• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 #include <string.h>
24 #include "ir.h"
25 #include "util/half_float.h"
26 #include "util/bitscan.h"
27 #include "compiler/glsl_types.h"
28 #include "glsl_parser_extras.h"
29 
30 
ir_rvalue(enum ir_node_type t)31 ir_rvalue::ir_rvalue(enum ir_node_type t)
32    : ir_instruction(t)
33 {
34    this->type = glsl_type::error_type;
35 }
36 
is_zero() const37 bool ir_rvalue::is_zero() const
38 {
39    return false;
40 }
41 
is_one() const42 bool ir_rvalue::is_one() const
43 {
44    return false;
45 }
46 
is_negative_one() const47 bool ir_rvalue::is_negative_one() const
48 {
49    return false;
50 }
51 
52 /**
53  * Modify the swizzle make to move one component to another
54  *
55  * \param m    IR swizzle to be modified
56  * \param from Component in the RHS that is to be swizzled
57  * \param to   Desired swizzle location of \c from
58  */
59 static void
update_rhs_swizzle(ir_swizzle_mask & m,unsigned from,unsigned to)60 update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
61 {
62    switch (to) {
63    case 0: m.x = from; break;
64    case 1: m.y = from; break;
65    case 2: m.z = from; break;
66    case 3: m.w = from; break;
67    default: assert(!"Should not get here.");
68    }
69 }
70 
71 void
set_lhs(ir_rvalue * lhs)72 ir_assignment::set_lhs(ir_rvalue *lhs)
73 {
74    void *mem_ctx = this;
75    bool swizzled = false;
76 
77    while (lhs != NULL) {
78       ir_swizzle *swiz = lhs->as_swizzle();
79 
80       if (swiz == NULL)
81 	 break;
82 
83       unsigned write_mask = 0;
84       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
85 
86       for (unsigned i = 0; i < swiz->mask.num_components; i++) {
87 	 unsigned c = 0;
88 
89 	 switch (i) {
90 	 case 0: c = swiz->mask.x; break;
91 	 case 1: c = swiz->mask.y; break;
92 	 case 2: c = swiz->mask.z; break;
93 	 case 3: c = swiz->mask.w; break;
94 	 default: assert(!"Should not get here.");
95 	 }
96 
97 	 write_mask |= (((this->write_mask >> i) & 1) << c);
98 	 update_rhs_swizzle(rhs_swiz, i, c);
99          rhs_swiz.num_components = swiz->val->type->vector_elements;
100       }
101 
102       this->write_mask = write_mask;
103       lhs = swiz->val;
104 
105       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
106       swizzled = true;
107    }
108 
109    if (swizzled) {
110       /* Now, RHS channels line up with the LHS writemask.  Collapse it
111        * to just the channels that will be written.
112        */
113       ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
114       int rhs_chan = 0;
115       for (int i = 0; i < 4; i++) {
116 	 if (write_mask & (1 << i))
117 	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
118       }
119       rhs_swiz.num_components = rhs_chan;
120       this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
121    }
122 
123    assert((lhs == NULL) || lhs->as_dereference());
124 
125    this->lhs = (ir_dereference *) lhs;
126 }
127 
128 ir_variable *
whole_variable_written()129 ir_assignment::whole_variable_written()
130 {
131    ir_variable *v = this->lhs->whole_variable_referenced();
132 
133    if (v == NULL)
134       return NULL;
135 
136    if (v->type->is_scalar())
137       return v;
138 
139    if (v->type->is_vector()) {
140       const unsigned mask = (1U << v->type->vector_elements) - 1;
141 
142       if (mask != this->write_mask)
143 	 return NULL;
144    }
145 
146    /* Either all the vector components are assigned or the variable is some
147     * composite type (and the whole thing is assigned.
148     */
149    return v;
150 }
151 
ir_assignment(ir_dereference * lhs,ir_rvalue * rhs,unsigned write_mask)152 ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
153                              unsigned write_mask)
154    : ir_instruction(ir_type_assignment)
155 {
156    this->rhs = rhs;
157    this->lhs = lhs;
158    this->write_mask = write_mask;
159 
160    if (lhs->type->is_scalar() || lhs->type->is_vector())
161       assert(util_bitcount(write_mask) == this->rhs->type->vector_elements);
162 }
163 
ir_assignment(ir_rvalue * lhs,ir_rvalue * rhs)164 ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs)
165    : ir_instruction(ir_type_assignment)
166 {
167    this->rhs = rhs;
168 
169    /* If the RHS is a vector type, assume that all components of the vector
170     * type are being written to the LHS.  The write mask comes from the RHS
171     * because we can have a case where the LHS is a vec4 and the RHS is a
172     * vec3.  In that case, the assignment is:
173     *
174     *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
175     */
176    if (rhs->type->is_vector())
177       this->write_mask = (1U << rhs->type->vector_elements) - 1;
178    else if (rhs->type->is_scalar())
179       this->write_mask = 1;
180    else
181       this->write_mask = 0;
182 
183    this->set_lhs(lhs);
184 }
185 
ir_expression(int op,const struct glsl_type * type,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2,ir_rvalue * op3)186 ir_expression::ir_expression(int op, const struct glsl_type *type,
187 			     ir_rvalue *op0, ir_rvalue *op1,
188 			     ir_rvalue *op2, ir_rvalue *op3)
189    : ir_rvalue(ir_type_expression)
190 {
191    this->type = type;
192    this->operation = ir_expression_operation(op);
193    this->operands[0] = op0;
194    this->operands[1] = op1;
195    this->operands[2] = op2;
196    this->operands[3] = op3;
197    init_num_operands();
198 
199 #ifndef NDEBUG
200    for (unsigned i = num_operands; i < 4; i++) {
201       assert(this->operands[i] == NULL);
202    }
203 
204    for (unsigned i = 0; i < num_operands; i++) {
205       assert(this->operands[i] != NULL);
206    }
207 #endif
208 }
209 
ir_expression(int op,ir_rvalue * op0)210 ir_expression::ir_expression(int op, ir_rvalue *op0)
211    : ir_rvalue(ir_type_expression)
212 {
213    this->operation = ir_expression_operation(op);
214    this->operands[0] = op0;
215    this->operands[1] = NULL;
216    this->operands[2] = NULL;
217    this->operands[3] = NULL;
218 
219    assert(op <= ir_last_unop);
220    init_num_operands();
221    assert(num_operands == 1);
222    assert(this->operands[0]);
223 
224    switch (this->operation) {
225    case ir_unop_bit_not:
226    case ir_unop_logic_not:
227    case ir_unop_neg:
228    case ir_unop_abs:
229    case ir_unop_sign:
230    case ir_unop_rcp:
231    case ir_unop_rsq:
232    case ir_unop_sqrt:
233    case ir_unop_exp:
234    case ir_unop_log:
235    case ir_unop_exp2:
236    case ir_unop_log2:
237    case ir_unop_trunc:
238    case ir_unop_ceil:
239    case ir_unop_floor:
240    case ir_unop_fract:
241    case ir_unop_round_even:
242    case ir_unop_sin:
243    case ir_unop_cos:
244    case ir_unop_dFdx:
245    case ir_unop_dFdx_coarse:
246    case ir_unop_dFdx_fine:
247    case ir_unop_dFdy:
248    case ir_unop_dFdy_coarse:
249    case ir_unop_dFdy_fine:
250    case ir_unop_bitfield_reverse:
251    case ir_unop_interpolate_at_centroid:
252    case ir_unop_clz:
253    case ir_unop_saturate:
254    case ir_unop_atan:
255       this->type = op0->type;
256       break;
257 
258    case ir_unop_f2i:
259    case ir_unop_b2i:
260    case ir_unop_u2i:
261    case ir_unop_d2i:
262    case ir_unop_bitcast_f2i:
263    case ir_unop_bit_count:
264    case ir_unop_find_msb:
265    case ir_unop_find_lsb:
266    case ir_unop_subroutine_to_int:
267    case ir_unop_i642i:
268    case ir_unop_u642i:
269       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
270 					   op0->type->vector_elements, 1);
271       break;
272 
273    case ir_unop_b2f:
274    case ir_unop_i2f:
275    case ir_unop_u2f:
276    case ir_unop_d2f:
277    case ir_unop_f162f:
278    case ir_unop_bitcast_i2f:
279    case ir_unop_bitcast_u2f:
280    case ir_unop_i642f:
281    case ir_unop_u642f:
282       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
283 					   op0->type->vector_elements, 1);
284       break;
285 
286    case ir_unop_f2f16:
287    case ir_unop_f2fmp:
288    case ir_unop_b2f16:
289       this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16,
290 					   op0->type->vector_elements, 1);
291       break;
292 
293    case ir_unop_i2imp:
294       this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
295 					   op0->type->vector_elements, 1);
296       break;
297 
298    case ir_unop_i2i:
299       if (op0->type->base_type == GLSL_TYPE_INT) {
300          this->type = glsl_type::get_instance(GLSL_TYPE_INT16,
301                                               op0->type->vector_elements, 1);
302       } else {
303          assert(op0->type->base_type == GLSL_TYPE_INT16);
304          this->type = glsl_type::get_instance(GLSL_TYPE_INT,
305                                               op0->type->vector_elements, 1);
306       }
307       break;
308 
309    case ir_unop_u2u:
310       if (op0->type->base_type == GLSL_TYPE_UINT) {
311          this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
312                                               op0->type->vector_elements, 1);
313       } else {
314          assert(op0->type->base_type == GLSL_TYPE_UINT16);
315          this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
316                                               op0->type->vector_elements, 1);
317       }
318       break;
319 
320    case ir_unop_u2ump:
321       this->type = glsl_type::get_instance(GLSL_TYPE_UINT16,
322 					   op0->type->vector_elements, 1);
323       break;
324 
325    case ir_unop_f2b:
326    case ir_unop_i2b:
327    case ir_unop_d2b:
328    case ir_unop_f162b:
329    case ir_unop_i642b:
330       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
331 					   op0->type->vector_elements, 1);
332       break;
333 
334    case ir_unop_f2d:
335    case ir_unop_i2d:
336    case ir_unop_u2d:
337    case ir_unop_i642d:
338    case ir_unop_u642d:
339       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
340 					   op0->type->vector_elements, 1);
341       break;
342 
343    case ir_unop_i2u:
344    case ir_unop_f2u:
345    case ir_unop_d2u:
346    case ir_unop_bitcast_f2u:
347    case ir_unop_i642u:
348    case ir_unop_u642u:
349       this->type = glsl_type::get_instance(GLSL_TYPE_UINT,
350 					   op0->type->vector_elements, 1);
351       break;
352 
353    case ir_unop_i2i64:
354    case ir_unop_u2i64:
