1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
47 //
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
50 //
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
53 //
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136
137 using namespace llvm;
138
139 #define DEBUG_TYPE "scalar-evolution"
140
141 STATISTIC(NumArrayLenItCounts,
142 "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144 "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146 "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148 "Number of loops with trip counts computed by force");
149
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152 cl::ZeroOrMore,
153 cl::desc("Maximum number of iterations SCEV will "
154 "symbolically execute a constant "
155 "derived loop"),
156 cl::init(100));
157
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160 "verify-scev", cl::Hidden,
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166 VerifySCEVMap("verify-scev-maps", cl::Hidden,
167 cl::desc("Verify no dangling value in ScalarEvolution's "
168 "ExprValueMap (slow)"));
169
170 static cl::opt<bool> VerifyIR(
171 "scev-verify-ir", cl::Hidden,
172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173 cl::init(false));
174
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176 "scev-mulops-inline-threshold", cl::Hidden,
177 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178 cl::init(32));
179
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181 "scev-addops-inline-threshold", cl::Hidden,
182 cl::desc("Threshold for inlining addition operands into a SCEV"),
183 cl::init(500));
184
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188 cl::init(32));
189
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193 cl::init(2));
194
195 static cl::opt<unsigned> MaxValueCompareDepth(
196 "scalar-evolution-max-value-compare-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive value complexity comparisons"),
198 cl::init(2));
199
200 static cl::opt<unsigned>
201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202 cl::desc("Maximum depth of recursive arithmetics"),
203 cl::init(32));
204
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208
209 static cl::opt<unsigned>
210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212 cl::init(8));
213
214 static cl::opt<unsigned>
215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216 cl::desc("Max coefficients in AddRec during evolving"),
217 cl::init(8));
218
219 static cl::opt<unsigned>
220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221 cl::desc("Size of the expression which is considered huge"),
222 cl::init(4096));
223
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226 cl::Hidden, cl::init(true),
227 cl::desc("When printing analysis, include information on every instruction"));
228
229
230 //===----------------------------------------------------------------------===//
231 // SCEV class definitions
232 //===----------------------------------------------------------------------===//
233
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const239 LLVM_DUMP_METHOD void SCEV::dump() const {
240 print(dbgs());
241 dbgs() << '\n';
242 }
243 #endif
244
print(raw_ostream & OS) const245 void SCEV::print(raw_ostream &OS) const {
246 switch (static_cast<SCEVTypes>(getSCEVType())) {
247 case scConstant:
248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249 return;
250 case scTruncate: {
251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252 const SCEV *Op = Trunc->getOperand();
253 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254 << *Trunc->getType() << ")";
255 return;
256 }
257 case scZeroExtend: {
258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259 const SCEV *Op = ZExt->getOperand();
260 OS << "(zext " << *Op->getType() << " " << *Op << " to "
261 << *ZExt->getType() << ")";
262 return;
263 }
264 case scSignExtend: {
265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266 const SCEV *Op = SExt->getOperand();
267 OS << "(sext " << *Op->getType() << " " << *Op << " to "
268 << *SExt->getType() << ")";
269 return;
270 }
271 case scAddRecExpr: {
272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273 OS << "{" << *AR->getOperand(0);
274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275 OS << ",+," << *AR->getOperand(i);
276 OS << "}<";
277 if (AR->hasNoUnsignedWrap())
278 OS << "nuw><";
279 if (AR->hasNoSignedWrap())
280 OS << "nsw><";
281 if (AR->hasNoSelfWrap() &&
282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283 OS << "nw><";
284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285 OS << ">";
286 return;
287 }
288 case scAddExpr:
289 case scMulExpr:
290 case scUMaxExpr:
291 case scSMaxExpr:
292 case scUMinExpr:
293 case scSMinExpr: {
294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295 const char *OpStr = nullptr;
296 switch (NAry->getSCEVType()) {
297 case scAddExpr: OpStr = " + "; break;
298 case scMulExpr: OpStr = " * "; break;
299 case scUMaxExpr: OpStr = " umax "; break;
300 case scSMaxExpr: OpStr = " smax "; break;
301 case scUMinExpr:
302 OpStr = " umin ";
303 break;
304 case scSMinExpr:
305 OpStr = " smin ";
306 break;
307 }
308 OS << "(";
309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310 I != E; ++I) {
311 OS << **I;
312 if (std::next(I) != E)
313 OS << OpStr;
314 }
315 OS << ")";
316 switch (NAry->getSCEVType()) {
317 case scAddExpr:
318 case scMulExpr:
319 if (NAry->hasNoUnsignedWrap())
320 OS << "<nuw>";
321 if (NAry->hasNoSignedWrap())
322 OS << "<nsw>";
323 }
324 return;
325 }
326 case scUDivExpr: {
327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329 return;
330 }
331 case scUnknown: {
332 const SCEVUnknown *U = cast<SCEVUnknown>(this);
333 Type *AllocTy;
334 if (U->isSizeOf(AllocTy)) {
335 OS << "sizeof(" << *AllocTy << ")";
336 return;
337 }
338 if (U->isAlignOf(AllocTy)) {
339 OS << "alignof(" << *AllocTy << ")";
340 return;
341 }
342
343 Type *CTy;
344 Constant *FieldNo;
345 if (U->isOffsetOf(CTy, FieldNo)) {
346 OS << "offsetof(" << *CTy << ", ";
347 FieldNo->printAsOperand(OS, false);
348 OS << ")";
349 return;
350 }
351
352 // Otherwise just print it normally.
353 U->getValue()->printAsOperand(OS, false);
354 return;
355 }
356 case scCouldNotCompute:
357 OS << "***COULDNOTCOMPUTE***";
358 return;
359 }
360 llvm_unreachable("Unknown SCEV kind!");
361 }
362
getType() const363 Type *SCEV::getType() const {
364 switch (static_cast<SCEVTypes>(getSCEVType())) {
365 case scConstant:
366 return cast<SCEVConstant>(this)->getType();
367 case scTruncate:
368 case scZeroExtend:
369 case scSignExtend:
370 return cast<SCEVCastExpr>(this)->getType();
371 case scAddRecExpr:
372 case scMulExpr:
373 case scUMaxExpr:
374 case scSMaxExpr:
375 case scUMinExpr:
376 case scSMinExpr:
377 return cast<SCEVNAryExpr>(this)->getType();
378 case scAddExpr:
379 return cast<SCEVAddExpr>(this)->getType();
380 case scUDivExpr:
381 return cast<SCEVUDivExpr>(this)->getType();
382 case scUnknown:
383 return cast<SCEVUnknown>(this)->getType();
384 case scCouldNotCompute:
385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386 }
387 llvm_unreachable("Unknown SCEV kind!");
388 }
389
isZero() const390 bool SCEV::isZero() const {
391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392 return SC->getValue()->isZero();
393 return false;
394 }
395
isOne() const396 bool SCEV::isOne() const {
397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398 return SC->getValue()->isOne();
399 return false;
400 }
401
isAllOnesValue() const402 bool SCEV::isAllOnesValue() const {
403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404 return SC->getValue()->isMinusOne();
405 return false;
406 }
407
isNonConstantNegative() const408 bool SCEV::isNonConstantNegative() const {
409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410 if (!Mul) return false;
411
412 // If there is a constant factor, it will be first.
413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414 if (!SC) return false;
415
416 // Return true if the value is negative, this matches things like (-42 * V).
417 return SC->getAPInt().isNegative();
418 }
419
SCEVCouldNotCompute()420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422
classof(const SCEV * S)423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424 return S->getSCEVType() == scCouldNotCompute;
425 }
426
getConstant(ConstantInt * V)427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428 FoldingSetNodeID ID;
429 ID.AddInteger(scConstant);
430 ID.AddPointer(V);
431 void *IP = nullptr;
432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434 UniqueSCEVs.InsertNode(S, IP);
435 return S;
436 }
437
getConstant(const APInt & Val)438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439 return getConstant(ConstantInt::get(getContext(), Val));
440 }
441
442 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445 return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449 unsigned SCEVTy, const SCEV *op, Type *ty)
450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453 const SCEV *op, Type *ty)
454 : SCEVCastExpr(ID, scTruncate, op, ty) {
455 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456 "Cannot truncate non-integer value!");
457 }
458
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460 const SCEV *op, Type *ty)
461 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463 "Cannot zero extend non-integer value!");
464 }
465
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467 const SCEV *op, Type *ty)
468 : SCEVCastExpr(ID, scSignExtend, op, ty) {
469 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470 "Cannot sign extend non-integer value!");
471 }
472
deleted()473 void SCEVUnknown::deleted() {
474 // Clear this SCEVUnknown from various maps.
475 SE->forgetMemoizedResults(this);
476
477 // Remove this SCEVUnknown from the uniquing map.
478 SE->UniqueSCEVs.RemoveNode(this);
479
480 // Release the value.
481 setValPtr(nullptr);
482 }
483
allUsesReplacedWith(Value * New)484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485 // Remove this SCEVUnknown from the uniquing map.
486 SE->UniqueSCEVs.RemoveNode(this);
487
488 // Update this SCEVUnknown to point to the new value. This is needed
489 // because there may still be outstanding SCEVs which still point to
490 // this SCEVUnknown.
491 setValPtr(New);
492 }
493
isSizeOf(Type * & AllocTy) const494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496 if (VCE->getOpcode() == Instruction::PtrToInt)
497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498 if (CE->getOpcode() == Instruction::GetElementPtr &&
499 CE->getOperand(0)->isNullValue() &&
500 CE->getNumOperands() == 2)
501 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502 if (CI->isOne()) {
503 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504 ->getElementType();
505 return true;
506 }
507
508 return false;
509 }
510
isAlignOf(Type * & AllocTy) const511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513 if (VCE->getOpcode() == Instruction::PtrToInt)
514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515 if (CE->getOpcode() == Instruction::GetElementPtr &&
516 CE->getOperand(0)->isNullValue()) {
517 Type *Ty =
518 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519 if (StructType *STy = dyn_cast<StructType>(Ty))
520 if (!STy->isPacked() &&
521 CE->getNumOperands() == 3 &&
522 CE->getOperand(1)->isNullValue()) {
523 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524 if (CI->isOne() &&
525 STy->getNumElements() == 2 &&
526 STy->getElementType(0)->isIntegerTy(1)) {
527 AllocTy = STy->getElementType(1);
528 return true;
529 }
530 }
531 }
532
533 return false;
534 }
535
isOffsetOf(Type * & CTy,Constant * & FieldNo) const536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538 if (VCE->getOpcode() == Instruction::PtrToInt)
539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540 if (CE->getOpcode() == Instruction::GetElementPtr &&
541 CE->getNumOperands() == 3 &&
542 CE->getOperand(0)->isNullValue() &&
543 CE->getOperand(1)->isNullValue()) {
544 Type *Ty =
545 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546 // Ignore vector types here so that ScalarEvolutionExpander doesn't
547 // emit getelementptrs that index into vectors.
548 if (Ty->isStructTy() || Ty->isArrayTy()) {
549 CTy = Ty;
550 FieldNo = CE->getOperand(2);
551 return true;
552 }
553 }
554
555 return false;
556 }
557
558 //===----------------------------------------------------------------------===//
559 // SCEV Utilities
560 //===----------------------------------------------------------------------===//
561
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine. It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 /// %a = f(%x, %y)
569 /// %b = f(%a, %a)
570 /// %c = f(%b, %b)
571 ///
572 /// %d = f(%x, %y)
573 /// %e = f(%d, %d)
574 /// %f = f(%e, %e)
575 ///
576 /// CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582 const LoopInfo *const LI, Value *LV, Value *RV,
583 unsigned Depth) {
584 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585 return 0;
586
587 // Order pointer values after integer values. This helps SCEVExpander form
588 // GEPs.
589 bool LIsPointer = LV->getType()->isPointerTy(),
590 RIsPointer = RV->getType()->isPointerTy();
591 if (LIsPointer != RIsPointer)
592 return (int)LIsPointer - (int)RIsPointer;
593
594 // Compare getValueID values.
595 unsigned LID = LV->getValueID(), RID = RV->getValueID();
596 if (LID != RID)
597 return (int)LID - (int)RID;
598
599 // Sort arguments by their position.
600 if (const auto *LA = dyn_cast<Argument>(LV)) {
601 const auto *RA = cast<Argument>(RV);
602 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603 return (int)LArgNo - (int)RArgNo;
604 }
605
606 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607 const auto *RGV = cast<GlobalValue>(RV);
608
609 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610 auto LT = GV->getLinkage();
611 return !(GlobalValue::isPrivateLinkage(LT) ||
612 GlobalValue::isInternalLinkage(LT));
613 };
614
615 // Use the names to distinguish the two values, but only if the
616 // names are semantically important.
617 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618 return LGV->getName().compare(RGV->getName());
619 }
620
621 // For instructions, compare their loop depth, and their operand count. This
622 // is pretty loose.
623 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624 const auto *RInst = cast<Instruction>(RV);
625
626 // Compare loop depths.
627 const BasicBlock *LParent = LInst->getParent(),
628 *RParent = RInst->getParent();
629 if (LParent != RParent) {
630 unsigned LDepth = LI->getLoopDepth(LParent),
631 RDepth = LI->getLoopDepth(RParent);
632 if (LDepth != RDepth)
633 return (int)LDepth - (int)RDepth;
634 }
635
636 // Compare the number of operands.
637 unsigned LNumOps = LInst->getNumOperands(),
638 RNumOps = RInst->getNumOperands();
639 if (LNumOps != RNumOps)
640 return (int)LNumOps - (int)RNumOps;
641
642 for (unsigned Idx : seq(0u, LNumOps)) {
643 int Result =
644 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645 RInst->getOperand(Idx), Depth + 1);
646 if (Result != 0)
647 return Result;
648 }
649 }
650
651 EqCacheValue.unionSets(LV, RV);
652 return 0;
653 }
654
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)658 static int CompareSCEVComplexity(
659 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660 EquivalenceClasses<const Value *> &EqCacheValue,
661 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662 DominatorTree &DT, unsigned Depth = 0) {
663 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664 if (LHS == RHS)
665 return 0;
666
667 // Primarily, sort the SCEVs by their getSCEVType().
668 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669 if (LType != RType)
670 return (int)LType - (int)RType;
671
672 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673 return 0;
674 // Aside from the getSCEVType() ordering, the particular ordering
675 // isn't very important except that it's beneficial to be consistent,
676 // so that (a + b) and (b + a) don't end up as different expressions.
677 switch (static_cast<SCEVTypes>(LType)) {
678 case scUnknown: {
679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681
682 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683 RU->getValue(), Depth + 1);
684 if (X == 0)
685 EqCacheSCEV.unionSets(LHS, RHS);
686 return X;
687 }
688
689 case scConstant: {
690 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692
693 // Compare constant values.
694 const APInt &LA = LC->getAPInt();
695 const APInt &RA = RC->getAPInt();
696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697 if (LBitWidth != RBitWidth)
698 return (int)LBitWidth - (int)RBitWidth;
699 return LA.ult(RA) ? -1 : 1;
700 }
701
702 case scAddRecExpr: {
703 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705
706 // There is always a dominance between two recs that are used by one SCEV,
707 // so we can safely sort recs by loop header dominance. We require such
708 // order in getAddExpr.
709 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710 if (LLoop != RLoop) {
711 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712 assert(LHead != RHead && "Two loops share the same header?");
713 if (DT.dominates(LHead, RHead))
714 return 1;
715 else
716 assert(DT.dominates(RHead, LHead) &&
717 "No dominance between recurrences used by one SCEV?");
718 return -1;
719 }
720
721 // Addrec complexity grows with operand count.
722 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723 if (LNumOps != RNumOps)
724 return (int)LNumOps - (int)RNumOps;
725
726 // Lexicographically compare.
727 for (unsigned i = 0; i != LNumOps; ++i) {
728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729 LA->getOperand(i), RA->getOperand(i), DT,
730 Depth + 1);
731 if (X != 0)
732 return X;
733 }
734 EqCacheSCEV.unionSets(LHS, RHS);
735 return 0;
736 }
737
738 case scAddExpr:
739 case scMulExpr:
740 case scSMaxExpr:
741 case scUMaxExpr:
742 case scSMinExpr:
743 case scUMinExpr: {
744 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746
747 // Lexicographically compare n-ary expressions.
748 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749 if (LNumOps != RNumOps)
750 return (int)LNumOps - (int)RNumOps;
751
752 for (unsigned i = 0; i != LNumOps; ++i) {
753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754 LC->getOperand(i), RC->getOperand(i), DT,
755 Depth + 1);
756 if (X != 0)
757 return X;
758 }
759 EqCacheSCEV.unionSets(LHS, RHS);
760 return 0;
761 }
762
763 case scUDivExpr: {
764 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766
767 // Lexicographically compare udiv expressions.
768 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769 RC->getLHS(), DT, Depth + 1);
770 if (X != 0)
771 return X;
772 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773 RC->getRHS(), DT, Depth + 1);
774 if (X == 0)
775 EqCacheSCEV.unionSets(LHS, RHS);
776 return X;
777 }
778
779 case scTruncate:
780 case scZeroExtend:
781 case scSignExtend: {
782 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784
785 // Compare cast expressions by operand.
786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787 LC->getOperand(), RC->getOperand(), DT,
788 Depth + 1);
789 if (X == 0)
790 EqCacheSCEV.unionSets(LHS, RHS);
791 return X;
792 }
793
794 case scCouldNotCompute:
795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796 }
797 llvm_unreachable("Unknown SCEV kind!");
798 }
799
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value. When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine. In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810 LoopInfo *LI, DominatorTree &DT) {
811 if (Ops.size() < 2) return; // Noop
812
813 EquivalenceClasses<const SCEV *> EqCacheSCEV;
814 EquivalenceClasses<const Value *> EqCacheValue;
815 if (Ops.size() == 2) {
816 // This is the common case, which also happens to be trivially simple.
817 // Special case it.
818 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820 std::swap(LHS, RHS);
821 return;
822 }
823
824 // Do the rough sort by complexity.
825 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827 0;
828 });
829
830 // Now that we are sorted by complexity, group elements of the same
831 // complexity. Note that this is, at worst, N^2, but the vector is likely to
832 // be extremely short in practice. Note that we take this approach because we
833 // do not want to depend on the addresses of the objects we are grouping.
834 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835 const SCEV *S = Ops[i];
836 unsigned Complexity = S->getSCEVType();
837
838 // If there are any objects of the same complexity and same value as this
839 // one, group them.
840 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841 if (Ops[j] == S) { // Found a duplicate.
842 // Move it to immediately after i'th element.
843 std::swap(Ops[i+1], Ops[j]);
844 ++i; // no need to rescan it.
845 if (i == e-2) return; // Done!
846 }
847 }
848 }
849 }
850
851 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)852 static inline int sizeOfSCEV(const SCEV *S) {
853 struct FindSCEVSize {
854 int Size = 0;
855
856 FindSCEVSize() = default;
857
858 bool follow(const SCEV *S) {
859 ++Size;
860 // Keep looking at all operands of S.
861 return true;
862 }
863
864 bool isDone() const {
865 return false;
866 }
867 };
868
869 FindSCEVSize F;
870 SCEVTraversal<FindSCEVSize> ST(F);
871 ST.visitAll(S);
872 return F.Size;
873 }
874
875 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
876 /// nodes.
isHugeExpression(const SCEV * S)877 static bool isHugeExpression(const SCEV *S) {
878 return S->getExpressionSize() >= HugeExprThreshold;
879 }
880
881 /// Returns true of \p Ops contains a huge SCEV (see definition above).
hasHugeExpression(ArrayRef<const SCEV * > Ops)882 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
883 return any_of(Ops, isHugeExpression);
884 }
885
886 namespace {
887
888 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
889 public:
890 // Computes the Quotient and Remainder of the division of Numerator by
891 // Denominator.
divide__anonf9731d480311::SCEVDivision892 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
893 const SCEV *Denominator, const SCEV **Quotient,
894 const SCEV **Remainder) {
895 assert(Numerator && Denominator && "Uninitialized SCEV");
896
897 SCEVDivision D(SE, Numerator, Denominator);
898
899 // Check for the trivial case here to avoid having to check for it in the
900 // rest of the code.
901 if (Numerator == Denominator) {
902 *Quotient = D.One;
903 *Remainder = D.Zero;
904 return;
905 }
906
907 if (Numerator->isZero()) {
908 *Quotient = D.Zero;
909 *Remainder = D.Zero;
910 return;
911 }
912
913 // A simple case when N/1. The quotient is N.
914 if (Denominator->isOne()) {
915 *Quotient = Numerator;
916 *Remainder = D.Zero;
917 return;
918 }
919
920 // Split the Denominator when it is a product.
921 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
922 const SCEV *Q, *R;
923 *Quotient = Numerator;
924 for (const SCEV *Op : T->operands()) {
925 divide(SE, *Quotient, Op, &Q, &R);
926 *Quotient = Q;
927
928 // Bail out when the Numerator is not divisible by one of the terms of
929 // the Denominator.
930 if (!R->isZero()) {
931 *Quotient = D.Zero;
932 *Remainder = Numerator;
933 return;
934 }
935 }
936 *Remainder = D.Zero;
937 return;
938 }
939
940 D.visit(Numerator);
941 *Quotient = D.Quotient;
942 *Remainder = D.Remainder;
943 }
944
945 // Except in the trivial case described above, we do not know how to divide
946 // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anonf9731d480311::SCEVDivision947 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anonf9731d480311::SCEVDivision948 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anonf9731d480311::SCEVDivision949 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anonf9731d480311::SCEVDivision950 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anonf9731d480311::SCEVDivision951 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anonf9731d480311::SCEVDivision952 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitSMinExpr__anonf9731d480311::SCEVDivision953 void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
visitUMinExpr__anonf9731d480311::SCEVDivision954 void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
visitUnknown__anonf9731d480311::SCEVDivision955 void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anonf9731d480311::SCEVDivision956 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
957
visitConstant__anonf9731d480311::SCEVDivision958 void visitConstant(const SCEVConstant *Numerator) {
959 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
960 APInt NumeratorVal = Numerator->getAPInt();
961 APInt DenominatorVal = D->getAPInt();
962 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
963 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
964
965 if (NumeratorBW > DenominatorBW)
966 DenominatorVal = DenominatorVal.sext(NumeratorBW);
967 else if (NumeratorBW < DenominatorBW)
968 NumeratorVal = NumeratorVal.sext(DenominatorBW);
969
970 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
971 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
972 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
973 Quotient = SE.getConstant(QuotientVal);
974 Remainder = SE.getConstant(RemainderVal);
975 return;
976 }
977 }
978
visitAddRecExpr__anonf9731d480311::SCEVDivision979 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
980 const SCEV *StartQ, *StartR, *StepQ, *StepR;
981 if (!Numerator->isAffine())
982 return cannotDivide(Numerator);
983 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
984 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
985 // Bail out if the types do not match.
986 Type *Ty = Denominator->getType();
987 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
988 Ty != StepQ->getType() || Ty != StepR->getType())
989 return cannotDivide(Numerator);
990 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
991 Numerator->getNoWrapFlags());
992 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
993 Numerator->getNoWrapFlags());
994 }
995
visitAddExpr__anonf9731d480311::SCEVDivision996 void visitAddExpr(const SCEVAddExpr *Numerator) {
997 SmallVector<const SCEV *, 2> Qs, Rs;
998 Type *Ty = Denominator->getType();
999
1000 for (const SCEV *Op : Numerator->operands()) {
1001 const SCEV *Q, *R;
1002 divide(SE, Op, Denominator, &Q, &R);
1003
1004 // Bail out if types do not match.
1005 if (Ty != Q->getType() || Ty != R->getType())
1006 return cannotDivide(Numerator);
1007
1008 Qs.push_back(Q);
1009 Rs.push_back(R);
1010 }
1011
1012 if (Qs.size() == 1) {
1013 Quotient = Qs[0];
1014 Remainder = Rs[0];
1015 return;
1016 }
1017
1018 Quotient = SE.getAddExpr(Qs);
1019 Remainder = SE.getAddExpr(Rs);
1020 }
1021
visitMulExpr__anonf9731d480311::SCEVDivision1022 void visitMulExpr(const SCEVMulExpr *Numerator) {
1023 SmallVector<const SCEV *, 2> Qs;
1024 Type *Ty = Denominator->getType();
1025
1026 bool FoundDenominatorTerm = false;
1027 for (const SCEV *Op : Numerator->operands()) {
1028 // Bail out if types do not match.
1029 if (Ty != Op->getType())
1030 return cannotDivide(Numerator);
1031
1032 if (FoundDenominatorTerm) {
1033 Qs.push_back(Op);
1034 continue;
1035 }
1036
1037 // Check whether Denominator divides one of the product operands.
1038 const SCEV *Q, *R;
1039 divide(SE, Op, Denominator, &Q, &R);
1040 if (!R->isZero()) {
1041 Qs.push_back(Op);
1042 continue;
1043 }
1044
1045 // Bail out if types do not match.
1046 if (Ty != Q->getType())
1047 return cannotDivide(Numerator);
1048
1049 FoundDenominatorTerm = true;
1050 Qs.push_back(Q);
1051 }
1052
1053 if (FoundDenominatorTerm) {
1054 Remainder = Zero;
1055 if (Qs.size() == 1)
1056 Quotient = Qs[0];
1057 else
1058 Quotient = SE.getMulExpr(Qs);
1059 return;
1060 }
1061
1062 if (!isa<SCEVUnknown>(Denominator))
1063 return cannotDivide(Numerator);
1064
1065 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1066 ValueToValueMap RewriteMap;
1067 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1068 cast<SCEVConstant>(Zero)->getValue();
1069 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1070
1071 if (Remainder->isZero()) {
1072 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1073 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1074 cast<SCEVConstant>(One)->getValue();
1075 Quotient =
1076 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1077 return;
1078 }
1079
1080 // Quotient is (Numerator - Remainder) divided by Denominator.
1081 const SCEV *Q, *R;
1082 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1083 // This SCEV does not seem to simplify: fail the division here.
1084 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1085 return cannotDivide(Numerator);
1086 divide(SE, Diff, Denominator, &Q, &R);
1087 if (R != Zero)
1088 return cannotDivide(Numerator);
1089 Quotient = Q;
1090 }
1091
1092 private:
SCEVDivision__anonf9731d480311::SCEVDivision1093 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1094 const SCEV *Denominator)
1095 : SE(S), Denominator(Denominator) {
1096 Zero = SE.getZero(Denominator->getType());
1097 One = SE.getOne(Denominator->getType());
1098
1099 // We generally do not know how to divide Expr by Denominator. We
1100 // initialize the division to a "cannot divide" state to simplify the rest
1101 // of the code.
1102 cannotDivide(Numerator);
1103 }
1104
1105 // Convenience function for giving up on the division. We set the quotient to
1106 // be equal to zero and the remainder to be equal to the numerator.
cannotDivide__anonf9731d480311::SCEVDivision1107 void cannotDivide(const SCEV *Numerator) {
1108 Quotient = Zero;
1109 Remainder = Numerator;
1110 }
1111
1112 ScalarEvolution &SE;
1113 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1114 };
1115
1116 } // end anonymous namespace
1117
1118 //===----------------------------------------------------------------------===//
1119 // Simple SCEV method implementations
1120 //===----------------------------------------------------------------------===//
1121
1122 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)1123 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1124 ScalarEvolution &SE,
1125 Type *ResultTy) {
1126 // Handle the simplest case efficiently.
1127 if (K == 1)
1128 return SE.getTruncateOrZeroExtend(It, ResultTy);
1129
1130 // We are using the following formula for BC(It, K):
1131 //
1132 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1133 //
1134 // Suppose, W is the bitwidth of the return value. We must be prepared for
1135 // overflow. Hence, we must assure that the result of our computation is
1136 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1137 // safe in modular arithmetic.
1138 //
1139 // However, this code doesn't use exactly that formula; the formula it uses
1140 // is something like the following, where T is the number of factors of 2 in
1141 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1142 // exponentiation:
1143 //
1144 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1145 //
1146 // This formula is trivially equivalent to the previous formula. However,
1147 // this formula can be implemented much more efficiently. The trick is that
1148 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1149 // arithmetic. To do exact division in modular arithmetic, all we have
1150 // to do is multiply by the inverse. Therefore, this step can be done at
1151 // width W.
1152 //
1153 // The next issue is how to safely do the division by 2^T. The way this
1154 // is done is by doing the multiplication step at a width of at least W + T
1155 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1156 // when we perform the division by 2^T (which is equivalent to a right shift
1157 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1158 // truncated out after the division by 2^T.
1159 //
1160 // In comparison to just directly using the first formula, this technique
1161 // is much more efficient; using the first formula requires W * K bits,
1162 // but this formula less than W + K bits. Also, the first formula requires
1163 // a division step, whereas this formula only requires multiplies and shifts.
1164 //
1165 // It doesn't matter whether the subtraction step is done in the calculation
1166 // width or the input iteration count's width; if the subtraction overflows,
1167 // the result must be zero anyway. We prefer here to do it in the width of
1168 // the induction variable because it helps a lot for certain cases; CodeGen
1169 // isn't smart enough to ignore the overflow, which leads to much less
1170 // efficient code if the width of the subtraction is wider than the native
1171 // register width.
1172 //
1173 // (It's possible to not widen at all by pulling out factors of 2 before
1174 // the multiplication; for example, K=2 can be calculated as
1175 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1176 // extra arithmetic, so it's not an obvious win, and it gets
1177 // much more complicated for K > 3.)
1178
1179 // Protection from insane SCEVs; this bound is conservative,
1180 // but it probably doesn't matter.
1181 if (K > 1000)
1182 return SE.getCouldNotCompute();
1183
1184 unsigned W = SE.getTypeSizeInBits(ResultTy);
1185
1186 // Calculate K! / 2^T and T; we divide out the factors of two before
1187 // multiplying for calculating K! / 2^T to avoid overflow.
1188 // Other overflow doesn't matter because we only care about the bottom
1189 // W bits of the result.
1190 APInt OddFactorial(W, 1);
1191 unsigned T = 1;
1192 for (unsigned i = 3; i <= K; ++i) {
1193 APInt Mult(W, i);
1194 unsigned TwoFactors = Mult.countTrailingZeros();
1195 T += TwoFactors;
1196 Mult.lshrInPlace(TwoFactors);
1197 OddFactorial *= Mult;
1198 }
1199
1200 // We need at least W + T bits for the multiplication step
1201 unsigned CalculationBits = W + T;
1202
1203 // Calculate 2^T, at width T+W.
1204 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1205
1206 // Calculate the multiplicative inverse of K! / 2^T;
1207 // this multiplication factor will perform the exact division by
1208 // K! / 2^T.
1209 APInt Mod = APInt::getSignedMinValue(W+1);
1210 APInt MultiplyFactor = OddFactorial.zext(W+1);
1211 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1212 MultiplyFactor = MultiplyFactor.trunc(W);
1213
1214 // Calculate the product, at width T+W
1215 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1216 CalculationBits);
1217 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1218 for (unsigned i = 1; i != K; ++i) {
1219 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1220 Dividend = SE.getMulExpr(Dividend,
1221 SE.getTruncateOrZeroExtend(S, CalculationTy));
1222 }
1223
1224 // Divide by 2^T
1225 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1226
1227 // Truncate the result, and divide by K! / 2^T.
1228
1229 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1230 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1231 }
1232
1233 /// Return the value of this chain of recurrences at the specified iteration
1234 /// number. We can evaluate this recurrence by multiplying each element in the
1235 /// chain by the binomial coefficient corresponding to it. In other words, we
1236 /// can evaluate {A,+,B,+,C,+,D} as:
1237 ///
1238 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1239 ///
1240 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1241 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1242 ScalarEvolution &SE) const {
1243 const SCEV *Result = getStart();
1244 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1245 // The computation is correct in the face of overflow provided that the
1246 // multiplication is performed _after_ the evaluation of the binomial
1247 // coefficient.
1248 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1249 if (isa<SCEVCouldNotCompute>(Coeff))
1250 return Coeff;
1251
1252 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1253 }
1254 return Result;
1255 }
1256
1257 //===----------------------------------------------------------------------===//
1258 // SCEV Expression folder implementations
1259 //===----------------------------------------------------------------------===//
1260
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1261 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1262 unsigned Depth) {
1263 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1264 "This is not a truncating conversion!");
1265 assert(isSCEVable(Ty) &&
1266 "This is not a conversion to a SCEVable type!");
1267 Ty = getEffectiveSCEVType(Ty);
1268
1269 FoldingSetNodeID ID;
1270 ID.AddInteger(scTruncate);
1271 ID.AddPointer(Op);
1272 ID.AddPointer(Ty);
1273 void *IP = nullptr;
1274 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1275
1276 // Fold if the operand is constant.
1277 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1278 return getConstant(
1279 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1280
1281 // trunc(trunc(x)) --> trunc(x)
1282 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1283 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1284
1285 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1286 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1287 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1288
1289 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1290 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1291 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1292
1293 if (Depth > MaxCastDepth) {
1294 SCEV *S =
1295 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1296 UniqueSCEVs.InsertNode(S, IP);
1297 addToLoopUseLists(S);
1298 return S;
1299 }
1300
1301 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1302 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1303 // if after transforming we have at most one truncate, not counting truncates
1304 // that replace other casts.
1305 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1306 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1307 SmallVector<const SCEV *, 4> Operands;
1308 unsigned numTruncs = 0;
1309 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1310 ++i) {
1311 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1312 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1313 numTruncs++;
1314 Operands.push_back(S);
1315 }
1316 if (numTruncs < 2) {
1317 if (isa<SCEVAddExpr>(Op))
1318 return getAddExpr(Operands);
1319 else if (isa<SCEVMulExpr>(Op))
1320 return getMulExpr(Operands);
1321 else
1322 llvm_unreachable("Unexpected SCEV type for Op.");
1323 }
1324 // Although we checked in the beginning that ID is not in the cache, it is
1325 // possible that during recursion and different modification ID was inserted
1326 // into the cache. So if we find it, just return it.
1327 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1328 return S;
1329 }
1330
1331 // If the input value is a chrec scev, truncate the chrec's operands.
1332 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1333 SmallVector<const SCEV *, 4> Operands;
1334 for (const SCEV *Op : AddRec->operands())
1335 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1336 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1337 }
1338
1339 // The cast wasn't folded; create an explicit cast node. We can reuse
1340 // the existing insert position since if we get here, we won't have
1341 // made any changes which would invalidate it.
1342 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1343 Op, Ty);
1344 UniqueSCEVs.InsertNode(S, IP);
1345 addToLoopUseLists(S);
1346 return S;
1347 }
1348
1349 // Get the limit of a recurrence such that incrementing by Step cannot cause
1350 // signed overflow as long as the value of the recurrence within the
1351 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1352 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1353 ICmpInst::Predicate *Pred,
1354 ScalarEvolution *SE) {
1355 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1356 if (SE->isKnownPositive(Step)) {
1357 *Pred = ICmpInst::ICMP_SLT;
1358 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1359 SE->getSignedRangeMax(Step));
1360 }
1361 if (SE->isKnownNegative(Step)) {
1362 *Pred = ICmpInst::ICMP_SGT;
1363 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1364 SE->getSignedRangeMin(Step));
1365 }
1366 return nullptr;
1367 }
1368
1369 // Get the limit of a recurrence such that incrementing by Step cannot cause
1370 // unsigned overflow as long as the value of the recurrence within the loop does
1371 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1372 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1373 ICmpInst::Predicate *Pred,
1374 ScalarEvolution *SE) {
1375 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1376 *Pred = ICmpInst::ICMP_ULT;
1377
1378 return SE->getConstant(APInt::getMinValue(BitWidth) -
1379 SE->getUnsignedRangeMax(Step));
1380 }
1381
1382 namespace {
1383
1384 struct ExtendOpTraitsBase {
1385 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1386 unsigned);
1387 };
1388
1389 // Used to make code generic over signed and unsigned overflow.
1390 template <typename ExtendOp> struct ExtendOpTraits {
1391 // Members present:
1392 //
1393 // static const SCEV::NoWrapFlags WrapType;
1394 //
1395 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1396 //
1397 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1398 // ICmpInst::Predicate *Pred,
1399 // ScalarEvolution *SE);
1400 };
1401
1402 template <>
1403 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1404 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1405
1406 static const GetExtendExprTy GetExtendExpr;
1407
getOverflowLimitForStep__anonf9731d480411::ExtendOpTraits1408 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1409 ICmpInst::Predicate *Pred,
1410 ScalarEvolution *SE) {
1411 return getSignedOverflowLimitForStep(Step, Pred, SE);
1412 }
1413 };
1414
1415 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1416 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1417
1418 template <>
1419 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1420 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1421
1422 static const GetExtendExprTy GetExtendExpr;
1423
getOverflowLimitForStep__anonf9731d480411::ExtendOpTraits1424 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1425 ICmpInst::Predicate *Pred,
1426 ScalarEvolution *SE) {
1427 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1428 }
1429 };
1430
1431 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1432 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1433
1434 } // end anonymous namespace
1435
1436 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1437 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1438 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1439 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1440 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1441 // expression "Step + sext/zext(PreIncAR)" is congruent with
1442 // "sext/zext(PostIncAR)"
1443 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1444 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1445 ScalarEvolution *SE, unsigned Depth) {
1446 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1447 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1448
1449 const Loop *L = AR->getLoop();
1450 const SCEV *Start = AR->getStart();
1451 const SCEV *Step = AR->getStepRecurrence(*SE);
1452
1453 // Check for a simple looking step prior to loop entry.
1454 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1455 if (!SA)
1456 return nullptr;
1457
1458 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1459 // subtraction is expensive. For this purpose, perform a quick and dirty
1460 // difference, by checking for Step in the operand list.
1461 SmallVector<const SCEV *, 4> DiffOps;
1462 for (const SCEV *Op : SA->operands())
1463 if (Op != Step)
1464 DiffOps.push_back(Op);
1465
1466 if (DiffOps.size() == SA->getNumOperands())
1467 return nullptr;
1468
1469 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1470 // `Step`:
1471
1472 // 1. NSW/NUW flags on the step increment.
1473 auto PreStartFlags =
1474 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1475 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1476 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1477 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1478
1479 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1480 // "S+X does not sign/unsign-overflow".
1481 //
1482
1483 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1484 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1485 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1486 return PreStart;
1487
1488 // 2. Direct overflow check on the step operation's expression.
1489 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1490 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1491 const SCEV *OperandExtendedStart =
1492 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1493 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1494 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1495 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1496 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1497 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1498 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1499 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1500 }
1501 return PreStart;
1502 }
1503
1504 // 3. Loop precondition.
1505 ICmpInst::Predicate Pred;
1506 const SCEV *OverflowLimit =
1507 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1508
1509 if (OverflowLimit &&
1510 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1511 return PreStart;
1512
1513 return nullptr;
1514 }
1515
1516 // Get the normalized zero or sign extended expression for this AddRec's Start.
1517 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1518 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1519 ScalarEvolution *SE,
1520 unsigned Depth) {
1521 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1522
1523 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1524 if (!PreStart)
1525 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1526
1527 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1528 Depth),
1529 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1530 }
1531
1532 // Try to prove away overflow by looking at "nearby" add recurrences. A
1533 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1534 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1535 //
1536 // Formally:
1537 //
1538 // {S,+,X} == {S-T,+,X} + T
1539 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1540 //
1541 // If ({S-T,+,X} + T) does not overflow ... (1)
1542 //
1543 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1544 //
1545 // If {S-T,+,X} does not overflow ... (2)
1546 //
1547 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1548 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1549 //
1550 // If (S-T)+T does not overflow ... (3)
1551 //
1552 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1553 // == {Ext(S),+,Ext(X)} == LHS
1554 //
1555 // Thus, if (1), (2) and (3) are true for some T, then
1556 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1557 //
1558 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1559 // does not overflow" restricted to the 0th iteration. Therefore we only need
1560 // to check for (1) and (2).
1561 //
1562 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1563 // is `Delta` (defined below).
1564 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1565 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1566 const SCEV *Step,
1567 const Loop *L) {
1568 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1569
1570 // We restrict `Start` to a constant to prevent SCEV from spending too much
1571 // time here. It is correct (but more expensive) to continue with a
1572 // non-constant `Start` and do a general SCEV subtraction to compute
1573 // `PreStart` below.
1574 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1575 if (!StartC)
1576 return false;
1577
1578 APInt StartAI = StartC->getAPInt();
1579
1580 for (unsigned Delta : {-2, -1, 1, 2}) {
1581 const SCEV *PreStart = getConstant(StartAI - Delta);
1582
1583 FoldingSetNodeID ID;
1584 ID.AddInteger(scAddRecExpr);
1585 ID.AddPointer(PreStart);
1586 ID.AddPointer(Step);
1587 ID.AddPointer(L);
1588 void *IP = nullptr;
1589 const auto *PreAR =
1590 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1591
1592 // Give up if we don't already have the add recurrence we need because
1593 // actually constructing an add recurrence is relatively expensive.
1594 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1595 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1596 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1597 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1598 DeltaS, &Pred, this);
1599 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1600 return true;
1601 }
1602 }
1603
1604 return false;
1605 }
1606
1607 // Finds an integer D for an expression (C + x + y + ...) such that the top
1608 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1609 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1610 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1611 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1612 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1613 const SCEVConstant *ConstantTerm,
1614 const SCEVAddExpr *WholeAddExpr) {
1615 const APInt C = ConstantTerm->getAPInt();
1616 const unsigned BitWidth = C.getBitWidth();
1617 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1618 uint32_t TZ = BitWidth;
1619 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1620 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1621 if (TZ) {
1622 // Set D to be as many least significant bits of C as possible while still
1623 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1624 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1625 }
1626 return APInt(BitWidth, 0);
1627 }
1628
1629 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1630 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1631 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1632 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1633 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1634 const APInt &ConstantStart,
1635 const SCEV *Step) {
1636 const unsigned BitWidth = ConstantStart.getBitWidth();
1637 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1638 if (TZ)
1639 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1640 : ConstantStart;
1641 return APInt(BitWidth, 0);
1642 }
1643
1644 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1645 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1646 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1647 "This is not an extending conversion!");
1648 assert(isSCEVable(Ty) &&
1649 "This is not a conversion to a SCEVable type!");
1650 Ty = getEffectiveSCEVType(Ty);
1651
1652 // Fold if the operand is constant.
1653 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1654 return getConstant(
1655 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1656
1657 // zext(zext(x)) --> zext(x)
1658 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1659 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1660
1661 // Before doing any expensive analysis, check to see if we've already
1662 // computed a SCEV for this Op and Ty.
1663 FoldingSetNodeID ID;
1664 ID.AddInteger(scZeroExtend);
1665 ID.AddPointer(Op);
1666 ID.AddPointer(Ty);
1667 void *IP = nullptr;
1668 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1669 if (Depth > MaxCastDepth) {
1670 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1671 Op, Ty);
1672 UniqueSCEVs.InsertNode(S, IP);
1673 addToLoopUseLists(S);
1674 return S;
1675 }
1676
1677 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1678 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1679 // It's possible the bits taken off by the truncate were all zero bits. If
1680 // so, we should be able to simplify this further.
1681 const SCEV *X = ST->getOperand();
1682 ConstantRange CR = getUnsignedRange(X);
1683 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1684 unsigned NewBits = getTypeSizeInBits(Ty);
1685 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1686 CR.zextOrTrunc(NewBits)))
1687 return getTruncateOrZeroExtend(X, Ty, Depth);
1688 }
1689
1690 // If the input value is a chrec scev, and we can prove that the value
1691 // did not overflow the old, smaller, value, we can zero extend all of the
1692 // operands (often constants). This allows analysis of something like
1693 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1694 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1695 if (AR->isAffine()) {
1696 const SCEV *Start = AR->getStart();
1697 const SCEV *Step = AR->getStepRecurrence(*this);
1698 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1699 const Loop *L = AR->getLoop();
1700
1701 if (!AR->hasNoUnsignedWrap()) {
1702 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1703 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1704 }
1705
1706 // If we have special knowledge that this addrec won't overflow,
1707 // we don't need to do any further analysis.
1708 if (AR->hasNoUnsignedWrap())
1709 return getAddRecExpr(
1710 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1711 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1712
1713 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1714 // Note that this serves two purposes: It filters out loops that are
1715 // simply not analyzable, and it covers the case where this code is
1716 // being called from within backedge-taken count analysis, such that
1717 // attempting to ask for the backedge-taken count would likely result
1718 // in infinite recursion. In the later case, the analysis code will
1719 // cope with a conservative value, and it will take care to purge
1720 // that value once it has finished.
1721 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1722 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1723 // Manually compute the final value for AR, checking for
1724 // overflow.
1725
1726 // Check whether the backedge-taken count can be losslessly casted to
1727 // the addrec's type. The count is always unsigned.
1728 const SCEV *CastedMaxBECount =
1729 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1730 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1731 CastedMaxBECount, MaxBECount->getType(), Depth);
1732 if (MaxBECount == RecastedMaxBECount) {
1733 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1734 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1735 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1736 SCEV::FlagAnyWrap, Depth + 1);
1737 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1738 SCEV::FlagAnyWrap,
1739 Depth + 1),
1740 WideTy, Depth + 1);
1741 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1742 const SCEV *WideMaxBECount =
1743 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1744 const SCEV *OperandExtendedAdd =
1745 getAddExpr(WideStart,
1746 getMulExpr(WideMaxBECount,
1747 getZeroExtendExpr(Step, WideTy, Depth + 1),
1748 SCEV::FlagAnyWrap, Depth + 1),
1749 SCEV::FlagAnyWrap, Depth + 1);
1750 if (ZAdd == OperandExtendedAdd) {
1751 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1752 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1753 // Return the expression with the addrec on the outside.
1754 return getAddRecExpr(
1755 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1756 Depth + 1),
1757 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1758 AR->getNoWrapFlags());
1759 }
1760 // Similar to above, only this time treat the step value as signed.
1761 // This covers loops that count down.
1762 OperandExtendedAdd =
1763 getAddExpr(WideStart,
1764 getMulExpr(WideMaxBECount,
1765 getSignExtendExpr(Step, WideTy, Depth + 1),
1766 SCEV::FlagAnyWrap, Depth + 1),
1767 SCEV::FlagAnyWrap, Depth + 1);
1768 if (ZAdd == OperandExtendedAdd) {
1769 // Cache knowledge of AR NW, which is propagated to this AddRec.
