1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information. It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
12 //
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
21
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Alignment.h"
32 #include "llvm/Support/TypeSize.h"
33 #include <cassert>
34 #include <cstdint>
35 #include <string>
36
37 // This needs to be outside of the namespace, to avoid conflict with llvm-c
38 // decl.
39 using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
40
41 namespace llvm {
42
43 class GlobalVariable;
44 class LLVMContext;
45 class Module;
46 class StructLayout;
47 class Triple;
48 class Value;
49
50 /// Enum used to categorize the alignment types stored by LayoutAlignElem
51 enum AlignTypeEnum {
52 INVALID_ALIGN = 0,
53 INTEGER_ALIGN = 'i',
54 VECTOR_ALIGN = 'v',
55 FLOAT_ALIGN = 'f',
56 AGGREGATE_ALIGN = 'a'
57 };
58
59 // FIXME: Currently the DataLayout string carries a "preferred alignment"
60 // for types. As the DataLayout is module/global, this should likely be
61 // sunk down to an FTTI element that is queried rather than a global
62 // preference.
63
64 /// Layout alignment element.
65 ///
66 /// Stores the alignment data associated with a given alignment type (integer,
67 /// vector, float) and type bit width.
68 ///
69 /// \note The unusual order of elements in the structure attempts to reduce
70 /// padding and make the structure slightly more cache friendly.
71 struct LayoutAlignElem {
72 /// Alignment type from \c AlignTypeEnum
73 unsigned AlignType : 8;
74 unsigned TypeBitWidth : 24;
75 Align ABIAlign;
76 Align PrefAlign;
77
78 static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
79 Align pref_align, uint32_t bit_width);
80
81 bool operator==(const LayoutAlignElem &rhs) const;
82 };
83
84 /// Layout pointer alignment element.
85 ///
86 /// Stores the alignment data associated with a given pointer and address space.
87 ///
88 /// \note The unusual order of elements in the structure attempts to reduce
89 /// padding and make the structure slightly more cache friendly.
90 struct PointerAlignElem {
91 Align ABIAlign;
92 Align PrefAlign;
93 uint32_t TypeByteWidth;
94 uint32_t AddressSpace;
95 uint32_t IndexWidth;
96
97 /// Initializer
98 static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
99 Align PrefAlign, uint32_t TypeByteWidth,
100 uint32_t IndexWidth);
101
102 bool operator==(const PointerAlignElem &rhs) const;
103 };
104
105 /// A parsed version of the target data layout string in and methods for
106 /// querying it.
107 ///
108 /// The target data layout string is specified *by the target* - a frontend
109 /// generating LLVM IR is required to generate the right target data for the
110 /// target being codegen'd to.
111 class DataLayout {
112 public:
113 enum class FunctionPtrAlignType {
114 /// The function pointer alignment is independent of the function alignment.
115 Independent,
116 /// The function pointer alignment is a multiple of the function alignment.
117 MultipleOfFunctionAlign,
118 };
119 private:
120 /// Defaults to false.
121 bool BigEndian;
122
123 unsigned AllocaAddrSpace;
124 MaybeAlign StackNaturalAlign;
125 unsigned ProgramAddrSpace;
126
127 MaybeAlign FunctionPtrAlign;
128 FunctionPtrAlignType TheFunctionPtrAlignType;
129
130 enum ManglingModeT {
131 MM_None,
132 MM_ELF,
133 MM_MachO,
134 MM_WinCOFF,
135 MM_WinCOFFX86,
136 MM_Mips
137 };
138 ManglingModeT ManglingMode;
139
140 SmallVector<unsigned char, 8> LegalIntWidths;
141
142 /// Primitive type alignment data. This is sorted by type and bit
143 /// width during construction.
