• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information.  It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
12 //
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&.  None of the members functions
15 // require modification to the object.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
21 
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/TypeSize.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <string>
36 
37 // This needs to be outside of the namespace, to avoid conflict with llvm-c
38 // decl.
39 using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
40 
41 namespace llvm {
42 
43 class GlobalVariable;
44 class LLVMContext;
45 class Module;
46 class StructLayout;
47 class Triple;
48 class Value;
49 
50 /// Enum used to categorize the alignment types stored by LayoutAlignElem
51 enum AlignTypeEnum {
52   INVALID_ALIGN = 0,
53   INTEGER_ALIGN = 'i',
54   VECTOR_ALIGN = 'v',
55   FLOAT_ALIGN = 'f',
56   AGGREGATE_ALIGN = 'a'
57 };
58 
59 // FIXME: Currently the DataLayout string carries a "preferred alignment"
60 // for types. As the DataLayout is module/global, this should likely be
61 // sunk down to an FTTI element that is queried rather than a global
62 // preference.
63 
64 /// Layout alignment element.
65 ///
66 /// Stores the alignment data associated with a given alignment type (integer,
67 /// vector, float) and type bit width.
68 ///
69 /// \note The unusual order of elements in the structure attempts to reduce
70 /// padding and make the structure slightly more cache friendly.
71 struct LayoutAlignElem {
72   /// Alignment type from \c AlignTypeEnum
73   unsigned AlignType : 8;
74   unsigned TypeBitWidth : 24;
75   Align ABIAlign;
76   Align PrefAlign;
77 
78   static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
79                              Align pref_align, uint32_t bit_width);
80 
81   bool operator==(const LayoutAlignElem &rhs) const;
82 };
83 
84 /// Layout pointer alignment element.
85 ///
86 /// Stores the alignment data associated with a given pointer and address space.
87 ///
88 /// \note The unusual order of elements in the structure attempts to reduce
89 /// padding and make the structure slightly more cache friendly.
90 struct PointerAlignElem {
91   Align ABIAlign;
92   Align PrefAlign;
93   uint32_t TypeByteWidth;
94   uint32_t AddressSpace;
95   uint32_t IndexWidth;
96 
97   /// Initializer
98   static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
99                               Align PrefAlign, uint32_t TypeByteWidth,
100                               uint32_t IndexWidth);
101 
102   bool operator==(const PointerAlignElem &rhs) const;
103 };
104 
105 /// A parsed version of the target data layout string in and methods for
106 /// querying it.
107 ///
108 /// The target data layout string is specified *by the target* - a frontend
109 /// generating LLVM IR is required to generate the right target data for the
110 /// target being codegen'd to.
111 class DataLayout {
112 public:
113   enum class FunctionPtrAlignType {
114     /// The function pointer alignment is independent of the function alignment.
115     Independent,
116     /// The function pointer alignment is a multiple of the function alignment.
117     MultipleOfFunctionAlign,
118   };
119 private:
120   /// Defaults to false.
121   bool BigEndian;
122 
123   unsigned AllocaAddrSpace;
124   MaybeAlign StackNaturalAlign;
125   unsigned ProgramAddrSpace;
126 
127   MaybeAlign FunctionPtrAlign;
128   FunctionPtrAlignType TheFunctionPtrAlignType;
129 
130   enum ManglingModeT {
131     MM_None,
132     MM_ELF,
133     MM_MachO,
134     MM_WinCOFF,
135     MM_WinCOFFX86,
136     MM_Mips
137   };
138   ManglingModeT ManglingMode;
139 
140   SmallVector<unsigned char, 8> LegalIntWidths;
141 
142   /// Primitive type alignment data. This is sorted by type and bit
143   /// width during construction.
