1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32
33 using namespace llvm;
34 using namespace PatternMatch;
35
36 //===----------------------------------------------------------------------===//
37 // Constant Class
38 //===----------------------------------------------------------------------===//
39
isNegativeZeroValue() const40 bool Constant::isNegativeZeroValue() const {
41 // Floating point values have an explicit -0.0 value.
42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
43 return CFP->isZero() && CFP->isNegative();
44
45 // Equivalent for a vector of -0.0's.
46 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
47 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
48 if (CV->getElementAsAPFloat(0).isNegZero())
49 return true;
50
51 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
58 return false;
59
60 // Otherwise, just use +0.0.
61 return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
isZeroValue() const66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69 return CFP->isZero();
70
71 // Equivalent for a vector of -0.0's.
72 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
73 if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
74 if (CV->getElementAsAPFloat(0).isZero())
75 return true;
76
77 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
78 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
79 if (SplatCFP && SplatCFP->isZero())
80 return true;
81
82 // Otherwise, just use +0.0.
83 return isNullValue();
84 }
85
isNullValue() const86 bool Constant::isNullValue() const {
87 // 0 is null.
88 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
89 return CI->isZero();
90
91 // +0.0 is null.
92 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
93 return CFP->isZero() && !CFP->isNegative();
94
95 // constant zero is zero for aggregates, cpnull is null for pointers, none for
96 // tokens.
97 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
98 isa<ConstantTokenNone>(this);
99 }
100
isAllOnesValue() const101 bool Constant::isAllOnesValue() const {
102 // Check for -1 integers
103 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
104 return CI->isMinusOne();
105
106 // Check for FP which are bitcasted from -1 integers
107 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
108 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
109
110 // Check for constant vectors which are splats of -1 values.
111 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
112 if (Constant *Splat = CV->getSplatValue())
113 return Splat->isAllOnesValue();
114
115 // Check for constant vectors which are splats of -1 values.
116 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
117 if (CV->isSplat()) {
118 if (CV->getElementType()->isFloatingPointTy())
119 return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
120 return CV->getElementAsAPInt(0).isAllOnesValue();
121 }
122 }
123
124 return false;
125 }
126
isOneValue() const127 bool Constant::isOneValue() const {
128 // Check for 1 integers
129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130 return CI->isOne();
131
132 // Check for FP which are bitcasted from 1 integers
133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134 return CFP->getValueAPF().bitcastToAPInt().isOneValue();
135
136 // Check for constant vectors which are splats of 1 values.
137 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
138 if (Constant *Splat = CV->getSplatValue())
139 return Splat->isOneValue();
140
141 // Check for constant vectors which are splats of 1 values.
142 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
143 if (CV->isSplat()) {
144 if (CV->getElementType()->isFloatingPointTy())
145 return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
146 return CV->getElementAsAPInt(0).isOneValue();
147 }
148 }
149
150 return false;
151 }
152
isNotOneValue() const153 bool Constant::isNotOneValue() const {
154 // Check for 1 integers
155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
156 return !CI->isOneValue();
157
158 // Check for FP which are bitcasted from 1 integers
159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
160 return !CFP->getValueAPF().bitcastToAPInt().isOneValue();
161
162 // Check that vectors don't contain 1
163 if (this->getType()->isVectorTy()) {
164 unsigned NumElts = this->getType()->getVectorNumElements();
165 for (unsigned i = 0; i != NumElts; ++i) {
166 Constant *Elt = this->getAggregateElement(i);
167 if (!Elt || !Elt->isNotOneValue())
168 return false;
169 }
170 return true;
171 }
172
173 // It *may* contain 1, we can't tell.
174 return false;
175 }
176
isMinSignedValue() const177 bool Constant::isMinSignedValue() const {
178 // Check for INT_MIN integers
179 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
180 return CI->isMinValue(/*isSigned=*/true);
181
182 // Check for FP which are bitcasted from INT_MIN integers
183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
184 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
185
186 // Check for constant vectors which are splats of INT_MIN values.
187 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
188 if (Constant *Splat = CV->getSplatValue())
189 return Splat->isMinSignedValue();
190
191 // Check for constant vectors which are splats of INT_MIN values.
192 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
193 if (CV->isSplat()) {
194 if (CV->getElementType()->isFloatingPointTy())
195 return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
196 return CV->getElementAsAPInt(0).isMinSignedValue();
197 }
198 }
199
200 return false;
201 }
202
isNotMinSignedValue() const203 bool Constant::isNotMinSignedValue() const {
204 // Check for INT_MIN integers
205 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
206 return !CI->isMinValue(/*isSigned=*/true);
207
208 // Check for FP which are bitcasted from INT_MIN integers
209 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
210 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
211
212 // Check that vectors don't contain INT_MIN
213 if (this->getType()->isVectorTy()) {
214 unsigned NumElts = this->getType()->getVectorNumElements();
215 for (unsigned i = 0; i != NumElts; ++i) {
216 Constant *Elt = this->getAggregateElement(i);
217 if (!Elt || !Elt->isNotMinSignedValue())
218 return false;
219 }
220 return true;
221 }
222
223 // It *may* contain INT_MIN, we can't tell.
224 return false;
225 }
226
isFiniteNonZeroFP() const227 bool Constant::isFiniteNonZeroFP() const {
228 if (auto *CFP = dyn_cast<ConstantFP>(this))
229 return CFP->getValueAPF().isFiniteNonZero();
230 if (!getType()->isVectorTy())
231 return false;
232 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
233 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
234 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
235 return false;
236 }
237 return true;
238 }
239
isNormalFP() const240 bool Constant::isNormalFP() const {
241 if (auto *CFP = dyn_cast<ConstantFP>(this))
242 return CFP->getValueAPF().isNormal();
243 if (!getType()->isVectorTy())
244 return false;
245 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
246 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
247 if (!CFP || !CFP->getValueAPF().isNormal())
248 return false;
249 }
250 return true;
251 }
252
hasExactInverseFP() const253 bool Constant::hasExactInverseFP() const {
254 if (auto *CFP = dyn_cast<ConstantFP>(this))
255 return CFP->getValueAPF().getExactInverse(nullptr);
256 if (!getType()->isVectorTy())
257 return false;
258 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
259 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
260 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
261 return false;
262 }
263 return true;
264 }
265
isNaN() const266 bool Constant::isNaN() const {
267 if (auto *CFP = dyn_cast<ConstantFP>(this))
268 return CFP->isNaN();
269 if (!getType()->isVectorTy())
270 return false;
271 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
272 auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
273 if (!CFP || !CFP->isNaN())
274 return false;
275 }
276 return true;
277 }
278
isElementWiseEqual(Value * Y) const279 bool Constant::isElementWiseEqual(Value *Y) const {
280 // Are they fully identical?
281 if (this == Y)
282 return true;
283
284 // The input value must be a vector constant with the same type.
285 Type *Ty = getType();
286 if (!isa<Constant>(Y) || !Ty->isVectorTy() || Ty != Y->getType())
287 return false;
288
289 // They may still be identical element-wise (if they have `undef`s).
290 // FIXME: This crashes on FP vector constants.
291 return match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ,
292 const_cast<Constant *>(this),
293 cast<Constant>(Y)),
294 m_One());
295 }
296
containsUndefElement() const297 bool Constant::containsUndefElement() const {
298 if (!getType()->isVectorTy())
299 return false;
300 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
301 if (isa<UndefValue>(getAggregateElement(i)))
302 return true;
303
304 return false;
305 }
306
containsConstantExpression() const307 bool Constant::containsConstantExpression() const {
308 if (!getType()->isVectorTy())
309 return false;
310 for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
311 if (isa<ConstantExpr>(getAggregateElement(i)))
312 return true;
313
314 return false;
315 }
316
317 /// Constructor to create a '0' constant of arbitrary type.
getNullValue(Type * Ty)318 Constant *Constant::getNullValue(Type *Ty) {
319 switch (Ty->getTypeID()) {
320 case Type::IntegerTyID:
321 return ConstantInt::get(Ty, 0);
322 case Type::HalfTyID:
323 return ConstantFP::get(Ty->getContext(),
324 APFloat::getZero(APFloat::IEEEhalf()));
325 case Type::FloatTyID:
326 return ConstantFP::get(Ty->getContext(),
327 APFloat::getZero(APFloat::IEEEsingle()));
328 case Type::DoubleTyID:
329 return ConstantFP::get(Ty->getContext(),
330 APFloat::getZero(APFloat::IEEEdouble()));
331 case Type::X86_FP80TyID:
332 return ConstantFP::get(Ty->getContext(),
333 APFloat::getZero(APFloat::x87DoubleExtended()));
334 case Type::FP128TyID:
335 return ConstantFP::get(Ty->getContext(),
336 APFloat::getZero(APFloat::IEEEquad()));
337 case Type::PPC_FP128TyID:
338 return ConstantFP::get(Ty->getContext(),
339 APFloat(APFloat::PPCDoubleDouble(),
340 APInt::getNullValue(128)));
341 case Type::PointerTyID:
342 return ConstantPointerNull::get(cast<PointerType>(Ty));
343 case Type::StructTyID:
344 case Type::ArrayTyID:
345 case Type::VectorTyID:
346 return ConstantAggregateZero::get(Ty);
347 case Type::TokenTyID:
348 return ConstantTokenNone::get(Ty->getContext());
349 default:
350 // Function, Label, or Opaque type?
351 llvm_unreachable("Cannot create a null constant of that type!");
352 }
353 }
354
getIntegerValue(Type * Ty,const APInt & V)355 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
356 Type *ScalarTy = Ty->getScalarType();
357
358 // Create the base integer constant.
359 Constant *C = ConstantInt::get(Ty->getContext(), V);
360
361 // Convert an integer to a pointer, if necessary.
362 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
363 C = ConstantExpr::getIntToPtr(C, PTy);
364
365 // Broadcast a scalar to a vector, if necessary.
366 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
367 C = ConstantVector::getSplat(VTy->getNumElements(), C);
368
369 return C;
370 }
371
getAllOnesValue(Type * Ty)372 Constant *Constant::getAllOnesValue(Type *Ty) {
373 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
374 return ConstantInt::get(Ty->getContext(),
375 APInt::getAllOnesValue(ITy->getBitWidth()));
376
377 if (Ty->isFloatingPointTy()) {
378 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
379 !Ty->isPPC_FP128Ty());
380 return ConstantFP::get(Ty->getContext(), FL);
381 }
382
383 VectorType *VTy = cast<VectorType>(Ty);
384 return ConstantVector::getSplat(VTy->getNumElements(),
385 getAllOnesValue(VTy->getElementType()));
386 }
387
getAggregateElement(unsigned Elt) const388 Constant *Constant::getAggregateElement(unsigned Elt) const {
389 if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
390 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
391
392 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
393 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
394
395 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
396 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
397
398 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
399 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
400 : nullptr;
401 return nullptr;
402 }
403
getAggregateElement(Constant * Elt) const404 Constant *Constant::getAggregateElement(Constant *Elt) const {
405 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
406 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
407 // Check if the constant fits into an uint64_t.
408 if (CI->getValue().getActiveBits() > 64)
409 return nullptr;
410 return getAggregateElement(CI->getZExtValue());
411 }
412 return nullptr;
413 }
414
destroyConstant()415 void Constant::destroyConstant() {
416 /// First call destroyConstantImpl on the subclass. This gives the subclass
417 /// a chance to remove the constant from any maps/pools it's contained in.
418 switch (getValueID()) {
419 default:
420 llvm_unreachable("Not a constant!");
421 #define HANDLE_CONSTANT(Name) \
422 case Value::Name##Val: \
423 cast<Name>(this)->destroyConstantImpl(); \
424 break;
425 #include "llvm/IR/Value.def"
426 }
427
428 // When a Constant is destroyed, there may be lingering
429 // references to the constant by other constants in the constant pool. These
430 // constants are implicitly dependent on the module that is being deleted,
431 // but they don't know that. Because we only find out when the CPV is
432 // deleted, we must now notify all of our users (that should only be
433 // Constants) that they are, in fact, invalid now and should be deleted.