144 using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
145 AlignmentsTy Alignments;
146
147 AlignmentsTy::const_iterator
findAlignmentLowerBound(AlignTypeEnum AlignType,uint32_t BitWidth)148 findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
149 return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
150 BitWidth);
151 }
152
153 AlignmentsTy::iterator
154 findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
155
156 /// The string representation used to create this DataLayout
157 std::string StringRepresentation;
158
159 using PointersTy = SmallVector<PointerAlignElem, 8>;
160 PointersTy Pointers;
161
162 PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)163 findPointerLowerBound(uint32_t AddressSpace) const {
164 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
165 }
166
167 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
168
169 // The StructType -> StructLayout map.
170 mutable void *LayoutMap = nullptr;
171
172 /// Pointers in these address spaces are non-integral, and don't have a
173 /// well-defined bitwise representation.
174 SmallVector<unsigned, 8> NonIntegralAddressSpaces;
175
176 void setAlignment(AlignTypeEnum align_type, Align abi_align, Align pref_align,
177 uint32_t bit_width);
178 Align getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
179 bool ABIAlign, Type *Ty) const;
180 void setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
181 uint32_t TypeByteWidth, uint32_t IndexWidth);
182
183 /// Internal helper method that returns requested alignment for type.
184 Align getAlignment(Type *Ty, bool abi_or_pref) const;
185
186 /// Parses a target data specification string. Assert if the string is
187 /// malformed.
188 void parseSpecifier(StringRef LayoutDescription);
189
190 // Free all internal data structures.
191 void clear();
192
193 public:
194 /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)195 explicit DataLayout(StringRef LayoutDescription) {
196 reset(LayoutDescription);
197 }
198
199 /// Initialize target data from properties stored in the module.
200 explicit DataLayout(const Module *M);
201
DataLayout(const DataLayout & DL)202 DataLayout(const DataLayout &DL) { *this = DL; }
203
204 ~DataLayout(); // Not virtual, do not subclass this class
205
206 DataLayout &operator=(const DataLayout &DL) {
207 clear();
208 StringRepresentation = DL.StringRepresentation;
209 BigEndian = DL.isBigEndian();
210 AllocaAddrSpace = DL.AllocaAddrSpace;
211 StackNaturalAlign = DL.StackNaturalAlign;
212 FunctionPtrAlign = DL.FunctionPtrAlign;
213 TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
214 ProgramAddrSpace = DL.ProgramAddrSpace;
215 ManglingMode = DL.ManglingMode;
216 LegalIntWidths = DL.LegalIntWidths;
217 Alignments = DL.Alignments;
218 Pointers = DL.Pointers;
219 NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
220 return *this;
221 }
222
223 bool operator==(const DataLayout &Other) const;
224 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
225
226 void init(const Module *M);
227
228 /// Parse a data layout string (with fallback to default values).
229 void reset(StringRef LayoutDescription);
230
231 /// Layout endianness...
isLittleEndian()232 bool isLittleEndian() const { return !BigEndian; }
isBigEndian()233 bool isBigEndian() const { return BigEndian; }
234
235 /// Returns the string representation of the DataLayout.
236 ///
237 /// This representation is in the same format accepted by the string
238 /// constructor above. This should not be used to compare two DataLayout as
239 /// different string can represent the same layout.
getStringRepresentation()240 const std::string &getStringRepresentation() const {
241 return StringRepresentation;
242 }
243
244 /// Test if the DataLayout was constructed from an empty string.
isDefault()245 bool isDefault() const { return StringRepresentation.empty(); }
246
247 /// Returns true if the specified type is known to be a native integer
248 /// type supported by the CPU.
249 ///
250 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
251 /// on any known one. This returns false if the integer width is not legal.
