1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
23 #define DEBUG_TYPE "systemz-isel"
24
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28 // The shape of the address.
29 enum AddrForm {
30 // base+displacement
31 FormBD,
32
33 // base+displacement+index for load and store operands
34 FormBDXNormal,
35
36 // base+displacement+index for load address operands
37 FormBDXLA,
38
39 // base+displacement+index+ADJDYNALLOC
40 FormBDXDynAlloc
41 };
42 AddrForm Form;
43
44 // The type of displacement. The enum names here correspond directly
45 // to the definitions in SystemZOperand.td. We could split them into
46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47 enum DispRange {
48 Disp12Only,
49 Disp12Pair,
50 Disp20Only,
51 Disp20Only128,
52 Disp20Pair
53 };
54 DispRange DR;
55
56 // The parts of the address. The address is equivalent to:
57 //
58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59 SDValue Base;
60 int64_t Disp;
61 SDValue Index;
62 bool IncludesDynAlloc;
63
SystemZAddressingMode__anon9d233d250111::SystemZAddressingMode64 SystemZAddressingMode(AddrForm form, DispRange dr)
65 : Form(form), DR(dr), Base(), Disp(0), Index(),
66 IncludesDynAlloc(false) {}
67
68 // True if the address can have an index register.
hasIndexField__anon9d233d250111::SystemZAddressingMode69 bool hasIndexField() { return Form != FormBD; }
70
71 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anon9d233d250111::SystemZAddressingMode72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
dump__anon9d233d250111::SystemZAddressingMode74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
76
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(DAG);
80 else
81 errs() << "null\n";
82
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(DAG);
87 else
88 errs() << "null\n";
89 }
90
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
95 }
96 };
97
98 // Return a mask with Count low bits set.
allOnes(unsigned int Count)99 static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
104 }
105
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
109 //
110 // (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 // (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
RxSBGOperands__anon9d233d250111::RxSBGOperands120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
124
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
132 };
133
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
136
137 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140 }
141
getTargetMachine() const142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
144 }
145
getInstrInfo() const146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
148 }
149
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
168
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
174
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Addr.getOpcode())) {
185 Target = Addr.getOperand(0);
186 return true;
187 }
188 return false;
189 }
190
191 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203 }
204
205 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211 }
212
213 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217 SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
219 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223 SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
225 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229 SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
231 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235 SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
237 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241 SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
243 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247 SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
249 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253 SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
255 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259 SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
261 }
262
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
269
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
292
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297 // If Op0 is null, then Node is a constant that can be loaded using:
298 //
299 // (Opcode UpperVal LowerVal)
300 //
301 // If Op0 is nonnull, then Node can be implemented using:
302 //
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
306
307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308 SDNode *Node);
309
310 // Try to use gather instruction Opcode to implement vector insertion N.
311 bool tryGather(SDNode *N, unsigned Opcode);
312
313 // Try to use scatter instruction Opcode to implement store Store.
314 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
315
316 // Change a chain of {load; op; store} of the same value into a simple op
317 // through memory of that value, if the uses of the modified value and its
318 // address are suitable.
319 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
320
321 // Return true if Load and Store are loads and stores of the same size
322 // and are guaranteed not to overlap. Such operations can be implemented
323 // using block (SS-format) instructions.
324 //
325 // Partial overlap would lead to incorrect code, since the block operations
326 // are logically bytewise, even though they have a fast path for the
327 // non-overlapping case. We also need to avoid full overlap (i.e. two
328 // addresses that might be equal at run time) because although that case
329 // would be handled correctly, it might be implemented by millicode.
330 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
331
332 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
333 // from Y to X.
334 bool storeLoadCanUseMVC(SDNode *N) const;
335
336 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
337 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338 // to X.
339 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
340
341 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
342 SDValue expandSelectBoolean(SDNode *Node);
343
344 public:
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)345 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
346 : SelectionDAGISel(TM, OptLevel) {}
347
runOnMachineFunction(MachineFunction & MF)348 bool runOnMachineFunction(MachineFunction &MF) override {
349 const Function &F = MF.getFunction();
350 if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
351 if (F.hasFnAttribute("mnop-mcount"))
352 report_fatal_error("mnop-mcount only supported with fentry-call");
353 if (F.hasFnAttribute("mrecord-mcount"))
354 report_fatal_error("mrecord-mcount only supported with fentry-call");
355 }
356
357 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
358 return SelectionDAGISel::runOnMachineFunction(MF);
359 }
360
361 // Override MachineFunctionPass.
getPassName() const362 StringRef getPassName() const override {
363 return "SystemZ DAG->DAG Pattern Instruction Selection";
364 }
365
366 // Override SelectionDAGISel.
367 void Select(SDNode *Node) override;
368 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
369 std::vector<SDValue> &OutOps) override;
370 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
371 void PreprocessISelDAG() override;
372
373 // Include the pieces autogenerated from the target description.
374 #include "SystemZGenDAGISel.inc"
375 };
376 } // end anonymous namespace
377
createSystemZISelDag(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)378 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
379 CodeGenOpt::Level OptLevel) {
380 return new SystemZDAGToDAGISel(TM, OptLevel);
381 }
382
383 // Return true if Val should be selected as a displacement for an address
384 // with range DR. Here we're interested in the range of both the instruction
385 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)386 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
387 switch (DR) {
388 case SystemZAddressingMode::Disp12Only:
389 return isUInt<12>(Val);
390
391 case SystemZAddressingMode::Disp12Pair:
392 case SystemZAddressingMode::Disp20Only:
393 case SystemZAddressingMode::Disp20Pair:
394 return isInt<20>(Val);
395
396 case SystemZAddressingMode::Disp20Only128:
397 return isInt<20>(Val) && isInt<20>(Val + 8);
398 }
399 llvm_unreachable("Unhandled displacement range");
400 }
401
402 // Change the base or index in AM to Value, where IsBase selects
403 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)404 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
405 SDValue Value) {
406 if (IsBase)
407 AM.Base = Value;
408 else
409 AM.Index = Value;
410 }
411
412 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
413 // where IsBase selects between the base and index. Try to fold the
414 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)415 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
416 SDValue Value) {
417 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
418 changeComponent(AM, IsBase, Value);
419 AM.IncludesDynAlloc = true;
420 return true;
421 }
422 return false;
423 }
424
425 // The base of AM is equivalent to Base + Index. Try to use Index as
426 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)427 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
428 SDValue Index) {
429 if (AM.hasIndexField() && !AM.Index.getNode()) {
430 AM.Base = Base;
431 AM.Index = Index;
432 return true;
433 }
434 return false;
435 }
436
437 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
438 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)439 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
440 SDValue Op0, uint64_t Op1) {
441 // First try adjusting the displacement.
