on
10791 * a failure a netagive errno code is returned.
10792 *
10793 * Callers must hold the rtnl semaphore.
10794 */
10795
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)10796 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10797 {
10798 struct net *net_old = dev_net(dev);
10799 int err, new_nsid, new_ifindex;
10800
10801 ASSERT_RTNL();
10802
10803 /* Don't allow namespace local devices to be moved. */
10804 err = -EINVAL;
10805 if (dev->features & NETIF_F_NETNS_LOCAL)
10806 goto out;
10807
10808 /* Ensure the device has been registrered */
10809 if (dev->reg_state != NETREG_REGISTERED)
10810 goto out;
10811
10812 /* Get out if there is nothing todo */
10813 err = 0;
10814 if (net_eq(net_old, net))
10815 goto out;
10816
10817 /* Pick the destination device name, and ensure
10818 * we can use it in the destination network namespace.
10819 */
10820 err = -EEXIST;
10821 if (__dev_get_by_name(net, dev->name)) {
10822 /* We get here if we can't use the current device name */
10823 if (!pat)
10824 goto out;
10825 err = dev_get_valid_name(net, dev, pat);
10826 if (err < 0)
10827 goto out;
10828 }
10829
10830 /*
10831 * And now a mini version of register_netdevice unregister_netdevice.
10832 */
10833
10834 /* If device is running close it first. */
10835 dev_close(dev);
10836
10837 /* And unlink it from device chain */
10838 unlist_netdevice(dev);
10839
10840 synchronize_net();
10841
10842 /* Shutdown queueing discipline. */
10843 dev_shutdown(dev);
10844
10845 /* Notify protocols, that we are about to destroy
10846 * this device. They should clean all the things.
10847 *
10848 * Note that dev->reg_state stays at NETREG_REGISTERED.
10849 * This is wanted because this way 8021q and macvlan know
10850 * the device is just moving and can keep their slaves up.
10851 */
10852 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10853 rcu_barrier();
10854
10855 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10856 /* If there is an ifindex conflict assign a new one */
10857 if (__dev_get_by_index(net, dev->ifindex))
10858 new_ifindex = dev_new_index(net);
10859 else
10860 new_ifindex = dev->ifindex;
10861
10862 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10863 new_ifindex);
10864
10865 /*
10866 * Flush the unicast and multicast chains
10867 */
10868 dev_uc_flush(dev);
10869 dev_mc_flush(dev);
10870
10871 /* Send a netdev-removed uevent to the old namespace */
10872 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10873 netdev_adjacent_del_links(dev);
10874
10875 /* Move per-net netdevice notifiers that are following the netdevice */
10876 move_netdevice_notifiers_dev_net(dev, net);
10877
10878 /* Actually switch the network namespace */
10879 dev_net_set(dev, net);
10880 dev->ifindex = new_ifindex;
10881
10882 /* Send a netdev-add uevent to the new namespace */
10883 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10884 netdev_adjacent_add_links(dev);
10885
10886 /* Fixup kobjects */
10887 err = device_rename(&dev->dev, dev->name);
10888 WARN_ON(err);
10889
10890 /* Adapt owner in case owning user namespace of target network
10891 * namespace is different from the original one.
10892 */
10893 err = netdev_change_owner(dev, net_old, net);
10894 WARN_ON(err);
10895
10896 /* Add the device back in the hashes */
10897 list_netdevice(dev);
10898
10899 /* Notify protocols, that a new device appeared. */
10900 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10901
10902 /*
10903 * Prevent userspace races by waiting until the network
10904 * device is fully setup before sending notifications.
10905 */
10906 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10907
10908 synchronize_net();
10909 err = 0;
10910 out:
10911 return err;
10912 }
10913 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10914
dev_cpu_dead(unsigned int oldcpu)10915 static int dev_cpu_dead(unsigned int oldcpu)
10916 {
10917 struct sk_buff **list_skb;
10918 struct sk_buff *skb;
10919 unsigned int cpu;
10920 struct softnet_data *sd, *oldsd, *remsd = NULL;
10921
10922 local_irq_disable();
10923 cpu = smp_processor_id();
10924 sd = &per_cpu(softnet_data, cpu);
10925 oldsd = &per_cpu(softnet_data, oldcpu);
10926
10927 /* Find end of our completion_queue. */
10928 list_skb = &sd->completion_queue;
10929 while (*list_skb)
10930 list_skb = &(*list_skb)->next;
10931 /* Append completion queue from offline CPU. */
10932 *list_skb = oldsd->completion_queue;
10933 oldsd->completion_queue = NULL;
10934
10935 /* Append output queue from offline CPU. */
10936 if (oldsd->output_queue) {
10937 *sd->output_queue_tailp = oldsd->output_queue;
10938 sd->output_queue_tailp = oldsd->output_queue_tailp;
10939 oldsd->output_queue = NULL;
10940 oldsd->output_queue_tailp = &oldsd->output_queue;
10941 }
10942 /* Append NAPI poll list from offline CPU, with one exception :
10943 * process_backlog() must be called by cpu owning percpu backlog.