252 ///
253 /// The width is specified in bits.
isLegalInteger(uint64_t Width)254 bool isLegalInteger(uint64_t Width) const {
255 for (unsigned LegalIntWidth : LegalIntWidths)
256 if (LegalIntWidth == Width)
257 return true;
258 return false;
259 }
260
isIllegalInteger(uint64_t Width)261 bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
262
263 /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(Align Alignment)264 bool exceedsNaturalStackAlignment(Align Alignment) const {
265 return StackNaturalAlign && (Alignment > StackNaturalAlign);
266 }
267
getStackAlignment()268 Align getStackAlignment() const {
269 assert(StackNaturalAlign && "StackNaturalAlign must be defined");
270 return *StackNaturalAlign;
271 }
272
getAllocaAddrSpace()273 unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
274
275 /// Returns the alignment of function pointers, which may or may not be
276 /// related to the alignment of functions.
277 /// \see getFunctionPtrAlignType
getFunctionPtrAlign()278 MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
279
280 /// Return the type of function pointer alignment.
281 /// \see getFunctionPtrAlign
getFunctionPtrAlignType()282 FunctionPtrAlignType getFunctionPtrAlignType() const {
283 return TheFunctionPtrAlignType;
284 }
285
getProgramAddressSpace()286 unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
287
hasMicrosoftFastStdCallMangling()288 bool hasMicrosoftFastStdCallMangling() const {
289 return ManglingMode == MM_WinCOFFX86;
290 }
291
292 /// Returns true if symbols with leading question marks should not receive IR
293 /// mangling. True for Windows mangling modes.
doNotMangleLeadingQuestionMark()294 bool doNotMangleLeadingQuestionMark() const {
295 return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
296 }
297
hasLinkerPrivateGlobalPrefix()298 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
299
getLinkerPrivateGlobalPrefix()300 StringRef getLinkerPrivateGlobalPrefix() const {
301 if (ManglingMode == MM_MachO)
302 return "l";
303 return "";
304 }
305
getGlobalPrefix()306 char getGlobalPrefix() const {
307 switch (ManglingMode) {
308 case MM_None:
309 case MM_ELF:
310 case MM_Mips:
311 case MM_WinCOFF:
312 return '\0';
313 case MM_MachO:
314 case MM_WinCOFFX86:
315 return '_';
316 }
317 llvm_unreachable("invalid mangling mode");
318 }
319
getPrivateGlobalPrefix()320 StringRef getPrivateGlobalPrefix() const {
321 switch (ManglingMode) {
322 case MM_None:
323 return "";
324 case MM_ELF:
325 case MM_WinCOFF:
326 return ".L";
327 case MM_Mips:
328 return "$";
329 case MM_MachO:
330 case MM_WinCOFFX86:
331 return "L";
332 }
333 llvm_unreachable("invalid mangling mode");
334 }
335
336 static const char *getManglingComponent(const Triple &T);
337
338 /// Returns true if the specified type fits in a native integer type
339 /// supported by the CPU.
340 ///
341 /// For example, if the CPU only supports i32 as a native integer type, then
342 /// i27 fits in a legal integer type but i45 does not.
fitsInLegalInteger(unsigned Width)343 bool fitsInLegalInteger(unsigned Width) const {
344 for (unsigned LegalIntWidth : LegalIntWidths)
345 if (Width <= LegalIntWidth)
346 return true;
347 return false;
348 }
349
350 /// Layout pointer alignment
351 Align getPointerABIAlignment(unsigned AS) const;
352
353 /// Return target's alignment for stack-based pointers
354 /// FIXME: The defaults need to be removed once all of
355 /// the backends/clients are updated.
356 Align getPointerPrefAlignment(unsigned AS = 0) const;
357
358 /// Layout pointer size
359 /// FIXME: The defaults need to be removed once all of
360 /// the backends/clients are updated.
361 unsigned getPointerSize(unsigned AS = 0) const;
362
363 /// Returns the maximum pointer size over all address spaces.
364 unsigned getMaxPointerSize() const;
365
366 // Index size used for address calculation.