442 int64_t TestDisp = AM.Disp + Op1;
443 if (selectDisp(AM.DR, TestDisp)) {
444 changeComponent(AM, IsBase, Op0);
445 AM.Disp = TestDisp;
446 return true;
447 }
448
449 // We could consider forcing the displacement into a register and
450 // using it as an index, but it would need to be carefully tuned.
451 return false;
452 }
453
expandAddress(SystemZAddressingMode & AM,bool IsBase) const454 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
455 bool IsBase) const {
456 SDValue N = IsBase ? AM.Base : AM.Index;
457 unsigned Opcode = N.getOpcode();
458 if (Opcode == ISD::TRUNCATE) {
459 N = N.getOperand(0);
460 Opcode = N.getOpcode();
461 }
462 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
463 SDValue Op0 = N.getOperand(0);
464 SDValue Op1 = N.getOperand(1);
465
466 unsigned Op0Code = Op0->getOpcode();
467 unsigned Op1Code = Op1->getOpcode();
468
469 if (Op0Code == SystemZISD::ADJDYNALLOC)
470 return expandAdjDynAlloc(AM, IsBase, Op1);
471 if (Op1Code == SystemZISD::ADJDYNALLOC)
472 return expandAdjDynAlloc(AM, IsBase, Op0);
473
474 if (Op0Code == ISD::Constant)
475 return expandDisp(AM, IsBase, Op1,
476 cast<ConstantSDNode>(Op0)->getSExtValue());
477 if (Op1Code == ISD::Constant)
478 return expandDisp(AM, IsBase, Op0,
479 cast<ConstantSDNode>(Op1)->getSExtValue());
480
481 if (IsBase && expandIndex(AM, Op0, Op1))
482 return true;
483 }
484 if (Opcode == SystemZISD::PCREL_OFFSET) {
485 SDValue Full = N.getOperand(0);
486 SDValue Base = N.getOperand(1);
487 SDValue Anchor = Base.getOperand(0);
488 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
489 cast<GlobalAddressSDNode>(Anchor)->getOffset());
490 return expandDisp(AM, IsBase, Base, Offset);
491 }
492 return false;
493 }
494
495 // Return true if an instruction with displacement range DR should be
496 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)497 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
498 assert(selectDisp(DR, Val) && "Invalid displacement");
499 switch (DR) {
500 case SystemZAddressingMode::Disp12Only:
501 case SystemZAddressingMode::Disp20Only:
502 case SystemZAddressingMode::Disp20Only128:
503 return true;
504
505 case SystemZAddressingMode::Disp12Pair:
506 // Use the other instruction if the displacement is too large.
507 return isUInt<12>(Val);
508
509 case SystemZAddressingMode::Disp20Pair:
510 // Use the other instruction if the displacement is small enough.
511 return !isUInt<12>(Val);
512 }
513 llvm_unreachable("Unhandled displacement range");
514 }
515
516 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)517 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
518 // Don't use LA(Y) for constants.
519 if (!Base)
520 return false;
521
522 // Always use LA(Y) for frame addresses, since we know that the destination
523 // register is almost always (perhaps always) going to be different from
524 // the frame register.
525 if (Base->getOpcode() == ISD::FrameIndex)
526 return true;
527
528 if (Disp) {
529 // Always use LA(Y) if there is a base, displacement and index.
530 if (Index)
531 return true;
532
533 // Always use LA if the displacement is small enough. It should always
534 // be no worse than AGHI (and better if it avoids a move).
535 if (isUInt<12>(Disp))
536 return true;
537
538 // For similar reasons, always use LAY if the constant is too big for AGHI.
539 // LAY should be no worse than AGFI.
540 if (!isInt<16>(Disp))
541 return true;
542 } else {
543 // Don't use LA for plain registers.
544 if (!Index)
545 return false;
546
547 // Don't use LA for plain addition if the index operand is only used
548 // once. It should be a natural two-operand addition in that case.
549 if (Index->hasOneUse())
550 return false;
551
552 // Prefer addition if the second operation is sign-extended, in the
553 // hope of using AGF.
554 unsigned IndexOpcode = Index->getOpcode();
555 if (IndexOpcode == ISD::SIGN_EXTEND ||
556 IndexOpcode == ISD::SIGN_EXTEND_INREG)
557 return false;
558 }
559
560 // Don't use LA for two-operand addition if either operand is only
561 // used once. The addition instructions are better in that case.
562 if (Base->hasOneUse())
563 return false;
564
565 return true;
566 }
567
568 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const569 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
570 SystemZAddressingMode &AM) const {
571 // Start out assuming that the address will need to be loaded separately,
572 // then try to extend it as much as we can.
573 AM.Base = Addr;
574
575 // First try treating the address as a constant.
576 if (Addr.getOpcode() == ISD::Constant &&
577 expandDisp(AM, true, SDValue(),
578 cast<ConstantSDNode>(Addr)->getSExtValue()))
579 ;
580 // Also see if it's a bare ADJDYNALLOC.
581 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
582 expandAdjDynAlloc(AM, true, SDValue()))
583 ;
584 else
585 // Otherwise try expanding each component.
586 while (expandAddress(AM, true) ||
587 (AM.Index.getNode() && expandAddress(AM, false)))
588 continue;
589
590 // Reject cases where it isn't profitable to use LA(Y).
591 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
592 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
593 return false;
594
595 // Reject cases where the other instruction in a pair should be used.
596 if (!isValidDisp(AM.DR, AM.Disp))
597 return false;
598
599 // Make sure that ADJDYNALLOC is included where necessary.
600 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
601 return false;
602
603 LLVM_DEBUG(AM.dump(CurDAG));
604 return true;
605 }
606
607 // Insert a node into the DAG at least before Pos. This will reposition
608 // the node as needed, and will assign it a node ID that is <= Pos's ID.
609 // Note that this does *not* preserve the uniqueness of node IDs!
610 // The selection DAG must no longer depend on their uniqueness when this
611 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)612 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
613 if (N->getNodeId() == -1 ||
614 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
615 SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
616 DAG->RepositionNode(Pos->getIterator(), N.getNode());
617 // Mark Node as invalid for pruning as after this it may be a successor to a
618 // selected node but otherwise be in the same position of Pos.
619 // Conservatively mark it with the same -abs(Id) to assure node id
620 // invariant is preserved.
621 N->setNodeId(Pos->getNodeId());
622 SelectionDAGISel::InvalidateNodeId(N.getNode());
623 }
624 }
625
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const626 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
627 EVT VT, SDValue &Base,
628 SDValue &Disp) const {
629 Base = AM.Base;
630 if (!Base.getNode())
631 // Register 0 means "no base". This is mostly useful for shifts.
632 Base = CurDAG->getRegister(0, VT);
633 else if (Base.getOpcode() == ISD::FrameIndex) {
634 // Lower a FrameIndex to a TargetFrameIndex.
635 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
636 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
637 } else if (Base.getValueType() != VT) {
638 // Truncate values from i64 to i32, for shifts.