355    case ir_unop_b2i64:
356    case ir_unop_f2i64:
357    case ir_unop_d2i64:
358    case ir_unop_u642i64:
359       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
360 					   op0->type->vector_elements, 1);
361       break;
362 
363    case ir_unop_i2u64:
364    case ir_unop_u2u64:
365    case ir_unop_f2u64:
366    case ir_unop_d2u64:
367    case ir_unop_i642u64:
368       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
369 					   op0->type->vector_elements, 1);
370       break;
371 
372    case ir_unop_unpack_double_2x32:
373    case ir_unop_unpack_uint_2x32:
374       this->type = glsl_type::uvec2_type;
375       break;
376 
377    case ir_unop_unpack_int_2x32:
378       this->type = glsl_type::ivec2_type;
379       break;
380 
381    case ir_unop_pack_snorm_2x16:
382    case ir_unop_pack_snorm_4x8:
383    case ir_unop_pack_unorm_2x16:
384    case ir_unop_pack_unorm_4x8:
385    case ir_unop_pack_half_2x16:
386       this->type = glsl_type::uint_type;
387       break;
388 
389    case ir_unop_pack_double_2x32:
390       this->type = glsl_type::double_type;
391       break;
392 
393    case ir_unop_pack_int_2x32:
394       this->type = glsl_type::int64_t_type;
395       break;
396 
397    case ir_unop_pack_uint_2x32:
398       this->type = glsl_type::uint64_t_type;
399       break;
400 
401    case ir_unop_unpack_snorm_2x16:
402    case ir_unop_unpack_unorm_2x16:
403    case ir_unop_unpack_half_2x16:
404       this->type = glsl_type::vec2_type;
405       break;
406 
407    case ir_unop_unpack_snorm_4x8:
408    case ir_unop_unpack_unorm_4x8:
409       this->type = glsl_type::vec4_type;
410       break;
411 
412    case ir_unop_unpack_sampler_2x32:
413    case ir_unop_unpack_image_2x32:
414       this->type = glsl_type::uvec2_type;
415       break;
416 
417    case ir_unop_pack_sampler_2x32:
418    case ir_unop_pack_image_2x32:
419       this->type = op0->type;
420       break;
421 
422    case ir_unop_frexp_sig:
423       this->type = op0->type;
424       break;
425    case ir_unop_frexp_exp:
426       this->type = glsl_type::get_instance(GLSL_TYPE_INT,
427 					   op0->type->vector_elements, 1);
428       break;
429 
430    case ir_unop_get_buffer_size:
431    case ir_unop_ssbo_unsized_array_length:
432    case ir_unop_implicitly_sized_array_length:
433       this->type = glsl_type::int_type;
434       break;
435 
436    case ir_unop_bitcast_i642d:
437    case ir_unop_bitcast_u642d:
438       this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE,
439                                            op0->type->vector_elements, 1);
440       break;
441 
442    case ir_unop_bitcast_d2i64:
443       this->type = glsl_type::get_instance(GLSL_TYPE_INT64,
444                                            op0->type->vector_elements, 1);
445       break;
446    case ir_unop_bitcast_d2u64:
447       this->type = glsl_type::get_instance(GLSL_TYPE_UINT64,
448                                            op0->type->vector_elements, 1);
449       break;
450 
451    default:
452       assert(!"not reached: missing automatic type setup for ir_expression");
453       this->type = op0->type;
454       break;
455    }
456 }
457 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1)458 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
459    : ir_rvalue(ir_type_expression)
460 {
461    this->operation = ir_expression_operation(op);
462    this->operands[0] = op0;
463    this->operands[1] = op1;
464    this->operands[2] = NULL;
465    this->operands[3] = NULL;
466 
467    assert(op > ir_last_unop);
468    init_num_operands();
469    assert(num_operands == 2);
470    for (unsigned i = 0; i < num_operands; i++) {
471       assert(this->operands[i] != NULL);
472    }
473 
474    switch (this->operation) {
475    case ir_binop_all_equal:
476    case ir_binop_any_nequal:
477       this->type = glsl_type::bool_type;
478       break;
479 
480    case ir_binop_add:
481    case ir_binop_sub:
482    case ir_binop_min:
483    case ir_binop_max:
484    case ir_binop_pow:
485    case ir_binop_mul:
486    case ir_binop_div:
487    case ir_binop_mod:
488    case ir_binop_atan2:
489       if (op0->type->is_scalar()) {
490 	 this->type = op1->type;
491       } else if (op1->type->is_scalar()) {
492 	 this->type = op0->type;
493       } else {
494          if (this->operation == ir_binop_mul) {
495             this->type = glsl_type::get_mul_type(op0->type, op1->type);
496          } else {
497             assert(op0->type == op1->type);
498             this->type = op0->type;
499          }
500       }
501       break;
502 
503    case ir_binop_logic_and:
504    case ir_binop_logic_xor:
505    case ir_binop_logic_or:
506    case ir_binop_bit_and:
507    case ir_binop_bit_xor:
508    case ir_binop_bit_or:
509        assert(!op0->type->is_matrix());
510        assert(!op1->type->is_matrix());
511       if (op0->type->is_scalar()) {
512          this->type = op1->type;
513       } else if (op1->type->is_scalar()) {
514          this->type = op0->type;
515       } else {
516           assert(op0->type->vector_elements == op1->type->vector_elements);
517           this->type = op0->type;
518       }
519       break;
520 
521    case ir_binop_equal:
522    case ir_binop_nequal:
523    case ir_binop_gequal:
524    case ir_binop_less:
525       assert(op0->type == op1->type);
526       this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
527 					   op0->type->vector_elements, 1);
528       break;
529 
530    case ir_binop_dot:
531       this->type = op0->type->get_base_type();
532       break;
533 
534    case ir_binop_imul_high:
535    case ir_binop_mul_32x16:
536    case ir_binop_carry:
537    case ir_binop_borrow:
538    case ir_binop_lshift:
539    case ir_binop_rshift:
540    case ir_binop_ldexp:
541    case ir_binop_interpolate_at_offset:
542    case ir_binop_interpolate_at_sample:
543       this->type = op0->type;
544       break;
545 
546    case ir_binop_add_sat:
547    case ir_binop_sub_sat:
548    case ir_binop_avg:
549    case ir_binop_avg_round:
550       assert(op0->type == op1->type);
551       this->type = op0->type;
552       break;
553 
554    case ir_binop_abs_sub: {
555       enum glsl_base_type base;
556 
557       assert(op0->type == op1->type);
558 
559       switch (op0->type->base_type) {
560       case GLSL_TYPE_UINT:
561       case GLSL_TYPE_INT:
562          base = GLSL_TYPE_UINT;
563          break;
564       case GLSL_TYPE_UINT8:
565       case GLSL_TYPE_INT8:
566          base = GLSL_TYPE_UINT8;
567          break;
568       case GLSL_TYPE_UINT16:
569       case GLSL_TYPE_INT16:
570          base = GLSL_TYPE_UINT16;
571          break;
572       case GLSL_TYPE_UINT64:
573       case GLSL_TYPE_INT64:
574          base = GLSL_TYPE_UINT64;
575          break;
576       default:
577          unreachable(!"Invalid base type.");
578       }
579 
580       this->type = glsl_type::get_instance(base, op0->type->vector_elements, 1);
581       break;
582    }
583 
584    case ir_binop_vector_extract:
585       this->type = op0->type->get_scalar_type();
586       break;
587 
588    default:
589       assert(!"not reached: missing automatic type setup for ir_expression");
590       this->type = glsl_type::float_type;
591    }
592 }
593 
ir_expression(int op,ir_rvalue * op0,ir_rvalue * op1,ir_rvalue * op2)594 ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1,
595                              ir_rvalue *op2)
596    : ir_rvalue(ir_type_expression)
597 {
598    this->operation = ir_expression_operation(op);
599    this->operands[0] = op0;
600    this->operands[1] = op1;
601    this->operands[2] = op2;
602    this->operands[3] = NULL;
603 
604    assert(op > ir_last_binop && op <= ir_last_triop);
605    init_num_operands();
606    assert(num_operands == 3);
607    for (unsigned i = 0; i < num_operands; i++) {
608       assert(this->operands[i] != NULL);
609    }
610 
611    switch (this->operation) {
612    case ir_triop_fma:
613    case ir_triop_lrp:
614    case ir_triop_bitfield_extract:
615    case ir_triop_vector_insert:
616       this->type = op0->type;
617       break;
618 
619    case ir_triop_csel:
620       this->type = op1->type;
621       break;
622 
623    default:
624       assert(!"not reached: missing automatic type setup for ir_expression");
625       this->type = glsl_type::float_type;
626    }
627 }
628 
629 /**
630  * This is only here for ir_reader to used for testing purposes. Please use
631  * the precomputed num_operands field if you need the number of operands.
632  */
633 unsigned
get_num_operands(ir_expression_operation op)634 ir_expression::get_num_operands(ir_expression_operation op)
635 {
636    assert(op <= ir_last_opcode);
637 
638    if (op <= ir_last_unop)
639       return 1;
640 
641    if (op <= ir_last_binop)
642       return 2;
643 
644    if (op <= ir_last_triop)
645       return 3;
646 
647    if (op <= ir_last_quadop)
648       return 4;
649 
650    unreachable("Could not calculate number of operands");
651 }
652 
653 #include "ir_expression_operation_strings.h"
654 
655 const char*
depth_layout_string(ir_depth_layout layout)656 depth_layout_string(ir_depth_layout layout)
657 {
658    switch(layout) {
659    case ir_depth_layout_none:      return "";
660    case ir_depth_layout_any:       return "depth_any";
661    case ir_depth_layout_greater:   return "depth_greater";
662    case ir_depth_layout_less:      return "depth_less";
663    case ir_depth_layout_unchanged: return "depth_unchanged";
664 
665    default:
666       assert(0);
667       return "";
668    }
669 }
670 
671 ir_expression_operation
get_operator(const char * str)672 ir_expression::get_operator(const char *str)
673 {
674    for (int op = 0; op <= int(ir_last_opcode); op++) {
675       if (strcmp(str, ir_expression_operation_strings[op]) == 0)
676 	 return (ir_expression_operation) op;
677    }
678    return (ir_expression_operation) -1;
679 }
680 
681 ir_variable *
variable_referenced() const682 ir_expression::variable_referenced() const
683 {
684    switch (operation) {
685       case ir_binop_vector_extract:
686       case ir_triop_vector_insert:
687          /* We get these for things like a[0] where a is a vector type. In these
688           * cases we want variable_referenced() to return the actual vector
689           * variable this is wrapping.
