1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10
11 #include "include/core/SkData.h"
12 #include "include/core/SkTypes.h"
13 #include "src/core/SkUtils.h" // unaligned_{load,store}
14 #include <cstdint>
15
16 // Every function in this file should be marked static and inline using SI.
17 #if defined(__clang__)
18 #define SI __attribute__((always_inline)) static inline
19 #else
20 #define SI static inline
21 #endif
22
23 template <typename Dst, typename Src>
widen_cast(const Src & src)24 SI Dst widen_cast(const Src& src) {
25 static_assert(sizeof(Dst) > sizeof(Src));
26 static_assert(std::is_trivially_copyable<Dst>::value);
27 static_assert(std::is_trivially_copyable<Src>::value);
28 Dst dst;
29 memcpy(&dst, &src, sizeof(Src));
30 return dst;
31 }
32
33 // Our program is an array of void*, either
34 // - 1 void* per stage with no context pointer, the next stage;
35 // - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
36
37 // load_and_inc() steps the program forward by 1 void*, returning that pointer.
load_and_inc(void ** & program)38 SI void* load_and_inc(void**& program) {
39 #if defined(__GNUC__) && defined(__x86_64__)
40 // If program is in %rsi (we try to make this likely) then this is a single instruction.
41 void* rax;
42 asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
43 return rax;
44 #else
45 // On ARM *program++ compiles into pretty ideal code without any handholding.
46 return *program++;
47 #endif
48 }
49
50 // Lazily resolved on first cast. Does nothing if cast to Ctx::None.
51 struct Ctx {
52 struct None {};
53
54 void* ptr;
55 void**& program;
56
CtxCtx57 explicit Ctx(void**& p) : ptr(nullptr), program(p) {}
58
59 template <typename T>
60 operator T*() {
61 if (!ptr) { ptr = load_and_inc(program); }
62 return (T*)ptr;
63 }
NoneCtx64 operator None() { return None{}; }
65 };
66
67
68 #if !defined(__clang__)
69 #define JUMPER_IS_SCALAR
70 #elif defined(SK_ARM_HAS_NEON)
71 #define JUMPER_IS_NEON
72 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
73 #define JUMPER_IS_SKX
74 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
75 #define JUMPER_IS_HSW
76 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
77 #define JUMPER_IS_AVX
78 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
79 #define JUMPER_IS_SSE41
80 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
81 #define JUMPER_IS_SSE2
82 #else
83 #define JUMPER_IS_SCALAR
84 #endif
85
86 // Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
87 #if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
88 // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
89 #if defined(__apple_build_version__) && __clang_major__ < 9
90 #define JUMPER_IS_SCALAR
91 #elif __clang_major__ < 5
92 #define JUMPER_IS_SCALAR
93 #endif
94
95 #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
96 #undef JUMPER_IS_NEON
97 #endif
98 #endif
99
100 #if defined(JUMPER_IS_SCALAR)
101 #include <math.h>
102 #elif defined(JUMPER_IS_NEON)
103 #include <arm_neon.h>
104 #else
105 #include <immintrin.h>
106 #endif
107
108 // Notes:
109 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
110 // 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
111 // requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
112 // Intel this requires one additional step because its estimate has 12 bit precision.
113
114 namespace SK_OPTS_NS {
115 #if defined(JUMPER_IS_SCALAR)
116 // This path should lead to portable scalar code.
117 using F = float ;
118 using I32 = int32_t;
119 using U64 = uint64_t;
120 using U32 = uint32_t;
121 using U16 = uint16_t;
122 using U8 = uint8_t ;
123
mad(F f,F m,F a)124 SI F mad(F f, F m, F a) { return f*m+a; }
min(F a,F b)125 SI F min(F a, F b) { return fminf(a,b); }
max(F a,F b)126 SI F max(F a, F b) { return fmaxf(a,b); }
abs_(F v)127 SI F abs_ (F v) { return fabsf(v); }
floor_(F v)128 SI F floor_(F v) { return floorf(v); }
rcp_fast(F v)129 SI F rcp_fast(F v) { return 1.0f / v; }
rsqrt(F v)130 SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
sqrt_(F v)131 SI F sqrt_ (F v) { return sqrtf(v); }
rcp_precise(F v)132 SI F rcp_precise (F v) { return 1.0f / v; }
133
round(F v,F scale)134 SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
pack(U32 v)135 SI U16 pack(U32 v) { return (U16)v; }
pack(U16 v)136 SI U8 pack(U16 v) { return (U8)v; }
137
if_then_else(I32 c,F t,F e)138 SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
139
140 template <typename T>
gather(const T * p,U32 ix)141 SI T gather(const T* p, U32 ix) { return p[ix]; }
142
load2(const uint16_t * ptr,size_t tail,U16 * r,U16 * g)143 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
144 *r = ptr[0];
145 *g = ptr[1];
146 }
store2(uint16_t * ptr,size_t tail,U16 r,U16 g)147 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
148 ptr[0] = r;
149 ptr[1] = g;
150 }
load3(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b)151 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
152 *r = ptr[0];
153 *g = ptr[1];
154 *b = ptr[2];
155 }
load4(const uint16_t * ptr,size_t tail,U16 * r,U16 * g,U16 * b,U16 * a)156 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
157 *r = ptr[0];
158 *g = ptr[1];
159 *b = ptr[2];
160 *a = ptr[3];
161 }
store4(uint16_t * ptr,size_t tail,U16 r,U16 g,U16 b,U16 a)162 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
163 ptr[0] = r;
164 ptr[1] = g;
165 ptr[2] = b;
166 ptr[3] = a;
167 }
168
load2(const float * ptr,size_t tail,F * r,F * g)169 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
170 *r = ptr[0];
171 *g = ptr[1];
172 }
store2(float * ptr,size_t tail,F r,F g)173 SI void store2(float* ptr, size_t tail, F r, F g) {
174 ptr[0] = r;
175 ptr[1] = g;
176 }
load4(const float * ptr,size_t tail,F * r,F * g,F * b,F * a)177 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
178 *r = ptr[0];
179 *g = ptr[1];
180 *b = ptr[2];
181 *a = ptr[3];
182 }
store4(float * ptr,size_t tail,F r,F g,F b,F a)183 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
184 ptr[0] = r;
185 ptr[1] = g;
186 ptr[2] = b;
187 ptr[3] = a;
188 }
189
190 #elif defined(JUMPER_IS_NEON)
191 // Since we know we're using Clang, we can use its vector extensions.
192 template <typename T> using V = T __attribute__((ext_vector_type(4)));
193 using F = V<float >;
194 using I32 = V< int32_t>;
195 using U64 = V<uint64_t>;
196 using U32 = V<uint32_t>;
197 using U16 = V<uint16_t>;
198 using U8 = V<uint8_t >;
199
200 // We polyfill a few routines that Clang doesn't build into ext_vector_types.
201 SI F min(F a, F b) { return vminq_f32(a,b); }
202 SI F max(F a, F b) { return vmaxq_f32(a,b); }
203 SI F abs_ (F v) { return vabsq_f32(v); }
204 SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
205 SI F rcp_precise (F v) { auto e = rcp_fast(v); return vrecpsq_f32 (v,e ) * e; }
206 SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
207
208 SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
209 SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
210
211 SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
212
213 #if defined(SK_CPU_ARM64)
214 SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
215 SI F floor_(F v) { return vrndmq_f32(v); }
216 SI F sqrt_(F v) { return vsqrtq_f32(v); }
217 SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
218 #else
219 SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
220 SI F floor_(F v) {
221 F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
222 return roundtrip - if_then_else(roundtrip > v, 1, 0);
223 }
224
225 SI F sqrt_(F v) {
226 auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
227 e *= vrsqrtsq_f32(v,e*e);
228 e *= vrsqrtsq_f32(v,e*e);
229 return v*e; // sqrt(v) == v*rsqrt(v).
230 }
231
232 SI U32 round(F v, F scale) {
233 return vcvtq_u32_f32(mad(v,scale,0.5f));
234 }
235 #endif
236
237
238 template <typename T>
239 SI V<T> gather(const T* p, U32 ix) {
240 return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
241 }
242 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
243 uint16x4x2_t rg;
244 if (__builtin_expect(tail,0)) {
245 if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); }
246 if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); }
247 if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); }
248 } else {
249 rg = vld2_u16(ptr);
250 }
251 *r = rg.val[0];
252 *g = rg.val[1];
253 }
254 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
255 if (__builtin_expect(tail,0)) {
256 if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); }
257 if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); }
258 if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); }
259 } else {
260 vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
261 }
262 }
263 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
264 uint16x4x3_t rgb;
265 if (__builtin_expect(tail,0)) {
266 if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
267 if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
268 if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
269 } else {
270 rgb = vld3_u16(ptr);
271 }
272 *r = rgb.val[0];
273 *g = rgb.val[1];
274 *b = rgb.val[2];
275 }
276 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
277 uint16x4x4_t rgba;
278 if (__builtin_expect(tail,0)) {
279 if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
280 if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
281 if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
282 } else {
283 rgba = vld4_u16(ptr);
284 }
285 *r = rgba.val[0];
286 *g = rgba.val[1];
287 *b = rgba.val[2];
288 *a = rgba.val[3];
289 }
290
291 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
292 if (__builtin_expect(tail,0)) {
293 if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
294 if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
295 if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
296 } else {
297 vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
298 }
299 }
300 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
301 float32x4x2_t rg;
302 if (__builtin_expect(tail,0)) {
303 if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); }
304 if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); }
305 if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); }
306 } else {
307 rg = vld2q_f32(ptr);
308 }
309 *r = rg.val[0];
310 *g = rg.val[1];
311 }
312 SI void store2(float* ptr, size_t tail, F r, F g) {
313 if (__builtin_expect(tail,0)) {
314 if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); }
315 if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); }
316 if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); }
317 } else {
318 vst2q_f32(ptr, (float32x4x2_t{{r,g}}));
319 }
320 }
321 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
322 float32x4x4_t rgba;
323 if (__builtin_expect(tail,0)) {
324 if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
325 if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
326 if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
327 } else {
328 rgba = vld4q_f32(ptr);
329 }
330 *r = rgba.val[0];
331 *g = rgba.val[1];
332 *b = rgba.val[2];
333 *a = rgba.val[3];
334 }
335 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
336 if (__builtin_expect(tail,0)) {
337 if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
338 if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
339 if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
340 } else {
341 vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
342 }
343 }
344
345 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
346 // These are __m256 and __m256i, but friendlier and strongly-typed.
347 template <typename T> using V = T __attribute__((ext_vector_type(8)));
348 using F = V<float >;
349 using I32 = V< int32_t>;
350 using U64 = V<uint64_t>;
351 using U32 = V<uint32_t>;
352 using U16 = V<uint16_t>;
353 using U8 = V<uint8_t >;
354
355 SI F mad(F f, F m, F a) {
356 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
357 return _mm256_fmadd_ps(f,m,a);
358 #else
359 return f*m+a;
360 #endif
361 }
362
363 SI F min(F a, F b) { return _mm256_min_ps(a,b); }
364 SI F max(F a, F b) { return _mm256_max_ps(a,b); }
365 SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
366 SI F floor_(F v) { return _mm256_floor_ps(v); }
367 SI F rcp_fast(F v) { return _mm256_rcp_ps (v); }
368 SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
369 SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); }
370 SI F rcp_precise (F v) {
371 F e = rcp_fast(v);
372 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
373 return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
374 #else
375 return e * (2.0f - v * e);
376 #endif
377 }
378
379
380 SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
381 SI U16 pack(U32 v) {
382 return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
383 _mm256_extractf128_si256(v, 1));
384 }
385 SI U8 pack(U16 v) {
386 auto r = _mm_packus_epi16(v,v);
387 return sk_unaligned_load<U8>(&r);
388 }
389
390 SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
391
392 template <typename T>
393 SI V<T> gather(const T* p, U32 ix) {
394 return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
395 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
396 }
397 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
398 SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
399 SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
400 SI U64 gather(const uint64_t* p, U32 ix) {
401 __m256i parts[] = {
402 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
403 _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
404 };
405 return sk_bit_cast<U64>(parts);
406 }
407 #endif
408
409 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
410 U16 _0123, _4567;
411 if (__builtin_expect(tail,0)) {
412 _0123 = _4567 = _mm_setzero_si128();
413 auto* d = &_0123;
414 if (tail > 3) {
415 *d = _mm_loadu_si128(((__m128i*)ptr) + 0);
416 tail -= 4;
417 ptr += 8;
418 d = &_4567;
419 }
420 bool high = false;
421 if (tail > 1) {
422 *d = _mm_loadu_si64(ptr);
423 tail -= 2;
424 ptr += 4;
425 high = true;
426 }
427 if (tail > 0) {
428 (*d)[high ? 4 : 0] = *(ptr + 0);
429 (*d)[high ? 5 : 1] = *(ptr + 1);
430 }
431 } else {
432 _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0);
433 _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
434 }
435 *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
436 _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
437 *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
438 _mm_srai_epi32(_4567, 16));
439 }
440 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
441 auto _0123 = _mm_unpacklo_epi16(r, g),
442 _4567 = _mm_unpackhi_epi16(r, g);
443 if (__builtin_expect(tail,0)) {
444 const auto* s = &_0123;
445 if (tail > 3) {
446 _mm_storeu_si128((__m128i*)ptr, *s);
447 s = &_4567;
448 tail -= 4;
449 ptr += 8;
450 }
451 bool high = false;
452 if (tail > 1) {
453 _mm_storel_epi64((__m128i*)ptr, *s);
454 ptr += 4;
455 tail -= 2;
456 high = true;
457 }
458 if (tail > 0) {
459 if (high) {
460 *(int32_t*)ptr = _mm_extract_epi32(*s, 2);
461 } else {
462 *(int32_t*)ptr = _mm_cvtsi128_si32(*s);
463 }
464 }
465 } else {
466 _mm_storeu_si128((__m128i*)ptr + 0, _0123);
467 _mm_storeu_si128((__m128i*)ptr + 1, _4567);
468 }
469 }
470
471 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
472 __m128i _0,_1,_2,_3,_4,_5,_6,_7;
473 if (__builtin_expect(tail,0)) {
474 auto load_rgb = [](const uint16_t* src) {
475 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
476 return _mm_insert_epi16(v, src[2], 2);
477 };
478 _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
479 if ( true ) { _0 = load_rgb(ptr + 0); }
480 if (tail > 1) { _1 = load_rgb(ptr + 3); }
481 if (tail > 2) { _2 = load_rgb(ptr + 6); }
482 if (tail > 3) { _3 = load_rgb(ptr + 9); }
483 if (tail > 4) { _4 = load_rgb(ptr + 12); }
484 if (tail > 5) { _5 = load_rgb(ptr + 15); }
485 if (tail > 6) { _6 = load_rgb(ptr + 18); }
486 } else {
487 // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
488 auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
489 auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
490 auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
491 auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
492 _0 = _01; _1 = _mm_srli_si128(_01, 6);
493 _2 = _23; _3 = _mm_srli_si128(_23, 6);
494 _4 = _45; _5 = _mm_srli_si128(_45, 6);
495 _6 = _67; _7 = _mm_srli_si128(_67, 6);
496 }
497
498 auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
499 _13 = _mm_unpacklo_epi16(_1, _3),
500 _46 = _mm_unpacklo_epi16(_4, _6),
501 _57 = _mm_unpacklo_epi16(_5, _7);
502
503 auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
504 bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
505 rg4567 = _mm_unpacklo_epi16(_46, _57),
506 bx4567 = _mm_unpackhi_epi16(_46, _57);
507
508 *r = _mm_unpacklo_epi64(rg0123, rg4567);
509 *g = _mm_unpackhi_epi64(rg0123, rg4567);
510 *b = _mm_unpacklo_epi64(bx0123, bx4567);
511 }
512 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
513 __m128i _01, _23, _45, _67;
514 if (__builtin_expect(tail,0)) {
515 auto src = (const double*)ptr;
516 _01 = _23 = _45 = _67 = _mm_setzero_si128();
517 if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
518 if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
519 if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
520 if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
521 if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
522 if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
523 if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
524 } else {
525 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
526 _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
527 _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
528 _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
529 }
530
531 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
532 _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
533 _46 = _mm_unpacklo_epi16(_45, _67),
534 _57 = _mm_unpackhi_epi16(_45, _67);
535
536 auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
537 ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
538 rg4567 = _mm_unpacklo_epi16(_46, _57),
539 ba4567 = _mm_unpackhi_epi16(_46, _57);
540
541 *r = _mm_unpacklo_epi64(rg0123, rg4567);
542 *g = _mm_unpackhi_epi64(rg0123, rg4567);
543 *b = _mm_unpacklo_epi64(ba0123, ba4567);
544 *a = _mm_unpackhi_epi64(ba0123, ba4567);
545 }
546 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
547 auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
548 rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
549 ba0123 = _mm_unpacklo_epi16(b, a),
550 ba4567 = _mm_unpackhi_epi16(b, a);
551
552 auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
553 _23 = _mm_unpackhi_epi32(rg0123, ba0123),
554 _45 = _mm_unpacklo_epi32(rg4567, ba4567),
555 _67 = _mm_unpackhi_epi32(rg4567, ba4567);
556
557 if (__builtin_expect(tail,0)) {
558 auto dst = (double*)ptr;
559 if (tail > 0) { _mm_storel_pd(dst+0, _01); }
560 if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
561 if (tail > 2) { _mm_storel_pd(dst+2, _23); }
562 if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
563 if (tail > 4) { _mm_storel_pd(dst+4, _45); }
564 if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
565 if (tail > 6) { _mm_storel_pd(dst+6, _67); }
566 } else {
567 _mm_storeu_si128((__m128i*)ptr + 0, _01);
568 _mm_storeu_si128((__m128i*)ptr + 1, _23);
569 _mm_storeu_si128((__m128i*)ptr + 2, _45);
570 _mm_storeu_si128((__m128i*)ptr + 3, _67);
571 }
572 }
573
574 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
575 F _0123, _4567;
576 if (__builtin_expect(tail, 0)) {
577 _0123 = _4567 = _mm256_setzero_ps();
578 F* d = &_0123;
579 if (tail > 3) {
580 *d = _mm256_loadu_ps(ptr);
581 ptr += 8;
582 tail -= 4;
583 d = &_4567;
584 }
585 bool high = false;
586 if (tail > 1) {
587 *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr));
588 ptr += 4;
589 tail -= 2;
590 high = true;
591 }
592 if (tail > 0) {
593 *d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1)
594 : _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0);
595 }
596 } else {
597 _0123 = _mm256_loadu_ps(ptr + 0);
598 _4567 = _mm256_loadu_ps(ptr + 8);
599 }
600
601 F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20),
602 _2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31);
603
604 *r = _mm256_shuffle_ps(_0145, _2367, 0x88);
605 *g = _mm256_shuffle_ps(_0145, _2367, 0xDD);
606 }
607 SI void store2(float* ptr, size_t tail, F r, F g) {
608 F _0145 = _mm256_unpacklo_ps(r, g),
609 _2367 = _mm256_unpackhi_ps(r, g);
610 F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20),
611 _4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31);
612
613 if (__builtin_expect(tail, 0)) {
614 const __m256* s = &_0123;
615 if (tail > 3) {
616 _mm256_storeu_ps(ptr, *s);
617 s = &_4567;
618 tail -= 4;
619 ptr += 8;
620 }
621 bool high = false;
622 if (tail > 1) {
623 _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0));
624 ptr += 4;
625 tail -= 2;
626 high = true;
627 }
628 if (tail > 0) {
629 *(ptr + 0) = (*s)[ high ? 4 : 0];
630 *(ptr + 1) = (*s)[ high ? 5 : 1];
631 }
632 } else {
633 _mm256_storeu_ps(ptr + 0, _0123);
634 _mm256_storeu_ps(ptr + 8, _4567);
635 }
636 }
637
638 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
639 F _04, _15, _26, _37;
640 _04 = _15 = _26 = _37 = 0;
641 switch (tail) {
642 case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]];
643 case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]];
644 case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]];
645 case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]];
646 case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]];
647 case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]];
648 case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]];
649 case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
650 }
651
652 F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
653 ba0145 = _mm256_unpackhi_ps(_04,_15),
654 rg2367 = _mm256_unpacklo_ps(_26,_37),
655 ba2367 = _mm256_unpackhi_ps(_26,_37);
656
657 *r = _mm256_unpacklo_pd(rg0145, rg2367);
658 *g = _mm256_unpackhi_pd(rg0145, rg2367);
659 *b = _mm256_unpacklo_pd(ba0145, ba2367);
660 *a = _mm256_unpackhi_pd(ba0145, ba2367);
661 }
662 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
663 F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
664 rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
665 ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
666 ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
667
668 F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
669 _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
670 _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
671 _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
672
673 if (__builtin_expect(tail, 0)) {
674 if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
675 if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
676 if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
677 if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
678 if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
679 if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
680 if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
681 } else {
682 F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
683 _23 = _mm256_permute2f128_ps(_26, _37, 32),
684 _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
685 _67 = _mm256_permute2f128_ps(_26, _37, 49);
686 _mm256_storeu_ps(ptr+ 0, _01);
687 _mm256_storeu_ps(ptr+ 8, _23);
688 _mm256_storeu_ps(ptr+16, _45);
689 _mm256_storeu_ps(ptr+24, _67);
690 }
691 }
692
693 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
694 template <typename T> using V = T __attribute__((ext_vector_type(4)));
695 using F = V<float >;
696 using I32 = V< int32_t>;
697 using U64 = V<uint64_t>;
698 using U32 = V<uint32_t>;
699 using U16 = V<uint16_t>;
700 using U8 = V<uint8_t >;
701
702 SI F mad(F f, F m, F a) { return f*m+a; }
703 SI F min(F a, F b) { return _mm_min_ps(a,b); }
704 SI F max(F a, F b) { return _mm_max_ps(a,b); }
705 SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
706 SI F rcp_fast(F v) { return _mm_rcp_ps (v); }
707 SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); }
708 SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
709 SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
710
711 SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
712
713 SI U16 pack(U32 v) {
714 #if defined(JUMPER_IS_SSE41)
715 auto p = _mm_packus_epi32(v,v);
716 #else
717 // Sign extend so that _mm_packs_epi32() does the pack we want.