639 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
640 "Unexpected truncation");
641 SDLoc DL(Base);
642 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
643 insertDAGNode(CurDAG, Base.getNode(), Trunc);
644 Base = Trunc;
645 }
646
647 // Lower the displacement to a TargetConstant.
648 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
649 }
650
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const651 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
652 EVT VT, SDValue &Base,
653 SDValue &Disp,
654 SDValue &Index) const {
655 getAddressOperands(AM, VT, Base, Disp);
656
657 Index = AM.Index;
658 if (!Index.getNode())
659 // Register 0 means "no index".
660 Index = CurDAG->getRegister(0, VT);
661 }
662
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const663 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
664 SDValue Addr, SDValue &Base,
665 SDValue &Disp) const {
666 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
667 if (!selectAddress(Addr, AM))
668 return false;
669
670 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
671 return true;
672 }
673
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const674 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
675 SDValue Addr, SDValue &Base,
676 SDValue &Disp) const {
677 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
678 if (!selectAddress(Addr, AM) || AM.Index.getNode())
679 return false;
680
681 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
682 return true;
683 }
684
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const685 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
686 SystemZAddressingMode::DispRange DR,
687 SDValue Addr, SDValue &Base,
688 SDValue &Disp, SDValue &Index) const {
689 SystemZAddressingMode AM(Form, DR);
690 if (!selectAddress(Addr, AM))
691 return false;
692
693 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
694 return true;
695 }
696
selectBDVAddr12Only(SDValue Addr,SDValue Elem,SDValue & Base,SDValue & Disp,SDValue & Index) const697 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
698 SDValue &Base,
699 SDValue &Disp,
700 SDValue &Index) const {
701 SDValue Regs[2];
702 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
703 Regs[0].getNode() && Regs[1].getNode()) {
704 for (unsigned int I = 0; I < 2; ++I) {
705 Base = Regs[I];
706 Index = Regs[1 - I];
707 // We can't tell here whether the index vector has the right type
708 // for the access; the caller needs to do that instead.
709 if (Index.getOpcode() == ISD::ZERO_EXTEND)
710 Index = Index.getOperand(0);
711 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
712 Index.getOperand(1) == Elem) {
713 Index = Index.getOperand(0);
714 return true;
715 }
716 }
717 }
718 return false;
719 }
720
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const721 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
722 uint64_t InsertMask) const {
723 // We're only interested in cases where the insertion is into some operand
724 // of Op, rather than into Op itself. The only useful case is an AND.
725 if (Op.getOpcode() != ISD::AND)
726 return false;
727
728 // We need a constant mask.
729 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
730 if (!MaskNode)
731 return false;
732
733 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
734 uint64_t AndMask = MaskNode->getZExtValue();
735 if (InsertMask & AndMask)
736 return false;
737
738 // It's only an insertion if all bits are covered or are known to be zero.
739 // The inner check covers all cases but is more expensive.
740 uint64_t Used = allOnes(Op.getValueSizeInBits());
741 if (Used != (AndMask | InsertMask)) {
742 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
743 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
744 return false;
745 }
746
747 Op = Op.getOperand(0);
748 return true;
749 }
750
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const751 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
752 uint64_t Mask) const {
753 const SystemZInstrInfo *TII = getInstrInfo();
754 if (RxSBG.Rotate != 0)
755 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
756 Mask &= RxSBG.Mask;
757 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
758 RxSBG.Mask = Mask;
759 return true;
760 }
761 return false;
762 }
763
764 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)765 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
766 // Rotate the mask in the same way as RxSBG.Input is rotated.
767 if (RxSBG.Rotate != 0)
768 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
769 return (Mask & RxSBG.Mask) != 0;
770 }
771
expandRxSBG(RxSBGOperands & RxSBG) const772 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
773 SDValue N = RxSBG.Input;
774 unsigned Opcode = N.getOpcode();
775 switch (Opcode) {
776 case ISD::TRUNCATE: {
777 if (RxSBG.Opcode == SystemZ::RNSBG)
778 return false;
779 uint64_t BitSize = N.getValueSizeInBits();
780 uint64_t Mask = allOnes(BitSize);
781 if (!refineRxSBGMask(RxSBG, Mask))
782 return false;
783 RxSBG.Input = N.getOperand(0);
784 return true;
785 }
786 case ISD::AND: {
787 if (RxSBG.Opcode == SystemZ::RNSBG)
788 return false;
789
790 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
791 if (!MaskNode)
792 return false;
793
794 SDValue Input = N.getOperand(0);
795 uint64_t Mask = MaskNode->getZExtValue();
796 if (!refineRxSBGMask(RxSBG, Mask)) {
797 // If some bits of Input are already known zeros, those bits will have
798 // been removed from the mask. See if adding them back in makes the
799 // mask suitable.
800 KnownBits Known = CurDAG->computeKnownBits(Input);
801 Mask |= Known.Zero.getZExtValue();
802 if (!refineRxSBGMask(RxSBG, Mask))
803 return false;
804 }
805 RxSBG.Input = Input;
806 return true;
807 }
808
809 case ISD::OR: {
810 if (RxSBG.Opcode != SystemZ::RNSBG)
811 return false;
812
813 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
814 if (!MaskNode)
815 return false;
816
817 SDValue Input = N.getOperand(0);
818 uint64_t Mask = ~MaskNode->getZExtValue();
819 if (!refineRxSBGMask(RxSBG, Mask)) {
820 // If some bits of Input are already known ones, those bits will have
821 // been removed from the mask. See if adding them back in makes the
822 // mask suitable.
823 KnownBits Known = CurDAG->computeKnownBits(Input);
824 Mask &= ~Known.One.getZExtValue();
825 if (!refineRxSBGMask(RxSBG, Mask))
826 return false;
827 }
828 RxSBG.Input = Input;
829 return true;
830 }
831
832 case ISD::ROTL: {
833 // Any 64-bit rotate left can be merged into the RxSBG.
834 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
835 return false;
836 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
837 if (!CountNode)
838 return false;
839
840 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
841 RxSBG.Input = N.getOperand(0);
842 return true;
843 }
844
845 case ISD::ANY_EXTEND:
846 // Bits above the extended operand are don't-care.
847 RxSBG.Input = N.getOperand(0);
848 return true;
849
850 case ISD::ZERO_EXTEND:
851 if (RxSBG.Opcode != SystemZ::RNSBG) {
852 // Restrict the mask to the extended operand.
853 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
854 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
855 return false;
856
857 RxSBG.Input = N.getOperand(0);
858 return true;
859 }
860 LLVM_FALLTHROUGH;
861
862 case ISD::SIGN_EXTEND: {
863 // Check that the extension bits are don't-care (i.e. are masked out
864 // by the final mask).
865 unsigned BitSize = N.getValueSizeInBits();
866 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
867 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
868 // In the case where only the sign bit is active, increase Rotate with
869 // the extension width.