690           */
691          return operands[0]->variable_referenced();
692       default:
693          return ir_rvalue::variable_referenced();
694    }
695 }
696 
ir_constant()697 ir_constant::ir_constant()
698    : ir_rvalue(ir_type_constant)
699 {
700    this->const_elements = NULL;
701 }
702 
ir_constant(const struct glsl_type * type,const ir_constant_data * data)703 ir_constant::ir_constant(const struct glsl_type *type,
704 			 const ir_constant_data *data)
705    : ir_rvalue(ir_type_constant)
706 {
707    this->const_elements = NULL;
708 
709    assert((type->base_type >= GLSL_TYPE_UINT)
710 	  && (type->base_type <= GLSL_TYPE_IMAGE));
711 
712    this->type = type;
713    memcpy(& this->value, data, sizeof(this->value));
714 }
715 
ir_constant(float16_t f16,unsigned vector_elements)716 ir_constant::ir_constant(float16_t f16, unsigned vector_elements)
717    : ir_rvalue(ir_type_constant)
718 {
719    this->const_elements = NULL;
720    assert(vector_elements <= 4);
721    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT16, vector_elements, 1);
722    for (unsigned i = 0; i < vector_elements; i++) {
723       this->value.f16[i] = f16.bits;
724    }
725    for (unsigned i = vector_elements; i < 16; i++)  {
726       this->value.f[i] = 0;
727    }
728 }
729 
ir_constant(float f,unsigned vector_elements)730 ir_constant::ir_constant(float f, unsigned vector_elements)
731    : ir_rvalue(ir_type_constant)
732 {
733    this->const_elements = NULL;
734    assert(vector_elements <= 4);
735    this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1);
736    for (unsigned i = 0; i < vector_elements; i++) {
737       this->value.f[i] = f;
738    }
739    for (unsigned i = vector_elements; i < 16; i++)  {
740       this->value.f[i] = 0;
741    }
742 }
743 
ir_constant(double d,unsigned vector_elements)744 ir_constant::ir_constant(double d, unsigned vector_elements)
745    : ir_rvalue(ir_type_constant)
746 {
747    this->const_elements = NULL;
748    assert(vector_elements <= 4);
749    this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1);
750    for (unsigned i = 0; i < vector_elements; i++) {
751       this->value.d[i] = d;
752    }
753    for (unsigned i = vector_elements; i < 16; i++)  {
754       this->value.d[i] = 0.0;
755    }
756 }
757 
ir_constant(int16_t i16,unsigned vector_elements)758 ir_constant::ir_constant(int16_t i16, unsigned vector_elements)
759    : ir_rvalue(ir_type_constant)
760 {
761    this->const_elements = NULL;
762    assert(vector_elements <= 4);
763    this->type = glsl_type::get_instance(GLSL_TYPE_INT16, vector_elements, 1);
764    for (unsigned i = 0; i < vector_elements; i++) {
765       this->value.i16[i] = i16;
766    }
767    for (unsigned i = vector_elements; i < 16; i++) {
768       this->value.i16[i] = 0;
769    }
770 }
771 
ir_constant(uint16_t u16,unsigned vector_elements)772 ir_constant::ir_constant(uint16_t u16, unsigned vector_elements)
773    : ir_rvalue(ir_type_constant)
774 {
775    this->const_elements = NULL;
776    assert(vector_elements <= 4);
777    this->type = glsl_type::get_instance(GLSL_TYPE_UINT16, vector_elements, 1);
778    for (unsigned i = 0; i < vector_elements; i++) {
779       this->value.u16[i] = u16;
780    }
781    for (unsigned i = vector_elements; i < 16; i++) {
782       this->value.u16[i] = 0;
783    }
784 }
785 
ir_constant(unsigned int u,unsigned vector_elements)786 ir_constant::ir_constant(unsigned int u, unsigned vector_elements)
787    : ir_rvalue(ir_type_constant)
788 {
789    this->const_elements = NULL;
790    assert(vector_elements <= 4);
791    this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1);
792    for (unsigned i = 0; i < vector_elements; i++) {
793       this->value.u[i] = u;
794    }
795    for (unsigned i = vector_elements; i < 16; i++) {
796       this->value.u[i] = 0;
797    }
798 }
799 
ir_constant(int integer,unsigned vector_elements)800 ir_constant::ir_constant(int integer, unsigned vector_elements)
801    : ir_rvalue(ir_type_constant)
802 {
803    this->const_elements = NULL;
804    assert(vector_elements <= 4);
805    this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1);
806    for (unsigned i = 0; i < vector_elements; i++) {
807       this->value.i[i] = integer;
808    }
809    for (unsigned i = vector_elements; i < 16; i++) {
810       this->value.i[i] = 0;
811    }
812 }
813 
ir_constant(uint64_t u64,unsigned vector_elements)814 ir_constant::ir_constant(uint64_t u64, unsigned vector_elements)
815    : ir_rvalue(ir_type_constant)
816 {
817    this->const_elements = NULL;
818    assert(vector_elements <= 4);
819    this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1);
820    for (unsigned i = 0; i < vector_elements; i++) {
821       this->value.u64[i] = u64;
822    }
823    for (unsigned i = vector_elements; i < 16; i++) {
824       this->value.u64[i] = 0;
825    }
826 }
827 
ir_constant(int64_t int64,unsigned vector_elements)828 ir_constant::ir_constant(int64_t int64, unsigned vector_elements)
829    : ir_rvalue(ir_type_constant)
830 {
831    this->const_elements = NULL;
832    assert(vector_elements <= 4);
833    this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1);
834    for (unsigned i = 0; i < vector_elements; i++) {
835       this->value.i64[i] = int64;
836    }
837    for (unsigned i = vector_elements; i < 16; i++) {
838       this->value.i64[i] = 0;
839    }
840 }
841 
ir_constant(bool b,unsigned vector_elements)842 ir_constant::ir_constant(bool b, unsigned vector_elements)
843    : ir_rvalue(ir_type_constant)
844 {
845    this->const_elements = NULL;
846    assert(vector_elements <= 4);
847    this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1);
848    for (unsigned i = 0; i < vector_elements; i++) {
849       this->value.b[i] = b;
850    }
851    for (unsigned i = vector_elements; i < 16; i++) {
852       this->value.b[i] = false;
853    }
854 }
855 
ir_constant(const ir_constant * c,unsigned i)856 ir_constant::ir_constant(const ir_constant *c, unsigned i)
857    : ir_rvalue(ir_type_constant)
858 {
859    this->const_elements = NULL;
860    this->type = c->type->get_base_type();
861 
862    /* Section 5.11 (Out-of-Bounds Accesses) of the GLSL 4.60 spec says:
863     *
864     *    In the subsections described above for array, vector, matrix and
865     *    structure accesses, any out-of-bounds access produced undefined
866     *    behavior....Out-of-bounds reads return undefined values, which
867     *    include values from other variables of the active program or zero.
868     *
869     * GL_KHR_robustness and GL_ARB_robustness encourage us to return zero.
870     */
871    if (i >= c->type->vector_elements) {
872       this->value = { { 0 } };
873       return;
874    }
875 
876    switch (this->type->base_type) {
877    case GLSL_TYPE_UINT16:  this->value.u16[0] = c->value.u16[i]; break;
878    case GLSL_TYPE_INT16:  this->value.i16[0] = c->value.i16[i]; break;
879    case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
880    case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
881    case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
882    case GLSL_TYPE_FLOAT16: this->value.f16[0] = c->value.f16[i]; break;
883    case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
884    case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break;
885    default:              assert(!"Should not get here."); break;
886    }
887 }
888 
ir_constant(const struct glsl_type * type,exec_list * value_list)889 ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
890    : ir_rvalue(ir_type_constant)
891 {
892    this->const_elements = NULL;
893    this->type = type;
894 
895    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
896 	  || type->is_struct() || type->is_array());
897 
898    /* If the constant is a record, the types of each of the entries in
899     * value_list must be a 1-for-1 match with the structure components.  Each
900     * entry must also be a constant.  Just move the nodes from the value_list
901     * to the list in the ir_constant.
902     */
903    if (type->is_array() || type->is_struct()) {
904       this->const_elements = ralloc_array(this, ir_constant *, type->length);
905       unsigned i = 0;
906       foreach_in_list(ir_constant, value, value_list) {
907 	 assert(value->as_constant() != NULL);
908 
909 	 this->const_elements[i++] = value;
910       }
911       return;
912    }
913 
914    for (unsigned i = 0; i < 16; i++) {
915       this->value.u[i] = 0;
916    }
917 
918    ir_constant *value = (ir_constant *) (value_list->get_head_raw());
919 
920    /* Constructors with exactly one scalar argument are special for vectors
921     * and matrices.  For vectors, the scalar value is replicated to fill all
922     * the components.  For matrices, the scalar fills the components of the
923     * diagonal while the rest is filled with 0.
924     */
925    if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
926       if (type->is_matrix()) {
927 	 /* Matrix - fill diagonal (rest is already set to 0) */
928          for (unsigned i = 0; i < type->matrix_columns; i++) {
929             switch (type->base_type) {
930             case GLSL_TYPE_FLOAT:
931                this->value.f[i * type->vector_elements + i] =
932                   value->value.f[0];
933                break;
934             case GLSL_TYPE_DOUBLE:
935                this->value.d[i * type->vector_elements + i] =
936                   value->value.d[0];
937                break;
938             case GLSL_TYPE_FLOAT16:
939                this->value.f16[i * type->vector_elements + i] =
940                   value->value.f16[0];
941                break;
942             default:
943                assert(!"unexpected matrix base type");
944             }
945          }
946       } else {
947 	 /* Vector or scalar - fill all components */
948 	 switch (type->base_type) {
949          case GLSL_TYPE_UINT16:
950 	 case GLSL_TYPE_INT16:
951 	    for (unsigned i = 0; i < type->components(); i++)
952 	       this->value.u16[i] = value->value.u16[0];
953 	    break;
954 	 case GLSL_TYPE_UINT:
955 	 case GLSL_TYPE_INT:
956 	    for (unsigned i = 0; i < type->components(); i++)
957 	       this->value.u[i] = value->value.u[0];
958 	    break;
959 	 case GLSL_TYPE_FLOAT:
960 	    for (unsigned i = 0; i < type->components(); i++)
961 	       this->value.f[i] = value->value.f[0];
962 	    break;
963 	 case GLSL_TYPE_FLOAT16:
964 	    for (unsigned i = 0; i < type->components(); i++)
965 	       this->value.f16[i] = value->value.f16[0];
966 	    break;
967 	 case GLSL_TYPE_DOUBLE:
968 	    for (unsigned i = 0; i < type->components(); i++)
969 	       this->value.d[i] = value->value.d[0];
970 	    break;
971 	 case GLSL_TYPE_UINT64:
972 	 case GLSL_TYPE_INT64:
973 	    for (unsigned i = 0; i < type->components(); i++)
974 	       this->value.u64[i] = value->value.u64[0];
975 	    break;
976 	 case GLSL_TYPE_BOOL:
977 	    for (unsigned i = 0; i < type->components(); i++)
978 	       this->value.b[i] = value->value.b[0];
979 	    break;
980 	 case GLSL_TYPE_SAMPLER:
981 	 case GLSL_TYPE_IMAGE:
982 	    this->value.u64[0] = value->value.u64[0];
983 	    break;
984 	 default:
985 	    assert(!"Should not get here.");
986 	    break;
987 	 }
988       }
989       return;
990    }
991 
992    if (type->is_matrix() && value->type->is_matrix()) {
993       assert(value->next->is_tail_sentinel());
994 
995       /* From section 5.4.2 of the GLSL 1.20 spec:
996        * "If a matrix is constructed from a matrix, then each component
997        *  (column i, row j) in the result that has a corresponding component
998        *  (column i, row j) in the argument will be initialized from there."
