1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #ifdef CONFIG_RECLAIM_ACCT
101 #include <linux/reclaim_acct.h>
102 #endif
103 #include <linux/mm_purgeable.h>
104
105 #include <asm/pgalloc.h>
106 #include <linux/uaccess.h>
107 #include <asm/mmu_context.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110
111 #include <trace/events/sched.h>
112
113 #define CREATE_TRACE_POINTS
114 #include <trace/events/task.h>
115
116 /*
117 * Minimum number of threads to boot the kernel
118 */
119 #define MIN_THREADS 20
120
121 /*
122 * Maximum number of threads
123 */
124 #define MAX_THREADS FUTEX_TID_MASK
125
126 /*
127 * Protected counters by write_lock_irq(&tasklist_lock)
128 */
129 unsigned long total_forks; /* Handle normal Linux uptimes. */
130 int nr_threads; /* The idle threads do not count.. */
131
132 static int max_threads; /* tunable limit on nr_threads */
133
134 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
135
136 static const char * const resident_page_types[] = {
137 NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
146
147 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)148 int lockdep_tasklist_lock_is_held(void)
149 {
150 return lockdep_is_held(&tasklist_lock);
151 }
152 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
153 #endif /* #ifdef CONFIG_PROVE_RCU */
154
nr_processes(void)155 int nr_processes(void)
156 {
157 int cpu;
158 int total = 0;
159
160 for_each_possible_cpu(cpu)
161 total += per_cpu(process_counts, cpu);
162
163 return total;
164 }
165
arch_release_task_struct(struct task_struct * tsk)166 void __weak arch_release_task_struct(struct task_struct *tsk)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
171 static struct kmem_cache *task_struct_cachep;
172
alloc_task_struct_node(int node)173 static inline struct task_struct *alloc_task_struct_node(int node)
174 {
175 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
176 }
177
free_task_struct(struct task_struct * tsk)178 static inline void free_task_struct(struct task_struct *tsk)
179 {
180 kmem_cache_free(task_struct_cachep, tsk);
181 }
182 #endif
183
184 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
185
186 /*
187 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
188 * kmemcache based allocator.
189 */
190 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199
free_vm_stack_cache(unsigned int cpu)200 static int free_vm_stack_cache(unsigned int cpu)
201 {
202 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
203 int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 struct vm_struct *vm_stack = cached_vm_stacks[i];
207
208 if (!vm_stack)
209 continue;
210
211 vfree(vm_stack->addr);
212 cached_vm_stacks[i] = NULL;
213 }
214
215 return 0;
216 }
217 #endif
218
alloc_thread_stack_node(struct task_struct * tsk,int node)219 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
220 {
221 #ifdef CONFIG_VMAP_STACK
222 void *stack;
223 int i;
224
225 for (i = 0; i < NR_CACHED_STACKS; i++) {
226 struct vm_struct *s;
227
228 s = this_cpu_xchg(cached_stacks[i], NULL);
229
230 if (!s)
231 continue;
232
233 /* Clear the KASAN shadow of the stack. */
234 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
235
236 /* Clear stale pointers from reused stack. */
237 memset(s->addr, 0, THREAD_SIZE);
238
239 tsk->stack_vm_area = s;
240 tsk->stack = s->addr;
241 return s->addr;
242 }
243
244 /*
245 * Allocated stacks are cached and later reused by new threads,
246 * so memcg accounting is performed manually on assigning/releasing
247 * stacks to tasks. Drop __GFP_ACCOUNT.
248 */
249 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
250 VMALLOC_START, VMALLOC_END,
251 THREADINFO_GFP & ~__GFP_ACCOUNT,
252 PAGE_KERNEL,
253 0, node, __builtin_return_address(0));
254
255 /*
256 * We can't call find_vm_area() in interrupt context, and
257 * free_thread_stack() can be called in interrupt context,
258 * so cache the vm_struct.
259 */
260 if (stack) {
261 tsk->stack_vm_area = find_vm_area(stack);
262 tsk->stack = stack;
263 }
264 return stack;
265 #else
266 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
267 THREAD_SIZE_ORDER);
268
269 if (likely(page)) {
270 tsk->stack = kasan_reset_tag(page_address(page));
271 return tsk->stack;
272 }
273 return NULL;
274 #endif
275 }
276
free_thread_stack(struct task_struct * tsk)277 static inline void free_thread_stack(struct task_struct *tsk)
278 {
279 #ifdef CONFIG_VMAP_STACK
280 struct vm_struct *vm = task_stack_vm_area(tsk);
281
282 if (vm) {
283 int i;
284
285 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
286 memcg_kmem_uncharge_page(vm->pages[i], 0);
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 if (this_cpu_cmpxchg(cached_stacks[i],
290 NULL, tsk->stack_vm_area) != NULL)
291 continue;
292
293 return;
294 }
295
296 vfree_atomic(tsk->stack);
297 return;
298 }
299 #endif
300
301 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
302 }
303 # else
304 static struct kmem_cache *thread_stack_cache;
305
alloc_thread_stack_node(struct task_struct * tsk,int node)306 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
307 int node)
308 {
309 unsigned long *stack;
310 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
311 stack = kasan_reset_tag(stack);
312 tsk->stack = stack;
313 return stack;
314 }
315
free_thread_stack(struct task_struct * tsk)316 static void free_thread_stack(struct task_struct *tsk)
317 {
318 kmem_cache_free(thread_stack_cache, tsk->stack);
319 }
320
thread_stack_cache_init(void)321 void thread_stack_cache_init(void)
322 {
323 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
324 THREAD_SIZE, THREAD_SIZE, 0, 0,
325 THREAD_SIZE, NULL);
326 BUG_ON(thread_stack_cache == NULL);
327 }
328 # endif
329 #endif
330
331 /* SLAB cache for signal_struct structures (tsk->signal) */
332 static struct kmem_cache *signal_cachep;
333
334 /* SLAB cache for sighand_struct structures (tsk->sighand) */
335 struct kmem_cache *sighand_cachep;
336
337 /* SLAB cache for files_struct structures (tsk->files) */
338 struct kmem_cache *files_cachep;
339
340 /* SLAB cache for fs_struct structures (tsk->fs) */
341 struct kmem_cache *fs_cachep;
342
343 /* SLAB cache for vm_area_struct structures */
344 static struct kmem_cache *vm_area_cachep;
345
346 /* SLAB cache for mm_struct structures (tsk->mm) */
347 static struct kmem_cache *mm_cachep;
348
vm_area_alloc(struct mm_struct * mm)349 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
350 {
351 struct vm_area_struct *vma;
352
353 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (vma)
355 vma_init(vma, mm);
356 return vma;
357 }
358
vm_area_dup(struct vm_area_struct * orig)359 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
360 {
361 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362
363 if (new) {
364 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
366 /*
367 * orig->shared.rb may be modified concurrently, but the clone
368 * will be reinitialized.
369 */
370 *new = data_race(*orig);
371 INIT_LIST_HEAD(&new->anon_vma_chain);
372 new->vm_next = new->vm_prev = NULL;
373 dup_anon_vma_name(orig, new);
374 }
375 return new;
376 }
377
vm_area_free(struct vm_area_struct * vma)378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 free_anon_vma_name(vma);
381 kmem_cache_free(vm_area_cachep, vma);
382 }
383
account_kernel_stack(struct task_struct * tsk,int account)384 static void account_kernel_stack(struct task_struct *tsk, int account)
385 {
386 void *stack = task_stack_page(tsk);
387 struct vm_struct *vm = task_stack_vm_area(tsk);
388
389
390 /* All stack pages are in the same node. */
391 if (vm)
392 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
393 account * (THREAD_SIZE / 1024));
394 else
395 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
396 account * (THREAD_SIZE / 1024));
397 }
398
memcg_charge_kernel_stack(struct task_struct * tsk)399 static int memcg_charge_kernel_stack(struct task_struct *tsk)
400 {
401 #ifdef CONFIG_VMAP_STACK
402 struct vm_struct *vm = task_stack_vm_area(tsk);
403 int ret;
404
405 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
406
407 if (vm) {
408 int i;
409
410 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
411
412 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
413 /*
414 * If memcg_kmem_charge_page() fails, page->mem_cgroup
415 * pointer is NULL, and memcg_kmem_uncharge_page() in
416 * free_thread_stack() will ignore this page.
417 */
418 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
419 0);
420 if (ret)
421 return ret;
422 }
423 }
424 #endif
425 return 0;
426 }
427
release_task_stack(struct task_struct * tsk)428 static void release_task_stack(struct task_struct *tsk)
429 {
430 if (WARN_ON(tsk->state != TASK_DEAD))
431 return; /* Better to leak the stack than to free prematurely */
432
433 account_kernel_stack(tsk, -1);
434 free_thread_stack(tsk);
435 tsk->stack = NULL;
436 #ifdef CONFIG_VMAP_STACK
437 tsk->stack_vm_area = NULL;
438 #endif
439 }
440
441 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)442 void put_task_stack(struct task_struct *tsk)
443 {
444 if (refcount_dec_and_test(&tsk->stack_refcount))
445 release_task_stack(tsk);
446 }
447 #endif
448
free_task(struct task_struct * tsk)449 void free_task(struct task_struct *tsk)
450 {
451 scs_release(tsk);
452
453 #ifndef CONFIG_THREAD_INFO_IN_TASK
454 /*
455 * The task is finally done with both the stack and thread_info,
456 * so free both.
457 */
458 release_task_stack(tsk);
459 #else
460 /*
461 * If the task had a separate stack allocation, it should be gone
462 * by now.
463 */
464 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
465 #endif
466 rt_mutex_debug_task_free(tsk);
467 ftrace_graph_exit_task(tsk);
468 arch_release_task_struct(tsk);
469 if (tsk->flags & PF_KTHREAD)
470 free_kthread_struct(tsk);
471 free_task_struct(tsk);
472 }
473 EXPORT_SYMBOL(free_task);
474
475 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)476 static __latent_entropy int dup_mmap(struct mm_struct *mm,
477 struct mm_struct *oldmm)
478 {
479 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
480 struct rb_node **rb_link, *rb_parent;
481 int retval;
482 unsigned long charge;
483 LIST_HEAD(uf);
484
485 uprobe_start_dup_mmap();
486 if (mmap_write_lock_killable(oldmm)) {
487 retval = -EINTR;
488 goto fail_uprobe_end;
489 }
490 flush_cache_dup_mm(oldmm);
491 uprobe_dup_mmap(oldmm, mm);
492 /*
493 * Not linked in yet - no deadlock potential:
494 */
495 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
496
497 /* No ordering required: file already has been exposed. */
498 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
499
500 mm->total_vm = oldmm->total_vm;
501 mm->data_vm = oldmm->data_vm;
502 mm->exec_vm = oldmm->exec_vm;
503 mm->stack_vm = oldmm->stack_vm;
504
505 rb_link = &mm->mm_rb.rb_node;
506 rb_parent = NULL;
507 pprev = &mm->mmap;
508 retval = ksm_fork(mm, oldmm);
509 if (retval)
510 goto out;
511 retval = khugepaged_fork(mm, oldmm);
512 if (retval)
513 goto out;
514
515 prev = NULL;
516 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
517 struct file *file;
518
519 if (mpnt->vm_flags & VM_DONTCOPY) {
520 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
521 continue;
522 }
523 charge = 0;
524 /*
525 * Don't duplicate many vmas if we've been oom-killed (for
526 * example)
527 */
528 if (fatal_signal_pending(current)) {
529 retval = -EINTR;
530 goto out;
531 }
532 if (mpnt->vm_flags & VM_ACCOUNT) {
533 unsigned long len = vma_pages(mpnt);
534
535 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
536 goto fail_nomem;
537 charge = len;
538 }
539 tmp = vm_area_dup(mpnt);
540 if (!tmp)
541 goto fail_nomem;
542 retval = vma_dup_policy(mpnt, tmp);
543 if (retval)
544 goto fail_nomem_policy;
545 tmp->vm_mm = mm;
546 retval = dup_userfaultfd(tmp, &uf);
547 if (retval)
548 goto fail_nomem_anon_vma_fork;
549 if (tmp->vm_flags & VM_WIPEONFORK) {
550 /*
551 * VM_WIPEONFORK gets a clean slate in the child.