367 unsigned getIndexSize(unsigned AS) const;
368
369 /// Return the address spaces containing non-integral pointers. Pointers in
370 /// this address space don't have a well-defined bitwise representation.
getNonIntegralAddressSpaces()371 ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
372 return NonIntegralAddressSpaces;
373 }
374
isNonIntegralAddressSpace(unsigned AddrSpace)375 bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
376 ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
377 return find(NonIntegralSpaces, AddrSpace) != NonIntegralSpaces.end();
378 }
379
isNonIntegralPointerType(PointerType * PT)380 bool isNonIntegralPointerType(PointerType *PT) const {
381 return isNonIntegralAddressSpace(PT->getAddressSpace());
382 }
383
isNonIntegralPointerType(Type * Ty)384 bool isNonIntegralPointerType(Type *Ty) const {
385 auto *PTy = dyn_cast<PointerType>(Ty);
386 return PTy && isNonIntegralPointerType(PTy);
387 }
388
389 /// Layout pointer size, in bits
390 /// FIXME: The defaults need to be removed once all of
391 /// the backends/clients are updated.
392 unsigned getPointerSizeInBits(unsigned AS = 0) const {
393 return getPointerSize(AS) * 8;
394 }
395
396 /// Returns the maximum pointer size over all address spaces.
getMaxPointerSizeInBits()397 unsigned getMaxPointerSizeInBits() const {
398 return getMaxPointerSize() * 8;
399 }
400
401 /// Size in bits of index used for address calculation in getelementptr.
getIndexSizeInBits(unsigned AS)402 unsigned getIndexSizeInBits(unsigned AS) const {
403 return getIndexSize(AS) * 8;
404 }
405
406 /// Layout pointer size, in bits, based on the type. If this function is
407 /// called with a pointer type, then the type size of the pointer is returned.
408 /// If this function is called with a vector of pointers, then the type size
409 /// of the pointer is returned. This should only be called with a pointer or
410 /// vector of pointers.
411 unsigned getPointerTypeSizeInBits(Type *) const;
412
413 /// Layout size of the index used in GEP calculation.
414 /// The function should be called with pointer or vector of pointers type.
415 unsigned getIndexTypeSizeInBits(Type *Ty) const;
416
getPointerTypeSize(Type * Ty)417 unsigned getPointerTypeSize(Type *Ty) const {
418 return getPointerTypeSizeInBits(Ty) / 8;
419 }
420
421 /// Size examples:
422 ///
423 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
424 /// ---- ---------- --------------- ---------------
425 /// i1 1 8 8
426 /// i8 8 8 8
427 /// i19 19 24 32
428 /// i32 32 32 32
429 /// i100 100 104 128
430 /// i128 128 128 128
431 /// Float 32 32 32
432 /// Double 64 64 64
433 /// X86_FP80 80 80 96
434 ///
435 /// [*] The alloc size depends on the alignment, and thus on the target.
436 /// These values are for x86-32 linux.
437
438 /// Returns the number of bits necessary to hold the specified type.
439 ///
440 /// If Ty is a scalable vector type, the scalable property will be set and
441 /// the runtime size will be a positive integer multiple of the base size.
442 ///
443 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
444 /// have a size (Type::isSized() must return true).
445 TypeSize getTypeSizeInBits(Type *Ty) const;
446
447 /// Returns the maximum number of bytes that may be overwritten by
448 /// storing the specified type.
449 ///
450 /// If Ty is a scalable vector type, the scalable property will be set and
451 /// the runtime size will be a positive integer multiple of the base size.
452 ///
453 /// For example, returns 5 for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)454 TypeSize getTypeStoreSize(Type *Ty) const {
455 TypeSize BaseSize = getTypeSizeInBits(Ty);
456 return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
457 }
458
459 /// Returns the maximum number of bits that may be overwritten by
460 /// storing the specified type; always a multiple of 8.
461 ///
462 /// If Ty is a scalable vector type, the scalable property will be set and
463 /// the runtime size will be a positive integer multiple of the base size.