718 auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
719 p = _mm_packs_epi32(p,p);
720 #endif
721 return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
722 }
723 SI U8 pack(U16 v) {
724 auto r = widen_cast<__m128i>(v);
725 r = _mm_packus_epi16(r,r);
726 return sk_unaligned_load<U8>(&r);
727 }
728
729 SI F if_then_else(I32 c, F t, F e) {
730 return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
731 }
732
733 SI F floor_(F v) {
734 #if defined(JUMPER_IS_SSE41)
735 return _mm_floor_ps(v);
736 #else
737 F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
738 return roundtrip - if_then_else(roundtrip > v, 1, 0);
739 #endif
740 }
741
742 template <typename T>
743 SI V<T> gather(const T* p, U32 ix) {
744 return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
745 }
746
747 SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
748 __m128i _01;
749 if (__builtin_expect(tail,0)) {
750 _01 = _mm_setzero_si128();
751 if (tail > 1) {
752 _01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00
753 if (tail > 2) {
754 _01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00
755 _01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00
756 }
757 } else {
758 _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00
759 }
760 } else {
761 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
762 }
763 auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
764 auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
765
766 auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
767 auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
768 *r = sk_unaligned_load<U16>(&R);
769 *g = sk_unaligned_load<U16>(&G);
770 }
771 SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
772 U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
773 if (__builtin_expect(tail, 0)) {
774 if (tail > 1) {
775 _mm_storel_epi64((__m128i*)ptr, rg);
776 if (tail > 2) {
777 int32_t rgpair = rg[2];
778 memcpy(ptr + 4, &rgpair, sizeof(rgpair));
779 }
780 } else {
781 int32_t rgpair = rg[0];
782 memcpy(ptr, &rgpair, sizeof(rgpair));
783 }
784 } else {
785 _mm_storeu_si128((__m128i*)ptr + 0, rg);
786 }
787 }
788
789 SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
790 __m128i _0, _1, _2, _3;
791 if (__builtin_expect(tail,0)) {
792 _1 = _2 = _3 = _mm_setzero_si128();
793 auto load_rgb = [](const uint16_t* src) {
794 auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
795 return _mm_insert_epi16(v, src[2], 2);
796 };
797 if ( true ) { _0 = load_rgb(ptr + 0); }
798 if (tail > 1) { _1 = load_rgb(ptr + 3); }
799 if (tail > 2) { _2 = load_rgb(ptr + 6); }
800 } else {
801 // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
802 auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
803 _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
804
805 // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
806 _0 = _01;
807 _1 = _mm_srli_si128(_01, 6);
808 _2 = _23;
809 _3 = _mm_srli_si128(_23, 6);
810 }
811
812 // De-interlace to R,G,B.
813 auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
814 _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
815
816 auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
817 G = _mm_srli_si128(R, 8),
818 B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
819
820 *r = sk_unaligned_load<U16>(&R);
821 *g = sk_unaligned_load<U16>(&G);
822 *b = sk_unaligned_load<U16>(&B);
823 }
824
825 SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
826 __m128i _01, _23;
827 if (__builtin_expect(tail,0)) {
828 _01 = _23 = _mm_setzero_si128();
829 auto src = (const double*)ptr;
830 if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
831 if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
832 if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
833 } else {
834 _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
835 _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
836 }
837
838 auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
839 _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
840
841 auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
842 ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
843
844 *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
845 *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
846 *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
847 *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
848 }
849
850 SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
851 auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
852 ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
853
854 if (__builtin_expect(tail, 0)) {
855 auto dst = (double*)ptr;
856 if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
857 if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
858 if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
859 } else {
860 _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
861 _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
862 }
863 }
864
865 SI void load2(const float* ptr, size_t tail, F* r, F* g) {
866 F _01, _23;
867 if (__builtin_expect(tail, 0)) {
868 _01 = _23 = _mm_setzero_si128();
869 if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); }
870 if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); }
871 if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); }
872 } else {
873 _01 = _mm_loadu_ps(ptr + 0);
874 _23 = _mm_loadu_ps(ptr + 4);
875 }
876 *r = _mm_shuffle_ps(_01, _23, 0x88);
877 *g = _mm_shuffle_ps(_01, _23, 0xDD);
878 }
879 SI void store2(float* ptr, size_t tail, F r, F g) {
880 F _01 = _mm_unpacklo_ps(r, g),
881 _23 = _mm_unpackhi_ps(r, g);
882 if (__builtin_expect(tail, 0)) {
883 if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); }
884 if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); }
885 if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); }
886 } else {
887 _mm_storeu_ps(ptr + 0, _01);
888 _mm_storeu_ps(ptr + 4, _23);
889 }
890 }
891
892 SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
893 F _0, _1, _2, _3;
894 if (__builtin_expect(tail, 0)) {
895 _1 = _2 = _3 = _mm_setzero_si128();
896 if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
897 if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
898 if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
899 } else {
900 _0 = _mm_loadu_ps(ptr + 0);
901 _1 = _mm_loadu_ps(ptr + 4);
902 _2 = _mm_loadu_ps(ptr + 8);
903 _3 = _mm_loadu_ps(ptr +12);
904 }
905 _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
906 *r = _0;
907 *g = _1;
908 *b = _2;
909 *a = _3;
910 }
911
912 SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
913 _MM_TRANSPOSE4_PS(r,g,b,a);
914 if (__builtin_expect(tail, 0)) {
915 if ( true ) { _mm_storeu_ps(ptr + 0, r); }
916 if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
917 if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
918 } else {
919 _mm_storeu_ps(ptr + 0, r);
920 _mm_storeu_ps(ptr + 4, g);
921 _mm_storeu_ps(ptr + 8, b);
922 _mm_storeu_ps(ptr +12, a);
923 }
924 }
925 #endif
926
927 // We need to be a careful with casts.
928 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
929 // These named casts and bit_cast() are always what they seem to be.
930 #if defined(JUMPER_IS_SCALAR)
cast(U32 v)931 SI F cast (U32 v) { return (F)v; }
cast64(U64 v)932 SI F cast64(U64 v) { return (F)v; }
trunc_(F v)933 SI U32 trunc_(F v) { return (U32)v; }
expand(U16 v)934 SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)935 SI U32 expand(U8 v) { return (U32)v; }
936 #else
cast(U32 v)937 SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
cast64(U64 v)938 SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
trunc_(F v)939 SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
expand(U16 v)940 SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
expand(U8 v)941 SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
942 #endif
943
944 template <typename V>
if_then_else(I32 c,V t,V e)945 SI V if_then_else(I32 c, V t, V e) {
946 return sk_bit_cast<V>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e)));
947 }
948
bswap(U16 x)949 SI U16 bswap(U16 x) {
950 #if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
951 // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
952 // when generating code for SSE2 and SSE4.1. We'll do it manually...
953 auto v = widen_cast<__m128i>(x);
954 v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
955 return sk_unaligned_load<U16>(&v);
956 #else
957 return (x<<8) | (x>>8);
958 #endif
959 }
960
fract(F v)961 SI F fract(F v) { return v - floor_(v); }
962
963 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
approx_log2(F x)964 SI F approx_log2(F x) {
965 // e - 127 is a fair approximation of log2(x) in its own right...
966 F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
967
968 // ... but using the mantissa to refine its error is _much_ better.
969 F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
970 return e
971 - 124.225514990f
972 - 1.498030302f * m
973 - 1.725879990f / (0.3520887068f + m);
974 }
975
approx_log(F x)976 SI F approx_log(F x) {
977 const float ln2 = 0.69314718f;
978 return ln2 * approx_log2(x);
979 }
980
approx_pow2(F x)981 SI F approx_pow2(F x) {
982 F f = fract(x);
983 return sk_bit_cast<F>(round(1.0f * (1<<23),
984 x + 121.274057500f
985 - 1.490129070f * f
986 + 27.728023300f / (4.84252568f - f)));
987 }
988
approx_exp(F x)989 SI F approx_exp(F x) {
990 const float log2_e = 1.4426950408889634074f;
991 return approx_pow2(log2_e * x);
992 }
993
approx_powf(F x,F y)994 SI F approx_powf(F x, F y) {
995 return if_then_else((x == 0)|(x == 1), x
996 , approx_pow2(approx_log2(x) * y));
997 }
998
from_half(U16 h)999 SI F from_half(U16 h) {
1000 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1001 && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
1002 return vcvt_f32_f16(h);
1003
1004 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1005 return _mm256_cvtph_ps(h);
1006
1007 #else
1008 // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1009 U32 sem = expand(h),
1010 s = sem & 0x8000,
1011 em = sem ^ s;
1012
1013 // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1014 auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
1015 return if_then_else(denorm, F(0)
1016 , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1017 #endif
1018 }
1019
to_half(F f)1020 SI U16 to_half(F f) {
1021 #if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
1022 && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
1023 return vcvt_f16_f32(f);
1024
1025 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
1026 return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1027
1028 #else
1029 // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1030 U32 sem = sk_bit_cast<U32>(f),
1031 s = sem & 0x80000000,
1032 em = sem ^ s;
1033
1034 // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1035 auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
1036 return pack(if_then_else(denorm, U32(0)
1037 , (s>>16) + (em>>13) - ((127-15)<<10)));
1038 #endif
1039 }
1040
1041 // Our fundamental vector depth is our pixel stride.
1042 static const size_t N = sizeof(F) / sizeof(float);
1043
1044 // We're finally going to get to what a Stage function looks like!
1045 // tail == 0 ~~> work on a full N pixels
1046 // tail != 0 ~~> work on only the first tail pixels
1047 // tail is always < N.
1048
1049 // Any custom ABI to use for all (non-externally-facing) stage functions?
1050 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1051 #if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
1052 // This lets us pass vectors more efficiently on 32-bit ARM.
1053 // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1054 #define ABI __attribute__((pcs("aapcs-vfp")))
1055 #define JUMPER_NARROW_STAGES 1
1056 #elif defined(_MSC_VER)
1057 // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1058 // instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
1059 #define ABI __vectorcall
1060 #define JUMPER_NARROW_STAGES 1
1061 #elif defined(__x86_64__) || defined(SK_CPU_ARM64)
1062 // These platforms are ideal for wider stages, and their default ABI is ideal.
1063 #define ABI
1064 #define JUMPER_NARROW_STAGES 0
1065 #else
1066 // 32-bit or unknown... shunt them down the narrow path.
1067 // Odds are these have few registers and are better off there.
1068 #define ABI
1069 #define JUMPER_NARROW_STAGES 1
1070 #endif
1071
1072 #if JUMPER_NARROW_STAGES
1073 struct Params {
1074 size_t dx, dy, tail;
1075 F dr,dg,db,da;
1076 };
1077 using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
1078 #else
1079 // We keep program the second argument, so that it's passed in rsi for load_and_inc().
1080 using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
1081 #endif
1082
1083
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,void ** program)1084 static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
1085 auto start = (Stage)load_and_inc(program);
1086 const size_t x0 = dx;
1087 for (; dy < ylimit; dy++) {
1088 #if JUMPER_NARROW_STAGES
1089 Params params = { x0,dy,0, 0,0,0,0 };
1090 while (params.dx + N <= xlimit) {
1091 start(¶ms,program, 0,0,0,0);
1092 params.dx += N;
1093 }
1094 if (size_t tail = xlimit - params.dx) {
1095 params.tail = tail;
1096 start(¶ms,program, 0,0,0,0);
1097 }
1098 #else
1099 dx = x0;
1100 while (dx + N <= xlimit) {
1101 start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
1102 dx += N;
1103 }
1104 if (size_t tail = xlimit - dx) {
1105 start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
1106 }
1107 #endif
1108 }
1109 }
1110
1111 #if JUMPER_NARROW_STAGES
1112 #define STAGE(name, ...) \
1113 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1114 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1115 static void ABI name(Params* params, void** program, \
1116 F r, F g, F b, F a) { \
1117 name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
1118 params->dr, params->dg, params->db, params->da); \
1119 auto next = (Stage)load_and_inc(program); \
1120 next(params,program, r,g,b,a); \
1121 } \
1122 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1123 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1124 #else
1125 #define STAGE(name, ...) \
1126 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1127 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
1128 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
1129 F r, F g, F b, F a, F dr, F dg, F db, F da) { \
1130 name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
1131 auto next = (Stage)load_and_inc(program); \
1132 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
1133 } \
1134 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
1135 F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1136 #endif
1137
1138
1139 // just_return() is a simple no-op stage that only exists to end the chain,
1140 // returning back up to start_pipeline(), and from there to the caller.
1141 #if JUMPER_NARROW_STAGES
just_return(Params *,void **,F,F,F,F)1142 static void ABI just_return(Params*, void**, F,F,F,F) {}
1143 #else
just_return(size_t,void **,size_t,size_t,F,F,F,F,F,F,F,F)1144 static void ABI just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
1145 #endif
1146
1147
1148 // We could start defining normal Stages now. But first, some helper functions.
1149
1150 // These load() and store() methods are tail-aware,
1151 // but focus mainly on keeping the at-stride tail==0 case fast.