552 * Don't prepare anon_vma until fault since we don't
553 * copy page for current vma.
554 */
555 tmp->anon_vma = NULL;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 file = tmp->vm_file;
560 if (file) {
561 struct inode *inode = file_inode(file);
562 struct address_space *mapping = file->f_mapping;
563
564 get_file(file);
565 if (tmp->vm_flags & VM_DENYWRITE)
566 put_write_access(inode);
567 i_mmap_lock_write(mapping);
568 if (tmp->vm_flags & VM_SHARED)
569 mapping_allow_writable(mapping);
570 flush_dcache_mmap_lock(mapping);
571 /* insert tmp into the share list, just after mpnt */
572 vma_interval_tree_insert_after(tmp, mpnt,
573 &mapping->i_mmap);
574 flush_dcache_mmap_unlock(mapping);
575 i_mmap_unlock_write(mapping);
576 }
577
578 /*
579 * Clear hugetlb-related page reserves for children. This only
580 * affects MAP_PRIVATE mappings. Faults generated by the child
581 * are not guaranteed to succeed, even if read-only
582 */
583 if (is_vm_hugetlb_page(tmp))
584 reset_vma_resv_huge_pages(tmp);
585
586 /*
587 * Link in the new vma and copy the page table entries.
588 */
589 *pprev = tmp;
590 pprev = &tmp->vm_next;
591 tmp->vm_prev = prev;
592 prev = tmp;
593
594 __vma_link_rb(mm, tmp, rb_link, rb_parent);
595 rb_link = &tmp->vm_rb.rb_right;
596 rb_parent = &tmp->vm_rb;
597
598 mm->map_count++;
599 if (!(tmp->vm_flags & VM_WIPEONFORK))
600 retval = copy_page_range(tmp, mpnt);
601
602 if (tmp->vm_ops && tmp->vm_ops->open)
603 tmp->vm_ops->open(tmp);
604
605 if (retval)
606 goto out;
607 }
608 /* a new mm has just been created */
609 retval = arch_dup_mmap(oldmm, mm);
610 out:
611 mmap_write_unlock(mm);
612 flush_tlb_mm(oldmm);
613 mmap_write_unlock(oldmm);
614 dup_userfaultfd_complete(&uf);
615 fail_uprobe_end:
616 uprobe_end_dup_mmap();
617 return retval;
618 fail_nomem_anon_vma_fork:
619 mpol_put(vma_policy(tmp));
620 fail_nomem_policy:
621 vm_area_free(tmp);
622 fail_nomem:
623 retval = -ENOMEM;
624 vm_unacct_memory(charge);
625 goto out;
626 }
627
mm_alloc_pgd(struct mm_struct * mm)628 static inline int mm_alloc_pgd(struct mm_struct *mm)
629 {
630 mm_init_uxpgd(mm);
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635 }
636
mm_free_pgd(struct mm_struct * mm)637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 pgd_free(mm, mm->pgd);
640 mm_clear_uxpgd(mm);
641 }
642 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)643 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
644 {
645 mmap_write_lock(oldmm);
646 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
647 mmap_write_unlock(oldmm);
648 return 0;
649 }
650 #define mm_alloc_pgd(mm) (0)
651 #define mm_free_pgd(mm)
652 #endif /* CONFIG_MMU */
653
check_mm(struct mm_struct * mm)654 static void check_mm(struct mm_struct *mm)
655 {
656 int i;
657
658 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
659 "Please make sure 'struct resident_page_types[]' is updated as well");
660
661 for (i = 0; i < NR_MM_COUNTERS; i++) {
662 long x = atomic_long_read(&mm->rss_stat.count[i]);
663
664 if (unlikely(x))
665 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
666 mm, resident_page_types[i], x);
667 }
668
669 if (mm_pgtables_bytes(mm))
670 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
671 mm_pgtables_bytes(mm));
672
673 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
674 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
675 #endif
676 }
677
678 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
679 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
680
681 /*
682 * Called when the last reference to the mm
683 * is dropped: either by a lazy thread or by
684 * mmput. Free the page directory and the mm.
685 */
__mmdrop(struct mm_struct * mm)686 void __mmdrop(struct mm_struct *mm)
687 {
688 BUG_ON(mm == &init_mm);
689 WARN_ON_ONCE(mm == current->mm);
690 WARN_ON_ONCE(mm == current->active_mm);
691 mm_free_pgd(mm);
692 destroy_context(mm);
693 mmu_notifier_subscriptions_destroy(mm);
694 check_mm(mm);
695 put_user_ns(mm->user_ns);
696 free_mm(mm);
697 }
698 EXPORT_SYMBOL_GPL(__mmdrop);
699
mmdrop_async_fn(struct work_struct * work)700 static void mmdrop_async_fn(struct work_struct *work)
701 {
702 struct mm_struct *mm;
703
704 mm = container_of(work, struct mm_struct, async_put_work);
705 __mmdrop(mm);
706 }
707
mmdrop_async(struct mm_struct * mm)708 static void mmdrop_async(struct mm_struct *mm)
709 {
710 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
711 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
712 schedule_work(&mm->async_put_work);
713 }
714 }
715
free_signal_struct(struct signal_struct * sig)716 static inline void free_signal_struct(struct signal_struct *sig)
717 {
718 taskstats_tgid_free(sig);
719 sched_autogroup_exit(sig);
720 /*
721 * __mmdrop is not safe to call from softirq context on x86 due to
722 * pgd_dtor so postpone it to the async context
723 */
724 if (sig->oom_mm)
725 mmdrop_async(sig->oom_mm);
726 kmem_cache_free(signal_cachep, sig);
727 }
728
put_signal_struct(struct signal_struct * sig)729 static inline void put_signal_struct(struct signal_struct *sig)
730 {
731 if (refcount_dec_and_test(&sig->sigcnt))
732 free_signal_struct(sig);
733 }
734
__put_task_struct(struct task_struct * tsk)735 void __put_task_struct(struct task_struct *tsk)
736 {
737 WARN_ON(!tsk->exit_state);
738 WARN_ON(refcount_read(&tsk->usage));
739 WARN_ON(tsk == current);
740
741 io_uring_free(tsk);
742 cgroup_free(tsk);
743 task_numa_free(tsk, true);
744 security_task_free(tsk);
745 exit_creds(tsk);
746 delayacct_tsk_free(tsk);
747 put_signal_struct(tsk->signal);
748
749 if (!profile_handoff_task(tsk))
750 free_task(tsk);
751 }
752 EXPORT_SYMBOL_GPL(__put_task_struct);
753
arch_task_cache_init(void)754 void __init __weak arch_task_cache_init(void) { }
755
756 /*
757 * set_max_threads
758 */
set_max_threads(unsigned int max_threads_suggested)759 static void set_max_threads(unsigned int max_threads_suggested)
760 {
761 u64 threads;
762 unsigned long nr_pages = totalram_pages();
763
764 /*
765 * The number of threads shall be limited such that the thread
766 * structures may only consume a small part of the available memory.
767 */
768 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
769 threads = MAX_THREADS;
770 else
771 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
772 (u64) THREAD_SIZE * 8UL);
773
774 if (threads > max_threads_suggested)
775 threads = max_threads_suggested;
776
777 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
778 }
779
780 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
781 /* Initialized by the architecture: */
782 int arch_task_struct_size __read_mostly;
783 #endif
784
785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)786 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
787 {
788 /* Fetch thread_struct whitelist for the architecture. */
789 arch_thread_struct_whitelist(offset, size);
790
791 /*
792 * Handle zero-sized whitelist or empty thread_struct, otherwise
793 * adjust offset to position of thread_struct in task_struct.
794 */
795 if (unlikely(*size == 0))
796 *offset = 0;
797 else
798 *offset += offsetof(struct task_struct, thread);
799 }
800 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
801
fork_init(void)802 void __init fork_init(void)
803 {
804 int i;
805 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
806 #ifndef ARCH_MIN_TASKALIGN
807 #define ARCH_MIN_TASKALIGN 0
808 #endif
809 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
810 unsigned long useroffset, usersize;
811
812 /* create a slab on which task_structs can be allocated */
813 task_struct_whitelist(&useroffset, &usersize);
814 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
815 arch_task_struct_size, align,
816 SLAB_PANIC|SLAB_ACCOUNT,
817 useroffset, usersize, NULL);
818 #endif
819
820 /* do the arch specific task caches init */
821 arch_task_cache_init();
822
823 set_max_threads(MAX_THREADS);
824
825 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
826 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
827 init_task.signal->rlim[RLIMIT_SIGPENDING] =
828 init_task.signal->rlim[RLIMIT_NPROC];
829
830 for (i = 0; i < UCOUNT_COUNTS; i++) {
831 init_user_ns.ucount_max[i] = max_threads/2;
832 }
833
834 #ifdef CONFIG_VMAP_STACK
835 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
836 NULL, free_vm_stack_cache);
837 #endif
838
839 scs_init();
840
841 lockdep_init_task(&init_task);
842 uprobes_init();
843 }
844
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)845 int __weak arch_dup_task_struct(struct task_struct *dst,
846 struct task_struct *src)
847 {
848 *dst = *src;
849 return 0;
850 }
851
set_task_stack_end_magic(struct task_struct * tsk)852 void set_task_stack_end_magic(struct task_struct *tsk)
853 {
854 unsigned long *stackend;
855
856 stackend = end_of_stack(tsk);
857 *stackend = STACK_END_MAGIC; /* for overflow detection */
858 }
859
dup_task_struct(struct task_struct * orig,int node)860 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
861 {
862 struct task_struct *tsk;
863 unsigned long *stack;
864 struct vm_struct *stack_vm_area __maybe_unused;
865 int err;
866
867 if (node == NUMA_NO_NODE)
868 node = tsk_fork_get_node(orig);
869 tsk = alloc_task_struct_node(node);
870 if (!tsk)
871 return NULL;
872
873 stack = alloc_thread_stack_node(tsk, node);
874 if (!stack)
875 goto free_tsk;
876
877 if (memcg_charge_kernel_stack(tsk))
878 goto free_stack;
879
880 stack_vm_area = task_stack_vm_area(tsk);
881
882 err = arch_dup_task_struct(tsk, orig);
883
884 #ifdef CONFIG_ACCESS_TOKENID
885 tsk->token = orig->token;
886 tsk->ftoken = 0;
887 #endif
888 /*
889 * arch_dup_task_struct() clobbers the stack-related fields. Make
890 * sure they're properly initialized before using any stack-related
891 * functions again.
892 */
893 tsk->stack = stack;
894 #ifdef CONFIG_VMAP_STACK
895 tsk->stack_vm_area = stack_vm_area;
896 #endif
897 #ifdef CONFIG_THREAD_INFO_IN_TASK
898 refcount_set(&tsk->stack_refcount, 1);
899 #endif
900
901 if (err)
902 goto free_stack;
903
904 err = scs_prepare(tsk, node);
905 if (err)
906 goto free_stack;
907
908 #ifdef CONFIG_SECCOMP
909 /*
910 * We must handle setting up seccomp filters once we're under
911 * the sighand lock in case orig has changed between now and
912 * then. Until then, filter must be NULL to avoid messing up
913 * the usage counts on the error path calling free_task.
