1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Generic implementation of equivalence classes through the use Tarjan's 10 // efficient union-find algorithm. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H 15 #define LLVM_ADT_EQUIVALENCECLASSES_H 16 17 #include <cassert> 18 #include <cstddef> 19 #include <cstdint> 20 #include <iterator> 21 #include <set> 22 23 namespace llvm { 24 25 /// EquivalenceClasses - This represents a collection of equivalence classes and 26 /// supports three efficient operations: insert an element into a class of its 27 /// own, union two classes, and find the class for a given element. In 28 /// addition to these modification methods, it is possible to iterate over all 29 /// of the equivalence classes and all of the elements in a class. 30 /// 31 /// This implementation is an efficient implementation that only stores one copy 32 /// of the element being indexed per entry in the set, and allows any arbitrary 33 /// type to be indexed (as long as it can be ordered with operator<). 34 /// 35 /// Here is a simple example using integers: 36 /// 37 /// \code 38 /// EquivalenceClasses<int> EC; 39 /// EC.unionSets(1, 2); // insert 1, 2 into the same set 40 /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets 41 /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. 42 /// 43 /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); 44 /// I != E; ++I) { // Iterate over all of the equivalence sets. 45 /// if (!I->isLeader()) continue; // Ignore non-leader sets. 46 /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); 47 /// MI != EC.member_end(); ++MI) // Loop over members in this set. 48 /// cerr << *MI << " "; // Print member. 49 /// cerr << "\n"; // Finish set. 50 /// } 51 /// \endcode 52 /// 53 /// This example prints: 54 /// 4 55 /// 5 1 2 56 /// 57 template <class ElemTy> 58 class EquivalenceClasses { 59 /// ECValue - The EquivalenceClasses data structure is just a set of these. 60 /// Each of these represents a relation for a value. First it stores the 61 /// value itself, which provides the ordering that the set queries. Next, it 62 /// provides a "next pointer", which is used to enumerate all of the elements 63 /// in the unioned set. Finally, it defines either a "end of list pointer" or 64 /// "leader pointer" depending on whether the value itself is a leader. A 65 /// "leader pointer" points to the node that is the leader for this element, 66 /// if the node is not a leader. A "end of list pointer" points to the last 67 /// node in the list of members of this list. Whether or not a node is a 68 /// leader is determined by a bit stolen from one of the pointers. 69 class ECValue { 70 friend class EquivalenceClasses; 71 72 mutable const ECValue *Leader, *Next; 73 ElemTy Data; 74 75 // ECValue ctor - Start out with EndOfList pointing to this node, Next is 76 // Null, isLeader = true. ECValue(const ElemTy & Elt)77 ECValue(const ElemTy &Elt) 78 : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} 79 getLeader()80 const ECValue *getLeader() const { 81 if (isLeader()) return this; 82 if (Leader->isLeader()) return Leader; 83 // Path compression. 84 return Leader = Leader->getLeader(); 85 } 86 getEndOfList()87 const ECValue *getEndOfList() const { 88 assert(isLeader() && "Cannot get the end of a list for a non-leader!"); 89 return Leader; 90 } 91 setNext(const ECValue * NewNext)92 void setNext(const ECValue *NewNext) const { 93 assert(getNext() == nullptr && "Already has a next pointer!"); 94 Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); 95 } 96 97 public: ECValue(const ECValue & RHS)98 ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), 99 Data(RHS.Data) { 100 // Only support copying of singleton nodes. 101 assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); 102 } 103 104 bool operator<(const ECValue &UFN) const { return Data < UFN.Data; } 105 isLeader()106 bool isLeader() const { return (intptr_t)Next & 1; } getData()107 const ElemTy &getData() const { return Data; } 108 getNext()109 const ECValue *getNext() const { 110 return (ECValue*)((intptr_t)Next & ~(intptr_t)1); 111 } 112 113 template<typename T> 114 bool operator<(const T &Val) const { return Data < Val; } 115 }; 116 117 /// TheMapping - This implicitly provides a mapping from ElemTy values to the 118 /// ECValues, it just keeps the key as part of the value. 119 std::set<ECValue> TheMapping; 120 121 public: 122 EquivalenceClasses() = default; EquivalenceClasses(const EquivalenceClasses & RHS)123 EquivalenceClasses(const EquivalenceClasses &RHS) { 124 operator=(RHS); 125 } 126 127 const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { 128 TheMapping.clear(); 129 for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) 130 if (I->isLeader()) { 131 member_iterator MI = RHS.member_begin(I); 132 member_iterator LeaderIt = member_begin(insert(*MI)); 133 for (++MI; MI != member_end(); ++MI) 134 unionSets(LeaderIt, member_begin(insert(*MI))); 135 } 136 return *this; 137 } 138 139 //===--------------------------------------------------------------------===// 140 // Inspection methods 141 // 142 143 /// iterator* - Provides a way to iterate over all values in the set. 144 using iterator = typename std::set<ECValue>::const_iterator; 145 begin()146 iterator begin() const { return TheMapping.begin(); } end()147 iterator end() const { return TheMapping.end(); } 148 empty()149 bool empty() const { return TheMapping.empty(); } 150 151 /// member_* Iterate over the members of an equivalence class. 