1770 // Negative step causes unsigned wrap, but it still can't self-wrap.
1771 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1772 // Return the expression with the addrec on the outside.
1773 return getAddRecExpr(
1774 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1775 Depth + 1),
1776 getSignExtendExpr(Step, Ty, Depth + 1), L,
1777 AR->getNoWrapFlags());
1778 }
1779 }
1780 }
1781
1782 // Normally, in the cases we can prove no-overflow via a
1783 // backedge guarding condition, we can also compute a backedge
1784 // taken count for the loop. The exceptions are assumptions and
1785 // guards present in the loop -- SCEV is not great at exploiting
1786 // these to compute max backedge taken counts, but can still use
1787 // these to prove lack of overflow. Use this fact to avoid
1788 // doing extra work that may not pay off.
1789 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1790 !AC.assumptions().empty()) {
1791 // If the backedge is guarded by a comparison with the pre-inc
1792 // value the addrec is safe. Also, if the entry is guarded by
1793 // a comparison with the start value and the backedge is
1794 // guarded by a comparison with the post-inc value, the addrec
1795 // is safe.
1796 if (isKnownPositive(Step)) {
1797 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1798 getUnsignedRangeMax(Step));
1799 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1800 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1801 // Cache knowledge of AR NUW, which is propagated to this
1802 // AddRec.
1803 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1804 // Return the expression with the addrec on the outside.
1805 return getAddRecExpr(
1806 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1807 Depth + 1),
1808 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1809 AR->getNoWrapFlags());
1810 }
1811 } else if (isKnownNegative(Step)) {
1812 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1813 getSignedRangeMin(Step));
1814 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1815 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1816 // Cache knowledge of AR NW, which is propagated to this
1817 // AddRec. Negative step causes unsigned wrap, but it
1818 // still can't self-wrap.
1819 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1820 // Return the expression with the addrec on the outside.
1821 return getAddRecExpr(
1822 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1823 Depth + 1),
1824 getSignExtendExpr(Step, Ty, Depth + 1), L,
1825 AR->getNoWrapFlags());
1826 }
1827 }
1828 }
1829
1830 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1831 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1832 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1833 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1834 const APInt &C = SC->getAPInt();
1835 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1836 if (D != 0) {
1837 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1838 const SCEV *SResidual =
1839 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1840 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1841 return getAddExpr(SZExtD, SZExtR,
1842 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1843 Depth + 1);
1844 }
1845 }
1846
1847 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1848 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1849 return getAddRecExpr(
1850 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1851 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1852 }
1853 }
1854
1855 // zext(A % B) --> zext(A) % zext(B)
1856 {
1857 const SCEV *LHS;
1858 const SCEV *RHS;
1859 if (matchURem(Op, LHS, RHS))
1860 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1861 getZeroExtendExpr(RHS, Ty, Depth + 1));
1862 }
1863
1864 // zext(A / B) --> zext(A) / zext(B).
1865 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1866 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1867 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1868
1869 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1870 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1871 if (SA->hasNoUnsignedWrap()) {
1872 // If the addition does not unsign overflow then we can, by definition,
1873 // commute the zero extension with the addition operation.
1874 SmallVector<const SCEV *, 4> Ops;
1875 for (const auto *Op : SA->operands())
1876 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1877 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1878 }
1879
1880 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1881 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1882 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1883 //
1884 // Often address arithmetics contain expressions like
1885 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1886 // This transformation is useful while proving that such expressions are
1887 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1888 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1889 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1890 if (D != 0) {
1891 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1892 const SCEV *SResidual =
1893 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1894 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1895 return getAddExpr(SZExtD, SZExtR,
1896 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1897 Depth + 1);
1898 }
1899 }
1900 }
1901
1902 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1903 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1904 if (SM->hasNoUnsignedWrap()) {
1905 // If the multiply does not unsign overflow then we can, by definition,
1906 // commute the zero extension with the multiply operation.
1907 SmallVector<const SCEV *, 4> Ops;
1908 for (const auto *Op : SM->operands())
1909 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1910 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1911 }
1912
1913 // zext(2^K * (trunc X to iN)) to iM ->
1914 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1915 //
1916 // Proof:
1917 //
1918 // zext(2^K * (trunc X to iN)) to iM
1919 // = zext((trunc X to iN) << K) to iM
1920 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1921 // (because shl removes the top K bits)
1922 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1923 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1924 //
1925 if (SM->getNumOperands() == 2)
1926 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1927 if (MulLHS->getAPInt().isPowerOf2())
1928 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1929 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1930 MulLHS->getAPInt().logBase2();
1931 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1932 return getMulExpr(
1933 getZeroExtendExpr(MulLHS, Ty),
1934 getZeroExtendExpr(
1935 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1936 SCEV::FlagNUW, Depth + 1);
1937 }
1938 }
1939
1940 // The cast wasn't folded; create an explicit cast node.
1941 // Recompute the insert position, as it may have been invalidated.
1942 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1943 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1944 Op, Ty);
1945 UniqueSCEVs.InsertNode(S, IP);
1946 addToLoopUseLists(S);
1947 return S;
1948 }
1949
1950 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1951 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1952 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1953 "This is not an extending conversion!");
1954 assert(isSCEVable(Ty) &&
1955 "This is not a conversion to a SCEVable type!");
1956 Ty = getEffectiveSCEVType(Ty);
1957
1958 // Fold if the operand is constant.
1959 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1960 return getConstant(
1961 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1962
1963 // sext(sext(x)) --> sext(x)
1964 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1965 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1966
1967 // sext(zext(x)) --> zext(x)
1968 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1969 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1970
1971 // Before doing any expensive analysis, check to see if we've already
1972 // computed a SCEV for this Op and Ty.
1973 FoldingSetNodeID ID;
1974 ID.AddInteger(scSignExtend);
1975 ID.AddPointer(Op);
1976 ID.AddPointer(Ty);
1977 void *IP = nullptr;
1978 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1979 // Limit recursion depth.
1980 if (Depth > MaxCastDepth) {
1981 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1982 Op, Ty);
1983 UniqueSCEVs.InsertNode(S, IP);
1984 addToLoopUseLists(S);
1985 return S;
1986 }
1987
1988 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1989 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1990 // It's possible the bits taken off by the truncate were all sign bits. If
1991 // so, we should be able to simplify this further.
1992 const SCEV *X = ST->getOperand();
1993 ConstantRange CR = getSignedRange(X);
1994 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1995 unsigned NewBits = getTypeSizeInBits(Ty);
1996 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1997 CR.sextOrTrunc(NewBits)))
1998 return getTruncateOrSignExtend(X, Ty, Depth);
1999 }
2000
2001 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
2002 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
2003 if (SA->hasNoSignedWrap()) {
2004 // If the addition does not sign overflow then we can, by definition,
2005 // commute the sign extension with the addition operation.
2006 SmallVector<const SCEV *, 4> Ops;
2007 for (const auto *Op : SA->operands())
2008 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2009 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2010 }
2011
2012 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2013 // if D + (C - D + x + y + ...) could be proven to not signed wrap
2014 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2015 //
2016 // For instance, this will bring two seemingly different expressions:
2017 // 1 + sext(5 + 20 * %x + 24 * %y) and
2018 // sext(6 + 20 * %x + 24 * %y)
2019 // to the same form:
2020 // 2 + sext(4 + 20 * %x + 24 * %y)
2021 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2022 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2023 if (D != 0) {
2024 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2025 const SCEV *SResidual =
2026 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2027 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2028 return getAddExpr(SSExtD, SSExtR,
2029 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2030 Depth + 1);
2031 }
2032 }
2033 }
2034 // If the input value is a chrec scev, and we can prove that the value
2035 // did not overflow the old, smaller, value, we can sign extend all of the
2036 // operands (often constants). This allows analysis of something like
2037 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
2038 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2039 if (AR->isAffine()) {
2040 const SCEV *Start = AR->getStart();
2041 const SCEV *Step = AR->getStepRecurrence(*this);
2042 unsigned BitWidth = getTypeSizeInBits(AR->getType());
2043 const Loop *L = AR->getLoop();
2044
2045 if (!AR->hasNoSignedWrap()) {
2046 auto NewFlags = proveNoWrapViaConstantRanges(AR);
2047 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2048 }
2049
2050 // If we have special knowledge that this addrec won't overflow,
2051 // we don't need to do any further analysis.
2052 if (AR->hasNoSignedWrap())
2053 return getAddRecExpr(
2054 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2055 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2056
2057 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2058 // Note that this serves two purposes: It filters out loops that are
2059 // simply not analyzable, and it covers the case where this code is
2060 // being called from within backedge-taken count analysis, such that
2061 // attempting to ask for the backedge-taken count would likely result
2062 // in infinite recursion. In the later case, the analysis code will
2063 // cope with a conservative value, and it will take care to purge
2064 // that value once it has finished.
2065 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2066 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2067 // Manually compute the final value for AR, checking for
2068 // overflow.
2069
2070 // Check whether the backedge-taken count can be losslessly casted to
2071 // the addrec's type. The count is always unsigned.
2072 const SCEV *CastedMaxBECount =
2073 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2074 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2075 CastedMaxBECount, MaxBECount->getType(), Depth);
2076 if (MaxBECount == RecastedMaxBECount) {
2077 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2078 // Check whether Start+Step*MaxBECount has no signed overflow.
2079 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2080 SCEV::FlagAnyWrap, Depth + 1);
2081 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2082 SCEV::FlagAnyWrap,
2083 Depth + 1),
2084 WideTy, Depth + 1);
2085 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2086 const SCEV *WideMaxBECount =
2087 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2088 const SCEV *OperandExtendedAdd =
2089 getAddExpr(WideStart,
2090 getMulExpr(WideMaxBECount,
2091 getSignExtendExpr(Step, WideTy, Depth + 1),
2092 SCEV::FlagAnyWrap, Depth + 1),
2093 SCEV::FlagAnyWrap, Depth + 1);
2094 if (SAdd == OperandExtendedAdd) {
2095 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2096 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2097 // Return the expression with the addrec on the outside.
2098 return getAddRecExpr(
2099 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2100 Depth + 1),
2101 getSignExtendExpr(Step, Ty, Depth + 1), L,
2102 AR->getNoWrapFlags());
2103 }
2104 // Similar to above, only this time treat the step value as unsigned.
2105 // This covers loops that count up with an unsigned step.
2106 OperandExtendedAdd =
2107 getAddExpr(WideStart,
2108 getMulExpr(WideMaxBECount,
2109 getZeroExtendExpr(Step, WideTy, Depth + 1),
2110 SCEV::FlagAnyWrap, Depth + 1),
2111 SCEV::FlagAnyWrap, Depth + 1);
2112 if (SAdd == OperandExtendedAdd) {
2113 // If AR wraps around then
2114 //
2115 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2116 // => SAdd != OperandExtendedAdd
2117 //
2118 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2119 // (SAdd == OperandExtendedAdd => AR is NW)
2120
2121 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2122
2123 // Return the expression with the addrec on the outside.
2124 return getAddRecExpr(
2125 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2126 Depth + 1),
2127 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2128 AR->getNoWrapFlags());
2129 }
2130 }
2131 }
2132
2133 // Normally, in the cases we can prove no-overflow via a
2134 // backedge guarding condition, we can also compute a backedge
2135 // taken count for the loop. The exceptions are assumptions and
2136 // guards present in the loop -- SCEV is not great at exploiting
2137 // these to compute max backedge taken counts, but can still use
2138 // these to prove lack of overflow. Use this fact to avoid
2139 // doing extra work that may not pay off.
2140
2141 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2142 !AC.assumptions().empty()) {
2143 // If the backedge is guarded by a comparison with the pre-inc
2144 // value the addrec is safe. Also, if the entry is guarded by
2145 // a comparison with the start value and the backedge is
2146 // guarded by a comparison with the post-inc value, the addrec
2147 // is safe.
2148 ICmpInst::Predicate Pred;
2149 const SCEV *OverflowLimit =
2150 getSignedOverflowLimitForStep(Step, &Pred, this);
2151 if (OverflowLimit &&
2152 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2153 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2154 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2155 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2156 return getAddRecExpr(
2157 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2158 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2159 }
2160 }
2161
2162 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2163 // if D + (C - D + Step * n) could be proven to not signed wrap
2164 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2165 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2166 const APInt &C = SC->getAPInt();
2167 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2168 if (D != 0) {
2169 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2170 const SCEV *SResidual =
2171 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2172 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2173 return getAddExpr(SSExtD, SSExtR,
2174 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2175 Depth + 1);
2176 }
2177 }
2178
2179 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2180 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2181 return getAddRecExpr(
2182 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2183 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2184 }
2185 }
2186
2187 // If the input value is provably positive and we could not simplify
2188 // away the sext build a zext instead.
2189 if (isKnownNonNegative(Op))
2190 return getZeroExtendExpr(Op, Ty, Depth + 1);
2191
2192 // The cast wasn't folded; create an explicit cast node.
2193 // Recompute the insert position, as it may have been invalidated.
2194 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2195 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2196 Op, Ty);
2197 UniqueSCEVs.InsertNode(S, IP);
2198 addToLoopUseLists(S);
2199 return S;
2200 }
2201
2202 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2203 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2204 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2205 Type *Ty) {
2206 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2207 "This is not an extending conversion!");
2208 assert(isSCEVable(Ty) &&
2209 "This is not a conversion to a SCEVable type!");
2210 Ty = getEffectiveSCEVType(Ty);
2211
2212 // Sign-extend negative constants.
2213 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2214 if (SC->getAPInt().isNegative())
2215 return getSignExtendExpr(Op, Ty);
2216
2217 // Peel off a truncate cast.
2218 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2219 const SCEV *NewOp = T->getOperand();
2220 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2221 return getAnyExtendExpr(NewOp, Ty);
2222 return getTruncateOrNoop(NewOp, Ty);
2223 }
2224
2225 // Next try a zext cast. If the cast is folded, use it.
2226 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2227 if (!isa<SCEVZeroExtendExpr>(ZExt))
2228 return ZExt;
2229
2230 // Next try a sext cast. If the cast is folded, use it.
2231 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2232 if (!isa<SCEVSignExtendExpr>(SExt))
2233 return SExt;
2234
2235 // Force the cast to be folded into the operands of an addrec.
2236 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2237 SmallVector<const SCEV *, 4> Ops;
2238 for (const SCEV *Op : AR->operands())
2239 Ops.push_back(getAnyExtendExpr(Op, Ty));
2240 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2241 }
2242
2243 // If the expression is obviously signed, use the sext cast value.
2244 if (isa<SCEVSMaxExpr>(Op))
2245 return SExt;
2246
2247 // Absent any other information, use the zext cast value.
2248 return ZExt;
2249 }
2250
2251 /// Process the given Ops list, which is a list of operands to be added under
2252 /// the given scale, update the given map. This is a helper function for
2253 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2254 /// that would form an add expression like this:
2255 ///
2256 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2257 ///
2258 /// where A and B are constants, update the map with these values:
2259 ///
2260 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2261 ///
2262 /// and add 13 + A*B*29 to AccumulatedConstant.
2263 /// This will allow getAddRecExpr to produce this:
2264 ///
2265 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2266 ///
2267 /// This form often exposes folding opportunities that are hidden in
2268 /// the original operand list.
2269 ///
2270 /// Return true iff it appears that any interesting folding opportunities
2271 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2272 /// the common case where no interesting opportunities are present, and
2273 /// is also used as a check to avoid infinite recursion.
2274 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2275 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2276 SmallVectorImpl<const SCEV *> &NewOps,
2277 APInt &AccumulatedConstant,
2278 const SCEV *const *Ops, size_t NumOperands,
2279 const APInt &Scale,
2280 ScalarEvolution &SE) {
2281 bool Interesting = false;
2282
2283 // Iterate over the add operands. They are sorted, with constants first.
2284 unsigned i = 0;
2285 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2286 ++i;
2287 // Pull a buried constant out to the outside.
2288 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2289 Interesting = true;
2290 AccumulatedConstant += Scale * C->getAPInt();
2291 }
2292
2293 // Next comes everything else. We're especially interested in multiplies
2294 // here, but they're in the middle, so just visit the rest with one loop.
2295 for (; i != NumOperands; ++i) {
2296 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2297 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2298 APInt NewScale =
2299 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2300 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2301 // A multiplication of a constant with another add; recurse.
2302 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2303 Interesting |=
2304 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2305 Add->op_begin(), Add->getNumOperands(),
2306 NewScale, SE);
2307 } else {
2308 // A multiplication of a constant with some other value. Update
2309 // the map.
2310 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2311 const SCEV *Key = SE.getMulExpr(MulOps);
2312 auto Pair = M.insert({Key, NewScale});
2313 if (Pair.second) {
2314 NewOps.push_back(Pair.first->first);
2315 } else {
2316 Pair.first->second += NewScale;
2317 // The map already had an entry for this value, which may indicate
2318 // a folding opportunity.
2319 Interesting = true;
2320 }
2321 }
2322 } else {
2323 // An ordinary operand. Update the map.
2324 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2325 M.insert({Ops[i], Scale});
2326 if (Pair.second) {
2327 NewOps.push_back(Pair.first->first);
2328 } else {
2329 Pair.first->second += Scale;
2330 // The map already had an entry for this value, which may indicate
2331 // a folding opportunity.
2332 Interesting = true;
2333 }
2334 }
2335 }
2336
2337 return Interesting;
2338 }
2339
2340 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2341 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2342 // can't-overflow flags for the operation if possible.
2343 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2344 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2345 const ArrayRef<const SCEV *> Ops,
2346 SCEV::NoWrapFlags Flags) {
2347 using namespace std::placeholders;
2348
2349 using OBO = OverflowingBinaryOperator;
2350
2351 bool CanAnalyze =
2352 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2353 (void)CanAnalyze;
2354 assert(CanAnalyze && "don't call from other places!");
2355
2356 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2357 SCEV::NoWrapFlags SignOrUnsignWrap =
2358 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2359
2360 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2361 auto IsKnownNonNegative = [&](const SCEV *S) {
2362 return SE->isKnownNonNegative(S);
2363 };
2364
2365 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2366 Flags =
2367 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2368
2369 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2370
2371 if (SignOrUnsignWrap != SignOrUnsignMask &&
2372 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2373 isa<SCEVConstant>(Ops[0])) {
2374
2375 auto Opcode = [&] {
2376 switch (Type) {
2377 case scAddExpr:
2378 return Instruction::Add;
2379 case scMulExpr:
2380 return Instruction::Mul;
2381 default:
2382 llvm_unreachable("Unexpected SCEV op.");
2383 }
2384 }();
2385
2386 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2387
2388 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2389 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2390 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2391 Opcode, C, OBO::NoSignedWrap);
2392 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2393 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2394 }
2395
2396 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2397 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2398 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2399 Opcode, C, OBO::NoUnsignedWrap);
2400 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2401 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2402 }
2403 }
2404
2405 return Flags;
2406 }
2407
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2408 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2409 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2410 }
2411
2412 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2413 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2414 SCEV::NoWrapFlags Flags,
2415 unsigned Depth) {
2416 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2417 "only nuw or nsw allowed");
2418 assert(!Ops.empty() && "Cannot get empty add!");
2419 if (Ops.size() == 1) return Ops[0];
2420 #ifndef NDEBUG
2421 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2422 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2423 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2424 "SCEVAddExpr operand types don't match!");
2425 #endif
2426
2427 // Sort by complexity, this groups all similar expression types together.
2428 GroupByComplexity(Ops, &LI, DT);
2429
2430 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2431
2432 // If there are any constants, fold them together.
2433 unsigned Idx = 0;
2434 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2435 ++Idx;
2436 assert(Idx < Ops.size());
2437 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2438 // We found two constants, fold them together!
2439 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2440 if (Ops.size() == 2) return Ops[0];
2441 Ops.erase(Ops.begin()+1); // Erase the folded element
2442 LHSC = cast<SCEVConstant>(Ops[0]);
2443 }
2444
2445 // If we are left with a constant zero being added, strip it off.
2446 if (LHSC->getValue()->isZero()) {
2447 Ops.erase(Ops.begin());
2448 --Idx;
2449 }
2450
2451 if (Ops.size() == 1) return Ops[0];
2452 }
2453
2454 // Limit recursion calls depth.
2455 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2456 return getOrCreateAddExpr(Ops, Flags);
2457
2458 // Okay, check to see if the same value occurs in the operand list more than
2459 // once. If so, merge them together into an multiply expression. Since we
2460 // sorted the list, these values are required to be adjacent.
2461 Type *Ty = Ops[0]->getType();
2462 bool FoundMatch = false;
2463 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2464 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2465 // Scan ahead to count how many equal operands there are.
2466 unsigned Count = 2;
2467 while (i+Count != e && Ops[i+Count] == Ops[i])
2468 ++Count;
2469 // Merge the values into a multiply.
2470 const SCEV *Scale = getConstant(Ty, Count);
2471 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2472 if (Ops.size() == Count)
2473 return Mul;
2474 Ops[i] = Mul;
2475 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2476 --i; e -= Count - 1;
2477 FoundMatch = true;
2478 }
2479 if (FoundMatch)
2480 return getAddExpr(Ops, Flags, Depth + 1);
2481
2482 // Check for truncates. If all the operands are truncated from the same
2483 // type, see if factoring out the truncate would permit the result to be
2484 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2485 // if the contents of the resulting outer trunc fold to something simple.
2486 auto FindTruncSrcType = [&]() -> Type * {
2487 // We're ultimately looking to fold an addrec of truncs and muls of only
2488 // constants and truncs, so if we find any other types of SCEV
2489 // as operands of the addrec then we bail and return nullptr here.
2490 // Otherwise, we return the type of the operand of a trunc that we find.
2491 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2492 return T->getOperand()->getType();
2493 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2494 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2495 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2496 return T->getOperand()->getType();
2497 }
2498 return nullptr;
2499 };
2500 if (auto *SrcType = FindTruncSrcType()) {
2501 SmallVector<const SCEV *, 8> LargeOps;
2502 bool Ok = true;
2503 // Check all the operands to see if they can be represented in the
2504 // source type of the truncate.
2505 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2506 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2507 if (T->getOperand()->getType() != SrcType) {
2508 Ok = false;
2509 break;
2510 }
2511 LargeOps.push_back(T->getOperand());
2512 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2513 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2514 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2515 SmallVector<const SCEV *, 8> LargeMulOps;
2516 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2517 if (const SCEVTruncateExpr *T =
2518 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2519 if (T->getOperand()->getType() != SrcType) {
2520 Ok = false;
2521 break;
2522 }
2523 LargeMulOps.push_back(T->getOperand());
2524 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2525 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2526 } else {
2527 Ok = false;
2528 break;
2529 }
2530 }
2531 if (Ok)
2532 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2533 } else {
2534 Ok = false;
2535 break;
2536 }
2537 }
2538 if (Ok) {
2539 // Evaluate the expression in the larger type.
2540 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2541 // If it folds to something simple, use it. Otherwise, don't.
2542 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2543 return getTruncateExpr(Fold, Ty);
2544 }
2545 }
2546
2547 // Skip past any other cast SCEVs.
2548 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2549 ++Idx;
2550
2551 // If there are add operands they would be next.
2552 if (Idx < Ops.size()) {
2553 bool DeletedAdd = false;
2554 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2555 if (Ops.size() > AddOpsInlineThreshold ||
2556 Add->getNumOperands() > AddOpsInlineThreshold)
2557 break;
2558 // If we have an add, expand the add operands onto the end of the operands
2559 // list.
2560 Ops.erase(Ops.begin()+Idx);
2561 Ops.append(Add->op_begin(), Add->op_end());
2562 DeletedAdd = true;
2563 }
2564
2565 // If we deleted at least one add, we added operands to the end of the list,
2566 // and they are not necessarily sorted. Recurse to resort and resimplify
2567 // any operands we just acquired.
2568 if (DeletedAdd)
2569 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2570 }
2571
2572 // Skip over the add expression until we get to a multiply.
2573 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2574 ++Idx;
2575
2576 // Check to see if there are any folding opportunities present with
2577 // operands multiplied by constant values.
2578 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2579 uint64_t BitWidth = getTypeSizeInBits(Ty);
2580 DenseMap<const SCEV *, APInt> M;
2581 SmallVector<const SCEV *, 8> NewOps;
2582 APInt AccumulatedConstant(BitWidth, 0);
2583 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2584 Ops.data(), Ops.size(),
2585 APInt(BitWidth, 1), *this)) {
2586 struct APIntCompare {
2587 bool operator()(const APInt &LHS, const APInt &RHS) const {
2588 return LHS.ult(RHS);
2589 }
2590 };
2591
2592 // Some interesting folding opportunity is present, so its worthwhile to
2593 // re-generate the operands list. Group the operands by constant scale,
2594 // to avoid multiplying by the same constant scale multiple times.
2595 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2596 for (const SCEV *NewOp : NewOps)
2597 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2598 // Re-generate the operands list.
2599 Ops.clear();
2600 if (AccumulatedConstant != 0)
2601 Ops.push_back(getConstant(AccumulatedConstant));
2602 for (auto &MulOp : MulOpLists)
2603 if (MulOp.first != 0)
2604 Ops.push_back(getMulExpr(
2605 getConstant(MulOp.first),
2606 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2607 SCEV::FlagAnyWrap, Depth + 1));
2608 if (Ops.empty())
2609 return getZero(Ty);
2610 if (Ops.size() == 1)
2611 return Ops[0];
2612 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2613 }
2614 }
2615
2616 // If we are adding something to a multiply expression, make sure the
2617 // something is not already an operand of the multiply. If so, merge it into
2618 // the multiply.
2619 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2620 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2621 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2622 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2623 if (isa<SCEVConstant>(MulOpSCEV))
2624 continue;
2625 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2626 if (MulOpSCEV == Ops[AddOp]) {
2627 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2628 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2629 if (Mul->getNumOperands() != 2) {
2630 // If the multiply has more than two operands, we must get the
2631 // Y*Z term.
2632 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2633 Mul->op_begin()+MulOp);
2634 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2635 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2636 }
2637 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2638 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2639 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2640 SCEV::FlagAnyWrap, Depth + 1);
2641 if (Ops.size() == 2) return OuterMul;
2642 if (AddOp < Idx) {
2643 Ops.erase(Ops.begin()+AddOp);
2644 Ops.erase(Ops.begin()+Idx-1);
2645 } else {
2646 Ops.erase(Ops.begin()+Idx);
2647 Ops.erase(Ops.begin()+AddOp-1);
2648 }
2649 Ops.push_back(OuterMul);
2650 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2651 }
2652
2653 // Check this multiply against other multiplies being added together.
2654 for (unsigned OtherMulIdx = Idx+1;
2655 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2656 ++OtherMulIdx) {
2657 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2658 // If MulOp occurs in OtherMul, we can fold the two multiplies
2659 // together.
2660 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2661 OMulOp != e; ++OMulOp)
2662 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2663 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2664 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2665 if (Mul->getNumOperands() != 2) {
2666 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2667 Mul->op_begin()+MulOp);
2668 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2669 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2670 }
2671 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2672 if (OtherMul->getNumOperands() != 2) {
2673 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2674 OtherMul->op_begin()+OMulOp);
2675 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2676 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2677 }
2678 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2679 const SCEV *InnerMulSum =
2680 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2681 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2682 SCEV::FlagAnyWrap, Depth + 1);
2683 if (Ops.size() == 2) return OuterMul;
2684 Ops.erase(Ops.begin()+Idx);
2685 Ops.erase(Ops.begin()+OtherMulIdx-1);
2686 Ops.push_back(OuterMul);
2687 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2688 }
2689 }
2690 }
2691 }
2692
2693 // If there are any add recurrences in the operands list, see if any other
2694 // added values are loop invariant. If so, we can fold them into the
2695 // recurrence.
2696 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2697 ++Idx;
2698
2699 // Scan over all recurrences, trying to fold loop invariants into them.
2700 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2701 // Scan all of the other operands to this add and add them to the vector if
2702 // they are loop invariant w.r.t. the recurrence.
2703 SmallVector<const SCEV *, 8> LIOps;
2704 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2705 const Loop *AddRecLoop = AddRec->getLoop();
2706 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2707 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2708 LIOps.push_back(Ops[i]);
2709 Ops.erase(Ops.begin()+i);
2710 --i; --e;
2711 }
2712
2713 // If we found some loop invariants, fold them into the recurrence.
2714 if (!LIOps.empty()) {
2715 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2716 LIOps.push_back(AddRec->getStart());
2717
2718 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2719 AddRec->op_end());
2720 // This follows from the fact that the no-wrap flags on the outer add
2721 // expression are applicable on the 0th iteration, when the add recurrence
2722 // will be equal to its start value.
2723 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2724
2725 // Build the new addrec. Propagate the NUW and NSW flags if both the
2726 // outer add and the inner addrec are guaranteed to have no overflow.
2727 // Always propagate NW.
2728 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2729 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2730
2731 // If all of the other operands were loop invariant, we are done.
2732 if (Ops.size() == 1) return NewRec;
2733
2734 // Otherwise, add the folded AddRec by the non-invariant parts.
2735 for (unsigned i = 0;; ++i)
2736 if (Ops[i] == AddRec) {
2737 Ops[i] = NewRec;
2738 break;
2739 }
2740 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2741 }
2742
2743 // Okay, if there weren't any loop invariants to be folded, check to see if
2744 // there are multiple AddRec's with the same loop induction variable being
2745 // added together. If so, we can fold them.
2746 for (unsigned OtherIdx = Idx+1;
2747 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2748 ++OtherIdx) {
2749 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2750 // so that the 1st found AddRecExpr is dominated by all others.
2751 assert(DT.dominates(
2752 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2753 AddRec->getLoop()->getHeader()) &&
2754 "AddRecExprs are not sorted in reverse dominance order?");
2755 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2756 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2757 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2758 AddRec->op_end());
2759 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2760 ++OtherIdx) {
2761 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2762 if (OtherAddRec->getLoop() == AddRecLoop) {
2763 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2764 i != e; ++i) {
2765 if (i >= AddRecOps.size()) {
2766 AddRecOps.append(OtherAddRec->op_begin()+i,
2767 OtherAddRec->op_end());
2768 break;
2769 }
2770 SmallVector<const SCEV *, 2> TwoOps = {
2771 AddRecOps[i], OtherAddRec->getOperand(i)};
2772 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2773 }
2774 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2775 }
2776 }
2777 // Step size has changed, so we cannot guarantee no self-wraparound.
2778 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2779 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2780 }
2781 }
2782
2783 // Otherwise couldn't fold anything into this recurrence. Move onto the
2784 // next one.
2785 }
2786
2787 // Okay, it looks like we really DO need an add expr. Check to see if we
2788 // already have one, otherwise create a new one.
2789 return getOrCreateAddExpr(Ops, Flags);
2790 }
2791
2792 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2793 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2794 SCEV::NoWrapFlags Flags) {
2795 FoldingSetNodeID ID;
2796 ID.AddInteger(scAddExpr);
2797 for (const SCEV *Op : Ops)
2798 ID.AddPointer(Op);
2799 void *IP = nullptr;
2800 SCEVAddExpr *S =
2801 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2802 if (!S) {
2803 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2804 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2805 S = new (SCEVAllocator)
2806 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2807 UniqueSCEVs.InsertNode(S, IP);
2808 addToLoopUseLists(S);
2809 }
2810 S->setNoWrapFlags(Flags);
2811 return S;
2812 }
2813
2814 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2815 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2816 const Loop *L, SCEV::NoWrapFlags Flags) {
2817 FoldingSetNodeID ID;
2818 ID.AddInteger(scAddRecExpr);
2819 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2820 ID.AddPointer(Ops[i]);
2821 ID.AddPointer(L);
2822 void *IP = nullptr;
2823 SCEVAddRecExpr *S =
2824 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2825 if (!S) {
2826 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2827 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2828 S = new (SCEVAllocator)
2829 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2830 UniqueSCEVs.InsertNode(S, IP);
2831 addToLoopUseLists(S);
2832 }
2833 S->setNoWrapFlags(Flags);
2834 return S;
2835 }
2836
2837 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2838 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2839 SCEV::NoWrapFlags Flags) {
2840 FoldingSetNodeID ID;
2841 ID.AddInteger(scMulExpr);
2842 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2843 ID.AddPointer(Ops[i]);
2844 void *IP = nullptr;
2845 SCEVMulExpr *S =
2846 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2847 if (!S) {
2848 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2849 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2850 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2851 O, Ops.size());
2852 UniqueSCEVs.InsertNode(S, IP);
2853 addToLoopUseLists(S);
2854 }
2855 S->setNoWrapFlags(Flags);
2856 return S;
2857 }
2858
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2859 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2860 uint64_t k = i*j;
2861 if (j > 1 && k / j != i) Overflow = true;
2862 return k;
2863 }
2864
2865 /// Compute the result of "n choose k", the binomial coefficient. If an
2866 /// intermediate computation overflows, Overflow will be set and the return will
2867 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2868 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2869 // We use the multiplicative formula:
2870 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2871 // At each iteration, we take the n-th term of the numeral and divide by the
2872 // (k-n)th term of the denominator. This division will always produce an
2873 // integral result, and helps reduce the chance of overflow in the
2874 // intermediate computations. However, we can still overflow even when the
2875 // final result would fit.
2876
2877 if (n == 0 || n == k) return 1;
2878 if (k > n) return 0;
2879
2880 if (k > n/2)
2881 k = n-k;
2882
2883 uint64_t r = 1;
2884 for (uint64_t i = 1; i <= k; ++i) {
2885 r = umul_ov(r, n-(i-1), Overflow);
2886 r /= i;
2887 }
2888 return r;
2889 }
2890
2891 /// Determine if any of the operands in this SCEV are a constant or if
2892 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2893 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2894 struct FindConstantInAddMulChain {
2895 bool FoundConstant = false;
2896
2897 bool follow(const SCEV *S) {
2898 FoundConstant |= isa<SCEVConstant>(S);
2899 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2900 }
2901
2902 bool isDone() const {
2903 return FoundConstant;
2904 }
2905 };
2906
2907 FindConstantInAddMulChain F;
2908 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2909 ST.visitAll(StartExpr);
2910 return F.FoundConstant;
2911 }
2912
2913 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2914 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2915 SCEV::NoWrapFlags Flags,
2916 unsigned Depth) {
2917 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2918 "only nuw or nsw allowed");
2919 assert(!Ops.empty() && "Cannot get empty mul!");
2920 if (Ops.size() == 1) return Ops[0];
2921 #ifndef NDEBUG
2922 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2923 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2924 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2925 "SCEVMulExpr operand types don't match!");
2926 #endif
2927
2928 // Sort by complexity, this groups all similar expression types together.
2929 GroupByComplexity(Ops, &LI, DT);
2930
2931 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2932
2933 // Limit recursion calls depth.
2934 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2935 return getOrCreateMulExpr(Ops, Flags);
2936
2937 // If there are any constants, fold them together.
2938 unsigned Idx = 0;
2939 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2940
2941 if (Ops.size() == 2)
2942 // C1*(C2+V) -> C1*C2 + C1*V
2943 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2944 // If any of Add's ops are Adds or Muls with a constant, apply this
2945 // transformation as well.
2946 //
2947 // TODO: There are some cases where this transformation is not
2948 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2949 // this transformation should be narrowed down.
2950 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2951 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2952 SCEV::FlagAnyWrap, Depth + 1),
2953 getMulExpr(LHSC, Add->getOperand(1),
2954 SCEV::FlagAnyWrap, Depth + 1),
2955 SCEV::FlagAnyWrap, Depth + 1);
2956
2957 ++Idx;
2958 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2959 // We found two constants, fold them together!
2960 ConstantInt *Fold =
2961 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2962 Ops[0] = getConstant(Fold);
2963 Ops.erase(Ops.begin()+1); // Erase the folded element
2964 if (Ops.size() == 1) return Ops[0];
2965 LHSC = cast<SCEVConstant>(Ops[0]);
2966 }
2967
2968 // If we are left with a constant one being multiplied, strip it off.
2969 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2970 Ops.erase(Ops.begin());
2971 --Idx;
2972 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2973 // If we have a multiply of zero, it will always be zero.
2974 return Ops[0];
2975 } else if (Ops[0]->isAllOnesValue()) {
2976 // If we have a mul by -1 of an add, try distributing the -1 among the
2977 // add operands.
2978 if (Ops.size() == 2) {
2979 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2980 SmallVector<const SCEV *, 4> NewOps;
2981 bool AnyFolded = false;
2982 for (const SCEV *AddOp : Add->operands()) {
2983 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2984 Depth + 1);
2985 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2986 NewOps.push_back(Mul);
2987 }
2988 if (AnyFolded)
2989 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2990 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2991 // Negation preserves a recurrence's no self-wrap property.
2992 SmallVector<const SCEV *, 4> Operands;
2993 for (const SCEV *AddRecOp : AddRec->operands())
2994 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2995 Depth + 1));
2996
2997 return getAddRecExpr(Operands, AddRec->getLoop(),
2998 AddRec->getNoWrapFlags(SCEV::FlagNW));
2999 }
3000 }
3001 }
3002
3003 if (Ops.size() == 1)
3004 return Ops[0];
3005 }
3006
3007 // Skip over the add expression until we get to a multiply.
3008 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3009 ++Idx;
3010
3011 // If there are mul operands inline them all into this expression.
3012 if (Idx < Ops.size()) {
3013 bool DeletedMul = false;
3014 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3015 if (Ops.size() > MulOpsInlineThreshold)
3016 break;
3017 // If we have an mul, expand the mul operands onto the end of the
3018 // operands list.
3019 Ops.erase(Ops.begin()+Idx);
3020 Ops.append(Mul->op_begin(), Mul->op_end());
3021 DeletedMul = true;
3022 }
3023
3024 // If we deleted at least one mul, we added operands to the end of the
3025 // list, and they are not necessarily sorted. Recurse to resort and
3026 // resimplify any operands we just acquired.
3027 if (DeletedMul)
3028 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3029 }
3030
3031 // If there are any add recurrences in the operands list, see if any other
3032 // added values are loop invariant. If so, we can fold them into the
3033 // recurrence.
3034 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3035 ++Idx;
3036
3037 // Scan over all recurrences, trying to fold loop invariants into them.
3038 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3039 // Scan all of the other operands to this mul and add them to the vector
3040 // if they are loop invariant w.r.t. the recurrence.
3041 SmallVector<const SCEV *, 8> LIOps;
3042 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3043 const Loop *AddRecLoop = AddRec->getLoop();
3044 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3045 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3046 LIOps.push_back(Ops[i]);
3047 Ops.erase(Ops.begin()+i);
3048 --i; --e;
3049 }
3050
3051 // If we found some loop invariants, fold them into the recurrence.
3052 if (!LIOps.empty()) {
3053 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3054 SmallVector<const SCEV *, 4> NewOps;
3055 NewOps.reserve(AddRec->getNumOperands());
3056 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3057 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3058 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3059 SCEV::FlagAnyWrap, Depth + 1));
3060
3061 // Build the new addrec. Propagate the NUW and NSW flags if both the
3062 // outer mul and the inner addrec are guaranteed to have no overflow.
3063 //
3064 // No self-wrap cannot be guaranteed after changing the step size, but
3065 // will be inferred if either NUW or NSW is true.
3066 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3067 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3068
3069 // If all of the other operands were loop invariant, we are done.
3070 if (Ops.size() == 1) return NewRec;
3071
3072 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3073 for (unsigned i = 0;; ++i)
3074 if (Ops[i] == AddRec) {
3075 Ops[i] = NewRec;
3076 break;
3077 }
3078 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3079 }
3080
3081 // Okay, if there weren't any loop invariants to be folded, check to see
3082 // if there are multiple AddRec's with the same loop induction variable
3083 // being multiplied together. If so, we can fold them.
3084
3085 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3086 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3087 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3088 // ]]],+,...up to x=2n}.
3089 // Note that the arguments to choose() are always integers with values
3090 // known at compile time, never SCEV objects.
3091 //
3092 // The implementation avoids pointless extra computations when the two
3093 // addrec's are of different length (mathematically, it's equivalent to
3094 // an infinite stream of zeros on the right).
3095 bool OpsModified = false;
3096 for (unsigned OtherIdx = Idx+1;
3097 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3098 ++OtherIdx) {
3099 const SCEVAddRecExpr *OtherAddRec =
3100 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3101 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3102 continue;
3103
3104 // Limit max number of arguments to avoid creation of unreasonably big
3105 // SCEVAddRecs with very complex operands.
3106 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3107 MaxAddRecSize || isHugeExpression(AddRec) ||
3108 isHugeExpression(OtherAddRec))
3109 continue;
3110
3111 bool Overflow = false;
3112 Type *Ty = AddRec->getType();
3113 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3114 SmallVector<const SCEV*, 7> AddRecOps;
3115 for (int x = 0, xe = AddRec->getNumOperands() +
3116 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3117 SmallVector <const SCEV *, 7> SumOps;
3118 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3119 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3120 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3121 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3122 z < ze && !Overflow; ++z) {
3123 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3124 uint64_t Coeff;
3125 if (LargerThan64Bits)
3126 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3127 else
3128 Coeff = Coeff1*Coeff2;
3129 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3130 const SCEV *Term1 = AddRec->getOperand(y-z);
3131 const SCEV *Term2 = OtherAddRec->getOperand(z);
3132 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3133 SCEV::FlagAnyWrap, Depth + 1));
3134 }
3135 }
3136 if (SumOps.empty())
3137 SumOps.push_back(getZero(Ty));
3138 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3139 }
3140 if (!Overflow) {
3141 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3142 SCEV::FlagAnyWrap);
3143 if (Ops.size() == 2) return NewAddRec;
3144 Ops[Idx] = NewAddRec;
3145 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3146 OpsModified = true;
3147 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3148 if (!AddRec)
3149 break;
3150 }
3151 }
3152 if (OpsModified)
3153 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3154
3155 // Otherwise couldn't fold anything into this recurrence. Move onto the
3156 // next one.
3157 }
3158
3159 // Okay, it looks like we really DO need an mul expr. Check to see if we
3160 // already have one, otherwise create a new one.
3161 return getOrCreateMulExpr(Ops, Flags);
3162 }
3163
3164 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3165 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3166 const SCEV *RHS) {
3167 assert(getEffectiveSCEVType(LHS->getType()) ==
3168 getEffectiveSCEVType(RHS->getType()) &&
3169 "SCEVURemExpr operand types don't match!");
3170
3171 // Short-circuit easy cases
3172 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3173 // If constant is one, the result is trivial
3174 if (RHSC->getValue()->isOne())
3175 return getZero(LHS->getType()); // X urem 1 --> 0
3176
3177 // If constant is a power of two, fold into a zext(trunc(LHS)).
3178 if (RHSC->getAPInt().isPowerOf2()) {
3179 Type *FullTy = LHS->getType();
3180 Type *TruncTy =
3181 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3182 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3183 }
3184 }
3185
3186 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3187 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3188 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3189 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3190 }
3191
3192 /// Get a canonical unsigned division expression, or something simpler if
3193 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3194 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3195 const SCEV *RHS) {
3196 assert(getEffectiveSCEVType(LHS->getType()) ==
3197 getEffectiveSCEVType(RHS->getType()) &&
3198 "SCEVUDivExpr operand types don't match!");
3199
3200 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3201 if (RHSC->getValue()->isOne())
3202 return LHS; // X udiv 1 --> x
3203 // If the denominator is zero, the result of the udiv is undefined. Don't
3204 // try to analyze it, because the resolution chosen here may differ from
3205 // the resolution chosen in other parts of the compiler.
3206 if (!RHSC->getValue()->isZero()) {
3207 // Determine if the division can be folded into the operands of
3208 // its operands.
3209 // TODO: Generalize this to non-constants by using known-bits information.
3210 Type *Ty = LHS->getType();
3211 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3212 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3213 // For non-power-of-two values, effectively round the value up to the
3214 // nearest power of two.
3215 if (!RHSC->getAPInt().isPowerOf2())
3216 ++MaxShiftAmt;
3217 IntegerType *ExtTy =
3218 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3219 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3220 if (const SCEVConstant *Step =
3221 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3222 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3223 const APInt &StepInt = Step->getAPInt();
3224 const APInt &DivInt = RHSC->getAPInt();
3225 if (!StepInt.urem(DivInt) &&
3226 getZeroExtendExpr(AR, ExtTy) ==
3227 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3228 getZeroExtendExpr(Step, ExtTy),
3229 AR->getLoop(), SCEV::FlagAnyWrap)) {
3230 SmallVector<const SCEV *, 4> Operands;
3231 for (const SCEV *Op : AR->operands())
3232 Operands.push_back(getUDivExpr(Op, RHS));
3233 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3234 }
3235 /// Get a canonical UDivExpr for a recurrence.
3236 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3237 // We can currently only fold X%N if X is constant.
3238 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3239 if (StartC && !DivInt.urem(StepInt) &&
3240 getZeroExtendExpr(AR, ExtTy) ==
3241 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3242 getZeroExtendExpr(Step, ExtTy),
3243 AR->getLoop(), SCEV::FlagAnyWrap)) {
3244 const APInt &StartInt = StartC->getAPInt();
3245 const APInt &StartRem = StartInt.urem(StepInt);
3246 if (StartRem != 0)
3247 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3248 AR->getLoop(), SCEV::FlagNW);
3249 }
3250 }
3251 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3252 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3253 SmallVector<const SCEV *, 4> Operands;
3254 for (const SCEV *Op : M->operands())
3255 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3256 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3257 // Find an operand that's safely divisible.
3258 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3259 const SCEV *Op = M->getOperand(i);
3260 const SCEV *Div = getUDivExpr(Op, RHSC);
3261 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3262 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3263 M->op_end());
3264 Operands[i] = Div;
3265 return getMulExpr(Operands);
3266 }
3267 }
3268 }
3269
3270 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3271 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3272 if (auto *DivisorConstant =
3273 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3274 bool Overflow = false;
3275 APInt NewRHS =
3276 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3277 if (Overflow) {
3278 return getConstant(RHSC->getType(), 0, false);
3279 }
3280 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3281 }
3282 }
3283
3284 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3285 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3286 SmallVector<const SCEV *, 4> Operands;
3287 for (const SCEV *Op : A->operands())
3288 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3289 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3290 Operands.clear();
3291 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3292 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3293 if (isa<SCEVUDivExpr>(Op) ||
3294 getMulExpr(Op, RHS) != A->getOperand(i))
3295 break;
3296 Operands.push_back(Op);
3297 }
3298 if (Operands.size() == A->getNumOperands())
3299 return getAddExpr(Operands);
3300 }
3301 }
3302
3303 // Fold if both operands are constant.