914 */
915 tsk->seccomp.filter = NULL;
916 #endif
917
918 setup_thread_stack(tsk, orig);
919 clear_user_return_notifier(tsk);
920 clear_tsk_need_resched(tsk);
921 set_task_stack_end_magic(tsk);
922
923 #ifdef CONFIG_STACKPROTECTOR
924 tsk->stack_canary = get_random_canary();
925 #endif
926 if (orig->cpus_ptr == &orig->cpus_mask)
927 tsk->cpus_ptr = &tsk->cpus_mask;
928
929 /*
930 * One for the user space visible state that goes away when reaped.
931 * One for the scheduler.
932 */
933 refcount_set(&tsk->rcu_users, 2);
934 /* One for the rcu users */
935 refcount_set(&tsk->usage, 1);
936 #ifdef CONFIG_BLK_DEV_IO_TRACE
937 tsk->btrace_seq = 0;
938 #endif
939 tsk->splice_pipe = NULL;
940 tsk->task_frag.page = NULL;
941 tsk->wake_q.next = NULL;
942 tsk->pf_io_worker = NULL;
943
944 account_kernel_stack(tsk, 1);
945
946 kcov_task_init(tsk);
947
948 #ifdef CONFIG_FAULT_INJECTION
949 tsk->fail_nth = 0;
950 #endif
951
952 #ifdef CONFIG_BLK_CGROUP
953 tsk->throttle_queue = NULL;
954 tsk->use_memdelay = 0;
955 #endif
956
957 #ifdef CONFIG_MEMCG
958 tsk->active_memcg = NULL;
959 #endif
960 return tsk;
961
962 free_stack:
963 free_thread_stack(tsk);
964 free_tsk:
965 free_task_struct(tsk);
966 return NULL;
967 }
968
969 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
970
971 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
972
coredump_filter_setup(char * s)973 static int __init coredump_filter_setup(char *s)
974 {
975 default_dump_filter =
976 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
977 MMF_DUMP_FILTER_MASK;
978 return 1;
979 }
980
981 __setup("coredump_filter=", coredump_filter_setup);
982
983 #include <linux/init_task.h>
984
mm_init_aio(struct mm_struct * mm)985 static void mm_init_aio(struct mm_struct *mm)
986 {
987 #ifdef CONFIG_AIO
988 spin_lock_init(&mm->ioctx_lock);
989 mm->ioctx_table = NULL;
990 #endif
991 }
992
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)993 static __always_inline void mm_clear_owner(struct mm_struct *mm,
994 struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 if (mm->owner == p)
998 WRITE_ONCE(mm->owner, NULL);
999 #endif
1000 }
1001
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1002 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003 {
1004 #ifdef CONFIG_MEMCG
1005 mm->owner = p;
1006 #endif
1007 }
1008
mm_init_pasid(struct mm_struct * mm)1009 static void mm_init_pasid(struct mm_struct *mm)
1010 {
1011 #ifdef CONFIG_IOMMU_SUPPORT
1012 mm->pasid = INIT_PASID;
1013 #endif
1014 }
1015
mm_init_uprobes_state(struct mm_struct * mm)1016 static void mm_init_uprobes_state(struct mm_struct *mm)
1017 {
1018 #ifdef CONFIG_UPROBES
1019 mm->uprobes_state.xol_area = NULL;
1020 #endif
1021 }
1022
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1023 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024 struct user_namespace *user_ns)
1025 {
1026 mm->mmap = NULL;
1027 mm->mm_rb = RB_ROOT;
1028 mm->vmacache_seqnum = 0;
1029 #ifdef CONFIG_RSS_THRESHOLD
1030 mm->rss_threshold = 0;
1031 #endif
1032 atomic_set(&mm->mm_users, 1);
1033 atomic_set(&mm->mm_count, 1);
1034 seqcount_init(&mm->write_protect_seq);
1035 mmap_init_lock(mm);
1036 INIT_LIST_HEAD(&mm->mmlist);
1037 mm->core_state = NULL;
1038 mm_pgtables_bytes_init(mm);
1039 mm->map_count = 0;
1040 mm->locked_vm = 0;
1041 atomic_set(&mm->has_pinned, 0);
1042 atomic64_set(&mm->pinned_vm, 0);
1043 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1044 spin_lock_init(&mm->page_table_lock);
1045 spin_lock_init(&mm->arg_lock);
1046 mm_init_cpumask(mm);
1047 mm_init_aio(mm);
1048 mm_init_owner(mm, p);
1049 mm_init_pasid(mm);
1050 RCU_INIT_POINTER(mm->exe_file, NULL);
1051 mmu_notifier_subscriptions_init(mm);
1052 init_tlb_flush_pending(mm);
1053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1054 mm->pmd_huge_pte = NULL;
1055 #endif
1056 mm_init_uprobes_state(mm);
1057 hugetlb_count_init(mm);
1058
1059 if (current->mm) {
1060 mm->flags = current->mm->flags & MMF_INIT_MASK;
1061 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1062 } else {
1063 mm->flags = default_dump_filter;
1064 mm->def_flags = 0;
1065 }
1066
1067 if (mm_alloc_pgd(mm))
1068 goto fail_nopgd;
1069
1070 if (init_new_context(p, mm))
1071 goto fail_nocontext;
1072
1073 mm->user_ns = get_user_ns(user_ns);
1074 return mm;
1075
1076 fail_nocontext:
1077 mm_free_pgd(mm);
1078 fail_nopgd:
1079 free_mm(mm);
1080 return NULL;
1081 }
1082
1083 /*
1084 * Allocate and initialize an mm_struct.
1085 */
mm_alloc(void)1086 struct mm_struct *mm_alloc(void)
1087 {
1088 struct mm_struct *mm;
1089
1090 mm = allocate_mm();
1091 if (!mm)
1092 return NULL;
1093
1094 memset(mm, 0, sizeof(*mm));
1095 return mm_init(mm, current, current_user_ns());
1096 }
1097
__mmput(struct mm_struct * mm)1098 static inline void __mmput(struct mm_struct *mm)
1099 {
1100 VM_BUG_ON(atomic_read(&mm->mm_users));
1101
1102 uprobe_clear_state(mm);
1103 exit_aio(mm);
1104 ksm_exit(mm);
1105 khugepaged_exit(mm); /* must run before exit_mmap */
1106 exit_mmap(mm);
1107 mm_put_huge_zero_page(mm);
1108 set_mm_exe_file(mm, NULL);
1109 if (!list_empty(&mm->mmlist)) {
1110 spin_lock(&mmlist_lock);
1111 list_del(&mm->mmlist);
1112 spin_unlock(&mmlist_lock);
1113 }
1114 if (mm->binfmt)
1115 module_put(mm->binfmt->module);
1116 mmdrop(mm);
1117 }
1118
1119 /*
1120 * Decrement the use count and release all resources for an mm.
1121 */
mmput(struct mm_struct * mm)1122 void mmput(struct mm_struct *mm)
1123 {
1124 might_sleep();
1125
1126 if (atomic_dec_and_test(&mm->mm_users))
1127 __mmput(mm);
1128 }
1129 EXPORT_SYMBOL_GPL(mmput);
1130
1131 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1132 static void mmput_async_fn(struct work_struct *work)
1133 {
1134 struct mm_struct *mm = container_of(work, struct mm_struct,
1135 async_put_work);
1136
1137 __mmput(mm);
1138 }
1139
mmput_async(struct mm_struct * mm)1140 void mmput_async(struct mm_struct *mm)
1141 {
1142 if (atomic_dec_and_test(&mm->mm_users)) {
1143 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1144 schedule_work(&mm->async_put_work);
1145 }
1146 }
1147 EXPORT_SYMBOL_GPL(mmput_async);
1148 #endif
1149
1150 /**
1151 * set_mm_exe_file - change a reference to the mm's executable file
1152 *
1153 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1154 *
1155 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1156 * invocations: in mmput() nobody alive left, in execve task is single
1157 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1158 * mm->exe_file, but does so without using set_mm_exe_file() in order
1159 * to do avoid the need for any locks.
1160 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1161 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1162 {
1163 struct file *old_exe_file;
1164
1165 /*
1166 * It is safe to dereference the exe_file without RCU as
1167 * this function is only called if nobody else can access
1168 * this mm -- see comment above for justification.
1169 */
1170 old_exe_file = rcu_dereference_raw(mm->exe_file);
1171
1172 if (new_exe_file)
1173 get_file(new_exe_file);
1174 rcu_assign_pointer(mm->exe_file, new_exe_file);
1175 if (old_exe_file)
1176 fput(old_exe_file);
1177 }
1178
1179 /**
1180 * get_mm_exe_file - acquire a reference to the mm's executable file
1181 *
1182 * Returns %NULL if mm has no associated executable file.
1183 * User must release file via fput().
1184 */
get_mm_exe_file(struct mm_struct * mm)1185 struct file *get_mm_exe_file(struct mm_struct *mm)
1186 {
1187 struct file *exe_file;
1188
1189 rcu_read_lock();
1190 exe_file = rcu_dereference(mm->exe_file);
1191 if (exe_file && !get_file_rcu(exe_file))
1192 exe_file = NULL;
1193 rcu_read_unlock();
1194 return exe_file;
1195 }
1196 EXPORT_SYMBOL(get_mm_exe_file);
1197
1198 /**
1199 * get_task_exe_file - acquire a reference to the task's executable file
1200 *
1201 * Returns %NULL if task's mm (if any) has no associated executable file or
1202 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1203 * User must release file via fput().
1204 */
get_task_exe_file(struct task_struct * task)1205 struct file *get_task_exe_file(struct task_struct *task)
1206 {
1207 struct file *exe_file = NULL;
1208 struct mm_struct *mm;
1209
1210 task_lock(task);
1211 mm = task->mm;
1212 if (mm) {
1213 if (!(task->flags & PF_KTHREAD))
1214 exe_file = get_mm_exe_file(mm);
1215 }
1216 task_unlock(task);
1217 return exe_file;
1218 }
1219 EXPORT_SYMBOL(get_task_exe_file);
1220
1221 /**
1222 * get_task_mm - acquire a reference to the task's mm
1223 *
1224 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1225 * this kernel workthread has transiently adopted a user mm with use_mm,
1226 * to do its AIO) is not set and if so returns a reference to it, after
1227 * bumping up the use count. User must release the mm via mmput()
1228 * after use. Typically used by /proc and ptrace.
1229 */
get_task_mm(struct task_struct * task)1230 struct mm_struct *get_task_mm(struct task_struct *task)
1231 {
1232 struct mm_struct *mm;
1233
1234 task_lock(task);
1235 mm = task->mm;
1236 if (mm) {
1237 if (task->flags & PF_KTHREAD)
1238 mm = NULL;
1239 else
1240 mmget(mm);
1241 }
1242 task_unlock(task);
1243 return mm;
1244 }
1245 EXPORT_SYMBOL_GPL(get_task_mm);
1246
mm_access(struct task_struct * task,unsigned int mode)1247 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1248 {
1249 struct mm_struct *mm;
1250 int err;
1251
1252 err = down_read_killable(&task->signal->exec_update_lock);
1253 if (err)
1254 return ERR_PTR(err);
1255
1256 mm = get_task_mm(task);
1257 if (mm && mm != current->mm &&
1258 !ptrace_may_access(task, mode)) {
1259 mmput(mm);
1260 mm = ERR_PTR(-EACCES);
1261 }
1262 up_read(&task->signal->exec_update_lock);
1263
1264 return mm;
1265 }
1266
complete_vfork_done(struct task_struct * tsk)1267 static void complete_vfork_done(struct task_struct *tsk)
1268 {
1269 struct completion *vfork;
1270
1271 task_lock(tsk);
1272 vfork = tsk->vfork_done;
1273 if (likely(vfork)) {
1274 tsk->vfork_done = NULL;
1275 complete(vfork);
1276 }
1277 task_unlock(tsk);
1278 }
1279
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1280 static int wait_for_vfork_done(struct task_struct *child,
1281 struct completion *vfork)
1282 {
1283 int killed;
1284
1285 freezer_do_not_count();
1286 cgroup_enter_frozen();
1287 killed = wait_for_completion_killable(vfork);
1288 cgroup_leave_frozen(false);
1289 freezer_count();
1290
1291 if (killed) {
1292 task_lock(child);
1293 child->vfork_done = NULL;
1294 task_unlock(child);
1295 }
1296
1297 put_task_struct(child);
1298 return killed;
1299 }
1300
1301 /* Please note the differences between mmput and mm_release.