434 //
435 while (!use_empty()) {
436 Value *V = user_back();
437 #ifndef NDEBUG // Only in -g mode...
438 if (!isa<Constant>(V)) {
439 dbgs() << "While deleting: " << *this
440 << "\n\nUse still stuck around after Def is destroyed: " << *V
441 << "\n\n";
442 }
443 #endif
444 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
445 cast<Constant>(V)->destroyConstant();
446
447 // The constant should remove itself from our use list...
448 assert((use_empty() || user_back() != V) && "Constant not removed!");
449 }
450
451 // Value has no outstanding references it is safe to delete it now...
452 delete this;
453 }
454
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)455 static bool canTrapImpl(const Constant *C,
456 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
457 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
458 // The only thing that could possibly trap are constant exprs.
459 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
460 if (!CE)
461 return false;
462
463 // ConstantExpr traps if any operands can trap.
464 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
465 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
466 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
467 return true;
468 }
469 }
470
471 // Otherwise, only specific operations can trap.
472 switch (CE->getOpcode()) {
473 default:
474 return false;
475 case Instruction::UDiv:
476 case Instruction::SDiv:
477 case Instruction::URem:
478 case Instruction::SRem:
479 // Div and rem can trap if the RHS is not known to be non-zero.
480 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
481 return true;
482 return false;
483 }
484 }
485
canTrap() const486 bool Constant::canTrap() const {
487 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
488 return canTrapImpl(this, NonTrappingOps);
489 }
490
491 /// Check if C contains a GlobalValue for which Predicate is true.
492 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))493 ConstHasGlobalValuePredicate(const Constant *C,
494 bool (*Predicate)(const GlobalValue *)) {
495 SmallPtrSet<const Constant *, 8> Visited;
496 SmallVector<const Constant *, 8> WorkList;
497 WorkList.push_back(C);
498 Visited.insert(C);
499
500 while (!WorkList.empty()) {
501 const Constant *WorkItem = WorkList.pop_back_val();
502 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
503 if (Predicate(GV))
504 return true;
505 for (const Value *Op : WorkItem->operands()) {
506 const Constant *ConstOp = dyn_cast<Constant>(Op);
507 if (!ConstOp)
508 continue;
509 if (Visited.insert(ConstOp).second)
510 WorkList.push_back(ConstOp);
511 }
512 }
513 return false;
514 }
515
isThreadDependent() const516 bool Constant::isThreadDependent() const {
517 auto DLLImportPredicate = [](const GlobalValue *GV) {
518 return GV->isThreadLocal();
519 };
520 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
521 }
522
isDLLImportDependent() const523 bool Constant::isDLLImportDependent() const {
524 auto DLLImportPredicate = [](const GlobalValue *GV) {
525 return GV->hasDLLImportStorageClass();
526 };
527 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
528 }
529
isConstantUsed() const530 bool Constant::isConstantUsed() const {
531 for (const User *U : users()) {
532 const Constant *UC = dyn_cast<Constant>(U);
533 if (!UC || isa<GlobalValue>(UC))
534 return true;
535
536 if (UC->isConstantUsed())
537 return true;
538 }
539 return false;
540 }
541
needsRelocation() const542 bool Constant::needsRelocation() const {
543 if (isa<GlobalValue>(this))
544 return true; // Global reference.
545
546 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
547 return BA->getFunction()->needsRelocation();
548
549 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
550 if (CE->getOpcode() == Instruction::Sub) {
551 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
552 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
553 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
554 RHS->getOpcode() == Instruction::PtrToInt) {
555 Constant *LHSOp0 = LHS->getOperand(0);
556 Constant *RHSOp0 = RHS->getOperand(0);
557
558 // While raw uses of blockaddress need to be relocated, differences
559 // between two of them don't when they are for labels in the same
560 // function. This is a common idiom when creating a table for the
561 // indirect goto extension, so we handle it efficiently here.
562 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
563 cast<BlockAddress>(LHSOp0)->getFunction() ==
564 cast<BlockAddress>(RHSOp0)->getFunction())
565 return false;
566
567 // Relative pointers do not need to be dynamically relocated.
568 if (auto *LHSGV = dyn_cast<GlobalValue>(LHSOp0->stripPointerCasts()))
569 if (auto *RHSGV = dyn_cast<GlobalValue>(RHSOp0->stripPointerCasts()))
570 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
571 return false;
572 }
573 }
574 }
575
576 bool Result = false;
577 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
578 Result |= cast<Constant>(getOperand(i))->needsRelocation();
579
580 return Result;
581 }
582
583 /// If the specified constantexpr is dead, remove it. This involves recursively
584 /// eliminating any dead users of the constantexpr.
removeDeadUsersOfConstant(const Constant * C)585 static bool removeDeadUsersOfConstant(const Constant *C) {
586 if (isa<GlobalValue>(C)) return false; // Cannot remove this
587
588 while (!C->use_empty()) {
589 const Constant *User = dyn_cast<Constant>(C->user_back());
590 if (!User) return false; // Non-constant usage;
591 if (!removeDeadUsersOfConstant(User))
592 return false; // Constant wasn't dead
593 }
594
595 const_cast<Constant*>(C)->destroyConstant();
596 return true;
597 }
598
599
removeDeadConstantUsers() const600 void Constant::removeDeadConstantUsers() const {
601 Value::const_user_iterator I = user_begin(), E = user_end();
602 Value::const_user_iterator LastNonDeadUser = E;
603 while (I != E) {
604 const Constant *User = dyn_cast<Constant>(*I);
605 if (!User) {
606 LastNonDeadUser = I;
607 ++I;
608 continue;
609 }
610
611 if (!removeDeadUsersOfConstant(User)) {
612 // If the constant wasn't dead, remember that this was the last live use
613 // and move on to the next constant.
614 LastNonDeadUser = I;
615 ++I;
616 continue;
617 }
618
619 // If the constant was dead, then the iterator is invalidated.
620 if (LastNonDeadUser == E)
621 I = user_begin();
622 else
623 I = std::next(LastNonDeadUser);
624 }
625 }
626
replaceUndefsWith(Constant * C,Constant * Replacement)627 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
628 assert(C && Replacement && "Expected non-nullptr constant arguments");
629 Type *Ty = C->getType();
630 if (match(C, m_Undef())) {
631 assert(Ty == Replacement->getType() && "Expected matching types");
632 return Replacement;
633 }
634
635 // Don't know how to deal with this constant.
636 if (!Ty->isVectorTy())
637 return C;
638
639 unsigned NumElts = Ty->getVectorNumElements();
640 SmallVector<Constant *, 32> NewC(NumElts);
641 for (unsigned i = 0; i != NumElts; ++i) {
642 Constant *EltC = C->getAggregateElement(i);
643 assert((!EltC || EltC->getType() == Replacement->getType()) &&
644 "Expected matching types");
645 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
646 }
647 return ConstantVector::get(NewC);
648 }
649
650
651 //===----------------------------------------------------------------------===//
652 // ConstantInt
653 //===----------------------------------------------------------------------===//
654
ConstantInt(IntegerType * Ty,const APInt & V)655 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
656 : ConstantData(Ty, ConstantIntVal), Val(V) {
657 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
658 }
659
getTrue(LLVMContext & Context)660 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
661 LLVMContextImpl *pImpl = Context.pImpl;
662 if (!pImpl->TheTrueVal)
663 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
664 return pImpl->TheTrueVal;
665 }
666
getFalse(LLVMContext & Context)667 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
668 LLVMContextImpl *pImpl = Context.pImpl;
669 if (!pImpl->TheFalseVal)
670 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
671 return pImpl->TheFalseVal;
672 }
673
getTrue(Type * Ty)674 Constant *ConstantInt::getTrue(Type *Ty) {
675 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
676 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
677 if (auto *VTy = dyn_cast<VectorType>(Ty))
678 return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
679 return TrueC;
680 }
681
getFalse(Type * Ty)682 Constant *ConstantInt::getFalse(Type *Ty) {
683 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
684 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
685 if (auto *VTy = dyn_cast<VectorType>(Ty))
686 return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
687 return FalseC;
688 }
689
690 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)691 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
692 // get an existing value or the insertion position
693 LLVMContextImpl *pImpl = Context.pImpl;
694 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
695 if (!Slot) {
696 // Get the corresponding integer type for the bit width of the value.
697 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
698 Slot.reset(new ConstantInt(ITy, V));
699 }
700 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
701 return Slot.get();
702 }
703
get(Type * Ty,uint64_t V,bool isSigned)704 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
705 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
706
707 // For vectors, broadcast the value.
708 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
709 return ConstantVector::getSplat(VTy->getNumElements(), C);
710
711 return C;
712 }
713
get(IntegerType * Ty,uint64_t V,bool isSigned)714 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
715 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
716 }
717
getSigned(IntegerType * Ty,int64_t V)718 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
719 return get(Ty, V, true);
720 }
721
getSigned(Type * Ty,int64_t V)722 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
723 return get(Ty, V, true);
724 }
725
get(Type * Ty,const APInt & V)726 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
727 ConstantInt *C = get(Ty->getContext(), V);
728 assert(C->getType() == Ty->getScalarType() &&
729 "ConstantInt type doesn't match the type implied by its value!");
730
731 // For vectors, broadcast the value.
732 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
733 return ConstantVector::getSplat(VTy->getNumElements(), C);
734
735 return C;
736 }
737
get(IntegerType * Ty,StringRef Str,uint8_t radix)738 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
739 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
740 }
741
742 /// Remove the constant from the constant table.
destroyConstantImpl()743 void ConstantInt::destroyConstantImpl() {
744 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
745 }
746
747 //===----------------------------------------------------------------------===//
748 // ConstantFP
749 //===----------------------------------------------------------------------===//
750
TypeToFloatSemantics(Type * Ty)751 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
752 if (Ty->isHalfTy())
753 return &APFloat::IEEEhalf();
754 if (Ty->isFloatTy())
755 return &APFloat::IEEEsingle();
756 if (Ty->isDoubleTy())
757 return &APFloat::IEEEdouble();
758 if (Ty->isX86_FP80Ty())
759 return &APFloat::x87DoubleExtended();
760 else if (Ty->isFP128Ty())
761 return &APFloat::IEEEquad();
762
763 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
764 return &APFloat::PPCDoubleDouble();
765 }
766
get(Type * Ty,double V)767 Constant *ConstantFP::get(Type *Ty, double V) {
768 LLVMContext &Context = Ty->getContext();
769
770 APFloat FV(V);
771 bool ignored;
772 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
773 APFloat::rmNearestTiesToEven, &ignored);
774 Constant *C = get(Context, FV);
775
776 // For vectors, broadcast the value.
777 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
778 return ConstantVector::getSplat(VTy->getNumElements(), C);
779
780 return C;
781 }
782
get(Type * Ty,const APFloat & V)783 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
784 ConstantFP *C = get(Ty->getContext(), V);
785 assert(C->getType() == Ty->getScalarType() &&
786 "ConstantFP type doesn't match the type implied by its value!");
787
788 // For vectors, broadcast the value.
789 if (auto *VTy = dyn_cast<VectorType>(Ty))
790 return ConstantVector::getSplat(VTy->getNumElements(), C);
791
792 return C;
793 }
794
get(Type * Ty,StringRef Str)795 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
796 LLVMContext &Context = Ty->getContext();
797
798 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
799 Constant *C = get(Context, FV);
800
801 // For vectors, broadcast the value.