144   using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
145   AlignmentsTy Alignments;
146 
147   AlignmentsTy::const_iterator
findAlignmentLowerBound(AlignTypeEnum AlignType,uint32_t BitWidth)148   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
149     return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
150                                                                    BitWidth);
151   }
152 
153   AlignmentsTy::iterator
154   findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
155 
156   /// The string representation used to create this DataLayout
157   std::string StringRepresentation;
158 
159   using PointersTy = SmallVector<PointerAlignElem, 8>;
160   PointersTy Pointers;
161 
162   PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)163   findPointerLowerBound(uint32_t AddressSpace) const {
164     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
165   }
166 
167   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
168 
169   // The StructType -> StructLayout map.
170   mutable void *LayoutMap = nullptr;
171 
172   /// Pointers in these address spaces are non-integral, and don't have a
173   /// well-defined bitwise representation.
174   SmallVector<unsigned, 8> NonIntegralAddressSpaces;
175 
176   void setAlignment(AlignTypeEnum align_type, Align abi_align, Align pref_align,
177                     uint32_t bit_width);
178   Align getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
179                          bool ABIAlign, Type *Ty) const;
180   void setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
181                            uint32_t TypeByteWidth, uint32_t IndexWidth);
182 
183   /// Internal helper method that returns requested alignment for type.
184   Align getAlignment(Type *Ty, bool abi_or_pref) const;
185 
186   /// Parses a target data specification string. Assert if the string is
187   /// malformed.
188   void parseSpecifier(StringRef LayoutDescription);
189 
190   // Free all internal data structures.
191   void clear();
192 
193 public:
194   /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)195   explicit DataLayout(StringRef LayoutDescription) {
196     reset(LayoutDescription);
197   }
198 
199   /// Initialize target data from properties stored in the module.
200   explicit DataLayout(const Module *M);
201 
DataLayout(const DataLayout & DL)202   DataLayout(const DataLayout &DL) { *this = DL; }
203 
204   ~DataLayout(); // Not virtual, do not subclass this class
205 
206   DataLayout &operator=(const DataLayout &DL) {
207     clear();
208     StringRepresentation = DL.StringRepresentation;
209     BigEndian = DL.isBigEndian();
210     AllocaAddrSpace = DL.AllocaAddrSpace;
211     StackNaturalAlign = DL.StackNaturalAlign;
212     FunctionPtrAlign = DL.FunctionPtrAlign;
213     TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
214     ProgramAddrSpace = DL.ProgramAddrSpace;
215     ManglingMode = DL.ManglingMode;
216     LegalIntWidths = DL.LegalIntWidths;
217     Alignments = DL.Alignments;
218     Pointers = DL.Pointers;
219     NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
220     return *this;
221   }
222 
223   bool operator==(const DataLayout &Other) const;
224   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
225 
226   void init(const Module *M);
227 
228   /// Parse a data layout string (with fallback to default values).
229   void reset(StringRef LayoutDescription);
230 
231   /// Layout endianness...
isLittleEndian()232   bool isLittleEndian() const { return !BigEndian; }
isBigEndian()233   bool isBigEndian() const { return BigEndian; }
234 
235   /// Returns the string representation of the DataLayout.
236   ///
237   /// This representation is in the same format accepted by the string
238   /// constructor above. This should not be used to compare two DataLayout as
239   /// different string can represent the same layout.
getStringRepresentation()240   const std::string &getStringRepresentation() const {
241     return StringRepresentation;
242   }
243 
244   /// Test if the DataLayout was constructed from an empty string.
isDefault()245   bool isDefault() const { return StringRepresentation.empty(); }
246 
247   /// Returns true if the specified type is known to be a native integer
248   /// type supported by the CPU.
249   ///
250   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
251   /// on any known one. This returns false if the integer width is not legal.