1302 * mmput is called whenever we stop holding onto a mm_struct,
1303 * error success whatever.
1304 *
1305 * mm_release is called after a mm_struct has been removed
1306 * from the current process.
1307 *
1308 * This difference is important for error handling, when we
1309 * only half set up a mm_struct for a new process and need to restore
1310 * the old one. Because we mmput the new mm_struct before
1311 * restoring the old one. . .
1312 * Eric Biederman 10 January 1998
1313 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1314 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1315 {
1316 uprobe_free_utask(tsk);
1317
1318 /* Get rid of any cached register state */
1319 deactivate_mm(tsk, mm);
1320
1321 /*
1322 * Signal userspace if we're not exiting with a core dump
1323 * because we want to leave the value intact for debugging
1324 * purposes.
1325 */
1326 if (tsk->clear_child_tid) {
1327 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1328 atomic_read(&mm->mm_users) > 1) {
1329 /*
1330 * We don't check the error code - if userspace has
1331 * not set up a proper pointer then tough luck.
1332 */
1333 put_user(0, tsk->clear_child_tid);
1334 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1335 1, NULL, NULL, 0, 0);
1336 }
1337 tsk->clear_child_tid = NULL;
1338 }
1339
1340 /*
1341 * All done, finally we can wake up parent and return this mm to him.
1342 * Also kthread_stop() uses this completion for synchronization.
1343 */
1344 if (tsk->vfork_done)
1345 complete_vfork_done(tsk);
1346 }
1347
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1348 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1349 {
1350 futex_exit_release(tsk);
1351 mm_release(tsk, mm);
1352 }
1353
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1354 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1355 {
1356 futex_exec_release(tsk);
1357 mm_release(tsk, mm);
1358 }
1359
1360 /**
1361 * dup_mm() - duplicates an existing mm structure
1362 * @tsk: the task_struct with which the new mm will be associated.
1363 * @oldmm: the mm to duplicate.
1364 *
1365 * Allocates a new mm structure and duplicates the provided @oldmm structure
1366 * content into it.
1367 *
1368 * Return: the duplicated mm or NULL on failure.
1369 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1370 static struct mm_struct *dup_mm(struct task_struct *tsk,
1371 struct mm_struct *oldmm)
1372 {
1373 struct mm_struct *mm;
1374 int err;
1375
1376 mm = allocate_mm();
1377 if (!mm)
1378 goto fail_nomem;
1379
1380 memcpy(mm, oldmm, sizeof(*mm));
1381
1382 if (!mm_init(mm, tsk, mm->user_ns))
1383 goto fail_nomem;
1384
1385 err = dup_mmap(mm, oldmm);
1386 if (err)
1387 goto free_pt;
1388
1389 mm->hiwater_rss = get_mm_rss(mm);
1390 mm->hiwater_vm = mm->total_vm;
1391
1392 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1393 goto free_pt;
1394
1395 return mm;
1396
1397 free_pt:
1398 /* don't put binfmt in mmput, we haven't got module yet */
1399 mm->binfmt = NULL;
1400 mm_init_owner(mm, NULL);
1401 mmput(mm);
1402
1403 fail_nomem:
1404 return NULL;
1405 }
1406
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1407 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1408 {
1409 struct mm_struct *mm, *oldmm;
1410 int retval;
1411
1412 tsk->min_flt = tsk->maj_flt = 0;
1413 tsk->nvcsw = tsk->nivcsw = 0;
1414 #ifdef CONFIG_DETECT_HUNG_TASK
1415 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1416 tsk->last_switch_time = 0;
1417 #endif
1418
1419 tsk->mm = NULL;
1420 tsk->active_mm = NULL;
1421
1422 /*
1423 * Are we cloning a kernel thread?
1424 *
1425 * We need to steal a active VM for that..
1426 */
1427 oldmm = current->mm;
1428 if (!oldmm)
1429 return 0;
1430
1431 /* initialize the new vmacache entries */
1432 vmacache_flush(tsk);
1433
1434 if (clone_flags & CLONE_VM) {
1435 mmget(oldmm);
1436 mm = oldmm;
1437 goto good_mm;
1438 }
1439
1440 retval = -ENOMEM;
1441 mm = dup_mm(tsk, current->mm);
1442 if (!mm)
1443 goto fail_nomem;
1444
1445 good_mm:
1446 tsk->mm = mm;
1447 tsk->active_mm = mm;
1448 return 0;
1449
1450 fail_nomem:
1451 return retval;
1452 }
1453
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1454 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1455 {
1456 struct fs_struct *fs = current->fs;
1457 if (clone_flags & CLONE_FS) {
1458 /* tsk->fs is already what we want */
1459 spin_lock(&fs->lock);
1460 if (fs->in_exec) {
1461 spin_unlock(&fs->lock);
1462 return -EAGAIN;
1463 }
1464 fs->users++;
1465 spin_unlock(&fs->lock);
1466 return 0;
1467 }
1468 tsk->fs = copy_fs_struct(fs);
1469 if (!tsk->fs)
1470 return -ENOMEM;
1471 return 0;
1472 }
1473
copy_files(unsigned long clone_flags,struct task_struct * tsk)1474 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1475 {
1476 struct files_struct *oldf, *newf;
1477 int error = 0;
1478
1479 /*
1480 * A background process may not have any files ...
1481 */
1482 oldf = current->files;
1483 if (!oldf)
1484 goto out;
1485
1486 if (clone_flags & CLONE_FILES) {
1487 atomic_inc(&oldf->count);
1488 goto out;
1489 }
1490
1491 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1492 if (!newf)
1493 goto out;
1494
1495 tsk->files = newf;
1496 error = 0;
1497 out:
1498 return error;
1499 }
1500
copy_io(unsigned long clone_flags,struct task_struct * tsk)1501 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1502 {
1503 #ifdef CONFIG_BLOCK
1504 struct io_context *ioc = current->io_context;
1505 struct io_context *new_ioc;
1506
1507 if (!ioc)
1508 return 0;
1509 /*
1510 * Share io context with parent, if CLONE_IO is set
1511 */
1512 if (clone_flags & CLONE_IO) {
1513 ioc_task_link(ioc);
1514 tsk->io_context = ioc;
1515 } else if (ioprio_valid(ioc->ioprio)) {
1516 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1517 if (unlikely(!new_ioc))
1518 return -ENOMEM;
1519
1520 new_ioc->ioprio = ioc->ioprio;
1521 put_io_context(new_ioc);
1522 }
1523 #endif
1524 return 0;
1525 }
1526
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1527 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1528 {
1529 struct sighand_struct *sig;
1530
1531 if (clone_flags & CLONE_SIGHAND) {
1532 refcount_inc(¤t->sighand->count);
1533 return 0;
1534 }
1535 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1536 RCU_INIT_POINTER(tsk->sighand, sig);
1537 if (!sig)
1538 return -ENOMEM;
1539
1540 refcount_set(&sig->count, 1);
1541 spin_lock_irq(¤t->sighand->siglock);
1542 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1543 spin_unlock_irq(¤t->sighand->siglock);
1544
1545 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1546 if (clone_flags & CLONE_CLEAR_SIGHAND)
1547 flush_signal_handlers(tsk, 0);
1548
1549 return 0;
1550 }
1551
__cleanup_sighand(struct sighand_struct * sighand)1552 void __cleanup_sighand(struct sighand_struct *sighand)
1553 {
1554 if (refcount_dec_and_test(&sighand->count)) {
1555 signalfd_cleanup(sighand);
1556 /*
1557 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1558 * without an RCU grace period, see __lock_task_sighand().
1559 */
1560 kmem_cache_free(sighand_cachep, sighand);
1561 }
1562 }
1563
1564 /*
1565 * Initialize POSIX timer handling for a thread group.
1566 */
posix_cpu_timers_init_group(struct signal_struct * sig)1567 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1568 {
1569 struct posix_cputimers *pct = &sig->posix_cputimers;
1570 unsigned long cpu_limit;
1571
1572 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1573 posix_cputimers_group_init(pct, cpu_limit);
1574 }
1575
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1576 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1577 {
1578 struct signal_struct *sig;
1579
1580 if (clone_flags & CLONE_THREAD)
1581 return 0;
1582
1583 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1584 tsk->signal = sig;
1585 if (!sig)
1586 return -ENOMEM;
1587
1588 sig->nr_threads = 1;
1589 atomic_set(&sig->live, 1);
1590 refcount_set(&sig->sigcnt, 1);
1591
1592 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1593 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1594 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1595
1596 init_waitqueue_head(&sig->wait_chldexit);
1597 sig->curr_target = tsk;
1598 init_sigpending(&sig->shared_pending);
1599 INIT_HLIST_HEAD(&sig->multiprocess);
1600 seqlock_init(&sig->stats_lock);
1601 prev_cputime_init(&sig->prev_cputime);
1602
1603 #ifdef CONFIG_POSIX_TIMERS
1604 INIT_LIST_HEAD(&sig->posix_timers);
1605 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1606 sig->real_timer.function = it_real_fn;
1607 #endif
1608
1609 task_lock(current->group_leader);
1610 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1611 task_unlock(current->group_leader);
1612
1613 posix_cpu_timers_init_group(sig);
1614
1615 tty_audit_fork(sig);
1616 sched_autogroup_fork(sig);
1617
1618 sig->oom_score_adj = current->signal->oom_score_adj;
1619 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1620
1621 mutex_init(&sig->cred_guard_mutex);
1622 init_rwsem(&sig->exec_update_lock);
1623
1624 return 0;
1625 }
1626
copy_seccomp(struct task_struct * p)1627 static void copy_seccomp(struct task_struct *p)
1628 {
1629 #ifdef CONFIG_SECCOMP
1630 /*
1631 * Must be called with sighand->lock held, which is common to
1632 * all threads in the group. Holding cred_guard_mutex is not
1633 * needed because this new task is not yet running and cannot
1634 * be racing exec.
1635 */
1636 assert_spin_locked(¤t->sighand->siglock);
1637
1638 /* Ref-count the new filter user, and assign it. */
1639 get_seccomp_filter(current);
1640 p->seccomp = current->seccomp;
1641
1642 /*
1643 * Explicitly enable no_new_privs here in case it got set
1644 * between the task_struct being duplicated and holding the
1645 * sighand lock. The seccomp state and nnp must be in sync.
1646 */
1647 if (task_no_new_privs(current))
1648 task_set_no_new_privs(p);
1649
1650 /*
1651 * If the parent gained a seccomp mode after copying thread
1652 * flags and between before we held the sighand lock, we have
1653 * to manually enable the seccomp thread flag here.