802 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
803 return ConstantVector::getSplat(VTy->getNumElements(), C);
804
805 return C;
806 }
807
getNaN(Type * Ty,bool Negative,uint64_t Payload)808 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
809 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
810 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
811 Constant *C = get(Ty->getContext(), NaN);
812
813 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
814 return ConstantVector::getSplat(VTy->getNumElements(), C);
815
816 return C;
817 }
818
getQNaN(Type * Ty,bool Negative,APInt * Payload)819 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
820 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
821 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
822 Constant *C = get(Ty->getContext(), NaN);
823
824 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
825 return ConstantVector::getSplat(VTy->getNumElements(), C);
826
827 return C;
828 }
829
getSNaN(Type * Ty,bool Negative,APInt * Payload)830 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
831 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
832 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
833 Constant *C = get(Ty->getContext(), NaN);
834
835 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
836 return ConstantVector::getSplat(VTy->getNumElements(), C);
837
838 return C;
839 }
840
getNegativeZero(Type * Ty)841 Constant *ConstantFP::getNegativeZero(Type *Ty) {
842 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
843 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
844 Constant *C = get(Ty->getContext(), NegZero);
845
846 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
847 return ConstantVector::getSplat(VTy->getNumElements(), C);
848
849 return C;
850 }
851
852
getZeroValueForNegation(Type * Ty)853 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
854 if (Ty->isFPOrFPVectorTy())
855 return getNegativeZero(Ty);
856
857 return Constant::getNullValue(Ty);
858 }
859
860
861 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)862 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
863 LLVMContextImpl* pImpl = Context.pImpl;
864
865 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
866
867 if (!Slot) {
868 Type *Ty;
869 if (&V.getSemantics() == &APFloat::IEEEhalf())
870 Ty = Type::getHalfTy(Context);
871 else if (&V.getSemantics() == &APFloat::IEEEsingle())
872 Ty = Type::getFloatTy(Context);
873 else if (&V.getSemantics() == &APFloat::IEEEdouble())
874 Ty = Type::getDoubleTy(Context);
875 else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
876 Ty = Type::getX86_FP80Ty(Context);
877 else if (&V.getSemantics() == &APFloat::IEEEquad())
878 Ty = Type::getFP128Ty(Context);
879 else {
880 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
881 "Unknown FP format");
882 Ty = Type::getPPC_FP128Ty(Context);
883 }
884 Slot.reset(new ConstantFP(Ty, V));
885 }
886
887 return Slot.get();
888 }
889
getInfinity(Type * Ty,bool Negative)890 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
891 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
892 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
893
894 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
895 return ConstantVector::getSplat(VTy->getNumElements(), C);
896
897 return C;
898 }
899
ConstantFP(Type * Ty,const APFloat & V)900 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
901 : ConstantData(Ty, ConstantFPVal), Val(V) {
902 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
903 "FP type Mismatch");
904 }
905
isExactlyValue(const APFloat & V) const906 bool ConstantFP::isExactlyValue(const APFloat &V) const {
907 return Val.bitwiseIsEqual(V);
908 }
909
910 /// Remove the constant from the constant table.
destroyConstantImpl()911 void ConstantFP::destroyConstantImpl() {
912 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
913 }
914
915 //===----------------------------------------------------------------------===//
916 // ConstantAggregateZero Implementation
917 //===----------------------------------------------------------------------===//
918
getSequentialElement() const919 Constant *ConstantAggregateZero::getSequentialElement() const {
920 return Constant::getNullValue(getType()->getSequentialElementType());
921 }
922
getStructElement(unsigned Elt) const923 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
924 return Constant::getNullValue(getType()->getStructElementType(Elt));
925 }
926
getElementValue(Constant * C) const927 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
928 if (isa<SequentialType>(getType()))
929 return getSequentialElement();
930 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
931 }
932
getElementValue(unsigned Idx) const933 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
934 if (isa<SequentialType>(getType()))
935 return getSequentialElement();
936 return getStructElement(Idx);
937 }
938
getNumElements() const939 unsigned ConstantAggregateZero::getNumElements() const {
940 Type *Ty = getType();
941 if (auto *AT = dyn_cast<ArrayType>(Ty))
942 return AT->getNumElements();
943 if (auto *VT = dyn_cast<VectorType>(Ty))
944 return VT->getNumElements();
945 return Ty->getStructNumElements();
946 }
947
948 //===----------------------------------------------------------------------===//
949 // UndefValue Implementation
950 //===----------------------------------------------------------------------===//
951
getSequentialElement() const952 UndefValue *UndefValue::getSequentialElement() const {
953 return UndefValue::get(getType()->getSequentialElementType());
954 }
955
getStructElement(unsigned Elt) const956 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
957 return UndefValue::get(getType()->getStructElementType(Elt));
958 }
959
getElementValue(Constant * C) const960 UndefValue *UndefValue::getElementValue(Constant *C) const {
961 if (isa<SequentialType>(getType()))
962 return getSequentialElement();
963 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
964 }
965
getElementValue(unsigned Idx) const966 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
967 if (isa<SequentialType>(getType()))
968 return getSequentialElement();
969 return getStructElement(Idx);
970 }
971
getNumElements() const972 unsigned UndefValue::getNumElements() const {
973 Type *Ty = getType();
974 if (auto *ST = dyn_cast<SequentialType>(Ty))
975 return ST->getNumElements();
976 return Ty->getStructNumElements();
977 }
978
979 //===----------------------------------------------------------------------===//
980 // ConstantXXX Classes
981 //===----------------------------------------------------------------------===//
982
983 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)984 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
985 for (; Start != End; ++Start)
986 if (*Start != Elt)
987 return false;
988 return true;
989 }
990
991 template <typename SequentialTy, typename ElementTy>
getIntSequenceIfElementsMatch(ArrayRef<Constant * > V)992 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
993 assert(!V.empty() && "Cannot get empty int sequence.");
994
995 SmallVector<ElementTy, 16> Elts;
996 for (Constant *C : V)
997 if (auto *CI = dyn_cast<ConstantInt>(C))
998 Elts.push_back(CI->getZExtValue());
999 else
1000 return nullptr;
1001 return SequentialTy::get(V[0]->getContext(), Elts);
1002 }
1003
1004 template <typename SequentialTy, typename ElementTy>
getFPSequenceIfElementsMatch(ArrayRef<Constant * > V)1005 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1006 assert(!V.empty() && "Cannot get empty FP sequence.");
1007
1008 SmallVector<ElementTy, 16> Elts;
1009 for (Constant *C : V)
1010 if (auto *CFP = dyn_cast<ConstantFP>(C))
1011 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1012 else
1013 return nullptr;
1014 return SequentialTy::getFP(V[0]->getContext(), Elts);
1015 }
1016
1017 template <typename SequenceTy>
getSequenceIfElementsMatch(Constant * C,ArrayRef<Constant * > V)1018 static Constant *getSequenceIfElementsMatch(Constant *C,
1019 ArrayRef<Constant *> V) {
1020 // We speculatively build the elements here even if it turns out that there is
1021 // a constantexpr or something else weird, since it is so uncommon for that to
1022 // happen.
1023 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1024 if (CI->getType()->isIntegerTy(8))
1025 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1026 else if (CI->getType()->isIntegerTy(16))
1027 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1028 else if (CI->getType()->isIntegerTy(32))
1029 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1030 else if (CI->getType()->isIntegerTy(64))
1031 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1032 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1033 if (CFP->getType()->isHalfTy())
1034 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1035 else if (CFP->getType()->isFloatTy())
1036 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1037 else if (CFP->getType()->isDoubleTy())
1038 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1039 }
1040
1041 return nullptr;
1042 }
1043
ConstantAggregate(CompositeType * T,ValueTy VT,ArrayRef<Constant * > V)1044 ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
1045 ArrayRef<Constant *> V)
1046 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1047 V.size()) {
1048 llvm::copy(V, op_begin());
1049
1050 // Check that types match, unless this is an opaque struct.
1051 if (auto *ST = dyn_cast<StructType>(T))
1052 if (ST->isOpaque())
1053 return;
1054 for (unsigned I = 0, E = V.size(); I != E; ++I)
1055 assert(V[I]->getType() == T->getTypeAtIndex(I) &&
1056 "Initializer for composite element doesn't match!");
1057 }
1058
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)1059 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1060 : ConstantAggregate(T, ConstantArrayVal, V) {
1061 assert(V.size() == T->getNumElements() &&
1062 "Invalid initializer for constant array");
1063 }
1064
get(ArrayType * Ty,ArrayRef<Constant * > V)1065 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1066 if (Constant *C = getImpl(Ty, V))
1067 return C;
1068 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1069 }
1070
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)1071 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1072 // Empty arrays are canonicalized to ConstantAggregateZero.
1073 if (V.empty())
1074 return ConstantAggregateZero::get(Ty);
1075
1076 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1077 assert(V[i]->getType() == Ty->getElementType() &&
1078 "Wrong type in array element initializer");
1079 }
1080
1081 // If this is an all-zero array, return a ConstantAggregateZero object. If
1082 // all undef, return an UndefValue, if "all simple", then return a
1083 // ConstantDataArray.
1084 Constant *C = V[0];
1085 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1086 return UndefValue::get(Ty);
1087
1088 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1089 return ConstantAggregateZero::get(Ty);
1090
1091 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1092 // the element type is compatible with ConstantDataVector. If so, use it.
1093 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1094 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1095
1096 // Otherwise, we really do want to create a ConstantArray.
1097 return nullptr;
1098 }
1099
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)1100 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1101 ArrayRef<Constant*> V,
1102 bool Packed) {
1103 unsigned VecSize = V.size();
1104 SmallVector<Type*, 16> EltTypes(VecSize);
1105 for (unsigned i = 0; i != VecSize; ++i)
1106 EltTypes[i] = V[i]->getType();
1107
1108 return StructType::get(Context, EltTypes, Packed);
1109 }
1110
1111
getTypeForElements(ArrayRef<Constant * > V,bool Packed)1112 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1113 bool Packed) {
1114 assert(!V.empty() &&
1115 "ConstantStruct::getTypeForElements cannot be called on empty list");
1116 return getTypeForElements(V[0]->getContext(), V, Packed);
1117 }
1118
ConstantStruct(StructType * T,ArrayRef<Constant * > V)1119 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1120 : ConstantAggregate(T, ConstantStructVal, V) {
1121 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1122 "Invalid initializer for constant struct");
1123 }
1124
1125 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)1126 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1127 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1128 "Incorrect # elements specified to ConstantStruct::get");
1129
1130 // Create a ConstantAggregateZero value if all elements are zeros.
1131 bool isZero = true;
1132 bool isUndef = false;
1133
1134 if (!V.empty()) {
1135 isUndef = isa<UndefValue>(V[0]);
1136 isZero = V[0]->isNullValue();
1137 if (isUndef || isZero) {
1138 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1139 if (!V[i]->isNullValue())
1140 isZero = false;
1141 if (!isa<UndefValue>(V[i]))
1142 isUndef = false;
1143 }
1144 }
1145 }
1146 if (isZero)
1147 return ConstantAggregateZero::get(ST);
1148 if (isUndef)
1149 return UndefValue::get(ST);
1150
1151 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1152 }
1153
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1154 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1155 : ConstantAggregate(T, ConstantVectorVal, V) {
1156 assert(V.size() == T->getNumElements() &&
1157 "Invalid initializer for constant vector");
1158 }
1159
1160 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1161 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1162 if (Constant *C = getImpl(V))
1163 return C;
1164 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1165 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1166 }
1167
getImpl(ArrayRef<Constant * > V)1168 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1169 assert(!V.empty() && "Vectors can't be empty");
1170 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1171
1172 // If this is an all-undef or all-zero vector, return a
1173 // ConstantAggregateZero or UndefValue.
1174 Constant *C = V[0];
1175 bool isZero = C->isNullValue();
1176 bool isUndef = isa<UndefValue>(C);
1177
1178 if (isZero || isUndef) {
1179 for (unsigned i = 1, e = V.size(); i != e; ++i)
1180 if (V[i] != C) {
1181 isZero = isUndef = false;
1182 break;
1183 }
1184 }
1185
1186 if (isZero)
1187 return ConstantAggregateZero::get(T);
1188 if (isUndef)
1189 return UndefValue::get(T);
1190
1191 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1192 // the element type is compatible with ConstantDataVector. If so, use it.
1193 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1194 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1195
1196 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1197 // the operand list contains a ConstantExpr or something else strange.