1152
1153 template <typename V, typename T>
load(const T * src,size_t tail)1154 SI V load(const T* src, size_t tail) {
1155 #if !defined(JUMPER_IS_SCALAR)
1156 __builtin_assume(tail < N);
1157 if (__builtin_expect(tail, 0)) {
1158 V v{}; // Any inactive lanes are zeroed.
1159 switch (tail) {
1160 case 7: v[6] = src[6]; [[fallthrough]];
1161 case 6: v[5] = src[5]; [[fallthrough]];
1162 case 5: v[4] = src[4]; [[fallthrough]];
1163 case 4: memcpy(&v, src, 4*sizeof(T)); break;
1164 case 3: v[2] = src[2]; [[fallthrough]];
1165 case 2: memcpy(&v, src, 2*sizeof(T)); break;
1166 case 1: memcpy(&v, src, 1*sizeof(T)); break;
1167 }
1168 return v;
1169 }
1170 #endif
1171 return sk_unaligned_load<V>(src);
1172 }
1173
1174 template <typename V, typename T>
store(T * dst,V v,size_t tail)1175 SI void store(T* dst, V v, size_t tail) {
1176 #if !defined(JUMPER_IS_SCALAR)
1177 __builtin_assume(tail < N);
1178 if (__builtin_expect(tail, 0)) {
1179 switch (tail) {
1180 case 7: dst[6] = v[6]; [[fallthrough]];
1181 case 6: dst[5] = v[5]; [[fallthrough]];
1182 case 5: dst[4] = v[4]; [[fallthrough]];
1183 case 4: memcpy(dst, &v, 4*sizeof(T)); break;
1184 case 3: dst[2] = v[2]; [[fallthrough]];
1185 case 2: memcpy(dst, &v, 2*sizeof(T)); break;
1186 case 1: memcpy(dst, &v, 1*sizeof(T)); break;
1187 }
1188 return;
1189 }
1190 #endif
1191 sk_unaligned_store(dst, v);
1192 }
1193
from_byte(U8 b)1194 SI F from_byte(U8 b) {
1195 return cast(expand(b)) * (1/255.0f);
1196 }
from_short(U16 s)1197 SI F from_short(U16 s) {
1198 return cast(expand(s)) * (1/65535.0f);
1199 }
from_565(U16 _565,F * r,F * g,F * b)1200 SI void from_565(U16 _565, F* r, F* g, F* b) {
1201 U32 wide = expand(_565);
1202 *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1203 *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1204 *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1205 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1206 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1207 U32 wide = expand(_4444);
1208 *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1209 *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1210 *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1211 *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1212 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1213 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1214 *r = cast((_8888 ) & 0xff) * (1/255.0f);
1215 *g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
1216 *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1217 *a = cast((_8888 >> 24) ) * (1/255.0f);
1218 }
from_88(U16 _88,F * r,F * g)1219 SI void from_88(U16 _88, F* r, F* g) {
1220 U32 wide = expand(_88);
1221 *r = cast((wide ) & 0xff) * (1/255.0f);
1222 *g = cast((wide >> 8) & 0xff) * (1/255.0f);
1223 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1224 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1225 *r = cast((rgba ) & 0x3ff) * (1/1023.0f);
1226 *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1227 *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1228 *a = cast((rgba >> 30) ) * (1/ 3.0f);
1229 }
from_1616(U32 _1616,F * r,F * g)1230 SI void from_1616(U32 _1616, F* r, F* g) {
1231 *r = cast((_1616 ) & 0xffff) * (1/65535.0f);
1232 *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1233 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1234 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1235 *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
1236 *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1237 *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1238 *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1239 }
1240
1241 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1242 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,size_t dx,size_t dy)1243 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
1244 return (T*)ctx->pixels + dy*ctx->stride + dx;
1245 }
1246
1247 // clamp v to [0,limit).
clamp(F v,F limit)1248 SI F clamp(F v, F limit) {
1249 F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
1250 return min(max(0, v), inclusive);
1251 }
1252
1253 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1254 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1255 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1256 x = clamp(x, ctx->width);
1257 y = clamp(y, ctx->height);
1258
1259 *ptr = (const T*)ctx->pixels;
1260 return trunc_(y)*ctx->stride + trunc_(x);
1261 }
1262
1263 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
1264 // whether for a table lookup or to pack back down into bytes for storage.
1265 //
1266 // In practice, especially when dealing with interesting color spaces, that notionally
1267 // [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
1268 //
1269 // You can adjust the expected input to [0,bias] by tweaking that parameter.
1270 SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
1271 // Any time we use round() we probably want to use to_unorm().
1272 return round(min(max(0, v), bias), scale);
1273 }
1274
cond_to_mask(I32 cond)1275 SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
1276
1277 // Now finally, normal Stages!
1278
STAGE(seed_shader,Ctx::None)1279 STAGE(seed_shader, Ctx::None) {
1280 static const float iota[] = {
1281 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
1282 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
1283 };
1284 // It's important for speed to explicitly cast(dx) and cast(dy),
1285 // which has the effect of splatting them to vectors before converting to floats.
1286 // On Intel this breaks a data dependency on previous loop iterations' registers.
1287 r = cast(dx) + sk_unaligned_load<F>(iota);
1288 g = cast(dy) + 0.5f;
1289 b = 1.0f;
1290 a = 0;
1291 dr = dg = db = da = 0;
1292 }
1293
STAGE(dither,const float * rate)1294 STAGE(dither, const float* rate) {
1295 // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
1296 uint32_t iota[] = {0,1,2,3,4,5,6,7};
1297 U32 X = dx + sk_unaligned_load<U32>(iota),
1298 Y = dy;
1299
1300 // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
1301 // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
1302
1303 // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
1304 Y ^= X;
1305
1306 // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
1307 // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
1308 U32 M = (Y & 1) << 5 | (X & 1) << 4
1309 | (Y & 2) << 2 | (X & 2) << 1
1310 | (Y & 4) >> 1 | (X & 4) >> 2;
1311
1312 // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
1313 // We want to make sure our dither is less than 0.5 in either direction to keep exact values
1314 // like 0 and 1 unchanged after rounding.
1315 F dither = cast(M) * (2/128.0f) - (63/128.0f);
1316
1317 r += *rate*dither;
1318 g += *rate*dither;
1319 b += *rate*dither;
1320
1321 r = max(0, min(r, a));
1322 g = max(0, min(g, a));
1323 b = max(0, min(b, a));
1324 }
1325
1326 // load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)1327 STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1328 r = c->r;
1329 g = c->g;
1330 b = c->b;
1331 a = c->a;
1332 }
STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)1333 STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
1334 r = c->r;
1335 g = c->g;
1336 b = c->b;
1337 a = c->a;
1338 }
1339 // load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)1340 STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
1341 dr = c->r;
1342 dg = c->g;
1343 db = c->b;
1344 da = c->a;
1345 }
1346
1347 // splats opaque-black into r,g,b,a
STAGE(black_color,Ctx::None)1348 STAGE(black_color, Ctx::None) {
1349 r = g = b = 0.0f;
1350 a = 1.0f;
1351 }
1352
STAGE(white_color,Ctx::None)1353 STAGE(white_color, Ctx::None) {
1354 r = g = b = a = 1.0f;
1355 }
1356
1357 // load registers r,g,b,a from context (mirrors store_rgba)
STAGE(load_src,const float * ptr)1358 STAGE(load_src, const float* ptr) {
1359 r = sk_unaligned_load<F>(ptr + 0*N);
1360 g = sk_unaligned_load<F>(ptr + 1*N);
1361 b = sk_unaligned_load<F>(ptr + 2*N);
1362 a = sk_unaligned_load<F>(ptr + 3*N);
1363 }
1364
1365 // store registers r,g,b,a into context (mirrors load_rgba)
STAGE(store_src,float * ptr)1366 STAGE(store_src, float* ptr) {
1367 sk_unaligned_store(ptr + 0*N, r);
1368 sk_unaligned_store(ptr + 1*N, g);
1369 sk_unaligned_store(ptr + 2*N, b);
1370 sk_unaligned_store(ptr + 3*N, a);
1371 }
STAGE(store_src_a,float * ptr)1372 STAGE(store_src_a, float* ptr) {
1373 sk_unaligned_store(ptr, a);
1374 }
1375
1376 // load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst,const float * ptr)1377 STAGE(load_dst, const float* ptr) {
1378 dr = sk_unaligned_load<F>(ptr + 0*N);
1379 dg = sk_unaligned_load<F>(ptr + 1*N);
1380 db = sk_unaligned_load<F>(ptr + 2*N);
1381 da = sk_unaligned_load<F>(ptr + 3*N);
1382 }
1383
1384 // store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst,float * ptr)1385 STAGE(store_dst, float* ptr) {
1386 sk_unaligned_store(ptr + 0*N, dr);
1387 sk_unaligned_store(ptr + 1*N, dg);
1388 sk_unaligned_store(ptr + 2*N, db);
1389 sk_unaligned_store(ptr + 3*N, da);
1390 }
1391
1392 // Most blend modes apply the same logic to each channel.
1393 #define BLEND_MODE(name) \
1394 SI F name##_channel(F s, F d, F sa, F da); \
1395 STAGE(name, Ctx::None) { \
1396 r = name##_channel(r,dr,a,da); \
1397 g = name##_channel(g,dg,a,da); \
1398 b = name##_channel(b,db,a,da); \
1399 a = name##_channel(a,da,a,da); \
1400 } \
1401 SI F name##_channel(F s, F d, F sa, F da)
1402
inv(F x)1403 SI F inv(F x) { return 1.0f - x; }
two(F x)1404 SI F two(F x) { return x + x; }
1405
1406
BLEND_MODE(clear)1407 BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop)1408 BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop)1409 BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin)1410 BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin)1411 BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout)1412 BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout)1413 BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover)1414 BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)1415 BLEND_MODE(dstover) { return mad(s, inv(da), d); }
1416
BLEND_MODE(modulate)1417 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)1418 BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_)1419 BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen)1420 BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_)1421 BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
1422 #undef BLEND_MODE
1423
1424 // Most other blend modes apply the same logic to colors, and srcover to alpha.
1425 #define BLEND_MODE(name) \
1426 SI F name##_channel(F s, F d, F sa, F da); \
1427 STAGE(name, Ctx::None) { \
1428 r = name##_channel(r,dr,a,da); \
1429 g = name##_channel(g,dg,a,da); \
1430 b = name##_channel(b,db,a,da); \
1431 a = mad(da, inv(a), a); \
1432 } \
1433 SI F name##_channel(F s, F d, F sa, F da)
1434
BLEND_MODE(darken)1435 BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten)1436 BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference)1437 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)1438 BLEND_MODE(exclusion) { return s + d - two(s*d); }
1439
BLEND_MODE(colorburn)1440 BLEND_MODE(colorburn) {
1441 return if_then_else(d == da, d + s*inv(da),
1442 if_then_else(s == 0, /* s + */ d*inv(sa),
1443 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
1444 }
BLEND_MODE(colordodge)1445 BLEND_MODE(colordodge) {
1446 return if_then_else(d == 0, /* d + */ s*inv(da),
1447 if_then_else(s == sa, s + d*inv(sa),
1448 sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
1449 }
BLEND_MODE(hardlight)1450 BLEND_MODE(hardlight) {
1451 return s*inv(da) + d*inv(sa)
1452 + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
1453 }
BLEND_MODE(overlay)1454 BLEND_MODE(overlay) {
1455 return s*inv(da) + d*inv(sa)
1456 + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
1457 }
1458
BLEND_MODE(softlight)1459 BLEND_MODE(softlight) {
1460 F m = if_then_else(da > 0, d / da, 0),
1461 s2 = two(s),
1462 m4 = two(two(m));
1463
1464 // The logic forks three ways:
1465 // 1. dark src?
1466 // 2. light src, dark dst?
1467 // 3. light src, light dst?
1468 F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
1469 darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
1470 #if defined(SK_RASTER_PIPELINE_LEGACY_RCP_RSQRT)
1471 liteDst = rcp_fast(rsqrt(m)) - m, // Used in case 3.
1472 #else
1473 liteDst = sqrt_(m) - m,
1474 #endif
1475 liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
1476 return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
1477 }
1478 #undef BLEND_MODE
1479
1480 // We're basing our implemenation of non-separable blend modes on
1481 // https://www.w3.org/TR/compositing-1/#blendingnonseparable.
1482 // and
1483 // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
1484 // They're equivalent, but ES' math has been better simplified.
1485 //
1486 // Anything extra we add beyond that is to make the math work with premul inputs.
1487
sat(F r,F g,F b)1488 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)1489 SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
1490
set_sat(F * r,F * g,F * b,F s)1491 SI void set_sat(F* r, F* g, F* b, F s) {
1492 F mn = min(*r, min(*g,*b)),
1493 mx = max(*r, max(*g,*b)),
1494 sat = mx - mn;
1495
1496 // Map min channel to 0, max channel to s, and scale the middle proportionally.
1497 auto scale = [=](F c) {
1498 return if_then_else(sat == 0, 0, (c - mn) * s / sat);
1499 };
1500 *r = scale(*r);
1501 *g = scale(*g);
1502 *b = scale(*b);
1503 }
set_lum(F * r,F * g,F * b,F l)1504 SI void set_lum(F* r, F* g, F* b, F l) {
1505 F diff = l - lum(*r, *g, *b);
1506 *r += diff;
1507 *g += diff;
1508 *b += diff;
1509 }
clip_color(F * r,F * g,F * b,F a)1510 SI void clip_color(F* r, F* g, F* b, F a) {
1511 F mn = min(*r, min(*g, *b)),
1512 mx = max(*r, max(*g, *b)),
1513 l = lum(*r, *g, *b);
1514
1515 auto clip = [=](F c) {
1516 c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
1517 c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
1518 c = max(c, 0); // Sometimes without this we may dip just a little negative.
1519 return c;
1520 };
1521 *r = clip(*r);
1522 *g = clip(*g);
1523 *b = clip(*b);
1524 }
1525
STAGE(hue,Ctx::None)1526 STAGE(hue, Ctx::None) {
1527 F R = r*a,
1528 G = g*a,
1529 B = b*a;
1530
1531 set_sat(&R, &G, &B, sat(dr,dg,db)*a);
1532 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1533 clip_color(&R,&G,&B, a*da);
1534
1535 r = r*inv(da) + dr*inv(a) + R;
1536 g = g*inv(da) + dg*inv(a) + G;
1537 b = b*inv(da) + db*inv(a) + B;
1538 a = a + da - a*da;
1539 }
STAGE(saturation,Ctx::None)1540 STAGE(saturation, Ctx::None) {
1541 F R = dr*a,
1542 G = dg*a,
1543 B = db*a;
1544
1545 set_sat(&R, &G, &B, sat( r, g, b)*da);
1546 set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
1547 clip_color(&R,&G,&B, a*da);
1548
1549 r = r*inv(da) + dr*inv(a) + R;
1550 g = g*inv(da) + dg*inv(a) + G;
1551 b = b*inv(da) + db*inv(a) + B;
1552 a = a + da - a*da;
1553 }
STAGE(color,Ctx::None)1554 STAGE(color, Ctx::None) {
1555 F R = r*da,
1556 G = g*da,
1557 B = b*da;
1558
1559 set_lum(&R, &G, &B, lum(dr,dg,db)*a);
1560 clip_color(&R,&G,&B, a*da);
1561
1562 r = r*inv(da) + dr*inv(a) + R;
1563 g = g*inv(da) + dg*inv(a) + G;
1564 b = b*inv(da) + db*inv(a) + B;
1565 a = a + da - a*da;
1566 }
STAGE(luminosity,Ctx::None)1567 STAGE(luminosity, Ctx::None) {
1568 F R = dr*a,
1569 G = dg*a,
1570 B = db*a;
1571
1572 set_lum(&R, &G, &B, lum(r,g,b)*da);
1573 clip_color(&R,&G,&B, a*da);
1574
1575 r = r*inv(da) + dr*inv(a) + R;
1576 g = g*inv(da) + dg*inv(a) + G;
1577 b = b*inv(da) + db*inv(a) + B;
1578 a = a + da - a*da;
1579 }
1580
STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)1581 STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
1582 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
1583
1584 U32 dst = load<U32>(ptr, tail);
1585 dr = cast((dst ) & 0xff);
1586 dg = cast((dst >> 8) & 0xff);
1587 db = cast((dst >> 16) & 0xff);
1588 da = cast((dst >> 24) );
1589 // {dr,dg,db,da} are in [0,255]
1590 // { r, g, b, a} are in [0, 1] (but may be out of gamut)
1591
1592 r = mad(dr, inv(a), r*255.0f);
1593 g = mad(dg, inv(a), g*255.0f);
1594 b = mad(db, inv(a), b*255.0f);
1595 a = mad(da, inv(a), a*255.0f);
1596 // { r, g, b, a} are now in [0,255] (but may be out of gamut)
1597
1598 // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
1599 dst = to_unorm(r, 1, 255)
1600 | to_unorm(g, 1, 255) << 8
1601 | to_unorm(b, 1, 255) << 16
1602 | to_unorm(a, 1, 255) << 24;
1603 store(ptr, dst, tail);
1604 }
1605
STAGE(clamp_0,Ctx::None)1606 STAGE(clamp_0, Ctx::None) {
1607 r = max(r, 0);
1608 g = max(g, 0);
1609 b = max(b, 0);
1610 a = max(a, 0);
1611 }
1612
STAGE(clamp_1,Ctx::None)1613 STAGE(clamp_1, Ctx::None) {
1614 r = min(r, 1.0f);
1615 g = min(g, 1.0f);
1616 b = min(b, 1.0f);
1617 a = min(a, 1.0f);
1618 }
1619
STAGE(clamp_a,Ctx::None)1620 STAGE(clamp_a, Ctx::None) {
1621 a = min(a, 1.0f);
1622 r = min(r, a);
1623 g = min(g, a);
1624 b = min(b, a);
1625 }
1626
STAGE(clamp_gamut,Ctx::None)1627 STAGE(clamp_gamut, Ctx::None) {
1628 a = min(max(a, 0), 1.0f);
1629 r = min(max(r, 0), a);
1630 g = min(max(g, 0), a);
1631 b = min(max(b, 0), a);
1632 }
1633
STAGE(set_rgb,const float * rgb)1634 STAGE(set_rgb, const float* rgb) {
1635 r = rgb[0];
1636 g = rgb[1];
1637 b = rgb[2];
1638 }
STAGE(unbounded_set_rgb,const float * rgb)1639 STAGE(unbounded_set_rgb, const float* rgb) {
1640 r = rgb[0];
1641 g = rgb[1];
1642 b = rgb[2];
1643 }
1644
STAGE(swap_rb,Ctx::None)1645 STAGE(swap_rb, Ctx::None) {
1646 auto tmp = r;
1647 r = b;
1648 b = tmp;
1649 }
STAGE(swap_rb_dst,Ctx::None)1650 STAGE(swap_rb_dst, Ctx::None) {
1651 auto tmp = dr;
1652 dr = db;
1653 db = tmp;
1654 }
1655
STAGE(move_src_dst,Ctx::None)1656 STAGE(move_src_dst, Ctx::None) {
1657 dr = r;
1658 dg = g;
1659 db = b;
1660 da = a;
1661 }
STAGE(move_dst_src,Ctx::None)1662 STAGE(move_dst_src, Ctx::None) {
1663 r = dr;
1664 g = dg;
1665 b = db;
1666 a = da;
1667 }
STAGE(swap_src_dst,Ctx::None)1668 STAGE(swap_src_dst, Ctx::None) {
1669 std::swap(r, dr);
1670 std::swap(g, dg);
1671 std::swap(b, db);
1672 std::swap(a, da);
1673 }
1674
STAGE(premul,Ctx::None)1675 STAGE(premul, Ctx::None) {
1676 r = r * a;
1677 g = g * a;
1678 b = b * a;
1679 }
STAGE(premul_dst,Ctx::None)1680 STAGE(premul_dst, Ctx::None) {
1681 dr = dr * da;
1682 dg = dg * da;
1683 db = db * da;
1684 }
STAGE(unpremul,Ctx::None)1685 STAGE(unpremul, Ctx::None) {
1686 float inf = sk_bit_cast<float>(0x7f800000);
1687 auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
1688 r *= scale;
1689 g *= scale;
1690 b *= scale;
1691 }
1692
STAGE(force_opaque,Ctx::None)1693 STAGE(force_opaque , Ctx::None) { a = 1; }
STAGE(force_opaque_dst,Ctx::None)1694 STAGE(force_opaque_dst, Ctx::None) { da = 1; }
1695
1696 // Clamp x to [0,1], both sides inclusive (think, gradients).