1654 */
1655 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1656 set_tsk_thread_flag(p, TIF_SECCOMP);
1657 #endif
1658 }
1659
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1660 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1661 {
1662 current->clear_child_tid = tidptr;
1663
1664 return task_pid_vnr(current);
1665 }
1666
rt_mutex_init_task(struct task_struct * p)1667 static void rt_mutex_init_task(struct task_struct *p)
1668 {
1669 raw_spin_lock_init(&p->pi_lock);
1670 #ifdef CONFIG_RT_MUTEXES
1671 p->pi_waiters = RB_ROOT_CACHED;
1672 p->pi_top_task = NULL;
1673 p->pi_blocked_on = NULL;
1674 #endif
1675 }
1676
init_task_pid_links(struct task_struct * task)1677 static inline void init_task_pid_links(struct task_struct *task)
1678 {
1679 enum pid_type type;
1680
1681 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1682 INIT_HLIST_NODE(&task->pid_links[type]);
1683 }
1684 }
1685
1686 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1687 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1688 {
1689 if (type == PIDTYPE_PID)
1690 task->thread_pid = pid;
1691 else
1692 task->signal->pids[type] = pid;
1693 }
1694
rcu_copy_process(struct task_struct * p)1695 static inline void rcu_copy_process(struct task_struct *p)
1696 {
1697 #ifdef CONFIG_PREEMPT_RCU
1698 p->rcu_read_lock_nesting = 0;
1699 p->rcu_read_unlock_special.s = 0;
1700 p->rcu_blocked_node = NULL;
1701 INIT_LIST_HEAD(&p->rcu_node_entry);
1702 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1703 #ifdef CONFIG_TASKS_RCU
1704 p->rcu_tasks_holdout = false;
1705 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1706 p->rcu_tasks_idle_cpu = -1;
1707 #endif /* #ifdef CONFIG_TASKS_RCU */
1708 #ifdef CONFIG_TASKS_TRACE_RCU
1709 p->trc_reader_nesting = 0;
1710 p->trc_reader_special.s = 0;
1711 INIT_LIST_HEAD(&p->trc_holdout_list);
1712 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1713 }
1714
pidfd_pid(const struct file * file)1715 struct pid *pidfd_pid(const struct file *file)
1716 {
1717 if (file->f_op == &pidfd_fops)
1718 return file->private_data;
1719
1720 return ERR_PTR(-EBADF);
1721 }
1722
pidfd_release(struct inode * inode,struct file * file)1723 static int pidfd_release(struct inode *inode, struct file *file)
1724 {
1725 struct pid *pid = file->private_data;
1726
1727 file->private_data = NULL;
1728 put_pid(pid);
1729 return 0;
1730 }
1731
1732 #ifdef CONFIG_PROC_FS
1733 /**
1734 * pidfd_show_fdinfo - print information about a pidfd
1735 * @m: proc fdinfo file
1736 * @f: file referencing a pidfd
1737 *
1738 * Pid:
1739 * This function will print the pid that a given pidfd refers to in the
1740 * pid namespace of the procfs instance.
1741 * If the pid namespace of the process is not a descendant of the pid
1742 * namespace of the procfs instance 0 will be shown as its pid. This is
1743 * similar to calling getppid() on a process whose parent is outside of
1744 * its pid namespace.
1745 *
1746 * NSpid:
1747 * If pid namespaces are supported then this function will also print
1748 * the pid of a given pidfd refers to for all descendant pid namespaces
1749 * starting from the current pid namespace of the instance, i.e. the
1750 * Pid field and the first entry in the NSpid field will be identical.
1751 * If the pid namespace of the process is not a descendant of the pid
1752 * namespace of the procfs instance 0 will be shown as its first NSpid
1753 * entry and no others will be shown.
1754 * Note that this differs from the Pid and NSpid fields in
1755 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1756 * the pid namespace of the procfs instance. The difference becomes
1757 * obvious when sending around a pidfd between pid namespaces from a
1758 * different branch of the tree, i.e. where no ancestoral relation is
1759 * present between the pid namespaces:
1760 * - create two new pid namespaces ns1 and ns2 in the initial pid
1761 * namespace (also take care to create new mount namespaces in the
1762 * new pid namespace and mount procfs)
1763 * - create a process with a pidfd in ns1
1764 * - send pidfd from ns1 to ns2
1765 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1766 * have exactly one entry, which is 0
1767 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1768 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1769 {
1770 struct pid *pid = f->private_data;
1771 struct pid_namespace *ns;
1772 pid_t nr = -1;
1773
1774 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1775 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1776 nr = pid_nr_ns(pid, ns);
1777 }
1778
1779 seq_put_decimal_ll(m, "Pid:\t", nr);
1780
1781 #ifdef CONFIG_PID_NS
1782 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1783 if (nr > 0) {
1784 int i;
1785
1786 /* If nr is non-zero it means that 'pid' is valid and that
1787 * ns, i.e. the pid namespace associated with the procfs
1788 * instance, is in the pid namespace hierarchy of pid.
1789 * Start at one below the already printed level.
1790 */
1791 for (i = ns->level + 1; i <= pid->level; i++)
1792 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1793 }
1794 #endif
1795 seq_putc(m, '\n');
1796 }
1797 #endif
1798
1799 /*
1800 * Poll support for process exit notification.
1801 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1802 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1803 {
1804 struct pid *pid = file->private_data;
1805 __poll_t poll_flags = 0;
1806
1807 poll_wait(file, &pid->wait_pidfd, pts);
1808
1809 /*
1810 * Inform pollers only when the whole thread group exits.
1811 * If the thread group leader exits before all other threads in the
1812 * group, then poll(2) should block, similar to the wait(2) family.
1813 */
1814 if (thread_group_exited(pid))
1815 poll_flags = EPOLLIN | EPOLLRDNORM;
1816
1817 return poll_flags;
1818 }
1819
1820 const struct file_operations pidfd_fops = {
1821 .release = pidfd_release,
1822 .poll = pidfd_poll,
1823 #ifdef CONFIG_PROC_FS
1824 .show_fdinfo = pidfd_show_fdinfo,
1825 #endif
1826 };
1827
__delayed_free_task(struct rcu_head * rhp)1828 static void __delayed_free_task(struct rcu_head *rhp)
1829 {
1830 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1831
1832 free_task(tsk);
1833 }
1834
delayed_free_task(struct task_struct * tsk)1835 static __always_inline void delayed_free_task(struct task_struct *tsk)
1836 {
1837 if (IS_ENABLED(CONFIG_MEMCG))
1838 call_rcu(&tsk->rcu, __delayed_free_task);
1839 else
1840 free_task(tsk);
1841 }
1842
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1843 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1844 {
1845 /* Skip if kernel thread */
1846 if (!tsk->mm)
1847 return;
1848
1849 /* Skip if spawning a thread or using vfork */
1850 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1851 return;
1852
1853 /* We need to synchronize with __set_oom_adj */
1854 mutex_lock(&oom_adj_mutex);
1855 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1856 /* Update the values in case they were changed after copy_signal */
1857 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1858 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1859 mutex_unlock(&oom_adj_mutex);
1860 }
1861
1862 /*
1863 * This creates a new process as a copy of the old one,
1864 * but does not actually start it yet.
1865 *
1866 * It copies the registers, and all the appropriate
1867 * parts of the process environment (as per the clone
1868 * flags). The actual kick-off is left to the caller.
1869 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1870 static __latent_entropy struct task_struct *copy_process(
1871 struct pid *pid,
1872 int trace,
1873 int node,
1874 struct kernel_clone_args *args)
1875 {
1876 int pidfd = -1, retval;
1877 struct task_struct *p;
1878 struct multiprocess_signals delayed;
1879 struct file *pidfile = NULL;
1880 u64 clone_flags = args->flags;
1881 struct nsproxy *nsp = current->nsproxy;
1882
1883 /*
1884 * Don't allow sharing the root directory with processes in a different
1885 * namespace
1886 */
1887 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1888 return ERR_PTR(-EINVAL);
1889
1890 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1891 return ERR_PTR(-EINVAL);
1892
1893 /*
1894 * Thread groups must share signals as well, and detached threads
1895 * can only be started up within the thread group.
1896 */
1897 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1898 return ERR_PTR(-EINVAL);
1899
1900 /*
1901 * Shared signal handlers imply shared VM. By way of the above,
1902 * thread groups also imply shared VM. Blocking this case allows
1903 * for various simplifications in other code.
1904 */
1905 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1906 return ERR_PTR(-EINVAL);
1907
1908 /*
1909 * Siblings of global init remain as zombies on exit since they are
1910 * not reaped by their parent (swapper). To solve this and to avoid
1911 * multi-rooted process trees, prevent global and container-inits
1912 * from creating siblings.
1913 */
1914 if ((clone_flags & CLONE_PARENT) &&
1915 current->signal->flags & SIGNAL_UNKILLABLE)
1916 return ERR_PTR(-EINVAL);
1917
1918 /*
1919 * If the new process will be in a different pid or user namespace
1920 * do not allow it to share a thread group with the forking task.
1921 */
1922 if (clone_flags & CLONE_THREAD) {
1923 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1924 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1925 return ERR_PTR(-EINVAL);
1926 }
1927
1928 /*
1929 * If the new process will be in a different time namespace
1930 * do not allow it to share VM or a thread group with the forking task.
1931 */
1932 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1933 if (nsp->time_ns != nsp->time_ns_for_children)
1934 return ERR_PTR(-EINVAL);
1935 }
1936
1937 if (clone_flags & CLONE_PIDFD) {
1938 /*
1939 * - CLONE_DETACHED is blocked so that we can potentially
1940 * reuse it later for CLONE_PIDFD.
1941 * - CLONE_THREAD is blocked until someone really needs it.
1942 */
1943 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1944 return ERR_PTR(-EINVAL);
1945 }
1946
1947 /*
1948 * Force any signals received before this point to be delivered
1949 * before the fork happens. Collect up signals sent to multiple
1950 * processes that happen during the fork and delay them so that
1951 * they appear to happen after the fork.
1952 */
1953 sigemptyset(&delayed.signal);
1954 INIT_HLIST_NODE(&delayed.node);
1955
1956 spin_lock_irq(¤t->sighand->siglock);
1957 if (!(clone_flags & CLONE_THREAD))
1958 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1959 recalc_sigpending();
1960 spin_unlock_irq(¤t->sighand->siglock);
1961 retval = -ERESTARTNOINTR;
1962 if (task_sigpending(current))
1963 goto fork_out;
1964
1965 retval = -ENOMEM;
1966 p = dup_task_struct(current, node);
1967 if (!p)
1968 goto fork_out;
1969 if (args->io_thread) {
1970 /*
1971 * Mark us an IO worker, and block any signal that isn't
1972 * fatal or STOP
1973 */
1974 p->flags |= PF_IO_WORKER;
1975 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1976 }
1977
1978 /*
1979 * This _must_ happen before we call free_task(), i.e. before we jump
1980 * to any of the bad_fork_* labels. This is to avoid freeing
1981 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1982 * kernel threads (PF_KTHREAD).
1983 */
1984 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1985 /*
1986 * Clear TID on mm_release()?
1987 */
1988 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1989
1990 ftrace_graph_init_task(p);
1991
1992 rt_mutex_init_task(p);
1993
1994 lockdep_assert_irqs_enabled();
1995 #ifdef CONFIG_PROVE_LOCKING
1996 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1997 #endif
1998 retval = -EAGAIN;
1999 if (atomic_read(&p->real_cred->user->processes) >=
2000 task_rlimit(p, RLIMIT_NPROC)) {
2001 if (p->real_cred->user != INIT_USER &&
2002 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2003 goto bad_fork_free;
2004 }
2005 current->flags &= ~PF_NPROC_EXCEEDED;
2006
2007 retval = copy_creds(p, clone_flags);
2008 if (retval < 0)
2009 goto bad_fork_free;
2010
2011 /*
2012 * If multiple threads are within copy_process(), then this check
2013 * triggers too late. This doesn't hurt, the check is only there
2014 * to stop root fork bombs.