999        */
1000       unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
1001       unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
1002       for (unsigned i = 0; i < cols; i++) {
1003 	 for (unsigned j = 0; j < rows; j++) {
1004 	    const unsigned src = i * value->type->vector_elements + j;
1005 	    const unsigned dst = i * type->vector_elements + j;
1006 	    this->value.f[dst] = value->value.f[src];
1007 	 }
1008       }
1009 
1010       /* "All other components will be initialized to the identity matrix." */
1011       for (unsigned i = cols; i < type->matrix_columns; i++)
1012 	 this->value.f[i * type->vector_elements + i] = 1.0;
1013 
1014       return;
1015    }
1016 
1017    /* Use each component from each entry in the value_list to initialize one
1018     * component of the constant being constructed.
1019     */
1020    unsigned i = 0;
1021    for (;;) {
1022       assert(value->as_constant() != NULL);
1023       assert(!value->is_tail_sentinel());
1024 
1025       for (unsigned j = 0; j < value->type->components(); j++) {
1026 	 switch (type->base_type) {
1027          case GLSL_TYPE_UINT16:
1028 	    this->value.u16[i] = value->get_uint16_component(j);
1029 	    break;
1030 	 case GLSL_TYPE_INT16:
1031 	    this->value.i16[i] = value->get_int16_component(j);
1032 	    break;
1033 	 case GLSL_TYPE_UINT:
1034 	    this->value.u[i] = value->get_uint_component(j);
1035 	    break;
1036 	 case GLSL_TYPE_INT:
1037 	    this->value.i[i] = value->get_int_component(j);
1038 	    break;
1039 	 case GLSL_TYPE_FLOAT:
1040 	    this->value.f[i] = value->get_float_component(j);
1041 	    break;
1042 	 case GLSL_TYPE_FLOAT16:
1043 	    this->value.f16[i] = value->get_float16_component(j);
1044 	    break;
1045 	 case GLSL_TYPE_BOOL:
1046 	    this->value.b[i] = value->get_bool_component(j);
1047 	    break;
1048 	 case GLSL_TYPE_DOUBLE:
1049 	    this->value.d[i] = value->get_double_component(j);
1050 	    break;
1051          case GLSL_TYPE_UINT64:
1052 	    this->value.u64[i] = value->get_uint64_component(j);
1053 	    break;
1054 	 case GLSL_TYPE_INT64:
1055 	    this->value.i64[i] = value->get_int64_component(j);
1056 	    break;
1057 	 default:
1058 	    /* FINISHME: What to do?  Exceptions are not the answer.
1059 	     */
1060 	    break;
1061 	 }
1062 
1063 	 i++;
1064 	 if (i >= type->components())
1065 	    break;
1066       }
1067 
1068       if (i >= type->components())
1069 	 break; /* avoid downcasting a list sentinel */
1070       value = (ir_constant *) value->next;
1071    }
1072 }
1073 
1074 ir_constant *
zero(void * mem_ctx,const glsl_type * type)1075 ir_constant::zero(void *mem_ctx, const glsl_type *type)
1076 {
1077    assert(type->is_scalar() || type->is_vector() || type->is_matrix()
1078 	  || type->is_struct() || type->is_array());
1079 
1080    ir_constant *c = new(mem_ctx) ir_constant;
1081    c->type = type;
1082    memset(&c->value, 0, sizeof(c->value));
1083 
1084    if (type->is_array()) {
1085       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1086 
1087       for (unsigned i = 0; i < type->length; i++)
1088 	 c->const_elements[i] = ir_constant::zero(c, type->fields.array);
1089    }
1090 
1091    if (type->is_struct()) {
1092       c->const_elements = ralloc_array(c, ir_constant *, type->length);
1093 
1094       for (unsigned i = 0; i < type->length; i++) {
1095          c->const_elements[i] =
1096             ir_constant::zero(mem_ctx, type->fields.structure[i].type);
1097       }
1098    }
1099 
1100    return c;
1101 }
1102 
1103 bool
get_bool_component(unsigned i) const1104 ir_constant::get_bool_component(unsigned i) const
1105 {
1106    switch (this->type->base_type) {
1107    case GLSL_TYPE_UINT16:return this->value.u16[i] != 0;
1108    case GLSL_TYPE_INT16: return this->value.i16[i] != 0;
1109    case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
1110    case GLSL_TYPE_INT:   return this->value.i[i] != 0;
1111    case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
1112    case GLSL_TYPE_FLOAT16: return ((int)_mesa_half_to_float(this->value.f16[i])) != 0;
1113    case GLSL_TYPE_BOOL:  return this->value.b[i];
1114    case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0;
1115    case GLSL_TYPE_SAMPLER:
1116    case GLSL_TYPE_IMAGE:
1117    case GLSL_TYPE_UINT64: return this->value.u64[i] != 0;
1118    case GLSL_TYPE_INT64:  return this->value.i64[i] != 0;
1119    default:              assert(!"Should not get here."); break;
1120    }
1121 
1122    /* Must return something to make the compiler happy.  This is clearly an
1123     * error case.
1124     */
1125    return false;
1126 }
1127 
1128 float
get_float_component(unsigned i) const1129 ir_constant::get_float_component(unsigned i) const
1130 {
1131    switch (this->type->base_type) {
1132    case GLSL_TYPE_UINT16:return (float) this->value.u16[i];
1133    case GLSL_TYPE_INT16: return (float) this->value.i16[i];
1134    case GLSL_TYPE_UINT:  return (float) this->value.u[i];
1135    case GLSL_TYPE_INT:   return (float) this->value.i[i];
1136    case GLSL_TYPE_FLOAT: return this->value.f[i];
1137    case GLSL_TYPE_FLOAT16: return _mesa_half_to_float(this->value.f16[i]);
1138    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0f : 0.0f;
1139    case GLSL_TYPE_DOUBLE: return (float) this->value.d[i];
1140    case GLSL_TYPE_SAMPLER:
1141    case GLSL_TYPE_IMAGE:
1142    case GLSL_TYPE_UINT64: return (float) this->value.u64[i];
1143    case GLSL_TYPE_INT64:  return (float) this->value.i64[i];
1144    default:              assert(!"Should not get here."); break;
1145    }
1146 
1147    /* Must return something to make the compiler happy.  This is clearly an
1148     * error case.
1149     */
1150    return 0.0;
1151 }
1152 
1153 uint16_t
get_float16_component(unsigned i) const1154 ir_constant::get_float16_component(unsigned i) const
1155 {
1156    if (this->type->base_type == GLSL_TYPE_FLOAT16)
1157       return this->value.f16[i];
1158    else
1159       return _mesa_float_to_half(get_float_component(i));
1160 }
1161 
1162 double
get_double_component(unsigned i) const1163 ir_constant::get_double_component(unsigned i) const
1164 {
1165    switch (this->type->base_type) {
1166    case GLSL_TYPE_UINT16:return (double) this->value.u16[i];
1167    case GLSL_TYPE_INT16: return (double) this->value.i16[i];
1168    case GLSL_TYPE_UINT:  return (double) this->value.u[i];
1169    case GLSL_TYPE_INT:   return (double) this->value.i[i];
1170    case GLSL_TYPE_FLOAT: return (double) this->value.f[i];
1171    case GLSL_TYPE_FLOAT16: return (double) _mesa_half_to_float(this->value.f16[i]);
1172    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
1173    case GLSL_TYPE_DOUBLE: return this->value.d[i];
1174    case GLSL_TYPE_SAMPLER:
1175    case GLSL_TYPE_IMAGE:
1176    case GLSL_TYPE_UINT64: return (double) this->value.u64[i];
1177    case GLSL_TYPE_INT64:  return (double) this->value.i64[i];
1178    default:              assert(!"Should not get here."); break;
1179    }
1180 
1181    /* Must return something to make the compiler happy.  This is clearly an
1182     * error case.
1183     */
1184    return 0.0;
1185 }
1186 
1187 int16_t
get_int16_component(unsigned i) const1188 ir_constant::get_int16_component(unsigned i) const
1189 {
1190    switch (this->type->base_type) {
1191    case GLSL_TYPE_UINT16:return this->value.u16[i];
1192    case GLSL_TYPE_INT16: return this->value.i16[i];
1193    case GLSL_TYPE_UINT:  return this->value.u[i];
1194    case GLSL_TYPE_INT:   return this->value.i[i];
1195    case GLSL_TYPE_FLOAT: return (int16_t) this->value.f[i];
1196    case GLSL_TYPE_FLOAT16: return (int16_t) _mesa_half_to_float(this->value.f16[i]);
1197    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1198    case GLSL_TYPE_DOUBLE: return (int16_t) this->value.d[i];
1199    case GLSL_TYPE_SAMPLER:
1200    case GLSL_TYPE_IMAGE:
1201    case GLSL_TYPE_UINT64: return (int16_t) this->value.u64[i];
1202    case GLSL_TYPE_INT64:  return (int16_t) this->value.i64[i];
1203    default:              assert(!"Should not get here."); break;
1204    }
1205 
1206    /* Must return something to make the compiler happy.  This is clearly an
1207     * error case.
1208     */
1209    return 0;
1210 }
1211 
1212 uint16_t
get_uint16_component(unsigned i) const1213 ir_constant::get_uint16_component(unsigned i) const
1214 {
1215    switch (this->type->base_type) {
1216    case GLSL_TYPE_UINT16:return this->value.u16[i];
1217    case GLSL_TYPE_INT16: return this->value.i16[i];
1218    case GLSL_TYPE_UINT:  return this->value.u[i];
1219    case GLSL_TYPE_INT:   return this->value.i[i];
1220    case GLSL_TYPE_FLOAT: return (uint16_t) this->value.f[i];
1221    case GLSL_TYPE_FLOAT16: return (uint16_t) _mesa_half_to_float(this->value.f16[i]);
1222    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1223    case GLSL_TYPE_DOUBLE: return (uint16_t) this->value.d[i];
1224    case GLSL_TYPE_SAMPLER:
1225    case GLSL_TYPE_IMAGE:
1226    case GLSL_TYPE_UINT64: return (uint16_t) this->value.u64[i];
1227    case GLSL_TYPE_INT64:  return (uint16_t) this->value.i64[i];
1228    default:              assert(!"Should not get here."); break;
1229    }
1230 
1231    /* Must return something to make the compiler happy.  This is clearly an
1232     * error case.