1697 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
clamp_01(F v)1698 SI F clamp_01(F v) { return min(max(0, v), 1); }
1699
STAGE(rgb_to_hsl,Ctx::None)1700 STAGE(rgb_to_hsl, Ctx::None) {
1701 F mx = max(r, max(g,b)),
1702 mn = min(r, min(g,b)),
1703 d = mx - mn,
1704 d_rcp = 1.0f / d;
1705
1706 F h = (1/6.0f) *
1707 if_then_else(mx == mn, 0,
1708 if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
1709 if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
1710 (r-g)*d_rcp + 4.0f)));
1711
1712 F l = (mx + mn) * 0.5f;
1713 F s = if_then_else(mx == mn, 0,
1714 d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
1715
1716 r = h;
1717 g = s;
1718 b = l;
1719 }
STAGE(hsl_to_rgb,Ctx::None)1720 STAGE(hsl_to_rgb, Ctx::None) {
1721 // See GrRGBToHSLFilterEffect.fp
1722
1723 F h = r,
1724 s = g,
1725 l = b,
1726 c = (1.0f - abs_(2.0f * l - 1)) * s;
1727
1728 auto hue_to_rgb = [&](F hue) {
1729 F q = clamp_01(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
1730 return (q - 0.5f) * c + l;
1731 };
1732
1733 r = hue_to_rgb(h + 0.0f/3.0f);
1734 g = hue_to_rgb(h + 2.0f/3.0f);
1735 b = hue_to_rgb(h + 1.0f/3.0f);
1736 }
1737
1738 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)1739 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
1740 return if_then_else(a < da, min(cr, min(cg,cb))
1741 , max(cr, max(cg,cb)));
1742 }
1743
STAGE(scale_1_float,const float * c)1744 STAGE(scale_1_float, const float* c) {
1745 r = r * *c;
1746 g = g * *c;
1747 b = b * *c;
1748 a = a * *c;
1749 }
STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)1750 STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
1751 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1752
1753 auto scales = load<U8>(ptr, tail);
1754 auto c = from_byte(scales);
1755
1756 r = r * c;
1757 g = g * c;
1758 b = b * c;
1759 a = a * c;
1760 }
STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)1761 STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
1762 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1763
1764 F cr,cg,cb;
1765 from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
1766
1767 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
1768
1769 r = r * cr;
1770 g = g * cg;
1771 b = b * cb;
1772 a = a * ca;
1773 }
1774
lerp(F from,F to,F t)1775 SI F lerp(F from, F to, F t) {
1776 return mad(to-from, t, from);
1777 }
1778
STAGE(lerp_1_float,const float * c)1779 STAGE(lerp_1_float, const float* c) {
1780 r = lerp(dr, r, *c);
1781 g = lerp(dg, g, *c);
1782 b = lerp(db, b, *c);
1783 a = lerp(da, a, *c);
1784 }
STAGE(scale_native,const float scales[])1785 STAGE(scale_native, const float scales[]) {
1786 auto c = sk_unaligned_load<F>(scales);
1787 r = r * c;
1788 g = g * c;
1789 b = b * c;
1790 a = a * c;
1791 }
STAGE(lerp_native,const float scales[])1792 STAGE(lerp_native, const float scales[]) {
1793 auto c = sk_unaligned_load<F>(scales);
1794 r = lerp(dr, r, c);
1795 g = lerp(dg, g, c);
1796 b = lerp(db, b, c);
1797 a = lerp(da, a, c);
1798 }
STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)1799 STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
1800 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1801
1802 auto scales = load<U8>(ptr, tail);
1803 auto c = from_byte(scales);
1804
1805 r = lerp(dr, r, c);
1806 g = lerp(dg, g, c);
1807 b = lerp(db, b, c);
1808 a = lerp(da, a, c);
1809 }
STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)1810 STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
1811 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1812
1813 F cr,cg,cb;
1814 from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
1815
1816 F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
1817
1818 r = lerp(dr, r, cr);
1819 g = lerp(dg, g, cg);
1820 b = lerp(db, b, cb);
1821 a = lerp(da, a, ca);
1822 }
1823
STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)1824 STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
1825 auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
1826 aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
1827
1828 F mul = from_byte(load<U8>(mptr, tail)),
1829 add = from_byte(load<U8>(aptr, tail));
1830
1831 r = mad(r, mul, add);
1832 g = mad(g, mul, add);
1833 b = mad(b, mul, add);
1834 }
1835
STAGE(byte_tables,const void * ctx)1836 STAGE(byte_tables, const void* ctx) {
1837 struct Tables { const uint8_t *r, *g, *b, *a; };
1838 auto tables = (const Tables*)ctx;
1839
1840 r = from_byte(gather(tables->r, to_unorm(r, 255)));
1841 g = from_byte(gather(tables->g, to_unorm(g, 255)));
1842 b = from_byte(gather(tables->b, to_unorm(b, 255)));
1843 a = from_byte(gather(tables->a, to_unorm(a, 255)));
1844 }
1845
strip_sign(F x,U32 * sign)1846 SI F strip_sign(F x, U32* sign) {
1847 U32 bits = sk_bit_cast<U32>(x);
1848 *sign = bits & 0x80000000;
1849 return sk_bit_cast<F>(bits ^ *sign);
1850 }
1851
apply_sign(F x,U32 sign)1852 SI F apply_sign(F x, U32 sign) {
1853 return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
1854 }
1855
STAGE(parametric,const skcms_TransferFunction * ctx)1856 STAGE(parametric, const skcms_TransferFunction* ctx) {
1857 auto fn = [&](F v) {
1858 U32 sign;
1859 v = strip_sign(v, &sign);
1860
1861 F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
1862 , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
1863 return apply_sign(r, sign);
1864 };
1865 r = fn(r);
1866 g = fn(g);
1867 b = fn(b);
1868 }
1869
STAGE(gamma_,const float * G)1870 STAGE(gamma_, const float* G) {
1871 auto fn = [&](F v) {
1872 U32 sign;
1873 v = strip_sign(v, &sign);
1874 return apply_sign(approx_powf(v, *G), sign);
1875 };
1876 r = fn(r);
1877 g = fn(g);
1878 b = fn(b);
1879 }
1880
STAGE(PQish,const skcms_TransferFunction * ctx)1881 STAGE(PQish, const skcms_TransferFunction* ctx) {
1882 auto fn = [&](F v) {
1883 U32 sign;
1884 v = strip_sign(v, &sign);
1885
1886 F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0)
1887 / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
1888 ctx->f);
1889
1890 return apply_sign(r, sign);
1891 };
1892 r = fn(r);
1893 g = fn(g);
1894 b = fn(b);
1895 }
1896
STAGE(HLGish,const skcms_TransferFunction * ctx)1897 STAGE(HLGish, const skcms_TransferFunction* ctx) {
1898 auto fn = [&](F v) {
1899 U32 sign;
1900 v = strip_sign(v, &sign);
1901
1902 const float R = ctx->a, G = ctx->b,
1903 a = ctx->c, b = ctx->d, c = ctx->e,
1904 K = ctx->f + 1.0f;
1905
1906 F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
1907 , approx_exp((v-c)*a) + b);
1908
1909 return K * apply_sign(r, sign);
1910 };
1911 r = fn(r);
1912 g = fn(g);
1913 b = fn(b);
1914 }
1915
STAGE(HLGinvish,const skcms_TransferFunction * ctx)1916 STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
1917 auto fn = [&](F v) {
1918 U32 sign;
1919 v = strip_sign(v, &sign);
1920
1921 const float R = ctx->a, G = ctx->b,
1922 a = ctx->c, b = ctx->d, c = ctx->e,
1923 K = ctx->f + 1.0f;
1924
1925 v /= K;
1926 F r = if_then_else(v <= 1, R * approx_powf(v, G)
1927 , a * approx_log(v - b) + c);
1928
1929 return apply_sign(r, sign);
1930 };
1931 r = fn(r);
1932 g = fn(g);
1933 b = fn(b);
1934 }
1935
STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)1936 STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
1937 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1938
1939 r = g = b = 0.0f;
1940 a = from_byte(load<U8>(ptr, tail));
1941 }
STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)1942 STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1943 auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
1944
1945 dr = dg = db = 0.0f;
1946 da = from_byte(load<U8>(ptr, tail));
1947 }
STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)1948 STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
1949 const uint8_t* ptr;
1950 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
1951 r = g = b = 0.0f;
1952 a = from_byte(gather(ptr, ix));
1953 }
STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)1954 STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
1955 auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
1956
1957 U8 packed = pack(pack(to_unorm(a, 255)));
1958 store(ptr, packed, tail);
1959 }
1960
STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)1961 STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
1962 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1963
1964 from_565(load<U16>(ptr, tail), &r,&g,&b);
1965 a = 1.0f;
1966 }
STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)1967 STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1968 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1969
1970 from_565(load<U16>(ptr, tail), &dr,&dg,&db);
1971 da = 1.0f;
1972 }
STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)1973 STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
1974 const uint16_t* ptr;
1975 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
1976 from_565(gather(ptr, ix), &r,&g,&b);
1977 a = 1.0f;
1978 }
STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)1979 STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
1980 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
1981
1982 U16 px = pack( to_unorm(r, 31) << 11
1983 | to_unorm(g, 63) << 5
1984 | to_unorm(b, 31) );
1985 store(ptr, px, tail);
1986 }
1987
STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)1988 STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
1989 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1990 from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
1991 }
STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)1992 STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
1993 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
1994 from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
1995 }
STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)1996 STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
1997 const uint16_t* ptr;
1998 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
1999 from_4444(gather(ptr, ix), &r,&g,&b,&a);
2000 }
STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2001 STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2002 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2003 U16 px = pack( to_unorm(r, 15) << 12
2004 | to_unorm(g, 15) << 8
2005 | to_unorm(b, 15) << 4
2006 | to_unorm(a, 15) );
2007 store(ptr, px, tail);
2008 }
2009
STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2010 STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2011 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2012 from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
2013 }
STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2014 STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2015 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2016 from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2017 }
STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2018 STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2019 const uint32_t* ptr;
2020 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2021 from_8888(gather(ptr, ix), &r,&g,&b,&a);
2022 }
STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2023 STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2024 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2025
2026 U32 px = to_unorm(r, 255)
2027 | to_unorm(g, 255) << 8
2028 | to_unorm(b, 255) << 16
2029 | to_unorm(a, 255) << 24;
2030 store(ptr, px, tail);
2031 }
2032
STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2033 STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2034 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2035 from_88(load<U16>(ptr, tail), &r, &g);
2036 b = 0;
2037 a = 1;
2038 }
STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2039 STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2040 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2041 from_88(load<U16>(ptr, tail), &dr, &dg);
2042 db = 0;
2043 da = 1;
2044 }
STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2045 STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2046 const uint16_t* ptr;
2047 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2048 from_88(gather(ptr, ix), &r, &g);
2049 b = 0;
2050 a = 1;
2051 }
STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2052 STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2053 auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2054 U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 );
2055 store(ptr, px, tail);
2056 }
2057
STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2058 STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2059 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2060 r = g = b = 0;
2061 a = from_short(load<U16>(ptr, tail));
2062 }
STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2063 STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2064 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2065 dr = dg = db = 0.0f;
2066 da = from_short(load<U16>(ptr, tail));
2067 }
STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2068 STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2069 const uint16_t* ptr;
2070 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2071 r = g = b = 0.0f;
2072 a = from_short(gather(ptr, ix));
2073 }
STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2074 STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2075 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2076
2077 U16 px = pack(to_unorm(a, 65535));
2078 store(ptr, px, tail);
2079 }
2080
STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2081 STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2082 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2083 b = 0; a = 1;
2084 from_1616(load<U32>(ptr, tail), &r,&g);
2085 }
STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2086 STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2087 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2088 from_1616(load<U32>(ptr, tail), &dr, &dg);
2089 db = 0;
2090 da = 1;
2091 }
STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2092 STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2093 const uint32_t* ptr;
2094 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2095 from_1616(gather(ptr, ix), &r, &g);
2096 b = 0;
2097 a = 1;
2098 }
STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2099 STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2100 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2101
2102 U32 px = to_unorm(r, 65535)
2103 | to_unorm(g, 65535) << 16;
2104 store(ptr, px, tail);
2105 }
2106
STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2107 STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2108 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2109 from_16161616(load<U64>(ptr, tail), &r,&g, &b, &a);
2110 }
STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2111 STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2112 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2113 from_16161616(load<U64>(ptr, tail), &dr, &dg, &db, &da);
2114 }
STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)2115 STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
2116 const uint64_t* ptr;
2117 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2118 from_16161616(gather(ptr, ix), &r, &g, &b, &a);
2119 }
STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)2120 STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2121 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
2122
2123 U16 R = pack(to_unorm(r, 65535)),
2124 G = pack(to_unorm(g, 65535)),
2125 B = pack(to_unorm(b, 65535)),
2126 A = pack(to_unorm(a, 65535));
2127
2128 store4(ptr,tail, R,G,B,A);
2129 }
2130
2131
STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)2132 STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2133 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2134 from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
2135 }
STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)2136 STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2137 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2138 from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
2139 }
STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)2140 STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
2141 const uint32_t* ptr;
2142 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2143 from_1010102(gather(ptr, ix), &r,&g,&b,&a);
2144 }
STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)2145 STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
2146 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2147
2148 U32 px = to_unorm(r, 1023)
2149 | to_unorm(g, 1023) << 10
2150 | to_unorm(b, 1023) << 20
2151 | to_unorm(a, 3) << 30;
2152 store(ptr, px, tail);
2153 }
2154
STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)2155 STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2156 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2157
2158 U16 R,G,B,A;
2159 load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2160 r = from_half(R);
2161 g = from_half(G);
2162 b = from_half(B);
2163 a = from_half(A);
2164 }
STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)2165 STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2166 auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
2167
2168 U16 R,G,B,A;
2169 load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
2170 dr = from_half(R);
2171 dg = from_half(G);
2172 db = from_half(B);
2173 da = from_half(A);
2174 }
STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)2175 STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
2176 const uint64_t* ptr;
2177 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2178 auto px = gather(ptr, ix);
2179
2180 U16 R,G,B,A;
2181 load4((const uint16_t*)&px,0, &R,&G,&B,&A);
2182 r = from_half(R);
2183 g = from_half(G);
2184 b = from_half(B);
2185 a = from_half(A);
2186 }
STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)2187 STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
2188 auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
2189 store4((uint16_t*)ptr,tail, to_half(r)
2190 , to_half(g)
2191 , to_half(b)
2192 , to_half(a));
2193 }
2194
STAGE(store_u16_be,const SkRasterPipeline_MemoryCtx * ctx)2195 STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) {
2196 auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
2197
2198 U16 R = bswap(pack(to_unorm(r, 65535))),
2199 G = bswap(pack(to_unorm(g, 65535))),
2200 B = bswap(pack(to_unorm(b, 65535))),
2201 A = bswap(pack(to_unorm(a, 65535)));
2202
2203 store4(ptr,tail, R,G,B,A);
2204 }
2205
STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)2206 STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2207 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2208
2209 U16 A = load<U16>((const uint16_t*)ptr, tail);
2210 r = 0;
2211 g = 0;
2212 b = 0;
2213 a = from_half(A);
2214 }
STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)2215 STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2216 auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2217
2218 U16 A = load<U16>((const uint16_t*)ptr, tail);
2219 dr = dg = db = 0.0f;
2220 da = from_half(A);
2221 }
STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)2222 STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
2223 const uint16_t* ptr;
2224 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2225 r = g = b = 0.0f;
2226 a = from_half(gather(ptr, ix));
2227 }
STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)2228 STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
2229 auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2230 store(ptr, to_half(a), tail);
2231 }
2232
STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2233 STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2234 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2235
2236 U16 R,G;
2237 load2((const uint16_t*)ptr, tail, &R, &G);
2238 r = from_half(R);
2239 g = from_half(G);
2240 b = 0;
2241 a = 1;
2242 }
STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)2243 STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2244 auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2245
2246 U16 R,G;
2247 load2((const uint16_t*)ptr, tail, &R, &G);
2248 dr = from_half(R);
2249 dg = from_half(G);
2250 db = 0;
2251 da = 1;
2252 }
STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)2253 STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
2254 const uint32_t* ptr;
2255 U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2256 auto px = gather(ptr, ix);
2257
2258 U16 R,G;
2259 load2((const uint16_t*)&px, 0, &R, &G);
2260 r = from_half(R);
2261 g = from_half(G);
2262 b = 0;
2263 a = 1;
2264 }
STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)2265 STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
2266 auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
2267 store2((uint16_t*)ptr, tail, to_half(r)
2268 , to_half(g));
2269 }
2270
STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)2271 STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2272 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2273 load4(ptr,tail, &r,&g,&b,&a);
2274 }
STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)2275 STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2276 auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
2277 load4(ptr,tail, &dr,&dg,&db,&da);
2278 }
STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)2279 STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
2280 const float* ptr;
2281 U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2282 r = gather(ptr, 4*ix + 0);
2283 g = gather(ptr, 4*ix + 1);
2284 b = gather(ptr, 4*ix + 2);
2285 a = gather(ptr, 4*ix + 3);
2286 }
STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)2287 STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
2288 auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
2289 store4(ptr,tail, r,g,b,a);
2290 }
2291
STAGE(load_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2292 STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2293 auto ptr = ptr_at_xy<const float>(ctx, 2*dx,2*dy);
2294 load2(ptr, tail, &r, &g);
2295 b = 0;
2296 a = 1;
2297 }
STAGE(store_rgf32,const SkRasterPipeline_MemoryCtx * ctx)2298 STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
2299 auto ptr = ptr_at_xy<float>(ctx, 2*dx,2*dy);
2300 store2(ptr, tail, r, g);
2301 }
2302
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)2303 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
2304 return v - floor_(v*ctx->invScale)*ctx->scale;
2305 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)2306 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
2307 auto limit = ctx->scale;
2308 auto invLimit = ctx->invScale;
2309 return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
2310 }
2311 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
2312 // The gather stages will hard clamp the output of these stages to [0,limit)...