870 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
871 RxSBG.Rotate += (BitSize - InnerBitSize);
872 else
873 return false;
874 }
875
876 RxSBG.Input = N.getOperand(0);
877 return true;
878 }
879
880 case ISD::SHL: {
881 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
882 if (!CountNode)
883 return false;
884
885 uint64_t Count = CountNode->getZExtValue();
886 unsigned BitSize = N.getValueSizeInBits();
887 if (Count < 1 || Count >= BitSize)
888 return false;
889
890 if (RxSBG.Opcode == SystemZ::RNSBG) {
891 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
892 // count bits from RxSBG.Input are ignored.
893 if (maskMatters(RxSBG, allOnes(Count)))
894 return false;
895 } else {
896 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
897 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
898 return false;
899 }
900
901 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
902 RxSBG.Input = N.getOperand(0);
903 return true;
904 }
905
906 case ISD::SRL:
907 case ISD::SRA: {
908 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
909 if (!CountNode)
910 return false;
911
912 uint64_t Count = CountNode->getZExtValue();
913 unsigned BitSize = N.getValueSizeInBits();
914 if (Count < 1 || Count >= BitSize)
915 return false;
916
917 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
918 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
919 // count bits from RxSBG.Input are ignored.
920 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
921 return false;
922 } else {
923 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
924 // which is similar to SLL above.
925 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
926 return false;
927 }
928
929 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
930 RxSBG.Input = N.getOperand(0);
931 return true;
932 }
933 default:
934 return false;
935 }
936 }
937
getUNDEF(const SDLoc & DL,EVT VT) const938 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
939 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
940 return SDValue(N, 0);
941 }
942
convertTo(const SDLoc & DL,EVT VT,SDValue N) const943 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
944 SDValue N) const {
945 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
946 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
947 DL, VT, getUNDEF(DL, MVT::i64), N);
948 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
949 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
950 assert(N.getValueType() == VT && "Unexpected value types");
951 return N;
952 }
953
tryRISBGZero(SDNode * N)954 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
955 SDLoc DL(N);
956 EVT VT = N->getValueType(0);
957 if (!VT.isInteger() || VT.getSizeInBits() > 64)
958 return false;
959 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
960 unsigned Count = 0;
961 while (expandRxSBG(RISBG))
962 // The widening or narrowing is expected to be free.
963 // Counting widening or narrowing as a saved operation will result in
964 // preferring an R*SBG over a simple shift/logical instruction.
965 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
966 RISBG.Input.getOpcode() != ISD::TRUNCATE)
967 Count += 1;
968 if (Count == 0)
969 return false;
970
971 // Prefer to use normal shift instructions over RISBG, since they can handle
972 // all cases and are sometimes shorter.
973 if (Count == 1 && N->getOpcode() != ISD::AND)
974 return false;
975
976 // Prefer register extensions like LLC over RISBG. Also prefer to start
977 // out with normal ANDs if one instruction would be enough. We can convert
978 // these ANDs into an RISBG later if a three-address instruction is useful.
979 if (RISBG.Rotate == 0) {
980 bool PreferAnd = false;
981 // Prefer AND for any 32-bit and-immediate operation.
982 if (VT == MVT::i32)
983 PreferAnd = true;
984 // As well as for any 64-bit operation that can be implemented via LLC(R),
985 // LLH(R), LLGT(R), or one of the and-immediate instructions.
986 else if (RISBG.Mask == 0xff ||
987 RISBG.Mask == 0xffff ||
988 RISBG.Mask == 0x7fffffff ||
989 SystemZ::isImmLF(~RISBG.Mask) ||
990 SystemZ::isImmHF(~RISBG.Mask))
991 PreferAnd = true;
992 // And likewise for the LLZRGF instruction, which doesn't have a register
993 // to register version.
994 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
995 if (Load->getMemoryVT() == MVT::i32 &&
996 (Load->getExtensionType() == ISD::EXTLOAD ||
997 Load->getExtensionType() == ISD::ZEXTLOAD) &&
998 RISBG.Mask == 0xffffff00 &&
999 Subtarget->hasLoadAndZeroRightmostByte())
1000 PreferAnd = true;
1001 }
1002 if (PreferAnd) {
1003 // Replace the current node with an AND. Note that the current node
1004 // might already be that same AND, in which case it is already CSE'd
1005 // with it, and we must not call ReplaceNode.
1006 SDValue In = convertTo(DL, VT, RISBG.Input);
1007 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1008 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1009 if (N != New.getNode()) {
1010 insertDAGNode(CurDAG, N, Mask);
1011 insertDAGNode(CurDAG, N, New);
1012 ReplaceNode(N, New.getNode());
1013 N = New.getNode();
1014 }
1015 // Now, select the machine opcode to implement this operation.
1016 if (!N->isMachineOpcode())
1017 SelectCode(N);
1018 return true;
1019 }
1020 }
1021
1022 unsigned Opcode = SystemZ::RISBG;
1023 // Prefer RISBGN if available, since it does not clobber CC.
1024 if (Subtarget->hasMiscellaneousExtensions())
1025 Opcode = SystemZ::RISBGN;
1026 EVT OpcodeVT = MVT::i64;
1027 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1028 // We can only use the 32-bit instructions if all source bits are
1029 // in the low 32 bits without wrapping, both after rotation (because
1030 // of the smaller range for Start and End) and before rotation
1031 // (because the input value is truncated).
1032 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1033 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1034 ((RISBG.End + RISBG.Rotate) & 63) >=
1035 ((RISBG.Start + RISBG.Rotate) & 63)) {
1036 Opcode = SystemZ::RISBMux;
1037 OpcodeVT = MVT::i32;
1038 RISBG.Start &= 31;
1039 RISBG.End &= 31;
1040 }
1041 SDValue Ops[5] = {
1042 getUNDEF(DL, OpcodeVT),
1043 convertTo(DL, OpcodeVT, RISBG.Input),
1044 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1045 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1046 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1047 };
1048 SDValue New = convertTo(
1049 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1050 ReplaceNode(N, New.getNode());
1051 return true;
1052 }
1053
tryRxSBG(SDNode * N,unsigned Opcode)1054 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1055 SDLoc DL(N);
1056 EVT VT = N->getValueType(0);
1057 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1058 return false;
1059 // Try treating each operand of N as the second operand of the RxSBG
1060 // and see which goes deepest.
1061 RxSBGOperands RxSBG[] = {
1062 RxSBGOperands(Opcode, N->getOperand(0)),
1063 RxSBGOperands(Opcode, N->getOperand(1))
1064 };
1065 unsigned Count[] = { 0, 0 };
1066 for (unsigned I = 0; I < 2; ++I)
1067 while (expandRxSBG(RxSBG[I]))
1068 // The widening or narrowing is expected to be free.
1069 // Counting widening or narrowing as a saved operation will result in
1070 // preferring an R*SBG over a simple shift/logical instruction.