3304 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3305 Constant *LHSCV = LHSC->getValue();
3306 Constant *RHSCV = RHSC->getValue();
3307 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3308 RHSCV)));
3309 }
3310 }
3311 }
3312
3313 FoldingSetNodeID ID;
3314 ID.AddInteger(scUDivExpr);
3315 ID.AddPointer(LHS);
3316 ID.AddPointer(RHS);
3317 void *IP = nullptr;
3318 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3319 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3320 LHS, RHS);
3321 UniqueSCEVs.InsertNode(S, IP);
3322 addToLoopUseLists(S);
3323 return S;
3324 }
3325
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3326 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3327 APInt A = C1->getAPInt().abs();
3328 APInt B = C2->getAPInt().abs();
3329 uint32_t ABW = A.getBitWidth();
3330 uint32_t BBW = B.getBitWidth();
3331
3332 if (ABW > BBW)
3333 B = B.zext(ABW);
3334 else if (ABW < BBW)
3335 A = A.zext(BBW);
3336
3337 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3338 }
3339
3340 /// Get a canonical unsigned division expression, or something simpler if
3341 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3342 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3343 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3344 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3345 const SCEV *RHS) {
3346 // TODO: we could try to find factors in all sorts of things, but for now we
3347 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3348 // end of this file for inspiration.
3349
3350 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3351 if (!Mul || !Mul->hasNoUnsignedWrap())
3352 return getUDivExpr(LHS, RHS);
3353
3354 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3355 // If the mulexpr multiplies by a constant, then that constant must be the
3356 // first element of the mulexpr.
3357 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3358 if (LHSCst == RHSCst) {
3359 SmallVector<const SCEV *, 2> Operands;
3360 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3361 return getMulExpr(Operands);
3362 }
3363
3364 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3365 // that there's a factor provided by one of the other terms. We need to
3366 // check.
3367 APInt Factor = gcd(LHSCst, RHSCst);
3368 if (!Factor.isIntN(1)) {
3369 LHSCst =
3370 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3371 RHSCst =
3372 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3373 SmallVector<const SCEV *, 2> Operands;
3374 Operands.push_back(LHSCst);
3375 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3376 LHS = getMulExpr(Operands);
3377 RHS = RHSCst;
3378 Mul = dyn_cast<SCEVMulExpr>(LHS);
3379 if (!Mul)
3380 return getUDivExactExpr(LHS, RHS);
3381 }
3382 }
3383 }
3384
3385 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3386 if (Mul->getOperand(i) == RHS) {
3387 SmallVector<const SCEV *, 2> Operands;
3388 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3389 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3390 return getMulExpr(Operands);
3391 }
3392 }
3393
3394 return getUDivExpr(LHS, RHS);
3395 }
3396
3397 /// Get an add recurrence expression for the specified loop. Simplify the
3398 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3399 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3400 const Loop *L,
3401 SCEV::NoWrapFlags Flags) {
3402 SmallVector<const SCEV *, 4> Operands;
3403 Operands.push_back(Start);
3404 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3405 if (StepChrec->getLoop() == L) {
3406 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3407 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3408 }
3409
3410 Operands.push_back(Step);
3411 return getAddRecExpr(Operands, L, Flags);
3412 }
3413
3414 /// Get an add recurrence expression for the specified loop. Simplify the
3415 /// expression as much as possible.
3416 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3417 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3418 const Loop *L, SCEV::NoWrapFlags Flags) {
3419 if (Operands.size() == 1) return Operands[0];
3420 #ifndef NDEBUG
3421 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3422 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3423 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3424 "SCEVAddRecExpr operand types don't match!");
3425 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3426 assert(isLoopInvariant(Operands[i], L) &&
3427 "SCEVAddRecExpr operand is not loop-invariant!");
3428 #endif
3429
3430 if (Operands.back()->isZero()) {
3431 Operands.pop_back();
3432 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3433 }
3434
3435 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3436 // use that information to infer NUW and NSW flags. However, computing a
3437 // BE count requires calling getAddRecExpr, so we may not yet have a
3438 // meaningful BE count at this point (and if we don't, we'd be stuck
3439 // with a SCEVCouldNotCompute as the cached BE count).
3440
3441 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3442
3443 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3444 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3445 const Loop *NestedLoop = NestedAR->getLoop();
3446 if (L->contains(NestedLoop)
3447 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3448 : (!NestedLoop->contains(L) &&
3449 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3450 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3451 NestedAR->op_end());
3452 Operands[0] = NestedAR->getStart();
3453 // AddRecs require their operands be loop-invariant with respect to their
3454 // loops. Don't perform this transformation if it would break this
3455 // requirement.
3456 bool AllInvariant = all_of(
3457 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3458
3459 if (AllInvariant) {
3460 // Create a recurrence for the outer loop with the same step size.
3461 //
3462 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3463 // inner recurrence has the same property.
3464 SCEV::NoWrapFlags OuterFlags =
3465 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3466
3467 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3468 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3469 return isLoopInvariant(Op, NestedLoop);
3470 });
3471
3472 if (AllInvariant) {
3473 // Ok, both add recurrences are valid after the transformation.
3474 //
3475 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3476 // the outer recurrence has the same property.
3477 SCEV::NoWrapFlags InnerFlags =
3478 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3479 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3480 }
3481 }
3482 // Reset Operands to its original state.
3483 Operands[0] = NestedAR;
3484 }
3485 }
3486
3487 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3488 // already have one, otherwise create a new one.
3489 return getOrCreateAddRecExpr(Operands, L, Flags);
3490 }
3491
3492 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3493 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3494 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3495 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3496 // getSCEV(Base)->getType() has the same address space as Base->getType()
3497 // because SCEV::getType() preserves the address space.
3498 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3499 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3500 // instruction to its SCEV, because the Instruction may be guarded by control
3501 // flow and the no-overflow bits may not be valid for the expression in any
3502 // context. This can be fixed similarly to how these flags are handled for
3503 // adds.
3504 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3505 : SCEV::FlagAnyWrap;
3506
3507 const SCEV *TotalOffset = getZero(IntIdxTy);
3508 // The array size is unimportant. The first thing we do on CurTy is getting
3509 // its element type.
3510 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3511 for (const SCEV *IndexExpr : IndexExprs) {
3512 // Compute the (potentially symbolic) offset in bytes for this index.
3513 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3514 // For a struct, add the member offset.
3515 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3516 unsigned FieldNo = Index->getZExtValue();
3517 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3518
3519 // Add the field offset to the running total offset.
3520 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3521
3522 // Update CurTy to the type of the field at Index.
3523 CurTy = STy->getTypeAtIndex(Index);
3524 } else {
3525 // Update CurTy to its element type.
3526 CurTy = cast<SequentialType>(CurTy)->getElementType();
3527 // For an array, add the element offset, explicitly scaled.
3528 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3529 // Getelementptr indices are signed.
3530 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3531
3532 // Multiply the index by the element size to compute the element offset.
3533 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3534
3535 // Add the element offset to the running total offset.
3536 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3537 }
3538 }
3539
3540 // Add the total offset from all the GEP indices to the base.
3541 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3542 }
3543
3544 std::tuple<const SCEV *, FoldingSetNodeID, void *>
findExistingSCEVInCache(int SCEVType,ArrayRef<const SCEV * > Ops)3545 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3546 ArrayRef<const SCEV *> Ops) {
3547 FoldingSetNodeID ID;
3548 void *IP = nullptr;
3549 ID.AddInteger(SCEVType);
3550 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3551 ID.AddPointer(Ops[i]);
3552 return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3553 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3554 }
3555
getMinMaxExpr(unsigned Kind,SmallVectorImpl<const SCEV * > & Ops)3556 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3557 SmallVectorImpl<const SCEV *> &Ops) {
3558 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3559 if (Ops.size() == 1) return Ops[0];
3560 #ifndef NDEBUG
3561 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3562 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3563 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3564 "Operand types don't match!");
3565 #endif
3566
3567 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3568 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3569
3570 // Sort by complexity, this groups all similar expression types together.
3571 GroupByComplexity(Ops, &LI, DT);
3572
3573 // Check if we have created the same expression before.
3574 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3575 return S;
3576 }
3577
3578 // If there are any constants, fold them together.
3579 unsigned Idx = 0;
3580 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3581 ++Idx;
3582 assert(Idx < Ops.size());
3583 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3584 if (Kind == scSMaxExpr)
3585 return APIntOps::smax(LHS, RHS);
3586 else if (Kind == scSMinExpr)
3587 return APIntOps::smin(LHS, RHS);
3588 else if (Kind == scUMaxExpr)
3589 return APIntOps::umax(LHS, RHS);
3590 else if (Kind == scUMinExpr)
3591 return APIntOps::umin(LHS, RHS);
3592 llvm_unreachable("Unknown SCEV min/max opcode");
3593 };
3594
3595 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3596 // We found two constants, fold them together!
3597 ConstantInt *Fold = ConstantInt::get(
3598 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3599 Ops[0] = getConstant(Fold);
3600 Ops.erase(Ops.begin()+1); // Erase the folded element
3601 if (Ops.size() == 1) return Ops[0];
3602 LHSC = cast<SCEVConstant>(Ops[0]);
3603 }
3604
3605 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3606 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3607
3608 if (IsMax ? IsMinV : IsMaxV) {
3609 // If we are left with a constant minimum(/maximum)-int, strip it off.
3610 Ops.erase(Ops.begin());
3611 --Idx;
3612 } else if (IsMax ? IsMaxV : IsMinV) {
3613 // If we have a max(/min) with a constant maximum(/minimum)-int,
3614 // it will always be the extremum.
3615 return LHSC;
3616 }
3617
3618 if (Ops.size() == 1) return Ops[0];
3619 }
3620
3621 // Find the first operation of the same kind
3622 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3623 ++Idx;
3624
3625 // Check to see if one of the operands is of the same kind. If so, expand its
3626 // operands onto our operand list, and recurse to simplify.
3627 if (Idx < Ops.size()) {
3628 bool DeletedAny = false;
3629 while (Ops[Idx]->getSCEVType() == Kind) {
3630 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3631 Ops.erase(Ops.begin()+Idx);
3632 Ops.append(SMME->op_begin(), SMME->op_end());
3633 DeletedAny = true;
3634 }
3635
3636 if (DeletedAny)
3637 return getMinMaxExpr(Kind, Ops);
3638 }
3639
3640 // Okay, check to see if the same value occurs in the operand list twice. If
3641 // so, delete one. Since we sorted the list, these values are required to
3642 // be adjacent.
3643 llvm::CmpInst::Predicate GEPred =
3644 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3645 llvm::CmpInst::Predicate LEPred =
3646 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3647 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3648 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3649 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3650 if (Ops[i] == Ops[i + 1] ||
3651 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3652 // X op Y op Y --> X op Y
3653 // X op Y --> X, if we know X, Y are ordered appropriately
3654 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3655 --i;
3656 --e;
3657 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3658 Ops[i + 1])) {
3659 // X op Y --> Y, if we know X, Y are ordered appropriately
3660 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3661 --i;
3662 --e;
3663 }
3664 }
3665
3666 if (Ops.size() == 1) return Ops[0];
3667
3668 assert(!Ops.empty() && "Reduced smax down to nothing!");
3669
3670 // Okay, it looks like we really DO need an expr. Check to see if we
3671 // already have one, otherwise create a new one.
3672 const SCEV *ExistingSCEV;
3673 FoldingSetNodeID ID;
3674 void *IP;
3675 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3676 if (ExistingSCEV)
3677 return ExistingSCEV;
3678 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3679 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3680 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3681 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3682
3683 UniqueSCEVs.InsertNode(S, IP);
3684 addToLoopUseLists(S);
3685 return S;
3686 }
3687
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3688 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3689 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3690 return getSMaxExpr(Ops);
3691 }
3692
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3693 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3694 return getMinMaxExpr(scSMaxExpr, Ops);
3695 }
3696
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3697 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3698 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3699 return getUMaxExpr(Ops);
3700 }
3701
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3702 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3703 return getMinMaxExpr(scUMaxExpr, Ops);
3704 }
3705
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3706 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3707 const SCEV *RHS) {
3708 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3709 return getSMinExpr(Ops);
3710 }
3711
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3712 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3713 return getMinMaxExpr(scSMinExpr, Ops);
3714 }
3715
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3716 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3717 const SCEV *RHS) {
3718 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3719 return getUMinExpr(Ops);
3720 }
3721
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3722 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3723 return getMinMaxExpr(scUMinExpr, Ops);
3724 }
3725
getSizeOfExpr(Type * IntTy,Type * AllocTy)3726 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3727 // We can bypass creating a target-independent
3728 // constant expression and then folding it back into a ConstantInt.
3729 // This is just a compile-time optimization.
3730 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3731 }
3732
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3733 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3734 StructType *STy,
3735 unsigned FieldNo) {
3736 // We can bypass creating a target-independent
3737 // constant expression and then folding it back into a ConstantInt.
3738 // This is just a compile-time optimization.
3739 return getConstant(
3740 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3741 }
3742
getUnknown(Value * V)3743 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3744 // Don't attempt to do anything other than create a SCEVUnknown object
3745 // here. createSCEV only calls getUnknown after checking for all other
3746 // interesting possibilities, and any other code that calls getUnknown
3747 // is doing so in order to hide a value from SCEV canonicalization.
3748
3749 FoldingSetNodeID ID;
3750 ID.AddInteger(scUnknown);
3751 ID.AddPointer(V);
3752 void *IP = nullptr;
3753 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3754 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3755 "Stale SCEVUnknown in uniquing map!");
3756 return S;
3757 }
3758 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3759 FirstUnknown);
3760 FirstUnknown = cast<SCEVUnknown>(S);
3761 UniqueSCEVs.InsertNode(S, IP);
3762 return S;
3763 }
3764
3765 //===----------------------------------------------------------------------===//
3766 // Basic SCEV Analysis and PHI Idiom Recognition Code
3767 //
3768
3769 /// Test if values of the given type are analyzable within the SCEV
3770 /// framework. This primarily includes integer types, and it can optionally
3771 /// include pointer types if the ScalarEvolution class has access to
3772 /// target-specific information.
isSCEVable(Type * Ty) const3773 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3774 // Integers and pointers are always SCEVable.
3775 return Ty->isIntOrPtrTy();
3776 }
3777
3778 /// Return the size in bits of the specified type, for which isSCEVable must
3779 /// return true.
getTypeSizeInBits(Type * Ty) const3780 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3781 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3782 if (Ty->isPointerTy())
3783 return getDataLayout().getIndexTypeSizeInBits(Ty);
3784 return getDataLayout().getTypeSizeInBits(Ty);
3785 }
3786
3787 /// Return a type with the same bitwidth as the given type and which represents
3788 /// how SCEV will treat the given type, for which isSCEVable must return
3789 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3790 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3791 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3792
3793 if (Ty->isIntegerTy())
3794 return Ty;
3795
3796 // The only other support type is pointer.
3797 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3798 return getDataLayout().getIndexType(Ty);
3799 }
3800
getWiderType(Type * T1,Type * T2) const3801 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3802 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3803 }
3804
getCouldNotCompute()3805 const SCEV *ScalarEvolution::getCouldNotCompute() {
3806 return CouldNotCompute.get();
3807 }
3808
checkValidity(const SCEV * S) const3809 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3810 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3811 auto *SU = dyn_cast<SCEVUnknown>(S);
3812 return SU && SU->getValue() == nullptr;
3813 });
3814
3815 return !ContainsNulls;
3816 }
3817
containsAddRecurrence(const SCEV * S)3818 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3819 HasRecMapType::iterator I = HasRecMap.find(S);
3820 if (I != HasRecMap.end())
3821 return I->second;
3822
3823 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3824 HasRecMap.insert({S, FoundAddRec});
3825 return FoundAddRec;
3826 }
3827
3828 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3829 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3830 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3831 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3832 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3833 if (!Add)
3834 return {S, nullptr};
3835
3836 if (Add->getNumOperands() != 2)
3837 return {S, nullptr};
3838
3839 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3840 if (!ConstOp)
3841 return {S, nullptr};
3842
3843 return {Add->getOperand(1), ConstOp->getValue()};
3844 }
3845
3846 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3847 /// by the value and offset from any ValueOffsetPair in the set.
3848 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3849 ScalarEvolution::getSCEVValues(const SCEV *S) {
3850 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3851 if (SI == ExprValueMap.end())
3852 return nullptr;
3853 #ifndef NDEBUG
3854 if (VerifySCEVMap) {
3855 // Check there is no dangling Value in the set returned.
3856 for (const auto &VE : SI->second)
3857 assert(ValueExprMap.count(VE.first));
3858 }
3859 #endif
3860 return &SI->second;
3861 }
3862
3863 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3864 /// cannot be used separately. eraseValueFromMap should be used to remove
3865 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3866 void ScalarEvolution::eraseValueFromMap(Value *V) {
3867 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3868 if (I != ValueExprMap.end()) {
3869 const SCEV *S = I->second;
3870 // Remove {V, 0} from the set of ExprValueMap[S]
3871 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3872 SV->remove({V, nullptr});
3873
3874 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3875 const SCEV *Stripped;
3876 ConstantInt *Offset;
3877 std::tie(Stripped, Offset) = splitAddExpr(S);
3878 if (Offset != nullptr) {
3879 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3880 SV->remove({V, Offset});
3881 }
3882 ValueExprMap.erase(V);
3883 }
3884 }
3885
3886 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3887 /// TODO: In reality it is better to check the poison recursively
3888 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3889 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3890 if (auto *I = dyn_cast<Instruction>(V)) {
3891 if (isa<OverflowingBinaryOperator>(I)) {
3892 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3893 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3894 return true;
3895 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3896 return true;
3897 }
3898 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3899 return true;
3900 }
3901 return false;
3902 }
3903
3904 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3905 /// create a new one.
getSCEV(Value * V)3906 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3907 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3908
3909 const SCEV *S = getExistingSCEV(V);
3910 if (S == nullptr) {
3911 S = createSCEV(V);
3912 // During PHI resolution, it is possible to create two SCEVs for the same
3913 // V, so it is needed to double check whether V->S is inserted into
3914 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3915 std::pair<ValueExprMapType::iterator, bool> Pair =
3916 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3917 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3918 ExprValueMap[S].insert({V, nullptr});
3919
3920 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3921 // ExprValueMap.
3922 const SCEV *Stripped = S;
3923 ConstantInt *Offset = nullptr;
3924 std::tie(Stripped, Offset) = splitAddExpr(S);
3925 // If stripped is SCEVUnknown, don't bother to save
3926 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3927 // increase the complexity of the expansion code.
3928 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3929 // because it may generate add/sub instead of GEP in SCEV expansion.
3930 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3931 !isa<GetElementPtrInst>(V))
3932 ExprValueMap[Stripped].insert({V, Offset});
3933 }
3934 }
3935 return S;
3936 }
3937
getExistingSCEV(Value * V)3938 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3939 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3940
3941 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3942 if (I != ValueExprMap.end()) {
3943 const SCEV *S = I->second;
3944 if (checkValidity(S))
3945 return S;
3946 eraseValueFromMap(V);
3947 forgetMemoizedResults(S);
3948 }
3949 return nullptr;
3950 }
3951
3952 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3953 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3954 SCEV::NoWrapFlags Flags) {
3955 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3956 return getConstant(
3957 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3958
3959 Type *Ty = V->getType();
3960 Ty = getEffectiveSCEVType(Ty);
3961 return getMulExpr(
3962 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3963 }
3964
3965 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)3966 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3967 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3968 if (!Add || Add->getNumOperands() != 2 ||
3969 !Add->getOperand(0)->isAllOnesValue())
3970 return nullptr;
3971
3972 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3973 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3974 !AddRHS->getOperand(0)->isAllOnesValue())
3975 return nullptr;
3976
3977 return AddRHS->getOperand(1);
3978 }
3979
3980 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3981 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3982 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3983 return getConstant(
3984 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3985
3986 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3987 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3988 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3989 SmallVector<const SCEV *, 2> MatchedOperands;
3990 for (const SCEV *Operand : MME->operands()) {
3991 const SCEV *Matched = MatchNotExpr(Operand);
3992 if (!Matched)
3993 return (const SCEV *)nullptr;
3994 MatchedOperands.push_back(Matched);
3995 }
3996 return getMinMaxExpr(
3997 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3998 MatchedOperands);
3999 };
4000 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4001 return Replaced;
4002 }
4003
4004 Type *Ty = V->getType();
4005 Ty = getEffectiveSCEVType(Ty);
4006 const SCEV *AllOnes =
4007 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4008 return getMinusSCEV(AllOnes, V);
4009 }
4010
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)4011 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4012 SCEV::NoWrapFlags Flags,
4013 unsigned Depth) {
4014 // Fast path: X - X --> 0.
4015 if (LHS == RHS)
4016 return getZero(LHS->getType());
4017
4018 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4019 // makes it so that we cannot make much use of NUW.
4020 auto AddFlags = SCEV::FlagAnyWrap;
4021 const bool RHSIsNotMinSigned =
4022 !getSignedRangeMin(RHS).isMinSignedValue();
4023 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4024 // Let M be the minimum representable signed value. Then (-1)*RHS
4025 // signed-wraps if and only if RHS is M. That can happen even for
4026 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4027 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4028 // (-1)*RHS, we need to prove that RHS != M.
4029 //
4030 // If LHS is non-negative and we know that LHS - RHS does not
4031 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4032 // either by proving that RHS > M or that LHS >= 0.
4033 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4034 AddFlags = SCEV::FlagNSW;
4035 }
4036 }
4037
4038 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4039 // RHS is NSW and LHS >= 0.
4040 //
4041 // The difficulty here is that the NSW flag may have been proven
4042 // relative to a loop that is to be found in a recurrence in LHS and
4043 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4044 // larger scope than intended.
4045 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4046
4047 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4048 }
4049
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4050 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4051 unsigned Depth) {
4052 Type *SrcTy = V->getType();
4053 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4054 "Cannot truncate or zero extend with non-integer arguments!");
4055 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4056 return V; // No conversion
4057 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4058 return getTruncateExpr(V, Ty, Depth);
4059 return getZeroExtendExpr(V, Ty, Depth);
4060 }
4061
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4062 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4063 unsigned Depth) {
4064 Type *SrcTy = V->getType();
4065 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4066 "Cannot truncate or zero extend with non-integer arguments!");
4067 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4068 return V; // No conversion
4069 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4070 return getTruncateExpr(V, Ty, Depth);
4071 return getSignExtendExpr(V, Ty, Depth);
4072 }
4073
4074 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4075 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4076 Type *SrcTy = V->getType();
4077 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4078 "Cannot noop or zero extend with non-integer arguments!");
4079 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4080 "getNoopOrZeroExtend cannot truncate!");
4081 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4082 return V; // No conversion
4083 return getZeroExtendExpr(V, Ty);
4084 }
4085
4086 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4087 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4088 Type *SrcTy = V->getType();
4089 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4090 "Cannot noop or sign extend with non-integer arguments!");
4091 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4092 "getNoopOrSignExtend cannot truncate!");
4093 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4094 return V; // No conversion
4095 return getSignExtendExpr(V, Ty);
4096 }
4097
4098 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4099 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4100 Type *SrcTy = V->getType();
4101 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4102 "Cannot noop or any extend with non-integer arguments!");
4103 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4104 "getNoopOrAnyExtend cannot truncate!");
4105 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4106 return V; // No conversion
4107 return getAnyExtendExpr(V, Ty);
4108 }
4109
4110 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4111 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4112 Type *SrcTy = V->getType();
4113 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4114 "Cannot truncate or noop with non-integer arguments!");
4115 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4116 "getTruncateOrNoop cannot extend!");
4117 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4118 return V; // No conversion
4119 return getTruncateExpr(V, Ty);
4120 }
4121
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4122 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4123 const SCEV *RHS) {
4124 const SCEV *PromotedLHS = LHS;
4125 const SCEV *PromotedRHS = RHS;
4126
4127 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4128 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4129 else
4130 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4131
4132 return getUMaxExpr(PromotedLHS, PromotedRHS);
4133 }
4134
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4135 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4136 const SCEV *RHS) {
4137 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4138 return getUMinFromMismatchedTypes(Ops);
4139 }
4140
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4141 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4142 SmallVectorImpl<const SCEV *> &Ops) {
4143 assert(!Ops.empty() && "At least one operand must be!");
4144 // Trivial case.
4145 if (Ops.size() == 1)
4146 return Ops[0];
4147
4148 // Find the max type first.
4149 Type *MaxType = nullptr;
4150 for (auto *S : Ops)
4151 if (MaxType)
4152 MaxType = getWiderType(MaxType, S->getType());
4153 else
4154 MaxType = S->getType();
4155
4156 // Extend all ops to max type.
4157 SmallVector<const SCEV *, 2> PromotedOps;
4158 for (auto *S : Ops)
4159 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4160
4161 // Generate umin.
4162 return getUMinExpr(PromotedOps);
4163 }
4164
getPointerBase(const SCEV * V)4165 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4166 // A pointer operand may evaluate to a nonpointer expression, such as null.
4167 if (!V->getType()->isPointerTy())
4168 return V;
4169
4170 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4171 return getPointerBase(Cast->getOperand());
4172 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4173 const SCEV *PtrOp = nullptr;
4174 for (const SCEV *NAryOp : NAry->operands()) {
4175 if (NAryOp->getType()->isPointerTy()) {
4176 // Cannot find the base of an expression with multiple pointer operands.
4177 if (PtrOp)
4178 return V;
4179 PtrOp = NAryOp;
4180 }
4181 }
4182 if (!PtrOp)
4183 return V;
4184 return getPointerBase(PtrOp);
4185 }
4186 return V;
4187 }
4188
4189 /// Push users of the given Instruction onto the given Worklist.
4190 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4191 PushDefUseChildren(Instruction *I,
4192 SmallVectorImpl<Instruction *> &Worklist) {
4193 // Push the def-use children onto the Worklist stack.
4194 for (User *U : I->users())
4195 Worklist.push_back(cast<Instruction>(U));
4196 }
4197
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4198 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4199 SmallVector<Instruction *, 16> Worklist;
4200 PushDefUseChildren(PN, Worklist);
4201
4202 SmallPtrSet<Instruction *, 8> Visited;
4203 Visited.insert(PN);
4204 while (!Worklist.empty()) {
4205 Instruction *I = Worklist.pop_back_val();
4206 if (!Visited.insert(I).second)
4207 continue;
4208
4209 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4210 if (It != ValueExprMap.end()) {
4211 const SCEV *Old = It->second;
4212
4213 // Short-circuit the def-use traversal if the symbolic name
4214 // ceases to appear in expressions.
4215 if (Old != SymName && !hasOperand(Old, SymName))
4216 continue;
4217
4218 // SCEVUnknown for a PHI either means that it has an unrecognized
4219 // structure, it's a PHI that's in the progress of being computed
4220 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4221 // additional loop trip count information isn't going to change anything.
4222 // In the second case, createNodeForPHI will perform the necessary
4223 // updates on its own when it gets to that point. In the third, we do
4224 // want to forget the SCEVUnknown.
4225 if (!isa<PHINode>(I) ||
4226 !isa<SCEVUnknown>(Old) ||
4227 (I != PN && Old == SymName)) {
4228 eraseValueFromMap(It->first);
4229 forgetMemoizedResults(Old);
4230 }
4231 }
4232
4233 PushDefUseChildren(I, Worklist);
4234 }
4235 }
4236
4237 namespace {
4238
4239 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4240 /// expression in case its Loop is L. If it is not L then
4241 /// if IgnoreOtherLoops is true then use AddRec itself
4242 /// otherwise rewrite cannot be done.
4243 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4244 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4245 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4246 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4247 bool IgnoreOtherLoops = true) {
4248 SCEVInitRewriter Rewriter(L, SE);
4249 const SCEV *Result = Rewriter.visit(S);
4250 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4251 return SE.getCouldNotCompute();
4252 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4253 ? SE.getCouldNotCompute()
4254 : Result;
4255 }
4256
visitUnknown(const SCEVUnknown * Expr)4257 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4258 if (!SE.isLoopInvariant(Expr, L))
4259 SeenLoopVariantSCEVUnknown = true;
4260 return Expr;
4261 }
4262
visitAddRecExpr(const SCEVAddRecExpr * Expr)4263 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4264 // Only re-write AddRecExprs for this loop.
4265 if (Expr->getLoop() == L)
4266 return Expr->getStart();
4267 SeenOtherLoops = true;
4268 return Expr;
4269 }
4270
hasSeenLoopVariantSCEVUnknown()4271 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4272
hasSeenOtherLoops()4273 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4274
4275 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4276 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4277 : SCEVRewriteVisitor(SE), L(L) {}
4278
4279 const Loop *L;
4280 bool SeenLoopVariantSCEVUnknown = false;
4281 bool SeenOtherLoops = false;
4282 };
4283
4284 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4285 /// increment expression in case its Loop is L. If it is not L then
4286 /// use AddRec itself.
4287 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4288 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4289 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4290 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4291 SCEVPostIncRewriter Rewriter(L, SE);
4292 const SCEV *Result = Rewriter.visit(S);
4293 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4294 ? SE.getCouldNotCompute()
4295 : Result;
4296 }
4297
visitUnknown(const SCEVUnknown * Expr)4298 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4299 if (!SE.isLoopInvariant(Expr, L))
4300 SeenLoopVariantSCEVUnknown = true;
4301 return Expr;
4302 }
4303
visitAddRecExpr(const SCEVAddRecExpr * Expr)4304 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4305 // Only re-write AddRecExprs for this loop.
4306 if (Expr->getLoop() == L)
4307 return Expr->getPostIncExpr(SE);
4308 SeenOtherLoops = true;
4309 return Expr;
4310 }
4311
hasSeenLoopVariantSCEVUnknown()4312 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4313
hasSeenOtherLoops()4314 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4315
4316 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4317 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4318 : SCEVRewriteVisitor(SE), L(L) {}
4319
4320 const Loop *L;
4321 bool SeenLoopVariantSCEVUnknown = false;
4322 bool SeenOtherLoops = false;
4323 };
4324
4325 /// This class evaluates the compare condition by matching it against the
4326 /// condition of loop latch. If there is a match we assume a true value
4327 /// for the condition while building SCEV nodes.
4328 class SCEVBackedgeConditionFolder
4329 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4330 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4331 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4332 ScalarEvolution &SE) {
4333 bool IsPosBECond = false;
4334 Value *BECond = nullptr;
4335 if (BasicBlock *Latch = L->getLoopLatch()) {
4336 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4337 if (BI && BI->isConditional()) {
4338 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4339 "Both outgoing branches should not target same header!");
4340 BECond = BI->getCondition();
4341 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4342 } else {
4343 return S;
4344 }
4345 }
4346 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4347 return Rewriter.visit(S);
4348 }
4349
visitUnknown(const SCEVUnknown * Expr)4350 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4351 const SCEV *Result = Expr;
4352 bool InvariantF = SE.isLoopInvariant(Expr, L);
4353
4354 if (!InvariantF) {
4355 Instruction *I = cast<Instruction>(Expr->getValue());
4356 switch (I->getOpcode()) {
4357 case Instruction::Select: {
4358 SelectInst *SI = cast<SelectInst>(I);
4359 Optional<const SCEV *> Res =
4360 compareWithBackedgeCondition(SI->getCondition());
4361 if (Res.hasValue()) {
4362 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4363 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4364 }
4365 break;
4366 }
4367 default: {
4368 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4369 if (Res.hasValue())
4370 Result = Res.getValue();
4371 break;
4372 }
4373 }
4374 }
4375 return Result;
4376 }
4377
4378 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4379 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4380 bool IsPosBECond, ScalarEvolution &SE)
4381 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4382 IsPositiveBECond(IsPosBECond) {}
4383
4384 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4385
4386 const Loop *L;
4387 /// Loop back condition.
4388 Value *BackedgeCond = nullptr;
4389 /// Set to true if loop back is on positive branch condition.
4390 bool IsPositiveBECond;
4391 };
4392
4393 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4394 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4395
4396 // If value matches the backedge condition for loop latch,
4397 // then return a constant evolution node based on loopback
4398 // branch taken.
4399 if (BackedgeCond == IC)
4400 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4401 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4402 return None;
4403 }
4404
4405 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4406 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4407 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4408 ScalarEvolution &SE) {
4409 SCEVShiftRewriter Rewriter(L, SE);
4410 const SCEV *Result = Rewriter.visit(S);
4411 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4412 }
4413
visitUnknown(const SCEVUnknown * Expr)4414 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4415 // Only allow AddRecExprs for this loop.
4416 if (!SE.isLoopInvariant(Expr, L))
4417 Valid = false;
4418 return Expr;
4419 }
4420
visitAddRecExpr(const SCEVAddRecExpr * Expr)4421 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4422 if (Expr->getLoop() == L && Expr->isAffine())
4423 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4424 Valid = false;
4425 return Expr;
4426 }
4427
isValid()4428 bool isValid() { return Valid; }
4429
4430 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4431 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4432 : SCEVRewriteVisitor(SE), L(L) {}
4433
4434 const Loop *L;
4435 bool Valid = true;
4436 };
4437
4438 } // end anonymous namespace
4439
4440 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4441 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4442 if (!AR->isAffine())
4443 return SCEV::FlagAnyWrap;
4444
4445 using OBO = OverflowingBinaryOperator;
4446
4447 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4448
4449 if (!AR->hasNoSignedWrap()) {
4450 ConstantRange AddRecRange = getSignedRange(AR);
4451 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4452
4453 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4454 Instruction::Add, IncRange, OBO::NoSignedWrap);
4455 if (NSWRegion.contains(AddRecRange))
4456 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4457 }
4458
4459 if (!AR->hasNoUnsignedWrap()) {
4460 ConstantRange AddRecRange = getUnsignedRange(AR);
4461 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4462
4463 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4464 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4465 if (NUWRegion.contains(AddRecRange))
4466 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4467 }
4468
4469 return Result;
4470 }
4471
4472 namespace {
4473
4474 /// Represents an abstract binary operation. This may exist as a
4475 /// normal instruction or constant expression, or may have been
4476 /// derived from an expression tree.
4477 struct BinaryOp {
4478 unsigned Opcode;
4479 Value *LHS;
4480 Value *RHS;
4481 bool IsNSW = false;
4482 bool IsNUW = false;
4483
4484 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4485 /// constant expression.
4486 Operator *Op = nullptr;
4487
BinaryOp__anonf9731d480e11::BinaryOp4488 explicit BinaryOp(Operator *Op)
4489 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4490 Op(Op) {
4491 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4492 IsNSW = OBO->hasNoSignedWrap();
4493 IsNUW = OBO->hasNoUnsignedWrap();
4494 }
4495 }
4496
BinaryOp__anonf9731d480e11::BinaryOp4497 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4498 bool IsNUW = false)
4499 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4500 };
4501
4502 } // end anonymous namespace
4503
4504 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4505 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4506 auto *Op = dyn_cast<Operator>(V);
4507 if (!Op)
4508 return None;
4509
4510 // Implementation detail: all the cleverness here should happen without
4511 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4512 // SCEV expressions when possible, and we should not break that.
4513
4514 switch (Op->getOpcode()) {
4515 case Instruction::Add:
4516 case Instruction::Sub:
4517 case Instruction::Mul:
4518 case Instruction::UDiv:
4519 case Instruction::URem:
4520 case Instruction::And:
4521 case Instruction::Or:
4522 case Instruction::AShr:
4523 case Instruction::Shl:
4524 return BinaryOp(Op);
4525
4526 case Instruction::Xor:
4527 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4528 // If the RHS of the xor is a signmask, then this is just an add.
4529 // Instcombine turns add of signmask into xor as a strength reduction step.
4530 if (RHSC->getValue().isSignMask())
4531 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4532 return BinaryOp(Op);
4533
4534 case Instruction::LShr:
4535 // Turn logical shift right of a constant into a unsigned divide.
4536 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4537 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4538
4539 // If the shift count is not less than the bitwidth, the result of
4540 // the shift is undefined. Don't try to analyze it, because the
4541 // resolution chosen here may differ from the resolution chosen in
4542 // other parts of the compiler.
4543 if (SA->getValue().ult(BitWidth)) {
4544 Constant *X =
4545 ConstantInt::get(SA->getContext(),
4546 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4547 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4548 }
4549 }
4550 return BinaryOp(Op);
4551
4552 case Instruction::ExtractValue: {
4553 auto *EVI = cast<ExtractValueInst>(Op);
4554 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4555 break;
4556
4557 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4558 if (!WO)
4559 break;
4560
4561 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4562 bool Signed = WO->isSigned();
4563 // TODO: Should add nuw/nsw flags for mul as well.
4564 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4565 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4566
4567 // Now that we know that all uses of the arithmetic-result component of
4568 // CI are guarded by the overflow check, we can go ahead and pretend
4569 // that the arithmetic is non-overflowing.
4570 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4571 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4572 }
4573
4574 default:
4575 break;
4576 }
4577
4578 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4579 // semantics as a Sub, return a binary sub expression.
4580 if (auto *II = dyn_cast<IntrinsicInst>(V))
4581 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4582 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4583
4584 return None;
4585 }
4586
4587 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4588 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4589 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4590 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4591 /// follows one of the following patterns:
4592 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4593 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4594 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4595 /// we return the type of the truncation operation, and indicate whether the
4596 /// truncated type should be treated as signed/unsigned by setting
4597 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4598 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4599 bool &Signed, ScalarEvolution &SE) {
4600 // The case where Op == SymbolicPHI (that is, with no type conversions on
4601 // the way) is handled by the regular add recurrence creating logic and
4602 // would have already been triggered in createAddRecForPHI. Reaching it here
4603 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4604 // because one of the other operands of the SCEVAddExpr updating this PHI is
4605 // not invariant).
4606 //
4607 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4608 // this case predicates that allow us to prove that Op == SymbolicPHI will
4609 // be added.
4610 if (Op == SymbolicPHI)
4611 return nullptr;
4612
4613 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4614 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4615 if (SourceBits != NewBits)
4616 return nullptr;
4617
4618 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4619 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4620 if (!SExt && !ZExt)
4621 return nullptr;
4622 const SCEVTruncateExpr *Trunc =
4623 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4624 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4625 if (!Trunc)
4626 return nullptr;
4627 const SCEV *X = Trunc->getOperand();
4628 if (X != SymbolicPHI)
4629 return nullptr;
4630 Signed = SExt != nullptr;
4631 return Trunc->getType();
4632 }
4633
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4634 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4635 if (!PN->getType()->isIntegerTy())
4636 return nullptr;
4637 const Loop *L = LI.getLoopFor(PN->getParent());
4638 if (!L || L->getHeader() != PN->getParent())
4639 return nullptr;
4640 return L;
4641 }
4642
4643 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4644 // computation that updates the phi follows the following pattern:
4645 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4646 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4647 // If so, try to see if it can be rewritten as an AddRecExpr under some
4648 // Predicates. If successful, return them as a pair. Also cache the results
4649 // of the analysis.
4650 //
4651 // Example usage scenario:
4652 // Say the Rewriter is called for the following SCEV:
4653 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4654 // where:
4655 // %X = phi i64 (%Start, %BEValue)
4656 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4657 // and call this function with %SymbolicPHI = %X.
4658 //
4659 // The analysis will find that the value coming around the backedge has
4660 // the following SCEV:
4661 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4662 // Upon concluding that this matches the desired pattern, the function
4663 // will return the pair {NewAddRec, SmallPredsVec} where:
4664 // NewAddRec = {%Start,+,%Step}
4665 // SmallPredsVec = {P1, P2, P3} as follows:
4666 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4667 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4668 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4669 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4670 // under the predicates {P1,P2,P3}.
4671 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4672 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4673 //
4674 // TODO's:
4675 //
4676 // 1) Extend the Induction descriptor to also support inductions that involve
4677 // casts: When needed (namely, when we are called in the context of the
4678 // vectorizer induction analysis), a Set of cast instructions will be
4679 // populated by this method, and provided back to isInductionPHI. This is
4680 // needed to allow the vectorizer to properly record them to be ignored by
4681 // the cost model and to avoid vectorizing them (otherwise these casts,
4682 // which are redundant under the runtime overflow checks, will be
4683 // vectorized, which can be costly).
4684 //
4685 // 2) Support additional induction/PHISCEV patterns: We also want to support
4686 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4687 // after the induction update operation (the induction increment):
4688 //
4689 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4690 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4691 //
4692 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4693 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4694 //
4695 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4696 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4697 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4698 SmallVector<const SCEVPredicate *, 3> Predicates;
4699
4700 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4701 // return an AddRec expression under some predicate.
4702
4703 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4704 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4705 assert(L && "Expecting an integer loop header phi");
4706
4707 // The loop may have multiple entrances or multiple exits; we can analyze
4708 // this phi as an addrec if it has a unique entry value and a unique
4709 // backedge value.
4710 Value *BEValueV = nullptr, *StartValueV = nullptr;
4711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4712 Value *V = PN->getIncomingValue(i);
4713 if (L->contains(PN->getIncomingBlock(i))) {
4714 if (!BEValueV) {
4715 BEValueV = V;
4716 } else if (BEValueV != V) {
4717 BEValueV = nullptr;
4718 break;
4719 }
4720 } else if (!StartValueV) {
4721 StartValueV = V;
4722 } else if (StartValueV != V) {
4723 StartValueV = nullptr;
4724 break;
4725 }
4726 }
4727 if (!BEValueV || !StartValueV)
4728 return None;
4729
4730 const SCEV *BEValue = getSCEV(BEValueV);
4731
4732 // If the value coming around the backedge is an add with the symbolic
4733 // value we just inserted, possibly with casts that we can ignore under
4734 // an appropriate runtime guard, then we found a simple induction variable!
4735 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4736 if (!Add)
4737 return None;
4738
4739 // If there is a single occurrence of the symbolic value, possibly
4740 // casted, replace it with a recurrence.
4741 unsigned FoundIndex = Add->getNumOperands();
4742 Type *TruncTy = nullptr;
4743 bool Signed;
4744 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4745 if ((TruncTy =
4746 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4747 if (FoundIndex == e) {
4748 FoundIndex = i;
4749 break;
4750 }
4751
4752 if (FoundIndex == Add->getNumOperands())
4753 return None;
4754
4755 // Create an add with everything but the specified operand.
4756 SmallVector<const SCEV *, 8> Ops;
4757 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4758 if (i != FoundIndex)
4759 Ops.push_back(Add->getOperand(i));
4760 const SCEV *Accum = getAddExpr(Ops);
4761
4762 // The runtime checks will not be valid if the step amount is
4763 // varying inside the loop.
4764 if (!isLoopInvariant(Accum, L))
4765 return None;
4766
4767 // *** Part2: Create the predicates
4768
4769 // Analysis was successful: we have a phi-with-cast pattern for which we
4770 // can return an AddRec expression under the following predicates:
4771 //
4772 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4773 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4774 // P2: An Equal predicate that guarantees that
4775 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4776 // P3: An Equal predicate that guarantees that
4777 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4778 //
4779 // As we next prove, the above predicates guarantee that:
4780 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4781 //
4782 //
4783 // More formally, we want to prove that:
4784 // Expr(i+1) = Start + (i+1) * Accum
4785 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4786 //
4787 // Given that:
4788 // 1) Expr(0) = Start
4789 // 2) Expr(1) = Start + Accum
4790 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4791 // 3) Induction hypothesis (step i):
4792 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4793 //
4794 // Proof:
4795 // Expr(i+1) =
4796 // = Start + (i+1)*Accum
4797 // = (Start + i*Accum) + Accum
4798 // = Expr(i) + Accum
4799 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4800 // :: from step i
4801 //
4802 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4803 //
4804 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4805 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4806 // + Accum :: from P3
4807 //
4808 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4809 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4810 //
4811 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4812 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4813 //
4814 // By induction, the same applies to all iterations 1<=i<n:
4815 //
4816
4817 // Create a truncated addrec for which we will add a no overflow check (P1).
4818 const SCEV *StartVal = getSCEV(StartValueV);
4819 const SCEV *PHISCEV =
4820 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4821 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4822
4823 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4824 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4825 // will be constant.
4826 //
4827 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4828 // add P1.
4829 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4830 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4831 Signed ? SCEVWrapPredicate::IncrementNSSW
4832 : SCEVWrapPredicate::IncrementNUSW;
4833 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4834 Predicates.push_back(AddRecPred);
4835 }
4836
4837 // Create the Equal Predicates P2,P3:
4838
4839 // It is possible that the predicates P2 and/or P3 are computable at
4840 // compile time due to StartVal and/or Accum being constants.
4841 // If either one is, then we can check that now and escape if either P2
4842 // or P3 is false.
4843
4844 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4845 // for each of StartVal and Accum
4846 auto getExtendedExpr = [&](const SCEV *Expr,
4847 bool CreateSignExtend) -> const SCEV * {
4848 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4849 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4850 const SCEV *ExtendedExpr =
4851 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4852 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4853 return ExtendedExpr;
4854 };
4855
4856 // Given:
4857 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4858 // = getExtendedExpr(Expr)
4859 // Determine whether the predicate P: Expr == ExtendedExpr
4860 // is known to be false at compile time
4861 auto PredIsKnownFalse = [&](const SCEV *Expr,
4862 const SCEV *ExtendedExpr) -> bool {
4863 return Expr != ExtendedExpr &&
4864 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4865 };
4866
4867 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4868 if (PredIsKnownFalse(StartVal, StartExtended)) {
4869 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4870 return None;
4871 }
4872
4873 // The Step is always Signed (because the overflow checks are either
4874 // NSSW or NUSW)
4875 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4876 if (PredIsKnownFalse(Accum, AccumExtended)) {
4877 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4878 return None;
4879 }
4880
4881 auto AppendPredicate = [&](const SCEV *Expr,
4882 const SCEV *ExtendedExpr) -> void {
4883 if (Expr != ExtendedExpr &&
4884 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4885 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4886 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4887 Predicates.push_back(Pred);
4888 }
4889 };
4890
4891 AppendPredicate(StartVal, StartExtended);
4892 AppendPredicate(Accum, AccumExtended);
4893
4894 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4895 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4896 // into NewAR if it will also add the runtime overflow checks specified in
4897 // Predicates.