10944 * We properly handle process_queue & input_pkt_queue later.
10945 */
10946 while (!list_empty(&oldsd->poll_list)) {
10947 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10948 struct napi_struct,
10949 poll_list);
10950
10951 list_del_init(&napi->poll_list);
10952 if (napi->poll == process_backlog)
10953 napi->state = 0;
10954 else
10955 ____napi_schedule(sd, napi);
10956 }
10957
10958 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10959 local_irq_enable();
10960
10961 #ifdef CONFIG_RPS
10962 remsd = oldsd->rps_ipi_list;
10963 oldsd->rps_ipi_list = NULL;
10964 #endif
10965 /* send out pending IPI's on offline CPU */
10966 net_rps_send_ipi(remsd);
10967
10968 /* Process offline CPU's input_pkt_queue */
10969 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10970 netif_rx_ni(skb);
10971 input_queue_head_incr(oldsd);
10972 }
10973 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10974 netif_rx_ni(skb);
10975 input_queue_head_incr(oldsd);
10976 }
10977
10978 return 0;
10979 }
10980
10981 /**
10982 * netdev_increment_features - increment feature set by one
10983 * @all: current feature set
10984 * @one: new feature set
10985 * @mask: mask feature set
10986 *
10987 * Computes a new feature set after adding a device with feature set
10988 * @one to the master device with current feature set @all. Will not
10989 * enable anything that is off in @mask. Returns the new feature set.
10990 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10991 netdev_features_t netdev_increment_features(netdev_features_t all,
10992 netdev_features_t one, netdev_features_t mask)
10993 {
10994 if (mask & NETIF_F_HW_CSUM)
10995 mask |= NETIF_F_CSUM_MASK;
10996 mask |= NETIF_F_VLAN_CHALLENGED;
10997
10998 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10999 all &= one | ~NETIF_F_ALL_FOR_ALL;
11000
11001 /* If one device supports hw checksumming, set for all. */
11002 if (all & NETIF_F_HW_CSUM)
11003 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11004
11005 return all;
11006 }
11007 EXPORT_SYMBOL(netdev_increment_features);
11008
netdev_create_hash(void)11009 static struct hlist_head * __net_init netdev_create_hash(void)
11010 {
11011 int i;
11012 struct hlist_head *hash;
11013
11014 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11015 if (hash != NULL)
11016 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11017 INIT_HLIST_HEAD(&hash[i]);
11018
11019 return hash;
11020 }
11021
11022 /* Initialize per network namespace state */
netdev_init(struct net * net)11023 static int __net_init netdev_init(struct net *net)
11024 {
11025 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11026 8 * sizeof_field(struct napi_struct, gro_bitmask));
11027
11028 if (net != &init_net)
11029 INIT_LIST_HEAD(&net->dev_base_head);
11030
11031 net->dev_name_head = netdev_create_hash();
11032 if (net->dev_name_head == NULL)
11033 goto err_name;
11034
11035 net->dev_index_head = netdev_create_hash();
11036 if (net->dev_index_head == NULL)
11037 goto err_idx;
11038
11039 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11040
11041 return 0;
11042
11043 err_idx:
11044 kfree(net->dev_name_head);
11045 err_name:
11046 return -ENOMEM;
11047 }
11048
11049 /**
11050 * netdev_drivername - network driver for the device
11051 * @dev: network device
11052 *
11053 * Determine network driver for device.