1071 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1072 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1073 Count[I] += 1;
1074
1075 // Do nothing if neither operand is suitable.
1076 if (Count[0] == 0 && Count[1] == 0)
1077 return false;
1078
1079 // Pick the deepest second operand.
1080 unsigned I = Count[0] > Count[1] ? 0 : 1;
1081 SDValue Op0 = N->getOperand(I ^ 1);
1082
1083 // Prefer IC for character insertions from memory.
1084 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1085 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1086 if (Load->getMemoryVT() == MVT::i8)
1087 return false;
1088
1089 // See whether we can avoid an AND in the first operand by converting
1090 // ROSBG to RISBG.
1091 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1092 Opcode = SystemZ::RISBG;
1093 // Prefer RISBGN if available, since it does not clobber CC.
1094 if (Subtarget->hasMiscellaneousExtensions())
1095 Opcode = SystemZ::RISBGN;
1096 }
1097
1098 SDValue Ops[5] = {
1099 convertTo(DL, MVT::i64, Op0),
1100 convertTo(DL, MVT::i64, RxSBG[I].Input),
1101 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1102 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1103 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1104 };
1105 SDValue New = convertTo(
1106 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1107 ReplaceNode(N, New.getNode());
1108 return true;
1109 }
1110
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)1111 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1112 SDValue Op0, uint64_t UpperVal,
1113 uint64_t LowerVal) {
1114 EVT VT = Node->getValueType(0);
1115 SDLoc DL(Node);
1116 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1117 if (Op0.getNode())
1118 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1119
1120 {
1121 // When we haven't passed in Op0, Upper will be a constant. In order to
1122 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1123 // SelectCode first and end up with an opaque machine node. This means that
1124 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1125 // SelectCode.
1126 //
1127 // Note that in the case where Op0 is passed in we could just call
1128 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1129 // the handle at all, but it's fine to do it here.
1130 //
1131 // TODO: This is a pretty hacky way to do this. Can we do something that
1132 // doesn't require a two paragraph explanation?
1133 HandleSDNode Handle(Upper);
1134 SelectCode(Upper.getNode());
1135 Upper = Handle.getValue();
1136 }
1137
1138 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1139 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1140
1141 ReplaceNode(Node, Or.getNode());
1142
1143 SelectCode(Or.getNode());
1144 }
1145
loadVectorConstant(const SystemZVectorConstantInfo & VCI,SDNode * Node)1146 void SystemZDAGToDAGISel::loadVectorConstant(
1147 const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1148 assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1149 VCI.Opcode == SystemZISD::REPLICATE ||
1150 VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1151 "Bad opcode!");
1152 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1153 EVT VT = Node->getValueType(0);
1154 SDLoc DL(Node);
1155 SmallVector<SDValue, 2> Ops;
1156 for (unsigned OpVal : VCI.OpVals)
1157 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1158 SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1159
1160 if (VCI.VecVT == VT.getSimpleVT())
1161 ReplaceNode(Node, Op.getNode());
1162 else if (VT.getSizeInBits() == 128) {
1163 SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1164 ReplaceNode(Node, BitCast.getNode());
1165 SelectCode(BitCast.getNode());
1166 } else { // float or double
1167 unsigned SubRegIdx =
1168 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1169 ReplaceNode(
1170 Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1171 }
1172 SelectCode(Op.getNode());
1173 }
1174
tryGather(SDNode * N,unsigned Opcode)1175 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1176 SDValue ElemV = N->getOperand(2);
1177 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1178 if (!ElemN)
1179 return false;
1180
1181 unsigned Elem = ElemN->getZExtValue();
1182 EVT VT = N->getValueType(0);
1183 if (Elem >= VT.getVectorNumElements())
1184 return false;
1185
1186 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1187 if (!Load || !Load->hasNUsesOfValue(1, 0))
1188 return false;
1189 if (Load->getMemoryVT().getSizeInBits() !=
1190 Load->getValueType(0).getSizeInBits())
1191 return false;
1192
1193 SDValue Base, Disp, Index;
1194 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1195 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1196 return false;
1197
1198 SDLoc DL(Load);
1199 SDValue Ops[] = {
1200 N->getOperand(0), Base, Disp, Index,
1201 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1202 };
1203 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1204 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1205 ReplaceNode(N, Res);
1206 return true;
1207 }
1208
tryScatter(StoreSDNode * Store,unsigned Opcode)1209 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1210 SDValue Value = Store->getValue();
1211 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1212 return false;
1213 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1214 return false;
1215
1216 SDValue ElemV = Value.getOperand(1);
1217 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1218 if (!ElemN)
1219 return false;
1220
1221 SDValue Vec = Value.getOperand(0);
1222 EVT VT = Vec.getValueType();
1223 unsigned Elem = ElemN->getZExtValue();
1224 if (Elem >= VT.getVectorNumElements())
1225 return false;
1226
1227 SDValue Base, Disp, Index;
1228 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1229 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1230 return false;
1231
1232 SDLoc DL(Store);
1233 SDValue Ops[] = {
1234 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1235 Store->getChain()
1236 };
1237 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1238 return true;
1239 }
1240
1241 // Check whether or not the chain ending in StoreNode is suitable for doing
1242 // the {load; op; store} to modify transformation.
isFusableLoadOpStorePattern(StoreSDNode * StoreNode,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1243 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1244 SDValue StoredVal, SelectionDAG *CurDAG,
1245 LoadSDNode *&LoadNode,
1246 SDValue &InputChain) {
1247 // Is the stored value result 0 of the operation?
1248 if (StoredVal.getResNo() != 0)
1249 return false;
1250
1251 // Are there other uses of the loaded value than the operation?
1252 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1253 return false;
1254
1255 // Is the store non-extending and non-indexed?
1256 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1257 return false;
1258
1259 SDValue Load = StoredVal->getOperand(0);
1260 // Is the stored value a non-extending and non-indexed load?
1261 if (!ISD::isNormalLoad(Load.getNode()))
1262 return false;
1263
1264 // Return LoadNode by reference.
1265 LoadNode = cast<LoadSDNode>(Load);
1266
1267 // Is store the only read of the loaded value?
1268 if (!Load.hasOneUse())
1269 return false;
1270
1271 // Is the address of the store the same as the load?
1272 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1273 LoadNode->getOffset() != StoreNode->getOffset())
1274 return false;
1275
1276 // Check if the chain is produced by the load or is a TokenFactor with
1277 // the load output chain as an operand. Return InputChain by reference.
1278 SDValue Chain = StoreNode->getChain();
1279
1280 bool ChainCheck = false;
1281 if (Chain == Load.getValue(1)) {
1282 ChainCheck = true;
1283 InputChain = LoadNode->getChain();
1284 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1285 SmallVector<SDValue, 4> ChainOps;
1286 SmallVector<const SDNode *, 4> LoopWorklist;
1287 SmallPtrSet<const SDNode *, 16> Visited;
1288 const unsigned int Max = 1024;
1289 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1290 SDValue Op = Chain.getOperand(i);
1291 if (Op == Load.getValue(1)) {
1292 ChainCheck = true;
1293 // Drop Load, but keep its chain. No cycle check necessary.