4898 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4899
4900 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4901 std::make_pair(NewAR, Predicates);
4902 // Remember the result of the analysis for this SCEV at this locayyytion.
4903 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4904 return PredRewrite;
4905 }
4906
4907 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4908 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4909 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4910 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4911 if (!L)
4912 return None;
4913
4914 // Check to see if we already analyzed this PHI.
4915 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4916 if (I != PredicatedSCEVRewrites.end()) {
4917 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4918 I->second;
4919 // Analysis was done before and failed to create an AddRec:
4920 if (Rewrite.first == SymbolicPHI)
4921 return None;
4922 // Analysis was done before and succeeded to create an AddRec under
4923 // a predicate:
4924 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4925 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4926 return Rewrite;
4927 }
4928
4929 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4930 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4931
4932 // Record in the cache that the analysis failed
4933 if (!Rewrite) {
4934 SmallVector<const SCEVPredicate *, 3> Predicates;
4935 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4936 return None;
4937 }
4938
4939 return Rewrite;
4940 }
4941
4942 // FIXME: This utility is currently required because the Rewriter currently
4943 // does not rewrite this expression:
4944 // {0, +, (sext ix (trunc iy to ix) to iy)}
4945 // into {0, +, %step},
4946 // even when the following Equal predicate exists:
4947 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const4948 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4949 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4950 if (AR1 == AR2)
4951 return true;
4952
4953 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4954 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4955 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4956 return false;
4957 return true;
4958 };
4959
4960 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4961 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4962 return false;
4963 return true;
4964 }
4965
4966 /// A helper function for createAddRecFromPHI to handle simple cases.
4967 ///
4968 /// This function tries to find an AddRec expression for the simplest (yet most
4969 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4970 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4971 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)4972 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4973 Value *BEValueV,
4974 Value *StartValueV) {
4975 const Loop *L = LI.getLoopFor(PN->getParent());
4976 assert(L && L->getHeader() == PN->getParent());
4977 assert(BEValueV && StartValueV);
4978
4979 auto BO = MatchBinaryOp(BEValueV, DT);
4980 if (!BO)
4981 return nullptr;
4982
4983 if (BO->Opcode != Instruction::Add)
4984 return nullptr;
4985
4986 const SCEV *Accum = nullptr;
4987 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4988 Accum = getSCEV(BO->RHS);
4989 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4990 Accum = getSCEV(BO->LHS);
4991
4992 if (!Accum)
4993 return nullptr;
4994
4995 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4996 if (BO->IsNUW)
4997 Flags = setFlags(Flags, SCEV::FlagNUW);
4998 if (BO->IsNSW)
4999 Flags = setFlags(Flags, SCEV::FlagNSW);
5000
5001 const SCEV *StartVal = getSCEV(StartValueV);
5002 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5003
5004 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5005
5006 // We can add Flags to the post-inc expression only if we
5007 // know that it is *undefined behavior* for BEValueV to
5008 // overflow.
5009 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5010 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5011 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5012
5013 return PHISCEV;
5014 }
5015
createAddRecFromPHI(PHINode * PN)5016 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5017 const Loop *L = LI.getLoopFor(PN->getParent());
5018 if (!L || L->getHeader() != PN->getParent())
5019 return nullptr;
5020
5021 // The loop may have multiple entrances or multiple exits; we can analyze
5022 // this phi as an addrec if it has a unique entry value and a unique
5023 // backedge value.
5024 Value *BEValueV = nullptr, *StartValueV = nullptr;
5025 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5026 Value *V = PN->getIncomingValue(i);
5027 if (L->contains(PN->getIncomingBlock(i))) {
5028 if (!BEValueV) {
5029 BEValueV = V;
5030 } else if (BEValueV != V) {
5031 BEValueV = nullptr;
5032 break;
5033 }
5034 } else if (!StartValueV) {
5035 StartValueV = V;
5036 } else if (StartValueV != V) {
5037 StartValueV = nullptr;
5038 break;
5039 }
5040 }
5041 if (!BEValueV || !StartValueV)
5042 return nullptr;
5043
5044 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5045 "PHI node already processed?");
5046
5047 // First, try to find AddRec expression without creating a fictituos symbolic
5048 // value for PN.
5049 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5050 return S;
5051
5052 // Handle PHI node value symbolically.
5053 const SCEV *SymbolicName = getUnknown(PN);
5054 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5055
5056 // Using this symbolic name for the PHI, analyze the value coming around
5057 // the back-edge.
5058 const SCEV *BEValue = getSCEV(BEValueV);
5059
5060 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5061 // has a special value for the first iteration of the loop.
5062
5063 // If the value coming around the backedge is an add with the symbolic
5064 // value we just inserted, then we found a simple induction variable!
5065 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5066 // If there is a single occurrence of the symbolic value, replace it
5067 // with a recurrence.
5068 unsigned FoundIndex = Add->getNumOperands();
5069 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5070 if (Add->getOperand(i) == SymbolicName)
5071 if (FoundIndex == e) {
5072 FoundIndex = i;
5073 break;
5074 }
5075
5076 if (FoundIndex != Add->getNumOperands()) {
5077 // Create an add with everything but the specified operand.
5078 SmallVector<const SCEV *, 8> Ops;
5079 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5080 if (i != FoundIndex)
5081 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5082 L, *this));
5083 const SCEV *Accum = getAddExpr(Ops);
5084
5085 // This is not a valid addrec if the step amount is varying each
5086 // loop iteration, but is not itself an addrec in this loop.
5087 if (isLoopInvariant(Accum, L) ||
5088 (isa<SCEVAddRecExpr>(Accum) &&
5089 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5090 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5091
5092 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5093 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5094 if (BO->IsNUW)
5095 Flags = setFlags(Flags, SCEV::FlagNUW);
5096 if (BO->IsNSW)
5097 Flags = setFlags(Flags, SCEV::FlagNSW);
5098 }
5099 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5100 // If the increment is an inbounds GEP, then we know the address
5101 // space cannot be wrapped around. We cannot make any guarantee
5102 // about signed or unsigned overflow because pointers are
5103 // unsigned but we may have a negative index from the base
5104 // pointer. We can guarantee that no unsigned wrap occurs if the
5105 // indices form a positive value.
5106 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5107 Flags = setFlags(Flags, SCEV::FlagNW);
5108
5109 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5110 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5111 Flags = setFlags(Flags, SCEV::FlagNUW);
5112 }
5113
5114 // We cannot transfer nuw and nsw flags from subtraction
5115 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5116 // for instance.
5117 }
5118
5119 const SCEV *StartVal = getSCEV(StartValueV);
5120 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5121
5122 // Okay, for the entire analysis of this edge we assumed the PHI
5123 // to be symbolic. We now need to go back and purge all of the
5124 // entries for the scalars that use the symbolic expression.
5125 forgetSymbolicName(PN, SymbolicName);
5126 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5127
5128 // We can add Flags to the post-inc expression only if we
5129 // know that it is *undefined behavior* for BEValueV to
5130 // overflow.
5131 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5132 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5133 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5134
5135 return PHISCEV;
5136 }
5137 }
5138 } else {
5139 // Otherwise, this could be a loop like this:
5140 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5141 // In this case, j = {1,+,1} and BEValue is j.
5142 // Because the other in-value of i (0) fits the evolution of BEValue
5143 // i really is an addrec evolution.
5144 //
5145 // We can generalize this saying that i is the shifted value of BEValue
5146 // by one iteration:
5147 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5148 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5149 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5150 if (Shifted != getCouldNotCompute() &&
5151 Start != getCouldNotCompute()) {
5152 const SCEV *StartVal = getSCEV(StartValueV);
5153 if (Start == StartVal) {
5154 // Okay, for the entire analysis of this edge we assumed the PHI
5155 // to be symbolic. We now need to go back and purge all of the
5156 // entries for the scalars that use the symbolic expression.
5157 forgetSymbolicName(PN, SymbolicName);
5158 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5159 return Shifted;
5160 }
5161 }
5162 }
5163
5164 // Remove the temporary PHI node SCEV that has been inserted while intending
5165 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5166 // as it will prevent later (possibly simpler) SCEV expressions to be added
5167 // to the ValueExprMap.
5168 eraseValueFromMap(PN);
5169
5170 return nullptr;
5171 }
5172
5173 // Checks if the SCEV S is available at BB. S is considered available at BB
5174 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5175 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5176 BasicBlock *BB) {
5177 struct CheckAvailable {
5178 bool TraversalDone = false;
5179 bool Available = true;
5180
5181 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5182 BasicBlock *BB = nullptr;
5183 DominatorTree &DT;
5184
5185 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5186 : L(L), BB(BB), DT(DT) {}
5187
5188 bool setUnavailable() {
5189 TraversalDone = true;
5190 Available = false;
5191 return false;
5192 }
5193
5194 bool follow(const SCEV *S) {
5195 switch (S->getSCEVType()) {
5196 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5197 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5198 case scUMinExpr:
5199 case scSMinExpr:
5200 // These expressions are available if their operand(s) is/are.
5201 return true;
5202
5203 case scAddRecExpr: {
5204 // We allow add recurrences that are on the loop BB is in, or some
5205 // outer loop. This guarantees availability because the value of the
5206 // add recurrence at BB is simply the "current" value of the induction
5207 // variable. We can relax this in the future; for instance an add
5208 // recurrence on a sibling dominating loop is also available at BB.
5209 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5210 if (L && (ARLoop == L || ARLoop->contains(L)))
5211 return true;
5212
5213 return setUnavailable();
5214 }
5215
5216 case scUnknown: {
5217 // For SCEVUnknown, we check for simple dominance.
5218 const auto *SU = cast<SCEVUnknown>(S);
5219 Value *V = SU->getValue();
5220
5221 if (isa<Argument>(V))
5222 return false;
5223
5224 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5225 return false;
5226
5227 return setUnavailable();
5228 }
5229
5230 case scUDivExpr:
5231 case scCouldNotCompute:
5232 // We do not try to smart about these at all.
5233 return setUnavailable();
5234 }
5235 llvm_unreachable("switch should be fully covered!");
5236 }
5237
5238 bool isDone() { return TraversalDone; }
5239 };
5240
5241 CheckAvailable CA(L, BB, DT);
5242 SCEVTraversal<CheckAvailable> ST(CA);
5243
5244 ST.visitAll(S);
5245 return CA.Available;
5246 }
5247
5248 // Try to match a control flow sequence that branches out at BI and merges back
5249 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5250 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5251 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5252 Value *&C, Value *&LHS, Value *&RHS) {
5253 C = BI->getCondition();
5254
5255 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5256 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5257
5258 if (!LeftEdge.isSingleEdge())
5259 return false;
5260
5261 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5262
5263 Use &LeftUse = Merge->getOperandUse(0);
5264 Use &RightUse = Merge->getOperandUse(1);
5265
5266 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5267 LHS = LeftUse;
5268 RHS = RightUse;
5269 return true;
5270 }
5271
5272 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5273 LHS = RightUse;
5274 RHS = LeftUse;
5275 return true;
5276 }
5277
5278 return false;
5279 }
5280
createNodeFromSelectLikePHI(PHINode * PN)5281 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5282 auto IsReachable =
5283 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5284 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5285 const Loop *L = LI.getLoopFor(PN->getParent());
5286
5287 // We don't want to break LCSSA, even in a SCEV expression tree.
5288 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5289 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5290 return nullptr;
5291
5292 // Try to match
5293 //
5294 // br %cond, label %left, label %right
5295 // left:
5296 // br label %merge
5297 // right:
5298 // br label %merge
5299 // merge:
5300 // V = phi [ %x, %left ], [ %y, %right ]
5301 //
5302 // as "select %cond, %x, %y"
5303
5304 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5305 assert(IDom && "At least the entry block should dominate PN");
5306
5307 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5308 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5309
5310 if (BI && BI->isConditional() &&
5311 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5312 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5313 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5314 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5315 }
5316
5317 return nullptr;
5318 }
5319
createNodeForPHI(PHINode * PN)5320 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5321 if (const SCEV *S = createAddRecFromPHI(PN))
5322 return S;
5323
5324 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5325 return S;
5326
5327 // If the PHI has a single incoming value, follow that value, unless the
5328 // PHI's incoming blocks are in a different loop, in which case doing so
5329 // risks breaking LCSSA form. Instcombine would normally zap these, but
5330 // it doesn't have DominatorTree information, so it may miss cases.
5331 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5332 if (LI.replacementPreservesLCSSAForm(PN, V))
5333 return getSCEV(V);
5334
5335 // If it's not a loop phi, we can't handle it yet.
5336 return getUnknown(PN);
5337 }
5338
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5339 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5340 Value *Cond,
5341 Value *TrueVal,
5342 Value *FalseVal) {
5343 // Handle "constant" branch or select. This can occur for instance when a
5344 // loop pass transforms an inner loop and moves on to process the outer loop.
5345 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5346 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5347
5348 // Try to match some simple smax or umax patterns.
5349 auto *ICI = dyn_cast<ICmpInst>(Cond);
5350 if (!ICI)
5351 return getUnknown(I);
5352
5353 Value *LHS = ICI->getOperand(0);
5354 Value *RHS = ICI->getOperand(1);
5355
5356 switch (ICI->getPredicate()) {
5357 case ICmpInst::ICMP_SLT:
5358 case ICmpInst::ICMP_SLE:
5359 std::swap(LHS, RHS);
5360 LLVM_FALLTHROUGH;
5361 case ICmpInst::ICMP_SGT:
5362 case ICmpInst::ICMP_SGE:
5363 // a >s b ? a+x : b+x -> smax(a, b)+x
5364 // a >s b ? b+x : a+x -> smin(a, b)+x
5365 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5366 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5367 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5368 const SCEV *LA = getSCEV(TrueVal);
5369 const SCEV *RA = getSCEV(FalseVal);
5370 const SCEV *LDiff = getMinusSCEV(LA, LS);
5371 const SCEV *RDiff = getMinusSCEV(RA, RS);
5372 if (LDiff == RDiff)
5373 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5374 LDiff = getMinusSCEV(LA, RS);
5375 RDiff = getMinusSCEV(RA, LS);
5376 if (LDiff == RDiff)
5377 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5378 }
5379 break;
5380 case ICmpInst::ICMP_ULT:
5381 case ICmpInst::ICMP_ULE:
5382 std::swap(LHS, RHS);
5383 LLVM_FALLTHROUGH;
5384 case ICmpInst::ICMP_UGT:
5385 case ICmpInst::ICMP_UGE:
5386 // a >u b ? a+x : b+x -> umax(a, b)+x
5387 // a >u b ? b+x : a+x -> umin(a, b)+x
5388 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5389 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5390 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5391 const SCEV *LA = getSCEV(TrueVal);
5392 const SCEV *RA = getSCEV(FalseVal);
5393 const SCEV *LDiff = getMinusSCEV(LA, LS);
5394 const SCEV *RDiff = getMinusSCEV(RA, RS);
5395 if (LDiff == RDiff)
5396 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5397 LDiff = getMinusSCEV(LA, RS);
5398 RDiff = getMinusSCEV(RA, LS);
5399 if (LDiff == RDiff)
5400 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5401 }
5402 break;
5403 case ICmpInst::ICMP_NE:
5404 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5405 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5406 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5407 const SCEV *One = getOne(I->getType());
5408 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5409 const SCEV *LA = getSCEV(TrueVal);
5410 const SCEV *RA = getSCEV(FalseVal);
5411 const SCEV *LDiff = getMinusSCEV(LA, LS);
5412 const SCEV *RDiff = getMinusSCEV(RA, One);
5413 if (LDiff == RDiff)
5414 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5415 }
5416 break;
5417 case ICmpInst::ICMP_EQ:
5418 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5419 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5420 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5421 const SCEV *One = getOne(I->getType());
5422 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5423 const SCEV *LA = getSCEV(TrueVal);
5424 const SCEV *RA = getSCEV(FalseVal);
5425 const SCEV *LDiff = getMinusSCEV(LA, One);
5426 const SCEV *RDiff = getMinusSCEV(RA, LS);
5427 if (LDiff == RDiff)
5428 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5429 }
5430 break;
5431 default:
5432 break;
5433 }
5434
5435 return getUnknown(I);
5436 }
5437
5438 /// Expand GEP instructions into add and multiply operations. This allows them
5439 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5440 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5441 // Don't attempt to analyze GEPs over unsized objects.
5442 if (!GEP->getSourceElementType()->isSized())
5443 return getUnknown(GEP);
5444
5445 SmallVector<const SCEV *, 4> IndexExprs;
5446 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5447 IndexExprs.push_back(getSCEV(*Index));
5448 return getGEPExpr(GEP, IndexExprs);
5449 }
5450
GetMinTrailingZerosImpl(const SCEV * S)5451 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5452 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5453 return C->getAPInt().countTrailingZeros();
5454
5455 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5456 return std::min(GetMinTrailingZeros(T->getOperand()),
5457 (uint32_t)getTypeSizeInBits(T->getType()));
5458
5459 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5460 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5461 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5462 ? getTypeSizeInBits(E->getType())
5463 : OpRes;
5464 }
5465
5466 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5467 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5468 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5469 ? getTypeSizeInBits(E->getType())
5470 : OpRes;
5471 }
5472
5473 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5474 // The result is the min of all operands results.
5475 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5476 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5477 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5478 return MinOpRes;
5479 }
5480
5481 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5482 // The result is the sum of all operands results.
5483 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5484 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5485 for (unsigned i = 1, e = M->getNumOperands();
5486 SumOpRes != BitWidth && i != e; ++i)
5487 SumOpRes =
5488 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5489 return SumOpRes;
5490 }
5491
5492 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5493 // The result is the min of all operands results.
5494 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5495 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5496 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5497 return MinOpRes;
5498 }
5499
5500 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5501 // The result is the min of all operands results.
5502 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5503 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5504 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5505 return MinOpRes;
5506 }
5507
5508 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5509 // The result is the min of all operands results.
5510 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5511 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5512 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5513 return MinOpRes;
5514 }
5515
5516 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5517 // For a SCEVUnknown, ask ValueTracking.
5518 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5519 return Known.countMinTrailingZeros();
5520 }
5521
5522 // SCEVUDivExpr
5523 return 0;
5524 }
5525
GetMinTrailingZeros(const SCEV * S)5526 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5527 auto I = MinTrailingZerosCache.find(S);
5528 if (I != MinTrailingZerosCache.end())
5529 return I->second;
5530
5531 uint32_t Result = GetMinTrailingZerosImpl(S);
5532 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5533 assert(InsertPair.second && "Should insert a new key");
5534 return InsertPair.first->second;
5535 }
5536
5537 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5538 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5539 if (Instruction *I = dyn_cast<Instruction>(V))
5540 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5541 return getConstantRangeFromMetadata(*MD);
5542
5543 return None;
5544 }
5545
5546 /// Determine the range for a particular SCEV. If SignHint is
5547 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5548 /// with a "cleaner" unsigned (resp. signed) representation.
5549 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5550 ScalarEvolution::getRangeRef(const SCEV *S,
5551 ScalarEvolution::RangeSignHint SignHint) {
5552 DenseMap<const SCEV *, ConstantRange> &Cache =
5553 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5554 : SignedRanges;
5555 ConstantRange::PreferredRangeType RangeType =
5556 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5557 ? ConstantRange::Unsigned : ConstantRange::Signed;
5558
5559 // See if we've computed this range already.
5560 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5561 if (I != Cache.end())
5562 return I->second;
5563
5564 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5565 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5566
5567 unsigned BitWidth = getTypeSizeInBits(S->getType());
5568 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5569 using OBO = OverflowingBinaryOperator;
5570
5571 // If the value has known zeros, the maximum value will have those known zeros
5572 // as well.
5573 uint32_t TZ = GetMinTrailingZeros(S);
5574 if (TZ != 0) {
5575 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5576 ConservativeResult =
5577 ConstantRange(APInt::getMinValue(BitWidth),
5578 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5579 else
5580 ConservativeResult = ConstantRange(
5581 APInt::getSignedMinValue(BitWidth),
5582 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5583 }
5584
5585 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5586 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5587 unsigned WrapType = OBO::AnyWrap;
5588 if (Add->hasNoSignedWrap())
5589 WrapType |= OBO::NoSignedWrap;
5590 if (Add->hasNoUnsignedWrap())
5591 WrapType |= OBO::NoUnsignedWrap;
5592 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5593 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5594 WrapType, RangeType);
5595 return setRange(Add, SignHint,
5596 ConservativeResult.intersectWith(X, RangeType));
5597 }
5598
5599 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5600 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5601 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5602 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5603 return setRange(Mul, SignHint,
5604 ConservativeResult.intersectWith(X, RangeType));
5605 }
5606
5607 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5608 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5609 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5610 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5611 return setRange(SMax, SignHint,
5612 ConservativeResult.intersectWith(X, RangeType));
5613 }
5614
5615 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5616 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5617 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5618 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5619 return setRange(UMax, SignHint,
5620 ConservativeResult.intersectWith(X, RangeType));
5621 }
5622
5623 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5624 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5625 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5626 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5627 return setRange(SMin, SignHint,
5628 ConservativeResult.intersectWith(X, RangeType));
5629 }
5630
5631 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5632 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5633 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5634 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5635 return setRange(UMin, SignHint,
5636 ConservativeResult.intersectWith(X, RangeType));
5637 }
5638
5639 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5640 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5641 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5642 return setRange(UDiv, SignHint,
5643 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5644 }
5645
5646 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5647 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5648 return setRange(ZExt, SignHint,
5649 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5650 RangeType));
5651 }
5652
5653 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5654 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5655 return setRange(SExt, SignHint,
5656 ConservativeResult.intersectWith(X.signExtend(BitWidth),
5657 RangeType));
5658 }
5659
5660 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5661 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5662 return setRange(Trunc, SignHint,
5663 ConservativeResult.intersectWith(X.truncate(BitWidth),
5664 RangeType));
5665 }
5666
5667 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5668 // If there's no unsigned wrap, the value will never be less than its
5669 // initial value.
5670 if (AddRec->hasNoUnsignedWrap()) {
5671 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5672 if (!UnsignedMinValue.isNullValue())
5673 ConservativeResult = ConservativeResult.intersectWith(
5674 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5675 }
5676
5677 // If there's no signed wrap, and all the operands except initial value have
5678 // the same sign or zero, the value won't ever be:
5679 // 1: smaller than initial value if operands are non negative,
5680 // 2: bigger than initial value if operands are non positive.
5681 // For both cases, value can not cross signed min/max boundary.
5682 if (AddRec->hasNoSignedWrap()) {
5683 bool AllNonNeg = true;
5684 bool AllNonPos = true;
5685 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5686 if (!isKnownNonNegative(AddRec->getOperand(i)))
5687 AllNonNeg = false;
5688 if (!isKnownNonPositive(AddRec->getOperand(i)))
5689 AllNonPos = false;
5690 }
5691 if (AllNonNeg)
5692 ConservativeResult = ConservativeResult.intersectWith(
5693 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5694 APInt::getSignedMinValue(BitWidth)),
5695 RangeType);
5696 else if (AllNonPos)
5697 ConservativeResult = ConservativeResult.intersectWith(
5698 ConstantRange::getNonEmpty(
5699 APInt::getSignedMinValue(BitWidth),
5700 getSignedRangeMax(AddRec->getStart()) + 1),
5701 RangeType);
5702 }
5703
5704 // TODO: non-affine addrec
5705 if (AddRec->isAffine()) {
5706 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5707 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5708 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5709 auto RangeFromAffine = getRangeForAffineAR(
5710 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5711 BitWidth);
5712 if (!RangeFromAffine.isFullSet())
5713 ConservativeResult =
5714 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5715
5716 auto RangeFromFactoring = getRangeViaFactoring(
5717 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5718 BitWidth);
5719 if (!RangeFromFactoring.isFullSet())
5720 ConservativeResult =
5721 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5722 }
5723 }
5724
5725 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5726 }
5727
5728 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5729 // Check if the IR explicitly contains !range metadata.
5730 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5731 if (MDRange.hasValue())
5732 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5733 RangeType);
5734
5735 // Split here to avoid paying the compile-time cost of calling both
5736 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5737 // if needed.
5738 const DataLayout &DL = getDataLayout();
5739 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5740 // For a SCEVUnknown, ask ValueTracking.
5741 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5742 if (Known.getBitWidth() != BitWidth)
5743 Known = Known.zextOrTrunc(BitWidth, true);
5744 // If Known does not result in full-set, intersect with it.
5745 if (Known.getMinValue() != Known.getMaxValue() + 1)
5746 ConservativeResult = ConservativeResult.intersectWith(
5747 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5748 RangeType);
5749 } else {
5750 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5751 "generalize as needed!");
5752 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5753 // If the pointer size is larger than the index size type, this can cause
5754 // NS to be larger than BitWidth. So compensate for this.
5755 if (U->getType()->isPointerTy()) {
5756 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5757 int ptrIdxDiff = ptrSize - BitWidth;
5758 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5759 NS -= ptrIdxDiff;
5760 }
5761
5762 if (NS > 1)
5763 ConservativeResult = ConservativeResult.intersectWith(
5764 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5765 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5766 RangeType);
5767 }
5768
5769 // A range of Phi is a subset of union of all ranges of its input.
5770 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5771 // Make sure that we do not run over cycled Phis.
5772 if (PendingPhiRanges.insert(Phi).second) {
5773 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5774 for (auto &Op : Phi->operands()) {
5775 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5776 RangeFromOps = RangeFromOps.unionWith(OpRange);
5777 // No point to continue if we already have a full set.
5778 if (RangeFromOps.isFullSet())
5779 break;
5780 }
5781 ConservativeResult =
5782 ConservativeResult.intersectWith(RangeFromOps, RangeType);
5783 bool Erased = PendingPhiRanges.erase(Phi);
5784 assert(Erased && "Failed to erase Phi properly?");
5785 (void) Erased;
5786 }
5787 }
5788
5789 return setRange(U, SignHint, std::move(ConservativeResult));
5790 }
5791
5792 return setRange(S, SignHint, std::move(ConservativeResult));
5793 }
5794
5795 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5796 // values that the expression can take. Initially, the expression has a value
5797 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5798 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5799 static ConstantRange getRangeForAffineARHelper(APInt Step,
5800 const ConstantRange &StartRange,
5801 const APInt &MaxBECount,
5802 unsigned BitWidth, bool Signed) {
5803 // If either Step or MaxBECount is 0, then the expression won't change, and we
5804 // just need to return the initial range.
5805 if (Step == 0 || MaxBECount == 0)
5806 return StartRange;
5807
5808 // If we don't know anything about the initial value (i.e. StartRange is
5809 // FullRange), then we don't know anything about the final range either.
5810 // Return FullRange.
5811 if (StartRange.isFullSet())
5812 return ConstantRange::getFull(BitWidth);
5813
5814 // If Step is signed and negative, then we use its absolute value, but we also
5815 // note that we're moving in the opposite direction.
5816 bool Descending = Signed && Step.isNegative();
5817
5818 if (Signed)
5819 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5820 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5821 // This equations hold true due to the well-defined wrap-around behavior of
5822 // APInt.
5823 Step = Step.abs();
5824
5825 // Check if Offset is more than full span of BitWidth. If it is, the
5826 // expression is guaranteed to overflow.
5827 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5828 return ConstantRange::getFull(BitWidth);
5829
5830 // Offset is by how much the expression can change. Checks above guarantee no
5831 // overflow here.
5832 APInt Offset = Step * MaxBECount;
5833
5834 // Minimum value of the final range will match the minimal value of StartRange
5835 // if the expression is increasing and will be decreased by Offset otherwise.
5836 // Maximum value of the final range will match the maximal value of StartRange
5837 // if the expression is decreasing and will be increased by Offset otherwise.
5838 APInt StartLower = StartRange.getLower();
5839 APInt StartUpper = StartRange.getUpper() - 1;
5840 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5841 : (StartUpper + std::move(Offset));
5842
5843 // It's possible that the new minimum/maximum value will fall into the initial
5844 // range (due to wrap around). This means that the expression can take any
5845 // value in this bitwidth, and we have to return full range.
5846 if (StartRange.contains(MovedBoundary))
5847 return ConstantRange::getFull(BitWidth);
5848
5849 APInt NewLower =
5850 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5851 APInt NewUpper =
5852 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5853 NewUpper += 1;
5854
5855 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5856 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5857 }
5858
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5859 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5860 const SCEV *Step,
5861 const SCEV *MaxBECount,
5862 unsigned BitWidth) {
5863 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5864 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5865 "Precondition!");
5866
5867 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5868 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5869
5870 // First, consider step signed.
5871 ConstantRange StartSRange = getSignedRange(Start);
5872 ConstantRange StepSRange = getSignedRange(Step);
5873
5874 // If Step can be both positive and negative, we need to find ranges for the
5875 // maximum absolute step values in both directions and union them.
5876 ConstantRange SR =
5877 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5878 MaxBECountValue, BitWidth, /* Signed = */ true);
5879 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5880 StartSRange, MaxBECountValue,
5881 BitWidth, /* Signed = */ true));
5882
5883 // Next, consider step unsigned.
5884 ConstantRange UR = getRangeForAffineARHelper(
5885 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5886 MaxBECountValue, BitWidth, /* Signed = */ false);
5887
5888 // Finally, intersect signed and unsigned ranges.
5889 return SR.intersectWith(UR, ConstantRange::Smallest);
5890 }
5891
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5892 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5893 const SCEV *Step,
5894 const SCEV *MaxBECount,
5895 unsigned BitWidth) {
5896 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5897 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5898
5899 struct SelectPattern {
5900 Value *Condition = nullptr;
5901 APInt TrueValue;
5902 APInt FalseValue;
5903
5904 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5905 const SCEV *S) {
5906 Optional<unsigned> CastOp;
5907 APInt Offset(BitWidth, 0);
5908
5909 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5910 "Should be!");
5911
5912 // Peel off a constant offset:
5913 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5914 // In the future we could consider being smarter here and handle
5915 // {Start+Step,+,Step} too.
5916 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5917 return;
5918
5919 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5920 S = SA->getOperand(1);
5921 }
5922
5923 // Peel off a cast operation
5924 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5925 CastOp = SCast->getSCEVType();
5926 S = SCast->getOperand();
5927 }
5928
5929 using namespace llvm::PatternMatch;
5930
5931 auto *SU = dyn_cast<SCEVUnknown>(S);
5932 const APInt *TrueVal, *FalseVal;
5933 if (!SU ||
5934 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5935 m_APInt(FalseVal)))) {
5936 Condition = nullptr;
5937 return;
5938 }
5939
5940 TrueValue = *TrueVal;
5941 FalseValue = *FalseVal;
5942
5943 // Re-apply the cast we peeled off earlier
5944 if (CastOp.hasValue())
5945 switch (*CastOp) {
5946 default:
5947 llvm_unreachable("Unknown SCEV cast type!");
5948
5949 case scTruncate:
5950 TrueValue = TrueValue.trunc(BitWidth);
5951 FalseValue = FalseValue.trunc(BitWidth);
5952 break;
5953 case scZeroExtend:
5954 TrueValue = TrueValue.zext(BitWidth);
5955 FalseValue = FalseValue.zext(BitWidth);
5956 break;
5957 case scSignExtend:
5958 TrueValue = TrueValue.sext(BitWidth);
5959 FalseValue = FalseValue.sext(BitWidth);
5960 break;
5961 }
5962
5963 // Re-apply the constant offset we peeled off earlier
5964 TrueValue += Offset;
5965 FalseValue += Offset;
5966 }
5967
5968 bool isRecognized() { return Condition != nullptr; }
5969 };
5970
5971 SelectPattern StartPattern(*this, BitWidth, Start);
5972 if (!StartPattern.isRecognized())
5973 return ConstantRange::getFull(BitWidth);
5974
5975 SelectPattern StepPattern(*this, BitWidth, Step);
5976 if (!StepPattern.isRecognized())
5977 return ConstantRange::getFull(BitWidth);
5978
5979 if (StartPattern.Condition != StepPattern.Condition) {
5980 // We don't handle this case today; but we could, by considering four
5981 // possibilities below instead of two. I'm not sure if there are cases where
5982 // that will help over what getRange already does, though.
5983 return ConstantRange::getFull(BitWidth);
5984 }
5985
5986 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5987 // construct arbitrary general SCEV expressions here. This function is called
5988 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5989 // say) can end up caching a suboptimal value.
5990
5991 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5992 // C2352 and C2512 (otherwise it isn't needed).
5993
5994 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5995 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5996 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5997 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5998
5999 ConstantRange TrueRange =
6000 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6001 ConstantRange FalseRange =
6002 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6003
6004 return TrueRange.unionWith(FalseRange);
6005 }
6006
getNoWrapFlagsFromUB(const Value * V)6007 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6008 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6009 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6010
6011 // Return early if there are no flags to propagate to the SCEV.
6012 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6013 if (BinOp->hasNoUnsignedWrap())
6014 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6015 if (BinOp->hasNoSignedWrap())
6016 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6017 if (Flags == SCEV::FlagAnyWrap)
6018 return SCEV::FlagAnyWrap;
6019
6020 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6021 }
6022
isSCEVExprNeverPoison(const Instruction * I)6023 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6024 // Here we check that I is in the header of the innermost loop containing I,
6025 // since we only deal with instructions in the loop header. The actual loop we
6026 // need to check later will come from an add recurrence, but getting that
6027 // requires computing the SCEV of the operands, which can be expensive. This
6028 // check we can do cheaply to rule out some cases early.
6029 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6030 if (InnermostContainingLoop == nullptr ||
6031 InnermostContainingLoop->getHeader() != I->getParent())
6032 return false;
6033
6034 // Only proceed if we can prove that I does not yield poison.
6035 if (!programUndefinedIfFullPoison(I))
6036 return false;
6037
6038 // At this point we know that if I is executed, then it does not wrap
6039 // according to at least one of NSW or NUW. If I is not executed, then we do
6040 // not know if the calculation that I represents would wrap. Multiple
6041 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6042 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6043 // derived from other instructions that map to the same SCEV. We cannot make
6044 // that guarantee for cases where I is not executed. So we need to find the
6045 // loop that I is considered in relation to and prove that I is executed for
6046 // every iteration of that loop. That implies that the value that I
6047 // calculates does not wrap anywhere in the loop, so then we can apply the
6048 // flags to the SCEV.
6049 //
6050 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6051 // from different loops, so that we know which loop to prove that I is
6052 // executed in.
6053 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6054 // I could be an extractvalue from a call to an overflow intrinsic.
6055 // TODO: We can do better here in some cases.
6056 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6057 return false;
6058 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6059 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6060 bool AllOtherOpsLoopInvariant = true;
6061 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6062 ++OtherOpIndex) {
6063 if (OtherOpIndex != OpIndex) {
6064 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6065 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6066 AllOtherOpsLoopInvariant = false;
6067 break;
6068 }
6069 }
6070 }
6071 if (AllOtherOpsLoopInvariant &&
6072 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6073 return true;
6074 }
6075 }
6076 return false;
6077 }
6078
isAddRecNeverPoison(const Instruction * I,const Loop * L)6079 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6080 // If we know that \c I can never be poison period, then that's enough.
6081 if (isSCEVExprNeverPoison(I))
6082 return true;
6083
6084 // For an add recurrence specifically, we assume that infinite loops without
6085 // side effects are undefined behavior, and then reason as follows:
6086 //
6087 // If the add recurrence is poison in any iteration, it is poison on all
6088 // future iterations (since incrementing poison yields poison). If the result
6089 // of the add recurrence is fed into the loop latch condition and the loop
6090 // does not contain any throws or exiting blocks other than the latch, we now
6091 // have the ability to "choose" whether the backedge is taken or not (by
6092 // choosing a sufficiently evil value for the poison feeding into the branch)
6093 // for every iteration including and after the one in which \p I first became
6094 // poison. There are two possibilities (let's call the iteration in which \p
6095 // I first became poison as K):
6096 //
6097 // 1. In the set of iterations including and after K, the loop body executes
6098 // no side effects. In this case executing the backege an infinte number
6099 // of times will yield undefined behavior.
6100 //
6101 // 2. In the set of iterations including and after K, the loop body executes
6102 // at least one side effect. In this case, that specific instance of side
6103 // effect is control dependent on poison, which also yields undefined
6104 // behavior.
6105
6106 auto *ExitingBB = L->getExitingBlock();
6107 auto *LatchBB = L->getLoopLatch();
6108 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6109 return false;
6110
6111 SmallPtrSet<const Instruction *, 16> Pushed;
6112 SmallVector<const Instruction *, 8> PoisonStack;
6113
6114 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6115 // things that are known to be fully poison under that assumption go on the
6116 // PoisonStack.
6117 Pushed.insert(I);
6118 PoisonStack.push_back(I);
6119
6120 bool LatchControlDependentOnPoison = false;
6121 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6122 const Instruction *Poison = PoisonStack.pop_back_val();
6123
6124 for (auto *PoisonUser : Poison->users()) {
6125 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6126 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6127 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6128 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6129 assert(BI->isConditional() && "Only possibility!");
6130 if (BI->getParent() == LatchBB) {
6131 LatchControlDependentOnPoison = true;
6132 break;
6133 }
6134 }
6135 }
6136 }
6137
6138 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6139 }
6140
6141 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6142 ScalarEvolution::getLoopProperties(const Loop *L) {
6143 using LoopProperties = ScalarEvolution::LoopProperties;
6144
6145 auto Itr = LoopPropertiesCache.find(L);
6146 if (Itr == LoopPropertiesCache.end()) {
6147 auto HasSideEffects = [](Instruction *I) {
6148 if (auto *SI = dyn_cast<StoreInst>(I))
6149 return !SI->isSimple();
6150
6151 return I->mayHaveSideEffects();
6152 };
6153
6154 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6155 /*HasNoSideEffects*/ true};
6156
6157 for (auto *BB : L->getBlocks())
6158 for (auto &I : *BB) {
6159 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6160 LP.HasNoAbnormalExits = false;
6161 if (HasSideEffects(&I))
6162 LP.HasNoSideEffects = false;
6163 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6164 break; // We're already as pessimistic as we can get.
6165 }
6166
6167 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6168 assert(InsertPair.second && "We just checked!");
6169 Itr = InsertPair.first;
6170 }
6171
6172 return Itr->second;
6173 }
6174
createSCEV(Value * V)6175 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6176 if (!isSCEVable(V->getType()))
6177 return getUnknown(V);
6178
6179 if (Instruction *I = dyn_cast<Instruction>(V)) {
6180 // Don't attempt to analyze instructions in blocks that aren't
6181 // reachable. Such instructions don't matter, and they aren't required
6182 // to obey basic rules for definitions dominating uses which this
6183 // analysis depends on.
6184 if (!DT.isReachableFromEntry(I->getParent()))
6185 return getUnknown(UndefValue::get(V->getType()));
6186 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6187 return getConstant(CI);
6188 else if (isa<ConstantPointerNull>(V))
6189 return getZero(V->getType());
6190 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6191 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6192 else if (!isa<ConstantExpr>(V))
6193 return getUnknown(V);
6194
6195 Operator *U = cast<Operator>(V);
6196 if (auto BO = MatchBinaryOp(U, DT)) {
6197 switch (BO->Opcode) {
6198 case Instruction::Add: {
6199 // The simple thing to do would be to just call getSCEV on both operands
6200 // and call getAddExpr with the result. However if we're looking at a
6201 // bunch of things all added together, this can be quite inefficient,
6202 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6203 // Instead, gather up all the operands and make a single getAddExpr call.
6204 // LLVM IR canonical form means we need only traverse the left operands.
6205 SmallVector<const SCEV *, 4> AddOps;
6206 do {
6207 if (BO->Op) {
6208 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6209 AddOps.push_back(OpSCEV);
6210 break;
6211 }
6212
6213 // If a NUW or NSW flag can be applied to the SCEV for this
6214 // addition, then compute the SCEV for this addition by itself
6215 // with a separate call to getAddExpr. We need to do that
6216 // instead of pushing the operands of the addition onto AddOps,
6217 // since the flags are only known to apply to this particular
6218 // addition - they may not apply to other additions that can be
6219 // formed with operands from AddOps.
6220 const SCEV *RHS = getSCEV(BO->RHS);
6221 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6222 if (Flags != SCEV::FlagAnyWrap) {
6223 const SCEV *LHS = getSCEV(BO->LHS);
6224 if (BO->Opcode == Instruction::Sub)
6225 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6226 else
6227 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6228 break;
6229 }
6230 }
6231
6232 if (BO->Opcode == Instruction::Sub)
6233 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6234 else
6235 AddOps.push_back(getSCEV(BO->RHS));
6236
6237 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6238 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6239 NewBO->Opcode != Instruction::Sub)) {
6240 AddOps.push_back(getSCEV(BO->LHS));
6241 break;
6242 }
6243 BO = NewBO;
6244 } while (true);
6245
6246 return getAddExpr(AddOps);
6247 }
6248
6249 case Instruction::Mul: {
6250 SmallVector<const SCEV *, 4> MulOps;
6251 do {
6252 if (BO->Op) {
6253 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6254 MulOps.push_back(OpSCEV);
6255 break;
6256 }
6257
6258 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6259 if (Flags != SCEV::FlagAnyWrap) {
6260 MulOps.push_back(
6261 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6262 break;
6263 }
6264 }
6265
6266 MulOps.push_back(getSCEV(BO->RHS));
6267 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6268 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6269 MulOps.push_back(getSCEV(BO->LHS));
6270 break;
6271 }
6272 BO = NewBO;
6273 } while (true);
6274
6275 return getMulExpr(MulOps);
6276 }
6277 case Instruction::UDiv:
6278 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6279 case Instruction::URem:
6280 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6281 case Instruction::Sub: {
6282 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6283 if (BO->Op)
6284 Flags = getNoWrapFlagsFromUB(BO->Op);
6285 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6286 }
6287 case Instruction::And:
6288 // For an expression like x&255 that merely masks off the high bits,
6289 // use zext(trunc(x)) as the SCEV expression.
6290 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6291 if (CI->isZero())
6292 return getSCEV(BO->RHS);
6293 if (CI->isMinusOne())
6294 return getSCEV(BO->LHS);
6295 const APInt &A = CI->getValue();
6296
6297 // Instcombine's ShrinkDemandedConstant may strip bits out of
6298 // constants, obscuring what would otherwise be a low-bits mask.
6299 // Use computeKnownBits to compute what ShrinkDemandedConstant
6300 // knew about to reconstruct a low-bits mask value.
6301 unsigned LZ = A.countLeadingZeros();
6302 unsigned TZ = A.countTrailingZeros();
6303 unsigned BitWidth = A.getBitWidth();
6304 KnownBits Known(BitWidth);
6305 computeKnownBits(BO->LHS, Known, getDataLayout(),
6306 0, &AC, nullptr, &DT);
6307
6308 APInt EffectiveMask =
6309 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6310 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6311 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6312 const SCEV *LHS = getSCEV(BO->LHS);
6313 const SCEV *ShiftedLHS = nullptr;
6314 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6315 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6316 // For an expression like (x * 8) & 8, simplify the multiply.
6317 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6318 unsigned GCD = std::min(MulZeros, TZ);
6319 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6320 SmallVector<const SCEV*, 4> MulOps;
6321 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6322 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6323 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6324 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6325 }
6326 }
6327 if (!ShiftedLHS)
6328 ShiftedLHS = getUDivExpr(LHS, MulCount);
6329 return getMulExpr(
6330 getZeroExtendExpr(
6331 getTruncateExpr(ShiftedLHS,
6332 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6333 BO->LHS->getType()),
6334 MulCount);
6335 }
6336 }
6337 break;
6338
6339 case Instruction::Or:
6340 // If the RHS of the Or is a constant, we may have something like:
6341 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6342 // optimizations will transparently handle this case.
6343 //
6344 // In order for this transformation to be safe, the LHS must be of the
6345 // form X*(2^n) and the Or constant must be less than 2^n.
6346 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6347 const SCEV *LHS = getSCEV(BO->LHS);
6348 const APInt &CIVal = CI->getValue();
6349 if (GetMinTrailingZeros(LHS) >=
6350 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6351 // Build a plain add SCEV.
6352 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6353 // If the LHS of the add was an addrec and it has no-wrap flags,
6354 // transfer the no-wrap flags, since an or won't introduce a wrap.
6355 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6356 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6357 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6358 OldAR->getNoWrapFlags());
6359 }
6360 return S;
6361 }
6362 }
6363 break;
6364
6365 case Instruction::Xor:
6366 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6367 // If the RHS of xor is -1, then this is a not operation.
6368 if (CI->isMinusOne())
6369 return getNotSCEV(getSCEV(BO->LHS));
6370
6371 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6372 // This is a variant of the check for xor with -1, and it handles
6373 // the case where instcombine has trimmed non-demanded bits out
6374 // of an xor with -1.
6375 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6376 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6377 if (LBO->getOpcode() == Instruction::And &&
6378 LCI->getValue() == CI->getValue())
6379 if (const SCEVZeroExtendExpr *Z =
6380 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6381 Type *UTy = BO->LHS->getType();
6382 const SCEV *Z0 = Z->getOperand();
6383 Type *Z0Ty = Z0->getType();
6384 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6385
6386 // If C is a low-bits mask, the zero extend is serving to
6387 // mask off the high bits. Complement the operand and
6388 // re-apply the zext.
6389 if (CI->getValue().isMask(Z0TySize))
6390 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6391
6392 // If C is a single bit, it may be in the sign-bit position
6393 // before the zero-extend. In this case, represent the xor
6394 // using an add, which is equivalent, and re-apply the zext.
6395 APInt Trunc = CI->getValue().trunc(Z0TySize);
6396 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6397 Trunc.isSignMask())
6398 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6399 UTy);
6400 }
6401 }
6402 break;
6403
6404 case Instruction::Shl:
6405 // Turn shift left of a constant amount into a multiply.
6406 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6407 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6408
6409 // If the shift count is not less than the bitwidth, the result of
6410 // the shift is undefined. Don't try to analyze it, because the
6411 // resolution chosen here may differ from the resolution chosen in
6412 // other parts of the compiler.
6413 if (SA->getValue().uge(BitWidth))
6414 break;
6415
6416 // It is currently not resolved how to interpret NSW for left
6417 // shift by BitWidth - 1, so we avoid applying flags in that
6418 // case. Remove this check (or this comment) once the situation
6419 // is resolved. See
6420 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6421 // and http://reviews.llvm.org/D8890 .