1198 return nullptr;
1199 }
1200
getSplat(unsigned NumElts,Constant * V)1201 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1202 // If this splat is compatible with ConstantDataVector, use it instead of
1203 // ConstantVector.
1204 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1205 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1206 return ConstantDataVector::getSplat(NumElts, V);
1207
1208 SmallVector<Constant*, 32> Elts(NumElts, V);
1209 return get(Elts);
1210 }
1211
get(LLVMContext & Context)1212 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1213 LLVMContextImpl *pImpl = Context.pImpl;
1214 if (!pImpl->TheNoneToken)
1215 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1216 return pImpl->TheNoneToken.get();
1217 }
1218
1219 /// Remove the constant from the constant table.
destroyConstantImpl()1220 void ConstantTokenNone::destroyConstantImpl() {
1221 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1222 }
1223
1224 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1225 // can't be inline because we don't want to #include Instruction.h into
1226 // Constant.h
isCast() const1227 bool ConstantExpr::isCast() const {
1228 return Instruction::isCast(getOpcode());
1229 }
1230
isCompare() const1231 bool ConstantExpr::isCompare() const {
1232 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1233 }
1234
isGEPWithNoNotionalOverIndexing() const1235 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1236 if (getOpcode() != Instruction::GetElementPtr) return false;
1237
1238 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1239 User::const_op_iterator OI = std::next(this->op_begin());
1240
1241 // The remaining indices may be compile-time known integers within the bounds
1242 // of the corresponding notional static array types.
1243 for (; GEPI != E; ++GEPI, ++OI) {
1244 if (isa<UndefValue>(*OI))
1245 continue;
1246 auto *CI = dyn_cast<ConstantInt>(*OI);
1247 if (!CI || (GEPI.isBoundedSequential() &&
1248 (CI->getValue().getActiveBits() > 64 ||
1249 CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1250 return false;
1251 }
1252
1253 // All the indices checked out.
1254 return true;
1255 }
1256
hasIndices() const1257 bool ConstantExpr::hasIndices() const {
1258 return getOpcode() == Instruction::ExtractValue ||
1259 getOpcode() == Instruction::InsertValue;
1260 }
1261
getIndices() const1262 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1263 if (const ExtractValueConstantExpr *EVCE =
1264 dyn_cast<ExtractValueConstantExpr>(this))
1265 return EVCE->Indices;
1266
1267 return cast<InsertValueConstantExpr>(this)->Indices;
1268 }
1269
getPredicate() const1270 unsigned ConstantExpr::getPredicate() const {
1271 return cast<CompareConstantExpr>(this)->predicate;
1272 }
1273
1274 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1275 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1276 assert(Op->getType() == getOperand(OpNo)->getType() &&
1277 "Replacing operand with value of different type!");
1278 if (getOperand(OpNo) == Op)
1279 return const_cast<ConstantExpr*>(this);
1280
1281 SmallVector<Constant*, 8> NewOps;
1282 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1283 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1284
1285 return getWithOperands(NewOps);
1286 }
1287
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced,Type * SrcTy) const1288 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1289 bool OnlyIfReduced, Type *SrcTy) const {
1290 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1291
1292 // If no operands changed return self.
1293 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1294 return const_cast<ConstantExpr*>(this);
1295
1296 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1297 switch (getOpcode()) {
1298 case Instruction::Trunc:
1299 case Instruction::ZExt:
1300 case Instruction::SExt:
1301 case Instruction::FPTrunc:
1302 case Instruction::FPExt:
1303 case Instruction::UIToFP:
1304 case Instruction::SIToFP:
1305 case Instruction::FPToUI:
1306 case Instruction::FPToSI:
1307 case Instruction::PtrToInt:
1308 case Instruction::IntToPtr:
1309 case Instruction::BitCast:
1310 case Instruction::AddrSpaceCast:
1311 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1312 case Instruction::Select:
1313 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1314 case Instruction::InsertElement:
1315 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1316 OnlyIfReducedTy);
1317 case Instruction::ExtractElement:
1318 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1319 case Instruction::InsertValue:
1320 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1321 OnlyIfReducedTy);
1322 case Instruction::ExtractValue:
1323 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1324 case Instruction::ShuffleVector:
1325 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1326 OnlyIfReducedTy);
1327 case Instruction::GetElementPtr: {
1328 auto *GEPO = cast<GEPOperator>(this);
1329 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1330 return ConstantExpr::getGetElementPtr(
1331 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1332 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1333 }
1334 case Instruction::ICmp:
1335 case Instruction::FCmp:
1336 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1337 OnlyIfReducedTy);
1338 default:
1339 assert(getNumOperands() == 2 && "Must be binary operator?");
1340 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1341 OnlyIfReducedTy);
1342 }
1343 }
1344
1345
1346 //===----------------------------------------------------------------------===//
1347 // isValueValidForType implementations
1348
isValueValidForType(Type * Ty,uint64_t Val)1349 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1350 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1351 if (Ty->isIntegerTy(1))
1352 return Val == 0 || Val == 1;
1353 return isUIntN(NumBits, Val);
1354 }
1355
isValueValidForType(Type * Ty,int64_t Val)1356 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1357 unsigned NumBits = Ty->getIntegerBitWidth();
1358 if (Ty->isIntegerTy(1))
1359 return Val == 0 || Val == 1 || Val == -1;
1360 return isIntN(NumBits, Val);
1361 }
1362
isValueValidForType(Type * Ty,const APFloat & Val)1363 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1364 // convert modifies in place, so make a copy.
1365 APFloat Val2 = APFloat(Val);
1366 bool losesInfo;
1367 switch (Ty->getTypeID()) {
1368 default:
1369 return false; // These can't be represented as floating point!
1370
1371 // FIXME rounding mode needs to be more flexible
1372 case Type::HalfTyID: {
1373 if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1374 return true;
1375 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1376 return !losesInfo;
1377 }
1378 case Type::FloatTyID: {
1379 if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1380 return true;
1381 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1382 return !losesInfo;
1383 }
1384 case Type::DoubleTyID: {
1385 if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1386 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1387 &Val2.getSemantics() == &APFloat::IEEEdouble())
1388 return true;
1389 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1390 return !losesInfo;
1391 }
1392 case Type::X86_FP80TyID:
1393 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1394 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1395 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1396 &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1397 case Type::FP128TyID:
1398 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1399 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1400 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1401 &Val2.getSemantics() == &APFloat::IEEEquad();
1402 case Type::PPC_FP128TyID:
1403 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1404 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1405 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1406 &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1407 }
1408 }
1409
1410
1411 //===----------------------------------------------------------------------===//
1412 // Factory Function Implementation
1413
get(Type * Ty)1414 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1415 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1416 "Cannot create an aggregate zero of non-aggregate type!");
1417
1418 std::unique_ptr<ConstantAggregateZero> &Entry =
1419 Ty->getContext().pImpl->CAZConstants[Ty];
1420 if (!Entry)
1421 Entry.reset(new ConstantAggregateZero(Ty));
1422
1423 return Entry.get();
1424 }
1425
1426 /// Remove the constant from the constant table.
destroyConstantImpl()1427 void ConstantAggregateZero::destroyConstantImpl() {
1428 getContext().pImpl->CAZConstants.erase(getType());
1429 }
1430
1431 /// Remove the constant from the constant table.
destroyConstantImpl()1432 void ConstantArray::destroyConstantImpl() {
1433 getType()->getContext().pImpl->ArrayConstants.remove(this);
1434 }
1435
1436
1437 //---- ConstantStruct::get() implementation...
1438 //
1439
1440 /// Remove the constant from the constant table.
destroyConstantImpl()1441 void ConstantStruct::destroyConstantImpl() {
1442 getType()->getContext().pImpl->StructConstants.remove(this);
1443 }
1444
1445 /// Remove the constant from the constant table.
destroyConstantImpl()1446 void ConstantVector::destroyConstantImpl() {
1447 getType()->getContext().pImpl->VectorConstants.remove(this);
1448 }
1449
getSplatValue(bool AllowUndefs) const1450 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1451 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1452 if (isa<ConstantAggregateZero>(this))
1453 return getNullValue(this->getType()->getVectorElementType());
1454 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1455 return CV->getSplatValue();
1456 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1457 return CV->getSplatValue(AllowUndefs);
1458 return nullptr;
1459 }
1460
getSplatValue(bool AllowUndefs) const1461 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1462 // Check out first element.
1463 Constant *Elt = getOperand(0);
1464 // Then make sure all remaining elements point to the same value.
1465 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1466 Constant *OpC = getOperand(I);
1467 if (OpC == Elt)
1468 continue;
1469
1470 // Strict mode: any mismatch is not a splat.
1471 if (!AllowUndefs)
1472 return nullptr;
1473
1474 // Allow undefs mode: ignore undefined elements.
1475 if (isa<UndefValue>(OpC))
1476 continue;
1477
1478 // If we do not have a defined element yet, use the current operand.
1479 if (isa<UndefValue>(Elt))
1480 Elt = OpC;
1481
1482 if (OpC != Elt)
1483 return nullptr;
1484 }
1485 return Elt;
1486 }
1487
getUniqueInteger() const1488 const APInt &Constant::getUniqueInteger() const {
1489 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1490 return CI->getValue();
1491 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1492 const Constant *C = this->getAggregateElement(0U);
1493 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1494 return cast<ConstantInt>(C)->getValue();
1495 }
1496
1497 //---- ConstantPointerNull::get() implementation.
1498 //
1499
get(PointerType * Ty)1500 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1501 std::unique_ptr<ConstantPointerNull> &Entry =
1502 Ty->getContext().pImpl->CPNConstants[Ty];
1503 if (!Entry)
1504 Entry.reset(new ConstantPointerNull(Ty));
1505
1506 return Entry.get();
1507 }
1508
1509 /// Remove the constant from the constant table.
destroyConstantImpl()1510 void ConstantPointerNull::destroyConstantImpl() {
1511 getContext().pImpl->CPNConstants.erase(getType());
1512 }
1513
get(Type * Ty)1514 UndefValue *UndefValue::get(Type *Ty) {
1515 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1516 if (!Entry)
1517 Entry.reset(new UndefValue(Ty));
1518
1519 return Entry.get();
1520 }
1521
1522 /// Remove the constant from the constant table.
destroyConstantImpl()1523 void UndefValue::destroyConstantImpl() {
1524 // Free the constant and any dangling references to it.
1525 getContext().pImpl->UVConstants.erase(getType());
1526 }
1527
get(BasicBlock * BB)1528 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1529 assert(BB->getParent() && "Block must have a parent");
1530 return get(BB->getParent(), BB);
1531 }
1532
get(Function * F,BasicBlock * BB)1533 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1534 BlockAddress *&BA =
1535 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1536 if (!BA)
1537 BA = new BlockAddress(F, BB);
1538
1539 assert(BA->getFunction() == F && "Basic block moved between functions");
1540 return BA;
1541 }
1542
BlockAddress(Function * F,BasicBlock * BB)1543 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1544 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1545 &Op<0>(), 2) {
1546 setOperand(0, F);
1547 setOperand(1, BB);
1548 BB->AdjustBlockAddressRefCount(1);
1549 }
1550
lookup(const BasicBlock * BB)1551 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1552 if (!BB->hasAddressTaken())
1553 return nullptr;
1554
1555 const Function *F = BB->getParent();
1556 assert(F && "Block must have a parent");
1557 BlockAddress *BA =
1558 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1559 assert(BA && "Refcount and block address map disagree!");
1560 return BA;
1561 }
1562
1563 /// Remove the constant from the constant table.
destroyConstantImpl()1564 void BlockAddress::destroyConstantImpl() {
1565 getFunction()->getType()->getContext().pImpl
1566 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1567 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1568 }
1569
handleOperandChangeImpl(Value * From,Value * To)1570 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1571 // This could be replacing either the Basic Block or the Function. In either
1572 // case, we have to remove the map entry.