152 class member_iterator; member_begin(iterator I)153 member_iterator member_begin(iterator I) const { 154 // Only leaders provide anything to iterate over. 155 return member_iterator(I->isLeader() ? &*I : nullptr); 156 } member_end()157 member_iterator member_end() const { 158 return member_iterator(nullptr); 159 } 160 161 /// findValue - Return an iterator to the specified value. If it does not 162 /// exist, end() is returned. findValue(const ElemTy & V)163 iterator findValue(const ElemTy &V) const { 164 return TheMapping.find(V); 165 } 166 167 /// getLeaderValue - Return the leader for the specified value that is in the 168 /// set. It is an error to call this method for a value that is not yet in 169 /// the set. For that, call getOrInsertLeaderValue(V). getLeaderValue(const ElemTy & V)170 const ElemTy &getLeaderValue(const ElemTy &V) const { 171 member_iterator MI = findLeader(V); 172 assert(MI != member_end() && "Value is not in the set!"); 173 return *MI; 174 } 175 176 /// getOrInsertLeaderValue - Return the leader for the specified value that is 177 /// in the set. If the member is not in the set, it is inserted, then 178 /// returned. getOrInsertLeaderValue(const ElemTy & V)179 const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { 180 member_iterator MI = findLeader(insert(V)); 181 assert(MI != member_end() && "Value is not in the set!"); 182 return *MI; 183 } 184 185 /// getNumClasses - Return the number of equivalence classes in this set. 186 /// Note that this is a linear time operation. getNumClasses()187 unsigned getNumClasses() const { 188 unsigned NC = 0; 189 for (iterator I = begin(), E = end(); I != E; ++I) 190 if (I->isLeader()) ++NC; 191 return NC; 192 } 193 194 //===--------------------------------------------------------------------===// 195 // Mutation methods 196 197 /// insert - Insert a new value into the union/find set, ignoring the request 198 /// if the value already exists. insert(const ElemTy & Data)199 iterator insert(const ElemTy &Data) { 200 return TheMapping.insert(ECValue(Data)).first; 201 } 202 203 /// findLeader - Given a value in the set, return a member iterator for the 204 /// equivalence class it is in. This does the path-compression part that 205 /// makes union-find "union findy". This returns an end iterator if the value 206 /// is not in the equivalence class. findLeader(iterator I)207 member_iterator findLeader(iterator I) const { 208 if (I == TheMapping.end()) return member_end(); 209 return member_iterator(I->getLeader()); 210 } findLeader(const ElemTy & V)211 member_iterator findLeader(const ElemTy &V) const { 212 return findLeader(TheMapping.find(V)); 213 } 214 215 /// union - Merge the two equivalence sets for the specified values, inserting 216 /// them if they do not already exist in the equivalence set. unionSets(const ElemTy & V1,const ElemTy & V2)217 member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { 218 iterator V1I = insert(V1), V2I = insert(V2); 219 return unionSets(findLeader(V1I), findLeader(V2I)); 220 } unionSets(member_iterator L1,member_iterator L2)221 member_iterator unionSets(member_iterator L1, member_iterator L2) { 222 assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); 223 if (L1 == L2) return L1; // Unifying the same two sets, noop. 224 225 // Otherwise, this is a real union operation. Set the end of the L1 list to 226 // point to the L2 leader node. 227 const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; 228 L1LV.getEndOfList()->setNext(&L2LV); 229 230 // Update L1LV's end of list pointer. 231 L1LV.Leader = L2LV.getEndOfList(); 232 233 // Clear L2's leader flag: 234 L2LV.Next = L2LV.getNext(); 235 236 // L2's leader is now L1. 237 L2LV.Leader = &L1LV; 238 return L1; 239 } 240 241 // isEquivalent - Return true if V1 is equivalent to V2. This can happen if 242 // V1 is equal to V2 or if they belong to one equivalence class. isEquivalent(const ElemTy & V1,const ElemTy & V2)243 bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { 244 // Fast path: any element is equivalent to itself. 245 if (V1 == V2) 246 return true; 247 auto It = findLeader(V1); 248 return It != member_end() && It == findLeader(V2); 249 } 250 251 class member_iterator : public std::iterator<std::forward_iterator_tag, 252 const ElemTy, ptrdiff_t> { 253 friend class EquivalenceClasses; 254 255 using super = std::iterator<std::forward_iterator_tag, 256 const ElemTy, ptrdiff_t>; 257 258 const ECValue *Node; 259 260 public: 261 using size_type = size_t; 262 using pointer = typename super::pointer; 263 using reference = typename super::reference; 264 265 explicit member_iterator() = default; member_iterator(const ECValue * N)266 explicit member_iterator(const ECValue *N) : Node(N) {} 267 268 reference operator*() const { 269 assert(Node != nullptr && "Dereferencing end()!"); 270 return Node->getData(); 271 } 272 pointer operator->() const { return &operator*(); } 273 274 member_iterator &operator++() { 275 assert(Node != nullptr && "++'d off the end of the list!"); 276 Node = Node->getNext(); 277 return *this; 278 } 279 280 member_iterator operator++(int) { // postincrement operators. 281 member_iterator tmp = *this; 282 ++*this; 283 return tmp; 284 } 285 286 bool operator==(const member_iterator &RHS) const { 287 return Node == RHS.Node; 288 } 289 bool operator!=(const member_iterator &RHS) const { 290 return Node != RHS.Node; 291 } 292 }; 293 }; 294 295 } // end namespace llvm 296 297 #endif // LLVM_ADT_EQUIVALENCECLASSES_H 298