1294 ChainOps.push_back(Load.getOperand(0));
1295 continue;
1296 }
1297 LoopWorklist.push_back(Op.getNode());
1298 ChainOps.push_back(Op);
1299 }
1300
1301 if (ChainCheck) {
1302 // Add the other operand of StoredVal to worklist.
1303 for (SDValue Op : StoredVal->ops())
1304 if (Op.getNode() != LoadNode)
1305 LoopWorklist.push_back(Op.getNode());
1306
1307 // Check if Load is reachable from any of the nodes in the worklist.
1308 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1309 true))
1310 return false;
1311
1312 // Make a new TokenFactor with all the other input chains except
1313 // for the load.
1314 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1315 MVT::Other, ChainOps);
1316 }
1317 }
1318 if (!ChainCheck)
1319 return false;
1320
1321 return true;
1322 }
1323
1324 // Change a chain of {load; op; store} of the same value into a simple op
1325 // through memory of that value, if the uses of the modified value and its
1326 // address are suitable.
1327 //
1328 // The tablegen pattern memory operand pattern is currently not able to match
1329 // the case where the CC on the original operation are used.
1330 //
1331 // See the equivalent routine in X86ISelDAGToDAG for further comments.
tryFoldLoadStoreIntoMemOperand(SDNode * Node)1332 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1333 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1334 SDValue StoredVal = StoreNode->getOperand(1);
1335 unsigned Opc = StoredVal->getOpcode();
1336 SDLoc DL(StoreNode);
1337
1338 // Before we try to select anything, make sure this is memory operand size
1339 // and opcode we can handle. Note that this must match the code below that
1340 // actually lowers the opcodes.
1341 EVT MemVT = StoreNode->getMemoryVT();
1342 unsigned NewOpc = 0;
1343 bool NegateOperand = false;
1344 switch (Opc) {
1345 default:
1346 return false;
1347 case SystemZISD::SSUBO:
1348 NegateOperand = true;
1349 LLVM_FALLTHROUGH;
1350 case SystemZISD::SADDO:
1351 if (MemVT == MVT::i32)
1352 NewOpc = SystemZ::ASI;
1353 else if (MemVT == MVT::i64)
1354 NewOpc = SystemZ::AGSI;
1355 else
1356 return false;
1357 break;
1358 case SystemZISD::USUBO:
1359 NegateOperand = true;
1360 LLVM_FALLTHROUGH;
1361 case SystemZISD::UADDO:
1362 if (MemVT == MVT::i32)
1363 NewOpc = SystemZ::ALSI;
1364 else if (MemVT == MVT::i64)
1365 NewOpc = SystemZ::ALGSI;
1366 else
1367 return false;
1368 break;
1369 }
1370
1371 LoadSDNode *LoadNode = nullptr;
1372 SDValue InputChain;
1373 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1374 InputChain))
1375 return false;
1376
1377 SDValue Operand = StoredVal.getOperand(1);
1378 auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1379 if (!OperandC)
1380 return false;
1381 auto OperandV = OperandC->getAPIntValue();
1382 if (NegateOperand)
1383 OperandV = -OperandV;
1384 if (OperandV.getMinSignedBits() > 8)
1385 return false;
1386 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1387
1388 SDValue Base, Disp;
1389 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1390 return false;
1391
1392 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1393 MachineSDNode *Result =
1394 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1395 CurDAG->setNodeMemRefs(
1396 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1397
1398 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1399 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1400 CurDAG->RemoveDeadNode(Node);
1401 return true;
1402 }
1403
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const1404 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1405 LoadSDNode *Load) const {
1406 // Check that the two memory operands have the same size.
1407 if (Load->getMemoryVT() != Store->getMemoryVT())
1408 return false;
1409
1410 // Volatility stops an access from being decomposed.
1411 if (Load->isVolatile() || Store->isVolatile())
1412 return false;
1413
1414 // There's no chance of overlap if the load is invariant.
1415 if (Load->isInvariant() && Load->isDereferenceable())
1416 return true;
1417
1418 // Otherwise we need to check whether there's an alias.
1419 const Value *V1 = Load->getMemOperand()->getValue();
1420 const Value *V2 = Store->getMemOperand()->getValue();
1421 if (!V1 || !V2)
1422 return false;
1423
1424 // Reject equality.
1425 uint64_t Size = Load->getMemoryVT().getStoreSize();
1426 int64_t End1 = Load->getSrcValueOffset() + Size;
1427 int64_t End2 = Store->getSrcValueOffset() + Size;
1428 if (V1 == V2 && End1 == End2)
1429 return false;
1430
1431 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1432 MemoryLocation(V2, End2, Store->getAAInfo()));
1433 }
1434
storeLoadCanUseMVC(SDNode * N) const1435 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1436 auto *Store = cast<StoreSDNode>(N);
1437 auto *Load = cast<LoadSDNode>(Store->getValue());
1438
1439 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1440 // instructions.
1441 uint64_t Size = Load->getMemoryVT().getStoreSize();
1442 if (Size > 1 && Size <= 8) {
1443 // Prefer LHRL, LRL and LGRL.
1444 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1445 return false;
1446 // Prefer STHRL, STRL and STGRL.
1447 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1448 return false;
1449 }
1450
1451 return canUseBlockOperation(Store, Load);
1452 }
1453
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1454 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1455 unsigned I) const {
1456 auto *StoreA = cast<StoreSDNode>(N);
1457 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1458 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1459 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1460 }
1461
Select(SDNode * Node)1462 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1463 // If we have a custom node, we already have selected!
1464 if (Node->isMachineOpcode()) {
1465 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1466 Node->setNodeId(-1);
1467 return;
1468 }
1469
1470 unsigned Opcode = Node->getOpcode();
1471 switch (Opcode) {
1472 case ISD::OR:
1473 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1474 if (tryRxSBG(Node, SystemZ::ROSBG))
1475 return;
1476 goto or_xor;
1477
1478 case ISD::XOR:
1479 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1480 if (tryRxSBG(Node, SystemZ::RXSBG))
1481 return;
1482 // Fall through.
1483 or_xor:
1484 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1485 // split the operation into two. If both operands here happen to be
1486 // constant, leave this to common code to optimize.
1487 if (Node->getValueType(0) == MVT::i64 &&
1488 Node->getOperand(0).getOpcode() != ISD::Constant)
1489 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1490 uint64_t Val = Op1->getZExtValue();
1491 // Don't split the operation if we can match one of the combined
1492 // logical operations provided by miscellaneous-extensions-3.
1493 if (Subtarget->hasMiscellaneousExtensions3()) {
1494 unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1495 // Check whether this expression matches NAND/NOR/NXOR.