2015 */
2016 retval = -EAGAIN;
2017 if (data_race(nr_threads >= max_threads))
2018 goto bad_fork_cleanup_count;
2019
2020 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2021 #ifdef CONFIG_RECLAIM_ACCT
2022 reclaimacct_tsk_init(p);
2023 #endif
2024 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2025 p->flags |= PF_FORKNOEXEC;
2026 INIT_LIST_HEAD(&p->children);
2027 INIT_LIST_HEAD(&p->sibling);
2028 rcu_copy_process(p);
2029 p->vfork_done = NULL;
2030 spin_lock_init(&p->alloc_lock);
2031
2032 init_sigpending(&p->pending);
2033
2034 p->utime = p->stime = p->gtime = 0;
2035 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2036 p->utimescaled = p->stimescaled = 0;
2037 #endif
2038 prev_cputime_init(&p->prev_cputime);
2039
2040 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2041 seqcount_init(&p->vtime.seqcount);
2042 p->vtime.starttime = 0;
2043 p->vtime.state = VTIME_INACTIVE;
2044 #endif
2045
2046 #ifdef CONFIG_IO_URING
2047 p->io_uring = NULL;
2048 #endif
2049
2050 #if defined(SPLIT_RSS_COUNTING)
2051 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2052 #endif
2053
2054 p->default_timer_slack_ns = current->timer_slack_ns;
2055
2056 #ifdef CONFIG_PSI
2057 p->psi_flags = 0;
2058 #endif
2059
2060 task_io_accounting_init(&p->ioac);
2061 acct_clear_integrals(p);
2062
2063 posix_cputimers_init(&p->posix_cputimers);
2064
2065 p->io_context = NULL;
2066 audit_set_context(p, NULL);
2067 cgroup_fork(p);
2068 #ifdef CONFIG_NUMA
2069 p->mempolicy = mpol_dup(p->mempolicy);
2070 if (IS_ERR(p->mempolicy)) {
2071 retval = PTR_ERR(p->mempolicy);
2072 p->mempolicy = NULL;
2073 goto bad_fork_cleanup_threadgroup_lock;
2074 }
2075 #endif
2076 #ifdef CONFIG_CPUSETS
2077 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2078 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2079 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2080 #endif
2081 #ifdef CONFIG_TRACE_IRQFLAGS
2082 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2083 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2084 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2085 p->softirqs_enabled = 1;
2086 p->softirq_context = 0;
2087 #endif
2088
2089 p->pagefault_disabled = 0;
2090
2091 #ifdef CONFIG_LOCKDEP
2092 lockdep_init_task(p);
2093 #endif
2094
2095 #ifdef CONFIG_DEBUG_MUTEXES
2096 p->blocked_on = NULL; /* not blocked yet */
2097 #endif
2098 #ifdef CONFIG_BCACHE
2099 p->sequential_io = 0;
2100 p->sequential_io_avg = 0;
2101 #endif
2102 #ifdef CONFIG_BPF_SYSCALL
2103 p->bpf_ctx = NULL;
2104 #endif
2105
2106 /* Perform scheduler related setup. Assign this task to a CPU. */
2107 retval = sched_fork(clone_flags, p);
2108 if (retval)
2109 goto bad_fork_cleanup_policy;
2110
2111 retval = perf_event_init_task(p);
2112 if (retval)
2113 goto bad_fork_cleanup_policy;
2114 retval = audit_alloc(p);
2115 if (retval)
2116 goto bad_fork_cleanup_perf;
2117 /* copy all the process information */
2118 shm_init_task(p);
2119 retval = security_task_alloc(p, clone_flags);
2120 if (retval)
2121 goto bad_fork_cleanup_audit;
2122 retval = copy_semundo(clone_flags, p);
2123 if (retval)
2124 goto bad_fork_cleanup_security;
2125 retval = copy_files(clone_flags, p);
2126 if (retval)
2127 goto bad_fork_cleanup_semundo;
2128 retval = copy_fs(clone_flags, p);
2129 if (retval)
2130 goto bad_fork_cleanup_files;
2131 retval = copy_sighand(clone_flags, p);
2132 if (retval)
2133 goto bad_fork_cleanup_fs;
2134 retval = copy_signal(clone_flags, p);
2135 if (retval)
2136 goto bad_fork_cleanup_sighand;
2137 retval = copy_mm(clone_flags, p);
2138 if (retval)
2139 goto bad_fork_cleanup_signal;
2140 retval = copy_namespaces(clone_flags, p);
2141 if (retval)
2142 goto bad_fork_cleanup_mm;
2143 retval = copy_io(clone_flags, p);
2144 if (retval)
2145 goto bad_fork_cleanup_namespaces;
2146 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2147 if (retval)
2148 goto bad_fork_cleanup_io;
2149
2150 stackleak_task_init(p);
2151
2152 if (pid != &init_struct_pid) {
2153 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2154 args->set_tid_size);
2155 if (IS_ERR(pid)) {
2156 retval = PTR_ERR(pid);
2157 goto bad_fork_cleanup_thread;
2158 }
2159 }
2160
2161 /*
2162 * This has to happen after we've potentially unshared the file
2163 * descriptor table (so that the pidfd doesn't leak into the child
2164 * if the fd table isn't shared).
2165 */
2166 if (clone_flags & CLONE_PIDFD) {
2167 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2168 if (retval < 0)
2169 goto bad_fork_free_pid;
2170
2171 pidfd = retval;
2172
2173 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2174 O_RDWR | O_CLOEXEC);
2175 if (IS_ERR(pidfile)) {
2176 put_unused_fd(pidfd);
2177 retval = PTR_ERR(pidfile);
2178 goto bad_fork_free_pid;
2179 }
2180 get_pid(pid); /* held by pidfile now */
2181
2182 retval = put_user(pidfd, args->pidfd);
2183 if (retval)
2184 goto bad_fork_put_pidfd;
2185 }
2186
2187 #ifdef CONFIG_BLOCK
2188 p->plug = NULL;
2189 #endif
2190 futex_init_task(p);
2191
2192 /*
2193 * sigaltstack should be cleared when sharing the same VM
2194 */
2195 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2196 sas_ss_reset(p);
2197
2198 /*
2199 * Syscall tracing and stepping should be turned off in the
2200 * child regardless of CLONE_PTRACE.
2201 */
2202 user_disable_single_step(p);
2203 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2204 #ifdef TIF_SYSCALL_EMU
2205 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2206 #endif
2207 clear_tsk_latency_tracing(p);
2208
2209 /* ok, now we should be set up.. */
2210 p->pid = pid_nr(pid);
2211 if (clone_flags & CLONE_THREAD) {
2212 p->group_leader = current->group_leader;
2213 p->tgid = current->tgid;
2214 } else {
2215 p->group_leader = p;
2216 p->tgid = p->pid;
2217 }
2218
2219 p->nr_dirtied = 0;
2220 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2221 p->dirty_paused_when = 0;
2222
2223 p->pdeath_signal = 0;
2224 INIT_LIST_HEAD(&p->thread_group);
2225 p->task_works = NULL;
2226 clear_posix_cputimers_work(p);
2227
2228 /*
2229 * Ensure that the cgroup subsystem policies allow the new process to be
2230 * forked. It should be noted that the new process's css_set can be changed
2231 * between here and cgroup_post_fork() if an organisation operation is in
2232 * progress.
2233 */
2234 retval = cgroup_can_fork(p, args);
2235 if (retval)
2236 goto bad_fork_put_pidfd;
2237
2238 /*
2239 * From this point on we must avoid any synchronous user-space
2240 * communication until we take the tasklist-lock. In particular, we do
2241 * not want user-space to be able to predict the process start-time by
2242 * stalling fork(2) after we recorded the start_time but before it is
2243 * visible to the system.
2244 */
2245
2246 p->start_time = ktime_get_ns();
2247 p->start_boottime = ktime_get_boottime_ns();
2248
2249 /*
2250 * Make it visible to the rest of the system, but dont wake it up yet.
2251 * Need tasklist lock for parent etc handling!
2252 */
2253 write_lock_irq(&tasklist_lock);
2254
2255 /* CLONE_PARENT re-uses the old parent */
2256 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2257 p->real_parent = current->real_parent;
2258 p->parent_exec_id = current->parent_exec_id;
2259 if (clone_flags & CLONE_THREAD)
2260 p->exit_signal = -1;
2261 else
2262 p->exit_signal = current->group_leader->exit_signal;
2263 } else {
2264 p->real_parent = current;
2265 p->parent_exec_id = current->self_exec_id;
2266 p->exit_signal = args->exit_signal;
2267 }
2268
2269 klp_copy_process(p);
2270
2271 spin_lock(¤t->sighand->siglock);
2272
2273 /*
2274 * Copy seccomp details explicitly here, in case they were changed
2275 * before holding sighand lock.
2276 */
2277 copy_seccomp(p);
2278
2279 rseq_fork(p, clone_flags);
2280
2281 /* Don't start children in a dying pid namespace */
2282 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2283 retval = -ENOMEM;
2284 goto bad_fork_cancel_cgroup;
2285 }
2286
2287 /* Let kill terminate clone/fork in the middle */
2288 if (fatal_signal_pending(current)) {
2289 retval = -EINTR;
2290 goto bad_fork_cancel_cgroup;
2291 }
2292
2293 init_task_pid_links(p);
2294 if (likely(p->pid)) {
2295 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2296
2297 init_task_pid(p, PIDTYPE_PID, pid);
2298 if (thread_group_leader(p)) {
2299 init_task_pid(p, PIDTYPE_TGID, pid);
2300 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2301 init_task_pid(p, PIDTYPE_SID, task_session(current));
2302
2303 if (is_child_reaper(pid)) {
2304 ns_of_pid(pid)->child_reaper = p;
2305 p->signal->flags |= SIGNAL_UNKILLABLE;
2306 }
2307 p->signal->shared_pending.signal = delayed.signal;
2308 p->signal->tty = tty_kref_get(current->signal->tty);
2309 /*
2310 * Inherit has_child_subreaper flag under the same
2311 * tasklist_lock with adding child to the process tree
2312 * for propagate_has_child_subreaper optimization.