1233     */
1234    return 0;
1235 }
1236 
1237 int
get_int_component(unsigned i) const1238 ir_constant::get_int_component(unsigned i) const
1239 {
1240    switch (this->type->base_type) {
1241    case GLSL_TYPE_UINT16:return this->value.u16[i];
1242    case GLSL_TYPE_INT16: return this->value.i16[i];
1243    case GLSL_TYPE_UINT:  return this->value.u[i];
1244    case GLSL_TYPE_INT:   return this->value.i[i];
1245    case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
1246    case GLSL_TYPE_FLOAT16: return (int) _mesa_half_to_float(this->value.f16[i]);
1247    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1248    case GLSL_TYPE_DOUBLE: return (int) this->value.d[i];
1249    case GLSL_TYPE_SAMPLER:
1250    case GLSL_TYPE_IMAGE:
1251    case GLSL_TYPE_UINT64: return (int) this->value.u64[i];
1252    case GLSL_TYPE_INT64:  return (int) this->value.i64[i];
1253    default:              assert(!"Should not get here."); break;
1254    }
1255 
1256    /* Must return something to make the compiler happy.  This is clearly an
1257     * error case.
1258     */
1259    return 0;
1260 }
1261 
1262 unsigned
get_uint_component(unsigned i) const1263 ir_constant::get_uint_component(unsigned i) const
1264 {
1265    switch (this->type->base_type) {
1266    case GLSL_TYPE_UINT16:return this->value.u16[i];
1267    case GLSL_TYPE_INT16: return this->value.i16[i];
1268    case GLSL_TYPE_UINT:  return this->value.u[i];
1269    case GLSL_TYPE_INT:   return this->value.i[i];
1270    case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
1271    case GLSL_TYPE_FLOAT16: return (unsigned) _mesa_half_to_float(this->value.f16[i]);
1272    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1273    case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i];
1274    case GLSL_TYPE_SAMPLER:
1275    case GLSL_TYPE_IMAGE:
1276    case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i];
1277    case GLSL_TYPE_INT64:  return (unsigned) this->value.i64[i];
1278    default:              assert(!"Should not get here."); break;
1279    }
1280 
1281    /* Must return something to make the compiler happy.  This is clearly an
1282     * error case.
1283     */
1284    return 0;
1285 }
1286 
1287 int64_t
get_int64_component(unsigned i) const1288 ir_constant::get_int64_component(unsigned i) const
1289 {
1290    switch (this->type->base_type) {
1291    case GLSL_TYPE_UINT16:return this->value.u16[i];
1292    case GLSL_TYPE_INT16: return this->value.i16[i];
1293    case GLSL_TYPE_UINT:  return this->value.u[i];
1294    case GLSL_TYPE_INT:   return this->value.i[i];
1295    case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i];
1296    case GLSL_TYPE_FLOAT16: return (int64_t) _mesa_half_to_float(this->value.f16[i]);
1297    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1298    case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i];
1299    case GLSL_TYPE_SAMPLER:
1300    case GLSL_TYPE_IMAGE:
1301    case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i];
1302    case GLSL_TYPE_INT64:  return this->value.i64[i];
1303    default:              assert(!"Should not get here."); break;
1304    }
1305 
1306    /* Must return something to make the compiler happy.  This is clearly an
1307     * error case.
1308     */
1309    return 0;
1310 }
1311 
1312 uint64_t
get_uint64_component(unsigned i) const1313 ir_constant::get_uint64_component(unsigned i) const
1314 {
1315    switch (this->type->base_type) {
1316    case GLSL_TYPE_UINT16:return this->value.u16[i];
1317    case GLSL_TYPE_INT16: return this->value.i16[i];
1318    case GLSL_TYPE_UINT:  return this->value.u[i];
1319    case GLSL_TYPE_INT:   return this->value.i[i];
1320    case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i];
1321    case GLSL_TYPE_FLOAT16: return (uint64_t) _mesa_half_to_float(this->value.f16[i]);
1322    case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
1323    case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i];
1324    case GLSL_TYPE_SAMPLER:
1325    case GLSL_TYPE_IMAGE:
1326    case GLSL_TYPE_UINT64: return this->value.u64[i];
1327    case GLSL_TYPE_INT64:  return (uint64_t) this->value.i64[i];
1328    default:              assert(!"Should not get here."); break;
1329    }
1330 
1331    /* Must return something to make the compiler happy.  This is clearly an
1332     * error case.
1333     */
1334    return 0;
1335 }
1336 
1337 ir_constant *
get_array_element(unsigned i) const1338 ir_constant::get_array_element(unsigned i) const
1339 {
1340    assert(this->type->is_array());
1341 
1342    /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
1343     *
1344     *     "Behavior is undefined if a shader subscripts an array with an index
1345     *     less than 0 or greater than or equal to the size the array was
1346     *     declared with."
1347     *
1348     * Most out-of-bounds accesses are removed before things could get this far.
1349     * There are cases where non-constant array index values can get constant
1350     * folded.
1351     */
1352    if (int(i) < 0)
1353       i = 0;
1354    else if (i >= this->type->length)
1355       i = this->type->length - 1;
1356 
1357    return const_elements[i];
1358 }
1359 
1360 ir_constant *
get_record_field(int idx)1361 ir_constant::get_record_field(int idx)
1362 {
1363    assert(this->type->is_struct());
1364    assert(idx >= 0 && (unsigned) idx < this->type->length);
1365 
1366    return const_elements[idx];
1367 }
1368 
1369 void
copy_offset(ir_constant * src,int offset)1370 ir_constant::copy_offset(ir_constant *src, int offset)
1371 {
1372    switch (this->type->base_type) {
1373    case GLSL_TYPE_UINT16:
1374    case GLSL_TYPE_INT16:
1375    case GLSL_TYPE_UINT:
1376    case GLSL_TYPE_INT:
1377    case GLSL_TYPE_FLOAT:
1378    case GLSL_TYPE_FLOAT16:
1379    case GLSL_TYPE_DOUBLE:
1380    case GLSL_TYPE_SAMPLER:
1381    case GLSL_TYPE_IMAGE:
1382    case GLSL_TYPE_UINT64:
1383    case GLSL_TYPE_INT64:
1384    case GLSL_TYPE_BOOL: {
1385       unsigned int size = src->type->components();
1386       assert (size <= this->type->components() - offset);
1387       for (unsigned int i=0; i<size; i++) {
1388 	 switch (this->type->base_type) {
1389          case GLSL_TYPE_UINT16:
1390 	    value.u16[i+offset] = src->get_uint16_component(i);
1391 	    break;
1392 	 case GLSL_TYPE_INT16:
1393 	    value.i16[i+offset] = src->get_int16_component(i);
1394 	    break;
1395 	 case GLSL_TYPE_UINT:
1396 	    value.u[i+offset] = src->get_uint_component(i);
1397 	    break;
1398 	 case GLSL_TYPE_INT:
1399 	    value.i[i+offset] = src->get_int_component(i);
1400 	    break;
1401 	 case GLSL_TYPE_FLOAT:
1402 	    value.f[i+offset] = src->get_float_component(i);
1403 	    break;
1404 	 case GLSL_TYPE_FLOAT16:
1405 	    value.f16[i+offset] = src->get_float16_component(i);
1406 	    break;
1407 	 case GLSL_TYPE_BOOL:
1408 	    value.b[i+offset] = src->get_bool_component(i);
1409 	    break;
1410 	 case GLSL_TYPE_DOUBLE:
1411 	    value.d[i+offset] = src->get_double_component(i);
1412 	    break;
1413 	 case GLSL_TYPE_SAMPLER:
1414 	 case GLSL_TYPE_IMAGE:
1415 	 case GLSL_TYPE_UINT64:
1416 	    value.u64[i+offset] = src->get_uint64_component(i);
1417 	    break;
1418 	 case GLSL_TYPE_INT64:
1419 	    value.i64[i+offset] = src->get_int64_component(i);
1420 	    break;
1421 	 default: // Shut up the compiler
1422 	    break;
1423 	 }
1424       }
1425       break;
1426    }
1427 
1428    case GLSL_TYPE_STRUCT:
1429    case GLSL_TYPE_ARRAY: {
1430       assert (src->type == this->type);
1431       for (unsigned i = 0; i < this->type->length; i++) {
1432 	 this->const_elements[i] = src->const_elements[i]->clone(this, NULL);
1433       }
1434       break;
1435    }
1436 
1437    default:
1438       assert(!"Should not get here.");
1439       break;
1440    }
1441 }
1442 
1443 void
copy_masked_offset(ir_constant * src,int offset,unsigned int mask)1444 ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask)
1445 {
1446    assert (!type->is_array() && !type->is_struct());
1447 
1448    if (!type->is_vector() && !type->is_matrix()) {
1449       offset = 0;
1450       mask = 1;
1451    }
1452 
1453    int id = 0;
1454    for (int i=0; i<4; i++) {
1455       if (mask & (1 << i)) {
1456 	 switch (this->type->base_type) {
1457          case GLSL_TYPE_UINT16:
1458 	    value.u16[i+offset] = src->get_uint16_component(id++);
1459 	    break;
1460 	 case GLSL_TYPE_INT16:
1461 	    value.i16[i+offset] = src->get_int16_component(id++);
1462 	    break;
1463 	 case GLSL_TYPE_UINT:
1464 	    value.u[i+offset] = src->get_uint_component(id++);
1465 	    break;
1466 	 case GLSL_TYPE_INT:
1467 	    value.i[i+offset] = src->get_int_component(id++);
1468 	    break;
1469 	 case GLSL_TYPE_FLOAT:
1470 	    value.f[i+offset] = src->get_float_component(id++);
1471 	    break;
1472 	 case GLSL_TYPE_FLOAT16:
1473 	    value.f16[i+offset] = src->get_float16_component(id++);
1474 	    break;