2313 // we just need to do the basic repeat or mirroring.
STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)2314 STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)2315 STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)2316 STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)2317 STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
2318
STAGE(clamp_x_1,Ctx::None)2319 STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
STAGE(repeat_x_1,Ctx::None)2320 STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
STAGE(mirror_x_1,Ctx::None)2321 STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
2322
2323 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
2324 // mask == 0x00000000 if the coordinate(s) are out of bounds
2325 // mask == 0xFFFFFFFF if the coordinate(s) are in bounds
2326 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
2327 // if either of the coordinates were out of bounds.
2328
STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)2329 STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
2330 auto w = ctx->limit_x;
2331 sk_unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
2332 }
STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)2333 STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
2334 auto h = ctx->limit_y;
2335 sk_unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
2336 }
STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)2337 STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
2338 auto w = ctx->limit_x;
2339 auto h = ctx->limit_y;
2340 sk_unaligned_store(ctx->mask,
2341 cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
2342 }
STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)2343 STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
2344 auto mask = sk_unaligned_load<U32>(ctx->mask);
2345 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
2346 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
2347 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
2348 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
2349 }
2350
STAGE(alpha_to_gray,Ctx::None)2351 STAGE(alpha_to_gray, Ctx::None) {
2352 r = g = b = a;
2353 a = 1;
2354 }
STAGE(alpha_to_gray_dst,Ctx::None)2355 STAGE(alpha_to_gray_dst, Ctx::None) {
2356 dr = dg = db = da;
2357 da = 1;
2358 }
STAGE(bt709_luminance_or_luma_to_alpha,Ctx::None)2359 STAGE(bt709_luminance_or_luma_to_alpha, Ctx::None) {
2360 a = r*0.2126f + g*0.7152f + b*0.0722f;
2361 r = g = b = 0;
2362 }
STAGE(bt709_luminance_or_luma_to_rgb,Ctx::None)2363 STAGE(bt709_luminance_or_luma_to_rgb, Ctx::None) {
2364 r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
2365 }
2366
STAGE(matrix_translate,const float * m)2367 STAGE(matrix_translate, const float* m) {
2368 r += m[0];
2369 g += m[1];
2370 }
STAGE(matrix_scale_translate,const float * m)2371 STAGE(matrix_scale_translate, const float* m) {
2372 r = mad(r,m[0], m[2]);
2373 g = mad(g,m[1], m[3]);
2374 }
STAGE(matrix_2x3,const float * m)2375 STAGE(matrix_2x3, const float* m) {
2376 auto R = mad(r,m[0], mad(g,m[1], m[2])),
2377 G = mad(r,m[3], mad(g,m[4], m[5]));
2378 r = R;
2379 g = G;
2380 }
STAGE(matrix_3x3,const float * m)2381 STAGE(matrix_3x3, const float* m) {
2382 auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
2383 G = mad(r,m[1], mad(g,m[4], b*m[7])),
2384 B = mad(r,m[2], mad(g,m[5], b*m[8]));
2385 r = R;
2386 g = G;
2387 b = B;
2388 }
STAGE(matrix_3x4,const float * m)2389 STAGE(matrix_3x4, const float* m) {
2390 auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
2391 G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
2392 B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
2393 r = R;
2394 g = G;
2395 b = B;
2396 }
STAGE(matrix_4x5,const float * m)2397 STAGE(matrix_4x5, const float* m) {
2398 auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
2399 G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
2400 B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
2401 A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
2402 r = R;
2403 g = G;
2404 b = B;
2405 a = A;
2406 }
STAGE(matrix_4x3,const float * m)2407 STAGE(matrix_4x3, const float* m) {
2408 auto X = r,
2409 Y = g;
2410
2411 r = mad(X, m[0], mad(Y, m[4], m[ 8]));
2412 g = mad(X, m[1], mad(Y, m[5], m[ 9]));
2413 b = mad(X, m[2], mad(Y, m[6], m[10]));
2414 a = mad(X, m[3], mad(Y, m[7], m[11]));
2415 }
STAGE(matrix_perspective,const float * m)2416 STAGE(matrix_perspective, const float* m) {
2417 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
2418 auto R = mad(r,m[0], mad(g,m[1], m[2])),
2419 G = mad(r,m[3], mad(g,m[4], m[5])),
2420 Z = mad(r,m[6], mad(g,m[7], m[8]));
2421 r = R * rcp_precise(Z);
2422 g = G * rcp_precise(Z);
2423 }
2424
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)2425 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
2426 F* r, F* g, F* b, F* a) {
2427 F fr, br, fg, bg, fb, bb, fa, ba;
2428 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
2429 if (c->stopCount <=8) {
2430 fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
2431 br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
2432 fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
2433 bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
2434 fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
2435 bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
2436 fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
2437 ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
2438 } else
2439 #endif
2440 {
2441 fr = gather(c->fs[0], idx);
2442 br = gather(c->bs[0], idx);
2443 fg = gather(c->fs[1], idx);
2444 bg = gather(c->bs[1], idx);
2445 fb = gather(c->fs[2], idx);
2446 bb = gather(c->bs[2], idx);
2447 fa = gather(c->fs[3], idx);
2448 ba = gather(c->bs[3], idx);
2449 }
2450
2451 *r = mad(t, fr, br);
2452 *g = mad(t, fg, bg);
2453 *b = mad(t, fb, bb);
2454 *a = mad(t, fa, ba);
2455 }
2456
STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)2457 STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
2458 auto t = r;
2459 auto idx = trunc_(t * (c->stopCount-1));
2460 gradient_lookup(c, idx, t, &r, &g, &b, &a);
2461 }
2462
STAGE(gradient,const SkRasterPipeline_GradientCtx * c)2463 STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
2464 auto t = r;
2465 U32 idx = 0;
2466
2467 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
2468 for (size_t i = 1; i < c->stopCount; i++) {
2469 idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
2470 }
2471
2472 gradient_lookup(c, idx, t, &r, &g, &b, &a);
2473 }
2474
STAGE(evenly_spaced_2_stop_gradient,const void * ctx)2475 STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
2476 struct Ctx { float f[4], b[4]; };
2477 auto c = (const Ctx*)ctx;
2478
2479 auto t = r;
2480 r = mad(t, c->f[0], c->b[0]);
2481 g = mad(t, c->f[1], c->b[1]);
2482 b = mad(t, c->f[2], c->b[2]);
2483 a = mad(t, c->f[3], c->b[3]);
2484 }
2485
STAGE(xy_to_unit_angle,Ctx::None)2486 STAGE(xy_to_unit_angle, Ctx::None) {
2487 F X = r,
2488 Y = g;
2489 F xabs = abs_(X),
2490 yabs = abs_(Y);
2491
2492 F slope = min(xabs, yabs)/max(xabs, yabs);
2493 F s = slope * slope;
2494
2495 // Use a 7th degree polynomial to approximate atan.
2496 // This was generated using sollya.gforge.inria.fr.
2497 // A float optimized polynomial was generated using the following command.
2498 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
2499 F phi = slope
2500 * (0.15912117063999176025390625f + s
2501 * (-5.185396969318389892578125e-2f + s
2502 * (2.476101927459239959716796875e-2f + s
2503 * (-7.0547382347285747528076171875e-3f))));
2504
2505 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
2506 phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
2507 phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
2508 phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
2509 r = phi;
2510 }
2511
STAGE(xy_to_radius,Ctx::None)2512 STAGE(xy_to_radius, Ctx::None) {
2513 F X2 = r * r,
2514 Y2 = g * g;
2515 r = sqrt_(X2 + Y2);
2516 }
2517
2518 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
2519
STAGE(negate_x,Ctx::None)2520 STAGE(negate_x, Ctx::None) { r = -r; }
2521
STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)2522 STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
2523 F x = r, y = g, &t = r;
2524 t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
2525 }
2526
STAGE(xy_to_2pt_conical_focal_on_circle,Ctx::None)2527 STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
2528 F x = r, y = g, &t = r;
2529 t = x + y*y / x; // (x^2 + y^2) / x
2530 }
2531
STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)2532 STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
2533 F x = r, y = g, &t = r;
2534 t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2535 }
2536
STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)2537 STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
2538 F x = r, y = g, &t = r;
2539 t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2540 }
2541
STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)2542 STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
2543 F x = r, y = g, &t = r;
2544 t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
2545 }
2546
STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)2547 STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
2548 F& t = r;
2549 t = t + ctx->fP1; // ctx->fP1 = f
2550 }
2551
STAGE(alter_2pt_conical_unswap,Ctx::None)2552 STAGE(alter_2pt_conical_unswap, Ctx::None) {
2553 F& t = r;
2554 t = 1 - t;
2555 }
2556
STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)2557 STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
2558 F& t = r;
2559 auto is_degenerate = (t != t); // NaN
2560 t = if_then_else(is_degenerate, F(0), t);
2561 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
2562 }
2563
STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)2564 STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
2565 F& t = r;
2566 auto is_degenerate = (t <= 0) | (t != t);
2567 t = if_then_else(is_degenerate, F(0), t);
2568 sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
2569 }
2570
STAGE(apply_vector_mask,const uint32_t * ctx)2571 STAGE(apply_vector_mask, const uint32_t* ctx) {
2572 const U32 mask = sk_unaligned_load<U32>(ctx);
2573 r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
2574 g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
2575 b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
2576 a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
2577 }
2578
STAGE(save_xy,SkRasterPipeline_SamplerCtx * c)2579 STAGE(save_xy, SkRasterPipeline_SamplerCtx* c) {
2580 // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
2581 // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
2582 // surrounding (x,y) at (0.5,0.5) off-center.
2583 F fx = fract(r + 0.5f),
2584 fy = fract(g + 0.5f);
2585
2586 // Samplers will need to load x and fx, or y and fy.
2587 sk_unaligned_store(c->x, r);
2588 sk_unaligned_store(c->y, g);
2589 sk_unaligned_store(c->fx, fx);
2590 sk_unaligned_store(c->fy, fy);
2591 }
2592
STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)2593 STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
2594 // Bilinear and bicubic filters are both separable, so we produce independent contributions
2595 // from x and y, multiplying them together here to get each pixel's total scale factor.
2596 auto scale = sk_unaligned_load<F>(c->scalex)
2597 * sk_unaligned_load<F>(c->scaley);
2598 dr = mad(scale, r, dr);
2599 dg = mad(scale, g, dg);
2600 db = mad(scale, b, db);
2601 da = mad(scale, a, da);
2602 }
2603
2604 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
2605 // are combined in direct proportion to their area overlapping that logical query pixel.
2606 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
2607 // The y-axis is symmetric.
2608
2609 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)2610 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
2611 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
2612 F fx = sk_unaligned_load<F>(ctx->fx);
2613
2614 F scalex;
2615 if (kScale == -1) { scalex = 1.0f - fx; }
2616 if (kScale == +1) { scalex = fx; }
2617 sk_unaligned_store(ctx->scalex, scalex);
2618 }
2619 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)2620 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
2621 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
2622 F fy = sk_unaligned_load<F>(ctx->fy);
2623
2624 F scaley;
2625 if (kScale == -1) { scaley = 1.0f - fy; }
2626 if (kScale == +1) { scaley = fy; }
2627 sk_unaligned_store(ctx->scaley, scaley);
2628 }
2629
STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)2630 STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)2631 STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)2632 STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)2633 STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
2634
2635
2636 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
2637 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
2638 //
2639 // We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
2640 // See GrCubicEffect for details of this particular filter.
2641
bicubic_near(F t)2642 SI F bicubic_near(F t) {
2643 // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
2644 return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
2645 }
bicubic_far(F t)2646 SI F bicubic_far(F t) {
2647 // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
2648 return (t*t)*mad((7/18.0f), t, (-6/18.0f));
2649 }
2650
2651 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)2652 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
2653 *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
2654 F fx = sk_unaligned_load<F>(ctx->fx);
2655
2656 F scalex;
2657 if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
2658 if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
2659 if (kScale == +1) { scalex = bicubic_near( fx); }
2660 if (kScale == +3) { scalex = bicubic_far ( fx); }
2661 sk_unaligned_store(ctx->scalex, scalex);
2662 }
2663 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)2664 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
2665 *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
2666 F fy = sk_unaligned_load<F>(ctx->fy);
2667
2668 F scaley;
2669 if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
2670 if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
2671 if (kScale == +1) { scaley = bicubic_near( fy); }
2672 if (kScale == +3) { scaley = bicubic_far ( fy); }
2673 sk_unaligned_store(ctx->scaley, scaley);
2674 }
2675
STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)2676 STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)2677 STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)2678 STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)2679 STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
2680
STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)2681 STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)2682 STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)2683 STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)2684 STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
2685
STAGE(callback,SkRasterPipeline_CallbackCtx * c)2686 STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
2687 store4(c->rgba,0, r,g,b,a);
2688 c->fn(c, tail ? tail : N);
2689 load4(c->read_from,0, &r,&g,&b,&a);
2690 }
2691
STAGE(gauss_a_to_rgba,Ctx::None)2692 STAGE(gauss_a_to_rgba, Ctx::None) {
2693 // x = 1 - x;
2694 // exp(-x * x * 4) - 0.018f;
2695 // ... now approximate with quartic
2696 //
2697 const float c4 = -2.26661229133605957031f;
2698 const float c3 = 2.89795351028442382812f;
2699 const float c2 = 0.21345567703247070312f;
2700 const float c1 = 0.15489584207534790039f;
2701 const float c0 = 0.00030726194381713867f;
2702 a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
2703 r = a;
2704 g = a;
2705 b = a;
2706 }
2707
tile(F v,SkTileMode mode,float limit,float invLimit)2708 SI F tile(F v, SkTileMode mode, float limit, float invLimit) {
2709 // The ix_and_ptr() calls in sample() will clamp tile()'s output, so no need to clamp here.
2710 switch (mode) {
2711 case SkTileMode::kDecal:
2712 case SkTileMode::kClamp: return v;
2713 case SkTileMode::kRepeat: return v - floor_(v*invLimit)*limit;
2714 case SkTileMode::kMirror:
2715 return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
2716 }
2717 SkUNREACHABLE;
2718 }
2719
sample(const SkRasterPipeline_SamplerCtx2 * ctx,F x,F y,F * r,F * g,F * b,F * a)2720 SI void sample(const SkRasterPipeline_SamplerCtx2* ctx, F x, F y,
2721 F* r, F* g, F* b, F* a) {
2722 x = tile(x, ctx->tileX, ctx->width , ctx->invWidth );
2723 y = tile(y, ctx->tileY, ctx->height, ctx->invHeight);
2724
2725 switch (ctx->ct) {
2726 default: *r = *g = *b = *a = 0;
2727 break;
2728
2729 case kRGBA_8888_SkColorType:
2730 case kBGRA_8888_SkColorType: {
2731 const uint32_t* ptr;
2732 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
2733 from_8888(gather(ptr, ix), r,g,b,a);
2734 if (ctx->ct == kBGRA_8888_SkColorType) {
2735 std::swap(*r,*b);
2736 }
2737 } break;
2738 }
2739 }
2740
2741 template <int D>
sampler(const SkRasterPipeline_SamplerCtx2 * ctx,F cx,F cy,const F (& wx)[D],const F (& wy)[D],F * r,F * g,F * b,F * a)2742 SI void sampler(const SkRasterPipeline_SamplerCtx2* ctx,
2743 F cx, F cy, const F (&wx)[D], const F (&wy)[D],
2744 F* r, F* g, F* b, F* a) {
2745
2746 float start = -0.5f*(D-1);
2747
2748 *r = *g = *b = *a = 0;
2749 F y = cy + start;
2750 for (int j = 0; j < D; j++, y += 1.0f) {
2751 F x = cx + start;
2752 for (int i = 0; i < D; i++, x += 1.0f) {
2753 F R,G,B,A;
2754 sample(ctx, x,y, &R,&G,&B,&A);
2755
2756 F w = wx[i] * wy[j];
2757 *r = mad(w,R,*r);
2758 *g = mad(w,G,*g);
2759 *b = mad(w,B,*b);
2760 *a = mad(w,A,*a);
2761 }
2762 }
2763 }
2764
STAGE(bilinear,const SkRasterPipeline_SamplerCtx2 * ctx)2765 STAGE(bilinear, const SkRasterPipeline_SamplerCtx2* ctx) {
2766 F x = r, fx = fract(x + 0.5f),
2767 y = g, fy = fract(y + 0.5f);
2768 const F wx[] = {1.0f - fx, fx};
2769 const F wy[] = {1.0f - fy, fy};
2770
2771 sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
2772 }
STAGE(bicubic,SkRasterPipeline_SamplerCtx2 * ctx)2773 STAGE(bicubic, SkRasterPipeline_SamplerCtx2* ctx) {
2774 F x = r, fx = fract(x + 0.5f),
2775 y = g, fy = fract(y + 0.5f);
2776 const F wx[] = { bicubic_far(1-fx), bicubic_near(1-fx), bicubic_near(fx), bicubic_far(fx) };
2777 const F wy[] = { bicubic_far(1-fy), bicubic_near(1-fy), bicubic_near(fy), bicubic_far(fy) };
2778
2779 sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
2780 }
2781
2782 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)2783 STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
2784 // (cx,cy) are the center of our sample.
2785 F cx = r,
2786 cy = g;
2787
2788 // All sample points are at the same fractional offset (fx,fy).
2789 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
2790 F fx = fract(cx + 0.5f),
2791 fy = fract(cy + 0.5f);
2792
2793 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
2794 r = g = b = a = 0;
2795
2796 for (float py = -0.5f; py <= +0.5f; py += 1.0f)
2797 for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
2798 // (x,y) are the coordinates of this sample point.