464 ///
465 /// For example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)466 TypeSize getTypeStoreSizeInBits(Type *Ty) const {
467 return 8 * getTypeStoreSize(Ty);
468 }
469
470 /// Returns true if no extra padding bits are needed when storing the
471 /// specified type.
472 ///
473 /// For example, returns false for i19 that has a 24-bit store size.
typeSizeEqualsStoreSize(Type * Ty)474 bool typeSizeEqualsStoreSize(Type *Ty) const {
475 return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
476 }
477
478 /// Returns the offset in bytes between successive objects of the
479 /// specified type, including alignment padding.
480 ///
481 /// If Ty is a scalable vector type, the scalable property will be set and
482 /// the runtime size will be a positive integer multiple of the base size.
483 ///
484 /// This is the amount that alloca reserves for this type. For example,
485 /// returns 12 or 16 for x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)486 TypeSize getTypeAllocSize(Type *Ty) const {
487 // Round up to the next alignment boundary.
488 return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
489 }
490
491 /// Returns the offset in bits between successive objects of the
492 /// specified type, including alignment padding; always a multiple of 8.
493 ///
494 /// If Ty is a scalable vector type, the scalable property will be set and
495 /// the runtime size will be a positive integer multiple of the base size.
496 ///
497 /// This is the amount that alloca reserves for this type. For example,
498 /// returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)499 TypeSize getTypeAllocSizeInBits(Type *Ty) const {
500 return 8 * getTypeAllocSize(Ty);
501 }
502
503 /// Returns the minimum ABI-required alignment for the specified type.
504 unsigned getABITypeAlignment(Type *Ty) const;
505
506 /// Helper function to return `Alignment` if it's set or the result of
507 /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
getValueOrABITypeAlignment(MaybeAlign Alignment,Type * Ty)508 inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
509 Type *Ty) const {
510 return Alignment ? *Alignment : Align(getABITypeAlignment(Ty));
511 }
512
513 /// Returns the minimum ABI-required alignment for an integer type of
514 /// the specified bitwidth.
515 Align getABIIntegerTypeAlignment(unsigned BitWidth) const;
516
517 /// Returns the preferred stack/global alignment for the specified
518 /// type.
519 ///
520 /// This is always at least as good as the ABI alignment.
521 unsigned getPrefTypeAlignment(Type *Ty) const;
522
523 /// Returns an integer type with size at least as big as that of a
524 /// pointer in the given address space.
525 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
526
527 /// Returns an integer (vector of integer) type with size at least as
528 /// big as that of a pointer of the given pointer (vector of pointer) type.
529 Type *getIntPtrType(Type *) const;
530
531 /// Returns the smallest integer type with size at least as big as
532 /// Width bits.
533 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
534
535 /// Returns the largest legal integer type, or null if none are set.
getLargestLegalIntType(LLVMContext & C)536 Type *getLargestLegalIntType(LLVMContext &C) const {
537 unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
538 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
539 }
540
541 /// Returns the size of largest legal integer type size, or 0 if none
542 /// are set.
543 unsigned getLargestLegalIntTypeSizeInBits() const;
544
545 /// Returns the type of a GEP index.
546 /// If it was not specified explicitly, it will be the integer type of the
547 /// pointer width - IntPtrType.
548 Type *getIndexType(Type *PtrTy) const;
549
550 /// Returns the offset from the beginning of the type for the specified
551 /// indices.
552 ///
553 /// Note that this takes the element type, not the pointer type.
554 /// This is used to implement getelementptr.
555 int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
556
557 /// Returns a StructLayout object, indicating the alignment of the
558 /// struct, its size, and the offsets of its fields.
559 ///
560 /// Note that this information is lazily cached.
561 const StructLayout *getStructLayout(StructType *Ty) const;
562
563 /// Returns the preferred alignment of the specified global.
564 ///
565 /// This includes an explicitly requested alignment (if the global has one).
566 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
567
568 /// Returns the preferred alignment of the specified global, returned
569 /// in log form.