6422 auto Flags = SCEV::FlagAnyWrap;
6423 if (BO->Op && SA->getValue().ult(BitWidth - 1))
6424 Flags = getNoWrapFlagsFromUB(BO->Op);
6425
6426 Constant *X = ConstantInt::get(
6427 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6428 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6429 }
6430 break;
6431
6432 case Instruction::AShr: {
6433 // AShr X, C, where C is a constant.
6434 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6435 if (!CI)
6436 break;
6437
6438 Type *OuterTy = BO->LHS->getType();
6439 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6440 // If the shift count is not less than the bitwidth, the result of
6441 // the shift is undefined. Don't try to analyze it, because the
6442 // resolution chosen here may differ from the resolution chosen in
6443 // other parts of the compiler.
6444 if (CI->getValue().uge(BitWidth))
6445 break;
6446
6447 if (CI->isZero())
6448 return getSCEV(BO->LHS); // shift by zero --> noop
6449
6450 uint64_t AShrAmt = CI->getZExtValue();
6451 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6452
6453 Operator *L = dyn_cast<Operator>(BO->LHS);
6454 if (L && L->getOpcode() == Instruction::Shl) {
6455 // X = Shl A, n
6456 // Y = AShr X, m
6457 // Both n and m are constant.
6458
6459 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6460 if (L->getOperand(1) == BO->RHS)
6461 // For a two-shift sext-inreg, i.e. n = m,
6462 // use sext(trunc(x)) as the SCEV expression.
6463 return getSignExtendExpr(
6464 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6465
6466 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6467 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6468 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6469 if (ShlAmt > AShrAmt) {
6470 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6471 // expression. We already checked that ShlAmt < BitWidth, so
6472 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6473 // ShlAmt - AShrAmt < Amt.
6474 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6475 ShlAmt - AShrAmt);
6476 return getSignExtendExpr(
6477 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6478 getConstant(Mul)), OuterTy);
6479 }
6480 }
6481 }
6482 break;
6483 }
6484 }
6485 }
6486
6487 switch (U->getOpcode()) {
6488 case Instruction::Trunc:
6489 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6490
6491 case Instruction::ZExt:
6492 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6493
6494 case Instruction::SExt:
6495 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6496 // The NSW flag of a subtract does not always survive the conversion to
6497 // A + (-1)*B. By pushing sign extension onto its operands we are much
6498 // more likely to preserve NSW and allow later AddRec optimisations.
6499 //
6500 // NOTE: This is effectively duplicating this logic from getSignExtend:
6501 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6502 // but by that point the NSW information has potentially been lost.
6503 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6504 Type *Ty = U->getType();
6505 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6506 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6507 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6508 }
6509 }
6510 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6511
6512 case Instruction::BitCast:
6513 // BitCasts are no-op casts so we just eliminate the cast.
6514 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6515 return getSCEV(U->getOperand(0));
6516 break;
6517
6518 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6519 // lead to pointer expressions which cannot safely be expanded to GEPs,
6520 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6521 // simplifying integer expressions.
6522
6523 case Instruction::GetElementPtr:
6524 return createNodeForGEP(cast<GEPOperator>(U));
6525
6526 case Instruction::PHI:
6527 return createNodeForPHI(cast<PHINode>(U));
6528
6529 case Instruction::Select:
6530 // U can also be a select constant expr, which let fall through. Since
6531 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6532 // constant expressions cannot have instructions as operands, we'd have
6533 // returned getUnknown for a select constant expressions anyway.
6534 if (isa<Instruction>(U))
6535 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6536 U->getOperand(1), U->getOperand(2));
6537 break;
6538
6539 case Instruction::Call:
6540 case Instruction::Invoke:
6541 if (Value *RV = CallSite(U).getReturnedArgOperand())
6542 return getSCEV(RV);
6543 break;
6544 }
6545
6546 return getUnknown(V);
6547 }
6548
6549 //===----------------------------------------------------------------------===//
6550 // Iteration Count Computation Code
6551 //
6552
getConstantTripCount(const SCEVConstant * ExitCount)6553 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6554 if (!ExitCount)
6555 return 0;
6556
6557 ConstantInt *ExitConst = ExitCount->getValue();
6558
6559 // Guard against huge trip counts.
6560 if (ExitConst->getValue().getActiveBits() > 32)
6561 return 0;
6562
6563 // In case of integer overflow, this returns 0, which is correct.
6564 return ((unsigned)ExitConst->getZExtValue()) + 1;
6565 }
6566
getSmallConstantTripCount(const Loop * L)6567 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6568 if (BasicBlock *ExitingBB = L->getExitingBlock())
6569 return getSmallConstantTripCount(L, ExitingBB);
6570
6571 // No trip count information for multiple exits.
6572 return 0;
6573 }
6574
getSmallConstantTripCount(const Loop * L,BasicBlock * ExitingBlock)6575 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6576 BasicBlock *ExitingBlock) {
6577 assert(ExitingBlock && "Must pass a non-null exiting block!");
6578 assert(L->isLoopExiting(ExitingBlock) &&
6579 "Exiting block must actually branch out of the loop!");
6580 const SCEVConstant *ExitCount =
6581 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6582 return getConstantTripCount(ExitCount);
6583 }
6584
getSmallConstantMaxTripCount(const Loop * L)6585 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6586 const auto *MaxExitCount =
6587 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6588 return getConstantTripCount(MaxExitCount);
6589 }
6590
getSmallConstantTripMultiple(const Loop * L)6591 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6592 if (BasicBlock *ExitingBB = L->getExitingBlock())
6593 return getSmallConstantTripMultiple(L, ExitingBB);
6594
6595 // No trip multiple information for multiple exits.
6596 return 0;
6597 }
6598
6599 /// Returns the largest constant divisor of the trip count of this loop as a
6600 /// normal unsigned value, if possible. This means that the actual trip count is
6601 /// always a multiple of the returned value (don't forget the trip count could
6602 /// very well be zero as well!).
6603 ///
6604 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6605 /// multiple of a constant (which is also the case if the trip count is simply
6606 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6607 /// if the trip count is very large (>= 2^32).
6608 ///
6609 /// As explained in the comments for getSmallConstantTripCount, this assumes
6610 /// that control exits the loop via ExitingBlock.
6611 unsigned
getSmallConstantTripMultiple(const Loop * L,BasicBlock * ExitingBlock)6612 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6613 BasicBlock *ExitingBlock) {
6614 assert(ExitingBlock && "Must pass a non-null exiting block!");
6615 assert(L->isLoopExiting(ExitingBlock) &&
6616 "Exiting block must actually branch out of the loop!");
6617 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6618 if (ExitCount == getCouldNotCompute())
6619 return 1;
6620
6621 // Get the trip count from the BE count by adding 1.
6622 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6623
6624 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6625 if (!TC)
6626 // Attempt to factor more general cases. Returns the greatest power of
6627 // two divisor. If overflow happens, the trip count expression is still
6628 // divisible by the greatest power of 2 divisor returned.
6629 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6630
6631 ConstantInt *Result = TC->getValue();
6632
6633 // Guard against huge trip counts (this requires checking
6634 // for zero to handle the case where the trip count == -1 and the
6635 // addition wraps).
6636 if (!Result || Result->getValue().getActiveBits() > 32 ||
6637 Result->getValue().getActiveBits() == 0)
6638 return 1;
6639
6640 return (unsigned)Result->getZExtValue();
6641 }
6642
getExitCount(const Loop * L,BasicBlock * ExitingBlock,ExitCountKind Kind)6643 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6644 BasicBlock *ExitingBlock,
6645 ExitCountKind Kind) {
6646 switch (Kind) {
6647 case Exact:
6648 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6649 case ConstantMaximum:
6650 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6651 };
6652 llvm_unreachable("Invalid ExitCountKind!");
6653 }
6654
6655 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6656 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6657 SCEVUnionPredicate &Preds) {
6658 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6659 }
6660
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)6661 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6662 ExitCountKind Kind) {
6663 switch (Kind) {
6664 case Exact:
6665 return getBackedgeTakenInfo(L).getExact(L, this);
6666 case ConstantMaximum:
6667 return getBackedgeTakenInfo(L).getMax(this);
6668 };
6669 llvm_unreachable("Invalid ExitCountKind!");
6670 }
6671
isBackedgeTakenCountMaxOrZero(const Loop * L)6672 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6673 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6674 }
6675
6676 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6677 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6678 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6679 BasicBlock *Header = L->getHeader();
6680
6681 // Push all Loop-header PHIs onto the Worklist stack.
6682 for (PHINode &PN : Header->phis())
6683 Worklist.push_back(&PN);
6684 }
6685
6686 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6687 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6688 auto &BTI = getBackedgeTakenInfo(L);
6689 if (BTI.hasFullInfo())
6690 return BTI;
6691
6692 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6693
6694 if (!Pair.second)
6695 return Pair.first->second;
6696
6697 BackedgeTakenInfo Result =
6698 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6699
6700 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6701 }
6702
6703 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6704 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6705 // Initially insert an invalid entry for this loop. If the insertion
6706 // succeeds, proceed to actually compute a backedge-taken count and
6707 // update the value. The temporary CouldNotCompute value tells SCEV
6708 // code elsewhere that it shouldn't attempt to request a new
6709 // backedge-taken count, which could result in infinite recursion.
6710 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6711 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6712 if (!Pair.second)
6713 return Pair.first->second;
6714
6715 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6716 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6717 // must be cleared in this scope.
6718 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6719
6720 // In product build, there are no usage of statistic.
6721 (void)NumTripCountsComputed;
6722 (void)NumTripCountsNotComputed;
6723 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6724 const SCEV *BEExact = Result.getExact(L, this);
6725 if (BEExact != getCouldNotCompute()) {
6726 assert(isLoopInvariant(BEExact, L) &&
6727 isLoopInvariant(Result.getMax(this), L) &&
6728 "Computed backedge-taken count isn't loop invariant for loop!");
6729 ++NumTripCountsComputed;
6730 }
6731 else if (Result.getMax(this) == getCouldNotCompute() &&
6732 isa<PHINode>(L->getHeader()->begin())) {
6733 // Only count loops that have phi nodes as not being computable.
6734 ++NumTripCountsNotComputed;
6735 }
6736 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6737
6738 // Now that we know more about the trip count for this loop, forget any
6739 // existing SCEV values for PHI nodes in this loop since they are only
6740 // conservative estimates made without the benefit of trip count
6741 // information. This is similar to the code in forgetLoop, except that
6742 // it handles SCEVUnknown PHI nodes specially.
6743 if (Result.hasAnyInfo()) {
6744 SmallVector<Instruction *, 16> Worklist;
6745 PushLoopPHIs(L, Worklist);
6746
6747 SmallPtrSet<Instruction *, 8> Discovered;
6748 while (!Worklist.empty()) {
6749 Instruction *I = Worklist.pop_back_val();
6750
6751 ValueExprMapType::iterator It =
6752 ValueExprMap.find_as(static_cast<Value *>(I));
6753 if (It != ValueExprMap.end()) {
6754 const SCEV *Old = It->second;
6755
6756 // SCEVUnknown for a PHI either means that it has an unrecognized
6757 // structure, or it's a PHI that's in the progress of being computed
6758 // by createNodeForPHI. In the former case, additional loop trip
6759 // count information isn't going to change anything. In the later
6760 // case, createNodeForPHI will perform the necessary updates on its
6761 // own when it gets to that point.
6762 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6763 eraseValueFromMap(It->first);
6764 forgetMemoizedResults(Old);
6765 }
6766 if (PHINode *PN = dyn_cast<PHINode>(I))
6767 ConstantEvolutionLoopExitValue.erase(PN);
6768 }
6769
6770 // Since we don't need to invalidate anything for correctness and we're
6771 // only invalidating to make SCEV's results more precise, we get to stop
6772 // early to avoid invalidating too much. This is especially important in
6773 // cases like:
6774 //
6775 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6776 // loop0:
6777 // %pn0 = phi
6778 // ...
6779 // loop1:
6780 // %pn1 = phi
6781 // ...
6782 //
6783 // where both loop0 and loop1's backedge taken count uses the SCEV
6784 // expression for %v. If we don't have the early stop below then in cases
6785 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6786 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6787 // count for loop1, effectively nullifying SCEV's trip count cache.
6788 for (auto *U : I->users())
6789 if (auto *I = dyn_cast<Instruction>(U)) {
6790 auto *LoopForUser = LI.getLoopFor(I->getParent());
6791 if (LoopForUser && L->contains(LoopForUser) &&
6792 Discovered.insert(I).second)
6793 Worklist.push_back(I);
6794 }
6795 }
6796 }
6797
6798 // Re-lookup the insert position, since the call to
6799 // computeBackedgeTakenCount above could result in a
6800 // recusive call to getBackedgeTakenInfo (on a different
6801 // loop), which would invalidate the iterator computed
6802 // earlier.
6803 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6804 }
6805
forgetAllLoops()6806 void ScalarEvolution::forgetAllLoops() {
6807 // This method is intended to forget all info about loops. It should
6808 // invalidate caches as if the following happened:
6809 // - The trip counts of all loops have changed arbitrarily
6810 // - Every llvm::Value has been updated in place to produce a different
6811 // result.
6812 BackedgeTakenCounts.clear();
6813 PredicatedBackedgeTakenCounts.clear();
6814 LoopPropertiesCache.clear();
6815 ConstantEvolutionLoopExitValue.clear();
6816 ValueExprMap.clear();
6817 ValuesAtScopes.clear();
6818 LoopDispositions.clear();
6819 BlockDispositions.clear();
6820 UnsignedRanges.clear();
6821 SignedRanges.clear();
6822 ExprValueMap.clear();
6823 HasRecMap.clear();
6824 MinTrailingZerosCache.clear();
6825 PredicatedSCEVRewrites.clear();
6826 }
6827
forgetLoop(const Loop * L)6828 void ScalarEvolution::forgetLoop(const Loop *L) {
6829 // Drop any stored trip count value.
6830 auto RemoveLoopFromBackedgeMap =
6831 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6832 auto BTCPos = Map.find(L);
6833 if (BTCPos != Map.end()) {
6834 BTCPos->second.clear();
6835 Map.erase(BTCPos);
6836 }
6837 };
6838
6839 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6840 SmallVector<Instruction *, 32> Worklist;
6841 SmallPtrSet<Instruction *, 16> Visited;
6842
6843 // Iterate over all the loops and sub-loops to drop SCEV information.
6844 while (!LoopWorklist.empty()) {
6845 auto *CurrL = LoopWorklist.pop_back_val();
6846
6847 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6848 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6849
6850 // Drop information about predicated SCEV rewrites for this loop.
6851 for (auto I = PredicatedSCEVRewrites.begin();
6852 I != PredicatedSCEVRewrites.end();) {
6853 std::pair<const SCEV *, const Loop *> Entry = I->first;
6854 if (Entry.second == CurrL)
6855 PredicatedSCEVRewrites.erase(I++);
6856 else
6857 ++I;
6858 }
6859
6860 auto LoopUsersItr = LoopUsers.find(CurrL);
6861 if (LoopUsersItr != LoopUsers.end()) {
6862 for (auto *S : LoopUsersItr->second)
6863 forgetMemoizedResults(S);
6864 LoopUsers.erase(LoopUsersItr);
6865 }
6866
6867 // Drop information about expressions based on loop-header PHIs.
6868 PushLoopPHIs(CurrL, Worklist);
6869
6870 while (!Worklist.empty()) {
6871 Instruction *I = Worklist.pop_back_val();
6872 if (!Visited.insert(I).second)
6873 continue;
6874
6875 ValueExprMapType::iterator It =
6876 ValueExprMap.find_as(static_cast<Value *>(I));
6877 if (It != ValueExprMap.end()) {
6878 eraseValueFromMap(It->first);
6879 forgetMemoizedResults(It->second);
6880 if (PHINode *PN = dyn_cast<PHINode>(I))
6881 ConstantEvolutionLoopExitValue.erase(PN);
6882 }
6883
6884 PushDefUseChildren(I, Worklist);
6885 }
6886
6887 LoopPropertiesCache.erase(CurrL);
6888 // Forget all contained loops too, to avoid dangling entries in the
6889 // ValuesAtScopes map.
6890 LoopWorklist.append(CurrL->begin(), CurrL->end());
6891 }
6892 }
6893
forgetTopmostLoop(const Loop * L)6894 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6895 while (Loop *Parent = L->getParentLoop())
6896 L = Parent;
6897 forgetLoop(L);
6898 }
6899
forgetValue(Value * V)6900 void ScalarEvolution::forgetValue(Value *V) {
6901 Instruction *I = dyn_cast<Instruction>(V);
6902 if (!I) return;
6903
6904 // Drop information about expressions based on loop-header PHIs.
6905 SmallVector<Instruction *, 16> Worklist;
6906 Worklist.push_back(I);
6907
6908 SmallPtrSet<Instruction *, 8> Visited;
6909 while (!Worklist.empty()) {
6910 I = Worklist.pop_back_val();
6911 if (!Visited.insert(I).second)
6912 continue;
6913
6914 ValueExprMapType::iterator It =
6915 ValueExprMap.find_as(static_cast<Value *>(I));
6916 if (It != ValueExprMap.end()) {
6917 eraseValueFromMap(It->first);
6918 forgetMemoizedResults(It->second);
6919 if (PHINode *PN = dyn_cast<PHINode>(I))
6920 ConstantEvolutionLoopExitValue.erase(PN);
6921 }
6922
6923 PushDefUseChildren(I, Worklist);
6924 }
6925 }
6926
6927 /// Get the exact loop backedge taken count considering all loop exits. A
6928 /// computable result can only be returned for loops with all exiting blocks
6929 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6930 /// is never skipped. This is a valid assumption as long as the loop exits via
6931 /// that test. For precise results, it is the caller's responsibility to specify
6932 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6933 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const6934 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6935 SCEVUnionPredicate *Preds) const {
6936 // If any exits were not computable, the loop is not computable.
6937 if (!isComplete() || ExitNotTaken.empty())
6938 return SE->getCouldNotCompute();
6939
6940 const BasicBlock *Latch = L->getLoopLatch();
6941 // All exiting blocks we have collected must dominate the only backedge.
6942 if (!Latch)
6943 return SE->getCouldNotCompute();
6944
6945 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6946 // count is simply a minimum out of all these calculated exit counts.
6947 SmallVector<const SCEV *, 2> Ops;
6948 for (auto &ENT : ExitNotTaken) {
6949 const SCEV *BECount = ENT.ExactNotTaken;
6950 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6951 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6952 "We should only have known counts for exiting blocks that dominate "
6953 "latch!");
6954
6955 Ops.push_back(BECount);
6956
6957 if (Preds && !ENT.hasAlwaysTruePredicate())
6958 Preds->add(ENT.Predicate.get());
6959
6960 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6961 "Predicate should be always true!");
6962 }
6963
6964 return SE->getUMinFromMismatchedTypes(Ops);
6965 }
6966
6967 /// Get the exact not taken count for this loop exit.
6968 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6969 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6970 ScalarEvolution *SE) const {
6971 for (auto &ENT : ExitNotTaken)
6972 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6973 return ENT.ExactNotTaken;
6974
6975 return SE->getCouldNotCompute();
6976 }
6977
6978 const SCEV *
getMax(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6979 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
6980 ScalarEvolution *SE) const {
6981 for (auto &ENT : ExitNotTaken)
6982 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6983 return ENT.MaxNotTaken;
6984
6985 return SE->getCouldNotCompute();
6986 }
6987
6988 /// getMax - Get the max backedge taken count for the loop.
6989 const SCEV *
getMax(ScalarEvolution * SE) const6990 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6991 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6992 return !ENT.hasAlwaysTruePredicate();
6993 };
6994
6995 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6996 return SE->getCouldNotCompute();
6997
6998 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6999 "No point in having a non-constant max backedge taken count!");
7000 return getMax();
7001 }
7002
isMaxOrZero(ScalarEvolution * SE) const7003 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
7004 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7005 return !ENT.hasAlwaysTruePredicate();
7006 };
7007 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7008 }
7009
hasOperand(const SCEV * S,ScalarEvolution * SE) const7010 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7011 ScalarEvolution *SE) const {
7012 if (getMax() && getMax() != SE->getCouldNotCompute() &&
7013 SE->hasOperand(getMax(), S))
7014 return true;
7015
7016 for (auto &ENT : ExitNotTaken)
7017 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7018 SE->hasOperand(ENT.ExactNotTaken, S))
7019 return true;
7020
7021 return false;
7022 }
7023
ExitLimit(const SCEV * E)7024 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7025 : ExactNotTaken(E), MaxNotTaken(E) {
7026 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7027 isa<SCEVConstant>(MaxNotTaken)) &&
7028 "No point in having a non-constant max backedge taken count!");
7029 }
7030
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)7031 ScalarEvolution::ExitLimit::ExitLimit(
7032 const SCEV *E, const SCEV *M, bool MaxOrZero,
7033 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7034 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7035 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7036 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7037 "Exact is not allowed to be less precise than Max");
7038 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7039 isa<SCEVConstant>(MaxNotTaken)) &&
7040 "No point in having a non-constant max backedge taken count!");
7041 for (auto *PredSet : PredSetList)
7042 for (auto *P : *PredSet)
7043 addPredicate(P);
7044 }
7045
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)7046 ScalarEvolution::ExitLimit::ExitLimit(
7047 const SCEV *E, const SCEV *M, bool MaxOrZero,
7048 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7049 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7050 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7051 isa<SCEVConstant>(MaxNotTaken)) &&
7052 "No point in having a non-constant max backedge taken count!");
7053 }
7054
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)7055 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7056 bool MaxOrZero)
7057 : ExitLimit(E, M, MaxOrZero, None) {
7058 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7059 isa<SCEVConstant>(MaxNotTaken)) &&
7060 "No point in having a non-constant max backedge taken count!");
7061 }
7062
7063 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7064 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool Complete,const SCEV * MaxCount,bool MaxOrZero)7065 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7066 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7067 ExitCounts,
7068 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7069 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7070 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7071
7072 ExitNotTaken.reserve(ExitCounts.size());
7073 std::transform(
7074 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7075 [&](const EdgeExitInfo &EEI) {
7076 BasicBlock *ExitBB = EEI.first;
7077 const ExitLimit &EL = EEI.second;
7078 if (EL.Predicates.empty())
7079 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7080 nullptr);
7081
7082 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7083 for (auto *Pred : EL.Predicates)
7084 Predicate->add(Pred);
7085
7086 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7087 std::move(Predicate));
7088 });
7089 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7090 "No point in having a non-constant max backedge taken count!");
7091 }
7092
7093 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()7094 void ScalarEvolution::BackedgeTakenInfo::clear() {
7095 ExitNotTaken.clear();
7096 }
7097
7098 /// Compute the number of times the backedge of the specified loop will execute.
7099 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7100 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7101 bool AllowPredicates) {
7102 SmallVector<BasicBlock *, 8> ExitingBlocks;
7103 L->getExitingBlocks(ExitingBlocks);
7104
7105 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7106
7107 SmallVector<EdgeExitInfo, 4> ExitCounts;
7108 bool CouldComputeBECount = true;
7109 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7110 const SCEV *MustExitMaxBECount = nullptr;
7111 const SCEV *MayExitMaxBECount = nullptr;
7112 bool MustExitMaxOrZero = false;
7113
7114 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7115 // and compute maxBECount.
7116 // Do a union of all the predicates here.
7117 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7118 BasicBlock *ExitBB = ExitingBlocks[i];
7119
7120 // We canonicalize untaken exits to br (constant), ignore them so that
7121 // proving an exit untaken doesn't negatively impact our ability to reason
7122 // about the loop as whole.
7123 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7124 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7125 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7126 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7127 continue;
7128 }
7129
7130 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7131
7132 assert((AllowPredicates || EL.Predicates.empty()) &&
7133 "Predicated exit limit when predicates are not allowed!");
7134
7135 // 1. For each exit that can be computed, add an entry to ExitCounts.
7136 // CouldComputeBECount is true only if all exits can be computed.
7137 if (EL.ExactNotTaken == getCouldNotCompute())
7138 // We couldn't compute an exact value for this exit, so
7139 // we won't be able to compute an exact value for the loop.
7140 CouldComputeBECount = false;
7141 else
7142 ExitCounts.emplace_back(ExitBB, EL);
7143
7144 // 2. Derive the loop's MaxBECount from each exit's max number of
7145 // non-exiting iterations. Partition the loop exits into two kinds:
7146 // LoopMustExits and LoopMayExits.
7147 //
7148 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7149 // is a LoopMayExit. If any computable LoopMustExit is found, then
7150 // MaxBECount is the minimum EL.MaxNotTaken of computable
7151 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7152 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7153 // computable EL.MaxNotTaken.
7154 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7155 DT.dominates(ExitBB, Latch)) {
7156 if (!MustExitMaxBECount) {
7157 MustExitMaxBECount = EL.MaxNotTaken;
7158 MustExitMaxOrZero = EL.MaxOrZero;
7159 } else {
7160 MustExitMaxBECount =
7161 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7162 }
7163 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7164 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7165 MayExitMaxBECount = EL.MaxNotTaken;
7166 else {
7167 MayExitMaxBECount =
7168 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7169 }
7170 }
7171 }
7172 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7173 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7174 // The loop backedge will be taken the maximum or zero times if there's
7175 // a single exit that must be taken the maximum or zero times.
7176 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7177 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7178 MaxBECount, MaxOrZero);
7179 }
7180
7181 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7182 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7183 bool AllowPredicates) {
7184 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7185 // If our exiting block does not dominate the latch, then its connection with
7186 // loop's exit limit may be far from trivial.
7187 const BasicBlock *Latch = L->getLoopLatch();
7188 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7189 return getCouldNotCompute();
7190
7191 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7192 Instruction *Term = ExitingBlock->getTerminator();
7193 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7194 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7195 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7196 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7197 "It should have one successor in loop and one exit block!");
7198 // Proceed to the next level to examine the exit condition expression.
7199 return computeExitLimitFromCond(
7200 L, BI->getCondition(), ExitIfTrue,
7201 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7202 }
7203
7204 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7205 // For switch, make sure that there is a single exit from the loop.
7206 BasicBlock *Exit = nullptr;
7207 for (auto *SBB : successors(ExitingBlock))
7208 if (!L->contains(SBB)) {
7209 if (Exit) // Multiple exit successors.
7210 return getCouldNotCompute();
7211 Exit = SBB;
7212 }
7213 assert(Exit && "Exiting block must have at least one exit");
7214 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7215 /*ControlsExit=*/IsOnlyExit);
7216 }
7217
7218 return getCouldNotCompute();
7219 }
7220
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7221 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7222 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7223 bool ControlsExit, bool AllowPredicates) {
7224 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7225 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7226 ControlsExit, AllowPredicates);
7227 }
7228
7229 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7230 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7231 bool ExitIfTrue, bool ControlsExit,
7232 bool AllowPredicates) {
7233 (void)this->L;
7234 (void)this->ExitIfTrue;
7235 (void)this->AllowPredicates;
7236
7237 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7238 this->AllowPredicates == AllowPredicates &&
7239 "Variance in assumed invariant key components!");
7240 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7241 if (Itr == TripCountMap.end())
7242 return None;
7243 return Itr->second;
7244 }
7245
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7246 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7247 bool ExitIfTrue,
7248 bool ControlsExit,
7249 bool AllowPredicates,
7250 const ExitLimit &EL) {
7251 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7252 this->AllowPredicates == AllowPredicates &&
7253 "Variance in assumed invariant key components!");
7254
7255 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7256 assert(InsertResult.second && "Expected successful insertion!");
7257 (void)InsertResult;
7258 (void)ExitIfTrue;
7259 }
7260
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7261 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7262 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7263 bool ControlsExit, bool AllowPredicates) {
7264
7265 if (auto MaybeEL =
7266 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7267 return *MaybeEL;
7268
7269 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7270 ControlsExit, AllowPredicates);
7271 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7272 return EL;
7273 }
7274
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7275 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7276 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7277 bool ControlsExit, bool AllowPredicates) {
7278 // Check if the controlling expression for this loop is an And or Or.
7279 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7280 if (BO->getOpcode() == Instruction::And) {
7281 // Recurse on the operands of the and.
7282 bool EitherMayExit = !ExitIfTrue;
7283 ExitLimit EL0 = computeExitLimitFromCondCached(
7284 Cache, L, BO->getOperand(0), ExitIfTrue,
7285 ControlsExit && !EitherMayExit, AllowPredicates);
7286 ExitLimit EL1 = computeExitLimitFromCondCached(
7287 Cache, L, BO->getOperand(1), ExitIfTrue,
7288 ControlsExit && !EitherMayExit, AllowPredicates);
7289 // Be robust against unsimplified IR for the form "and i1 X, true"
7290 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7291 return CI->isOne() ? EL0 : EL1;
7292 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7293 return CI->isOne() ? EL1 : EL0;
7294 const SCEV *BECount = getCouldNotCompute();
7295 const SCEV *MaxBECount = getCouldNotCompute();
7296 if (EitherMayExit) {
7297 // Both conditions must be true for the loop to continue executing.
7298 // Choose the less conservative count.
7299 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7300 EL1.ExactNotTaken == getCouldNotCompute())
7301 BECount = getCouldNotCompute();
7302 else
7303 BECount =
7304 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7305 if (EL0.MaxNotTaken == getCouldNotCompute())
7306 MaxBECount = EL1.MaxNotTaken;
7307 else if (EL1.MaxNotTaken == getCouldNotCompute())
7308 MaxBECount = EL0.MaxNotTaken;
7309 else
7310 MaxBECount =
7311 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7312 } else {
7313 // Both conditions must be true at the same time for the loop to exit.
7314 // For now, be conservative.
7315 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7316 MaxBECount = EL0.MaxNotTaken;
7317 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7318 BECount = EL0.ExactNotTaken;
7319 }
7320
7321 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7322 // to be more aggressive when computing BECount than when computing
7323 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7324 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7325 // to not.
7326 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7327 !isa<SCEVCouldNotCompute>(BECount))
7328 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7329
7330 return ExitLimit(BECount, MaxBECount, false,
7331 {&EL0.Predicates, &EL1.Predicates});
7332 }
7333 if (BO->getOpcode() == Instruction::Or) {
7334 // Recurse on the operands of the or.
7335 bool EitherMayExit = ExitIfTrue;
7336 ExitLimit EL0 = computeExitLimitFromCondCached(
7337 Cache, L, BO->getOperand(0), ExitIfTrue,
7338 ControlsExit && !EitherMayExit, AllowPredicates);
7339 ExitLimit EL1 = computeExitLimitFromCondCached(
7340 Cache, L, BO->getOperand(1), ExitIfTrue,
7341 ControlsExit && !EitherMayExit, AllowPredicates);
7342 // Be robust against unsimplified IR for the form "or i1 X, true"
7343 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7344 return CI->isZero() ? EL0 : EL1;
7345 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7346 return CI->isZero() ? EL1 : EL0;
7347 const SCEV *BECount = getCouldNotCompute();
7348 const SCEV *MaxBECount = getCouldNotCompute();
7349 if (EitherMayExit) {
7350 // Both conditions must be false for the loop to continue executing.
7351 // Choose the less conservative count.
7352 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7353 EL1.ExactNotTaken == getCouldNotCompute())
7354 BECount = getCouldNotCompute();
7355 else
7356 BECount =
7357 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7358 if (EL0.MaxNotTaken == getCouldNotCompute())
7359 MaxBECount = EL1.MaxNotTaken;
7360 else if (EL1.MaxNotTaken == getCouldNotCompute())
7361 MaxBECount = EL0.MaxNotTaken;
7362 else
7363 MaxBECount =
7364 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7365 } else {
7366 // Both conditions must be false at the same time for the loop to exit.
7367 // For now, be conservative.
7368 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7369 MaxBECount = EL0.MaxNotTaken;
7370 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7371 BECount = EL0.ExactNotTaken;
7372 }
7373 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7374 // to be more aggressive when computing BECount than when computing
7375 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7376 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7377 // to not.
7378 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7379 !isa<SCEVCouldNotCompute>(BECount))
7380 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7381
7382 return ExitLimit(BECount, MaxBECount, false,
7383 {&EL0.Predicates, &EL1.Predicates});
7384 }
7385 }
7386
7387 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7388 // Proceed to the next level to examine the icmp.
7389 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7390 ExitLimit EL =
7391 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7392 if (EL.hasFullInfo() || !AllowPredicates)
7393 return EL;
7394
7395 // Try again, but use SCEV predicates this time.
7396 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7397 /*AllowPredicates=*/true);
7398 }
7399
7400 // Check for a constant condition. These are normally stripped out by
7401 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7402 // preserve the CFG and is temporarily leaving constant conditions
7403 // in place.
7404 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7405 if (ExitIfTrue == !CI->getZExtValue())
7406 // The backedge is always taken.
7407 return getCouldNotCompute();
7408 else
7409 // The backedge is never taken.
7410 return getZero(CI->getType());
7411 }
7412
7413 // If it's not an integer or pointer comparison then compute it the hard way.
7414 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7415 }
7416
7417 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7418 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7419 ICmpInst *ExitCond,
7420 bool ExitIfTrue,
7421 bool ControlsExit,
7422 bool AllowPredicates) {
7423 // If the condition was exit on true, convert the condition to exit on false
7424 ICmpInst::Predicate Pred;
7425 if (!ExitIfTrue)
7426 Pred = ExitCond->getPredicate();
7427 else
7428 Pred = ExitCond->getInversePredicate();
7429 const ICmpInst::Predicate OriginalPred = Pred;
7430
7431 // Handle common loops like: for (X = "string"; *X; ++X)
7432 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7433 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7434 ExitLimit ItCnt =
7435 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7436 if (ItCnt.hasAnyInfo())
7437 return ItCnt;
7438 }
7439
7440 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7441 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7442
7443 // Try to evaluate any dependencies out of the loop.
7444 LHS = getSCEVAtScope(LHS, L);
7445 RHS = getSCEVAtScope(RHS, L);
7446
7447 // At this point, we would like to compute how many iterations of the
7448 // loop the predicate will return true for these inputs.
7449 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7450 // If there is a loop-invariant, force it into the RHS.
7451 std::swap(LHS, RHS);
7452 Pred = ICmpInst::getSwappedPredicate(Pred);
7453 }
7454
7455 // Simplify the operands before analyzing them.
7456 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7457
7458 // If we have a comparison of a chrec against a constant, try to use value
7459 // ranges to answer this query.
7460 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7461 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7462 if (AddRec->getLoop() == L) {
7463 // Form the constant range.
7464 ConstantRange CompRange =
7465 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7466
7467 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7468 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7469 }
7470
7471 switch (Pred) {
7472 case ICmpInst::ICMP_NE: { // while (X != Y)
7473 // Convert to: while (X-Y != 0)
7474 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7475 AllowPredicates);
7476 if (EL.hasAnyInfo()) return EL;
7477 break;
7478 }
7479 case ICmpInst::ICMP_EQ: { // while (X == Y)
7480 // Convert to: while (X-Y == 0)
7481 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7482 if (EL.hasAnyInfo()) return EL;
7483 break;
7484 }
7485 case ICmpInst::ICMP_SLT:
7486 case ICmpInst::ICMP_ULT: { // while (X < Y)
7487 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7488 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7489 AllowPredicates);
7490 if (EL.hasAnyInfo()) return EL;
7491 break;
7492 }
7493 case ICmpInst::ICMP_SGT:
7494 case ICmpInst::ICMP_UGT: { // while (X > Y)
7495 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7496 ExitLimit EL =
7497 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7498 AllowPredicates);
7499 if (EL.hasAnyInfo()) return EL;
7500 break;
7501 }
7502 default:
7503 break;
7504 }
7505
7506 auto *ExhaustiveCount =
7507 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7508
7509 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7510 return ExhaustiveCount;
7511
7512 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7513 ExitCond->getOperand(1), L, OriginalPred);
7514 }
7515
7516 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7517 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7518 SwitchInst *Switch,
7519 BasicBlock *ExitingBlock,
7520 bool ControlsExit) {
7521 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7522
7523 // Give up if the exit is the default dest of a switch.
7524 if (Switch->getDefaultDest() == ExitingBlock)
7525 return getCouldNotCompute();
7526
7527 assert(L->contains(Switch->getDefaultDest()) &&
7528 "Default case must not exit the loop!");
7529 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7530 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7531
7532 // while (X != Y) --> while (X-Y != 0)
7533 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7534 if (EL.hasAnyInfo())
7535 return EL;
7536
7537 return getCouldNotCompute();
7538 }
7539
7540 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7541 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7542 ScalarEvolution &SE) {
7543 const SCEV *InVal = SE.getConstant(C);
7544 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7545 assert(isa<SCEVConstant>(Val) &&
7546 "Evaluation of SCEV at constant didn't fold correctly?");
7547 return cast<SCEVConstant>(Val)->getValue();
7548 }
7549
7550 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7551 /// compute the backedge execution count.
7552 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7553 ScalarEvolution::computeLoadConstantCompareExitLimit(
7554 LoadInst *LI,
7555 Constant *RHS,
7556 const Loop *L,
7557 ICmpInst::Predicate predicate) {
7558 if (LI->isVolatile()) return getCouldNotCompute();
7559
7560 // Check to see if the loaded pointer is a getelementptr of a global.
7561 // TODO: Use SCEV instead of manually grubbing with GEPs.
7562 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7563 if (!GEP) return getCouldNotCompute();
7564
7565 // Make sure that it is really a constant global we are gepping, with an
7566 // initializer, and make sure the first IDX is really 0.
7567 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7568 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7569 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7570 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7571 return getCouldNotCompute();
7572
7573 // Okay, we allow one non-constant index into the GEP instruction.
7574 Value *VarIdx = nullptr;
7575 std::vector<Constant*> Indexes;
7576 unsigned VarIdxNum = 0;
7577 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7578 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7579 Indexes.push_back(CI);
7580 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7581 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7582 VarIdx = GEP->getOperand(i);
7583 VarIdxNum = i-2;
7584 Indexes.push_back(nullptr);
7585 }
7586
7587 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7588 if (!VarIdx)
7589 return getCouldNotCompute();
7590
7591 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7592 // Check to see if X is a loop variant variable value now.
7593 const SCEV *Idx = getSCEV(VarIdx);
7594 Idx = getSCEVAtScope(Idx, L);
7595
7596 // We can only recognize very limited forms of loop index expressions, in
7597 // particular, only affine AddRec's like {C1,+,C2}.
7598 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7599 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7600 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7601 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7602 return getCouldNotCompute();
7603
7604 unsigned MaxSteps = MaxBruteForceIterations;
7605 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7606 ConstantInt *ItCst = ConstantInt::get(
7607 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7608 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7609
7610 // Form the GEP offset.
7611 Indexes[VarIdxNum] = Val;
7612
7613 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7614 Indexes);
7615 if (!Result) break; // Cannot compute!
7616
7617 // Evaluate the condition for this iteration.
7618 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7619 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7620 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7621 ++NumArrayLenItCounts;
7622 return getConstant(ItCst); // Found terminating iteration!
7623 }
7624 }
7625 return getCouldNotCompute();
7626 }
7627
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7628 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7629 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7630 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7631 if (!RHS)
7632 return getCouldNotCompute();
7633
7634 const BasicBlock *Latch = L->getLoopLatch();
7635 if (!Latch)
7636 return getCouldNotCompute();
7637
7638 const BasicBlock *Predecessor = L->getLoopPredecessor();
7639 if (!Predecessor)
7640 return getCouldNotCompute();
7641
7642 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7643 // Return LHS in OutLHS and shift_opt in OutOpCode.
7644 auto MatchPositiveShift =
7645 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7646
7647 using namespace PatternMatch;
7648
7649 ConstantInt *ShiftAmt;
7650 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7651 OutOpCode = Instruction::LShr;
7652 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7653 OutOpCode = Instruction::AShr;
7654 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7655 OutOpCode = Instruction::Shl;
7656 else
7657 return false;
7658
7659 return ShiftAmt->getValue().isStrictlyPositive();
7660 };
7661
7662 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7663 //
7664 // loop:
7665 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7666 // %iv.shifted = lshr i32 %iv, <positive constant>
7667 //
7668 // Return true on a successful match. Return the corresponding PHI node (%iv
7669 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7670 auto MatchShiftRecurrence =
7671 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7672 Optional<Instruction::BinaryOps> PostShiftOpCode;
7673
7674 {
7675 Instruction::BinaryOps OpC;
7676 Value *V;
7677
7678 // If we encounter a shift instruction, "peel off" the shift operation,
7679 // and remember that we did so. Later when we inspect %iv's backedge
7680 // value, we will make sure that the backedge value uses the same
7681 // operation.
7682 //
7683 // Note: the peeled shift operation does not have to be the same
7684 // instruction as the one feeding into the PHI's backedge value. We only
7685 // really care about it being the same *kind* of shift instruction --
7686 // that's all that is required for our later inferences to hold.
7687 if (MatchPositiveShift(LHS, V, OpC)) {
7688 PostShiftOpCode = OpC;
7689 LHS = V;
7690 }
7691 }
7692
7693 PNOut = dyn_cast<PHINode>(LHS);
7694 if (!PNOut || PNOut->getParent() != L->getHeader())
7695 return false;
7696
7697 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7698 Value *OpLHS;
7699
7700 return
7701 // The backedge value for the PHI node must be a shift by a positive
7702 // amount
7703 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7704
7705 // of the PHI node itself
7706 OpLHS == PNOut &&
7707
7708 // and the kind of shift should be match the kind of shift we peeled
7709 // off, if any.
7710 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7711 };
7712
7713 PHINode *PN;
7714 Instruction::BinaryOps OpCode;
7715 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7716 return getCouldNotCompute();
7717
7718 const DataLayout &DL = getDataLayout();
7719
7720 // The key rationale for this optimization is that for some kinds of shift
7721 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7722 // within a finite number of iterations. If the condition guarding the
7723 // backedge (in the sense that the backedge is taken if the condition is true)
7724 // is false for the value the shift recurrence stabilizes to, then we know
7725 // that the backedge is taken only a finite number of times.
7726
7727 ConstantInt *StableValue = nullptr;
7728 switch (OpCode) {
7729 default:
7730 llvm_unreachable("Impossible case!");
7731
7732 case Instruction::AShr: {
7733 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7734 // bitwidth(K) iterations.
7735 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7736 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7737 Predecessor->getTerminator(), &DT);
7738 auto *Ty = cast<IntegerType>(RHS->getType());
7739 if (Known.isNonNegative())
7740 StableValue = ConstantInt::get(Ty, 0);
7741 else if (Known.isNegative())
7742 StableValue = ConstantInt::get(Ty, -1, true);
7743 else
7744 return getCouldNotCompute();
7745
7746 break;
7747 }
7748 case Instruction::LShr:
7749 case Instruction::Shl:
7750 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7751 // stabilize to 0 in at most bitwidth(K) iterations.
7752 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7753 break;
7754 }
7755
7756 auto *Result =
7757 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7758 assert(Result->getType()->isIntegerTy(1) &&
7759 "Otherwise cannot be an operand to a branch instruction");
7760
7761 if (Result->isZeroValue()) {
7762 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7763 const SCEV *UpperBound =
7764 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7765 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7766 }
7767
7768 return getCouldNotCompute();
7769 }
7770
7771 /// Return true if we can constant fold an instruction of the specified type,
7772 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)7773 static bool CanConstantFold(const Instruction *I) {
7774 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7775 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7776 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7777 return true;
7778
7779 if (const CallInst *CI = dyn_cast<CallInst>(I))
7780 if (const Function *F = CI->getCalledFunction())
7781 return canConstantFoldCallTo(CI, F);
7782 return false;
7783 }
7784
7785 /// Determine whether this instruction can constant evolve within this loop
7786 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)7787 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7788 // An instruction outside of the loop can't be derived from a loop PHI.
7789 if (!L->contains(I)) return false;
7790
7791 if (isa<PHINode>(I)) {
7792 // We don't currently keep track of the control flow needed to evaluate
7793 // PHIs, so we cannot handle PHIs inside of loops.
7794 return L->getHeader() == I->getParent();
7795 }
7796
7797 // If we won't be able to constant fold this expression even if the operands
7798 // are constants, bail early.
7799 return CanConstantFold(I);
7800 }
7801
7802 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7803 /// recursing through each instruction operand until reaching a loop header phi.
7804 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)7805 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7806 DenseMap<Instruction *, PHINode *> &PHIMap,
7807 unsigned Depth) {
7808 if (Depth > MaxConstantEvolvingDepth)
7809 return nullptr;
7810
7811 // Otherwise, we can evaluate this instruction if all of its operands are
7812 // constant or derived from a PHI node themselves.
7813 PHINode *PHI = nullptr;
7814 for (Value *Op : UseInst->operands()) {
7815 if (isa<Constant>(Op)) continue;
7816
7817 Instruction *OpInst = dyn_cast<Instruction>(Op);
7818 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7819
7820 PHINode *P = dyn_cast<PHINode>(OpInst);
7821 if (!P)
7822 // If this operand is already visited, reuse the prior result.
7823 // We may have P != PHI if this is the deepest point at which the
7824 // inconsistent paths meet.
7825 P = PHIMap.lookup(OpInst);
7826 if (!P) {
7827 // Recurse and memoize the results, whether a phi is found or not.
7828 // This recursive call invalidates pointers into PHIMap.
7829 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7830 PHIMap[OpInst] = P;
7831 }
7832 if (!P)
7833 return nullptr; // Not evolving from PHI
7834 if (PHI && PHI != P)
7835 return nullptr; // Evolving from multiple different PHIs.
7836 PHI = P;
7837 }
7838 // This is a expression evolving from a constant PHI!
7839 return PHI;
7840 }
7841
7842 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7843 /// in the loop that V is derived from. We allow arbitrary operations along the
7844 /// way, but the operands of an operation must either be constants or a value
7845 /// derived from a constant PHI. If this expression does not fit with these
7846 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)7847 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7848 Instruction *I = dyn_cast<Instruction>(V);
7849 if (!I || !canConstantEvolve(I, L)) return nullptr;
7850
7851 if (PHINode *PN = dyn_cast<PHINode>(I))
7852 return PN;
7853
7854 // Record non-constant instructions contained by the loop.