1496 if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1497 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1498 ChildOpcode == ISD::XOR)
1499 break;
1500 // Check whether this expression matches OR-with-complement
1501 // (or matches an alternate pattern for NXOR).
1502 if (ChildOpcode == ISD::XOR) {
1503 auto Op0 = Node->getOperand(0);
1504 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1505 if (Op0Op1->getZExtValue() == (uint64_t)-1)
1506 break;
1507 }
1508 }
1509 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1510 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1511 Val - uint32_t(Val), uint32_t(Val));
1512 return;
1513 }
1514 }
1515 break;
1516
1517 case ISD::AND:
1518 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1519 if (tryRxSBG(Node, SystemZ::RNSBG))
1520 return;
1521 LLVM_FALLTHROUGH;
1522 case ISD::ROTL:
1523 case ISD::SHL:
1524 case ISD::SRL:
1525 case ISD::ZERO_EXTEND:
1526 if (tryRISBGZero(Node))
1527 return;
1528 break;
1529
1530 case ISD::Constant:
1531 // If this is a 64-bit constant that is out of the range of LLILF,
1532 // LLIHF and LGFI, split it into two 32-bit pieces.
1533 if (Node->getValueType(0) == MVT::i64) {
1534 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1535 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1536 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1537 uint32_t(Val));
1538 return;
1539 }
1540 }
1541 break;
1542
1543 case SystemZISD::SELECT_CCMASK: {
1544 SDValue Op0 = Node->getOperand(0);
1545 SDValue Op1 = Node->getOperand(1);
1546 // Prefer to put any load first, so that it can be matched as a
1547 // conditional load. Likewise for constants in range for LOCHI.
1548 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1549 (Subtarget->hasLoadStoreOnCond2() &&
1550 Node->getValueType(0).isInteger() &&
1551 Op1.getOpcode() == ISD::Constant &&
1552 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1553 !(Op0.getOpcode() == ISD::Constant &&
1554 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1555 SDValue CCValid = Node->getOperand(2);
1556 SDValue CCMask = Node->getOperand(3);
1557 uint64_t ConstCCValid =
1558 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1559 uint64_t ConstCCMask =
1560 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1561 // Invert the condition.
1562 CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1563 SDLoc(Node), CCMask.getValueType());
1564 SDValue Op4 = Node->getOperand(4);
1565 SDNode *UpdatedNode =
1566 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1567 if (UpdatedNode != Node) {
1568 // In case this node already exists then replace Node with it.
1569 ReplaceNode(Node, UpdatedNode);
1570 Node = UpdatedNode;
1571 }
1572 }
1573 break;
1574 }
1575
1576 case ISD::INSERT_VECTOR_ELT: {
1577 EVT VT = Node->getValueType(0);
1578 unsigned ElemBitSize = VT.getScalarSizeInBits();
1579 if (ElemBitSize == 32) {
1580 if (tryGather(Node, SystemZ::VGEF))
1581 return;
1582 } else if (ElemBitSize == 64) {
1583 if (tryGather(Node, SystemZ::VGEG))
1584 return;
1585 }
1586 break;
1587 }
1588
1589 case ISD::BUILD_VECTOR: {
1590 auto *BVN = cast<BuildVectorSDNode>(Node);
1591 SystemZVectorConstantInfo VCI(BVN);
1592 if (VCI.isVectorConstantLegal(*Subtarget)) {
1593 loadVectorConstant(VCI, Node);
1594 return;
1595 }
1596 break;
1597 }
1598
1599 case ISD::ConstantFP: {
1600 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1601 if (Imm.isZero() || Imm.isNegZero())
1602 break;
1603 SystemZVectorConstantInfo VCI(Imm);
1604 bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1605 assert(Success && "Expected legal FP immediate");
1606 loadVectorConstant(VCI, Node);
1607 return;
1608 }
1609
1610 case ISD::STORE: {
1611 if (tryFoldLoadStoreIntoMemOperand(Node))
1612 return;
1613 auto *Store = cast<StoreSDNode>(Node);
1614 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1615 if (ElemBitSize == 32) {
1616 if (tryScatter(Store, SystemZ::VSCEF))
1617 return;
1618 } else if (ElemBitSize == 64) {
1619 if (tryScatter(Store, SystemZ::VSCEG))
1620 return;
1621 }
1622 break;
1623 }
1624 }
1625
1626 SelectCode(Node);
1627 }
1628
1629 bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1630 SelectInlineAsmMemoryOperand(const SDValue &Op,
1631 unsigned ConstraintID,
1632 std::vector<SDValue> &OutOps) {
1633 SystemZAddressingMode::AddrForm Form;
1634 SystemZAddressingMode::DispRange DispRange;
1635 SDValue Base, Disp, Index;
1636
1637 switch(ConstraintID) {
1638 default:
1639 llvm_unreachable("Unexpected asm memory constraint");
1640 case InlineAsm::Constraint_i:
1641 case InlineAsm::Constraint_Q:
1642 // Accept an address with a short displacement, but no index.
1643 Form = SystemZAddressingMode::FormBD;
1644 DispRange = SystemZAddressingMode::Disp12Only;
1645 break;
1646 case InlineAsm::Constraint_R:
1647 // Accept an address with a short displacement and an index.
1648 Form = SystemZAddressingMode::FormBDXNormal;
1649 DispRange = SystemZAddressingMode::Disp12Only;
1650 break;
1651 case InlineAsm::Constraint_S:
1652 // Accept an address with a long displacement, but no index.
1653 Form = SystemZAddressingMode::FormBD;
1654 DispRange = SystemZAddressingMode::Disp20Only;
1655 break;
1656 case InlineAsm::Constraint_T:
1657 case InlineAsm::Constraint_m:
1658 case InlineAsm::Constraint_o:
1659 // Accept an address with a long displacement and an index.
1660 // m works the same as T, as this is the most general case.
1661 // We don't really have any special handling of "offsettable"
1662 // memory addresses, so just treat o the same as m.
1663 Form = SystemZAddressingMode::FormBDXNormal;
1664 DispRange = SystemZAddressingMode::Disp20Only;
1665 break;
1666 }
1667
1668 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1669 const TargetRegisterClass *TRC =
1670 Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1671 SDLoc DL(Base);
1672 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1673
1674 // Make sure that the base address doesn't go into %r0.
1675 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1676 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1677 Base.getOpcode() != ISD::Register) {
1678 Base =
1679 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1680 DL, Base.getValueType(),
1681 Base, RC), 0);
1682 }
1683
1684 // Make sure that the index register isn't assigned to %r0 either.