252   ///
253   /// The width is specified in bits.
isLegalInteger(uint64_t Width)254   bool isLegalInteger(uint64_t Width) const {
255     for (unsigned LegalIntWidth : LegalIntWidths)
256       if (LegalIntWidth == Width)
257         return true;
258     return false;
259   }
260 
isIllegalInteger(uint64_t Width)261   bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
262 
263   /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(Align Alignment)264   bool exceedsNaturalStackAlignment(Align Alignment) const {
265     return StackNaturalAlign && (Alignment > StackNaturalAlign);
266   }
267 
getStackAlignment()268   Align getStackAlignment() const {
269     assert(StackNaturalAlign && "StackNaturalAlign must be defined");
270     return *StackNaturalAlign;
271   }
272 
getAllocaAddrSpace()273   unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
274 
275   /// Returns the alignment of function pointers, which may or may not be
276   /// related to the alignment of functions.
277   /// \see getFunctionPtrAlignType
getFunctionPtrAlign()278   MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
279 
280   /// Return the type of function pointer alignment.
281   /// \see getFunctionPtrAlign
getFunctionPtrAlignType()282   FunctionPtrAlignType getFunctionPtrAlignType() const {
283     return TheFunctionPtrAlignType;
284   }
285 
getProgramAddressSpace()286   unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
287 
hasMicrosoftFastStdCallMangling()288   bool hasMicrosoftFastStdCallMangling() const {
289     return ManglingMode == MM_WinCOFFX86;
290   }
291 
292   /// Returns true if symbols with leading question marks should not receive IR
293   /// mangling. True for Windows mangling modes.
doNotMangleLeadingQuestionMark()294   bool doNotMangleLeadingQuestionMark() const {
295     return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
296   }
297 
hasLinkerPrivateGlobalPrefix()298   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
299 
getLinkerPrivateGlobalPrefix()300   StringRef getLinkerPrivateGlobalPrefix() const {
301     if (ManglingMode == MM_MachO)
302       return "l";
303     return "";
304   }
305 
getGlobalPrefix()306   char getGlobalPrefix() const {
307     switch (ManglingMode) {
308     case MM_None:
309     case MM_ELF:
310     case MM_Mips:
311     case MM_WinCOFF:
312       return '\0';
313     case MM_MachO:
314     case MM_WinCOFFX86:
315       return '_';
316     }
317     llvm_unreachable("invalid mangling mode");
318   }
319 
getPrivateGlobalPrefix()320   StringRef getPrivateGlobalPrefix() const {
321     switch (ManglingMode) {
322     case MM_None:
323       return "";
324     case MM_ELF:
325     case MM_WinCOFF:
326       return ".L";
327     case MM_Mips:
328       return "$";
329     case MM_MachO:
330     case MM_WinCOFFX86:
331       return "L";
332     }
333     llvm_unreachable("invalid mangling mode");
334   }
335 
336   static const char *getManglingComponent(const Triple &T);
337 
338   /// Returns true if the specified type fits in a native integer type
339   /// supported by the CPU.
340   ///
341   /// For example, if the CPU only supports i32 as a native integer type, then
342   /// i27 fits in a legal integer type but i45 does not.
fitsInLegalInteger(unsigned Width)343   bool fitsInLegalInteger(unsigned Width) const {
344     for (unsigned LegalIntWidth : LegalIntWidths)
345       if (Width <= LegalIntWidth)
346         return true;
347     return false;
348   }
349 
350   /// Layout pointer alignment
351   Align getPointerABIAlignment(unsigned AS) const;
352 
353   /// Return target's alignment for stack-based pointers
354   /// FIXME: The defaults need to be removed once all of
355   /// the backends/clients are updated.
356   Align getPointerPrefAlignment(unsigned AS = 0) const;
357 
358   /// Layout pointer size
359   /// FIXME: The defaults need to be removed once all of
360   /// the backends/clients are updated.
361   unsigned getPointerSize(unsigned AS = 0) const;
362 
363   /// Returns the maximum pointer size over all address spaces.
364   unsigned getMaxPointerSize() const;
365 
366   // Index size used for address calculation.