7855 DenseMap<Instruction *, PHINode *> PHIMap;
7856 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7857 }
7858
7859 /// EvaluateExpression - Given an expression that passes the
7860 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7861 /// in the loop has the value PHIVal. If we can't fold this expression for some
7862 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)7863 static Constant *EvaluateExpression(Value *V, const Loop *L,
7864 DenseMap<Instruction *, Constant *> &Vals,
7865 const DataLayout &DL,
7866 const TargetLibraryInfo *TLI) {
7867 // Convenient constant check, but redundant for recursive calls.
7868 if (Constant *C = dyn_cast<Constant>(V)) return C;
7869 Instruction *I = dyn_cast<Instruction>(V);
7870 if (!I) return nullptr;
7871
7872 if (Constant *C = Vals.lookup(I)) return C;
7873
7874 // An instruction inside the loop depends on a value outside the loop that we
7875 // weren't given a mapping for, or a value such as a call inside the loop.
7876 if (!canConstantEvolve(I, L)) return nullptr;
7877
7878 // An unmapped PHI can be due to a branch or another loop inside this loop,
7879 // or due to this not being the initial iteration through a loop where we
7880 // couldn't compute the evolution of this particular PHI last time.
7881 if (isa<PHINode>(I)) return nullptr;
7882
7883 std::vector<Constant*> Operands(I->getNumOperands());
7884
7885 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7886 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7887 if (!Operand) {
7888 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7889 if (!Operands[i]) return nullptr;
7890 continue;
7891 }
7892 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7893 Vals[Operand] = C;
7894 if (!C) return nullptr;
7895 Operands[i] = C;
7896 }
7897
7898 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7899 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7900 Operands[1], DL, TLI);
7901 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7902 if (!LI->isVolatile())
7903 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7904 }
7905 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7906 }
7907
7908
7909 // If every incoming value to PN except the one for BB is a specific Constant,
7910 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)7911 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7912 Constant *IncomingVal = nullptr;
7913
7914 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7915 if (PN->getIncomingBlock(i) == BB)
7916 continue;
7917
7918 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7919 if (!CurrentVal)
7920 return nullptr;
7921
7922 if (IncomingVal != CurrentVal) {
7923 if (IncomingVal)
7924 return nullptr;
7925 IncomingVal = CurrentVal;
7926 }
7927 }
7928
7929 return IncomingVal;
7930 }
7931
7932 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7933 /// in the header of its containing loop, we know the loop executes a
7934 /// constant number of times, and the PHI node is just a recurrence
7935 /// involving constants, fold it.
7936 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)7937 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7938 const APInt &BEs,
7939 const Loop *L) {
7940 auto I = ConstantEvolutionLoopExitValue.find(PN);
7941 if (I != ConstantEvolutionLoopExitValue.end())
7942 return I->second;
7943
7944 if (BEs.ugt(MaxBruteForceIterations))
7945 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7946
7947 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7948
7949 DenseMap<Instruction *, Constant *> CurrentIterVals;
7950 BasicBlock *Header = L->getHeader();
7951 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7952
7953 BasicBlock *Latch = L->getLoopLatch();
7954 if (!Latch)
7955 return nullptr;
7956
7957 for (PHINode &PHI : Header->phis()) {
7958 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7959 CurrentIterVals[&PHI] = StartCST;
7960 }
7961 if (!CurrentIterVals.count(PN))
7962 return RetVal = nullptr;
7963
7964 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7965
7966 // Execute the loop symbolically to determine the exit value.
7967 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7968 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7969
7970 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7971 unsigned IterationNum = 0;
7972 const DataLayout &DL = getDataLayout();
7973 for (; ; ++IterationNum) {
7974 if (IterationNum == NumIterations)
7975 return RetVal = CurrentIterVals[PN]; // Got exit value!
7976
7977 // Compute the value of the PHIs for the next iteration.
7978 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7979 DenseMap<Instruction *, Constant *> NextIterVals;
7980 Constant *NextPHI =
7981 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7982 if (!NextPHI)
7983 return nullptr; // Couldn't evaluate!
7984 NextIterVals[PN] = NextPHI;
7985
7986 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7987
7988 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7989 // cease to be able to evaluate one of them or if they stop evolving,
7990 // because that doesn't necessarily prevent us from computing PN.
7991 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7992 for (const auto &I : CurrentIterVals) {
7993 PHINode *PHI = dyn_cast<PHINode>(I.first);
7994 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7995 PHIsToCompute.emplace_back(PHI, I.second);
7996 }
7997 // We use two distinct loops because EvaluateExpression may invalidate any
7998 // iterators into CurrentIterVals.
7999 for (const auto &I : PHIsToCompute) {
8000 PHINode *PHI = I.first;
8001 Constant *&NextPHI = NextIterVals[PHI];
8002 if (!NextPHI) { // Not already computed.
8003 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8004 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8005 }
8006 if (NextPHI != I.second)
8007 StoppedEvolving = false;
8008 }
8009
8010 // If all entries in CurrentIterVals == NextIterVals then we can stop
8011 // iterating, the loop can't continue to change.
8012 if (StoppedEvolving)
8013 return RetVal = CurrentIterVals[PN];
8014
8015 CurrentIterVals.swap(NextIterVals);
8016 }
8017 }
8018
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)8019 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8020 Value *Cond,
8021 bool ExitWhen) {
8022 PHINode *PN = getConstantEvolvingPHI(Cond, L);
8023 if (!PN) return getCouldNotCompute();
8024
8025 // If the loop is canonicalized, the PHI will have exactly two entries.
8026 // That's the only form we support here.
8027 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8028
8029 DenseMap<Instruction *, Constant *> CurrentIterVals;
8030 BasicBlock *Header = L->getHeader();
8031 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8032
8033 BasicBlock *Latch = L->getLoopLatch();
8034 assert(Latch && "Should follow from NumIncomingValues == 2!");
8035
8036 for (PHINode &PHI : Header->phis()) {
8037 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8038 CurrentIterVals[&PHI] = StartCST;
8039 }
8040 if (!CurrentIterVals.count(PN))
8041 return getCouldNotCompute();
8042
8043 // Okay, we find a PHI node that defines the trip count of this loop. Execute
8044 // the loop symbolically to determine when the condition gets a value of
8045 // "ExitWhen".
8046 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
8047 const DataLayout &DL = getDataLayout();
8048 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8049 auto *CondVal = dyn_cast_or_null<ConstantInt>(
8050 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8051
8052 // Couldn't symbolically evaluate.
8053 if (!CondVal) return getCouldNotCompute();
8054
8055 if (CondVal->getValue() == uint64_t(ExitWhen)) {
8056 ++NumBruteForceTripCountsComputed;
8057 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8058 }
8059
8060 // Update all the PHI nodes for the next iteration.
8061 DenseMap<Instruction *, Constant *> NextIterVals;
8062
8063 // Create a list of which PHIs we need to compute. We want to do this before
8064 // calling EvaluateExpression on them because that may invalidate iterators
8065 // into CurrentIterVals.
8066 SmallVector<PHINode *, 8> PHIsToCompute;
8067 for (const auto &I : CurrentIterVals) {
8068 PHINode *PHI = dyn_cast<PHINode>(I.first);
8069 if (!PHI || PHI->getParent() != Header) continue;
8070 PHIsToCompute.push_back(PHI);
8071 }
8072 for (PHINode *PHI : PHIsToCompute) {
8073 Constant *&NextPHI = NextIterVals[PHI];
8074 if (NextPHI) continue; // Already computed!
8075
8076 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8077 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8078 }
8079 CurrentIterVals.swap(NextIterVals);
8080 }
8081
8082 // Too many iterations were needed to evaluate.
8083 return getCouldNotCompute();
8084 }
8085
getSCEVAtScope(const SCEV * V,const Loop * L)8086 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8087 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8088 ValuesAtScopes[V];
8089 // Check to see if we've folded this expression at this loop before.
8090 for (auto &LS : Values)
8091 if (LS.first == L)
8092 return LS.second ? LS.second : V;
8093
8094 Values.emplace_back(L, nullptr);
8095
8096 // Otherwise compute it.
8097 const SCEV *C = computeSCEVAtScope(V, L);
8098 for (auto &LS : reverse(ValuesAtScopes[V]))
8099 if (LS.first == L) {
8100 LS.second = C;
8101 break;
8102 }
8103 return C;
8104 }
8105
8106 /// This builds up a Constant using the ConstantExpr interface. That way, we
8107 /// will return Constants for objects which aren't represented by a
8108 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8109 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)8110 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8111 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8112 case scCouldNotCompute:
8113 case scAddRecExpr:
8114 break;
8115 case scConstant:
8116 return cast<SCEVConstant>(V)->getValue();
8117 case scUnknown:
8118 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8119 case scSignExtend: {
8120 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8121 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8122 return ConstantExpr::getSExt(CastOp, SS->getType());
8123 break;
8124 }
8125 case scZeroExtend: {
8126 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8127 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8128 return ConstantExpr::getZExt(CastOp, SZ->getType());
8129 break;
8130 }
8131 case scTruncate: {
8132 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8133 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8134 return ConstantExpr::getTrunc(CastOp, ST->getType());
8135 break;
8136 }
8137 case scAddExpr: {
8138 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8139 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8140 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8141 unsigned AS = PTy->getAddressSpace();
8142 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8143 C = ConstantExpr::getBitCast(C, DestPtrTy);
8144 }
8145 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8146 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8147 if (!C2) return nullptr;
8148
8149 // First pointer!
8150 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8151 unsigned AS = C2->getType()->getPointerAddressSpace();
8152 std::swap(C, C2);
8153 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8154 // The offsets have been converted to bytes. We can add bytes to an
8155 // i8* by GEP with the byte count in the first index.
8156 C = ConstantExpr::getBitCast(C, DestPtrTy);
8157 }
8158
8159 // Don't bother trying to sum two pointers. We probably can't
8160 // statically compute a load that results from it anyway.
8161 if (C2->getType()->isPointerTy())
8162 return nullptr;
8163
8164 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8165 if (PTy->getElementType()->isStructTy())
8166 C2 = ConstantExpr::getIntegerCast(
8167 C2, Type::getInt32Ty(C->getContext()), true);
8168 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8169 } else
8170 C = ConstantExpr::getAdd(C, C2);
8171 }
8172 return C;
8173 }
8174 break;
8175 }
8176 case scMulExpr: {
8177 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8178 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8179 // Don't bother with pointers at all.
8180 if (C->getType()->isPointerTy()) return nullptr;
8181 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8182 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8183 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8184 C = ConstantExpr::getMul(C, C2);
8185 }
8186 return C;
8187 }
8188 break;
8189 }
8190 case scUDivExpr: {
8191 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8192 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8193 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8194 if (LHS->getType() == RHS->getType())
8195 return ConstantExpr::getUDiv(LHS, RHS);
8196 break;
8197 }
8198 case scSMaxExpr:
8199 case scUMaxExpr:
8200 case scSMinExpr:
8201 case scUMinExpr:
8202 break; // TODO: smax, umax, smin, umax.
8203 }
8204 return nullptr;
8205 }
8206
computeSCEVAtScope(const SCEV * V,const Loop * L)8207 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8208 if (isa<SCEVConstant>(V)) return V;
8209
8210 // If this instruction is evolved from a constant-evolving PHI, compute the
8211 // exit value from the loop without using SCEVs.
8212 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8213 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8214 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8215 const Loop *LI = this->LI[I->getParent()];
8216 // Looking for loop exit value.
8217 if (LI && LI->getParentLoop() == L &&
8218 PN->getParent() == LI->getHeader()) {
8219 // Okay, there is no closed form solution for the PHI node. Check
8220 // to see if the loop that contains it has a known backedge-taken
8221 // count. If so, we may be able to force computation of the exit
8222 // value.
8223 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8224 // This trivial case can show up in some degenerate cases where
8225 // the incoming IR has not yet been fully simplified.
8226 if (BackedgeTakenCount->isZero()) {
8227 Value *InitValue = nullptr;
8228 bool MultipleInitValues = false;
8229 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8230 if (!LI->contains(PN->getIncomingBlock(i))) {
8231 if (!InitValue)
8232 InitValue = PN->getIncomingValue(i);
8233 else if (InitValue != PN->getIncomingValue(i)) {
8234 MultipleInitValues = true;
8235 break;
8236 }
8237 }
8238 }
8239 if (!MultipleInitValues && InitValue)
8240 return getSCEV(InitValue);
8241 }
8242 // Do we have a loop invariant value flowing around the backedge
8243 // for a loop which must execute the backedge?
8244 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8245 isKnownPositive(BackedgeTakenCount) &&
8246 PN->getNumIncomingValues() == 2) {
8247 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8248 const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8249 if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8250 return OnBackedge;
8251 }
8252 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8253 // Okay, we know how many times the containing loop executes. If
8254 // this is a constant evolving PHI node, get the final value at
8255 // the specified iteration number.
8256 Constant *RV =
8257 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8258 if (RV) return getSCEV(RV);
8259 }
8260 }
8261
8262 // If there is a single-input Phi, evaluate it at our scope. If we can
8263 // prove that this replacement does not break LCSSA form, use new value.
8264 if (PN->getNumOperands() == 1) {
8265 const SCEV *Input = getSCEV(PN->getOperand(0));
8266 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8267 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8268 // for the simplest case just support constants.
8269 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8270 }
8271 }
8272
8273 // Okay, this is an expression that we cannot symbolically evaluate
8274 // into a SCEV. Check to see if it's possible to symbolically evaluate
8275 // the arguments into constants, and if so, try to constant propagate the
8276 // result. This is particularly useful for computing loop exit values.
8277 if (CanConstantFold(I)) {
8278 SmallVector<Constant *, 4> Operands;
8279 bool MadeImprovement = false;
8280 for (Value *Op : I->operands()) {
8281 if (Constant *C = dyn_cast<Constant>(Op)) {
8282 Operands.push_back(C);
8283 continue;
8284 }
8285
8286 // If any of the operands is non-constant and if they are
8287 // non-integer and non-pointer, don't even try to analyze them
8288 // with scev techniques.
8289 if (!isSCEVable(Op->getType()))
8290 return V;
8291
8292 const SCEV *OrigV = getSCEV(Op);
8293 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8294 MadeImprovement |= OrigV != OpV;
8295
8296 Constant *C = BuildConstantFromSCEV(OpV);
8297 if (!C) return V;
8298 if (C->getType() != Op->getType())
8299 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8300 Op->getType(),
8301 false),
8302 C, Op->getType());
8303 Operands.push_back(C);
8304 }
8305
8306 // Check to see if getSCEVAtScope actually made an improvement.
8307 if (MadeImprovement) {
8308 Constant *C = nullptr;
8309 const DataLayout &DL = getDataLayout();
8310 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8311 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8312 Operands[1], DL, &TLI);
8313 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8314 if (!LI->isVolatile())
8315 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8316 } else
8317 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8318 if (!C) return V;
8319 return getSCEV(C);
8320 }
8321 }
8322 }
8323
8324 // This is some other type of SCEVUnknown, just return it.
8325 return V;
8326 }
8327
8328 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8329 // Avoid performing the look-up in the common case where the specified
8330 // expression has no loop-variant portions.
8331 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8332 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8333 if (OpAtScope != Comm->getOperand(i)) {
8334 // Okay, at least one of these operands is loop variant but might be
8335 // foldable. Build a new instance of the folded commutative expression.
8336 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8337 Comm->op_begin()+i);
8338 NewOps.push_back(OpAtScope);
8339
8340 for (++i; i != e; ++i) {
8341 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8342 NewOps.push_back(OpAtScope);
8343 }
8344 if (isa<SCEVAddExpr>(Comm))
8345 return getAddExpr(NewOps, Comm->getNoWrapFlags());
8346 if (isa<SCEVMulExpr>(Comm))
8347 return getMulExpr(NewOps, Comm->getNoWrapFlags());
8348 if (isa<SCEVMinMaxExpr>(Comm))
8349 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8350 llvm_unreachable("Unknown commutative SCEV type!");
8351 }
8352 }
8353 // If we got here, all operands are loop invariant.
8354 return Comm;
8355 }
8356
8357 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8358 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8359 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8360 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8361 return Div; // must be loop invariant
8362 return getUDivExpr(LHS, RHS);
8363 }
8364
8365 // If this is a loop recurrence for a loop that does not contain L, then we
8366 // are dealing with the final value computed by the loop.
8367 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8368 // First, attempt to evaluate each operand.
8369 // Avoid performing the look-up in the common case where the specified
8370 // expression has no loop-variant portions.
8371 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8372 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8373 if (OpAtScope == AddRec->getOperand(i))
8374 continue;
8375
8376 // Okay, at least one of these operands is loop variant but might be
8377 // foldable. Build a new instance of the folded commutative expression.
8378 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8379 AddRec->op_begin()+i);
8380 NewOps.push_back(OpAtScope);
8381 for (++i; i != e; ++i)
8382 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8383
8384 const SCEV *FoldedRec =
8385 getAddRecExpr(NewOps, AddRec->getLoop(),
8386 AddRec->getNoWrapFlags(SCEV::FlagNW));
8387 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8388 // The addrec may be folded to a nonrecurrence, for example, if the
8389 // induction variable is multiplied by zero after constant folding. Go
8390 // ahead and return the folded value.
8391 if (!AddRec)
8392 return FoldedRec;
8393 break;
8394 }
8395
8396 // If the scope is outside the addrec's loop, evaluate it by using the
8397 // loop exit value of the addrec.
8398 if (!AddRec->getLoop()->contains(L)) {
8399 // To evaluate this recurrence, we need to know how many times the AddRec
8400 // loop iterates. Compute this now.
8401 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8402 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8403
8404 // Then, evaluate the AddRec.
8405 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8406 }
8407
8408 return AddRec;
8409 }
8410
8411 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8412 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8413 if (Op == Cast->getOperand())
8414 return Cast; // must be loop invariant
8415 return getZeroExtendExpr(Op, Cast->getType());
8416 }
8417
8418 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8419 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8420 if (Op == Cast->getOperand())
8421 return Cast; // must be loop invariant
8422 return getSignExtendExpr(Op, Cast->getType());
8423 }
8424
8425 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8426 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8427 if (Op == Cast->getOperand())
8428 return Cast; // must be loop invariant
8429 return getTruncateExpr(Op, Cast->getType());
8430 }
8431
8432 llvm_unreachable("Unknown SCEV type!");
8433 }
8434
getSCEVAtScope(Value * V,const Loop * L)8435 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8436 return getSCEVAtScope(getSCEV(V), L);
8437 }
8438
stripInjectiveFunctions(const SCEV * S) const8439 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8440 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8441 return stripInjectiveFunctions(ZExt->getOperand());
8442 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8443 return stripInjectiveFunctions(SExt->getOperand());
8444 return S;
8445 }
8446
8447 /// Finds the minimum unsigned root of the following equation:
8448 ///
8449 /// A * X = B (mod N)
8450 ///
8451 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8452 /// A and B isn't important.
8453 ///
8454 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8455 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8456 ScalarEvolution &SE) {
8457 uint32_t BW = A.getBitWidth();
8458 assert(BW == SE.getTypeSizeInBits(B->getType()));
8459 assert(A != 0 && "A must be non-zero.");
8460
8461 // 1. D = gcd(A, N)
8462 //
8463 // The gcd of A and N may have only one prime factor: 2. The number of
8464 // trailing zeros in A is its multiplicity
8465 uint32_t Mult2 = A.countTrailingZeros();
8466 // D = 2^Mult2
8467
8468 // 2. Check if B is divisible by D.
8469 //
8470 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8471 // is not less than multiplicity of this prime factor for D.
8472 if (SE.GetMinTrailingZeros(B) < Mult2)
8473 return SE.getCouldNotCompute();
8474
8475 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8476 // modulo (N / D).
8477 //
8478 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8479 // (N / D) in general. The inverse itself always fits into BW bits, though,
8480 // so we immediately truncate it.
8481 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8482 APInt Mod(BW + 1, 0);
8483 Mod.setBit(BW - Mult2); // Mod = N / D
8484 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8485
8486 // 4. Compute the minimum unsigned root of the equation:
8487 // I * (B / D) mod (N / D)
8488 // To simplify the computation, we factor out the divide by D:
8489 // (I * B mod N) / D
8490 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8491 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8492 }
8493
8494 /// For a given quadratic addrec, generate coefficients of the corresponding
8495 /// quadratic equation, multiplied by a common value to ensure that they are
8496 /// integers.
8497 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8498 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8499 /// were multiplied by, and BitWidth is the bit width of the original addrec
8500 /// coefficients.
8501 /// This function returns None if the addrec coefficients are not compile-
8502 /// time constants.
8503 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)8504 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8505 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8506 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8507 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8508 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8509 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8510 << *AddRec << '\n');
8511
8512 // We currently can only solve this if the coefficients are constants.
8513 if (!LC || !MC || !NC) {
8514 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8515 return None;
8516 }
8517
8518 APInt L = LC->getAPInt();
8519 APInt M = MC->getAPInt();
8520 APInt N = NC->getAPInt();
8521 assert(!N.isNullValue() && "This is not a quadratic addrec");
8522
8523 unsigned BitWidth = LC->getAPInt().getBitWidth();
8524 unsigned NewWidth = BitWidth + 1;
8525 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8526 << BitWidth << '\n');
8527 // The sign-extension (as opposed to a zero-extension) here matches the
8528 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8529 N = N.sext(NewWidth);
8530 M = M.sext(NewWidth);
8531 L = L.sext(NewWidth);
8532
8533 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8534 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8535 // L+M, L+2M+N, L+3M+3N, ...
8536 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8537 //
8538 // The equation Acc = 0 is then
8539 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8540 // In a quadratic form it becomes:
8541 // N n^2 + (2M-N) n + 2L = 0.
8542
8543 APInt A = N;
8544 APInt B = 2 * M - A;
8545 APInt C = 2 * L;
8546 APInt T = APInt(NewWidth, 2);
8547 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8548 << "x + " << C << ", coeff bw: " << NewWidth
8549 << ", multiplied by " << T << '\n');
8550 return std::make_tuple(A, B, C, T, BitWidth);
8551 }
8552
8553 /// Helper function to compare optional APInts:
8554 /// (a) if X and Y both exist, return min(X, Y),
8555 /// (b) if neither X nor Y exist, return None,
8556 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)8557 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8558 if (X.hasValue() && Y.hasValue()) {
8559 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8560 APInt XW = X->sextOrSelf(W);
8561 APInt YW = Y->sextOrSelf(W);
8562 return XW.slt(YW) ? *X : *Y;
8563 }
8564 if (!X.hasValue() && !Y.hasValue())
8565 return None;
8566 return X.hasValue() ? *X : *Y;
8567 }
8568
8569 /// Helper function to truncate an optional APInt to a given BitWidth.
8570 /// When solving addrec-related equations, it is preferable to return a value
8571 /// that has the same bit width as the original addrec's coefficients. If the
8572 /// solution fits in the original bit width, truncate it (except for i1).
8573 /// Returning a value of a different bit width may inhibit some optimizations.
8574 ///
8575 /// In general, a solution to a quadratic equation generated from an addrec
8576 /// may require BW+1 bits, where BW is the bit width of the addrec's
8577 /// coefficients. The reason is that the coefficients of the quadratic
8578 /// equation are BW+1 bits wide (to avoid truncation when converting from
8579 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)8580 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8581 if (!X.hasValue())
8582 return None;
8583 unsigned W = X->getBitWidth();
8584 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8585 return X->trunc(BitWidth);
8586 return X;
8587 }
8588
8589 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8590 /// iterations. The values L, M, N are assumed to be signed, and they
8591 /// should all have the same bit widths.
8592 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8593 /// where BW is the bit width of the addrec's coefficients.
8594 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8595 /// returned as such, otherwise the bit width of the returned value may
8596 /// be greater than BW.
8597 ///
8598 /// This function returns None if
8599 /// (a) the addrec coefficients are not constant, or
8600 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8601 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8602 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8603 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8604 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8605 APInt A, B, C, M;
8606 unsigned BitWidth;
8607 auto T = GetQuadraticEquation(AddRec);
8608 if (!T.hasValue())
8609 return None;
8610
8611 std::tie(A, B, C, M, BitWidth) = *T;
8612 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8613 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8614 if (!X.hasValue())
8615 return None;
8616
8617 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8618 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8619 if (!V->isZero())
8620 return None;
8621
8622 return TruncIfPossible(X, BitWidth);
8623 }
8624
8625 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8626 /// iterations. The values M, N are assumed to be signed, and they
8627 /// should all have the same bit widths.
8628 /// Find the least n such that c(n) does not belong to the given range,
8629 /// while c(n-1) does.
8630 ///
8631 /// This function returns None if
8632 /// (a) the addrec coefficients are not constant, or
8633 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8634 /// bounds of the range.
8635 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)8636 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8637 const ConstantRange &Range, ScalarEvolution &SE) {
8638 assert(AddRec->getOperand(0)->isZero() &&
8639 "Starting value of addrec should be 0");
8640 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8641 << Range << ", addrec " << *AddRec << '\n');
8642 // This case is handled in getNumIterationsInRange. Here we can assume that
8643 // we start in the range.
8644 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8645 "Addrec's initial value should be in range");
8646
8647 APInt A, B, C, M;
8648 unsigned BitWidth;
8649 auto T = GetQuadraticEquation(AddRec);
8650 if (!T.hasValue())
8651 return None;
8652
8653 // Be careful about the return value: there can be two reasons for not
8654 // returning an actual number. First, if no solutions to the equations
8655 // were found, and second, if the solutions don't leave the given range.
8656 // The first case means that the actual solution is "unknown", the second
8657 // means that it's known, but not valid. If the solution is unknown, we
8658 // cannot make any conclusions.
8659 // Return a pair: the optional solution and a flag indicating if the
8660 // solution was found.
8661 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8662 // Solve for signed overflow and unsigned overflow, pick the lower
8663 // solution.
8664 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8665 << Bound << " (before multiplying by " << M << ")\n");
8666 Bound *= M; // The quadratic equation multiplier.
8667
8668 Optional<APInt> SO = None;
8669 if (BitWidth > 1) {
8670 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8671 "signed overflow\n");
8672 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8673 }
8674 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8675 "unsigned overflow\n");
8676 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8677 BitWidth+1);
8678
8679 auto LeavesRange = [&] (const APInt &X) {
8680 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8681 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8682 if (Range.contains(V0->getValue()))
8683 return false;
8684 // X should be at least 1, so X-1 is non-negative.
8685 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8686 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8687 if (Range.contains(V1->getValue()))
8688 return true;
8689 return false;
8690 };
8691
8692 // If SolveQuadraticEquationWrap returns None, it means that there can
8693 // be a solution, but the function failed to find it. We cannot treat it
8694 // as "no solution".
8695 if (!SO.hasValue() || !UO.hasValue())
8696 return { None, false };
8697
8698 // Check the smaller value first to see if it leaves the range.
8699 // At this point, both SO and UO must have values.
8700 Optional<APInt> Min = MinOptional(SO, UO);
8701 if (LeavesRange(*Min))
8702 return { Min, true };
8703 Optional<APInt> Max = Min == SO ? UO : SO;
8704 if (LeavesRange(*Max))
8705 return { Max, true };
8706
8707 // Solutions were found, but were eliminated, hence the "true".
8708 return { None, true };
8709 };
8710
8711 std::tie(A, B, C, M, BitWidth) = *T;
8712 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8713 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8714 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8715 auto SL = SolveForBoundary(Lower);
8716 auto SU = SolveForBoundary(Upper);
8717 // If any of the solutions was unknown, no meaninigful conclusions can
8718 // be made.
8719 if (!SL.second || !SU.second)
8720 return None;
8721
8722 // Claim: The correct solution is not some value between Min and Max.
8723 //
8724 // Justification: Assuming that Min and Max are different values, one of
8725 // them is when the first signed overflow happens, the other is when the
8726 // first unsigned overflow happens. Crossing the range boundary is only
8727 // possible via an overflow (treating 0 as a special case of it, modeling
8728 // an overflow as crossing k*2^W for some k).
8729 //
8730 // The interesting case here is when Min was eliminated as an invalid
8731 // solution, but Max was not. The argument is that if there was another
8732 // overflow between Min and Max, it would also have been eliminated if
8733 // it was considered.
8734 //
8735 // For a given boundary, it is possible to have two overflows of the same
8736 // type (signed/unsigned) without having the other type in between: this
8737 // can happen when the vertex of the parabola is between the iterations
8738 // corresponding to the overflows. This is only possible when the two
8739 // overflows cross k*2^W for the same k. In such case, if the second one
8740 // left the range (and was the first one to do so), the first overflow
8741 // would have to enter the range, which would mean that either we had left
8742 // the range before or that we started outside of it. Both of these cases
8743 // are contradictions.
8744 //
8745 // Claim: In the case where SolveForBoundary returns None, the correct
8746 // solution is not some value between the Max for this boundary and the
8747 // Min of the other boundary.
8748 //
8749 // Justification: Assume that we had such Max_A and Min_B corresponding
8750 // to range boundaries A and B and such that Max_A < Min_B. If there was
8751 // a solution between Max_A and Min_B, it would have to be caused by an
8752 // overflow corresponding to either A or B. It cannot correspond to B,
8753 // since Min_B is the first occurrence of such an overflow. If it
8754 // corresponded to A, it would have to be either a signed or an unsigned
8755 // overflow that is larger than both eliminated overflows for A. But
8756 // between the eliminated overflows and this overflow, the values would
8757 // cover the entire value space, thus crossing the other boundary, which
8758 // is a contradiction.
8759
8760 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8761 }
8762
8763 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)8764 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8765 bool AllowPredicates) {
8766
8767 // This is only used for loops with a "x != y" exit test. The exit condition
8768 // is now expressed as a single expression, V = x-y. So the exit test is
8769 // effectively V != 0. We know and take advantage of the fact that this
8770 // expression only being used in a comparison by zero context.
8771
8772 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8773 // If the value is a constant
8774 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8775 // If the value is already zero, the branch will execute zero times.
8776 if (C->getValue()->isZero()) return C;
8777 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8778 }
8779
8780 const SCEVAddRecExpr *AddRec =
8781 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8782
8783 if (!AddRec && AllowPredicates)
8784 // Try to make this an AddRec using runtime tests, in the first X
8785 // iterations of this loop, where X is the SCEV expression found by the
8786 // algorithm below.
8787 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8788
8789 if (!AddRec || AddRec->getLoop() != L)
8790 return getCouldNotCompute();
8791
8792 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8793 // the quadratic equation to solve it.
8794 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8795 // We can only use this value if the chrec ends up with an exact zero
8796 // value at this index. When solving for "X*X != 5", for example, we
8797 // should not accept a root of 2.
8798 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8799 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8800 return ExitLimit(R, R, false, Predicates);
8801 }
8802 return getCouldNotCompute();
8803 }
8804
8805 // Otherwise we can only handle this if it is affine.
8806 if (!AddRec->isAffine())
8807 return getCouldNotCompute();
8808
8809 // If this is an affine expression, the execution count of this branch is
8810 // the minimum unsigned root of the following equation:
8811 //
8812 // Start + Step*N = 0 (mod 2^BW)
8813 //
8814 // equivalent to:
8815 //
8816 // Step*N = -Start (mod 2^BW)
8817 //
8818 // where BW is the common bit width of Start and Step.
8819
8820 // Get the initial value for the loop.
8821 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8822 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8823
8824 // For now we handle only constant steps.
8825 //
8826 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8827 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8828 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8829 // We have not yet seen any such cases.
8830 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8831 if (!StepC || StepC->getValue()->isZero())
8832 return getCouldNotCompute();
8833
8834 // For positive steps (counting up until unsigned overflow):
8835 // N = -Start/Step (as unsigned)
8836 // For negative steps (counting down to zero):
8837 // N = Start/-Step
8838 // First compute the unsigned distance from zero in the direction of Step.
8839 bool CountDown = StepC->getAPInt().isNegative();
8840 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8841
8842 // Handle unitary steps, which cannot wraparound.
8843 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8844 // N = Distance (as unsigned)
8845 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8846 APInt MaxBECount = getUnsignedRangeMax(Distance);
8847
8848 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8849 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8850 // case, and see if we can improve the bound.
8851 //
8852 // Explicitly handling this here is necessary because getUnsignedRange
8853 // isn't context-sensitive; it doesn't know that we only care about the
8854 // range inside the loop.
8855 const SCEV *Zero = getZero(Distance->getType());
8856 const SCEV *One = getOne(Distance->getType());
8857 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8858 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8859 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8860 // as "unsigned_max(Distance + 1) - 1".
8861 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8862 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8863 }
8864 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8865 }
8866
8867 // If the condition controls loop exit (the loop exits only if the expression
8868 // is true) and the addition is no-wrap we can use unsigned divide to
8869 // compute the backedge count. In this case, the step may not divide the
8870 // distance, but we don't care because if the condition is "missed" the loop
8871 // will have undefined behavior due to wrapping.
8872 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8873 loopHasNoAbnormalExits(AddRec->getLoop())) {
8874 const SCEV *Exact =
8875 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8876 const SCEV *Max =
8877 Exact == getCouldNotCompute()
8878 ? Exact
8879 : getConstant(getUnsignedRangeMax(Exact));
8880 return ExitLimit(Exact, Max, false, Predicates);
8881 }
8882
8883 // Solve the general equation.
8884 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8885 getNegativeSCEV(Start), *this);
8886 const SCEV *M = E == getCouldNotCompute()
8887 ? E
8888 : getConstant(getUnsignedRangeMax(E));
8889 return ExitLimit(E, M, false, Predicates);
8890 }
8891
8892 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)8893 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8894 // Loops that look like: while (X == 0) are very strange indeed. We don't
8895 // handle them yet except for the trivial case. This could be expanded in the
8896 // future as needed.
8897
8898 // If the value is a constant, check to see if it is known to be non-zero
8899 // already. If so, the backedge will execute zero times.
8900 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8901 if (!C->getValue()->isZero())
8902 return getZero(C->getType());
8903 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8904 }
8905
8906 // We could implement others, but I really doubt anyone writes loops like
8907 // this, and if they did, they would already be constant folded.
8908 return getCouldNotCompute();
8909 }
8910
8911 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)8912 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8913 // If the block has a unique predecessor, then there is no path from the
8914 // predecessor to the block that does not go through the direct edge
8915 // from the predecessor to the block.
8916 if (BasicBlock *Pred = BB->getSinglePredecessor())
8917 return {Pred, BB};
8918
8919 // A loop's header is defined to be a block that dominates the loop.
8920 // If the header has a unique predecessor outside the loop, it must be
8921 // a block that has exactly one successor that can reach the loop.
8922 if (Loop *L = LI.getLoopFor(BB))
8923 return {L->getLoopPredecessor(), L->getHeader()};
8924
8925 return {nullptr, nullptr};
8926 }
8927
8928 /// SCEV structural equivalence is usually sufficient for testing whether two
8929 /// expressions are equal, however for the purposes of looking for a condition
8930 /// guarding a loop, it can be useful to be a little more general, since a
8931 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)8932 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8933 // Quick check to see if they are the same SCEV.
8934 if (A == B) return true;
8935
8936 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8937 // Not all instructions that are "identical" compute the same value. For
8938 // instance, two distinct alloca instructions allocating the same type are
8939 // identical and do not read memory; but compute distinct values.
8940 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8941 };
8942
8943 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8944 // two different instructions with the same value. Check for this case.
8945 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8946 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8947 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8948 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8949 if (ComputesEqualValues(AI, BI))
8950 return true;
8951
8952 // Otherwise assume they may have a different value.
8953 return false;
8954 }
8955
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)8956 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8957 const SCEV *&LHS, const SCEV *&RHS,
8958 unsigned Depth) {
8959 bool Changed = false;
8960 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8961 // '0 != 0'.
8962 auto TrivialCase = [&](bool TriviallyTrue) {
8963 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8964 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8965 return true;
8966 };
8967 // If we hit the max recursion limit bail out.
8968 if (Depth >= 3)
8969 return false;
8970
8971 // Canonicalize a constant to the right side.
8972 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8973 // Check for both operands constant.
8974 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8975 if (ConstantExpr::getICmp(Pred,
8976 LHSC->getValue(),
8977 RHSC->getValue())->isNullValue())
8978 return TrivialCase(false);
8979 else
8980 return TrivialCase(true);
8981 }
8982 // Otherwise swap the operands to put the constant on the right.
8983 std::swap(LHS, RHS);
8984 Pred = ICmpInst::getSwappedPredicate(Pred);
8985 Changed = true;
8986 }
8987
8988 // If we're comparing an addrec with a value which is loop-invariant in the
8989 // addrec's loop, put the addrec on the left. Also make a dominance check,
8990 // as both operands could be addrecs loop-invariant in each other's loop.
8991 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8992 const Loop *L = AR->getLoop();
8993 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8994 std::swap(LHS, RHS);
8995 Pred = ICmpInst::getSwappedPredicate(Pred);
8996 Changed = true;
8997 }
8998 }
8999
9000 // If there's a constant operand, canonicalize comparisons with boundary
9001 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9002 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9003 const APInt &RA = RC->getAPInt();
9004
9005 bool SimplifiedByConstantRange = false;
9006
9007 if (!ICmpInst::isEquality(Pred)) {
9008 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9009 if (ExactCR.isFullSet())
9010 return TrivialCase(true);
9011 else if (ExactCR.isEmptySet())
9012 return TrivialCase(false);
9013
9014 APInt NewRHS;
9015 CmpInst::Predicate NewPred;
9016 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9017 ICmpInst::isEquality(NewPred)) {
9018 // We were able to convert an inequality to an equality.
9019 Pred = NewPred;
9020 RHS = getConstant(NewRHS);
9021 Changed = SimplifiedByConstantRange = true;
9022 }
9023 }
9024
9025 if (!SimplifiedByConstantRange) {
9026 switch (Pred) {
9027 default:
9028 break;
9029 case ICmpInst::ICMP_EQ:
9030 case ICmpInst::ICMP_NE:
9031 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9032 if (!RA)
9033 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9034 if (const SCEVMulExpr *ME =
9035 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9036 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9037 ME->getOperand(0)->isAllOnesValue()) {
9038 RHS = AE->getOperand(1);
9039 LHS = ME->getOperand(1);
9040 Changed = true;
9041 }
9042 break;
9043
9044
9045 // The "Should have been caught earlier!" messages refer to the fact
9046 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9047 // should have fired on the corresponding cases, and canonicalized the
9048 // check to trivial case.
9049
9050 case ICmpInst::ICMP_UGE:
9051 assert(!RA.isMinValue() && "Should have been caught earlier!");
9052 Pred = ICmpInst::ICMP_UGT;
9053 RHS = getConstant(RA - 1);
9054 Changed = true;
9055 break;
9056 case ICmpInst::ICMP_ULE:
9057 assert(!RA.isMaxValue() && "Should have been caught earlier!");
9058 Pred = ICmpInst::ICMP_ULT;
9059 RHS = getConstant(RA + 1);
9060 Changed = true;
9061 break;
9062 case ICmpInst::ICMP_SGE:
9063 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9064 Pred = ICmpInst::ICMP_SGT;
9065 RHS = getConstant(RA - 1);
9066 Changed = true;
9067 break;
9068 case ICmpInst::ICMP_SLE:
9069 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9070 Pred = ICmpInst::ICMP_SLT;
9071 RHS = getConstant(RA + 1);
9072 Changed = true;
9073 break;
9074 }
9075 }
9076 }
9077
9078 // Check for obvious equality.
9079 if (HasSameValue(LHS, RHS)) {
9080 if (ICmpInst::isTrueWhenEqual(Pred))
9081 return TrivialCase(true);
9082 if (ICmpInst::isFalseWhenEqual(Pred))
9083 return TrivialCase(false);
9084 }
9085
9086 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9087 // adding or subtracting 1 from one of the operands.
9088 switch (Pred) {
9089 case ICmpInst::ICMP_SLE:
9090 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9091 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9092 SCEV::FlagNSW);
9093 Pred = ICmpInst::ICMP_SLT;
9094 Changed = true;
9095 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9096 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9097 SCEV::FlagNSW);
9098 Pred = ICmpInst::ICMP_SLT;
9099 Changed = true;
9100 }
9101 break;
9102 case ICmpInst::ICMP_SGE:
9103 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9104 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9105 SCEV::FlagNSW);
9106 Pred = ICmpInst::ICMP_SGT;
9107 Changed = true;
9108 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9109 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9110 SCEV::FlagNSW);
9111 Pred = ICmpInst::ICMP_SGT;
9112 Changed = true;
9113 }
9114 break;
9115 case ICmpInst::ICMP_ULE:
9116 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9117 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9118 SCEV::FlagNUW);
9119 Pred = ICmpInst::ICMP_ULT;
9120 Changed = true;
9121 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9122 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9123 Pred = ICmpInst::ICMP_ULT;
9124 Changed = true;
9125 }
9126 break;
9127 case ICmpInst::ICMP_UGE:
9128 if (!getUnsignedRangeMin(RHS).isMinValue()) {
9129 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9130 Pred = ICmpInst::ICMP_UGT;
9131 Changed = true;
9132 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9133 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9134 SCEV::FlagNUW);
9135 Pred = ICmpInst::ICMP_UGT;
9136 Changed = true;
9137 }
9138 break;
9139 default:
9140 break;
9141 }
9142
9143 // TODO: More simplifications are possible here.
9144
9145 // Recursively simplify until we either hit a recursion limit or nothing
9146 // changes.
9147 if (Changed)
9148 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9149
9150 return Changed;
9151 }
9152
isKnownNegative(const SCEV * S)9153 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9154 return getSignedRangeMax(S).isNegative();
9155 }
9156
isKnownPositive(const SCEV * S)9157 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9158 return getSignedRangeMin(S).isStrictlyPositive();
9159 }
9160
isKnownNonNegative(const SCEV * S)9161 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9162 return !getSignedRangeMin(S).isNegative();
9163 }
9164
isKnownNonPositive(const SCEV * S)9165 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9166 return !getSignedRangeMax(S).isStrictlyPositive();
9167 }
9168
isKnownNonZero(const SCEV * S)9169 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9170 return isKnownNegative(S) || isKnownPositive(S);
9171 }
9172
9173 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)9174 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9175 // Compute SCEV on entry of loop L.
9176 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9177 if (Start == getCouldNotCompute())
9178 return { Start, Start };
9179 // Compute post increment SCEV for loop L.
9180 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9181 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9182 return { Start, PostInc };
9183 }
9184
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9185 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9186 const SCEV *LHS, const SCEV *RHS) {
9187 // First collect all loops.
9188 SmallPtrSet<const Loop *, 8> LoopsUsed;
9189 getUsedLoops(LHS, LoopsUsed);
9190 getUsedLoops(RHS, LoopsUsed);
9191
9192 if (LoopsUsed.empty())
9193 return false;
9194
9195 // Domination relationship must be a linear order on collected loops.
9196 #ifndef NDEBUG
9197 for (auto *L1 : LoopsUsed)
9198 for (auto *L2 : LoopsUsed)
9199 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9200 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9201 "Domination relationship is not a linear order");
9202 #endif
9203
9204 const Loop *MDL =
9205 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9206 [&](const Loop *L1, const Loop *L2) {
9207 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9208 });
9209
9210 // Get init and post increment value for LHS.
9211 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9212 // if LHS contains unknown non-invariant SCEV then bail out.
9213 if (SplitLHS.first == getCouldNotCompute())
9214 return false;
9215 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9216 // Get init and post increment value for RHS.
9217 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9218 // if RHS contains unknown non-invariant SCEV then bail out.
9219 if (SplitRHS.first == getCouldNotCompute())
9220 return false;
9221 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9222 // It is possible that init SCEV contains an invariant load but it does
9223 // not dominate MDL and is not available at MDL loop entry, so we should
9224 // check it here.
9225 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9226 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9227 return false;
9228
9229 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9230 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9231 SplitRHS.second);
9232 }
9233
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9234 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9235 const SCEV *LHS, const SCEV *RHS) {
9236 // Canonicalize the inputs first.
9237 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9238
9239 if (isKnownViaInduction(Pred, LHS, RHS))
9240 return true;
9241
9242 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9243 return true;
9244
9245 // Otherwise see what can be done with some simple reasoning.
9246 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9247 }
9248
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)9249 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9250 const SCEVAddRecExpr *LHS,
9251 const SCEV *RHS) {
9252 const Loop *L = LHS->getLoop();
9253 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9254 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9255 }
9256
isMonotonicPredicate(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)9257 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9258 ICmpInst::Predicate Pred,
9259 bool &Increasing) {
9260 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9261
9262 #ifndef NDEBUG
9263 // Verify an invariant: inverting the predicate should turn a monotonically
9264 // increasing change to a monotonically decreasing one, and vice versa.
9265 bool IncreasingSwapped;
9266 bool ResultSwapped = isMonotonicPredicateImpl(
9267 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9268
9269 assert(Result == ResultSwapped && "should be able to analyze both!");
9270 if (ResultSwapped)
9271 assert(Increasing == !IncreasingSwapped &&
9272 "monotonicity should flip as we flip the predicate");
9273 #endif
9274
9275 return Result;
9276 }
9277
isMonotonicPredicateImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)9278 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9279 ICmpInst::Predicate Pred,
9280 bool &Increasing) {
9281
9282 // A zero step value for LHS means the induction variable is essentially a
9283 // loop invariant value. We don't really depend on the predicate actually
9284 // flipping from false to true (for increasing predicates, and the other way
9285 // around for decreasing predicates), all we care about is that *if* the
9286 // predicate changes then it only changes from false to true.
9287 //
9288 // A zero step value in itself is not very useful, but there may be places
9289 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9290 // as general as possible.
9291
9292 switch (Pred) {
9293 default:
9294 return false; // Conservative answer
9295
9296 case ICmpInst::ICMP_UGT:
9297 case ICmpInst::ICMP_UGE:
9298 case ICmpInst::ICMP_ULT:
9299 case ICmpInst::ICMP_ULE:
9300 if (!LHS->hasNoUnsignedWrap())
9301 return false;
9302
9303 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9304 return true;
9305
9306 case ICmpInst::ICMP_SGT:
9307 case ICmpInst::ICMP_SGE:
9308 case ICmpInst::ICMP_SLT:
9309 case ICmpInst::ICMP_SLE: {
9310 if (!LHS->hasNoSignedWrap())
9311 return false;
9312
9313 const SCEV *Step = LHS->getStepRecurrence(*this);
9314
9315 if (isKnownNonNegative(Step)) {
9316 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9317 return true;
9318 }
9319
9320 if (isKnownNonPositive(Step)) {
9321 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9322 return true;
9323 }
9324
9325 return false;
9326 }
9327
9328 }
9329
9330 llvm_unreachable("switch has default clause!");
9331 }
9332
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)9333 bool ScalarEvolution::isLoopInvariantPredicate(
9334 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9335 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9336 const SCEV *&InvariantRHS) {
9337
9338 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9339 if (!isLoopInvariant(RHS, L)) {
9340 if (!isLoopInvariant(LHS, L))
9341 return false;
9342
9343 std::swap(LHS, RHS);
9344 Pred = ICmpInst::getSwappedPredicate(Pred);
9345 }
9346
9347 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9348 if (!ArLHS || ArLHS->getLoop() != L)
9349 return false;
9350
9351 bool Increasing;
9352 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9353 return false;
9354
9355 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9356 // true as the loop iterates, and the backedge is control dependent on
9357 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9358 //
9359 // * if the predicate was false in the first iteration then the predicate
9360 // is never evaluated again, since the loop exits without taking the
9361 // backedge.