1685 if (Index.getOpcode() != ISD::Register) {
1686 Index =
1687 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1688 DL, Index.getValueType(),
1689 Index, RC), 0);
1690 }
1691
1692 OutOps.push_back(Base);
1693 OutOps.push_back(Disp);
1694 OutOps.push_back(Index);
1695 return false;
1696 }
1697
1698 return true;
1699 }
1700
1701 // IsProfitableToFold - Returns true if is profitable to fold the specific
1702 // operand node N of U during instruction selection that starts at Root.
1703 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1704 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1705 SDNode *Root) const {
1706 // We want to avoid folding a LOAD into an ICMP node if as a result
1707 // we would be forced to spill the condition code into a GPR.
1708 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1709 if (!N.hasOneUse() || !U->hasOneUse())
1710 return false;
1711
1712 // The user of the CC value will usually be a CopyToReg into the
1713 // physical CC register, which in turn is glued and chained to the
1714 // actual instruction that uses the CC value. Bail out if we have
1715 // anything else than that.
1716 SDNode *CCUser = *U->use_begin();
1717 SDNode *CCRegUser = nullptr;
1718 if (CCUser->getOpcode() == ISD::CopyToReg ||
1719 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1720 for (auto *U : CCUser->uses()) {
1721 if (CCRegUser == nullptr)
1722 CCRegUser = U;
1723 else if (CCRegUser != U)
1724 return false;
1725 }
1726 }
1727 if (CCRegUser == nullptr)
1728 return false;
1729
1730 // If the actual instruction is a branch, the only thing that remains to be
1731 // checked is whether the CCUser chain is a predecessor of the load.
1732 if (CCRegUser->isMachineOpcode() &&
1733 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1734 return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1735
1736 // Otherwise, the instruction may have multiple operands, and we need to
1737 // verify that none of them are a predecessor of the load. This is exactly
1738 // the same check that would be done by common code if the CC setter were
1739 // glued to the CC user, so simply invoke that check here.
1740 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1741 return false;
1742 }
1743
1744 return true;
1745 }
1746
1747 namespace {
1748 // Represents a sequence for extracting a 0/1 value from an IPM result:
1749 // (((X ^ XORValue) + AddValue) >> Bit)
1750 struct IPMConversion {
IPMConversion__anon9d233d250211::IPMConversion1751 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1752 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1753
1754 int64_t XORValue;
1755 int64_t AddValue;
1756 unsigned Bit;
1757 };
1758 } // end anonymous namespace
1759
1760 // Return a sequence for getting a 1 from an IPM result when CC has a
1761 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1762 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1763 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1764 // Deal with cases where the result can be taken directly from a bit
1765 // of the IPM result.
1766 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1767 return IPMConversion(0, 0, SystemZ::IPM_CC);
1768 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1769 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1770
1771 // Deal with cases where we can add a value to force the sign bit
1772 // to contain the right value. Putting the bit in 31 means we can
1773 // use SRL rather than RISBG(L), and also makes it easier to get a
1774 // 0/-1 value, so it has priority over the other tests below.
1775 //
1776 // These sequences rely on the fact that the upper two bits of the
1777 // IPM result are zero.
1778 uint64_t TopBit = uint64_t(1) << 31;
1779 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1780 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1781 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1782 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1783 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1784 | SystemZ::CCMASK_1
1785 | SystemZ::CCMASK_2)))
1786 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1787 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1788 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1789 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1790 | SystemZ::CCMASK_2
1791 | SystemZ::CCMASK_3)))
1792 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1793
1794 // Next try inverting the value and testing a bit. 0/1 could be
1795 // handled this way too, but we dealt with that case above.
1796 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1797 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1798
1799 // Handle cases where adding a value forces a non-sign bit to contain
1800 // the right value.
1801 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1802 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1803 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1804 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1805
1806 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1807 // can be done by inverting the low CC bit and applying one of the
1808 // sign-based extractions above.
1809 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1810 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1811 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1812 return IPMConversion(1 << SystemZ::IPM_CC,
1813 TopBit - (3 << SystemZ::IPM_CC), 31);
1814 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1815 | SystemZ::CCMASK_1
1816 | SystemZ::CCMASK_3)))
1817 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1818 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1819 | SystemZ::CCMASK_2
1820 | SystemZ::CCMASK_3)))
1821 return IPMConversion(1 << SystemZ::IPM_CC,
1822 TopBit - (1 << SystemZ::IPM_CC), 31);
1823
1824 llvm_unreachable("Unexpected CC combination");
1825 }
1826
expandSelectBoolean(SDNode * Node)1827 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1828 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1829 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1830 if (!TrueOp || !FalseOp)
1831 return SDValue();
1832 if (FalseOp->getZExtValue() != 0)
1833 return SDValue();
1834 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1835 return SDValue();
1836
1837 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1838 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1839 if (!CCValidOp || !CCMaskOp)
1840 return SDValue();
1841 int CCValid = CCValidOp->getZExtValue();
1842 int CCMask = CCMaskOp->getZExtValue();
1843
1844 SDLoc DL(Node);
1845 SDValue CCReg = Node->getOperand(4);
1846 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1847 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1848
1849 if (IPM.XORValue)
1850 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1851 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1852
1853 if (IPM.AddValue)
1854 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1855 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1856
1857 EVT VT = Node->getValueType(0);
1858 if (VT == MVT::i32 && IPM.Bit == 31) {
1859 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1860 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1861 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1862 } else {
1863 if (VT != MVT::i32)
1864 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1865
1866 if (TrueOp->getSExtValue() == 1) {
1867 // The SHR/AND sequence should get optimized to an RISBG.
1868 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1869 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1870 Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1871 CurDAG->getConstant(1, DL, VT));
1872 } else {
1873 // Sign-extend from IPM.Bit using a pair of shifts.
1874 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1875 int SraAmt = VT.getSizeInBits() - 1;
1876 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1877 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1878 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1879 CurDAG->getConstant(SraAmt, DL, MVT::i32));
1880 }
1881 }
1882
1883 return Result;
1884 }
1885
PreprocessISelDAG()1886 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1887 // If we have conditional immediate loads, we always prefer
1888 // using those over an IPM sequence.
1889 if (Subtarget->hasLoadStoreOnCond2())
1890 return;
1891
1892 bool MadeChange = false;
1893
1894 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1895 E = CurDAG->allnodes_end();
1896 I != E;) {
1897 SDNode *N = &*I++;
1898 if (N->use_empty())
1899 continue;
1900
1901 SDValue Res;
1902 switch (N->getOpcode()) {
1903 default: break;
1904 case SystemZISD::SELECT_CCMASK:
1905 Res = expandSelectBoolean(N);
1906 break;
1907 }
1908
1909 if (Res) {
1910 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1911 LLVM_DEBUG(N->dump(CurDAG));
1912 LLVM_DEBUG(dbgs() << "\nNew: ");
1913 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1914 LLVM_DEBUG(dbgs() << "\n");
1915
1916 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1917 MadeChange = true;
1918 }
1919 }
1920
1921 if (MadeChange)
1922 CurDAG->RemoveDeadNodes();
1923 }
1924