1573 Function *NewF = getFunction();
1574 BasicBlock *NewBB = getBasicBlock();
1575
1576 if (From == NewF)
1577 NewF = cast<Function>(To->stripPointerCasts());
1578 else {
1579 assert(From == NewBB && "From does not match any operand");
1580 NewBB = cast<BasicBlock>(To);
1581 }
1582
1583 // See if the 'new' entry already exists, if not, just update this in place
1584 // and return early.
1585 BlockAddress *&NewBA =
1586 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1587 if (NewBA)
1588 return NewBA;
1589
1590 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1591
1592 // Remove the old entry, this can't cause the map to rehash (just a
1593 // tombstone will get added).
1594 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1595 getBasicBlock()));
1596 NewBA = this;
1597 setOperand(0, NewF);
1598 setOperand(1, NewBB);
1599 getBasicBlock()->AdjustBlockAddressRefCount(1);
1600
1601 // If we just want to keep the existing value, then return null.
1602 // Callers know that this means we shouldn't delete this value.
1603 return nullptr;
1604 }
1605
1606 //---- ConstantExpr::get() implementations.
1607 //
1608
1609 /// This is a utility function to handle folding of casts and lookup of the
1610 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1611 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1612 bool OnlyIfReduced = false) {
1613 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1614 // Fold a few common cases
1615 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1616 return FC;
1617
1618 if (OnlyIfReduced)
1619 return nullptr;
1620
1621 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1622
1623 // Look up the constant in the table first to ensure uniqueness.
1624 ConstantExprKeyType Key(opc, C);
1625
1626 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1627 }
1628
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1629 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1630 bool OnlyIfReduced) {
1631 Instruction::CastOps opc = Instruction::CastOps(oc);
1632 assert(Instruction::isCast(opc) && "opcode out of range");
1633 assert(C && Ty && "Null arguments to getCast");
1634 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1635
1636 switch (opc) {
1637 default:
1638 llvm_unreachable("Invalid cast opcode");
1639 case Instruction::Trunc:
1640 return getTrunc(C, Ty, OnlyIfReduced);
1641 case Instruction::ZExt:
1642 return getZExt(C, Ty, OnlyIfReduced);
1643 case Instruction::SExt:
1644 return getSExt(C, Ty, OnlyIfReduced);
1645 case Instruction::FPTrunc:
1646 return getFPTrunc(C, Ty, OnlyIfReduced);
1647 case Instruction::FPExt:
1648 return getFPExtend(C, Ty, OnlyIfReduced);
1649 case Instruction::UIToFP:
1650 return getUIToFP(C, Ty, OnlyIfReduced);
1651 case Instruction::SIToFP:
1652 return getSIToFP(C, Ty, OnlyIfReduced);
1653 case Instruction::FPToUI:
1654 return getFPToUI(C, Ty, OnlyIfReduced);
1655 case Instruction::FPToSI:
1656 return getFPToSI(C, Ty, OnlyIfReduced);
1657 case Instruction::PtrToInt:
1658 return getPtrToInt(C, Ty, OnlyIfReduced);
1659 case Instruction::IntToPtr:
1660 return getIntToPtr(C, Ty, OnlyIfReduced);
1661 case Instruction::BitCast:
1662 return getBitCast(C, Ty, OnlyIfReduced);
1663 case Instruction::AddrSpaceCast:
1664 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1665 }
1666 }
1667
getZExtOrBitCast(Constant * C,Type * Ty)1668 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1669 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1670 return getBitCast(C, Ty);
1671 return getZExt(C, Ty);
1672 }
1673
getSExtOrBitCast(Constant * C,Type * Ty)1674 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1675 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1676 return getBitCast(C, Ty);
1677 return getSExt(C, Ty);
1678 }
1679
getTruncOrBitCast(Constant * C,Type * Ty)1680 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1681 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1682 return getBitCast(C, Ty);
1683 return getTrunc(C, Ty);
1684 }
1685
getPointerCast(Constant * S,Type * Ty)1686 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1687 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1688 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1689 "Invalid cast");
1690
1691 if (Ty->isIntOrIntVectorTy())
1692 return getPtrToInt(S, Ty);
1693
1694 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1695 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1696 return getAddrSpaceCast(S, Ty);
1697
1698 return getBitCast(S, Ty);
1699 }
1700
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1701 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1702 Type *Ty) {
1703 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1704 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1705
1706 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1707 return getAddrSpaceCast(S, Ty);
1708
1709 return getBitCast(S, Ty);
1710 }
1711
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1712 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1713 assert(C->getType()->isIntOrIntVectorTy() &&
1714 Ty->isIntOrIntVectorTy() && "Invalid cast");
1715 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1716 unsigned DstBits = Ty->getScalarSizeInBits();
1717 Instruction::CastOps opcode =
1718 (SrcBits == DstBits ? Instruction::BitCast :
1719 (SrcBits > DstBits ? Instruction::Trunc :
1720 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1721 return getCast(opcode, C, Ty);
1722 }
1723
getFPCast(Constant * C,Type * Ty)1724 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1725 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1726 "Invalid cast");
1727 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1728 unsigned DstBits = Ty->getScalarSizeInBits();
1729 if (SrcBits == DstBits)
1730 return C; // Avoid a useless cast
1731 Instruction::CastOps opcode =
1732 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1733 return getCast(opcode, C, Ty);
1734 }
1735
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1736 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1737 #ifndef NDEBUG
1738 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1739 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1740 #endif
1741 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1742 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1743 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1744 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1745 "SrcTy must be larger than DestTy for Trunc!");
1746
1747 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1748 }
1749
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1750 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1751 #ifndef NDEBUG
1752 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1753 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1754 #endif
1755 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1756 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1757 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1758 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1759 "SrcTy must be smaller than DestTy for SExt!");
1760
1761 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1762 }
1763
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1764 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1765 #ifndef NDEBUG
1766 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1767 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1768 #endif
1769 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1770 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1771 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1772 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1773 "SrcTy must be smaller than DestTy for ZExt!");
1774
1775 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1776 }
1777
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1778 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1779 #ifndef NDEBUG
1780 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1781 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1782 #endif
1783 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1784 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1785 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1786 "This is an illegal floating point truncation!");
1787 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1788 }
1789
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1790 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1791 #ifndef NDEBUG
1792 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1793 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1794 #endif
1795 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1796 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1797 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1798 "This is an illegal floating point extension!");
1799 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1800 }
1801
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1802 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1803 #ifndef NDEBUG
1804 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1805 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1806 #endif
1807 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1808 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1809 "This is an illegal uint to floating point cast!");
1810 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1811 }
1812
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1813 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1814 #ifndef NDEBUG
1815 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1816 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1817 #endif
1818 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1819 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1820 "This is an illegal sint to floating point cast!");
1821 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1822 }
1823
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1824 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1825 #ifndef NDEBUG
1826 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1827 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1828 #endif
1829 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1830 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1831 "This is an illegal floating point to uint cast!");
1832 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1833 }
1834
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)1835 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1836 #ifndef NDEBUG
1837 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1838 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1839 #endif
1840 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1841 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1842 "This is an illegal floating point to sint cast!");
1843 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1844 }
1845
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)1846 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1847 bool OnlyIfReduced) {
1848 assert(C->getType()->isPtrOrPtrVectorTy() &&
1849 "PtrToInt source must be pointer or pointer vector");
1850 assert(DstTy->isIntOrIntVectorTy() &&
1851 "PtrToInt destination must be integer or integer vector");
1852 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1853 if (isa<VectorType>(C->getType()))
1854 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1855 "Invalid cast between a different number of vector elements");
1856 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1857 }
1858
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)1859 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1860 bool OnlyIfReduced) {
1861 assert(C->getType()->isIntOrIntVectorTy() &&
1862 "IntToPtr source must be integer or integer vector");
1863 assert(DstTy->isPtrOrPtrVectorTy() &&
1864 "IntToPtr destination must be a pointer or pointer vector");
1865 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1866 if (isa<VectorType>(C->getType()))
1867 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1868 "Invalid cast between a different number of vector elements");
1869 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1870 }
1871
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1872 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1873 bool OnlyIfReduced) {
1874 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1875 "Invalid constantexpr bitcast!");
1876
1877 // It is common to ask for a bitcast of a value to its own type, handle this
1878 // speedily.
1879 if (C->getType() == DstTy) return C;
1880
1881 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1882 }
1883
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1884 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1885 bool OnlyIfReduced) {
1886 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1887 "Invalid constantexpr addrspacecast!");
1888
1889 // Canonicalize addrspacecasts between different pointer types by first
1890 // bitcasting the pointer type and then converting the address space.
1891 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1892 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1893 Type *DstElemTy = DstScalarTy->getElementType();
1894 if (SrcScalarTy->getElementType() != DstElemTy) {
1895 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1896 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1897 // Handle vectors of pointers.
1898 MidTy = VectorType::get(MidTy, VT->getNumElements());
1899 }
1900 C = getBitCast(C, MidTy);
1901 }
1902 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1903 }
1904
get(unsigned Opcode,Constant * C,unsigned Flags,Type * OnlyIfReducedTy)1905 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags,
1906 Type *OnlyIfReducedTy) {
1907 // Check the operands for consistency first.
1908 assert(Instruction::isUnaryOp(Opcode) &&
1909 "Invalid opcode in unary constant expression");
1910
1911 #ifndef NDEBUG
1912 switch (Opcode) {
1913 case Instruction::FNeg:
1914 assert(C->getType()->isFPOrFPVectorTy() &&
1915 "Tried to create a floating-point operation on a "
1916 "non-floating-point type!");
1917 break;
1918 default:
1919 break;
1920 }
1921 #endif
1922
1923 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C))
1924 return FC;
1925
1926 if (OnlyIfReducedTy == C->getType())
1927 return nullptr;
1928
1929 Constant *ArgVec[] = { C };
1930 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1931
1932 LLVMContextImpl *pImpl = C->getContext().pImpl;
1933 return pImpl->ExprConstants.getOrCreate(C->getType(), Key);
1934 }
1935
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)1936 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1937 unsigned Flags, Type *OnlyIfReducedTy) {
1938 // Check the operands for consistency first.
1939 assert(Instruction::isBinaryOp(Opcode) &&
1940 "Invalid opcode in binary constant expression");
1941 assert(C1->getType() == C2->getType() &&
1942 "Operand types in binary constant expression should match");
1943
1944 #ifndef NDEBUG
1945 switch (Opcode) {
1946 case Instruction::Add:
1947 case Instruction::Sub:
1948 case Instruction::Mul:
1949 case Instruction::UDiv:
1950 case Instruction::SDiv:
1951 case Instruction::URem:
1952 case Instruction::SRem:
1953 assert(C1->getType()->isIntOrIntVectorTy() &&
1954 "Tried to create an integer operation on a non-integer type!");
1955 break;
1956 case Instruction::FAdd:
1957 case Instruction::FSub:
1958 case Instruction::FMul:
1959 case Instruction::FDiv:
1960 case Instruction::FRem:
1961 assert(C1->getType()->isFPOrFPVectorTy() &&
1962 "Tried to create a floating-point operation on a "
1963 "non-floating-point type!");
1964 break;
1965 case Instruction::And:
1966 case Instruction::Or:
1967 case Instruction::Xor:
1968 assert(C1->getType()->isIntOrIntVectorTy() &&
1969 "Tried to create a logical operation on a non-integral type!");
1970 break;
1971 case Instruction::Shl:
1972 case Instruction::LShr:
1973 case Instruction::AShr:
1974 assert(C1->getType()->isIntOrIntVectorTy() &&
1975 "Tried to create a shift operation on a non-integer type!");
1976 break;
1977 default:
1978 break;
1979 }
1980 #endif
1981
1982 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1983 return FC;
1984
1985 if (OnlyIfReducedTy == C1->getType())
1986 return nullptr;
1987
1988 Constant *ArgVec[] = { C1, C2 };
1989 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1990
1991 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1992 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1993 }
1994
getSizeOf(Type * Ty)1995 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1996 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1997 // Note that a non-inbounds gep is used, as null isn't within any object.