2799 F x = cx + px,
2800 y = cy + py;
2801
2802 // ix_and_ptr() will clamp to the image's bounds for us.
2803 const uint32_t* ptr;
2804 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
2805
2806 F sr,sg,sb,sa;
2807 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
2808
2809 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
2810 // are combined in direct proportion to their area overlapping that logical query pixel.
2811 // At positive offsets, the x-axis contribution to that rectangle is fx,
2812 // or (1-fx) at negative x. Same deal for y.
2813 F sx = (px > 0) ? fx : 1.0f - fx,
2814 sy = (py > 0) ? fy : 1.0f - fy,
2815 area = sx * sy;
2816
2817 r += sr * area;
2818 g += sg * area;
2819 b += sb * area;
2820 a += sa * area;
2821 }
2822 }
2823
2824 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)2825 STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
2826 // (cx,cy) are the center of our sample.
2827 F cx = r,
2828 cy = g;
2829
2830 // All sample points are at the same fractional offset (fx,fy).
2831 // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
2832 F fx = fract(cx + 0.5f),
2833 fy = fract(cy + 0.5f);
2834
2835 // We'll accumulate the color of all four samples into {r,g,b,a} directly.
2836 r = g = b = a = 0;
2837
2838 const F scaley[4] = {
2839 bicubic_far (1.0f - fy), bicubic_near(1.0f - fy),
2840 bicubic_near( fy), bicubic_far ( fy),
2841 };
2842 const F scalex[4] = {
2843 bicubic_far (1.0f - fx), bicubic_near(1.0f - fx),
2844 bicubic_near( fx), bicubic_far ( fx),
2845 };
2846
2847 F sample_y = cy - 1.5f;
2848 for (int yy = 0; yy <= 3; ++yy) {
2849 F sample_x = cx - 1.5f;
2850 for (int xx = 0; xx <= 3; ++xx) {
2851 F scale = scalex[xx] * scaley[yy];
2852
2853 // ix_and_ptr() will clamp to the image's bounds for us.
2854 const uint32_t* ptr;
2855 U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
2856
2857 F sr,sg,sb,sa;
2858 from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
2859
2860 r = mad(scale, sr, r);
2861 g = mad(scale, sg, g);
2862 b = mad(scale, sb, b);
2863 a = mad(scale, sa, a);
2864
2865 sample_x += 1;
2866 }
2867 sample_y += 1;
2868 }
2869 }
2870
2871 // ~~~~~~ GrSwizzle stage ~~~~~~ //
2872
STAGE(swizzle,void * ctx)2873 STAGE(swizzle, void* ctx) {
2874 auto ir = r, ig = g, ib = b, ia = a;
2875 F* o[] = {&r, &g, &b, &a};
2876 char swiz[4];
2877 memcpy(swiz, &ctx, sizeof(swiz));
2878
2879 for (int i = 0; i < 4; ++i) {
2880 switch (swiz[i]) {
2881 case 'r': *o[i] = ir; break;
2882 case 'g': *o[i] = ig; break;
2883 case 'b': *o[i] = ib; break;
2884 case 'a': *o[i] = ia; break;
2885 case '0': *o[i] = F(0); break;
2886 case '1': *o[i] = F(1); break;
2887 default: break;
2888 }
2889 }
2890 }
2891
2892 namespace lowp {
2893 #if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
2894 // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually),
2895 // we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the
2896 // highp float pipeline.
2897 #define M(st) static void (*st)(void) = nullptr;
2898 SK_RASTER_PIPELINE_STAGES(M)
2899 #undef M
2900 static void (*just_return)(void) = nullptr;
2901
start_pipeline(size_t,size_t,size_t,size_t,void **)2902 static void start_pipeline(size_t,size_t,size_t,size_t, void**) {}
2903
2904 #else // We are compiling vector code with Clang... let's make some lowp stages!
2905
2906 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
2907 using U8 = uint8_t __attribute__((ext_vector_type(16)));
2908 using U16 = uint16_t __attribute__((ext_vector_type(16)));
2909 using I16 = int16_t __attribute__((ext_vector_type(16)));
2910 using I32 = int32_t __attribute__((ext_vector_type(16)));
2911 using U32 = uint32_t __attribute__((ext_vector_type(16)));
2912 using I64 = int64_t __attribute__((ext_vector_type(16)));
2913 using U64 = uint64_t __attribute__((ext_vector_type(16)));
2914 using F = float __attribute__((ext_vector_type(16)));
2915 #else
2916 using U8 = uint8_t __attribute__((ext_vector_type(8)));
2917 using U16 = uint16_t __attribute__((ext_vector_type(8)));
2918 using I16 = int16_t __attribute__((ext_vector_type(8)));
2919 using I32 = int32_t __attribute__((ext_vector_type(8)));
2920 using U32 = uint32_t __attribute__((ext_vector_type(8)));
2921 using I64 = int64_t __attribute__((ext_vector_type(8)));
2922 using U64 = uint64_t __attribute__((ext_vector_type(8)));
2923 using F = float __attribute__((ext_vector_type(8)));
2924 #endif
2925
2926 static const size_t N = sizeof(U16) / sizeof(uint16_t);
2927
2928 // Once again, some platforms benefit from a restricted Stage calling convention,
2929 // but others can pass tons and tons of registers and we're happy to exploit that.
2930 // It's exactly the same decision and implementation strategy as the F stages above.
2931 #if JUMPER_NARROW_STAGES
2932 struct Params {
2933 size_t dx, dy, tail;
2934 U16 dr,dg,db,da;
2935 };
2936 using Stage = void(ABI*)(Params*, void** program, U16 r, U16 g, U16 b, U16 a);
2937 #else
2938 // We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
2939 using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
2940 U16 r, U16 g, U16 b, U16 a,
2941 U16 dr, U16 dg, U16 db, U16 da);
2942 #endif
2943
2944 static void start_pipeline(const size_t x0, const size_t y0,
2945 const size_t xlimit, const size_t ylimit, void** program) {
2946 auto start = (Stage)load_and_inc(program);
2947 for (size_t dy = y0; dy < ylimit; dy++) {
2948 #if JUMPER_NARROW_STAGES
2949 Params params = { x0,dy,0, 0,0,0,0 };
2950 for (; params.dx + N <= xlimit; params.dx += N) {
2951 start(¶ms,program, 0,0,0,0);
2952 }
2953 if (size_t tail = xlimit - params.dx) {
2954 params.tail = tail;
2955 start(¶ms,program, 0,0,0,0);
2956 }
2957 #else
2958 size_t dx = x0;
2959 for (; dx + N <= xlimit; dx += N) {
2960 start( 0,program,dx,dy, 0,0,0,0, 0,0,0,0);
2961 }
2962 if (size_t tail = xlimit - dx) {
2963 start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
2964 }
2965 #endif
2966 }
2967 }
2968
2969 #if JUMPER_NARROW_STAGES
2970 static void ABI just_return(Params*, void**, U16,U16,U16,U16) {}
2971 #else
2972 static void ABI just_return(size_t,void**,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {}
2973 #endif
2974
2975 // All stages use the same function call ABI to chain into each other, but there are three types:
2976 // GG: geometry in, geometry out -- think, a matrix
2977 // GP: geometry in, pixels out. -- think, a memory gather
2978 // PP: pixels in, pixels out. -- think, a blend mode
2979 //
2980 // (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
2981 //
2982 // These three STAGE_ macros let you define each type of stage,
2983 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
2984
2985 #if JUMPER_NARROW_STAGES
2986 #define STAGE_GG(name, ...) \
2987 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
2988 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
2989 auto x = join<F>(r,g), \
2990 y = join<F>(b,a); \
2991 name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \
2992 split(x, &r,&g); \
2993 split(y, &b,&a); \
2994 auto next = (Stage)load_and_inc(program); \
2995 next(params,program, r,g,b,a); \
2996 } \
2997 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
2998
2999 #define STAGE_GP(name, ...) \
3000 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3001 U16& r, U16& g, U16& b, U16& a, \
3002 U16& dr, U16& dg, U16& db, U16& da); \
3003 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
3004 auto x = join<F>(r,g), \
3005 y = join<F>(b,a); \
3006 name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \
3007 params->dr,params->dg,params->db,params->da); \
3008 auto next = (Stage)load_and_inc(program); \
3009 next(params,program, r,g,b,a); \
3010 } \
3011 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3012 U16& r, U16& g, U16& b, U16& a, \
3013 U16& dr, U16& dg, U16& db, U16& da)
3014
3015 #define STAGE_PP(name, ...) \
3016 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3017 U16& r, U16& g, U16& b, U16& a, \
3018 U16& dr, U16& dg, U16& db, U16& da); \
3019 static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
3020 name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \
3021 params->dr,params->dg,params->db,params->da); \
3022 auto next = (Stage)load_and_inc(program); \
3023 next(params,program, r,g,b,a); \
3024 } \
3025 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3026 U16& r, U16& g, U16& b, U16& a, \
3027 U16& dr, U16& dg, U16& db, U16& da)
3028 #else
3029 #define STAGE_GG(name, ...) \
3030 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
3031 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3032 U16 r, U16 g, U16 b, U16 a, \
3033 U16 dr, U16 dg, U16 db, U16 da) { \
3034 auto x = join<F>(r,g), \
3035 y = join<F>(b,a); \
3036 name##_k(Ctx{program}, dx,dy,tail, x,y); \
3037 split(x, &r,&g); \
3038 split(y, &b,&a); \
3039 auto next = (Stage)load_and_inc(program); \
3040 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3041 } \
3042 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
3043
3044 #define STAGE_GP(name, ...) \
3045 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3046 U16& r, U16& g, U16& b, U16& a, \
3047 U16& dr, U16& dg, U16& db, U16& da); \
3048 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3049 U16 r, U16 g, U16 b, U16 a, \
3050 U16 dr, U16 dg, U16 db, U16 da) { \
3051 auto x = join<F>(r,g), \
3052 y = join<F>(b,a); \
3053 name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
3054 auto next = (Stage)load_and_inc(program); \
3055 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3056 } \
3057 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
3058 U16& r, U16& g, U16& b, U16& a, \
3059 U16& dr, U16& dg, U16& db, U16& da)
3060
3061 #define STAGE_PP(name, ...) \
3062 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3063 U16& r, U16& g, U16& b, U16& a, \
3064 U16& dr, U16& dg, U16& db, U16& da); \
3065 static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
3066 U16 r, U16 g, U16 b, U16 a, \
3067 U16 dr, U16 dg, U16 db, U16 da) { \
3068 name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
3069 auto next = (Stage)load_and_inc(program); \
3070 next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
3071 } \
3072 SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
3073 U16& r, U16& g, U16& b, U16& a, \
3074 U16& dr, U16& dg, U16& db, U16& da)
3075 #endif
3076
3077 // ~~~~~~ Commonly used helper functions ~~~~~~ //
3078
3079 /**
3080 * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
3081 * thanks to a division by a non-power of two:
3082 * [1] (v + 127) / 255
3083 *
3084 * There is a two-step process that computes the correct answer for all inputs:
3085 * [2] (v + 128 + ((v + 128) >> 8)) >> 8
3086 *
3087 * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
3088 * [3] (v + 255) >> 8;
3089 *
3090 * We offer two different implementations here, depending on the requirements of the calling stage.
3091 */
3092
3093 /**
3094 * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
3095 * as [3]), and uses [3] elsewhere.
3096 */
3097 SI U16 div255(U16 v) {
3098 #if defined(JUMPER_IS_NEON)
3099 // With NEON we can compute [2] just as fast as [3], so let's be correct.
3100 // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
3101 return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
3102 #else
3103 // Otherwise, use [3], which is never wrong by more than 1:
3104 return (v+255)/256;
3105 #endif
3106 }
3107
3108 /**
3109 * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
3110 */
3111 SI U16 div255_accurate(U16 v) {
3112 #if defined(JUMPER_IS_NEON)
3113 // Our NEON implementation of div255 is already correct for all inputs:
3114 return div255(v);
3115 #else
3116 // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
3117 v += 128;
3118 return (v+(v/256))/256;
3119 #endif
3120 }
3121
3122 SI U16 inv(U16 v) { return 255-v; }
3123
3124 SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
3125 SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
3126
3127 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
3128 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
3129
3130 SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
3131
3132 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
3133
3134 template <typename D, typename S>
3135 SI D cast(S src) {
3136 return __builtin_convertvector(src, D);
3137 }
3138
3139 template <typename D, typename S>
3140 SI void split(S v, D* lo, D* hi) {
3141 static_assert(2*sizeof(D) == sizeof(S), "");
3142 memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
3143 memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
3144 }
3145 template <typename D, typename S>
3146 SI D join(S lo, S hi) {
3147 static_assert(sizeof(D) == 2*sizeof(S), "");
3148 D v;
3149 memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
3150 memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
3151 return v;
3152 }
3153
3154 SI F if_then_else(I32 c, F t, F e) {
3155 return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
3156 }
3157 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
3158 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
3159
3160 SI I32 if_then_else(I32 c, I32 t, I32 e) {
3161 return (t & c) | (e & ~c);
3162 }
3163 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
3164 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
3165
3166 SI F mad(F f, F m, F a) { return f*m+a; }
3167 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
3168
3169 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
3170 SI F rcp_precise(F x) {
3171 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3172 __m256 lo,hi;
3173 split(x, &lo,&hi);
3174 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3175 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3176 __m128 lo,hi;
3177 split(x, &lo,&hi);
3178 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3179 #elif defined(JUMPER_IS_NEON)
3180 float32x4_t lo,hi;
3181 split(x, &lo,&hi);
3182 return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
3183 #else
3184 return 1.0f / x;
3185 #endif
3186 }
3187 SI F sqrt_(F x) {
3188 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3189 __m256 lo,hi;
3190 split(x, &lo,&hi);
3191 return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
3192 #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3193 __m128 lo,hi;
3194 split(x, &lo,&hi);
3195 return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
3196 #elif defined(SK_CPU_ARM64)
3197 float32x4_t lo,hi;
3198 split(x, &lo,&hi);
3199 return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
3200 #elif defined(JUMPER_IS_NEON)
3201 auto sqrt = [](float32x4_t v) {
3202 auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
3203 est *= vrsqrtsq_f32(v,est*est);
3204 est *= vrsqrtsq_f32(v,est*est);
3205 return v*est; // sqrt(v) == v*rsqrt(v).
3206 };
3207 float32x4_t lo,hi;
3208 split(x, &lo,&hi);
3209 return join<F>(sqrt(lo), sqrt(hi));
3210 #else
3211 return F{
3212 sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
3213 sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
3214 };
3215 #endif
3216 }
3217
3218 SI F floor_(F x) {
3219 #if defined(SK_CPU_ARM64)
3220 float32x4_t lo,hi;
3221 split(x, &lo,&hi);
3222 return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
3223 #elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3224 __m256 lo,hi;
3225 split(x, &lo,&hi);
3226 return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
3227 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3228 __m128 lo,hi;
3229 split(x, &lo,&hi);
3230 return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
3231 #else
3232 F roundtrip = cast<F>(cast<I32>(x));
3233 return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
3234 #endif
3235 }
3236
3237 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
3238 // this multiply is:
3239 // (2 * a * b + (1 << 15)) >> 16
3240 // The result is a number on [-1, 1).
3241 // Note: on neon this is a saturating multiply while the others are not.
3242 SI I16 scaled_mult(I16 a, I16 b) {
3243 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3244 return _mm256_mulhrs_epi16(a, b);
3245 #elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
3246 return _mm_mulhrs_epi16(a, b);
3247 #elif defined(SK_CPU_ARM64)
3248 return vqrdmulhq_s16(a, b);
3249 #elif defined(JUMPER_IS_NEON)
3250 return vqrdmulhq_s16(a, b);
3251 #else
3252 const I32 roundingTerm = 1 << 14;
3253 return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
3254 #endif
3255 }
3256
3257 // This sum is to support lerp where the result will always be a positive number. In general,
3258 // a sum like this would require an additional bit, but because we know the range of the result
3259 // we know that the extra bit will always be zero.
3260 SI U16 constrained_add(I16 a, U16 b) {
3261 #if defined(SK_DEBUG)
3262 for (size_t i = 0; i < N; i++) {
3263 // Ensure that a + b is on the interval [0, UINT16_MAX]
3264 int ia = a[i],
3265 ib = b[i];
3266 // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
3267 // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
3268 // interpreted as an uint32_t.
3269 SkASSERT(-ib <= ia && ia <= 65535 - ib);
3270 }
3271 #endif
3272 return b + a;
3273 }
3274
3275 SI F fract(F x) { return x - floor_(x); }
3276 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
3277
3278 // ~~~~~~ Basic / misc. stages ~~~~~~ //
3279
3280 STAGE_GG(seed_shader, Ctx::None) {
3281 static const float iota[] = {
3282 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
3283 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
3284 };
3285 x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota);
3286 y = cast<F>(I32(dy)) + 0.5f;
3287 }
3288
3289 STAGE_GG(matrix_translate, const float* m) {
3290 x += m[0];
3291 y += m[1];
3292 }
3293 STAGE_GG(matrix_scale_translate, const float* m) {
3294 x = mad(x,m[0], m[2]);
3295 y = mad(y,m[1], m[3]);
3296 }
3297 STAGE_GG(matrix_2x3, const float* m) {
3298 auto X = mad(x,m[0], mad(y,m[1], m[2])),
3299 Y = mad(x,m[3], mad(y,m[4], m[5]));
3300 x = X;
3301 y = Y;
3302 }
3303 STAGE_GG(matrix_perspective, const float* m) {
3304 // N.B. Unlike the other matrix_ stages, this matrix is row-major.