367   unsigned getIndexSize(unsigned AS) const;
368 
369   /// Return the address spaces containing non-integral pointers.  Pointers in
370   /// this address space don't have a well-defined bitwise representation.
getNonIntegralAddressSpaces()371   ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
372     return NonIntegralAddressSpaces;
373   }
374 
isNonIntegralAddressSpace(unsigned AddrSpace)375   bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
376     ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
377     return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
378   }
379 
isNonIntegralPointerType(PointerType * PT)380   bool isNonIntegralPointerType(PointerType *PT) const {
381     return isNonIntegralAddressSpace(PT->getAddressSpace());
382   }
383 
isNonIntegralPointerType(Type * Ty)384   bool isNonIntegralPointerType(Type *Ty) const {
385     auto *PTy = dyn_cast<PointerType>(Ty);
386     return PTy && isNonIntegralPointerType(PTy);
387   }
388 
389   /// Layout pointer size, in bits
390   /// FIXME: The defaults need to be removed once all of
391   /// the backends/clients are updated.
392   unsigned getPointerSizeInBits(unsigned AS = 0) const {
393     return getPointerSize(AS) * 8;
394   }
395 
396   /// Returns the maximum pointer size over all address spaces.
getMaxPointerSizeInBits()397   unsigned getMaxPointerSizeInBits() const {
398     return getMaxPointerSize() * 8;
399   }
400 
401   /// Size in bits of index used for address calculation in getelementptr.
getIndexSizeInBits(unsigned AS)402   unsigned getIndexSizeInBits(unsigned AS) const {
403     return getIndexSize(AS) * 8;
404   }
405 
406   /// Layout pointer size, in bits, based on the type.  If this function is
407   /// called with a pointer type, then the type size of the pointer is returned.
408   /// If this function is called with a vector of pointers, then the type size
409   /// of the pointer is returned.  This should only be called with a pointer or
410   /// vector of pointers.
411   unsigned getPointerTypeSizeInBits(Type *) const;
412 
413   /// Layout size of the index used in GEP calculation.
414   /// The function should be called with pointer or vector of pointers type.
415   unsigned getIndexTypeSizeInBits(Type *Ty) const;
416 
getPointerTypeSize(Type * Ty)417   unsigned getPointerTypeSize(Type *Ty) const {
418     return getPointerTypeSizeInBits(Ty) / 8;
419   }
420 
421   /// Size examples:
422   ///
423   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
424   /// ----        ----------  ---------------  ---------------
425   ///  i1            1           8                8
426   ///  i8            8           8                8
427   ///  i19          19          24               32
428   ///  i32          32          32               32
429   ///  i100        100         104              128
430   ///  i128        128         128              128
431   ///  Float        32          32               32
432   ///  Double       64          64               64
433   ///  X86_FP80     80          80               96
434   ///
435   /// [*] The alloc size depends on the alignment, and thus on the target.
436   ///     These values are for x86-32 linux.
437 
438   /// Returns the number of bits necessary to hold the specified type.
439   ///
440   /// If Ty is a scalable vector type, the scalable property will be set and
441   /// the runtime size will be a positive integer multiple of the base size.
442   ///
443   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
444   /// have a size (Type::isSized() must return true).
445   TypeSize getTypeSizeInBits(Type *Ty) const;
446 
447   /// Returns the maximum number of bytes that may be overwritten by
448   /// storing the specified type.
449   ///
450   /// If Ty is a scalable vector type, the scalable property will be set and
451   /// the runtime size will be a positive integer multiple of the base size.
452   ///
453   /// For example, returns 5 for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)454   TypeSize getTypeStoreSize(Type *Ty) const {
455     TypeSize BaseSize = getTypeSizeInBits(Ty);
456     return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
457   }
458 
459   /// Returns the maximum number of bits that may be overwritten by
460   /// storing the specified type; always a multiple of 8.
461   ///
462   /// If Ty is a scalable vector type, the scalable property will be set and
463   /// the runtime size will be a positive integer multiple of the base size.