1998 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1999 Constant *GEP = getGetElementPtr(
2000 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2001 return getPtrToInt(GEP,
2002 Type::getInt64Ty(Ty->getContext()));
2003 }
2004
getAlignOf(Type * Ty)2005 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2006 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2007 // Note that a non-inbounds gep is used, as null isn't within any object.
2008 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2009 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
2010 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2011 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2012 Constant *Indices[2] = { Zero, One };
2013 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2014 return getPtrToInt(GEP,
2015 Type::getInt64Ty(Ty->getContext()));
2016 }
2017
getOffsetOf(StructType * STy,unsigned FieldNo)2018 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
2019 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
2020 FieldNo));
2021 }
2022
getOffsetOf(Type * Ty,Constant * FieldNo)2023 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
2024 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
2025 // Note that a non-inbounds gep is used, as null isn't within any object.
2026 Constant *GEPIdx[] = {
2027 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
2028 FieldNo
2029 };
2030 Constant *GEP = getGetElementPtr(
2031 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2032 return getPtrToInt(GEP,
2033 Type::getInt64Ty(Ty->getContext()));
2034 }
2035
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)2036 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2037 Constant *C2, bool OnlyIfReduced) {
2038 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2039
2040 switch (Predicate) {
2041 default: llvm_unreachable("Invalid CmpInst predicate");
2042 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2043 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2044 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2045 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2046 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2047 case CmpInst::FCMP_TRUE:
2048 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2049
2050 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
2051 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2052 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2053 case CmpInst::ICMP_SLE:
2054 return getICmp(Predicate, C1, C2, OnlyIfReduced);
2055 }
2056 }
2057
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)2058 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
2059 Type *OnlyIfReducedTy) {
2060 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2061
2062 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2063 return SC; // Fold common cases
2064
2065 if (OnlyIfReducedTy == V1->getType())
2066 return nullptr;
2067
2068 Constant *ArgVec[] = { C, V1, V2 };
2069 ConstantExprKeyType Key(Instruction::Select, ArgVec);
2070
2071 LLVMContextImpl *pImpl = C->getContext().pImpl;
2072 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2073 }
2074
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Optional<unsigned> InRangeIndex,Type * OnlyIfReducedTy)2075 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2076 ArrayRef<Value *> Idxs, bool InBounds,
2077 Optional<unsigned> InRangeIndex,
2078 Type *OnlyIfReducedTy) {
2079 if (!Ty)
2080 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2081 else
2082 assert(Ty ==
2083 cast<PointerType>(C->getType()->getScalarType())->getElementType());
2084
2085 if (Constant *FC =
2086 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2087 return FC; // Fold a few common cases.
2088
2089 // Get the result type of the getelementptr!
2090 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2091 assert(DestTy && "GEP indices invalid!");
2092 unsigned AS = C->getType()->getPointerAddressSpace();
2093 Type *ReqTy = DestTy->getPointerTo(AS);
2094
2095 unsigned NumVecElts = 0;
2096 if (C->getType()->isVectorTy())
2097 NumVecElts = C->getType()->getVectorNumElements();
2098 else for (auto Idx : Idxs)
2099 if (Idx->getType()->isVectorTy())
2100 NumVecElts = Idx->getType()->getVectorNumElements();
2101
2102 if (NumVecElts)
2103 ReqTy = VectorType::get(ReqTy, NumVecElts);
2104
2105 if (OnlyIfReducedTy == ReqTy)
2106 return nullptr;
2107
2108 // Look up the constant in the table first to ensure uniqueness
2109 std::vector<Constant*> ArgVec;
2110 ArgVec.reserve(1 + Idxs.size());
2111 ArgVec.push_back(C);
2112 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2113 assert((!Idxs[i]->getType()->isVectorTy() ||
2114 Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
2115 "getelementptr index type missmatch");
2116
2117 Constant *Idx = cast<Constant>(Idxs[i]);
2118 if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
2119 Idx = ConstantVector::getSplat(NumVecElts, Idx);
2120 ArgVec.push_back(Idx);
2121 }
2122
2123 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2124 if (InRangeIndex && *InRangeIndex < 63)
2125 SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2126 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2127 SubClassOptionalData, None, Ty);
2128
2129 LLVMContextImpl *pImpl = C->getContext().pImpl;
2130 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2131 }
2132
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2133 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2134 Constant *RHS, bool OnlyIfReduced) {
2135 assert(LHS->getType() == RHS->getType());
2136 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2137 "Invalid ICmp Predicate");
2138
2139 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2140 return FC; // Fold a few common cases...
2141
2142 if (OnlyIfReduced)
2143 return nullptr;
2144
2145 // Look up the constant in the table first to ensure uniqueness
2146 Constant *ArgVec[] = { LHS, RHS };
2147 // Get the key type with both the opcode and predicate
2148 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2149
2150 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2151 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2152 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2153
2154 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2155 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2156 }
2157
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2158 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2159 Constant *RHS, bool OnlyIfReduced) {
2160 assert(LHS->getType() == RHS->getType());
2161 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2162 "Invalid FCmp Predicate");
2163
2164 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2165 return FC; // Fold a few common cases...
2166
2167 if (OnlyIfReduced)
2168 return nullptr;
2169
2170 // Look up the constant in the table first to ensure uniqueness
2171 Constant *ArgVec[] = { LHS, RHS };
2172 // Get the key type with both the opcode and predicate
2173 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2174
2175 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2176 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2177 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2178
2179 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2180 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2181 }
2182
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2183 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2184 Type *OnlyIfReducedTy) {
2185 assert(Val->getType()->isVectorTy() &&
2186 "Tried to create extractelement operation on non-vector type!");
2187 assert(Idx->getType()->isIntegerTy() &&
2188 "Extractelement index must be an integer type!");
2189
2190 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2191 return FC; // Fold a few common cases.
2192
2193 Type *ReqTy = Val->getType()->getVectorElementType();
2194 if (OnlyIfReducedTy == ReqTy)
2195 return nullptr;
2196
2197 // Look up the constant in the table first to ensure uniqueness
2198 Constant *ArgVec[] = { Val, Idx };
2199 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2200
2201 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2202 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2203 }
2204
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2205 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2206 Constant *Idx, Type *OnlyIfReducedTy) {
2207 assert(Val->getType()->isVectorTy() &&
2208 "Tried to create insertelement operation on non-vector type!");
2209 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2210 "Insertelement types must match!");
2211 assert(Idx->getType()->isIntegerTy() &&
2212 "Insertelement index must be i32 type!");
2213
2214 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2215 return FC; // Fold a few common cases.
2216
2217 if (OnlyIfReducedTy == Val->getType())
2218 return nullptr;
2219
2220 // Look up the constant in the table first to ensure uniqueness
2221 Constant *ArgVec[] = { Val, Elt, Idx };
2222 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2223
2224 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2225 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2226 }
2227
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask,Type * OnlyIfReducedTy)2228 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2229 Constant *Mask, Type *OnlyIfReducedTy) {
2230 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2231 "Invalid shuffle vector constant expr operands!");
2232
2233 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2234 return FC; // Fold a few common cases.
2235
2236 ElementCount NElts = Mask->getType()->getVectorElementCount();
2237 Type *EltTy = V1->getType()->getVectorElementType();
2238 Type *ShufTy = VectorType::get(EltTy, NElts);
2239
2240 if (OnlyIfReducedTy == ShufTy)
2241 return nullptr;
2242
2243 // Look up the constant in the table first to ensure uniqueness
2244 Constant *ArgVec[] = { V1, V2, Mask };
2245 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2246
2247 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2248 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2249 }
2250
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2251 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2252 ArrayRef<unsigned> Idxs,
2253 Type *OnlyIfReducedTy) {
2254 assert(Agg->getType()->isFirstClassType() &&
2255 "Non-first-class type for constant insertvalue expression");
2256
2257 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2258 Idxs) == Val->getType() &&
2259 "insertvalue indices invalid!");
2260 Type *ReqTy = Val->getType();
2261
2262 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2263 return FC;
2264
2265 if (OnlyIfReducedTy == ReqTy)
2266 return nullptr;
2267
2268 Constant *ArgVec[] = { Agg, Val };
2269 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2270
2271 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2272 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2273 }
2274
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2275 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2276 Type *OnlyIfReducedTy) {
2277 assert(Agg->getType()->isFirstClassType() &&
2278 "Tried to create extractelement operation on non-first-class type!");
2279
2280 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2281 (void)ReqTy;
2282 assert(ReqTy && "extractvalue indices invalid!");
2283
2284 assert(Agg->getType()->isFirstClassType() &&
2285 "Non-first-class type for constant extractvalue expression");
2286 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2287 return FC;
2288
2289 if (OnlyIfReducedTy == ReqTy)
2290 return nullptr;
2291
2292 Constant *ArgVec[] = { Agg };
2293 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2294
2295 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2296 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2297 }
2298
getNeg(Constant * C,bool HasNUW,bool HasNSW)2299 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2300 assert(C->getType()->isIntOrIntVectorTy() &&
2301 "Cannot NEG a nonintegral value!");
2302 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2303 C, HasNUW, HasNSW);
2304 }
2305
getFNeg(Constant * C)2306 Constant *ConstantExpr::getFNeg(Constant *C) {
2307 assert(C->getType()->isFPOrFPVectorTy() &&
2308 "Cannot FNEG a non-floating-point value!");
2309 return get(Instruction::FNeg, C);
2310 }
2311
getNot(Constant * C)2312 Constant *ConstantExpr::getNot(Constant *C) {
2313 assert(C->getType()->isIntOrIntVectorTy() &&
2314 "Cannot NOT a nonintegral value!");
2315 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2316 }
2317
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2318 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2319 bool HasNUW, bool HasNSW) {
2320 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2321 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2322 return get(Instruction::Add, C1, C2, Flags);
2323 }
2324
getFAdd(Constant * C1,Constant * C2)2325 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2326 return get(Instruction::FAdd, C1, C2);
2327 }
2328
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2329 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2330 bool HasNUW, bool HasNSW) {
2331 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2332 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2333 return get(Instruction::Sub, C1, C2, Flags);
2334 }
2335
getFSub(Constant * C1,Constant * C2)2336 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2337 return get(Instruction::FSub, C1, C2);
2338 }
2339
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2340 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2341 bool HasNUW, bool HasNSW) {
2342 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2343 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2344 return get(Instruction::Mul, C1, C2, Flags);
2345 }
2346
getFMul(Constant * C1,Constant * C2)2347 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2348 return get(Instruction::FMul, C1, C2);
2349 }
2350
getUDiv(Constant * C1,Constant * C2,bool isExact)2351 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2352 return get(Instruction::UDiv, C1, C2,
2353 isExact ? PossiblyExactOperator::IsExact : 0);
2354 }
2355
getSDiv(Constant * C1,Constant * C2,bool isExact)2356 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2357 return get(Instruction::SDiv, C1, C2,
2358 isExact ? PossiblyExactOperator::IsExact : 0);
2359 }
2360
getFDiv(Constant * C1,Constant * C2)2361 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2362 return get(Instruction::FDiv, C1, C2);
2363 }
2364
getURem(Constant * C1,Constant * C2)2365 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2366 return get(Instruction::URem, C1, C2);
2367 }
2368
getSRem(Constant * C1,Constant * C2)2369 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2370 return get(Instruction::SRem, C1, C2);
2371 }
2372
getFRem(Constant * C1,Constant * C2)2373 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2374 return get(Instruction::FRem, C1, C2);
2375 }
2376
getAnd(Constant * C1,Constant * C2)2377 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2378 return get(Instruction::And, C1, C2);
2379 }
2380
getOr(Constant * C1,Constant * C2)2381 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2382 return get(Instruction::Or, C1, C2);
2383 }
2384
getXor(Constant * C1,Constant * C2)2385 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2386 return get(Instruction::Xor, C1, C2);
2387 }
2388
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2389 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2390 bool HasNUW, bool HasNSW) {
2391 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2392 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2393 return get(Instruction::Shl, C1, C2, Flags);
2394 }
2395
getLShr(Constant * C1,Constant * C2,bool isExact)2396 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2397 return get(Instruction::LShr, C1, C2,
2398 isExact ? PossiblyExactOperator::IsExact : 0);
2399 }
2400
getAShr(Constant * C1,Constant * C2,bool isExact)2401 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2402 return get(Instruction::AShr, C1, C2,
2403 isExact ? PossiblyExactOperator::IsExact : 0);
2404 }
2405
getBinOpIdentity(unsigned Opcode,Type * Ty,bool AllowRHSConstant)2406 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2407 bool AllowRHSConstant) {
2408 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2409
2410 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2411 if (Instruction::isCommutative(Opcode)) {
2412 switch (Opcode) {
2413 case Instruction::Add: // X + 0 = X
2414 case Instruction::Or: // X | 0 = X
2415 case Instruction::Xor: // X ^ 0 = X
2416 return Constant::getNullValue(Ty);
2417 case Instruction::Mul: // X * 1 = X
2418 return ConstantInt::get(Ty, 1);
2419 case Instruction::And: // X & -1 = X
2420 return Constant::getAllOnesValue(Ty);
2421 case Instruction::FAdd: // X + -0.0 = X
2422 // TODO: If the fadd has 'nsz', should we return +0.0?