2313 */
2314 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2315 p->real_parent->signal->is_child_subreaper;
2316 list_add_tail(&p->sibling, &p->real_parent->children);
2317 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2318 attach_pid(p, PIDTYPE_TGID);
2319 attach_pid(p, PIDTYPE_PGID);
2320 attach_pid(p, PIDTYPE_SID);
2321 __this_cpu_inc(process_counts);
2322 } else {
2323 current->signal->nr_threads++;
2324 atomic_inc(¤t->signal->live);
2325 refcount_inc(¤t->signal->sigcnt);
2326 task_join_group_stop(p);
2327 list_add_tail_rcu(&p->thread_group,
2328 &p->group_leader->thread_group);
2329 list_add_tail_rcu(&p->thread_node,
2330 &p->signal->thread_head);
2331 }
2332 attach_pid(p, PIDTYPE_PID);
2333 nr_threads++;
2334 }
2335 total_forks++;
2336 hlist_del_init(&delayed.node);
2337 spin_unlock(¤t->sighand->siglock);
2338 syscall_tracepoint_update(p);
2339 write_unlock_irq(&tasklist_lock);
2340
2341 if (pidfile)
2342 fd_install(pidfd, pidfile);
2343
2344 proc_fork_connector(p);
2345 sched_post_fork(p, args);
2346 cgroup_post_fork(p, args);
2347 perf_event_fork(p);
2348
2349 trace_task_newtask(p, clone_flags);
2350 uprobe_copy_process(p, clone_flags);
2351
2352 copy_oom_score_adj(clone_flags, p);
2353
2354 return p;
2355
2356 bad_fork_cancel_cgroup:
2357 spin_unlock(¤t->sighand->siglock);
2358 write_unlock_irq(&tasklist_lock);
2359 cgroup_cancel_fork(p, args);
2360 bad_fork_put_pidfd:
2361 if (clone_flags & CLONE_PIDFD) {
2362 fput(pidfile);
2363 put_unused_fd(pidfd);
2364 }
2365 bad_fork_free_pid:
2366 if (pid != &init_struct_pid)
2367 free_pid(pid);
2368 bad_fork_cleanup_thread:
2369 exit_thread(p);
2370 bad_fork_cleanup_io:
2371 if (p->io_context)
2372 exit_io_context(p);
2373 bad_fork_cleanup_namespaces:
2374 exit_task_namespaces(p);
2375 bad_fork_cleanup_mm:
2376 if (p->mm) {
2377 mm_clear_owner(p->mm, p);
2378 mmput(p->mm);
2379 }
2380 bad_fork_cleanup_signal:
2381 if (!(clone_flags & CLONE_THREAD))
2382 free_signal_struct(p->signal);
2383 bad_fork_cleanup_sighand:
2384 __cleanup_sighand(p->sighand);
2385 bad_fork_cleanup_fs:
2386 exit_fs(p); /* blocking */
2387 bad_fork_cleanup_files:
2388 exit_files(p); /* blocking */
2389 bad_fork_cleanup_semundo:
2390 exit_sem(p);
2391 bad_fork_cleanup_security:
2392 security_task_free(p);
2393 bad_fork_cleanup_audit:
2394 audit_free(p);
2395 bad_fork_cleanup_perf:
2396 perf_event_free_task(p);
2397 bad_fork_cleanup_policy:
2398 lockdep_free_task(p);
2399 free_task_load_ptrs(p);
2400 #ifdef CONFIG_NUMA
2401 mpol_put(p->mempolicy);
2402 bad_fork_cleanup_threadgroup_lock:
2403 #endif
2404 delayacct_tsk_free(p);
2405 bad_fork_cleanup_count:
2406 atomic_dec(&p->cred->user->processes);
2407 exit_creds(p);
2408 bad_fork_free:
2409 p->state = TASK_DEAD;
2410 put_task_stack(p);
2411 delayed_free_task(p);
2412 fork_out:
2413 spin_lock_irq(¤t->sighand->siglock);
2414 hlist_del_init(&delayed.node);
2415 spin_unlock_irq(¤t->sighand->siglock);
2416 return ERR_PTR(retval);
2417 }
2418
init_idle_pids(struct task_struct * idle)2419 static inline void init_idle_pids(struct task_struct *idle)
2420 {
2421 enum pid_type type;
2422
2423 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2424 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2425 init_task_pid(idle, type, &init_struct_pid);
2426 }
2427 }
2428
fork_idle(int cpu)2429 struct task_struct * __init fork_idle(int cpu)
2430 {
2431 struct task_struct *task;
2432 struct kernel_clone_args args = {
2433 .flags = CLONE_VM,
2434 };
2435
2436 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2437 if (!IS_ERR(task)) {
2438 init_idle_pids(task);
2439 init_idle(task, cpu);
2440 }
2441
2442 return task;
2443 }
2444
copy_init_mm(void)2445 struct mm_struct *copy_init_mm(void)
2446 {
2447 return dup_mm(NULL, &init_mm);
2448 }
2449
2450 /*
2451 * This is like kernel_clone(), but shaved down and tailored to just
2452 * creating io_uring workers. It returns a created task, or an error pointer.
2453 * The returned task is inactive, and the caller must fire it up through
2454 * wake_up_new_task(p). All signals are blocked in the created task.
2455 */
create_io_thread(int (* fn)(void *),void * arg,int node)2456 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2457 {
2458 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2459 CLONE_IO;
2460 struct kernel_clone_args args = {
2461 .flags = ((lower_32_bits(flags) | CLONE_VM |
2462 CLONE_UNTRACED) & ~CSIGNAL),
2463 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2464 .stack = (unsigned long)fn,
2465 .stack_size = (unsigned long)arg,
2466 .io_thread = 1,
2467 };
2468
2469 return copy_process(NULL, 0, node, &args);
2470 }
2471
2472 /*
2473 * Ok, this is the main fork-routine.
2474 *
2475 * It copies the process, and if successful kick-starts
2476 * it and waits for it to finish using the VM if required.
2477 *
2478 * args->exit_signal is expected to be checked for sanity by the caller.
2479 */
kernel_clone(struct kernel_clone_args * args)2480 pid_t kernel_clone(struct kernel_clone_args *args)
2481 {
2482 u64 clone_flags = args->flags;
2483 struct completion vfork;
2484 struct pid *pid;
2485 struct task_struct *p;
2486 int trace = 0;
2487 pid_t nr;
2488
2489 /*
2490 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2491 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2492 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2493 * field in struct clone_args and it still doesn't make sense to have
2494 * them both point at the same memory location. Performing this check
2495 * here has the advantage that we don't need to have a separate helper
2496 * to check for legacy clone().
2497 */
2498 if ((args->flags & CLONE_PIDFD) &&
2499 (args->flags & CLONE_PARENT_SETTID) &&
2500 (args->pidfd == args->parent_tid))
2501 return -EINVAL;
2502
2503 /*
2504 * Determine whether and which event to report to ptracer. When
2505 * called from kernel_thread or CLONE_UNTRACED is explicitly
2506 * requested, no event is reported; otherwise, report if the event
2507 * for the type of forking is enabled.
2508 */
2509 if (!(clone_flags & CLONE_UNTRACED)) {
2510 if (clone_flags & CLONE_VFORK)
2511 trace = PTRACE_EVENT_VFORK;
2512 else if (args->exit_signal != SIGCHLD)
2513 trace = PTRACE_EVENT_CLONE;
2514 else
2515 trace = PTRACE_EVENT_FORK;
2516
2517 if (likely(!ptrace_event_enabled(current, trace)))
2518 trace = 0;
2519 }
2520
2521 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2522 add_latent_entropy();
2523
2524 if (IS_ERR(p))
2525 return PTR_ERR(p);
2526
2527 /*
2528 * Do this prior waking up the new thread - the thread pointer
2529 * might get invalid after that point, if the thread exits quickly.
2530 */
2531 trace_sched_process_fork(current, p);
2532
2533 pid = get_task_pid(p, PIDTYPE_PID);
2534 nr = pid_vnr(pid);
2535
2536 if (clone_flags & CLONE_PARENT_SETTID)
2537 put_user(nr, args->parent_tid);
2538
2539 if (clone_flags & CLONE_VFORK) {
2540 p->vfork_done = &vfork;
2541 init_completion(&vfork);
2542 get_task_struct(p);
2543 }
2544
2545 wake_up_new_task(p);
2546
2547 /* forking complete and child started to run, tell ptracer */
2548 if (unlikely(trace))
2549 ptrace_event_pid(trace, pid);
2550
2551 if (clone_flags & CLONE_VFORK) {
2552 if (!wait_for_vfork_done(p, &vfork))
2553 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2554 }
2555
2556 put_pid(pid);
2557 return nr;
2558 }
2559
2560 /*
2561 * Create a kernel thread.
2562 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2563 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2564 {
2565 struct kernel_clone_args args = {
2566 .flags = ((lower_32_bits(flags) | CLONE_VM |
2567 CLONE_UNTRACED) & ~CSIGNAL),
2568 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2569 .stack = (unsigned long)fn,
2570 .stack_size = (unsigned long)arg,
2571 };
2572
2573 return kernel_clone(&args);
2574 }
2575
2576 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2577 SYSCALL_DEFINE0(fork)
2578 {
2579 #ifdef CONFIG_MMU
2580 struct kernel_clone_args args = {
2581 .exit_signal = SIGCHLD,
2582 };
2583
2584 return kernel_clone(&args);
2585 #else
2586 /* can not support in nommu mode */
2587 return -EINVAL;
2588 #endif
2589 }
2590 #endif
2591
2592 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2593 SYSCALL_DEFINE0(vfork)
2594 {
2595 struct kernel_clone_args args = {
2596 .flags = CLONE_VFORK | CLONE_VM,
2597 .exit_signal = SIGCHLD,
2598 };
2599
2600 return kernel_clone(&args);
2601 }
2602 #endif
2603
2604 #ifdef __ARCH_WANT_SYS_CLONE
2605 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2606 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2607 int __user *, parent_tidptr,
2608 unsigned long, tls,
2609 int __user *, child_tidptr)
2610 #elif defined(CONFIG_CLONE_BACKWARDS2)
2611 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2612 int __user *, parent_tidptr,
2613 int __user *, child_tidptr,
2614 unsigned long, tls)
2615 #elif defined(CONFIG_CLONE_BACKWARDS3)
2616 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2617 int, stack_size,
2618 int __user *, parent_tidptr,
2619 int __user *, child_tidptr,
2620 unsigned long, tls)
2621 #else
2622 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2623 int __user *, parent_tidptr,
2624 int __user *, child_tidptr,
2625 unsigned long, tls)
2626 #endif
2627 {
2628 struct kernel_clone_args args = {
2629 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2630 .pidfd = parent_tidptr,
2631 .child_tid = child_tidptr,
2632 .parent_tid = parent_tidptr,
2633 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2634 .stack = newsp,
2635 .tls = tls,
2636 };
2637
2638 return kernel_clone(&args);
2639 }
2640 #endif
2641
2642 #ifdef __ARCH_WANT_SYS_CLONE3
2643
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2644 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2645 struct clone_args __user *uargs,
2646 size_t usize)
2647 {
2648 int err;
2649 struct clone_args args;
2650 pid_t *kset_tid = kargs->set_tid;
2651
2652 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2653 CLONE_ARGS_SIZE_VER0);
2654 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2655 CLONE_ARGS_SIZE_VER1);
2656 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2657 CLONE_ARGS_SIZE_VER2);
2658 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2659
2660 if (unlikely(usize > PAGE_SIZE))
2661 return -E2BIG;
2662 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2663 return -EINVAL;
2664
2665 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2666 if (err)
2667 return err;
2668
2669 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2670 return -EINVAL;
2671
2672 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2673 return -EINVAL;
2674
2675 if (unlikely(args.set_tid && args.set_tid_size == 0))
2676 return -EINVAL;
2677
2678 /*
2679 * Verify that higher 32bits of exit_signal are unset and that
2680 * it is a valid signal
2681 */
2682 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2683 !valid_signal(args.exit_signal)))
2684 return -EINVAL;
2685
2686 if ((args.flags & CLONE_INTO_CGROUP) &&
2687 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2688 return -EINVAL;
2689
2690 *kargs = (struct kernel_clone_args){
2691 .flags = args.flags,
2692 .pidfd = u64_to_user_ptr(args.pidfd),
2693 .child_tid = u64_to_user_ptr(args.child_tid),
2694 .parent_tid = u64_to_user_ptr(args.parent_tid),
2695 .exit_signal = args.exit_signal,
2696 .stack = args.stack,
2697 .stack_size = args.stack_size,
2698 .tls = args.tls,
2699 .set_tid_size = args.set_tid_size,
2700 .cgroup = args.cgroup,
2701 };
2702
2703 if (args.set_tid &&
2704 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2705 (kargs->set_tid_size * sizeof(pid_t))))
2706 return -EFAULT;
2707
2708 kargs->set_tid = kset_tid;
2709
2710 return 0;
2711 }
2712
2713 /**
2714 * clone3_stack_valid - check and prepare stack
2715 * @kargs: kernel clone args
2716 *
2717 * Verify that the stack arguments userspace gave us are sane.
2718 * In addition, set the stack direction for userspace since it's easy for us to
2719 * determine.