1475 	 case GLSL_TYPE_BOOL:
1476 	    value.b[i+offset] = src->get_bool_component(id++);
1477 	    break;
1478 	 case GLSL_TYPE_DOUBLE:
1479 	    value.d[i+offset] = src->get_double_component(id++);
1480 	    break;
1481 	 case GLSL_TYPE_SAMPLER:
1482 	 case GLSL_TYPE_IMAGE:
1483 	 case GLSL_TYPE_UINT64:
1484 	    value.u64[i+offset] = src->get_uint64_component(id++);
1485 	    break;
1486 	 case GLSL_TYPE_INT64:
1487 	    value.i64[i+offset] = src->get_int64_component(id++);
1488 	    break;
1489 	 default:
1490 	    assert(!"Should not get here.");
1491 	    return;
1492 	 }
1493       }
1494    }
1495 }
1496 
1497 bool
has_value(const ir_constant * c) const1498 ir_constant::has_value(const ir_constant *c) const
1499 {
1500    if (this->type != c->type)
1501       return false;
1502 
1503    if (this->type->is_array() || this->type->is_struct()) {
1504       for (unsigned i = 0; i < this->type->length; i++) {
1505 	 if (!this->const_elements[i]->has_value(c->const_elements[i]))
1506 	    return false;
1507       }
1508       return true;
1509    }
1510 
1511    for (unsigned i = 0; i < this->type->components(); i++) {
1512       switch (this->type->base_type) {
1513       case GLSL_TYPE_UINT16:
1514 	 if (this->value.u16[i] != c->value.u16[i])
1515 	    return false;
1516 	 break;
1517       case GLSL_TYPE_INT16:
1518 	 if (this->value.i16[i] != c->value.i16[i])
1519 	    return false;
1520 	 break;
1521       case GLSL_TYPE_UINT:
1522 	 if (this->value.u[i] != c->value.u[i])
1523 	    return false;
1524 	 break;
1525       case GLSL_TYPE_INT:
1526 	 if (this->value.i[i] != c->value.i[i])
1527 	    return false;
1528 	 break;
1529       case GLSL_TYPE_FLOAT:
1530 	 if (this->value.f[i] != c->value.f[i])
1531 	    return false;
1532 	 break;
1533       case GLSL_TYPE_FLOAT16:
1534 	/* Convert to float to make sure NaN and ±0.0 compares correctly */
1535 	 if (_mesa_half_to_float(this->value.f16[i]) !=
1536              _mesa_half_to_float(c->value.f16[i]))
1537 	    return false;
1538 	 break;
1539       case GLSL_TYPE_BOOL:
1540 	 if (this->value.b[i] != c->value.b[i])
1541 	    return false;
1542 	 break;
1543       case GLSL_TYPE_DOUBLE:
1544 	 if (this->value.d[i] != c->value.d[i])
1545 	    return false;
1546 	 break;
1547       case GLSL_TYPE_SAMPLER:
1548       case GLSL_TYPE_IMAGE:
1549       case GLSL_TYPE_UINT64:
1550 	 if (this->value.u64[i] != c->value.u64[i])
1551 	    return false;
1552 	 break;
1553       case GLSL_TYPE_INT64:
1554 	 if (this->value.i64[i] != c->value.i64[i])
1555 	    return false;
1556 	 break;
1557       default:
1558 	 assert(!"Should not get here.");
1559 	 return false;
1560       }
1561    }
1562 
1563    return true;
1564 }
1565 
1566 bool
is_value(float f,int i) const1567 ir_constant::is_value(float f, int i) const
1568 {
1569    if (!this->type->is_scalar() && !this->type->is_vector())
1570       return false;
1571 
1572    /* Only accept boolean values for 0/1. */
1573    if (int(bool(i)) != i && this->type->is_boolean())
1574       return false;
1575 
1576    for (unsigned c = 0; c < this->type->vector_elements; c++) {
1577       switch (this->type->base_type) {
1578       case GLSL_TYPE_FLOAT:
1579 	 if (this->value.f[c] != f)
1580 	    return false;
1581 	 break;
1582       case GLSL_TYPE_FLOAT16:
1583          if (_mesa_half_to_float(this->value.f16[c]) != f)
1584             return false;
1585          break;
1586       case GLSL_TYPE_INT16:
1587 	 if (this->value.i16[c] != int16_t(i))
1588 	    return false;
1589 	 break;
1590       case GLSL_TYPE_UINT16:
1591 	 if (this->value.u16[c] != uint16_t(i))
1592 	    return false;
1593 	 break;
1594       case GLSL_TYPE_INT:
1595 	 if (this->value.i[c] != i)
1596 	    return false;
1597 	 break;
1598       case GLSL_TYPE_UINT:
1599 	 if (this->value.u[c] != unsigned(i))
1600 	    return false;
1601 	 break;
1602       case GLSL_TYPE_BOOL:
1603 	 if (this->value.b[c] != bool(i))
1604 	    return false;
1605 	 break;
1606       case GLSL_TYPE_DOUBLE:
1607 	 if (this->value.d[c] != double(f))
1608 	    return false;
1609 	 break;
1610       case GLSL_TYPE_SAMPLER:
1611       case GLSL_TYPE_IMAGE:
1612       case GLSL_TYPE_UINT64:
1613 	 if (this->value.u64[c] != uint64_t(i))
1614 	    return false;
1615 	 break;
1616       case GLSL_TYPE_INT64:
1617 	 if (this->value.i64[c] != i)
1618 	    return false;
1619 	 break;
1620       default:
1621 	 /* The only other base types are structures, arrays, and samplers.
1622 	  * Samplers cannot be constants, and the others should have been
1623 	  * filtered out above.
1624 	  */
1625 	 assert(!"Should not get here.");
1626 	 return false;
1627       }
1628    }
1629 
1630    return true;
1631 }
1632 
1633 bool
is_zero() const1634 ir_constant::is_zero() const
1635 {
1636    return is_value(0.0, 0);
1637 }
1638 
1639 bool
is_one() const1640 ir_constant::is_one() const
1641 {
1642    return is_value(1.0, 1);
1643 }
1644 
1645 bool
is_negative_one() const1646 ir_constant::is_negative_one() const
1647 {
1648    return is_value(-1.0, -1);
1649 }
1650 
1651 bool
is_uint16_constant() const1652 ir_constant::is_uint16_constant() const
1653 {
1654    if (!type->is_integer_32())
1655       return false;
1656 
1657    return value.u[0] < (1 << 16);
1658 }
1659 
ir_loop()1660 ir_loop::ir_loop()
1661    : ir_instruction(ir_type_loop)
1662 {
1663 }
1664 
1665 
ir_dereference_variable(ir_variable * var)1666 ir_dereference_variable::ir_dereference_variable(ir_variable *var)
1667    : ir_dereference(ir_type_dereference_variable)
1668 {
1669    assert(var != NULL);
1670 
1671    this->var = var;
1672    this->type = var->type;
1673 }
1674 
1675 
ir_dereference_array(ir_rvalue * value,ir_rvalue * array_index)1676 ir_dereference_array::ir_dereference_array(ir_rvalue *value,
1677 					   ir_rvalue *array_index)
1678    : ir_dereference(ir_type_dereference_array)
1679 {
1680    this->array_index = array_index;
1681    this->set_array(value);
1682 }
1683 
1684 
ir_dereference_array(ir_variable * var,ir_rvalue * array_index)1685 ir_dereference_array::ir_dereference_array(ir_variable *var,
1686 					   ir_rvalue *array_index)
1687    : ir_dereference(ir_type_dereference_array)
1688 {
1689    void *ctx = ralloc_parent(var);
1690 
1691    this->array_index = array_index;
1692    this->set_array(new(ctx) ir_dereference_variable(var));
1693 }
1694 
1695 
1696 void
set_array(ir_rvalue * value)1697 ir_dereference_array::set_array(ir_rvalue *value)
1698 {
1699    assert(value != NULL);
1700 
1701    this->array = value;
1702 
1703    const glsl_type *const vt = this->array->type;
1704 
1705    if (vt->is_array()) {
1706       type = vt->fields.array;
1707    } else if (vt->is_matrix()) {
1708       type = vt->column_type();
1709    } else if (vt->is_vector()) {
1710       type = vt->get_base_type();
1711    }
1712 }
1713 
1714 
ir_dereference_record(ir_rvalue * value,const char * field)1715 ir_dereference_record::ir_dereference_record(ir_rvalue *value,
1716 					     const char *field)
1717    : ir_dereference(ir_type_dereference_record)
1718 {
1719    assert(value != NULL);
1720 
1721    this->record = value;
1722    this->type = this->record->type->field_type(field);
1723    this->field_idx = this->record->type->field_index(field);
1724 }
1725 
1726 
ir_dereference_record(ir_variable * var,const char * field)1727 ir_dereference_record::ir_dereference_record(ir_variable *var,
1728 					     const char *field)
1729    : ir_dereference(ir_type_dereference_record)
1730 {
1731    void *ctx = ralloc_parent(var);
1732 
1733    this->record = new(ctx) ir_dereference_variable(var);
1734    this->type = this->record->type->field_type(field);
1735    this->field_idx = this->record->type->field_index(field);
1736 }
1737 
1738 bool
is_lvalue(const struct _mesa_glsl_parse_state * state) const1739 ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const
1740 {
1741    ir_variable *var = this->variable_referenced();
1742 
1743    /* Every l-value dereference chain eventually ends in a variable.
1744     */
1745    if ((var == NULL) || var->data.read_only)
1746       return false;
1747 
1748    /* From section 4.1.7 of the ARB_bindless_texture spec:
1749     *
1750     * "Samplers can be used as l-values, so can be assigned into and used as
1751     *  "out" and "inout" function parameters."
1752     *
1753     * From section 4.1.X of the ARB_bindless_texture spec:
1754     *
1755     * "Images can be used as l-values, so can be assigned into and used as
1756     *  "out" and "inout" function parameters."
1757     */
1758    if ((!state || state->has_bindless()) &&
1759        (this->type->contains_sampler() || this->type->contains_image()))
1760       return true;
1761 
1762    /* From section 4.1.7 of the GLSL 4.40 spec:
1763     *
1764     *   "Opaque variables cannot be treated as l-values; hence cannot
1765     *    be used as out or inout function parameters, nor can they be
1766     *    assigned into."