2423 return ConstantFP::getNegativeZero(Ty);
2424 case Instruction::FMul: // X * 1.0 = X
2425 return ConstantFP::get(Ty, 1.0);
2426 default:
2427 llvm_unreachable("Every commutative binop has an identity constant");
2428 }
2429 }
2430
2431 // Non-commutative opcodes: AllowRHSConstant must be set.
2432 if (!AllowRHSConstant)
2433 return nullptr;
2434
2435 switch (Opcode) {
2436 case Instruction::Sub: // X - 0 = X
2437 case Instruction::Shl: // X << 0 = X
2438 case Instruction::LShr: // X >>u 0 = X
2439 case Instruction::AShr: // X >> 0 = X
2440 case Instruction::FSub: // X - 0.0 = X
2441 return Constant::getNullValue(Ty);
2442 case Instruction::SDiv: // X / 1 = X
2443 case Instruction::UDiv: // X /u 1 = X
2444 return ConstantInt::get(Ty, 1);
2445 case Instruction::FDiv: // X / 1.0 = X
2446 return ConstantFP::get(Ty, 1.0);
2447 default:
2448 return nullptr;
2449 }
2450 }
2451
getBinOpAbsorber(unsigned Opcode,Type * Ty)2452 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2453 switch (Opcode) {
2454 default:
2455 // Doesn't have an absorber.
2456 return nullptr;
2457
2458 case Instruction::Or:
2459 return Constant::getAllOnesValue(Ty);
2460
2461 case Instruction::And:
2462 case Instruction::Mul:
2463 return Constant::getNullValue(Ty);
2464 }
2465 }
2466
2467 /// Remove the constant from the constant table.
destroyConstantImpl()2468 void ConstantExpr::destroyConstantImpl() {
2469 getType()->getContext().pImpl->ExprConstants.remove(this);
2470 }
2471
getOpcodeName() const2472 const char *ConstantExpr::getOpcodeName() const {
2473 return Instruction::getOpcodeName(getOpcode());
2474 }
2475
GetElementPtrConstantExpr(Type * SrcElementTy,Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2476 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2477 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2478 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2479 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2480 (IdxList.size() + 1),
2481 IdxList.size() + 1),
2482 SrcElementTy(SrcElementTy),
2483 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2484 Op<0>() = C;
2485 Use *OperandList = getOperandList();
2486 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2487 OperandList[i+1] = IdxList[i];
2488 }
2489
getSourceElementType() const2490 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2491 return SrcElementTy;
2492 }
2493
getResultElementType() const2494 Type *GetElementPtrConstantExpr::getResultElementType() const {
2495 return ResElementTy;
2496 }
2497
2498 //===----------------------------------------------------------------------===//
2499 // ConstantData* implementations
2500
getElementType() const2501 Type *ConstantDataSequential::getElementType() const {
2502 return getType()->getElementType();
2503 }
2504
getRawDataValues() const2505 StringRef ConstantDataSequential::getRawDataValues() const {
2506 return StringRef(DataElements, getNumElements()*getElementByteSize());
2507 }
2508
isElementTypeCompatible(Type * Ty)2509 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2510 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2511 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2512 switch (IT->getBitWidth()) {
2513 case 8:
2514 case 16:
2515 case 32:
2516 case 64:
2517 return true;
2518 default: break;
2519 }
2520 }
2521 return false;
2522 }
2523
getNumElements() const2524 unsigned ConstantDataSequential::getNumElements() const {
2525 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2526 return AT->getNumElements();
2527 return getType()->getVectorNumElements();
2528 }
2529
2530
getElementByteSize() const2531 uint64_t ConstantDataSequential::getElementByteSize() const {
2532 return getElementType()->getPrimitiveSizeInBits()/8;
2533 }
2534
2535 /// Return the start of the specified element.
getElementPointer(unsigned Elt) const2536 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2537 assert(Elt < getNumElements() && "Invalid Elt");
2538 return DataElements+Elt*getElementByteSize();
2539 }
2540
2541
2542 /// Return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2543 static bool isAllZeros(StringRef Arr) {
2544 for (char I : Arr)
2545 if (I != 0)
2546 return false;
2547 return true;
2548 }
2549
2550 /// This is the underlying implementation of all of the
2551 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2552 /// the correct element type. We take the bytes in as a StringRef because
2553 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2554 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2555 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2556 // If the elements are all zero or there are no elements, return a CAZ, which
2557 // is more dense and canonical.
2558 if (isAllZeros(Elements))
2559 return ConstantAggregateZero::get(Ty);
2560
2561 // Do a lookup to see if we have already formed one of these.
2562 auto &Slot =
2563 *Ty->getContext()
2564 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2565 .first;
2566
2567 // The bucket can point to a linked list of different CDS's that have the same
2568 // body but different types. For example, 0,0,0,1 could be a 4 element array
2569 // of i8, or a 1-element array of i32. They'll both end up in the same
2570 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2571 ConstantDataSequential **Entry = &Slot.second;
2572 for (ConstantDataSequential *Node = *Entry; Node;
2573 Entry = &Node->Next, Node = *Entry)
2574 if (Node->getType() == Ty)
2575 return Node;
2576
2577 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2578 // and return it.
2579 if (isa<ArrayType>(Ty))
2580 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2581
2582 assert(isa<VectorType>(Ty));
2583 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2584 }
2585
destroyConstantImpl()2586 void ConstantDataSequential::destroyConstantImpl() {
2587 // Remove the constant from the StringMap.
2588 StringMap<ConstantDataSequential*> &CDSConstants =
2589 getType()->getContext().pImpl->CDSConstants;
2590
2591 StringMap<ConstantDataSequential*>::iterator Slot =
2592 CDSConstants.find(getRawDataValues());
2593
2594 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2595
2596 ConstantDataSequential **Entry = &Slot->getValue();
2597
2598 // Remove the entry from the hash table.
2599 if (!(*Entry)->Next) {
2600 // If there is only one value in the bucket (common case) it must be this
2601 // entry, and removing the entry should remove the bucket completely.
2602 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2603 getContext().pImpl->CDSConstants.erase(Slot);
2604 } else {
2605 // Otherwise, there are multiple entries linked off the bucket, unlink the
2606 // node we care about but keep the bucket around.
2607 for (ConstantDataSequential *Node = *Entry; ;
2608 Entry = &Node->Next, Node = *Entry) {
2609 assert(Node && "Didn't find entry in its uniquing hash table!");
2610 // If we found our entry, unlink it from the list and we're done.
2611 if (Node == this) {
2612 *Entry = Node->Next;
2613 break;
2614 }
2615 }
2616 }
2617
2618 // If we were part of a list, make sure that we don't delete the list that is
2619 // still owned by the uniquing map.
2620 Next = nullptr;
2621 }
2622
2623 /// getFP() constructors - Return a constant with array type with an element
2624 /// count and element type of float with precision matching the number of
2625 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2626 /// double for 64bits) Note that this can return a ConstantAggregateZero
2627 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2628 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2629 ArrayRef<uint16_t> Elts) {
2630 Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2631 const char *Data = reinterpret_cast<const char *>(Elts.data());
2632 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2633 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2634 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2635 ArrayRef<uint32_t> Elts) {
2636 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2637 const char *Data = reinterpret_cast<const char *>(Elts.data());
2638 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2639 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2640 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2641 ArrayRef<uint64_t> Elts) {
2642 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2643 const char *Data = reinterpret_cast<const char *>(Elts.data());
2644 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2645 }
2646
getString(LLVMContext & Context,StringRef Str,bool AddNull)2647 Constant *ConstantDataArray::getString(LLVMContext &Context,
2648 StringRef Str, bool AddNull) {
2649 if (!AddNull) {
2650 const uint8_t *Data = Str.bytes_begin();
2651 return get(Context, makeArrayRef(Data, Str.size()));
2652 }
2653
2654 SmallVector<uint8_t, 64> ElementVals;
2655 ElementVals.append(Str.begin(), Str.end());
2656 ElementVals.push_back(0);
2657 return get(Context, ElementVals);
2658 }
2659
2660 /// get() constructors - Return a constant with vector type with an element
2661 /// count and element type matching the ArrayRef passed in. Note that this
2662 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2663 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2664 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2665 const char *Data = reinterpret_cast<const char *>(Elts.data());
2666 return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2667 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2668 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2669 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2670 const char *Data = reinterpret_cast<const char *>(Elts.data());
2671 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2672 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2673 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2674 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2675 const char *Data = reinterpret_cast<const char *>(Elts.data());
2676 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2677 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2678 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2679 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2680 const char *Data = reinterpret_cast<const char *>(Elts.data());
2681 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2682 }
get(LLVMContext & Context,ArrayRef<float> Elts)2683 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2684 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2685 const char *Data = reinterpret_cast<const char *>(Elts.data());
2686 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2687 }
get(LLVMContext & Context,ArrayRef<double> Elts)2688 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2689 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2690 const char *Data = reinterpret_cast<const char *>(Elts.data());
2691 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2692 }
2693
2694 /// getFP() constructors - Return a constant with vector type with an element
2695 /// count and element type of float with the precision matching the number of
2696 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2697 /// double for 64bits) Note that this can return a ConstantAggregateZero
2698 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2699 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2700 ArrayRef<uint16_t> Elts) {
2701 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2702 const char *Data = reinterpret_cast<const char *>(Elts.data());
2703 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2704 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2705 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2706 ArrayRef<uint32_t> Elts) {
2707 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2708 const char *Data = reinterpret_cast<const char *>(Elts.data());
2709 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2710 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2711 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2712 ArrayRef<uint64_t> Elts) {
2713 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2714 const char *Data = reinterpret_cast<const char *>(Elts.data());
2715 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2716 }
2717
getSplat(unsigned NumElts,Constant * V)2718 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2719 assert(isElementTypeCompatible(V->getType()) &&
2720 "Element type not compatible with ConstantData");
2721 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2722 if (CI->getType()->isIntegerTy(8)) {
2723 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2724 return get(V->getContext(), Elts);
2725 }
2726 if (CI->getType()->isIntegerTy(16)) {
2727 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2728 return get(V->getContext(), Elts);
2729 }
2730 if (CI->getType()->isIntegerTy(32)) {
2731 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2732 return get(V->getContext(), Elts);
2733 }
2734 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2735 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2736 return get(V->getContext(), Elts);
2737 }
2738
2739 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2740 if (CFP->getType()->isHalfTy()) {
2741 SmallVector<uint16_t, 16> Elts(
2742 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2743 return getFP(V->getContext(), Elts);
2744 }
2745 if (CFP->getType()->isFloatTy()) {
2746 SmallVector<uint32_t, 16> Elts(
2747 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2748 return getFP(V->getContext(), Elts);
2749 }
2750 if (CFP->getType()->isDoubleTy()) {
2751 SmallVector<uint64_t, 16> Elts(
2752 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2753 return getFP(V->getContext(), Elts);
2754 }
2755 }
2756 return ConstantVector::getSplat(NumElts, V);
2757 }
2758
2759
getElementAsInteger(unsigned Elt) const2760 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2761 assert(isa<IntegerType>(getElementType()) &&
2762 "Accessor can only be used when element is an integer");
2763 const char *EltPtr = getElementPointer(Elt);
2764
2765 // The data is stored in host byte order, make sure to cast back to the right
2766 // type to load with the right endianness.