11054 */
netdev_drivername(const struct net_device * dev)11055 const char *netdev_drivername(const struct net_device *dev)
11056 {
11057 const struct device_driver *driver;
11058 const struct device *parent;
11059 const char *empty = "";
11060
11061 parent = dev->dev.parent;
11062 if (!parent)
11063 return empty;
11064
11065 driver = parent->driver;
11066 if (driver && driver->name)
11067 return driver->name;
11068 return empty;
11069 }
11070
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11071 static void __netdev_printk(const char *level, const struct net_device *dev,
11072 struct va_format *vaf)
11073 {
11074 if (dev && dev->dev.parent) {
11075 dev_printk_emit(level[1] - '0',
11076 dev->dev.parent,
11077 "%s %s %s%s: %pV",
11078 dev_driver_string(dev->dev.parent),
11079 dev_name(dev->dev.parent),
11080 netdev_name(dev), netdev_reg_state(dev),
11081 vaf);
11082 } else if (dev) {
11083 printk("%s%s%s: %pV",
11084 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11085 } else {
11086 printk("%s(NULL net_device): %pV", level, vaf);
11087 }
11088 }
11089
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11090 void netdev_printk(const char *level, const struct net_device *dev,
11091 const char *format, ...)
11092 {
11093 struct va_format vaf;
11094 va_list args;
11095
11096 va_start(args, format);
11097
11098 vaf.fmt = format;
11099 vaf.va = &args;
11100
11101 __netdev_printk(level, dev, &vaf);
11102
11103 va_end(args);
11104 }
11105 EXPORT_SYMBOL(netdev_printk);
11106
11107 #define define_netdev_printk_level(func, level) \
11108 void func(const struct net_device *dev, const char *fmt, ...) \
11109 { \
11110 struct va_format vaf; \
11111 va_list args; \
11112 \
11113 va_start(args, fmt); \
11114 \
11115 vaf.fmt = fmt; \
11116 vaf.va = &args; \
11117 \
11118 __netdev_printk(level, dev, &vaf); \
11119 \
11120 va_end(args); \
11121 } \
11122 EXPORT_SYMBOL(func);
11123
11124 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11125 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11126 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11127 define_netdev_printk_level(netdev_err, KERN_ERR);
11128 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11129 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11130 define_netdev_printk_level(netdev_info, KERN_INFO);
11131
netdev_exit(struct net * net)11132 static void __net_exit netdev_exit(struct net *net)
11133 {
11134 kfree(net->dev_name_head);
11135 kfree(net->dev_index_head);
11136 if (net != &init_net)
11137 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11138 }
11139
11140 static struct pernet_operations __net_initdata netdev_net_ops = {
11141 .init = netdev_init,
11142 .exit = netdev_exit,
11143 };
11144
default_device_exit(struct net * net)11145 static void __net_exit default_device_exit(struct net *net)
11146 {
11147 struct net_device *dev, *aux;
11148 /*
11149 * Push all migratable network devices back to the
11150 * initial network namespace
11151 */
11152 rtnl_lock();
11153 for_each_netdev_safe(net, dev, aux) {
11154 int err;
11155 char fb_name[IFNAMSIZ];
11156
11157 /* Ignore unmoveable devices (i.e. loopback) */
11158 if (dev->features & NETIF_F_NETNS_LOCAL)
11159 continue;
11160
11161 /* Leave virtual devices for the generic cleanup */
11162 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11163 continue;
11164
11165 /* Push remaining network devices to init_net */
11166 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11167 if (__dev_get_by_name(&init_net, fb_name))
11168 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11169 err = dev_change_net_namespace(dev, &init_net, fb_name);
11170 if (err) {
11171 pr_emerg("%s: failed to move %s to init_net: %d\n",
11172 __func__, dev->name, err);
11173 BUG();
11174 }
11175 }
11176 rtnl_unlock();
11177 }
11178
rtnl_lock_unregistering(struct list_head * net_list)11179 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11180 {
11181 /* Return with the rtnl_lock held when there are no network
11182 * devices unregistering in any network namespace in net_list.
11183 */
11184 struct net *net;
11185 bool unregistering;
11186 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11187
11188 add_wait_queue(&netdev_unregistering_wq, &wait);
11189 for (;;) {
11190 unregistering = false;
11191 rtnl_lock();
11192 list_for_each_entry(net, net_list, exit_list) {
11193 if (net->dev_unreg_count > 0) {
11194 unregistering = true;
11195 break;
11196 }
11197 }
11198 if (!unregistering)
11199 break;
11200 __rtnl_unlock();
11201
11202 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11203 }
11204 remove_wait_queue(&netdev_unregistering_wq, &wait);
11205 }
11206
default_device_exit_batch(struct list_head * net_list)11207 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11208 {
11209 /* At exit all network devices most be removed from a network
11210 * namespace. Do this in the reverse order of registration.