3305 auto X = mad(x,m[0], mad(y,m[1], m[2])),
3306 Y = mad(x,m[3], mad(y,m[4], m[5])),
3307 Z = mad(x,m[6], mad(y,m[7], m[8]));
3308 x = X * rcp_precise(Z);
3309 y = Y * rcp_precise(Z);
3310 }
3311
3312 STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
3313 r = c->rgba[0];
3314 g = c->rgba[1];
3315 b = c->rgba[2];
3316 a = c->rgba[3];
3317 }
3318 STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
3319 dr = c->rgba[0];
3320 dg = c->rgba[1];
3321 db = c->rgba[2];
3322 da = c->rgba[3];
3323 }
3324 STAGE_PP(black_color, Ctx::None) { r = g = b = 0; a = 255; }
3325 STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }
3326
3327 STAGE_PP(set_rgb, const float rgb[3]) {
3328 r = from_float(rgb[0]);
3329 g = from_float(rgb[1]);
3330 b = from_float(rgb[2]);
3331 }
3332
3333 STAGE_PP(clamp_0, Ctx::None) { /*definitely a noop*/ }
3334 STAGE_PP(clamp_1, Ctx::None) { /*_should_ be a noop*/ }
3335
3336 STAGE_PP(clamp_a, Ctx::None) {
3337 r = min(r, a);
3338 g = min(g, a);
3339 b = min(b, a);
3340 }
3341
3342 STAGE_PP(clamp_gamut, Ctx::None) {
3343 // It shouldn't be possible to get out-of-gamut
3344 // colors when working in lowp.
3345 }
3346
3347 STAGE_PP(premul, Ctx::None) {
3348 r = div255_accurate(r * a);
3349 g = div255_accurate(g * a);
3350 b = div255_accurate(b * a);
3351 }
3352 STAGE_PP(premul_dst, Ctx::None) {
3353 dr = div255_accurate(dr * da);
3354 dg = div255_accurate(dg * da);
3355 db = div255_accurate(db * da);
3356 }
3357
3358 STAGE_PP(force_opaque , Ctx::None) { a = 255; }
3359 STAGE_PP(force_opaque_dst, Ctx::None) { da = 255; }
3360
3361 STAGE_PP(swap_rb, Ctx::None) {
3362 auto tmp = r;
3363 r = b;
3364 b = tmp;
3365 }
3366 STAGE_PP(swap_rb_dst, Ctx::None) {
3367 auto tmp = dr;
3368 dr = db;
3369 db = tmp;
3370 }
3371
3372 STAGE_PP(move_src_dst, Ctx::None) {
3373 dr = r;
3374 dg = g;
3375 db = b;
3376 da = a;
3377 }
3378
3379 STAGE_PP(move_dst_src, Ctx::None) {
3380 r = dr;
3381 g = dg;
3382 b = db;
3383 a = da;
3384 }
3385
3386 STAGE_PP(swap_src_dst, Ctx::None) {
3387 std::swap(r, dr);
3388 std::swap(g, dg);
3389 std::swap(b, db);
3390 std::swap(a, da);
3391 }
3392
3393 // ~~~~~~ Blend modes ~~~~~~ //
3394
3395 // The same logic applied to all 4 channels.
3396 #define BLEND_MODE(name) \
3397 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
3398 STAGE_PP(name, Ctx::None) { \
3399 r = name##_channel(r,dr,a,da); \
3400 g = name##_channel(g,dg,a,da); \
3401 b = name##_channel(b,db,a,da); \
3402 a = name##_channel(a,da,a,da); \
3403 } \
3404 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
3405
3406 BLEND_MODE(clear) { return 0; }
3407 BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
3408 BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
3409 BLEND_MODE(srcin) { return div255( s*da ); }
3410 BLEND_MODE(dstin) { return div255( d*sa ); }
3411 BLEND_MODE(srcout) { return div255( s*inv(da) ); }
3412 BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
3413 BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
3414 BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
3415 BLEND_MODE(modulate) { return div255( s*d ); }
3416 BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
3417 BLEND_MODE(plus_) { return min(s+d, 255); }
3418 BLEND_MODE(screen) { return s + d - div255( s*d ); }
3419 BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
3420 #undef BLEND_MODE
3421
3422 // The same logic applied to color, and srcover for alpha.
3423 #define BLEND_MODE(name) \
3424 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
3425 STAGE_PP(name, Ctx::None) { \
3426 r = name##_channel(r,dr,a,da); \
3427 g = name##_channel(g,dg,a,da); \
3428 b = name##_channel(b,db,a,da); \
3429 a = a + div255( da*inv(a) ); \
3430 } \
3431 SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
3432
3433 BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
3434 BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
3435 BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
3436 BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
3437
3438 BLEND_MODE(hardlight) {
3439 return div255( s*inv(da) + d*inv(sa) +
3440 if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
3441 }
3442 BLEND_MODE(overlay) {
3443 return div255( s*inv(da) + d*inv(sa) +
3444 if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
3445 }
3446 #undef BLEND_MODE
3447
3448 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
3449
3450 template <typename T>
3451 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
3452 return (T*)ctx->pixels + dy*ctx->stride + dx;
3453 }
3454
3455 template <typename T>
3456 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
3457 // Exclusive -> inclusive.
3458 const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1),
3459 h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1);
3460
3461 x = min(max(0, x), w);
3462 y = min(max(0, y), h);
3463
3464 *ptr = (const T*)ctx->pixels;
3465 return trunc_(y)*ctx->stride + trunc_(x);
3466 }
3467
3468 template <typename T>
3469 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
3470 // Exclusive -> inclusive.
3471 const I32 w = ctx->width - 1,
3472 h = ctx->height - 1;
3473
3474 U32 ax = cast<U32>(min(max(0, x), w)),
3475 ay = cast<U32>(min(max(0, y), h));
3476
3477 *ptr = (const T*)ctx->pixels;
3478 return ay * ctx->stride + ax;
3479 }
3480
3481 template <typename V, typename T>
3482 SI V load(const T* ptr, size_t tail) {
3483 V v = 0;
3484 switch (tail & (N-1)) {
3485 case 0: memcpy(&v, ptr, sizeof(v)); break;
3486 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3487 case 15: v[14] = ptr[14]; [[fallthrough]];
3488 case 14: v[13] = ptr[13]; [[fallthrough]];
3489 case 13: v[12] = ptr[12]; [[fallthrough]];
3490 case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
3491 case 11: v[10] = ptr[10]; [[fallthrough]];
3492 case 10: v[ 9] = ptr[ 9]; [[fallthrough]];
3493 case 9: v[ 8] = ptr[ 8]; [[fallthrough]];
3494 case 8: memcpy(&v, ptr, 8*sizeof(T)); break;
3495 #endif
3496 case 7: v[ 6] = ptr[ 6]; [[fallthrough]];
3497 case 6: v[ 5] = ptr[ 5]; [[fallthrough]];
3498 case 5: v[ 4] = ptr[ 4]; [[fallthrough]];
3499 case 4: memcpy(&v, ptr, 4*sizeof(T)); break;
3500 case 3: v[ 2] = ptr[ 2]; [[fallthrough]];
3501 case 2: memcpy(&v, ptr, 2*sizeof(T)); break;
3502 case 1: v[ 0] = ptr[ 0];
3503 }
3504 return v;
3505 }
3506 template <typename V, typename T>
3507 SI void store(T* ptr, size_t tail, V v) {
3508 switch (tail & (N-1)) {
3509 case 0: memcpy(ptr, &v, sizeof(v)); break;
3510 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3511 case 15: ptr[14] = v[14]; [[fallthrough]];
3512 case 14: ptr[13] = v[13]; [[fallthrough]];
3513 case 13: ptr[12] = v[12]; [[fallthrough]];
3514 case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
3515 case 11: ptr[10] = v[10]; [[fallthrough]];
3516 case 10: ptr[ 9] = v[ 9]; [[fallthrough]];
3517 case 9: ptr[ 8] = v[ 8]; [[fallthrough]];
3518 case 8: memcpy(ptr, &v, 8*sizeof(T)); break;
3519 #endif
3520 case 7: ptr[ 6] = v[ 6]; [[fallthrough]];
3521 case 6: ptr[ 5] = v[ 5]; [[fallthrough]];
3522 case 5: ptr[ 4] = v[ 4]; [[fallthrough]];
3523 case 4: memcpy(ptr, &v, 4*sizeof(T)); break;
3524 case 3: ptr[ 2] = v[ 2]; [[fallthrough]];
3525 case 2: memcpy(ptr, &v, 2*sizeof(T)); break;
3526 case 1: ptr[ 0] = v[ 0];
3527 }
3528 }
3529
3530 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3531 template <typename V, typename T>
3532 SI V gather(const T* ptr, U32 ix) {
3533 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
3534 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
3535 ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
3536 ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
3537 }
3538
3539 template<>
3540 F gather(const float* ptr, U32 ix) {
3541 __m256i lo, hi;
3542 split(ix, &lo, &hi);
3543
3544 return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
3545 _mm256_i32gather_ps(ptr, hi, 4));
3546 }
3547
3548 template<>
3549 U32 gather(const uint32_t* ptr, U32 ix) {
3550 __m256i lo, hi;
3551 split(ix, &lo, &hi);
3552
3553 return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4),
3554 _mm256_i32gather_epi32(ptr, hi, 4));
3555 }
3556 #else
3557 template <typename V, typename T>
3558 SI V gather(const T* ptr, U32 ix) {
3559 return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
3560 ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
3561 }
3562 #endif
3563
3564
3565 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
3566
3567 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
3568 #if 1 && defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
3569 // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
3570 __m256i _01,_23;
3571 split(rgba, &_01, &_23);
3572 __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
3573 _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
3574 rgba = join<U32>(_02, _13);
3575
3576 auto cast_U16 = [](U32 v) -> U16 {
3577 __m256i _02,_13;
3578 split(v, &_02,&_13);
3579 return _mm256_packus_epi32(_02,_13);
3580 };
3581 #else
3582 auto cast_U16 = [](U32 v) -> U16 {
3583 return cast<U16>(v);
3584 };
3585 #endif
3586 *r = cast_U16(rgba & 65535) & 255;
3587 *g = cast_U16(rgba & 65535) >> 8;
3588 *b = cast_U16(rgba >> 16) & 255;
3589 *a = cast_U16(rgba >> 16) >> 8;
3590 }
3591
3592 SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
3593 #if 1 && defined(JUMPER_IS_NEON)
3594 uint8x8x4_t rgba;
3595 switch (tail & (N-1)) {
3596 case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break;
3597 case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
3598 case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
3599 case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
3600 case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
3601 case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
3602 case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
3603 case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
3604 }
3605 *r = cast<U16>(rgba.val[0]);
3606 *g = cast<U16>(rgba.val[1]);
3607 *b = cast<U16>(rgba.val[2]);
3608 *a = cast<U16>(rgba.val[3]);
3609 #else
3610 from_8888(load<U32>(ptr, tail), r,g,b,a);
3611 #endif
3612 }
3613 SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
3614 #if 1 && defined(JUMPER_IS_NEON)
3615 uint8x8x4_t rgba = {{
3616 cast<U8>(r),
3617 cast<U8>(g),
3618 cast<U8>(b),
3619 cast<U8>(a),
3620 }};
3621 switch (tail & (N-1)) {
3622 case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break;
3623 case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6); [[fallthrough]];
3624 case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5); [[fallthrough]];
3625 case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4); [[fallthrough]];
3626 case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3); [[fallthrough]];
3627 case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2); [[fallthrough]];
3628 case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1); [[fallthrough]];
3629 case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
3630 }
3631 #else
3632 store(ptr, tail, cast<U32>(r | (g<<8)) << 0
3633 | cast<U32>(b | (a<<8)) << 16);
3634 #endif
3635 }
3636
3637 STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
3638 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
3639 }
3640 STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3641 load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
3642 }
3643 STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
3644 store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
3645 }
3646 STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
3647 const uint32_t* ptr;
3648 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3649 from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
3650 }
3651
3652 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
3653
3654 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
3655 // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
3656 U16 R = (rgb >> 11) & 31,
3657 G = (rgb >> 5) & 63,
3658 B = (rgb >> 0) & 31;
3659
3660 // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
3661 *r = (R << 3) | (R >> 2);
3662 *g = (G << 2) | (G >> 4);
3663 *b = (B << 3) | (B >> 2);
3664 }
3665 SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
3666 from_565(load<U16>(ptr, tail), r,g,b);
3667 }
3668 SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
3669 // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
3670 // (Don't feel like you need to find some fundamental truth in these...
3671 // they were brute-force searched.)
3672 U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half.
3673 G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly.
3674 B = (b * 9 + 36) / 74;
3675 // Pack them back into 15|rrrrr gggggg bbbbb|0.
3676 store(ptr, tail, R << 11
3677 | G << 5
3678 | B << 0);
3679 }
3680
3681 STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
3682 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
3683 a = 255;
3684 }
3685 STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3686 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
3687 da = 255;
3688 }
3689 STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
3690 store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
3691 }
3692 STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
3693 const uint16_t* ptr;
3694 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3695 from_565(gather<U16>(ptr, ix), &r, &g, &b);
3696 a = 255;
3697 }
3698
3699 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
3700 // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
3701 U16 R = (rgba >> 12) & 15,
3702 G = (rgba >> 8) & 15,
3703 B = (rgba >> 4) & 15,
3704 A = (rgba >> 0) & 15;
3705
3706 // Scale [0,15] to [0,255].
3707 *r = (R << 4) | R;
3708 *g = (G << 4) | G;
3709 *b = (B << 4) | B;
3710 *a = (A << 4) | A;
3711 }
3712 SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
3713 from_4444(load<U16>(ptr, tail), r,g,b,a);
3714 }
3715 SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
3716 // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
3717 U16 R = (r + 8) / 17,
3718 G = (g + 8) / 17,
3719 B = (b + 8) / 17,
3720 A = (a + 8) / 17;
3721 // Pack them back into 15|rrrr gggg bbbb aaaa|0.
3722 store(ptr, tail, R << 12
3723 | G << 8
3724 | B << 4
3725 | A << 0);
3726 }
3727
3728 STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
3729 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
3730 }
3731 STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3732 load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
3733 }
3734 STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
3735 store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
3736 }
3737 STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
3738 const uint16_t* ptr;
3739 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3740 from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
3741 }
3742
3743 SI void from_88(U16 rg, U16* r, U16* g) {
3744 *r = (rg & 0xFF);
3745 *g = (rg >> 8);
3746 }
3747
3748 SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
3749 #if 1 && defined(JUMPER_IS_NEON)
3750 uint8x8x2_t rg;
3751 switch (tail & (N-1)) {
3752 case 0: rg = vld2_u8 ((const uint8_t*)(ptr+0) ); break;
3753 case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
3754 case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
3755 case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
3756 case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
3757 case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
3758 case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
3759 case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0);
3760 }
3761 *r = cast<U16>(rg.val[0]);
3762 *g = cast<U16>(rg.val[1]);
3763 #else
3764 from_88(load<U16>(ptr, tail), r,g);
3765 #endif
3766 }
3767
3768 SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) {
3769 #if 1 && defined(JUMPER_IS_NEON)
3770 uint8x8x2_t rg = {{
3771 cast<U8>(r),
3772 cast<U8>(g),
3773 }};
3774 switch (tail & (N-1)) {
3775 case 0: vst2_u8 ((uint8_t*)(ptr+0), rg ); break;
3776 case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6); [[fallthrough]];
3777 case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5); [[fallthrough]];
3778 case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4); [[fallthrough]];
3779 case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3); [[fallthrough]];
3780 case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2); [[fallthrough]];
3781 case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1); [[fallthrough]];
3782 case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0);
3783 }
3784 #else
3785 store(ptr, tail, cast<U16>(r | (g<<8)) << 0);
3786 #endif
3787 }
3788
3789 STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
3790 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &r, &g);
3791 b = 0;
3792 a = 255;
3793 }
3794 STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3795 load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &dr, &dg);
3796 db = 0;
3797 da = 255;
3798 }
3799 STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
3800 store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), tail, r, g);
3801 }
3802 STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
3803 const uint16_t* ptr;
3804 U32 ix = ix_and_ptr(&ptr, ctx, x, y);
3805 from_88(gather<U16>(ptr, ix), &r, &g);
3806 b = 0;
3807 a = 255;
3808 }
3809
3810 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
3811
3812 SI U16 load_8(const uint8_t* ptr, size_t tail) {
3813 return cast<U16>(load<U8>(ptr, tail));
3814 }
3815 SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
3816 store(ptr, tail, cast<U8>(v));
3817 }
3818
3819 STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
3820 r = g = b = 0;
3821 a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3822 }
3823 STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3824 dr = dg = db = 0;
3825 da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3826 }
3827 STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
3828 store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
3829 }
3830 STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
3831 const uint8_t* ptr;
3832 U32 ix = ix_and_ptr(&ptr, ctx, x,y);
3833 r = g = b = 0;
3834 a = cast<U16>(gather<U8>(ptr, ix));
3835 }
3836
3837 STAGE_PP(alpha_to_gray, Ctx::None) {
3838 r = g = b = a;
3839 a = 255;
3840 }
3841 STAGE_PP(alpha_to_gray_dst, Ctx::None) {
3842 dr = dg = db = da;
3843 da = 255;
3844 }
3845 STAGE_PP(bt709_luminance_or_luma_to_alpha, Ctx::None) {
3846 a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
3847 r = g = b = 0;
3848 }
3849 STAGE_PP(bt709_luminance_or_luma_to_rgb, Ctx::None) {
3850 r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
3851 }
3852
3853 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
3854
3855 STAGE_PP(load_src, const uint16_t* ptr) {
3856 r = sk_unaligned_load<U16>(ptr + 0*N);
3857 g = sk_unaligned_load<U16>(ptr + 1*N);
3858 b = sk_unaligned_load<U16>(ptr + 2*N);
3859 a = sk_unaligned_load<U16>(ptr + 3*N);
3860 }
3861 STAGE_PP(store_src, uint16_t* ptr) {
3862 sk_unaligned_store(ptr + 0*N, r);
3863 sk_unaligned_store(ptr + 1*N, g);
3864 sk_unaligned_store(ptr + 2*N, b);
3865 sk_unaligned_store(ptr + 3*N, a);
3866 }
3867 STAGE_PP(store_src_a, uint16_t* ptr) {
3868 sk_unaligned_store(ptr, a);
3869 }
3870 STAGE_PP(load_dst, const uint16_t* ptr) {
3871 dr = sk_unaligned_load<U16>(ptr + 0*N);
3872 dg = sk_unaligned_load<U16>(ptr + 1*N);
3873 db = sk_unaligned_load<U16>(ptr + 2*N);
3874 da = sk_unaligned_load<U16>(ptr + 3*N);
3875 }
3876 STAGE_PP(store_dst, uint16_t* ptr) {
3877 sk_unaligned_store(ptr + 0*N, dr);
3878 sk_unaligned_store(ptr + 1*N, dg);
3879 sk_unaligned_store(ptr + 2*N, db);
3880 sk_unaligned_store(ptr + 3*N, da);
3881 }
3882
3883 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
3884
3885 STAGE_PP(scale_1_float, const float* f) {
3886 U16 c = from_float(*f);
3887 r = div255( r * c );
3888 g = div255( g * c );
3889 b = div255( b * c );
3890 a = div255( a * c );
3891 }
3892 STAGE_PP(lerp_1_float, const float* f) {
3893 U16 c = from_float(*f);
3894 r = lerp(dr, r, c);
3895 g = lerp(dg, g, c);
3896 b = lerp(db, b, c);
3897 a = lerp(da, a, c);
3898 }
3899 STAGE_PP(scale_native, const uint16_t scales[]) {
3900 auto c = sk_unaligned_load<U16>(scales);
3901 r = div255( r * c );
3902 g = div255( g * c );
3903 b = div255( b * c );
3904 a = div255( a * c );
3905 }
3906
3907 STAGE_PP(lerp_native, const uint16_t scales[]) {
3908 auto c = sk_unaligned_load<U16>(scales);
3909 r = lerp(dr, r, c);
3910 g = lerp(dg, g, c);
3911 b = lerp(db, b, c);
3912 a = lerp(da, a, c);
3913 }
3914
3915 STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
3916 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3917 r = div255( r * c );
3918 g = div255( g * c );
3919 b = div255( b * c );
3920 a = div255( a * c );
3921 }
3922 STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
3923 U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
3924 r = lerp(dr, r, c);
3925 g = lerp(dg, g, c);
3926 b = lerp(db, b, c);
3927 a = lerp(da, a, c);
3928 }
3929
3930 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
3931 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
3932 return if_then_else(a < da, min(cr, min(cg,cb))
3933 , max(cr, max(cg,cb)));
3934 }
3935 STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
3936 U16 cr,cg,cb;
3937 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
3938 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
3939
3940 r = div255( r * cr );
3941 g = div255( g * cg );
3942 b = div255( b * cb );
3943 a = div255( a * ca );
3944 }
3945 STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
3946 U16 cr,cg,cb;
3947 load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
3948 U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
3949
3950 r = lerp(dr, r, cr);
3951 g = lerp(dg, g, cg);
3952 b = lerp(db, b, cb);
3953 a = lerp(da, a, ca);
3954 }
3955
3956 STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
3957 U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), tail),
3958 add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy), tail);
3959
3960 r = min(div255(r*mul) + add, a);
3961 g = min(div255(g*mul) + add, a);
3962 b = min(div255(b*mul) + add, a);
3963 }
3964
3965
3966 // ~~~~~~ Gradient stages ~~~~~~ //
3967
3968 // Clamp x to [0,1], both sides inclusive (think, gradients).