1767     */
1768    if (this->type->contains_opaque())
1769       return false;
1770 
1771    return true;
1772 }
1773 
1774 
1775 static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" };
1776 
opcode_string()1777 const char *ir_texture::opcode_string()
1778 {
1779    assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs));
1780    return tex_opcode_strs[op];
1781 }
1782 
1783 ir_texture_opcode
get_opcode(const char * str)1784 ir_texture::get_opcode(const char *str)
1785 {
1786    const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
1787    for (int op = 0; op < count; op++) {
1788       if (strcmp(str, tex_opcode_strs[op]) == 0)
1789 	 return (ir_texture_opcode) op;
1790    }
1791    return (ir_texture_opcode) -1;
1792 }
1793 
1794 
1795 void
set_sampler(ir_dereference * sampler,const glsl_type * type)1796 ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type)
1797 {
1798    assert(sampler != NULL);
1799    assert(type != NULL);
1800    this->sampler = sampler;
1801 
1802    if (this->is_sparse) {
1803       /* code holds residency info */
1804       glsl_struct_field fields[2] = {
1805          glsl_struct_field(glsl_type::int_type, "code"),
1806          glsl_struct_field(type, "texel"),
1807       };
1808       this->type = glsl_type::get_struct_instance(fields, 2, "struct");
1809    } else
1810       this->type = type;
1811 
1812    if (this->op == ir_txs || this->op == ir_query_levels ||
1813        this->op == ir_texture_samples) {
1814       assert(type->base_type == GLSL_TYPE_INT);
1815    } else if (this->op == ir_lod) {
1816       assert(type->vector_elements == 2);
1817       assert(type->is_float());
1818    } else if (this->op == ir_samples_identical) {
1819       assert(type == glsl_type::bool_type);
1820       assert(sampler->type->is_sampler());
1821       assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS);
1822    } else {
1823       assert(sampler->type->sampled_type == (int) type->base_type);
1824       if (sampler->type->sampler_shadow)
1825 	 assert(type->vector_elements == 4 || type->vector_elements == 1);
1826       else
1827 	 assert(type->vector_elements == 4);
1828    }
1829 }
1830 
1831 
1832 void
init_mask(const unsigned * comp,unsigned count)1833 ir_swizzle::init_mask(const unsigned *comp, unsigned count)
1834 {
1835    assert((count >= 1) && (count <= 4));
1836 
1837    memset(&this->mask, 0, sizeof(this->mask));
1838    this->mask.num_components = count;
1839 
1840    unsigned dup_mask = 0;
1841    switch (count) {
1842    case 4:
1843       assert(comp[3] <= 3);
1844       dup_mask |= (1U << comp[3])
1845 	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
1846       this->mask.w = comp[3];
1847 
1848    case 3:
1849       assert(comp[2] <= 3);
1850       dup_mask |= (1U << comp[2])
1851 	 & ((1U << comp[0]) | (1U << comp[1]));
1852       this->mask.z = comp[2];
1853 
1854    case 2:
1855       assert(comp[1] <= 3);
1856       dup_mask |= (1U << comp[1])
1857 	 & ((1U << comp[0]));
1858       this->mask.y = comp[1];
1859 
1860    case 1:
1861       assert(comp[0] <= 3);
1862       this->mask.x = comp[0];
1863    }
1864 
1865    this->mask.has_duplicates = dup_mask != 0;
1866 
1867    /* Based on the number of elements in the swizzle and the base type
1868     * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
1869     * generate the type of the resulting value.
1870     */
1871    type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
1872 }
1873 
ir_swizzle(ir_rvalue * val,unsigned x,unsigned y,unsigned z,unsigned w,unsigned count)1874 ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
1875 		       unsigned w, unsigned count)
1876    : ir_rvalue(ir_type_swizzle), val(val)
1877 {
1878    const unsigned components[4] = { x, y, z, w };
1879    this->init_mask(components, count);
1880 }
1881 
ir_swizzle(ir_rvalue * val,const unsigned * comp,unsigned count)1882 ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
1883 		       unsigned count)
1884    : ir_rvalue(ir_type_swizzle), val(val)
1885 {
1886    this->init_mask(comp, count);
1887 }
1888 
ir_swizzle(ir_rvalue * val,ir_swizzle_mask mask)1889 ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
1890    : ir_rvalue(ir_type_swizzle), val(val), mask(mask)
1891 {
1892    this->type = glsl_type::get_instance(val->type->base_type,
1893 					mask.num_components, 1);
1894 }
1895 
1896 #define X 1
1897 #define R 5
1898 #define S 9
1899 #define I 13
1900 
1901 ir_swizzle *
create(ir_rvalue * val,const char * str,unsigned vector_length)1902 ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
1903 {
1904    void *ctx = ralloc_parent(val);
1905 
1906    /* For each possible swizzle character, this table encodes the value in
1907     * \c idx_map that represents the 0th element of the vector.  For invalid
1908     * swizzle characters (e.g., 'k'), a special value is used that will allow
1909     * detection of errors.
1910     */
1911    static const unsigned char base_idx[26] = {
1912    /* a  b  c  d  e  f  g  h  i  j  k  l  m */
1913       R, R, I, I, I, I, R, I, I, I, I, I, I,
1914    /* n  o  p  q  r  s  t  u  v  w  x  y  z */
1915       I, I, S, S, R, S, S, I, I, X, X, X, X
1916    };
1917 
1918    /* Each valid swizzle character has an entry in the previous table.  This
1919     * table encodes the base index encoded in the previous table plus the actual
1920     * index of the swizzle character.  When processing swizzles, the first
1921     * character in the string is indexed in the previous table.  Each character
1922     * in the string is indexed in this table, and the value found there has the
1923     * value form the first table subtracted.  The result must be on the range
1924     * [0,3].
1925     *
1926     * For example, the string "wzyx" will get X from the first table.  Each of
1927     * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
1928     * subtraction, the swizzle values are { 3, 2, 1, 0 }.
1929     *
1930     * The string "wzrg" will get X from the first table.  Each of the characters
1931     * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
1932     * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
1933     * [0,3], the error is detected.
1934     */
1935    static const unsigned char idx_map[26] = {
1936    /* a    b    c    d    e    f    g    h    i    j    k    l    m */
1937       R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
1938    /* n    o    p    q    r    s    t    u    v    w    x    y    z */
1939       0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
1940    };
1941 
1942    int swiz_idx[4] = { 0, 0, 0, 0 };
1943    unsigned i;
1944 
1945 
1946    /* Validate the first character in the swizzle string and look up the base
1947     * index value as described above.
1948     */
1949    if ((str[0] < 'a') || (str[0] > 'z'))
1950       return NULL;
1951 
1952    const unsigned base = base_idx[str[0] - 'a'];
1953 
1954 
1955    for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
1956       /* Validate the next character, and, as described above, convert it to a
1957        * swizzle index.
1958        */
1959       if ((str[i] < 'a') || (str[i] > 'z'))
1960 	 return NULL;
1961 
1962       swiz_idx[i] = idx_map[str[i] - 'a'] - base;
1963       if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
1964 	 return NULL;
1965    }
1966 
1967    if (str[i] != '\0')
1968 	 return NULL;
1969 
1970    return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
1971 			      swiz_idx[3], i);
1972 }
1973 
1974 #undef X
1975 #undef R
1976 #undef S
1977 #undef I
1978 
1979 ir_variable *
variable_referenced() const1980 ir_swizzle::variable_referenced() const
1981 {
1982    return this->val->variable_referenced();
1983 }
1984 
1985 
1986 bool ir_variable::temporaries_allocate_names = false;
1987 
1988 const char ir_variable::tmp_name[] = "compiler_temp";
1989 
ir_variable(const struct glsl_type * type,const char * name,ir_variable_mode mode)1990 ir_variable::ir_variable(const struct glsl_type *type, const char *name,
1991 			 ir_variable_mode mode)
1992    : ir_instruction(ir_type_variable)
1993 {
1994    this->type = type;
1995 
1996    if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names)
1997       name = NULL;
1998 
1999    /* The ir_variable clone method may call this constructor with name set to
2000     * tmp_name.
2001     */
2002    assert(name != NULL
2003           || mode == ir_var_temporary
2004           || mode == ir_var_function_in
2005           || mode == ir_var_function_out
2006           || mode == ir_var_function_inout);
2007    assert(name != ir_variable::tmp_name
2008           || mode == ir_var_temporary);
2009    if (mode == ir_var_temporary
2010        && (name == NULL || name == ir_variable::tmp_name)) {
2011       this->name = ir_variable::tmp_name;
2012    } else if (name == NULL ||
2013               strlen(name) < ARRAY_SIZE(this->name_storage)) {
2014       strcpy(this->name_storage, name ? name : "");
2015       this->name = this->name_storage;
2016    } else {
2017       this->name = ralloc_strdup(this, name);
2018    }
2019 
2020    this->u.max_ifc_array_access = NULL;
2021 
2022    this->data.explicit_location = false;
2023    this->data.explicit_index = false;
2024    this->data.explicit_binding = false;
2025    this->data.explicit_component = false;
2026    this->data.has_initializer = false;
2027    this->data.is_implicit_initializer = false;
2028    this->data.is_xfb = false;
2029    this->data.is_xfb_only = false;
2030    this->data.explicit_xfb_buffer = false;
2031    this->data.explicit_xfb_offset = false;
2032    this->data.explicit_xfb_stride = false;
2033    this->data.location = -1;
2034    this->data.location_frac = 0;
2035    this->data.matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
2036    this->data.from_named_ifc_block = false;
2037    this->data.must_be_shader_input = false;
2038    this->data.index = 0;
2039    this->data.binding = 0;
2040    this->data.warn_extension_index = 0;
2041    this->constant_value = NULL;
2042    this->constant_initializer = NULL;
2043    this->data.depth_layout = ir_depth_layout_none;
2044    this->data.used = false;
2045    this->data.assigned = false;
2046    this->data.always_active_io = false;
2047    this->data.read_only = false;
2048    this->data.centroid = false;
2049    this->data.sample = false;
2050    this->data.patch = false;
2051    this->data.explicit_invariant = false;
2052    this->data.invariant = false;
2053    this->data.precise = false;
2054    this->data.how_declared = ir_var_declared_normally;
2055    this->data.mode = mode;
2056    this->data.interpolation = INTERP_MODE_NONE;
2057    this->data.max_array_access = -1;
2058    this->data.offset = 0;
2059    this->data.precision = GLSL_PRECISION_NONE;
2060    this->data.memory_read_only = false;
2061    this->data.memory_write_only = false;
2062    this->data.memory_coherent = false;
2063    this->data.memory_volatile = false;
2064    this->data.memory_restrict = false;
2065    this->data.from_ssbo_unsized_array = false;
2066    this->data.implicit_sized_array = false;
2067    this->data.fb_fetch_output = false;
2068    this->data.bindless = false;
2069    this->data.bound = false;
2070    this->data.image_format = PIPE_FORMAT_NONE;
2071    this->data._num_state_slots = 0;
2072    this->data.param_index = 0;
2073    this->data.stream = 0;
2074    this->data.xfb_buffer = -1;
2075    this->data.xfb_stride = -1;
2076    this->data.implicit_conversion_prohibited = false;
2077 
2078    this->interface_type = NULL;
2079 
2080    if (type != NULL) {
2081       if (type->is_interface())
2082          this->init_interface_type(type);
2083       else if (type->without_array()->is_interface())
2084          this->init_interface_type(type->without_array());
2085    }
2086 }
2087 
2088 
2089 const char *
interpolation_string(unsigned interpolation)2090 interpolation_string(unsigned interpolation)
2091 {
2092    switch (interpolation) {
2093    case INTERP_MODE_NONE:          return "no";
2094    case INTERP_MODE_SMOOTH:        return "smooth";
2095    case INTERP_MODE_FLAT:          return "flat";
2096    case INTERP_MODE_NOPERSPECTIVE: return "noperspective";
2097    }
2098 
2099    assert(!"Should not get here.");
2100    return "";
2101 }
2102 
2103 const char *const ir_variable::warn_extension_table[] = {
2104    "",
2105    "GL_ARB_shader_stencil_export",
2106    "GL_AMD_shader_stencil_export",
2107 };
2108 
2109 void
enable_extension_warning(const char * extension)2110 ir_variable::enable_extension_warning(const char *extension)
2111 {
2112    for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) {
2113       if (strcmp(warn_extension_table[i], extension) == 0) {
2114          this->data.warn_extension_index = i;
2115          return;
2116       }
2117    }
2118 
2119    assert(!"Should not get here.");
2120    this->data.warn_extension_index = 0;
2121 }
2122 
2123 const char *
get_extension_warning() const2124 ir_variable::get_extension_warning() const
2125 {
2126    return this->data.warn_extension_index == 0
2127       ? NULL : warn_extension_table[this->data.warn_extension_index];
2128 }
2129 
ir_function_signature(const glsl_type * return_type,builtin_available_predicate b)2130 ir_function_signature::ir_function_signature(const glsl_type *return_type,
2131                                              builtin_available_predicate b)
2132    : ir_instruction(ir_type_function_signature),
2133      return_type(return_type), is_defined(false),
2134      return_precision(GLSL_PRECISION_NONE),
2135      intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL)
2136 {
2137    this->origin = NULL;
2138 }
2139 
2140 
2141 bool
is_builtin() const2142 ir_function_signature::is_builtin() const
2143 {
2144    return builtin_avail != NULL;
2145 }
2146 
2147 
2148 bool
is_builtin_available(const _mesa_glsl_parse_state * state) const2149 ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const
2150 {
2151    /* We can't call the predicate without a state pointer, so just say that
2152     * the signature is available.  At compile time, we need the filtering,
2153     * but also receive a valid state pointer.  At link time, we're resolving
2154     * imported built-in prototypes to their definitions, which will always
2155     * be an exact match.  So we can skip the filtering.