11211 * Do this across as many network namespaces as possible to
11212 * improve batching efficiency.
11213 */
11214 struct net_device *dev;
11215 struct net *net;
11216 LIST_HEAD(dev_kill_list);
11217
11218 /* To prevent network device cleanup code from dereferencing
11219 * loopback devices or network devices that have been freed
11220 * wait here for all pending unregistrations to complete,
11221 * before unregistring the loopback device and allowing the
11222 * network namespace be freed.
11223 *
11224 * The netdev todo list containing all network devices
11225 * unregistrations that happen in default_device_exit_batch
11226 * will run in the rtnl_unlock() at the end of
11227 * default_device_exit_batch.
11228 */
11229 rtnl_lock_unregistering(net_list);
11230 list_for_each_entry(net, net_list, exit_list) {
11231 for_each_netdev_reverse(net, dev) {
11232 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11233 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11234 else
11235 unregister_netdevice_queue(dev, &dev_kill_list);
11236 }
11237 }
11238 unregister_netdevice_many(&dev_kill_list);
11239 rtnl_unlock();
11240 }
11241
11242 static struct pernet_operations __net_initdata default_device_ops = {
11243 .exit = default_device_exit,
11244 .exit_batch = default_device_exit_batch,
11245 };
11246
11247 /*
11248 * Initialize the DEV module. At boot time this walks the device list and
11249 * unhooks any devices that fail to initialise (normally hardware not
11250 * present) and leaves us with a valid list of present and active devices.
11251 *
11252 */
11253
11254 /*
11255 * This is called single threaded during boot, so no need
11256 * to take the rtnl semaphore.
11257 */
net_dev_init(void)11258 static int __init net_dev_init(void)
11259 {
11260 int i, rc = -ENOMEM;
11261
11262 BUG_ON(!dev_boot_phase);
11263
11264 if (dev_proc_init())
11265 goto out;
11266
11267 if (netdev_kobject_init())
11268 goto out;
11269
11270 INIT_LIST_HEAD(&ptype_all);
11271 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11272 INIT_LIST_HEAD(&ptype_base[i]);
11273
11274 INIT_LIST_HEAD(&offload_base);
11275
11276 if (register_pernet_subsys(&netdev_net_ops))
11277 goto out;
11278
11279 /*
11280 * Initialise the packet receive queues.
11281 */
11282
11283 for_each_possible_cpu(i) {
11284 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11285 struct softnet_data *sd = &per_cpu(softnet_data, i);
11286
11287 INIT_WORK(flush, flush_backlog);
11288
11289 skb_queue_head_init(&sd->input_pkt_queue);
11290 skb_queue_head_init(&sd->process_queue);
11291 #ifdef CONFIG_XFRM_OFFLOAD
11292 skb_queue_head_init(&sd->xfrm_backlog);
11293 #endif
11294 INIT_LIST_HEAD(&sd->poll_list);
11295 sd->output_queue_tailp = &sd->output_queue;
11296 #ifdef CONFIG_RPS
11297 sd->csd.func = rps_trigger_softirq;
11298 sd->csd.info = sd;
11299 sd->cpu = i;
11300 #endif
11301
11302 init_gro_hash(&sd->backlog);
11303 sd->backlog.poll = process_backlog;
11304 sd->backlog.weight = weight_p;
11305 }
11306
11307 dev_boot_phase = 0;
11308
11309 /* The loopback device is special if any other network devices
11310 * is present in a network namespace the loopback device must
11311 * be present. Since we now dynamically allocate and free the
11312 * loopback device ensure this invariant is maintained by
11313 * keeping the loopback device as the first device on the
11314 * list of network devices. Ensuring the loopback devices
11315 * is the first device that appears and the last network device
11316 * that disappears.
11317 */
11318 if (register_pernet_device(&loopback_net_ops))
11319 goto out;
11320
11321 if (register_pernet_device(&default_device_ops))
11322 goto out;
11323
11324 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11325 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11326
11327 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11328 NULL, dev_cpu_dead);
11329 WARN_ON(rc < 0);
11330 rc = 0;
11331 out:
11332 return rc;
11333 }
11334
11335 subsys_initcall(net_dev_init);
11336