570 ///
571 /// This includes an explicitly requested alignment (if the global has one).
572 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
573 };
574
unwrap(LLVMTargetDataRef P)575 inline DataLayout *unwrap(LLVMTargetDataRef P) {
576 return reinterpret_cast<DataLayout *>(P);
577 }
578
wrap(const DataLayout * P)579 inline LLVMTargetDataRef wrap(const DataLayout *P) {
580 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
581 }
582
583 /// Used to lazily calculate structure layout information for a target machine,
584 /// based on the DataLayout structure.
585 class StructLayout {
586 uint64_t StructSize;
587 Align StructAlignment;
588 unsigned IsPadded : 1;
589 unsigned NumElements : 31;
590 uint64_t MemberOffsets[1]; // variable sized array!
591
592 public:
getSizeInBytes()593 uint64_t getSizeInBytes() const { return StructSize; }
594
getSizeInBits()595 uint64_t getSizeInBits() const { return 8 * StructSize; }
596
getAlignment()597 Align getAlignment() const { return StructAlignment; }
598
599 /// Returns whether the struct has padding or not between its fields.
600 /// NB: Padding in nested element is not taken into account.
hasPadding()601 bool hasPadding() const { return IsPadded; }
602
603 /// Given a valid byte offset into the structure, returns the structure
604 /// index that contains it.
605 unsigned getElementContainingOffset(uint64_t Offset) const;
606
getElementOffset(unsigned Idx)607 uint64_t getElementOffset(unsigned Idx) const {
608 assert(Idx < NumElements && "Invalid element idx!");
609 return MemberOffsets[Idx];
610 }
611
getElementOffsetInBits(unsigned Idx)612 uint64_t getElementOffsetInBits(unsigned Idx) const {
613 return getElementOffset(Idx) * 8;
614 }
615
616 private:
617 friend class DataLayout; // Only DataLayout can create this class
618
619 StructLayout(StructType *ST, const DataLayout &DL);
620 };
621
622 // The implementation of this method is provided inline as it is particularly
623 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)624 inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
625 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
626 switch (Ty->getTypeID()) {
627 case Type::LabelTyID:
628 return TypeSize::Fixed(getPointerSizeInBits(0));
629 case Type::PointerTyID:
630 return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
631 case Type::ArrayTyID: {
632 ArrayType *ATy = cast<ArrayType>(Ty);
633 return ATy->getNumElements() *
634 getTypeAllocSizeInBits(ATy->getElementType());
635 }
636 case Type::StructTyID:
637 // Get the layout annotation... which is lazily created on demand.
638 return TypeSize::Fixed(
639 getStructLayout(cast<StructType>(Ty))->getSizeInBits());
640 case Type::IntegerTyID:
641 return TypeSize::Fixed(Ty->getIntegerBitWidth());
642 case Type::HalfTyID:
643 return TypeSize::Fixed(16);
644 case Type::FloatTyID:
645 return TypeSize::Fixed(32);
646 case Type::DoubleTyID:
647 case Type::X86_MMXTyID:
648 return TypeSize::Fixed(64);
649 case Type::PPC_FP128TyID:
650 case Type::FP128TyID:
651 return TypeSize::Fixed(128);
652 // In memory objects this is always aligned to a higher boundary, but
653 // only 80 bits contain information.
654 case Type::X86_FP80TyID:
655 return TypeSize::Fixed(80);
656 case Type::VectorTyID: {
657 VectorType *VTy = cast<VectorType>(Ty);
658 auto EltCnt = VTy->getElementCount();
659 uint64_t MinBits = EltCnt.Min *
660 getTypeSizeInBits(VTy->getElementType()).getFixedSize();
661 return TypeSize(MinBits, EltCnt.Scalable);
662 }
663 default:
664 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
665 }
666 }
667
668 } // end namespace llvm
669
670 #endif // LLVM_IR_DATALAYOUT_H
671