2767 switch (getElementType()->getIntegerBitWidth()) {
2768 default: llvm_unreachable("Invalid bitwidth for CDS");
2769 case 8:
2770 return *reinterpret_cast<const uint8_t *>(EltPtr);
2771 case 16:
2772 return *reinterpret_cast<const uint16_t *>(EltPtr);
2773 case 32:
2774 return *reinterpret_cast<const uint32_t *>(EltPtr);
2775 case 64:
2776 return *reinterpret_cast<const uint64_t *>(EltPtr);
2777 }
2778 }
2779
getElementAsAPInt(unsigned Elt) const2780 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2781 assert(isa<IntegerType>(getElementType()) &&
2782 "Accessor can only be used when element is an integer");
2783 const char *EltPtr = getElementPointer(Elt);
2784
2785 // The data is stored in host byte order, make sure to cast back to the right
2786 // type to load with the right endianness.
2787 switch (getElementType()->getIntegerBitWidth()) {
2788 default: llvm_unreachable("Invalid bitwidth for CDS");
2789 case 8: {
2790 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2791 return APInt(8, EltVal);
2792 }
2793 case 16: {
2794 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2795 return APInt(16, EltVal);
2796 }
2797 case 32: {
2798 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2799 return APInt(32, EltVal);
2800 }
2801 case 64: {
2802 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2803 return APInt(64, EltVal);
2804 }
2805 }
2806 }
2807
getElementAsAPFloat(unsigned Elt) const2808 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2809 const char *EltPtr = getElementPointer(Elt);
2810
2811 switch (getElementType()->getTypeID()) {
2812 default:
2813 llvm_unreachable("Accessor can only be used when element is float/double!");
2814 case Type::HalfTyID: {
2815 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2816 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2817 }
2818 case Type::FloatTyID: {
2819 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2820 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2821 }
2822 case Type::DoubleTyID: {
2823 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2824 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2825 }
2826 }
2827 }
2828
getElementAsFloat(unsigned Elt) const2829 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2830 assert(getElementType()->isFloatTy() &&
2831 "Accessor can only be used when element is a 'float'");
2832 return *reinterpret_cast<const float *>(getElementPointer(Elt));
2833 }
2834
getElementAsDouble(unsigned Elt) const2835 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2836 assert(getElementType()->isDoubleTy() &&
2837 "Accessor can only be used when element is a 'float'");
2838 return *reinterpret_cast<const double *>(getElementPointer(Elt));
2839 }
2840
getElementAsConstant(unsigned Elt) const2841 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2842 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2843 getElementType()->isDoubleTy())
2844 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2845
2846 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2847 }
2848
isString(unsigned CharSize) const2849 bool ConstantDataSequential::isString(unsigned CharSize) const {
2850 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
2851 }
2852
isCString() const2853 bool ConstantDataSequential::isCString() const {
2854 if (!isString())
2855 return false;
2856
2857 StringRef Str = getAsString();
2858
2859 // The last value must be nul.
2860 if (Str.back() != 0) return false;
2861
2862 // Other elements must be non-nul.
2863 return Str.drop_back().find(0) == StringRef::npos;
2864 }
2865
isSplat() const2866 bool ConstantDataVector::isSplat() const {
2867 const char *Base = getRawDataValues().data();
2868
2869 // Compare elements 1+ to the 0'th element.
2870 unsigned EltSize = getElementByteSize();
2871 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2872 if (memcmp(Base, Base+i*EltSize, EltSize))
2873 return false;
2874
2875 return true;
2876 }
2877
getSplatValue() const2878 Constant *ConstantDataVector::getSplatValue() const {
2879 // If they're all the same, return the 0th one as a representative.
2880 return isSplat() ? getElementAsConstant(0) : nullptr;
2881 }
2882
2883 //===----------------------------------------------------------------------===//
2884 // handleOperandChange implementations
2885
2886 /// Update this constant array to change uses of
2887 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2888 /// etc.
2889 ///
2890 /// Note that we intentionally replace all uses of From with To here. Consider
2891 /// a large array that uses 'From' 1000 times. By handling this case all here,
2892 /// ConstantArray::handleOperandChange is only invoked once, and that
2893 /// single invocation handles all 1000 uses. Handling them one at a time would
2894 /// work, but would be really slow because it would have to unique each updated
2895 /// array instance.
2896 ///
handleOperandChange(Value * From,Value * To)2897 void Constant::handleOperandChange(Value *From, Value *To) {
2898 Value *Replacement = nullptr;
2899 switch (getValueID()) {
2900 default:
2901 llvm_unreachable("Not a constant!");
2902 #define HANDLE_CONSTANT(Name) \
2903 case Value::Name##Val: \
2904 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2905 break;
2906 #include "llvm/IR/Value.def"
2907 }
2908
2909 // If handleOperandChangeImpl returned nullptr, then it handled
2910 // replacing itself and we don't want to delete or replace anything else here.
2911 if (!Replacement)
2912 return;
2913
2914 // I do need to replace this with an existing value.
2915 assert(Replacement != this && "I didn't contain From!");
2916
2917 // Everyone using this now uses the replacement.
2918 replaceAllUsesWith(Replacement);
2919
2920 // Delete the old constant!
2921 destroyConstant();
2922 }
2923
handleOperandChangeImpl(Value * From,Value * To)2924 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2925 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2926 Constant *ToC = cast<Constant>(To);
2927
2928 SmallVector<Constant*, 8> Values;
2929 Values.reserve(getNumOperands()); // Build replacement array.
2930
2931 // Fill values with the modified operands of the constant array. Also,
2932 // compute whether this turns into an all-zeros array.
2933 unsigned NumUpdated = 0;
2934
2935 // Keep track of whether all the values in the array are "ToC".
2936 bool AllSame = true;
2937 Use *OperandList = getOperandList();
2938 unsigned OperandNo = 0;
2939 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2940 Constant *Val = cast<Constant>(O->get());
2941 if (Val == From) {
2942 OperandNo = (O - OperandList);
2943 Val = ToC;
2944 ++NumUpdated;
2945 }
2946 Values.push_back(Val);
2947 AllSame &= Val == ToC;
2948 }
2949
2950 if (AllSame && ToC->isNullValue())
2951 return ConstantAggregateZero::get(getType());
2952
2953 if (AllSame && isa<UndefValue>(ToC))
2954 return UndefValue::get(getType());
2955
2956 // Check for any other type of constant-folding.
2957 if (Constant *C = getImpl(getType(), Values))
2958 return C;
2959
2960 // Update to the new value.
2961 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2962 Values, this, From, ToC, NumUpdated, OperandNo);
2963 }
2964
handleOperandChangeImpl(Value * From,Value * To)2965 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2966 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2967 Constant *ToC = cast<Constant>(To);
2968
2969 Use *OperandList = getOperandList();
2970
2971 SmallVector<Constant*, 8> Values;
2972 Values.reserve(getNumOperands()); // Build replacement struct.
2973
2974 // Fill values with the modified operands of the constant struct. Also,
2975 // compute whether this turns into an all-zeros struct.
2976 unsigned NumUpdated = 0;
2977 bool AllSame = true;
2978 unsigned OperandNo = 0;
2979 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2980 Constant *Val = cast<Constant>(O->get());
2981 if (Val == From) {
2982 OperandNo = (O - OperandList);
2983 Val = ToC;
2984 ++NumUpdated;
2985 }
2986 Values.push_back(Val);
2987 AllSame &= Val == ToC;
2988 }
2989
2990 if (AllSame && ToC->isNullValue())
2991 return ConstantAggregateZero::get(getType());
2992
2993 if (AllSame && isa<UndefValue>(ToC))
2994 return UndefValue::get(getType());
2995
2996 // Update to the new value.
2997 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2998 Values, this, From, ToC, NumUpdated, OperandNo);
2999 }
3000
handleOperandChangeImpl(Value * From,Value * To)3001 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3002 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3003 Constant *ToC = cast<Constant>(To);
3004
3005 SmallVector<Constant*, 8> Values;
3006 Values.reserve(getNumOperands()); // Build replacement array...
3007 unsigned NumUpdated = 0;
3008 unsigned OperandNo = 0;
3009 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3010 Constant *Val = getOperand(i);
3011 if (Val == From) {
3012 OperandNo = i;
3013 ++NumUpdated;
3014 Val = ToC;
3015 }
3016 Values.push_back(Val);
3017 }
3018
3019 if (Constant *C = getImpl(Values))
3020 return C;
3021
3022 // Update to the new value.
3023 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3024 Values, this, From, ToC, NumUpdated, OperandNo);
3025 }
3026
handleOperandChangeImpl(Value * From,Value * ToV)3027 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3028 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3029 Constant *To = cast<Constant>(ToV);
3030
3031 SmallVector<Constant*, 8> NewOps;
3032 unsigned NumUpdated = 0;
3033 unsigned OperandNo = 0;
3034 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3035 Constant *Op = getOperand(i);
3036 if (Op == From) {
3037 OperandNo = i;
3038 ++NumUpdated;
3039 Op = To;
3040 }
3041 NewOps.push_back(Op);
3042 }
3043 assert(NumUpdated && "I didn't contain From!");
3044
3045 if (Constant *C = getWithOperands(NewOps, getType(), true))
3046 return C;
3047
3048 // Update to the new value.
3049 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3050 NewOps, this, From, To, NumUpdated, OperandNo);
3051 }
3052
getAsInstruction() const3053 Instruction *ConstantExpr::getAsInstruction() const {
3054 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
3055 ArrayRef<Value*> Ops(ValueOperands);
3056
3057 switch (getOpcode()) {
3058 case Instruction::Trunc:
3059 case Instruction::ZExt:
3060 case Instruction::SExt:
3061 case Instruction::FPTrunc:
3062 case Instruction::FPExt:
3063 case Instruction::UIToFP:
3064 case Instruction::SIToFP:
3065 case Instruction::FPToUI:
3066 case Instruction::FPToSI:
3067 case Instruction::PtrToInt:
3068 case Instruction::IntToPtr:
3069 case Instruction::BitCast:
3070 case Instruction::AddrSpaceCast:
3071 return CastInst::Create((Instruction::CastOps)getOpcode(),
3072 Ops[0], getType());
3073 case Instruction::Select:
3074 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3075 case Instruction::InsertElement:
3076 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3077 case Instruction::ExtractElement:
3078 return ExtractElementInst::Create(Ops[0], Ops[1]);
3079 case Instruction::InsertValue:
3080 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3081 case Instruction::ExtractValue:
3082 return ExtractValueInst::Create(Ops[0], getIndices());
3083 case Instruction::ShuffleVector:
3084 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3085
3086 case Instruction::GetElementPtr: {
3087 const auto *GO = cast<GEPOperator>(this);
3088 if (GO->isInBounds())
3089 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3090 Ops[0], Ops.slice(1));
3091 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3092 Ops.slice(1));
3093 }
3094 case Instruction::ICmp:
3095 case Instruction::FCmp:
3096 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3097 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
3098 case Instruction::FNeg:
3099 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0]);
3100 default:
3101 assert(getNumOperands() == 2 && "Must be binary operator?");
3102 BinaryOperator *BO =
3103 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3104 Ops[0], Ops[1]);
3105 if (isa<OverflowingBinaryOperator>(BO)) {
3106 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3107 OverflowingBinaryOperator::NoUnsignedWrap);
3108 BO->setHasNoSignedWrap(SubclassOptionalData &
3109 OverflowingBinaryOperator::NoSignedWrap);
3110 }
3111 if (isa<PossiblyExactOperator>(BO))
3112 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3113 return BO;
3114 }
3115 }
3116