464   ///
465   /// For example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)466   TypeSize getTypeStoreSizeInBits(Type *Ty) const {
467     return 8 * getTypeStoreSize(Ty);
468   }
469 
470   /// Returns true if no extra padding bits are needed when storing the
471   /// specified type.
472   ///
473   /// For example, returns false for i19 that has a 24-bit store size.
typeSizeEqualsStoreSize(Type * Ty)474   bool typeSizeEqualsStoreSize(Type *Ty) const {
475     return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
476   }
477 
478   /// Returns the offset in bytes between successive objects of the
479   /// specified type, including alignment padding.
480   ///
481   /// If Ty is a scalable vector type, the scalable property will be set and
482   /// the runtime size will be a positive integer multiple of the base size.
483   ///
484   /// This is the amount that alloca reserves for this type. For example,
485   /// returns 12 or 16 for x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)486   TypeSize getTypeAllocSize(Type *Ty) const {
487     // Round up to the next alignment boundary.
488     return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
489   }
490 
491   /// Returns the offset in bits between successive objects of the
492   /// specified type, including alignment padding; always a multiple of 8.
493   ///
494   /// If Ty is a scalable vector type, the scalable property will be set and
495   /// the runtime size will be a positive integer multiple of the base size.
496   ///
497   /// This is the amount that alloca reserves for this type. For example,
498   /// returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)499   TypeSize getTypeAllocSizeInBits(Type *Ty) const {
500     return 8 * getTypeAllocSize(Ty);
501   }
502 
503   /// Returns the minimum ABI-required alignment for the specified type.
504   unsigned getABITypeAlignment(Type *Ty) const;
505 
506   /// Helper function to return `Alignment` if it's set or the result of
507   /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
getValueOrABITypeAlignment(MaybeAlign Alignment,Type * Ty)508   inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
509                                           Type *Ty) const {
510     return Alignment ? *Alignment : Align(getABITypeAlignment(Ty));
511   }
512 
513   /// Returns the minimum ABI-required alignment for an integer type of
514   /// the specified bitwidth.
515   Align getABIIntegerTypeAlignment(unsigned BitWidth) const;
516 
517   /// Returns the preferred stack/global alignment for the specified
518   /// type.
519   ///
520   /// This is always at least as good as the ABI alignment.
521   unsigned getPrefTypeAlignment(Type *Ty) const;
522 
523   /// Returns an integer type with size at least as big as that of a
524   /// pointer in the given address space.
525   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
526 
527   /// Returns an integer (vector of integer) type with size at least as
528   /// big as that of a pointer of the given pointer (vector of pointer) type.
529   Type *getIntPtrType(Type *) const;
530 
531   /// Returns the smallest integer type with size at least as big as
532   /// Width bits.
533   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
534 
535   /// Returns the largest legal integer type, or null if none are set.
getLargestLegalIntType(LLVMContext & C)536   Type *getLargestLegalIntType(LLVMContext &C) const {
537     unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
538     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
539   }
540 
541   /// Returns the size of largest legal integer type size, or 0 if none
542   /// are set.
543   unsigned getLargestLegalIntTypeSizeInBits() const;
544 
545   /// Returns the type of a GEP index.
546   /// If it was not specified explicitly, it will be the integer type of the
547   /// pointer width - IntPtrType.
548   Type *getIndexType(Type *PtrTy) const;
549 
550   /// Returns the offset from the beginning of the type for the specified
551   /// indices.
552   ///
553   /// Note that this takes the element type, not the pointer type.
554   /// This is used to implement getelementptr.
555   int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
556 
557   /// Returns a StructLayout object, indicating the alignment of the
558   /// struct, its size, and the offsets of its fields.
559   ///
560   /// Note that this information is lazily cached.
561   const StructLayout *getStructLayout(StructType *Ty) const;
562 
563   /// Returns the preferred alignment of the specified global.
564   ///
565   /// This includes an explicitly requested alignment (if the global has one).
566   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
567 
568   /// Returns the preferred alignment of the specified global, returned
569   /// in log form.