9362 // * if the predicate was true in the first iteration then it will
9363 // continue to be true for all future iterations since it is
9364 // monotonically increasing.
9365 //
9366 // For both the above possibilities, we can replace the loop varying
9367 // predicate with its value on the first iteration of the loop (which is
9368 // loop invariant).
9369 //
9370 // A similar reasoning applies for a monotonically decreasing predicate, by
9371 // replacing true with false and false with true in the above two bullets.
9372
9373 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9374
9375 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9376 return false;
9377
9378 InvariantPred = Pred;
9379 InvariantLHS = ArLHS->getStart();
9380 InvariantRHS = RHS;
9381 return true;
9382 }
9383
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9384 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9385 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9386 if (HasSameValue(LHS, RHS))
9387 return ICmpInst::isTrueWhenEqual(Pred);
9388
9389 // This code is split out from isKnownPredicate because it is called from
9390 // within isLoopEntryGuardedByCond.
9391
9392 auto CheckRanges =
9393 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9394 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9395 .contains(RangeLHS);
9396 };
9397
9398 // The check at the top of the function catches the case where the values are
9399 // known to be equal.
9400 if (Pred == CmpInst::ICMP_EQ)
9401 return false;
9402
9403 if (Pred == CmpInst::ICMP_NE)
9404 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9405 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9406 isKnownNonZero(getMinusSCEV(LHS, RHS));
9407
9408 if (CmpInst::isSigned(Pred))
9409 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9410
9411 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9412 }
9413
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9414 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9415 const SCEV *LHS,
9416 const SCEV *RHS) {
9417 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9418 // Return Y via OutY.
9419 auto MatchBinaryAddToConst =
9420 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9421 SCEV::NoWrapFlags ExpectedFlags) {
9422 const SCEV *NonConstOp, *ConstOp;
9423 SCEV::NoWrapFlags FlagsPresent;
9424
9425 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9426 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9427 return false;
9428
9429 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9430 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9431 };
9432
9433 APInt C;
9434
9435 switch (Pred) {
9436 default:
9437 break;
9438
9439 case ICmpInst::ICMP_SGE:
9440 std::swap(LHS, RHS);
9441 LLVM_FALLTHROUGH;
9442 case ICmpInst::ICMP_SLE:
9443 // X s<= (X + C)<nsw> if C >= 0
9444 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9445 return true;
9446
9447 // (X + C)<nsw> s<= X if C <= 0
9448 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9449 !C.isStrictlyPositive())
9450 return true;
9451 break;
9452
9453 case ICmpInst::ICMP_SGT:
9454 std::swap(LHS, RHS);
9455 LLVM_FALLTHROUGH;
9456 case ICmpInst::ICMP_SLT:
9457 // X s< (X + C)<nsw> if C > 0
9458 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9459 C.isStrictlyPositive())
9460 return true;
9461
9462 // (X + C)<nsw> s< X if C < 0
9463 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9464 return true;
9465 break;
9466 }
9467
9468 return false;
9469 }
9470
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9471 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9472 const SCEV *LHS,
9473 const SCEV *RHS) {
9474 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9475 return false;
9476
9477 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9478 // the stack can result in exponential time complexity.
9479 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9480
9481 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9482 //
9483 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9484 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9485 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9486 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9487 // use isKnownPredicate later if needed.
9488 return isKnownNonNegative(RHS) &&
9489 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9490 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9491 }
9492
isImpliedViaGuard(BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9493 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9494 ICmpInst::Predicate Pred,
9495 const SCEV *LHS, const SCEV *RHS) {
9496 // No need to even try if we know the module has no guards.
9497 if (!HasGuards)
9498 return false;
9499
9500 return any_of(*BB, [&](Instruction &I) {
9501 using namespace llvm::PatternMatch;
9502
9503 Value *Condition;
9504 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9505 m_Value(Condition))) &&
9506 isImpliedCond(Pred, LHS, RHS, Condition, false);
9507 });
9508 }
9509
9510 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9511 /// protected by a conditional between LHS and RHS. This is used to
9512 /// to eliminate casts.
9513 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9514 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9515 ICmpInst::Predicate Pred,
9516 const SCEV *LHS, const SCEV *RHS) {
9517 // Interpret a null as meaning no loop, where there is obviously no guard
9518 // (interprocedural conditions notwithstanding).
9519 if (!L) return true;
9520
9521 if (VerifyIR)
9522 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9523 "This cannot be done on broken IR!");
9524
9525
9526 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9527 return true;
9528
9529 BasicBlock *Latch = L->getLoopLatch();
9530 if (!Latch)
9531 return false;
9532
9533 BranchInst *LoopContinuePredicate =
9534 dyn_cast<BranchInst>(Latch->getTerminator());
9535 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9536 isImpliedCond(Pred, LHS, RHS,
9537 LoopContinuePredicate->getCondition(),
9538 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9539 return true;
9540
9541 // We don't want more than one activation of the following loops on the stack
9542 // -- that can lead to O(n!) time complexity.
9543 if (WalkingBEDominatingConds)
9544 return false;
9545
9546 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9547
9548 // See if we can exploit a trip count to prove the predicate.
9549 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9550 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9551 if (LatchBECount != getCouldNotCompute()) {
9552 // We know that Latch branches back to the loop header exactly
9553 // LatchBECount times. This means the backdege condition at Latch is
9554 // equivalent to "{0,+,1} u< LatchBECount".
9555 Type *Ty = LatchBECount->getType();
9556 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9557 const SCEV *LoopCounter =
9558 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9559 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9560 LatchBECount))
9561 return true;
9562 }
9563
9564 // Check conditions due to any @llvm.assume intrinsics.
9565 for (auto &AssumeVH : AC.assumptions()) {
9566 if (!AssumeVH)
9567 continue;
9568 auto *CI = cast<CallInst>(AssumeVH);
9569 if (!DT.dominates(CI, Latch->getTerminator()))
9570 continue;
9571
9572 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9573 return true;
9574 }
9575
9576 // If the loop is not reachable from the entry block, we risk running into an
9577 // infinite loop as we walk up into the dom tree. These loops do not matter
9578 // anyway, so we just return a conservative answer when we see them.
9579 if (!DT.isReachableFromEntry(L->getHeader()))
9580 return false;
9581
9582 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9583 return true;
9584
9585 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9586 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9587 assert(DTN && "should reach the loop header before reaching the root!");
9588
9589 BasicBlock *BB = DTN->getBlock();
9590 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9591 return true;
9592
9593 BasicBlock *PBB = BB->getSinglePredecessor();
9594 if (!PBB)
9595 continue;
9596
9597 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9598 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9599 continue;
9600
9601 Value *Condition = ContinuePredicate->getCondition();
9602
9603 // If we have an edge `E` within the loop body that dominates the only
9604 // latch, the condition guarding `E` also guards the backedge. This
9605 // reasoning works only for loops with a single latch.
9606
9607 BasicBlockEdge DominatingEdge(PBB, BB);
9608 if (DominatingEdge.isSingleEdge()) {
9609 // We're constructively (and conservatively) enumerating edges within the
9610 // loop body that dominate the latch. The dominator tree better agree
9611 // with us on this:
9612 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9613
9614 if (isImpliedCond(Pred, LHS, RHS, Condition,
9615 BB != ContinuePredicate->getSuccessor(0)))
9616 return true;
9617 }
9618 }
9619
9620 return false;
9621 }
9622
9623 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9624 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9625 ICmpInst::Predicate Pred,
9626 const SCEV *LHS, const SCEV *RHS) {
9627 // Interpret a null as meaning no loop, where there is obviously no guard
9628 // (interprocedural conditions notwithstanding).
9629 if (!L) return false;
9630
9631 if (VerifyIR)
9632 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9633 "This cannot be done on broken IR!");
9634
9635 // Both LHS and RHS must be available at loop entry.
9636 assert(isAvailableAtLoopEntry(LHS, L) &&
9637 "LHS is not available at Loop Entry");
9638 assert(isAvailableAtLoopEntry(RHS, L) &&
9639 "RHS is not available at Loop Entry");
9640
9641 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9642 return true;
9643
9644 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9645 // the facts (a >= b && a != b) separately. A typical situation is when the
9646 // non-strict comparison is known from ranges and non-equality is known from
9647 // dominating predicates. If we are proving strict comparison, we always try
9648 // to prove non-equality and non-strict comparison separately.
9649 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9650 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9651 bool ProvedNonStrictComparison = false;
9652 bool ProvedNonEquality = false;
9653
9654 if (ProvingStrictComparison) {
9655 ProvedNonStrictComparison =
9656 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9657 ProvedNonEquality =
9658 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9659 if (ProvedNonStrictComparison && ProvedNonEquality)
9660 return true;
9661 }
9662
9663 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9664 auto ProveViaGuard = [&](BasicBlock *Block) {
9665 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9666 return true;
9667 if (ProvingStrictComparison) {
9668 if (!ProvedNonStrictComparison)
9669 ProvedNonStrictComparison =
9670 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9671 if (!ProvedNonEquality)
9672 ProvedNonEquality =
9673 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9674 if (ProvedNonStrictComparison && ProvedNonEquality)
9675 return true;
9676 }
9677 return false;
9678 };
9679
9680 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9681 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9682 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9683 return true;
9684 if (ProvingStrictComparison) {
9685 if (!ProvedNonStrictComparison)
9686 ProvedNonStrictComparison =
9687 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9688 if (!ProvedNonEquality)
9689 ProvedNonEquality =
9690 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9691 if (ProvedNonStrictComparison && ProvedNonEquality)
9692 return true;
9693 }
9694 return false;
9695 };
9696
9697 // Starting at the loop predecessor, climb up the predecessor chain, as long
9698 // as there are predecessors that can be found that have unique successors
9699 // leading to the original header.
9700 for (std::pair<BasicBlock *, BasicBlock *>
9701 Pair(L->getLoopPredecessor(), L->getHeader());
9702 Pair.first;
9703 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9704
9705 if (ProveViaGuard(Pair.first))
9706 return true;
9707
9708 BranchInst *LoopEntryPredicate =
9709 dyn_cast<BranchInst>(Pair.first->getTerminator());
9710 if (!LoopEntryPredicate ||
9711 LoopEntryPredicate->isUnconditional())
9712 continue;
9713
9714 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9715 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9716 return true;
9717 }
9718
9719 // Check conditions due to any @llvm.assume intrinsics.
9720 for (auto &AssumeVH : AC.assumptions()) {
9721 if (!AssumeVH)
9722 continue;
9723 auto *CI = cast<CallInst>(AssumeVH);
9724 if (!DT.dominates(CI, L->getHeader()))
9725 continue;
9726
9727 if (ProveViaCond(CI->getArgOperand(0), false))
9728 return true;
9729 }
9730
9731 return false;
9732 }
9733
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)9734 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9735 const SCEV *LHS, const SCEV *RHS,
9736 Value *FoundCondValue,
9737 bool Inverse) {
9738 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9739 return false;
9740
9741 auto ClearOnExit =
9742 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9743
9744 // Recursively handle And and Or conditions.
9745 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9746 if (BO->getOpcode() == Instruction::And) {
9747 if (!Inverse)
9748 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9749 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9750 } else if (BO->getOpcode() == Instruction::Or) {
9751 if (Inverse)
9752 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9753 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9754 }
9755 }
9756
9757 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9758 if (!ICI) return false;
9759
9760 // Now that we found a conditional branch that dominates the loop or controls
9761 // the loop latch. Check to see if it is the comparison we are looking for.
9762 ICmpInst::Predicate FoundPred;
9763 if (Inverse)
9764 FoundPred = ICI->getInversePredicate();
9765 else
9766 FoundPred = ICI->getPredicate();
9767
9768 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9769 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9770
9771 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9772 }
9773
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)9774 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9775 const SCEV *RHS,
9776 ICmpInst::Predicate FoundPred,
9777 const SCEV *FoundLHS,
9778 const SCEV *FoundRHS) {
9779 // Balance the types.
9780 if (getTypeSizeInBits(LHS->getType()) <
9781 getTypeSizeInBits(FoundLHS->getType())) {
9782 if (CmpInst::isSigned(Pred)) {
9783 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9784 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9785 } else {
9786 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9787 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9788 }
9789 } else if (getTypeSizeInBits(LHS->getType()) >
9790 getTypeSizeInBits(FoundLHS->getType())) {
9791 if (CmpInst::isSigned(FoundPred)) {
9792 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9793 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9794 } else {
9795 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9796 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9797 }
9798 }
9799
9800 // Canonicalize the query to match the way instcombine will have
9801 // canonicalized the comparison.
9802 if (SimplifyICmpOperands(Pred, LHS, RHS))
9803 if (LHS == RHS)
9804 return CmpInst::isTrueWhenEqual(Pred);
9805 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9806 if (FoundLHS == FoundRHS)
9807 return CmpInst::isFalseWhenEqual(FoundPred);
9808
9809 // Check to see if we can make the LHS or RHS match.
9810 if (LHS == FoundRHS || RHS == FoundLHS) {
9811 if (isa<SCEVConstant>(RHS)) {
9812 std::swap(FoundLHS, FoundRHS);
9813 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9814 } else {
9815 std::swap(LHS, RHS);
9816 Pred = ICmpInst::getSwappedPredicate(Pred);
9817 }
9818 }
9819
9820 // Check whether the found predicate is the same as the desired predicate.
9821 if (FoundPred == Pred)
9822 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9823
9824 // Check whether swapping the found predicate makes it the same as the
9825 // desired predicate.
9826 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9827 if (isa<SCEVConstant>(RHS))
9828 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9829 else
9830 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9831 RHS, LHS, FoundLHS, FoundRHS);
9832 }
9833
9834 // Unsigned comparison is the same as signed comparison when both the operands
9835 // are non-negative.
9836 if (CmpInst::isUnsigned(FoundPred) &&
9837 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9838 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9839 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9840
9841 // Check if we can make progress by sharpening ranges.
9842 if (FoundPred == ICmpInst::ICMP_NE &&
9843 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9844
9845 const SCEVConstant *C = nullptr;
9846 const SCEV *V = nullptr;
9847
9848 if (isa<SCEVConstant>(FoundLHS)) {
9849 C = cast<SCEVConstant>(FoundLHS);
9850 V = FoundRHS;
9851 } else {
9852 C = cast<SCEVConstant>(FoundRHS);
9853 V = FoundLHS;
9854 }
9855
9856 // The guarding predicate tells us that C != V. If the known range
9857 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9858 // range we consider has to correspond to same signedness as the
9859 // predicate we're interested in folding.
9860
9861 APInt Min = ICmpInst::isSigned(Pred) ?
9862 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9863
9864 if (Min == C->getAPInt()) {
9865 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9866 // This is true even if (Min + 1) wraps around -- in case of
9867 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9868
9869 APInt SharperMin = Min + 1;
9870
9871 switch (Pred) {
9872 case ICmpInst::ICMP_SGE:
9873 case ICmpInst::ICMP_UGE:
9874 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9875 // RHS, we're done.
9876 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9877 getConstant(SharperMin)))
9878 return true;
9879 LLVM_FALLTHROUGH;
9880
9881 case ICmpInst::ICMP_SGT:
9882 case ICmpInst::ICMP_UGT:
9883 // We know from the range information that (V `Pred` Min ||
9884 // V == Min). We know from the guarding condition that !(V
9885 // == Min). This gives us
9886 //
9887 // V `Pred` Min || V == Min && !(V == Min)
9888 // => V `Pred` Min
9889 //
9890 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9891
9892 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9893 return true;
9894 LLVM_FALLTHROUGH;
9895
9896 default:
9897 // No change
9898 break;
9899 }
9900 }
9901 }
9902
9903 // Check whether the actual condition is beyond sufficient.
9904 if (FoundPred == ICmpInst::ICMP_EQ)
9905 if (ICmpInst::isTrueWhenEqual(Pred))
9906 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9907 return true;
9908 if (Pred == ICmpInst::ICMP_NE)
9909 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9910 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9911 return true;
9912
9913 // Otherwise assume the worst.
9914 return false;
9915 }
9916
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)9917 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9918 const SCEV *&L, const SCEV *&R,
9919 SCEV::NoWrapFlags &Flags) {
9920 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9921 if (!AE || AE->getNumOperands() != 2)
9922 return false;
9923
9924 L = AE->getOperand(0);
9925 R = AE->getOperand(1);
9926 Flags = AE->getNoWrapFlags();
9927 return true;
9928 }
9929
computeConstantDifference(const SCEV * More,const SCEV * Less)9930 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9931 const SCEV *Less) {
9932 // We avoid subtracting expressions here because this function is usually
9933 // fairly deep in the call stack (i.e. is called many times).
9934
9935 // X - X = 0.
9936 if (More == Less)
9937 return APInt(getTypeSizeInBits(More->getType()), 0);
9938
9939 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9940 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9941 const auto *MAR = cast<SCEVAddRecExpr>(More);
9942
9943 if (LAR->getLoop() != MAR->getLoop())
9944 return None;
9945
9946 // We look at affine expressions only; not for correctness but to keep
9947 // getStepRecurrence cheap.
9948 if (!LAR->isAffine() || !MAR->isAffine())
9949 return None;
9950
9951 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9952 return None;
9953
9954 Less = LAR->getStart();
9955 More = MAR->getStart();
9956
9957 // fall through
9958 }
9959
9960 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9961 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9962 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9963 return M - L;
9964 }
9965
9966 SCEV::NoWrapFlags Flags;
9967 const SCEV *LLess = nullptr, *RLess = nullptr;
9968 const SCEV *LMore = nullptr, *RMore = nullptr;
9969 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9970 // Compare (X + C1) vs X.
9971 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9972 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9973 if (RLess == More)
9974 return -(C1->getAPInt());
9975
9976 // Compare X vs (X + C2).
9977 if (splitBinaryAdd(More, LMore, RMore, Flags))
9978 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9979 if (RMore == Less)
9980 return C2->getAPInt();
9981
9982 // Compare (X + C1) vs (X + C2).
9983 if (C1 && C2 && RLess == RMore)
9984 return C2->getAPInt() - C1->getAPInt();
9985
9986 return None;
9987 }
9988
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9989 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9990 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9991 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9992 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9993 return false;
9994
9995 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9996 if (!AddRecLHS)
9997 return false;
9998
9999 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10000 if (!AddRecFoundLHS)
10001 return false;
10002
10003 // We'd like to let SCEV reason about control dependencies, so we constrain
10004 // both the inequalities to be about add recurrences on the same loop. This
10005 // way we can use isLoopEntryGuardedByCond later.
10006
10007 const Loop *L = AddRecFoundLHS->getLoop();
10008 if (L != AddRecLHS->getLoop())
10009 return false;
10010
10011 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
10012 //
10013 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10014 // ... (2)
10015 //
10016 // Informal proof for (2), assuming (1) [*]:
10017 //
10018 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10019 //
10020 // Then
10021 //
10022 // FoundLHS s< FoundRHS s< INT_MIN - C
10023 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
10024 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10025 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
10026 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10027 // <=> FoundLHS + C s< FoundRHS + C
10028 //
10029 // [*]: (1) can be proved by ruling out overflow.
10030 //
10031 // [**]: This can be proved by analyzing all the four possibilities:
10032 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10033 // (A s>= 0, B s>= 0).
10034 //
10035 // Note:
10036 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10037 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
10038 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
10039 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
10040 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10041 // C)".
10042
10043 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10044 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10045 if (!LDiff || !RDiff || *LDiff != *RDiff)
10046 return false;
10047
10048 if (LDiff->isMinValue())
10049 return true;
10050
10051 APInt FoundRHSLimit;
10052
10053 if (Pred == CmpInst::ICMP_ULT) {
10054 FoundRHSLimit = -(*RDiff);
10055 } else {
10056 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10057 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10058 }
10059
10060 // Try to prove (1) or (2), as needed.
10061 return isAvailableAtLoopEntry(FoundRHS, L) &&
10062 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10063 getConstant(FoundRHSLimit));
10064 }
10065
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10066 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10067 const SCEV *LHS, const SCEV *RHS,
10068 const SCEV *FoundLHS,
10069 const SCEV *FoundRHS, unsigned Depth) {
10070 const PHINode *LPhi = nullptr, *RPhi = nullptr;
10071
10072 auto ClearOnExit = make_scope_exit([&]() {
10073 if (LPhi) {
10074 bool Erased = PendingMerges.erase(LPhi);
10075 assert(Erased && "Failed to erase LPhi!");
10076 (void)Erased;
10077 }
10078 if (RPhi) {
10079 bool Erased = PendingMerges.erase(RPhi);
10080 assert(Erased && "Failed to erase RPhi!");
10081 (void)Erased;
10082 }
10083 });
10084
10085 // Find respective Phis and check that they are not being pending.
10086 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10087 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10088 if (!PendingMerges.insert(Phi).second)
10089 return false;
10090 LPhi = Phi;
10091 }
10092 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10093 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10094 // If we detect a loop of Phi nodes being processed by this method, for
10095 // example:
10096 //
10097 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10098 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10099 //
10100 // we don't want to deal with a case that complex, so return conservative
10101 // answer false.
10102 if (!PendingMerges.insert(Phi).second)
10103 return false;
10104 RPhi = Phi;
10105 }
10106
10107 // If none of LHS, RHS is a Phi, nothing to do here.
10108 if (!LPhi && !RPhi)
10109 return false;
10110
10111 // If there is a SCEVUnknown Phi we are interested in, make it left.
10112 if (!LPhi) {
10113 std::swap(LHS, RHS);
10114 std::swap(FoundLHS, FoundRHS);
10115 std::swap(LPhi, RPhi);
10116 Pred = ICmpInst::getSwappedPredicate(Pred);
10117 }
10118
10119 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10120 const BasicBlock *LBB = LPhi->getParent();
10121 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10122
10123 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10124 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10125 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10126 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10127 };
10128
10129 if (RPhi && RPhi->getParent() == LBB) {
10130 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10131 // If we compare two Phis from the same block, and for each entry block
10132 // the predicate is true for incoming values from this block, then the
10133 // predicate is also true for the Phis.
10134 for (const BasicBlock *IncBB : predecessors(LBB)) {
10135 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10136 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10137 if (!ProvedEasily(L, R))
10138 return false;
10139 }
10140 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10141 // Case two: RHS is also a Phi from the same basic block, and it is an
10142 // AddRec. It means that there is a loop which has both AddRec and Unknown
10143 // PHIs, for it we can compare incoming values of AddRec from above the loop
10144 // and latch with their respective incoming values of LPhi.
10145 // TODO: Generalize to handle loops with many inputs in a header.
10146 if (LPhi->getNumIncomingValues() != 2) return false;
10147
10148 auto *RLoop = RAR->getLoop();
10149 auto *Predecessor = RLoop->getLoopPredecessor();
10150 assert(Predecessor && "Loop with AddRec with no predecessor?");
10151 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10152 if (!ProvedEasily(L1, RAR->getStart()))
10153 return false;
10154 auto *Latch = RLoop->getLoopLatch();
10155 assert(Latch && "Loop with AddRec with no latch?");
10156 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10157 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10158 return false;
10159 } else {
10160 // In all other cases go over inputs of LHS and compare each of them to RHS,
10161 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10162 // At this point RHS is either a non-Phi, or it is a Phi from some block
10163 // different from LBB.
10164 for (const BasicBlock *IncBB : predecessors(LBB)) {
10165 // Check that RHS is available in this block.
10166 if (!dominates(RHS, IncBB))
10167 return false;
10168 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10169 if (!ProvedEasily(L, RHS))
10170 return false;
10171 }
10172 }
10173 return true;
10174 }
10175
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10176 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10177 const SCEV *LHS, const SCEV *RHS,
10178 const SCEV *FoundLHS,
10179 const SCEV *FoundRHS) {
10180 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10181 return true;
10182
10183 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10184 return true;
10185
10186 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10187 FoundLHS, FoundRHS) ||
10188 // ~x < ~y --> x > y
10189 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10190 getNotSCEV(FoundRHS),
10191 getNotSCEV(FoundLHS));
10192 }
10193
10194 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10195 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)10196 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10197 const SCEV *Candidate) {
10198 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10199 if (!MinMaxExpr)
10200 return false;
10201
10202 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10203 }
10204
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10205 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10206 ICmpInst::Predicate Pred,
10207 const SCEV *LHS, const SCEV *RHS) {
10208 // If both sides are affine addrecs for the same loop, with equal
10209 // steps, and we know the recurrences don't wrap, then we only
10210 // need to check the predicate on the starting values.
10211
10212 if (!ICmpInst::isRelational(Pred))
10213 return false;
10214
10215 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10216 if (!LAR)
10217 return false;
10218 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10219 if (!RAR)
10220 return false;
10221 if (LAR->getLoop() != RAR->getLoop())
10222 return false;
10223 if (!LAR->isAffine() || !RAR->isAffine())
10224 return false;
10225
10226 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10227 return false;
10228
10229 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10230 SCEV::FlagNSW : SCEV::FlagNUW;
10231 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10232 return false;
10233
10234 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10235 }
10236
10237 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10238 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10239 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10240 ICmpInst::Predicate Pred,
10241 const SCEV *LHS, const SCEV *RHS) {
10242 switch (Pred) {
10243 default:
10244 return false;
10245
10246 case ICmpInst::ICMP_SGE:
10247 std::swap(LHS, RHS);
10248 LLVM_FALLTHROUGH;
10249 case ICmpInst::ICMP_SLE:
10250 return
10251 // min(A, ...) <= A
10252 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10253 // A <= max(A, ...)
10254 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10255
10256 case ICmpInst::ICMP_UGE:
10257 std::swap(LHS, RHS);
10258 LLVM_FALLTHROUGH;
10259 case ICmpInst::ICMP_ULE:
10260 return
10261 // min(A, ...) <= A
10262 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10263 // A <= max(A, ...)
10264 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10265 }
10266
10267 llvm_unreachable("covered switch fell through?!");
10268 }
10269
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10270 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10271 const SCEV *LHS, const SCEV *RHS,
10272 const SCEV *FoundLHS,
10273 const SCEV *FoundRHS,
10274 unsigned Depth) {
10275 assert(getTypeSizeInBits(LHS->getType()) ==
10276 getTypeSizeInBits(RHS->getType()) &&
10277 "LHS and RHS have different sizes?");
10278 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10279 getTypeSizeInBits(FoundRHS->getType()) &&
10280 "FoundLHS and FoundRHS have different sizes?");
10281 // We want to avoid hurting the compile time with analysis of too big trees.
10282 if (Depth > MaxSCEVOperationsImplicationDepth)
10283 return false;
10284 // We only want to work with ICMP_SGT comparison so far.
10285 // TODO: Extend to ICMP_UGT?
10286 if (Pred == ICmpInst::ICMP_SLT) {
10287 Pred = ICmpInst::ICMP_SGT;
10288 std::swap(LHS, RHS);
10289 std::swap(FoundLHS, FoundRHS);
10290 }
10291 if (Pred != ICmpInst::ICMP_SGT)
10292 return false;
10293
10294 auto GetOpFromSExt = [&](const SCEV *S) {
10295 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10296 return Ext->getOperand();
10297 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10298 // the constant in some cases.
10299 return S;
10300 };
10301
10302 // Acquire values from extensions.
10303 auto *OrigLHS = LHS;
10304 auto *OrigFoundLHS = FoundLHS;
10305 LHS = GetOpFromSExt(LHS);
10306 FoundLHS = GetOpFromSExt(FoundLHS);
10307
10308 // Is the SGT predicate can be proved trivially or using the found context.
10309 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10310 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10311 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10312 FoundRHS, Depth + 1);
10313 };
10314
10315 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10316 // We want to avoid creation of any new non-constant SCEV. Since we are
10317 // going to compare the operands to RHS, we should be certain that we don't
10318 // need any size extensions for this. So let's decline all cases when the
10319 // sizes of types of LHS and RHS do not match.
10320 // TODO: Maybe try to get RHS from sext to catch more cases?
10321 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10322 return false;
10323
10324 // Should not overflow.
10325 if (!LHSAddExpr->hasNoSignedWrap())
10326 return false;
10327
10328 auto *LL = LHSAddExpr->getOperand(0);
10329 auto *LR = LHSAddExpr->getOperand(1);
10330 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10331
10332 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10333 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10334 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10335 };
10336 // Try to prove the following rule:
10337 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10338 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10339 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10340 return true;
10341 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10342 Value *LL, *LR;
10343 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10344
10345 using namespace llvm::PatternMatch;
10346
10347 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10348 // Rules for division.
10349 // We are going to perform some comparisons with Denominator and its
10350 // derivative expressions. In general case, creating a SCEV for it may
10351 // lead to a complex analysis of the entire graph, and in particular it
10352 // can request trip count recalculation for the same loop. This would
10353 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10354 // this, we only want to create SCEVs that are constants in this section.
10355 // So we bail if Denominator is not a constant.
10356 if (!isa<ConstantInt>(LR))
10357 return false;
10358
10359 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10360
10361 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10362 // then a SCEV for the numerator already exists and matches with FoundLHS.
10363 auto *Numerator = getExistingSCEV(LL);
10364 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10365 return false;
10366
10367 // Make sure that the numerator matches with FoundLHS and the denominator
10368 // is positive.
10369 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10370 return false;
10371
10372 auto *DTy = Denominator->getType();
10373 auto *FRHSTy = FoundRHS->getType();
10374 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10375 // One of types is a pointer and another one is not. We cannot extend
10376 // them properly to a wider type, so let us just reject this case.
10377 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10378 // to avoid this check.
10379 return false;
10380
10381 // Given that:
10382 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10383 auto *WTy = getWiderType(DTy, FRHSTy);
10384 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10385 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10386
10387 // Try to prove the following rule:
10388 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10389 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10390 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10391 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10392 if (isKnownNonPositive(RHS) &&
10393 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10394 return true;
10395
10396 // Try to prove the following rule:
10397 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10398 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10399 // If we divide it by Denominator > 2, then:
10400 // 1. If FoundLHS is negative, then the result is 0.
10401 // 2. If FoundLHS is non-negative, then the result is non-negative.
10402 // Anyways, the result is non-negative.
10403 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10404 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10405 if (isKnownNegative(RHS) &&
10406 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10407 return true;
10408 }
10409 }
10410
10411 // If our expression contained SCEVUnknown Phis, and we split it down and now
10412 // need to prove something for them, try to prove the predicate for every
10413 // possible incoming values of those Phis.
10414 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10415 return true;
10416
10417 return false;
10418 }
10419
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10420 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10421 const SCEV *LHS, const SCEV *RHS) {
10422 // zext x u<= sext x, sext x s<= zext x
10423 switch (Pred) {
10424 case ICmpInst::ICMP_SGE:
10425 std::swap(LHS, RHS);
10426 LLVM_FALLTHROUGH;
10427 case ICmpInst::ICMP_SLE: {
10428 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
10429 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10430 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10431 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10432 return true;
10433 break;
10434 }
10435 case ICmpInst::ICMP_UGE:
10436 std::swap(LHS, RHS);
10437 LLVM_FALLTHROUGH;
10438 case ICmpInst::ICMP_ULE: {
10439 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
10440 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10441 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10442 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10443 return true;
10444 break;
10445 }
10446 default:
10447 break;
10448 };
10449 return false;
10450 }
10451
10452 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10453 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10454 const SCEV *LHS, const SCEV *RHS) {
10455 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10456 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10457 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10458 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10459 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10460 }
10461
10462 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10463 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10464 const SCEV *LHS, const SCEV *RHS,
10465 const SCEV *FoundLHS,
10466 const SCEV *FoundRHS) {
10467 switch (Pred) {
10468 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10469 case ICmpInst::ICMP_EQ:
10470 case ICmpInst::ICMP_NE:
10471 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10472 return true;
10473 break;
10474 case ICmpInst::ICMP_SLT:
10475 case ICmpInst::ICMP_SLE:
10476 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10477 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10478 return true;
10479 break;
10480 case ICmpInst::ICMP_SGT:
10481 case ICmpInst::ICMP_SGE:
10482 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10483 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10484 return true;
10485 break;
10486 case ICmpInst::ICMP_ULT:
10487 case ICmpInst::ICMP_ULE:
10488 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10489 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10490 return true;
10491 break;
10492 case ICmpInst::ICMP_UGT:
10493 case ICmpInst::ICMP_UGE:
10494 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10495 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10496 return true;
10497 break;
10498 }
10499
10500 // Maybe it can be proved via operations?
10501 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10502 return true;
10503
10504 return false;
10505 }
10506
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10507 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10508 const SCEV *LHS,
10509 const SCEV *RHS,
10510 const SCEV *FoundLHS,
10511 const SCEV *FoundRHS) {
10512 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10513 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10514 // reduce the compile time impact of this optimization.
10515 return false;
10516
10517 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10518 if (!Addend)
10519 return false;
10520
10521 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10522
10523 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10524 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10525 ConstantRange FoundLHSRange =
10526 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10527
10528 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10529 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10530
10531 // We can also compute the range of values for `LHS` that satisfy the
10532 // consequent, "`LHS` `Pred` `RHS`":
10533 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10534 ConstantRange SatisfyingLHSRange =
10535 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10536
10537 // The antecedent implies the consequent if every value of `LHS` that
10538 // satisfies the antecedent also satisfies the consequent.
10539 return SatisfyingLHSRange.contains(LHSRange);
10540 }
10541
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10542 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10543 bool IsSigned, bool NoWrap) {
10544 assert(isKnownPositive(Stride) && "Positive stride expected!");
10545
10546 if (NoWrap) return false;
10547
10548 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10549 const SCEV *One = getOne(Stride->getType());
10550
10551 if (IsSigned) {
10552 APInt MaxRHS = getSignedRangeMax(RHS);
10553 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10554 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10555
10556 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10557 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10558 }
10559
10560 APInt MaxRHS = getUnsignedRangeMax(RHS);
10561 APInt MaxValue = APInt::getMaxValue(BitWidth);
10562 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10563
10564 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10565 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10566 }
10567
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10568 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10569 bool IsSigned, bool NoWrap) {
10570 if (NoWrap) return false;
10571
10572 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10573 const SCEV *One = getOne(Stride->getType());
10574
10575 if (IsSigned) {
10576 APInt MinRHS = getSignedRangeMin(RHS);
10577 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10578 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10579
10580 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10581 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10582 }
10583
10584 APInt MinRHS = getUnsignedRangeMin(RHS);
10585 APInt MinValue = APInt::getMinValue(BitWidth);
10586 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10587
10588 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10589 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10590 }
10591
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)10592 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10593 bool Equality) {
10594 const SCEV *One = getOne(Step->getType());
10595 Delta = Equality ? getAddExpr(Delta, Step)
10596 : getAddExpr(Delta, getMinusSCEV(Step, One));
10597 return getUDivExpr(Delta, Step);
10598 }
10599
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)10600 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10601 const SCEV *Stride,
10602 const SCEV *End,
10603 unsigned BitWidth,
10604 bool IsSigned) {
10605
10606 assert(!isKnownNonPositive(Stride) &&
10607 "Stride is expected strictly positive!");
10608 // Calculate the maximum backedge count based on the range of values
10609 // permitted by Start, End, and Stride.
10610 const SCEV *MaxBECount;
10611 APInt MinStart =
10612 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10613
10614 APInt StrideForMaxBECount =
10615 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10616
10617 // We already know that the stride is positive, so we paper over conservatism
10618 // in our range computation by forcing StrideForMaxBECount to be at least one.
10619 // In theory this is unnecessary, but we expect MaxBECount to be a
10620 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10621 // is nothing to constant fold it to).
10622 APInt One(BitWidth, 1, IsSigned);
10623 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10624
10625 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10626 : APInt::getMaxValue(BitWidth);
10627 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10628
10629 // Although End can be a MAX expression we estimate MaxEnd considering only
10630 // the case End = RHS of the loop termination condition. This is safe because
10631 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10632 // taken count.
10633 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10634 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10635
10636 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10637 getConstant(StrideForMaxBECount) /* Step */,
10638 false /* Equality */);
10639
10640 return MaxBECount;
10641 }
10642
10643 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10644 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10645 const Loop *L, bool IsSigned,
10646 bool ControlsExit, bool AllowPredicates) {
10647 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10648
10649 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10650 bool PredicatedIV = false;
10651
10652 if (!IV && AllowPredicates) {
10653 // Try to make this an AddRec using runtime tests, in the first X
10654 // iterations of this loop, where X is the SCEV expression found by the
10655 // algorithm below.
10656 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10657 PredicatedIV = true;
10658 }
10659
10660 // Avoid weird loops
10661 if (!IV || IV->getLoop() != L || !IV->isAffine())
10662 return getCouldNotCompute();
10663
10664 bool NoWrap = ControlsExit &&
10665 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10666
10667 const SCEV *Stride = IV->getStepRecurrence(*this);
10668
10669 bool PositiveStride = isKnownPositive(Stride);
10670
10671 // Avoid negative or zero stride values.
10672 if (!PositiveStride) {
10673 // We can compute the correct backedge taken count for loops with unknown
10674 // strides if we can prove that the loop is not an infinite loop with side
10675 // effects. Here's the loop structure we are trying to handle -
10676 //
10677 // i = start
10678 // do {
10679 // A[i] = i;
10680 // i += s;
10681 // } while (i < end);
10682 //
10683 // The backedge taken count for such loops is evaluated as -
10684 // (max(end, start + stride) - start - 1) /u stride
10685 //
10686 // The additional preconditions that we need to check to prove correctness
10687 // of the above formula is as follows -
10688 //
10689 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10690 // NoWrap flag).
10691 // b) loop is single exit with no side effects.
10692 //
10693 //
10694 // Precondition a) implies that if the stride is negative, this is a single
10695 // trip loop. The backedge taken count formula reduces to zero in this case.
10696 //
10697 // Precondition b) implies that the unknown stride cannot be zero otherwise
10698 // we have UB.
10699 //
10700 // The positive stride case is the same as isKnownPositive(Stride) returning
10701 // true (original behavior of the function).
10702 //
10703 // We want to make sure that the stride is truly unknown as there are edge
10704 // cases where ScalarEvolution propagates no wrap flags to the
10705 // post-increment/decrement IV even though the increment/decrement operation
10706 // itself is wrapping. The computed backedge taken count may be wrong in
10707 // such cases. This is prevented by checking that the stride is not known to
10708 // be either positive or non-positive. For example, no wrap flags are
10709 // propagated to the post-increment IV of this loop with a trip count of 2 -
10710 //
10711 // unsigned char i;
10712 // for(i=127; i<128; i+=129)
10713 // A[i] = i;
10714 //
10715 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10716 !loopHasNoSideEffects(L))
10717 return getCouldNotCompute();
10718 } else if (!Stride->isOne() &&
10719 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10720 // Avoid proven overflow cases: this will ensure that the backedge taken
10721 // count will not generate any unsigned overflow. Relaxed no-overflow
10722 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10723 // undefined behaviors like the case of C language.
10724 return getCouldNotCompute();
10725
10726 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10727 : ICmpInst::ICMP_ULT;
10728 const SCEV *Start = IV->getStart();
10729 const SCEV *End = RHS;
10730 // When the RHS is not invariant, we do not know the end bound of the loop and
10731 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10732 // calculate the MaxBECount, given the start, stride and max value for the end
10733 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10734 // checked above).
10735 if (!isLoopInvariant(RHS, L)) {
10736 const SCEV *MaxBECount = computeMaxBECountForLT(
10737 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10738 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10739 false /*MaxOrZero*/, Predicates);
10740 }
10741 // If the backedge is taken at least once, then it will be taken
10742 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10743 // is the LHS value of the less-than comparison the first time it is evaluated
10744 // and End is the RHS.
10745 const SCEV *BECountIfBackedgeTaken =
10746 computeBECount(getMinusSCEV(End, Start), Stride, false);
10747 // If the loop entry is guarded by the result of the backedge test of the
10748 // first loop iteration, then we know the backedge will be taken at least
10749 // once and so the backedge taken count is as above. If not then we use the
10750 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10751 // as if the backedge is taken at least once max(End,Start) is End and so the
10752 // result is as above, and if not max(End,Start) is Start so we get a backedge
10753 // count of zero.
10754 const SCEV *BECount;
10755 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10756 BECount = BECountIfBackedgeTaken;
10757 else {
10758 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10759 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10760 }
10761
10762 const SCEV *MaxBECount;
10763 bool MaxOrZero = false;
10764 if (isa<SCEVConstant>(BECount))
10765 MaxBECount = BECount;
10766 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10767 // If we know exactly how many times the backedge will be taken if it's
10768 // taken at least once, then the backedge count will either be that or
10769 // zero.
10770 MaxBECount = BECountIfBackedgeTaken;
10771 MaxOrZero = true;
10772 } else {
10773 MaxBECount = computeMaxBECountForLT(
10774 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10775 }
10776
10777 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10778 !isa<SCEVCouldNotCompute>(BECount))
10779 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10780
10781 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10782 }
10783
10784 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10785 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10786 const Loop *L, bool IsSigned,
10787 bool ControlsExit, bool AllowPredicates) {
10788 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10789 // We handle only IV > Invariant
10790 if (!isLoopInvariant(RHS, L))
10791 return getCouldNotCompute();
10792
10793 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10794 if (!IV && AllowPredicates)
10795 // Try to make this an AddRec using runtime tests, in the first X
10796 // iterations of this loop, where X is the SCEV expression found by the
10797 // algorithm below.
10798 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10799
10800 // Avoid weird loops
10801 if (!IV || IV->getLoop() != L || !IV->isAffine())
10802 return getCouldNotCompute();
10803
10804 bool NoWrap = ControlsExit &&
10805 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10806
10807 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10808
10809 // Avoid negative or zero stride values
10810 if (!isKnownPositive(Stride))
10811 return getCouldNotCompute();
10812
10813 // Avoid proven overflow cases: this will ensure that the backedge taken count
10814 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10815 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10816 // behaviors like the case of C language.
10817 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10818 return getCouldNotCompute();
10819
10820 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10821 : ICmpInst::ICMP_UGT;
10822
10823 const SCEV *Start = IV->getStart();
10824 const SCEV *End = RHS;
10825 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10826 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10827
10828 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10829
10830 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10831 : getUnsignedRangeMax(Start);
10832
10833 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10834 : getUnsignedRangeMin(Stride);
10835
10836 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10837 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10838 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10839
10840 // Although End can be a MIN expression we estimate MinEnd considering only
10841 // the case End = RHS. This is safe because in the other case (Start - End)
10842 // is zero, leading to a zero maximum backedge taken count.
10843 APInt MinEnd =
10844 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10845 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10846
10847 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10848 ? BECount
10849 : computeBECount(getConstant(MaxStart - MinEnd),
10850 getConstant(MinStride), false);
10851
10852 if (isa<SCEVCouldNotCompute>(MaxBECount))
10853 MaxBECount = BECount;
10854
10855 return ExitLimit(BECount, MaxBECount, false, Predicates);
10856 }
10857
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const10858 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10859 ScalarEvolution &SE) const {
10860 if (Range.isFullSet()) // Infinite loop.
10861 return SE.getCouldNotCompute();
10862
10863 // If the start is a non-zero constant, shift the range to simplify things.
10864 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10865 if (!SC->getValue()->isZero()) {
10866 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10867 Operands[0] = SE.getZero(SC->getType());
10868 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10869 getNoWrapFlags(FlagNW));
10870 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10871 return ShiftedAddRec->getNumIterationsInRange(
10872 Range.subtract(SC->getAPInt()), SE);
10873 // This is strange and shouldn't happen.
10874 return SE.getCouldNotCompute();
10875 }
10876
10877 // The only time we can solve this is when we have all constant indices.
10878 // Otherwise, we cannot determine the overflow conditions.
10879 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10880 return SE.getCouldNotCompute();
10881
10882 // Okay at this point we know that all elements of the chrec are constants and
10883 // that the start element is zero.
10884
10885 // First check to see if the range contains zero. If not, the first
10886 // iteration exits.
10887 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10888 if (!Range.contains(APInt(BitWidth, 0)))
10889 return SE.getZero(getType());
10890
10891 if (isAffine()) {
10892 // If this is an affine expression then we have this situation:
10893 // Solve {0,+,A} in Range === Ax in Range
10894
10895 // We know that zero is in the range. If A is positive then we know that
10896 // the upper value of the range must be the first possible exit value.
10897 // If A is negative then the lower of the range is the last possible loop
10898 // value. Also note that we already checked for a full range.
10899 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10900 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10901
10902 // The exit value should be (End+A)/A.
10903 APInt ExitVal = (End + A).udiv(A);
10904 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10905
10906 // Evaluate at the exit value. If we really did fall out of the valid
10907 // range, then we computed our trip count, otherwise wrap around or other
10908 // things must have happened.
10909 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10910 if (Range.contains(Val->getValue()))
10911 return SE.getCouldNotCompute(); // Something strange happened
10912
10913 // Ensure that the previous value is in the range. This is a sanity check.
10914 assert(Range.contains(
10915 EvaluateConstantChrecAtConstant(this,
10916 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10917 "Linear scev computation is off in a bad way!");
10918 return SE.getConstant(ExitValue);
10919 }
10920
10921 if (isQuadratic()) {
10922 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10923 return SE.getConstant(S.getValue());
10924 }
10925
10926 return SE.getCouldNotCompute();
10927 }
10928
10929 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const10930 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10931 assert(getNumOperands() > 1 && "AddRec with zero step?");
10932 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10933 // but in this case we cannot guarantee that the value returned will be an
10934 // AddRec because SCEV does not have a fixed point where it stops
10935 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10936 // may happen if we reach arithmetic depth limit while simplifying. So we
10937 // construct the returned value explicitly.