3969 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
3970 SI F clamp_01(F v) { return min(max(0, v), 1); }
3971
3972 STAGE_GG(clamp_x_1 , Ctx::None) { x = clamp_01(x); }
3973 STAGE_GG(repeat_x_1, Ctx::None) { x = clamp_01(x - floor_(x)); }
3974 STAGE_GG(mirror_x_1, Ctx::None) {
3975 auto two = [](F x){ return x+x; };
3976 x = clamp_01(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
3977 }
3978
3979 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
3980
3981 STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
3982 auto w = ctx->limit_x;
3983 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
3984 }
3985 STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
3986 auto h = ctx->limit_y;
3987 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
3988 }
3989 STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
3990 auto w = ctx->limit_x;
3991 auto h = ctx->limit_y;
3992 sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
3993 }
3994 STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
3995 auto mask = sk_unaligned_load<U16>(ctx->mask);
3996 r = r & mask;
3997 g = g & mask;
3998 b = b & mask;
3999 a = a & mask;
4000 }
4001
4002 SI void round_F_to_U16(F R, F G, F B, F A, bool interpolatedInPremul,
4003 U16* r, U16* g, U16* b, U16* a) {
4004 auto round = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
4005
4006 F limit = interpolatedInPremul ? A
4007 : 1;
4008 *r = round(min(max(0,R), limit));
4009 *g = round(min(max(0,G), limit));
4010 *b = round(min(max(0,B), limit));
4011 *a = round(A); // we assume alpha is already in [0,1].
4012 }
4013
4014 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
4015 U16* r, U16* g, U16* b, U16* a) {
4016
4017 F fr, fg, fb, fa, br, bg, bb, ba;
4018 #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX)
4019 if (c->stopCount <=8) {
4020 __m256i lo, hi;
4021 split(idx, &lo, &hi);
4022
4023 fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
4024 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
4025 br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
4026 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
4027 fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
4028 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
4029 bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
4030 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
4031 fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
4032 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
4033 bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
4034 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
4035 fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
4036 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
4037 ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
4038 _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
4039 } else
4040 #endif
4041 {
4042 fr = gather<F>(c->fs[0], idx);
4043 fg = gather<F>(c->fs[1], idx);
4044 fb = gather<F>(c->fs[2], idx);
4045 fa = gather<F>(c->fs[3], idx);
4046 br = gather<F>(c->bs[0], idx);
4047 bg = gather<F>(c->bs[1], idx);
4048 bb = gather<F>(c->bs[2], idx);
4049 ba = gather<F>(c->bs[3], idx);
4050 }
4051 round_F_to_U16(mad(t, fr, br),
4052 mad(t, fg, bg),
4053 mad(t, fb, bb),
4054 mad(t, fa, ba),
4055 c->interpolatedInPremul,
4056 r,g,b,a);
4057 }
4058
4059 STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
4060 auto t = x;
4061 U32 idx = 0;
4062
4063 // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
4064 for (size_t i = 1; i < c->stopCount; i++) {
4065 idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
4066 }
4067
4068 gradient_lookup(c, idx, t, &r, &g, &b, &a);
4069 }
4070
4071 STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
4072 auto t = x;
4073 auto idx = trunc_(t * (c->stopCount-1));
4074 gradient_lookup(c, idx, t, &r, &g, &b, &a);
4075 }
4076
4077 STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
4078 auto t = x;
4079 round_F_to_U16(mad(t, c->f[0], c->b[0]),
4080 mad(t, c->f[1], c->b[1]),
4081 mad(t, c->f[2], c->b[2]),
4082 mad(t, c->f[3], c->b[3]),
4083 c->interpolatedInPremul,
4084 &r,&g,&b,&a);
4085 }
4086
4087 SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
4088 #if !defined(SK_SUPPORT_LEGACY_BILERP_HIGHP)
4089 STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4090 // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
4091 // point number.
4092 I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
4093 qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
4094
4095 // Calculate screen coordinates sx & sy by flooring qx and qy.
4096 I32 sx = qx >> 16,
4097 sy = qy >> 16;
4098
4099 // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
4100 // This will put tx in Q15 format for use with q_mult.
4101 // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
4102 // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
4103 // the same math:
4104 // tx = 2 * {qx} - 1, so
4105 // {qx} = (tx + 1) / 2.
4106 // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
4107 // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
4108 // order to use the full 16-bit resolution.
4109 I16 tx = cast<I16>(qx ^ 0x8000),
4110 ty = cast<I16>(qy ^ 0x8000);
4111
4112 // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
4113 // the lerped value:
4114 // v = {qx}*(R - L) + L,
4115 // v = 1/2*(tx + 1)*(R - L) + L
4116 // 2 * v = (tx + 1)*(R - L) + 2*L
4117 // = tx*R - tx*L + R - L + 2*L
4118 // = tx*(R - L) + (R + L).
4119 // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
4120 // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
4121 // code, we can multiply by 2^7 to get the value directly.
4122 // 2 * v = tx*(R - L) + (R + L)
4123 // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
4124 // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
4125 // v = 1/2 * (tx*(R - L) + (R + L))
4126 auto lerpX = [&](U16 left, U16 right) -> U16 {
4127 I16 width = (I16)(right - left) << 7;
4128 U16 middle = (right + left) << 7;
4129 // The constrained_add is the most subtle part of lerp. The first term is on the interval
4130 // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
4131 // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
4132 // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
4133 // should overflow, but because we know that sum produces an output on the
4134 // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
4135 // we need to be careful to treat this sum as an unsigned positive number in the divide
4136 // by 2 below. Add +1 for rounding.
4137 U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1;
4138 // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
4139 // interval [0, 1/2] to set up for the lerpY.
4140 return v2 >> 1;
4141 };
4142
4143 const uint32_t* ptr;
4144 U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
4145 U16 leftR, leftG, leftB, leftA;
4146 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
4147
4148 ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
4149 U16 rightR, rightG, rightB, rightA;
4150 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
4151
4152 U16 topR = lerpX(leftR, rightR),
4153 topG = lerpX(leftG, rightG),
4154 topB = lerpX(leftB, rightB),
4155 topA = lerpX(leftA, rightA);
4156
4157 ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
4158 from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
4159
4160 ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
4161 from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
4162
4163 U16 bottomR = lerpX(leftR, rightR),
4164 bottomG = lerpX(leftG, rightG),
4165 bottomB = lerpX(leftB, rightB),
4166 bottomA = lerpX(leftA, rightA);
4167
4168 // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
4169 // in a value on [0, 255].
4170 auto lerpY = [&](U16 top, U16 bottom) -> U16 {
4171 I16 width = (I16)bottom - top;
4172 U16 middle = bottom + top;
4173 // Add + 0x80 for rounding.
4174 U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80;
4175
4176 return blend >> 8;
4177 };
4178
4179 r = lerpY(topR, bottomR);
4180 g = lerpY(topG, bottomG);
4181 b = lerpY(topB, bottomB);
4182 a = lerpY(topA, bottomA);
4183 }
4184 #endif // SK_SUPPORT_LEGACY_BILERP_HIGHP
4185
4186 STAGE_GG(xy_to_unit_angle, Ctx::None) {
4187 F xabs = abs_(x),
4188 yabs = abs_(y);
4189
4190 F slope = min(xabs, yabs)/max(xabs, yabs);
4191 F s = slope * slope;
4192
4193 // Use a 7th degree polynomial to approximate atan.
4194 // This was generated using sollya.gforge.inria.fr.
4195 // A float optimized polynomial was generated using the following command.
4196 // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
4197 F phi = slope
4198 * (0.15912117063999176025390625f + s
4199 * (-5.185396969318389892578125e-2f + s
4200 * (2.476101927459239959716796875e-2f + s
4201 * (-7.0547382347285747528076171875e-3f))));
4202
4203 phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
4204 phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
4205 phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
4206 phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
4207 x = phi;
4208 }
4209 STAGE_GG(xy_to_radius, Ctx::None) {
4210 x = sqrt_(x*x + y*y);
4211 }
4212
4213 // ~~~~~~ Compound stages ~~~~~~ //
4214
4215 STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
4216 auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
4217
4218 load_8888_(ptr, tail, &dr,&dg,&db,&da);
4219 r = r + div255( dr*inv(a) );
4220 g = g + div255( dg*inv(a) );
4221 b = b + div255( db*inv(a) );
4222 a = a + div255( da*inv(a) );
4223 store_8888_(ptr, tail, r,g,b,a);
4224 }
4225
4226 // ~~~~~~ GrSwizzle stage ~~~~~~ //
4227
4228 STAGE_PP(swizzle, void* ctx) {
4229 auto ir = r, ig = g, ib = b, ia = a;
4230 U16* o[] = {&r, &g, &b, &a};
4231 char swiz[4];
4232 memcpy(swiz, &ctx, sizeof(swiz));
4233
4234 for (int i = 0; i < 4; ++i) {
4235 switch (swiz[i]) {
4236 case 'r': *o[i] = ir; break;
4237 case 'g': *o[i] = ig; break;
4238 case 'b': *o[i] = ib; break;
4239 case 'a': *o[i] = ia; break;
4240 case '0': *o[i] = U16(0); break;
4241 case '1': *o[i] = U16(255); break;
4242 default: break;
4243 }
4244 }
4245 }
4246
4247 // Now we'll add null stand-ins for stages we haven't implemented in lowp.
4248 // If a pipeline uses these stages, it'll boot it out of lowp into highp.
4249 #define NOT_IMPLEMENTED(st) static void (*st)(void) = nullptr;
4250 NOT_IMPLEMENTED(callback)
4251 NOT_IMPLEMENTED(unbounded_set_rgb)
4252 NOT_IMPLEMENTED(unbounded_uniform_color)
4253 NOT_IMPLEMENTED(unpremul)
4254 NOT_IMPLEMENTED(dither)
4255 NOT_IMPLEMENTED(load_16161616)
4256 NOT_IMPLEMENTED(load_16161616_dst)
4257 NOT_IMPLEMENTED(store_16161616)
4258 NOT_IMPLEMENTED(gather_16161616)
4259 NOT_IMPLEMENTED(load_a16)
4260 NOT_IMPLEMENTED(load_a16_dst)
4261 NOT_IMPLEMENTED(store_a16)
4262 NOT_IMPLEMENTED(gather_a16)
4263 NOT_IMPLEMENTED(load_rg1616)
4264 NOT_IMPLEMENTED(load_rg1616_dst)
4265 NOT_IMPLEMENTED(store_rg1616)
4266 NOT_IMPLEMENTED(gather_rg1616)
4267 NOT_IMPLEMENTED(load_f16)
4268 NOT_IMPLEMENTED(load_f16_dst)
4269 NOT_IMPLEMENTED(store_f16)
4270 NOT_IMPLEMENTED(gather_f16)
4271 NOT_IMPLEMENTED(load_af16)
4272 NOT_IMPLEMENTED(load_af16_dst)
4273 NOT_IMPLEMENTED(store_af16)
4274 NOT_IMPLEMENTED(gather_af16)
4275 NOT_IMPLEMENTED(load_rgf16)
4276 NOT_IMPLEMENTED(load_rgf16_dst)
4277 NOT_IMPLEMENTED(store_rgf16)
4278 NOT_IMPLEMENTED(gather_rgf16)
4279 NOT_IMPLEMENTED(load_f32)
4280 NOT_IMPLEMENTED(load_f32_dst)
4281 NOT_IMPLEMENTED(store_f32)
4282 NOT_IMPLEMENTED(gather_f32)
4283 NOT_IMPLEMENTED(load_rgf32)
4284 NOT_IMPLEMENTED(store_rgf32)
4285 NOT_IMPLEMENTED(load_1010102)
4286 NOT_IMPLEMENTED(load_1010102_dst)
4287 NOT_IMPLEMENTED(store_1010102)
4288 NOT_IMPLEMENTED(gather_1010102)
4289 NOT_IMPLEMENTED(store_u16_be)
4290 NOT_IMPLEMENTED(byte_tables)
4291 NOT_IMPLEMENTED(colorburn)
4292 NOT_IMPLEMENTED(colordodge)
4293 NOT_IMPLEMENTED(softlight)
4294 NOT_IMPLEMENTED(hue)
4295 NOT_IMPLEMENTED(saturation)
4296 NOT_IMPLEMENTED(color)
4297 NOT_IMPLEMENTED(luminosity)
4298 NOT_IMPLEMENTED(matrix_3x3)
4299 NOT_IMPLEMENTED(matrix_3x4)
4300 NOT_IMPLEMENTED(matrix_4x5)
4301 NOT_IMPLEMENTED(matrix_4x3)
4302 NOT_IMPLEMENTED(parametric)
4303 NOT_IMPLEMENTED(gamma_)
4304 NOT_IMPLEMENTED(PQish)
4305 NOT_IMPLEMENTED(HLGish)
4306 NOT_IMPLEMENTED(HLGinvish)
4307 NOT_IMPLEMENTED(rgb_to_hsl)
4308 NOT_IMPLEMENTED(hsl_to_rgb)
4309 NOT_IMPLEMENTED(gauss_a_to_rgba)
4310 NOT_IMPLEMENTED(mirror_x)
4311 NOT_IMPLEMENTED(repeat_x)
4312 NOT_IMPLEMENTED(mirror_y)
4313 NOT_IMPLEMENTED(repeat_y)
4314 NOT_IMPLEMENTED(negate_x)
4315 NOT_IMPLEMENTED(bilinear)
4316 #if defined(SK_SUPPORT_LEGACY_BILERP_HIGHP)
4317 NOT_IMPLEMENTED(bilerp_clamp_8888)
4318 #endif
4319 NOT_IMPLEMENTED(bicubic)
4320 NOT_IMPLEMENTED(bicubic_clamp_8888)
4321 NOT_IMPLEMENTED(bilinear_nx)
4322 NOT_IMPLEMENTED(bilinear_ny)
4323 NOT_IMPLEMENTED(bilinear_px)
4324 NOT_IMPLEMENTED(bilinear_py)
4325 NOT_IMPLEMENTED(bicubic_n3x)
4326 NOT_IMPLEMENTED(bicubic_n1x)
4327 NOT_IMPLEMENTED(bicubic_p1x)
4328 NOT_IMPLEMENTED(bicubic_p3x)
4329 NOT_IMPLEMENTED(bicubic_n3y)
4330 NOT_IMPLEMENTED(bicubic_n1y)
4331 NOT_IMPLEMENTED(bicubic_p1y)
4332 NOT_IMPLEMENTED(bicubic_p3y)
4333 NOT_IMPLEMENTED(save_xy)
4334 NOT_IMPLEMENTED(accumulate)
4335 NOT_IMPLEMENTED(xy_to_2pt_conical_well_behaved)
4336 NOT_IMPLEMENTED(xy_to_2pt_conical_strip)
4337 NOT_IMPLEMENTED(xy_to_2pt_conical_focal_on_circle)
4338 NOT_IMPLEMENTED(xy_to_2pt_conical_smaller)
4339 NOT_IMPLEMENTED(xy_to_2pt_conical_greater)
4340 NOT_IMPLEMENTED(alter_2pt_conical_compensate_focal)
4341 NOT_IMPLEMENTED(alter_2pt_conical_unswap)
4342 NOT_IMPLEMENTED(mask_2pt_conical_nan)
4343 NOT_IMPLEMENTED(mask_2pt_conical_degenerates)
4344 NOT_IMPLEMENTED(apply_vector_mask)
4345 #undef NOT_IMPLEMENTED
4346
4347 #endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
4348 } // namespace lowp
4349
4350 } // namespace SK_OPTS_NS
4351
4352 #undef SI
4353
4354 #endif//SkRasterPipeline_opts_DEFINED
4355