570   ///
571   /// This includes an explicitly requested alignment (if the global has one).
572   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
573 };
574 
unwrap(LLVMTargetDataRef P)575 inline DataLayout *unwrap(LLVMTargetDataRef P) {
576   return reinterpret_cast<DataLayout *>(P);
577 }
578 
wrap(const DataLayout * P)579 inline LLVMTargetDataRef wrap(const DataLayout *P) {
580   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
581 }
582 
583 /// Used to lazily calculate structure layout information for a target machine,
584 /// based on the DataLayout structure.
585 class StructLayout {
586   uint64_t StructSize;
587   Align StructAlignment;
588   unsigned IsPadded : 1;
589   unsigned NumElements : 31;
590   uint64_t MemberOffsets[1]; // variable sized array!
591 
592 public:
getSizeInBytes()593   uint64_t getSizeInBytes() const { return StructSize; }
594 
getSizeInBits()595   uint64_t getSizeInBits() const { return 8 * StructSize; }
596 
getAlignment()597   Align getAlignment() const { return StructAlignment; }
598 
599   /// Returns whether the struct has padding or not between its fields.
600   /// NB: Padding in nested element is not taken into account.
hasPadding()601   bool hasPadding() const { return IsPadded; }
602 
603   /// Given a valid byte offset into the structure, returns the structure
604   /// index that contains it.
605   unsigned getElementContainingOffset(uint64_t Offset) const;
606 
getElementOffset(unsigned Idx)607   uint64_t getElementOffset(unsigned Idx) const {
608     assert(Idx < NumElements && "Invalid element idx!");
609     return MemberOffsets[Idx];
610   }
611 
getElementOffsetInBits(unsigned Idx)612   uint64_t getElementOffsetInBits(unsigned Idx) const {
613     return getElementOffset(Idx) * 8;
614   }
615 
616 private:
617   friend class DataLayout; // Only DataLayout can create this class
618 
619   StructLayout(StructType *ST, const DataLayout &DL);
620 };
621 
622 // The implementation of this method is provided inline as it is particularly
623 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)624 inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
625   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
626   switch (Ty->getTypeID()) {
627   case Type::LabelTyID:
628     return TypeSize::Fixed(getPointerSizeInBits(0));
629   case Type::PointerTyID:
630     return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
631   case Type::ArrayTyID: {
632     ArrayType *ATy = cast<ArrayType>(Ty);
633     return ATy->getNumElements() *
634            getTypeAllocSizeInBits(ATy->getElementType());
635   }
636   case Type::StructTyID:
637     // Get the layout annotation... which is lazily created on demand.
638     return TypeSize::Fixed(
639                         getStructLayout(cast<StructType>(Ty))->getSizeInBits());
640   case Type::IntegerTyID:
641     return TypeSize::Fixed(Ty->getIntegerBitWidth());
642   case Type::HalfTyID:
643     return TypeSize::Fixed(16);
644   case Type::FloatTyID:
645     return TypeSize::Fixed(32);
646   case Type::DoubleTyID:
647   case Type::X86_MMXTyID:
648     return TypeSize::Fixed(64);
649   case Type::PPC_FP128TyID:
650   case Type::FP128TyID:
651     return TypeSize::Fixed(128);
652   // In memory objects this is always aligned to a higher boundary, but
653   // only 80 bits contain information.
654   case Type::X86_FP80TyID:
655     return TypeSize::Fixed(80);
656   case Type::VectorTyID: {
657     VectorType *VTy = cast<VectorType>(Ty);
658     auto EltCnt = VTy->getElementCount();
659     uint64_t MinBits = EltCnt.Min *
660                         getTypeSizeInBits(VTy->getElementType()).getFixedSize();
661     return TypeSize(MinBits, EltCnt.Scalable);
662   }
663   default:
664     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
665   }
666 }
667 
668 } // end namespace llvm
669 
670 #endif // LLVM_IR_DATALAYOUT_H
671