2720 */
clone3_stack_valid(struct kernel_clone_args * kargs)2721 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2722 {
2723 if (kargs->stack == 0) {
2724 if (kargs->stack_size > 0)
2725 return false;
2726 } else {
2727 if (kargs->stack_size == 0)
2728 return false;
2729
2730 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2731 return false;
2732
2733 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2734 kargs->stack += kargs->stack_size;
2735 #endif
2736 }
2737
2738 return true;
2739 }
2740
clone3_args_valid(struct kernel_clone_args * kargs)2741 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2742 {
2743 /* Verify that no unknown flags are passed along. */
2744 if (kargs->flags &
2745 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2746 return false;
2747
2748 /*
2749 * - make the CLONE_DETACHED bit reuseable for clone3
2750 * - make the CSIGNAL bits reuseable for clone3
2751 */
2752 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2753 return false;
2754
2755 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2756 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2757 return false;
2758
2759 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2760 kargs->exit_signal)
2761 return false;
2762
2763 if (!clone3_stack_valid(kargs))
2764 return false;
2765
2766 return true;
2767 }
2768
2769 /**
2770 * clone3 - create a new process with specific properties
2771 * @uargs: argument structure
2772 * @size: size of @uargs
2773 *
2774 * clone3() is the extensible successor to clone()/clone2().
2775 * It takes a struct as argument that is versioned by its size.
2776 *
2777 * Return: On success, a positive PID for the child process.
2778 * On error, a negative errno number.
2779 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2780 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2781 {
2782 int err;
2783
2784 struct kernel_clone_args kargs;
2785 pid_t set_tid[MAX_PID_NS_LEVEL];
2786
2787 kargs.set_tid = set_tid;
2788
2789 err = copy_clone_args_from_user(&kargs, uargs, size);
2790 if (err)
2791 return err;
2792
2793 if (!clone3_args_valid(&kargs))
2794 return -EINVAL;
2795
2796 return kernel_clone(&kargs);
2797 }
2798 #endif
2799
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2800 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2801 {
2802 struct task_struct *leader, *parent, *child;
2803 int res;
2804
2805 read_lock(&tasklist_lock);
2806 leader = top = top->group_leader;
2807 down:
2808 for_each_thread(leader, parent) {
2809 list_for_each_entry(child, &parent->children, sibling) {
2810 res = visitor(child, data);
2811 if (res) {
2812 if (res < 0)
2813 goto out;
2814 leader = child;
2815 goto down;
2816 }
2817 up:
2818 ;
2819 }
2820 }
2821
2822 if (leader != top) {
2823 child = leader;
2824 parent = child->real_parent;
2825 leader = parent->group_leader;
2826 goto up;
2827 }
2828 out:
2829 read_unlock(&tasklist_lock);
2830 }
2831
2832 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2833 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2834 #endif
2835
sighand_ctor(void * data)2836 static void sighand_ctor(void *data)
2837 {
2838 struct sighand_struct *sighand = data;
2839
2840 spin_lock_init(&sighand->siglock);
2841 init_waitqueue_head(&sighand->signalfd_wqh);
2842 }
2843
proc_caches_init(void)2844 void __init proc_caches_init(void)
2845 {
2846 unsigned int mm_size;
2847
2848 sighand_cachep = kmem_cache_create("sighand_cache",
2849 sizeof(struct sighand_struct), 0,
2850 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2851 SLAB_ACCOUNT, sighand_ctor);
2852 signal_cachep = kmem_cache_create("signal_cache",
2853 sizeof(struct signal_struct), 0,
2854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2855 NULL);
2856 files_cachep = kmem_cache_create("files_cache",
2857 sizeof(struct files_struct), 0,
2858 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2859 NULL);
2860 fs_cachep = kmem_cache_create("fs_cache",
2861 sizeof(struct fs_struct), 0,
2862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2863 NULL);
2864
2865 /*
2866 * The mm_cpumask is located at the end of mm_struct, and is
2867 * dynamically sized based on the maximum CPU number this system
2868 * can have, taking hotplug into account (nr_cpu_ids).
2869 */
2870 mm_size = sizeof(struct mm_struct) + cpumask_size();
2871
2872 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2873 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2874 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2875 offsetof(struct mm_struct, saved_auxv),
2876 sizeof_field(struct mm_struct, saved_auxv),
2877 NULL);
2878 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2879 mmap_init();
2880 nsproxy_cache_init();
2881 }
2882
2883 /*
2884 * Check constraints on flags passed to the unshare system call.
2885 */
check_unshare_flags(unsigned long unshare_flags)2886 static int check_unshare_flags(unsigned long unshare_flags)
2887 {
2888 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2889 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2890 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2891 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2892 CLONE_NEWTIME))
2893 return -EINVAL;
2894 /*
2895 * Not implemented, but pretend it works if there is nothing
2896 * to unshare. Note that unsharing the address space or the
2897 * signal handlers also need to unshare the signal queues (aka
2898 * CLONE_THREAD).
2899 */
2900 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2901 if (!thread_group_empty(current))
2902 return -EINVAL;
2903 }
2904 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2905 if (refcount_read(¤t->sighand->count) > 1)
2906 return -EINVAL;
2907 }
2908 if (unshare_flags & CLONE_VM) {
2909 if (!current_is_single_threaded())
2910 return -EINVAL;
2911 }
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * Unshare the filesystem structure if it is being shared
2918 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2919 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2920 {
2921 struct fs_struct *fs = current->fs;
2922
2923 if (!(unshare_flags & CLONE_FS) || !fs)
2924 return 0;
2925
2926 /* don't need lock here; in the worst case we'll do useless copy */
2927 if (fs->users == 1)
2928 return 0;
2929
2930 *new_fsp = copy_fs_struct(fs);
2931 if (!*new_fsp)
2932 return -ENOMEM;
2933
2934 return 0;
2935 }
2936
2937 /*
2938 * Unshare file descriptor table if it is being shared
2939 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2940 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2941 struct files_struct **new_fdp)
2942 {
2943 struct files_struct *fd = current->files;
2944 int error = 0;
2945
2946 if ((unshare_flags & CLONE_FILES) &&
2947 (fd && atomic_read(&fd->count) > 1)) {
2948 *new_fdp = dup_fd(fd, max_fds, &error);
2949 if (!*new_fdp)
2950 return error;
2951 }
2952
2953 return 0;
2954 }
2955
2956 /*
2957 * unshare allows a process to 'unshare' part of the process
2958 * context which was originally shared using clone. copy_*
2959 * functions used by kernel_clone() cannot be used here directly
2960 * because they modify an inactive task_struct that is being
2961 * constructed. Here we are modifying the current, active,
2962 * task_struct.
2963 */
ksys_unshare(unsigned long unshare_flags)2964 int ksys_unshare(unsigned long unshare_flags)
2965 {
2966 struct fs_struct *fs, *new_fs = NULL;
2967 struct files_struct *fd, *new_fd = NULL;
2968 struct cred *new_cred = NULL;
2969 struct nsproxy *new_nsproxy = NULL;
2970 int do_sysvsem = 0;
2971 int err;
2972
2973 /*
2974 * If unsharing a user namespace must also unshare the thread group
2975 * and unshare the filesystem root and working directories.
2976 */
2977 if (unshare_flags & CLONE_NEWUSER)
2978 unshare_flags |= CLONE_THREAD | CLONE_FS;
2979 /*
2980 * If unsharing vm, must also unshare signal handlers.
2981 */
2982 if (unshare_flags & CLONE_VM)
2983 unshare_flags |= CLONE_SIGHAND;
2984 /*
2985 * If unsharing a signal handlers, must also unshare the signal queues.
2986 */
2987 if (unshare_flags & CLONE_SIGHAND)
2988 unshare_flags |= CLONE_THREAD;
2989 /*
2990 * If unsharing namespace, must also unshare filesystem information.
2991 */
2992 if (unshare_flags & CLONE_NEWNS)
2993 unshare_flags |= CLONE_FS;
2994
2995 err = check_unshare_flags(unshare_flags);
2996 if (err)
2997 goto bad_unshare_out;
2998 /*
2999 * CLONE_NEWIPC must also detach from the undolist: after switching
3000 * to a new ipc namespace, the semaphore arrays from the old
3001 * namespace are unreachable.
3002 */
3003 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3004 do_sysvsem = 1;
3005 err = unshare_fs(unshare_flags, &new_fs);
3006 if (err)
3007 goto bad_unshare_out;
3008 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3009 if (err)
3010 goto bad_unshare_cleanup_fs;
3011 err = unshare_userns(unshare_flags, &new_cred);
3012 if (err)
3013 goto bad_unshare_cleanup_fd;
3014 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3015 new_cred, new_fs);
3016 if (err)
3017 goto bad_unshare_cleanup_cred;
3018
3019 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3020 if (do_sysvsem) {
3021 /*
3022 * CLONE_SYSVSEM is equivalent to sys_exit().
3023 */
3024 exit_sem(current);
3025 }
3026 if (unshare_flags & CLONE_NEWIPC) {
3027 /* Orphan segments in old ns (see sem above). */
3028 exit_shm(current);
3029 shm_init_task(current);
3030 }
3031
3032 if (new_nsproxy)
3033 switch_task_namespaces(current, new_nsproxy);
3034
3035 task_lock(current);
3036
3037 if (new_fs) {
3038 fs = current->fs;
3039 spin_lock(&fs->lock);
3040 current->fs = new_fs;
3041 if (--fs->users)
3042 new_fs = NULL;
3043 else
3044 new_fs = fs;
3045 spin_unlock(&fs->lock);
3046 }
3047
3048 if (new_fd) {
3049 fd = current->files;
3050 current->files = new_fd;
3051 new_fd = fd;
3052 }
3053
3054 task_unlock(current);
3055
3056 if (new_cred) {
3057 /* Install the new user namespace */
3058 commit_creds(new_cred);
3059 new_cred = NULL;
3060 }
3061 }
3062
3063 perf_event_namespaces(current);
3064
3065 bad_unshare_cleanup_cred:
3066 if (new_cred)
3067 put_cred(new_cred);
3068 bad_unshare_cleanup_fd:
3069 if (new_fd)
3070 put_files_struct(new_fd);
3071
3072 bad_unshare_cleanup_fs:
3073 if (new_fs)
3074 free_fs_struct(new_fs);
3075
3076 bad_unshare_out:
3077 return err;
3078 }
3079
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3080 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3081 {
3082 return ksys_unshare(unshare_flags);
3083 }
3084
3085 /*
3086 * Helper to unshare the files of the current task.
3087 * We don't want to expose copy_files internals to
3088 * the exec layer of the kernel.
3089 */
3090
unshare_files(struct files_struct ** displaced)3091 int unshare_files(struct files_struct **displaced)
3092 {
3093 struct task_struct *task = current;
3094 struct files_struct *copy = NULL;
3095 int error;
3096
3097 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3098 if (error || !copy) {
3099 *displaced = NULL;
3100 return error;
3101 }
3102 *displaced = task->files;
3103 task_lock(task);
3104 task->files = copy;
3105 task_unlock(task);
3106 return 0;
3107 }
3108
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3109 int sysctl_max_threads(struct ctl_table *table, int write,
3110 void *buffer, size_t *lenp, loff_t *ppos)
3111 {
3112 struct ctl_table t;
3113 int ret;
3114 int threads = max_threads;
3115 int min = 1;
3116 int max = MAX_THREADS;
3117
3118 t = *table;
3119 t.data = &threads;
3120 t.extra1 = &min;
3121 t.extra2 = &max;
3122
3123 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3124 if (ret || !write)
3125 return ret;
3126
3127 max_threads = threads;
3128
3129 return 0;
3130 }
3131