2156     */
2157    if (state == NULL)
2158       return true;
2159 
2160    assert(builtin_avail != NULL);
2161    return builtin_avail(state);
2162 }
2163 
2164 
2165 static bool
modes_match(unsigned a,unsigned b)2166 modes_match(unsigned a, unsigned b)
2167 {
2168    if (a == b)
2169       return true;
2170 
2171    /* Accept "in" vs. "const in" */
2172    if ((a == ir_var_const_in && b == ir_var_function_in) ||
2173        (b == ir_var_const_in && a == ir_var_function_in))
2174       return true;
2175 
2176    return false;
2177 }
2178 
2179 
2180 const char *
qualifiers_match(exec_list * params)2181 ir_function_signature::qualifiers_match(exec_list *params)
2182 {
2183    /* check that the qualifiers match. */
2184    foreach_two_lists(a_node, &this->parameters, b_node, params) {
2185       ir_variable *a = (ir_variable *) a_node;
2186       ir_variable *b = (ir_variable *) b_node;
2187 
2188       if (a->data.read_only != b->data.read_only ||
2189 	  !modes_match(a->data.mode, b->data.mode) ||
2190 	  a->data.interpolation != b->data.interpolation ||
2191 	  a->data.centroid != b->data.centroid ||
2192           a->data.sample != b->data.sample ||
2193           a->data.patch != b->data.patch ||
2194           a->data.memory_read_only != b->data.memory_read_only ||
2195           a->data.memory_write_only != b->data.memory_write_only ||
2196           a->data.memory_coherent != b->data.memory_coherent ||
2197           a->data.memory_volatile != b->data.memory_volatile ||
2198           a->data.memory_restrict != b->data.memory_restrict) {
2199 
2200 	 /* parameter a's qualifiers don't match */
2201 	 return a->name;
2202       }
2203    }
2204    return NULL;
2205 }
2206 
2207 
2208 void
replace_parameters(exec_list * new_params)2209 ir_function_signature::replace_parameters(exec_list *new_params)
2210 {
2211    /* Destroy all of the previous parameter information.  If the previous
2212     * parameter information comes from the function prototype, it may either
2213     * specify incorrect parameter names or not have names at all.
2214     */
2215    new_params->move_nodes_to(&parameters);
2216 }
2217 
2218 
ir_function(const char * name)2219 ir_function::ir_function(const char *name)
2220    : ir_instruction(ir_type_function)
2221 {
2222    this->subroutine_index = -1;
2223    this->name = ralloc_strdup(this, name);
2224 }
2225 
2226 
2227 bool
has_user_signature()2228 ir_function::has_user_signature()
2229 {
2230    foreach_in_list(ir_function_signature, sig, &this->signatures) {
2231       if (!sig->is_builtin())
2232 	 return true;
2233    }
2234    return false;
2235 }
2236 
2237 
2238 ir_rvalue *
error_value(void * mem_ctx)2239 ir_rvalue::error_value(void *mem_ctx)
2240 {
2241    ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset);
2242 
2243    v->type = glsl_type::error_type;
2244    return v;
2245 }
2246 
2247 
2248 void
visit_exec_list(exec_list * list,ir_visitor * visitor)2249 visit_exec_list(exec_list *list, ir_visitor *visitor)
2250 {
2251    foreach_in_list_safe(ir_instruction, node, list) {
2252       node->accept(visitor);
2253    }
2254 }
2255 
2256 
2257 static void
steal_memory(ir_instruction * ir,void * new_ctx)2258 steal_memory(ir_instruction *ir, void *new_ctx)
2259 {
2260    ir_variable *var = ir->as_variable();
2261    ir_function *fn = ir->as_function();
2262    ir_constant *constant = ir->as_constant();
2263    if (var != NULL && var->constant_value != NULL)
2264       steal_memory(var->constant_value, ir);
2265 
2266    if (var != NULL && var->constant_initializer != NULL)
2267       steal_memory(var->constant_initializer, ir);
2268 
2269    if (fn != NULL && fn->subroutine_types)
2270       ralloc_steal(new_ctx, fn->subroutine_types);
2271 
2272    /* The components of aggregate constants are not visited by the normal
2273     * visitor, so steal their values by hand.
2274     */
2275    if (constant != NULL &&
2276        (constant->type->is_array() || constant->type->is_struct())) {
2277       for (unsigned int i = 0; i < constant->type->length; i++) {
2278          steal_memory(constant->const_elements[i], ir);
2279       }
2280    }
2281 
2282    ralloc_steal(new_ctx, ir);
2283 }
2284 
2285 
2286 void
reparent_ir(exec_list * list,void * mem_ctx)2287 reparent_ir(exec_list *list, void *mem_ctx)
2288 {
2289    foreach_in_list(ir_instruction, node, list) {
2290       visit_tree(node, steal_memory, mem_ctx);
2291    }
2292 }
2293 
2294 
2295 static ir_rvalue *
try_min_one(ir_rvalue * ir)2296 try_min_one(ir_rvalue *ir)
2297 {
2298    ir_expression *expr = ir->as_expression();
2299 
2300    if (!expr || expr->operation != ir_binop_min)
2301       return NULL;
2302 
2303    if (expr->operands[0]->is_one())
2304       return expr->operands[1];
2305 
2306    if (expr->operands[1]->is_one())
2307       return expr->operands[0];
2308 
2309    return NULL;
2310 }
2311 
2312 static ir_rvalue *
try_max_zero(ir_rvalue * ir)2313 try_max_zero(ir_rvalue *ir)
2314 {
2315    ir_expression *expr = ir->as_expression();
2316 
2317    if (!expr || expr->operation != ir_binop_max)
2318       return NULL;
2319 
2320    if (expr->operands[0]->is_zero())
2321       return expr->operands[1];
2322 
2323    if (expr->operands[1]->is_zero())
2324       return expr->operands[0];
2325 
2326    return NULL;
2327 }
2328 
2329 ir_rvalue *
as_rvalue_to_saturate()2330 ir_rvalue::as_rvalue_to_saturate()
2331 {
2332    ir_expression *expr = this->as_expression();
2333 
2334    if (!expr)
2335       return NULL;
2336 
2337    ir_rvalue *max_zero = try_max_zero(expr);
2338    if (max_zero) {
2339       return try_min_one(max_zero);
2340    } else {
2341       ir_rvalue *min_one = try_min_one(expr);
2342       if (min_one) {
2343 	 return try_max_zero(min_one);
2344       }
2345    }
2346 
2347    return NULL;
2348 }
2349 
2350 
2351 unsigned
vertices_per_prim(GLenum prim)2352 vertices_per_prim(GLenum prim)
2353 {
2354    switch (prim) {
2355    case GL_POINTS:
2356       return 1;
2357    case GL_LINES:
2358       return 2;
2359    case GL_TRIANGLES:
2360       return 3;
2361    case GL_LINES_ADJACENCY:
2362       return 4;
2363    case GL_TRIANGLES_ADJACENCY:
2364       return 6;
2365    default:
2366       assert(!"Bad primitive");
2367       return 3;
2368    }
2369 }
2370 
2371 /**
2372  * Generate a string describing the mode of a variable
2373  */
2374 const char *
mode_string(const ir_variable * var)2375 mode_string(const ir_variable *var)
2376 {
2377    switch (var->data.mode) {
2378    case ir_var_auto:
2379       return (var->data.read_only) ? "global constant" : "global variable";
2380 
2381    case ir_var_uniform:
2382       return "uniform";
2383 
2384    case ir_var_shader_storage:
2385       return "buffer";
2386 
2387    case ir_var_shader_in:
2388       return "shader input";
2389 
2390    case ir_var_shader_out:
2391       return "shader output";
2392 
2393    case ir_var_function_in:
2394    case ir_var_const_in:
2395       return "function input";
2396 
2397    case ir_var_function_out:
2398       return "function output";
2399 
2400    case ir_var_function_inout:
2401       return "function inout";
2402 
2403    case ir_var_system_value:
2404       return "shader input";
2405 
2406    case ir_var_temporary:
2407       return "compiler temporary";
2408 
2409    case ir_var_mode_count:
2410       break;
2411    }
2412 
2413    assert(!"Should not get here.");
2414    return "invalid variable";
2415 }
2416