10938 SmallVector<const SCEV *, 3> Ops;
10939 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10940 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10941 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10942 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10943 // We know that the last operand is not a constant zero (otherwise it would
10944 // have been popped out earlier). This guarantees us that if the result has
10945 // the same last operand, then it will also not be popped out, meaning that
10946 // the returned value will be an AddRec.
10947 const SCEV *Last = getOperand(getNumOperands() - 1);
10948 assert(!Last->isZero() && "Recurrency with zero step?");
10949 Ops.push_back(Last);
10950 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10951 SCEV::FlagAnyWrap));
10952 }
10953
10954 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)10955 static inline bool containsUndefs(const SCEV *S) {
10956 return SCEVExprContains(S, [](const SCEV *S) {
10957 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10958 return isa<UndefValue>(SU->getValue());
10959 return false;
10960 });
10961 }
10962
10963 namespace {
10964
10965 // Collect all steps of SCEV expressions.
10966 struct SCEVCollectStrides {
10967 ScalarEvolution &SE;
10968 SmallVectorImpl<const SCEV *> &Strides;
10969
SCEVCollectStrides__anonf9731d482d11::SCEVCollectStrides10970 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10971 : SE(SE), Strides(S) {}
10972
follow__anonf9731d482d11::SCEVCollectStrides10973 bool follow(const SCEV *S) {
10974 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10975 Strides.push_back(AR->getStepRecurrence(SE));
10976 return true;
10977 }
10978
isDone__anonf9731d482d11::SCEVCollectStrides10979 bool isDone() const { return false; }
10980 };
10981
10982 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10983 struct SCEVCollectTerms {
10984 SmallVectorImpl<const SCEV *> &Terms;
10985
SCEVCollectTerms__anonf9731d482d11::SCEVCollectTerms10986 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10987
follow__anonf9731d482d11::SCEVCollectTerms10988 bool follow(const SCEV *S) {
10989 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10990 isa<SCEVSignExtendExpr>(S)) {
10991 if (!containsUndefs(S))
10992 Terms.push_back(S);
10993
10994 // Stop recursion: once we collected a term, do not walk its operands.
10995 return false;
10996 }
10997
10998 // Keep looking.
10999 return true;
11000 }
11001
isDone__anonf9731d482d11::SCEVCollectTerms11002 bool isDone() const { return false; }
11003 };
11004
11005 // Check if a SCEV contains an AddRecExpr.
11006 struct SCEVHasAddRec {
11007 bool &ContainsAddRec;
11008
SCEVHasAddRec__anonf9731d482d11::SCEVHasAddRec11009 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11010 ContainsAddRec = false;
11011 }
11012
follow__anonf9731d482d11::SCEVHasAddRec11013 bool follow(const SCEV *S) {
11014 if (isa<SCEVAddRecExpr>(S)) {
11015 ContainsAddRec = true;
11016
11017 // Stop recursion: once we collected a term, do not walk its operands.
11018 return false;
11019 }
11020
11021 // Keep looking.
11022 return true;
11023 }
11024
isDone__anonf9731d482d11::SCEVHasAddRec11025 bool isDone() const { return false; }
11026 };
11027
11028 // Find factors that are multiplied with an expression that (possibly as a
11029 // subexpression) contains an AddRecExpr. In the expression:
11030 //
11031 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
11032 //
11033 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11034 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11035 // parameters as they form a product with an induction variable.
11036 //
11037 // This collector expects all array size parameters to be in the same MulExpr.
11038 // It might be necessary to later add support for collecting parameters that are
11039 // spread over different nested MulExpr.
11040 struct SCEVCollectAddRecMultiplies {
11041 SmallVectorImpl<const SCEV *> &Terms;
11042 ScalarEvolution &SE;
11043
SCEVCollectAddRecMultiplies__anonf9731d482d11::SCEVCollectAddRecMultiplies11044 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11045 : Terms(T), SE(SE) {}
11046
follow__anonf9731d482d11::SCEVCollectAddRecMultiplies11047 bool follow(const SCEV *S) {
11048 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11049 bool HasAddRec = false;
11050 SmallVector<const SCEV *, 0> Operands;
11051 for (auto Op : Mul->operands()) {
11052 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11053 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11054 Operands.push_back(Op);
11055 } else if (Unknown) {
11056 HasAddRec = true;
11057 } else {
11058 bool ContainsAddRec = false;
11059 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11060 visitAll(Op, ContiansAddRec);
11061 HasAddRec |= ContainsAddRec;
11062 }
11063 }
11064 if (Operands.size() == 0)
11065 return true;
11066
11067 if (!HasAddRec)
11068 return false;
11069
11070 Terms.push_back(SE.getMulExpr(Operands));
11071 // Stop recursion: once we collected a term, do not walk its operands.
11072 return false;
11073 }
11074
11075 // Keep looking.
11076 return true;
11077 }
11078
isDone__anonf9731d482d11::SCEVCollectAddRecMultiplies11079 bool isDone() const { return false; }
11080 };
11081
11082 } // end anonymous namespace
11083
11084 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11085 /// two places:
11086 /// 1) The strides of AddRec expressions.
11087 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)11088 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11089 SmallVectorImpl<const SCEV *> &Terms) {
11090 SmallVector<const SCEV *, 4> Strides;
11091 SCEVCollectStrides StrideCollector(*this, Strides);
11092 visitAll(Expr, StrideCollector);
11093
11094 LLVM_DEBUG({
11095 dbgs() << "Strides:\n";
11096 for (const SCEV *S : Strides)
11097 dbgs() << *S << "\n";
11098 });
11099
11100 for (const SCEV *S : Strides) {
11101 SCEVCollectTerms TermCollector(Terms);
11102 visitAll(S, TermCollector);
11103 }
11104
11105 LLVM_DEBUG({
11106 dbgs() << "Terms:\n";
11107 for (const SCEV *T : Terms)
11108 dbgs() << *T << "\n";
11109 });
11110
11111 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11112 visitAll(Expr, MulCollector);
11113 }
11114
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)11115 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11116 SmallVectorImpl<const SCEV *> &Terms,
11117 SmallVectorImpl<const SCEV *> &Sizes) {
11118 int Last = Terms.size() - 1;
11119 const SCEV *Step = Terms[Last];
11120
11121 // End of recursion.
11122 if (Last == 0) {
11123 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11124 SmallVector<const SCEV *, 2> Qs;
11125 for (const SCEV *Op : M->operands())
11126 if (!isa<SCEVConstant>(Op))
11127 Qs.push_back(Op);
11128
11129 Step = SE.getMulExpr(Qs);
11130 }
11131
11132 Sizes.push_back(Step);
11133 return true;
11134 }
11135
11136 for (const SCEV *&Term : Terms) {
11137 // Normalize the terms before the next call to findArrayDimensionsRec.
11138 const SCEV *Q, *R;
11139 SCEVDivision::divide(SE, Term, Step, &Q, &R);
11140
11141 // Bail out when GCD does not evenly divide one of the terms.
11142 if (!R->isZero())
11143 return false;
11144
11145 Term = Q;
11146 }
11147
11148 // Remove all SCEVConstants.
11149 Terms.erase(
11150 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11151 Terms.end());
11152
11153 if (Terms.size() > 0)
11154 if (!findArrayDimensionsRec(SE, Terms, Sizes))
11155 return false;
11156
11157 Sizes.push_back(Step);
11158 return true;
11159 }
11160
11161 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)11162 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11163 for (const SCEV *T : Terms)
11164 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11165 return true;
11166 return false;
11167 }
11168
11169 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)11170 static inline int numberOfTerms(const SCEV *S) {
11171 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11172 return Expr->getNumOperands();
11173 return 1;
11174 }
11175
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)11176 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11177 if (isa<SCEVConstant>(T))
11178 return nullptr;
11179
11180 if (isa<SCEVUnknown>(T))
11181 return T;
11182
11183 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11184 SmallVector<const SCEV *, 2> Factors;
11185 for (const SCEV *Op : M->operands())
11186 if (!isa<SCEVConstant>(Op))
11187 Factors.push_back(Op);
11188
11189 return SE.getMulExpr(Factors);
11190 }
11191
11192 return T;
11193 }
11194
11195 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)11196 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11197 Type *Ty;
11198 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11199 Ty = Store->getValueOperand()->getType();
11200 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11201 Ty = Load->getType();
11202 else
11203 return nullptr;
11204
11205 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11206 return getSizeOfExpr(ETy, Ty);
11207 }
11208
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11209 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11210 SmallVectorImpl<const SCEV *> &Sizes,
11211 const SCEV *ElementSize) {
11212 if (Terms.size() < 1 || !ElementSize)
11213 return;
11214
11215 // Early return when Terms do not contain parameters: we do not delinearize
11216 // non parametric SCEVs.
11217 if (!containsParameters(Terms))
11218 return;
11219
11220 LLVM_DEBUG({
11221 dbgs() << "Terms:\n";
11222 for (const SCEV *T : Terms)
11223 dbgs() << *T << "\n";
11224 });
11225
11226 // Remove duplicates.
11227 array_pod_sort(Terms.begin(), Terms.end());
11228 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11229
11230 // Put larger terms first.
11231 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11232 return numberOfTerms(LHS) > numberOfTerms(RHS);
11233 });
11234
11235 // Try to divide all terms by the element size. If term is not divisible by
11236 // element size, proceed with the original term.
11237 for (const SCEV *&Term : Terms) {
11238 const SCEV *Q, *R;
11239 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11240 if (!Q->isZero())
11241 Term = Q;
11242 }
11243
11244 SmallVector<const SCEV *, 4> NewTerms;
11245
11246 // Remove constant factors.
11247 for (const SCEV *T : Terms)
11248 if (const SCEV *NewT = removeConstantFactors(*this, T))
11249 NewTerms.push_back(NewT);
11250
11251 LLVM_DEBUG({
11252 dbgs() << "Terms after sorting:\n";
11253 for (const SCEV *T : NewTerms)
11254 dbgs() << *T << "\n";
11255 });
11256
11257 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11258 Sizes.clear();
11259 return;
11260 }
11261
11262 // The last element to be pushed into Sizes is the size of an element.
11263 Sizes.push_back(ElementSize);
11264
11265 LLVM_DEBUG({
11266 dbgs() << "Sizes:\n";
11267 for (const SCEV *S : Sizes)
11268 dbgs() << *S << "\n";
11269 });
11270 }
11271
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)11272 void ScalarEvolution::computeAccessFunctions(
11273 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11274 SmallVectorImpl<const SCEV *> &Sizes) {
11275 // Early exit in case this SCEV is not an affine multivariate function.
11276 if (Sizes.empty())
11277 return;
11278
11279 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11280 if (!AR->isAffine())
11281 return;
11282
11283 const SCEV *Res = Expr;
11284 int Last = Sizes.size() - 1;
11285 for (int i = Last; i >= 0; i--) {
11286 const SCEV *Q, *R;
11287 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11288
11289 LLVM_DEBUG({
11290 dbgs() << "Res: " << *Res << "\n";
11291 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11292 dbgs() << "Res divided by Sizes[i]:\n";
11293 dbgs() << "Quotient: " << *Q << "\n";
11294 dbgs() << "Remainder: " << *R << "\n";
11295 });
11296
11297 Res = Q;
11298
11299 // Do not record the last subscript corresponding to the size of elements in
11300 // the array.
11301 if (i == Last) {
11302
11303 // Bail out if the remainder is too complex.
11304 if (isa<SCEVAddRecExpr>(R)) {
11305 Subscripts.clear();
11306 Sizes.clear();
11307 return;
11308 }
11309
11310 continue;
11311 }
11312
11313 // Record the access function for the current subscript.
11314 Subscripts.push_back(R);
11315 }
11316
11317 // Also push in last position the remainder of the last division: it will be
11318 // the access function of the innermost dimension.
11319 Subscripts.push_back(Res);
11320
11321 std::reverse(Subscripts.begin(), Subscripts.end());
11322
11323 LLVM_DEBUG({
11324 dbgs() << "Subscripts:\n";
11325 for (const SCEV *S : Subscripts)
11326 dbgs() << *S << "\n";
11327 });
11328 }
11329
11330 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11331 /// sizes of an array access. Returns the remainder of the delinearization that
11332 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11333 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11334 /// expressions in the stride and base of a SCEV corresponding to the
11335 /// computation of a GCD (greatest common divisor) of base and stride. When
11336 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11337 ///
11338 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11339 ///
11340 /// void foo(long n, long m, long o, double A[n][m][o]) {
11341 ///
11342 /// for (long i = 0; i < n; i++)
11343 /// for (long j = 0; j < m; j++)
11344 /// for (long k = 0; k < o; k++)
11345 /// A[i][j][k] = 1.0;
11346 /// }
11347 ///
11348 /// the delinearization input is the following AddRec SCEV:
11349 ///
11350 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11351 ///
11352 /// From this SCEV, we are able to say that the base offset of the access is %A
11353 /// because it appears as an offset that does not divide any of the strides in
11354 /// the loops:
11355 ///
11356 /// CHECK: Base offset: %A
11357 ///
11358 /// and then SCEV->delinearize determines the size of some of the dimensions of
11359 /// the array as these are the multiples by which the strides are happening:
11360 ///
11361 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11362 ///
11363 /// Note that the outermost dimension remains of UnknownSize because there are
11364 /// no strides that would help identifying the size of the last dimension: when
11365 /// the array has been statically allocated, one could compute the size of that
11366 /// dimension by dividing the overall size of the array by the size of the known
11367 /// dimensions: %m * %o * 8.
11368 ///
11369 /// Finally delinearize provides the access functions for the array reference
11370 /// that does correspond to A[i][j][k] of the above C testcase:
11371 ///
11372 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11373 ///
11374 /// The testcases are checking the output of a function pass:
11375 /// DelinearizationPass that walks through all loads and stores of a function
11376 /// asking for the SCEV of the memory access with respect to all enclosing
11377 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11378 void ScalarEvolution::delinearize(const SCEV *Expr,
11379 SmallVectorImpl<const SCEV *> &Subscripts,
11380 SmallVectorImpl<const SCEV *> &Sizes,
11381 const SCEV *ElementSize) {
11382 // First step: collect parametric terms.
11383 SmallVector<const SCEV *, 4> Terms;
11384 collectParametricTerms(Expr, Terms);
11385
11386 if (Terms.empty())
11387 return;
11388
11389 // Second step: find subscript sizes.
11390 findArrayDimensions(Terms, Sizes, ElementSize);
11391
11392 if (Sizes.empty())
11393 return;
11394
11395 // Third step: compute the access functions for each subscript.
11396 computeAccessFunctions(Expr, Subscripts, Sizes);
11397
11398 if (Subscripts.empty())
11399 return;
11400
11401 LLVM_DEBUG({
11402 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11403 dbgs() << "ArrayDecl[UnknownSize]";
11404 for (const SCEV *S : Sizes)
11405 dbgs() << "[" << *S << "]";
11406
11407 dbgs() << "\nArrayRef";
11408 for (const SCEV *S : Subscripts)
11409 dbgs() << "[" << *S << "]";
11410 dbgs() << "\n";
11411 });
11412 }
11413
11414 //===----------------------------------------------------------------------===//
11415 // SCEVCallbackVH Class Implementation
11416 //===----------------------------------------------------------------------===//
11417
deleted()11418 void ScalarEvolution::SCEVCallbackVH::deleted() {
11419 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11420 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11421 SE->ConstantEvolutionLoopExitValue.erase(PN);
11422 SE->eraseValueFromMap(getValPtr());
11423 // this now dangles!
11424 }
11425
allUsesReplacedWith(Value * V)11426 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11427 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11428
11429 // Forget all the expressions associated with users of the old value,
11430 // so that future queries will recompute the expressions using the new
11431 // value.
11432 Value *Old = getValPtr();
11433 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11434 SmallPtrSet<User *, 8> Visited;
11435 while (!Worklist.empty()) {
11436 User *U = Worklist.pop_back_val();
11437 // Deleting the Old value will cause this to dangle. Postpone
11438 // that until everything else is done.
11439 if (U == Old)
11440 continue;
11441 if (!Visited.insert(U).second)
11442 continue;
11443 if (PHINode *PN = dyn_cast<PHINode>(U))
11444 SE->ConstantEvolutionLoopExitValue.erase(PN);
11445 SE->eraseValueFromMap(U);
11446 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11447 }
11448 // Delete the Old value.
11449 if (PHINode *PN = dyn_cast<PHINode>(Old))
11450 SE->ConstantEvolutionLoopExitValue.erase(PN);
11451 SE->eraseValueFromMap(Old);
11452 // this now dangles!
11453 }
11454
SCEVCallbackVH(Value * V,ScalarEvolution * se)11455 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11456 : CallbackVH(V), SE(se) {}
11457
11458 //===----------------------------------------------------------------------===//
11459 // ScalarEvolution Class Implementation
11460 //===----------------------------------------------------------------------===//
11461
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11462 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11463 AssumptionCache &AC, DominatorTree &DT,
11464 LoopInfo &LI)
11465 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11466 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11467 LoopDispositions(64), BlockDispositions(64) {
11468 // To use guards for proving predicates, we need to scan every instruction in
11469 // relevant basic blocks, and not just terminators. Doing this is a waste of
11470 // time if the IR does not actually contain any calls to
11471 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11472 //
11473 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11474 // to _add_ guards to the module when there weren't any before, and wants
11475 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11476 // efficient in lieu of being smart in that rather obscure case.
11477
11478 auto *GuardDecl = F.getParent()->getFunction(
11479 Intrinsic::getName(Intrinsic::experimental_guard));
11480 HasGuards = GuardDecl && !GuardDecl->use_empty();
11481 }
11482
ScalarEvolution(ScalarEvolution && Arg)11483 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11484 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11485 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11486 ValueExprMap(std::move(Arg.ValueExprMap)),
11487 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11488 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11489 PendingMerges(std::move(Arg.PendingMerges)),
11490 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11491 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11492 PredicatedBackedgeTakenCounts(
11493 std::move(Arg.PredicatedBackedgeTakenCounts)),
11494 ConstantEvolutionLoopExitValue(
11495 std::move(Arg.ConstantEvolutionLoopExitValue)),
11496 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11497 LoopDispositions(std::move(Arg.LoopDispositions)),
11498 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11499 BlockDispositions(std::move(Arg.BlockDispositions)),
11500 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11501 SignedRanges(std::move(Arg.SignedRanges)),
11502 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11503 UniquePreds(std::move(Arg.UniquePreds)),
11504 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11505 LoopUsers(std::move(Arg.LoopUsers)),
11506 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11507 FirstUnknown(Arg.FirstUnknown) {
11508 Arg.FirstUnknown = nullptr;
11509 }
11510
~ScalarEvolution()11511 ScalarEvolution::~ScalarEvolution() {
11512 // Iterate through all the SCEVUnknown instances and call their
11513 // destructors, so that they release their references to their values.
11514 for (SCEVUnknown *U = FirstUnknown; U;) {
11515 SCEVUnknown *Tmp = U;
11516 U = U->Next;
11517 Tmp->~SCEVUnknown();
11518 }
11519 FirstUnknown = nullptr;
11520
11521 ExprValueMap.clear();
11522 ValueExprMap.clear();
11523 HasRecMap.clear();
11524
11525 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11526 // that a loop had multiple computable exits.
11527 for (auto &BTCI : BackedgeTakenCounts)
11528 BTCI.second.clear();
11529 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11530 BTCI.second.clear();
11531
11532 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11533 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11534 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11535 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11536 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11537 }
11538
hasLoopInvariantBackedgeTakenCount(const Loop * L)11539 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11540 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11541 }
11542
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)11543 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11544 const Loop *L) {
11545 // Print all inner loops first
11546 for (Loop *I : *L)
11547 PrintLoopInfo(OS, SE, I);
11548
11549 OS << "Loop ";
11550 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11551 OS << ": ";
11552
11553 SmallVector<BasicBlock *, 8> ExitingBlocks;
11554 L->getExitingBlocks(ExitingBlocks);
11555 if (ExitingBlocks.size() != 1)
11556 OS << "<multiple exits> ";
11557
11558 if (SE->hasLoopInvariantBackedgeTakenCount(L))
11559 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11560 else
11561 OS << "Unpredictable backedge-taken count.\n";
11562
11563 if (ExitingBlocks.size() > 1)
11564 for (BasicBlock *ExitingBlock : ExitingBlocks) {
11565 OS << " exit count for " << ExitingBlock->getName() << ": "
11566 << *SE->getExitCount(L, ExitingBlock) << "\n";
11567 }
11568
11569 OS << "Loop ";
11570 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11571 OS << ": ";
11572
11573 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11574 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11575 if (SE->isBackedgeTakenCountMaxOrZero(L))
11576 OS << ", actual taken count either this or zero.";
11577 } else {
11578 OS << "Unpredictable max backedge-taken count. ";
11579 }
11580
11581 OS << "\n"
11582 "Loop ";
11583 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11584 OS << ": ";
11585
11586 SCEVUnionPredicate Pred;
11587 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11588 if (!isa<SCEVCouldNotCompute>(PBT)) {
11589 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11590 OS << " Predicates:\n";
11591 Pred.print(OS, 4);
11592 } else {
11593 OS << "Unpredictable predicated backedge-taken count. ";
11594 }
11595 OS << "\n";
11596
11597 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11598 OS << "Loop ";
11599 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11600 OS << ": ";
11601 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11602 }
11603 }
11604
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)11605 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11606 switch (LD) {
11607 case ScalarEvolution::LoopVariant:
11608 return "Variant";
11609 case ScalarEvolution::LoopInvariant:
11610 return "Invariant";
11611 case ScalarEvolution::LoopComputable:
11612 return "Computable";
11613 }
11614 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11615 }
11616
print(raw_ostream & OS) const11617 void ScalarEvolution::print(raw_ostream &OS) const {
11618 // ScalarEvolution's implementation of the print method is to print
11619 // out SCEV values of all instructions that are interesting. Doing
11620 // this potentially causes it to create new SCEV objects though,
11621 // which technically conflicts with the const qualifier. This isn't
11622 // observable from outside the class though, so casting away the
11623 // const isn't dangerous.
11624 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11625
11626 if (ClassifyExpressions) {
11627 OS << "Classifying expressions for: ";
11628 F.printAsOperand(OS, /*PrintType=*/false);
11629 OS << "\n";
11630 for (Instruction &I : instructions(F))
11631 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11632 OS << I << '\n';
11633 OS << " --> ";
11634 const SCEV *SV = SE.getSCEV(&I);
11635 SV->print(OS);
11636 if (!isa<SCEVCouldNotCompute>(SV)) {
11637 OS << " U: ";
11638 SE.getUnsignedRange(SV).print(OS);
11639 OS << " S: ";
11640 SE.getSignedRange(SV).print(OS);
11641 }
11642
11643 const Loop *L = LI.getLoopFor(I.getParent());
11644
11645 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11646 if (AtUse != SV) {
11647 OS << " --> ";
11648 AtUse->print(OS);
11649 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11650 OS << " U: ";
11651 SE.getUnsignedRange(AtUse).print(OS);
11652 OS << " S: ";
11653 SE.getSignedRange(AtUse).print(OS);
11654 }
11655 }
11656
11657 if (L) {
11658 OS << "\t\t" "Exits: ";
11659 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11660 if (!SE.isLoopInvariant(ExitValue, L)) {
11661 OS << "<<Unknown>>";
11662 } else {
11663 OS << *ExitValue;
11664 }
11665
11666 bool First = true;
11667 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11668 if (First) {
11669 OS << "\t\t" "LoopDispositions: { ";
11670 First = false;
11671 } else {
11672 OS << ", ";
11673 }
11674
11675 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11676 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11677 }
11678
11679 for (auto *InnerL : depth_first(L)) {
11680 if (InnerL == L)
11681 continue;
11682 if (First) {
11683 OS << "\t\t" "LoopDispositions: { ";
11684 First = false;
11685 } else {
11686 OS << ", ";
11687 }
11688
11689 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11690 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11691 }
11692
11693 OS << " }";
11694 }
11695
11696 OS << "\n";
11697 }
11698 }
11699
11700 OS << "Determining loop execution counts for: ";
11701 F.printAsOperand(OS, /*PrintType=*/false);
11702 OS << "\n";
11703 for (Loop *I : LI)
11704 PrintLoopInfo(OS, &SE, I);
11705 }
11706
11707 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)11708 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11709 auto &Values = LoopDispositions[S];
11710 for (auto &V : Values) {
11711 if (V.getPointer() == L)
11712 return V.getInt();
11713 }
11714 Values.emplace_back(L, LoopVariant);
11715 LoopDisposition D = computeLoopDisposition(S, L);
11716 auto &Values2 = LoopDispositions[S];
11717 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11718 if (V.getPointer() == L) {
11719 V.setInt(D);
11720 break;
11721 }
11722 }
11723 return D;
11724 }
11725
11726 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)11727 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11728 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11729 case scConstant:
11730 return LoopInvariant;
11731 case scTruncate:
11732 case scZeroExtend:
11733 case scSignExtend:
11734 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11735 case scAddRecExpr: {
11736 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11737
11738 // If L is the addrec's loop, it's computable.
11739 if (AR->getLoop() == L)
11740 return LoopComputable;
11741
11742 // Add recurrences are never invariant in the function-body (null loop).
11743 if (!L)
11744 return LoopVariant;
11745
11746 // Everything that is not defined at loop entry is variant.
11747 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11748 return LoopVariant;
11749 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11750 " dominate the contained loop's header?");
11751
11752 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11753 if (AR->getLoop()->contains(L))
11754 return LoopInvariant;
11755
11756 // This recurrence is variant w.r.t. L if any of its operands
11757 // are variant.
11758 for (auto *Op : AR->operands())
11759 if (!isLoopInvariant(Op, L))
11760 return LoopVariant;
11761
11762 // Otherwise it's loop-invariant.
11763 return LoopInvariant;
11764 }
11765 case scAddExpr:
11766 case scMulExpr:
11767 case scUMaxExpr:
11768 case scSMaxExpr:
11769 case scUMinExpr:
11770 case scSMinExpr: {
11771 bool HasVarying = false;
11772 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11773 LoopDisposition D = getLoopDisposition(Op, L);
11774 if (D == LoopVariant)
11775 return LoopVariant;
11776 if (D == LoopComputable)
11777 HasVarying = true;
11778 }
11779 return HasVarying ? LoopComputable : LoopInvariant;
11780 }
11781 case scUDivExpr: {
11782 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11783 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11784 if (LD == LoopVariant)
11785 return LoopVariant;
11786 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11787 if (RD == LoopVariant)
11788 return LoopVariant;
11789 return (LD == LoopInvariant && RD == LoopInvariant) ?
11790 LoopInvariant : LoopComputable;
11791 }
11792 case scUnknown:
11793 // All non-instruction values are loop invariant. All instructions are loop
11794 // invariant if they are not contained in the specified loop.
11795 // Instructions are never considered invariant in the function body
11796 // (null loop) because they are defined within the "loop".
11797 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11798 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11799 return LoopInvariant;
11800 case scCouldNotCompute:
11801 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11802 }
11803 llvm_unreachable("Unknown SCEV kind!");
11804 }
11805
isLoopInvariant(const SCEV * S,const Loop * L)11806 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11807 return getLoopDisposition(S, L) == LoopInvariant;
11808 }
11809
hasComputableLoopEvolution(const SCEV * S,const Loop * L)11810 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11811 return getLoopDisposition(S, L) == LoopComputable;
11812 }
11813
11814 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)11815 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11816 auto &Values = BlockDispositions[S];
11817 for (auto &V : Values) {
11818 if (V.getPointer() == BB)
11819 return V.getInt();
11820 }
11821 Values.emplace_back(BB, DoesNotDominateBlock);
11822 BlockDisposition D = computeBlockDisposition(S, BB);
11823 auto &Values2 = BlockDispositions[S];
11824 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11825 if (V.getPointer() == BB) {
11826 V.setInt(D);
11827 break;
11828 }
11829 }
11830 return D;
11831 }
11832
11833 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)11834 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11835 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11836 case scConstant:
11837 return ProperlyDominatesBlock;
11838 case scTruncate:
11839 case scZeroExtend:
11840 case scSignExtend:
11841 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11842 case scAddRecExpr: {
11843 // This uses a "dominates" query instead of "properly dominates" query
11844 // to test for proper dominance too, because the instruction which
11845 // produces the addrec's value is a PHI, and a PHI effectively properly
11846 // dominates its entire containing block.
11847 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11848 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11849 return DoesNotDominateBlock;
11850
11851 // Fall through into SCEVNAryExpr handling.
11852 LLVM_FALLTHROUGH;
11853 }
11854 case scAddExpr:
11855 case scMulExpr:
11856 case scUMaxExpr:
11857 case scSMaxExpr:
11858 case scUMinExpr:
11859 case scSMinExpr: {
11860 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11861 bool Proper = true;
11862 for (const SCEV *NAryOp : NAry->operands()) {
11863 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11864 if (D == DoesNotDominateBlock)
11865 return DoesNotDominateBlock;
11866 if (D == DominatesBlock)
11867 Proper = false;
11868 }
11869 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11870 }
11871 case scUDivExpr: {
11872 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11873 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11874 BlockDisposition LD = getBlockDisposition(LHS, BB);
11875 if (LD == DoesNotDominateBlock)
11876 return DoesNotDominateBlock;
11877 BlockDisposition RD = getBlockDisposition(RHS, BB);
11878 if (RD == DoesNotDominateBlock)
11879 return DoesNotDominateBlock;
11880 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11881 ProperlyDominatesBlock : DominatesBlock;
11882 }
11883 case scUnknown:
11884 if (Instruction *I =
11885 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11886 if (I->getParent() == BB)
11887 return DominatesBlock;
11888 if (DT.properlyDominates(I->getParent(), BB))
11889 return ProperlyDominatesBlock;
11890 return DoesNotDominateBlock;
11891 }
11892 return ProperlyDominatesBlock;
11893 case scCouldNotCompute:
11894 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11895 }
11896 llvm_unreachable("Unknown SCEV kind!");
11897 }
11898
dominates(const SCEV * S,const BasicBlock * BB)11899 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11900 return getBlockDisposition(S, BB) >= DominatesBlock;
11901 }
11902
properlyDominates(const SCEV * S,const BasicBlock * BB)11903 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11904 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11905 }
11906
hasOperand(const SCEV * S,const SCEV * Op) const11907 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11908 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11909 }
11910
hasOperand(const SCEV * S) const11911 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11912 auto IsS = [&](const SCEV *X) { return S == X; };
11913 auto ContainsS = [&](const SCEV *X) {
11914 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11915 };
11916 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11917 }
11918
11919 void
forgetMemoizedResults(const SCEV * S)11920 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11921 ValuesAtScopes.erase(S);
11922 LoopDispositions.erase(S);
11923 BlockDispositions.erase(S);
11924 UnsignedRanges.erase(S);
11925 SignedRanges.erase(S);
11926 ExprValueMap.erase(S);
11927 HasRecMap.erase(S);
11928 MinTrailingZerosCache.erase(S);
11929
11930 for (auto I = PredicatedSCEVRewrites.begin();
11931 I != PredicatedSCEVRewrites.end();) {
11932 std::pair<const SCEV *, const Loop *> Entry = I->first;
11933 if (Entry.first == S)
11934 PredicatedSCEVRewrites.erase(I++);
11935 else
11936 ++I;
11937 }
11938
11939 auto RemoveSCEVFromBackedgeMap =
11940 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11941 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11942 BackedgeTakenInfo &BEInfo = I->second;
11943 if (BEInfo.hasOperand(S, this)) {
11944 BEInfo.clear();
11945 Map.erase(I++);
11946 } else
11947 ++I;
11948 }
11949 };
11950
11951 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11952 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11953 }
11954
11955 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)11956 ScalarEvolution::getUsedLoops(const SCEV *S,
11957 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11958 struct FindUsedLoops {
11959 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11960 : LoopsUsed(LoopsUsed) {}
11961 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11962 bool follow(const SCEV *S) {
11963 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11964 LoopsUsed.insert(AR->getLoop());
11965 return true;
11966 }
11967
11968 bool isDone() const { return false; }
11969 };
11970
11971 FindUsedLoops F(LoopsUsed);
11972 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11973 }
11974
addToLoopUseLists(const SCEV * S)11975 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11976 SmallPtrSet<const Loop *, 8> LoopsUsed;
11977 getUsedLoops(S, LoopsUsed);
11978 for (auto *L : LoopsUsed)
11979 LoopUsers[L].push_back(S);
11980 }
11981
verify() const11982 void ScalarEvolution::verify() const {
11983 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11984 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11985
11986 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11987
11988 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11989 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11990 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11991
11992 const SCEV *visitConstant(const SCEVConstant *Constant) {
11993 return SE.getConstant(Constant->getAPInt());
11994 }
11995
11996 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11997 return SE.getUnknown(Expr->getValue());
11998 }
11999
12000 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12001 return SE.getCouldNotCompute();
12002 }
12003 };
12004
12005 SCEVMapper SCM(SE2);
12006
12007 while (!LoopStack.empty()) {
12008 auto *L = LoopStack.pop_back_val();
12009 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12010
12011 auto *CurBECount = SCM.visit(
12012 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12013 auto *NewBECount = SE2.getBackedgeTakenCount(L);
12014
12015 if (CurBECount == SE2.getCouldNotCompute() ||
12016 NewBECount == SE2.getCouldNotCompute()) {
12017 // NB! This situation is legal, but is very suspicious -- whatever pass
12018 // change the loop to make a trip count go from could not compute to
12019 // computable or vice-versa *should have* invalidated SCEV. However, we
12020 // choose not to assert here (for now) since we don't want false
12021 // positives.
12022 continue;
12023 }
12024
12025 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12026 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12027 // not propagate undef aggressively). This means we can (and do) fail
12028 // verification in cases where a transform makes the trip count of a loop
12029 // go from "undef" to "undef+1" (say). The transform is fine, since in
12030 // both cases the loop iterates "undef" times, but SCEV thinks we
12031 // increased the trip count of the loop by 1 incorrectly.
12032 continue;
12033 }
12034
12035 if (SE.getTypeSizeInBits(CurBECount->getType()) >
12036 SE.getTypeSizeInBits(NewBECount->getType()))
12037 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12038 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12039 SE.getTypeSizeInBits(NewBECount->getType()))
12040 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12041
12042 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12043
12044 // Unless VerifySCEVStrict is set, we only compare constant deltas.
12045 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12046 dbgs() << "Trip Count for " << *L << " Changed!\n";
12047 dbgs() << "Old: " << *CurBECount << "\n";
12048 dbgs() << "New: " << *NewBECount << "\n";
12049 dbgs() << "Delta: " << *Delta << "\n";
12050 std::abort();
12051 }
12052 }
12053 }
12054
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)12055 bool ScalarEvolution::invalidate(
12056 Function &F, const PreservedAnalyses &PA,
12057 FunctionAnalysisManager::Invalidator &Inv) {
12058 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12059 // of its dependencies is invalidated.
12060 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12061 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12062 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12063 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12064 Inv.invalidate<LoopAnalysis>(F, PA);
12065 }
12066
12067 AnalysisKey ScalarEvolutionAnalysis::Key;
12068
run(Function & F,FunctionAnalysisManager & AM)12069 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12070 FunctionAnalysisManager &AM) {
12071 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12072 AM.getResult<AssumptionAnalysis>(F),
12073 AM.getResult<DominatorTreeAnalysis>(F),
12074 AM.getResult<LoopAnalysis>(F));
12075 }
12076
12077 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12078 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12079 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12080 return PreservedAnalyses::all();
12081 }
12082
12083 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12084 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12085 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12086 return PreservedAnalyses::all();
12087 }
12088
12089 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12090 "Scalar Evolution Analysis", false, true)
12091 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12092 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12093 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12094 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12095 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12096 "Scalar Evolution Analysis", false, true)
12097
12098 char ScalarEvolutionWrapperPass::ID = 0;
12099
ScalarEvolutionWrapperPass()12100 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12101 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12102 }
12103
runOnFunction(Function & F)12104 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12105 SE.reset(new ScalarEvolution(
12106 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12107 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12108 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12109 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12110 return false;
12111 }
12112
releaseMemory()12113 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12114
print(raw_ostream & OS,const Module *) const12115 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12116 SE->print(OS);
12117 }
12118
verifyAnalysis() const12119 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12120 if (!VerifySCEV)
12121 return;
12122
12123 SE->verify();
12124 }
12125
getAnalysisUsage(AnalysisUsage & AU) const12126 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12127 AU.setPreservesAll();
12128 AU.addRequiredTransitive<AssumptionCacheTracker>();
12129 AU.addRequiredTransitive<LoopInfoWrapperPass>();
12130 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12131 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12132 }
12133
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)12134 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12135 const SCEV *RHS) {
12136 FoldingSetNodeID ID;
12137 assert(LHS->getType() == RHS->getType() &&
12138 "Type mismatch between LHS and RHS");
12139 // Unique this node based on the arguments
12140 ID.AddInteger(SCEVPredicate::P_Equal);
12141 ID.AddPointer(LHS);
12142 ID.AddPointer(RHS);
12143 void *IP = nullptr;
12144 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12145 return S;
12146 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12147 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12148 UniquePreds.InsertNode(Eq, IP);
12149 return Eq;
12150 }
12151
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12152 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12153 const SCEVAddRecExpr *AR,
12154 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12155 FoldingSetNodeID ID;
12156 // Unique this node based on the arguments
12157 ID.AddInteger(SCEVPredicate::P_Wrap);
12158 ID.AddPointer(AR);
12159 ID.AddInteger(AddedFlags);
12160 void *IP = nullptr;
12161 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12162 return S;
12163 auto *OF = new (SCEVAllocator)
12164 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12165 UniquePreds.InsertNode(OF, IP);
12166 return OF;
12167 }
12168
12169 namespace {
12170
12171 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12172 public:
12173
12174 /// Rewrites \p S in the context of a loop L and the SCEV predication
12175 /// infrastructure.
12176 ///
12177 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12178 /// equivalences present in \p Pred.
12179 ///
12180 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12181 /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12182 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12183 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12184 SCEVUnionPredicate *Pred) {
12185 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12186 return Rewriter.visit(S);
12187 }
12188
visitUnknown(const SCEVUnknown * Expr)12189 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12190 if (Pred) {
12191 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12192 for (auto *Pred : ExprPreds)
12193 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12194 if (IPred->getLHS() == Expr)
12195 return IPred->getRHS();
12196 }
12197 return convertToAddRecWithPreds(Expr);
12198 }
12199
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)12200 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12201 const SCEV *Operand = visit(Expr->getOperand());
12202 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12203 if (AR && AR->getLoop() == L && AR->isAffine()) {
12204 // This couldn't be folded because the operand didn't have the nuw
12205 // flag. Add the nusw flag as an assumption that we could make.
12206 const SCEV *Step = AR->getStepRecurrence(SE);
12207 Type *Ty = Expr->getType();
12208 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12209 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12210 SE.getSignExtendExpr(Step, Ty), L,
12211 AR->getNoWrapFlags());
12212 }
12213 return SE.getZeroExtendExpr(Operand, Expr->getType());
12214 }
12215
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)12216 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12217 const SCEV *Operand = visit(Expr->getOperand());
12218 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12219 if (AR && AR->getLoop() == L && AR->isAffine()) {
12220 // This couldn't be folded because the operand didn't have the nsw
12221 // flag. Add the nssw flag as an assumption that we could make.
12222 const SCEV *Step = AR->getStepRecurrence(SE);
12223 Type *Ty = Expr->getType();
12224 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12225 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12226 SE.getSignExtendExpr(Step, Ty), L,
12227 AR->getNoWrapFlags());
12228 }
12229 return SE.getSignExtendExpr(Operand, Expr->getType());
12230 }
12231
12232 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12233 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12234 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12235 SCEVUnionPredicate *Pred)
12236 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12237
addOverflowAssumption(const SCEVPredicate * P)12238 bool addOverflowAssumption(const SCEVPredicate *P) {
12239 if (!NewPreds) {
12240 // Check if we've already made this assumption.
12241 return Pred && Pred->implies(P);
12242 }
12243 NewPreds->insert(P);
12244 return true;
12245 }
12246
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12247 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12248 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12249 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12250 return addOverflowAssumption(A);
12251 }
12252
12253 // If \p Expr represents a PHINode, we try to see if it can be represented
12254 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12255 // to add this predicate as a runtime overflow check, we return the AddRec.
12256 // If \p Expr does not meet these conditions (is not a PHI node, or we
12257 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12258 // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)12259 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12260 if (!isa<PHINode>(Expr->getValue()))
12261 return Expr;
12262 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12263 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12264 if (!PredicatedRewrite)
12265 return Expr;
12266 for (auto *P : PredicatedRewrite->second){
12267 // Wrap predicates from outer loops are not supported.
12268 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12269 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12270 if (L != AR->getLoop())
12271 return Expr;
12272 }
12273 if (!addOverflowAssumption(P))
12274 return Expr;
12275 }
12276 return PredicatedRewrite->first;
12277 }
12278
12279 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12280 SCEVUnionPredicate *Pred;
12281 const Loop *L;
12282 };
12283
12284 } // end anonymous namespace
12285
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)12286 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12287 SCEVUnionPredicate &Preds) {
12288 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12289 }
12290
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)12291 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12292 const SCEV *S, const Loop *L,
12293 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12294 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12295 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12296 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12297
12298 if (!AddRec)
12299 return nullptr;
12300
12301 // Since the transformation was successful, we can now transfer the SCEV
12302 // predicates.
12303 for (auto *P : TransformPreds)
12304 Preds.insert(P);
12305
12306 return AddRec;
12307 }
12308
12309 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)12310 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12311 SCEVPredicateKind Kind)
12312 : FastID(ID), Kind(Kind) {}
12313
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)12314 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12315 const SCEV *LHS, const SCEV *RHS)
12316 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12317 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12318 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12319 }
12320
implies(const SCEVPredicate * N) const12321 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12322 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12323
12324 if (!Op)
12325 return false;
12326
12327 return Op->LHS == LHS && Op->RHS == RHS;
12328 }
12329
isAlwaysTrue() const12330 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12331
getExpr() const12332 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12333
print(raw_ostream & OS,unsigned Depth) const12334 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12335 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12336 }
12337
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12338 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12339 const SCEVAddRecExpr *AR,
12340 IncrementWrapFlags Flags)
12341 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12342
getExpr() const12343 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12344
implies(const SCEVPredicate * N) const12345 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12346 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12347
12348 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12349 }
12350
isAlwaysTrue() const12351 bool SCEVWrapPredicate::isAlwaysTrue() const {
12352 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12353 IncrementWrapFlags IFlags = Flags;
12354
12355 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12356 IFlags = clearFlags(IFlags, IncrementNSSW);
12357
12358 return IFlags == IncrementAnyWrap;
12359 }
12360
print(raw_ostream & OS,unsigned Depth) const12361 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12362 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12363 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12364 OS << "<nusw>";
12365 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12366 OS << "<nssw>";
12367 OS << "\n";
12368 }
12369
12370 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12371 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12372 ScalarEvolution &SE) {
12373 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12374 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12375
12376 // We can safely transfer the NSW flag as NSSW.
12377 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12378 ImpliedFlags = IncrementNSSW;
12379
12380 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12381 // If the increment is positive, the SCEV NUW flag will also imply the
12382 // WrapPredicate NUSW flag.
12383 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12384 if (Step->getValue()->getValue().isNonNegative())
12385 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12386 }
12387
12388 return ImpliedFlags;
12389 }
12390
12391 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12392 SCEVUnionPredicate::SCEVUnionPredicate()
12393 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12394
isAlwaysTrue() const12395 bool SCEVUnionPredicate::isAlwaysTrue() const {
12396 return all_of(Preds,
12397 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12398 }
12399
12400 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12401 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12402 auto I = SCEVToPreds.find(Expr);
12403 if (I == SCEVToPreds.end())
12404 return ArrayRef<const SCEVPredicate *>();
12405 return I->second;
12406 }
12407
implies(const SCEVPredicate * N) const12408 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12409 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12410 return all_of(Set->Preds,
12411 [this](const SCEVPredicate *I) { return this->implies(I); });
12412
12413 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12414 if (ScevPredsIt == SCEVToPreds.end())
12415 return false;
12416 auto &SCEVPreds = ScevPredsIt->second;
12417
12418 return any_of(SCEVPreds,
12419 [N](const SCEVPredicate *I) { return I->implies(N); });
12420 }
12421
getExpr() const12422 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12423
print(raw_ostream & OS,unsigned Depth) const12424 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12425 for (auto Pred : Preds)
12426 Pred->print(OS, Depth);
12427 }
12428
add(const SCEVPredicate * N)12429 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12430 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12431 for (auto Pred : Set->Preds)
12432 add(Pred);
12433 return;
12434 }
12435
12436 if (implies(N))
12437 return;
12438
12439 const SCEV *Key = N->getExpr();
12440 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12441 " associated expression!");
12442
12443 SCEVToPreds[Key].push_back(N);
12444 Preds.push_back(N);
12445 }
12446
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12447 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12448 Loop &L)
12449 : SE(SE), L(L) {}
12450
getSCEV(Value * V)12451 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12452 const SCEV *Expr = SE.getSCEV(V);
12453 RewriteEntry &Entry = RewriteMap[Expr];
12454
12455 // If we already have an entry and the version matches, return it.
12456 if (Entry.second && Generation == Entry.first)
12457 return Entry.second;
12458
12459 // We found an entry but it's stale. Rewrite the stale entry
12460 // according to the current predicate.
12461 if (Entry.second)
12462 Expr = Entry.second;
12463
12464 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12465 Entry = {Generation, NewSCEV};
12466
12467 return NewSCEV;
12468 }
12469
getBackedgeTakenCount()12470 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12471 if (!BackedgeCount) {
12472 SCEVUnionPredicate BackedgePred;
12473 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12474 addPredicate(BackedgePred);
12475 }
12476 return BackedgeCount;
12477 }
12478
addPredicate(const SCEVPredicate & Pred)12479 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12480 if (Preds.implies(&Pred))
12481 return;
12482 Preds.add(&Pred);
12483 updateGeneration();
12484 }
12485
getUnionPredicate() const12486 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12487 return Preds;
12488 }
12489
updateGeneration()12490 void PredicatedScalarEvolution::updateGeneration() {
12491 // If the generation number wrapped recompute everything.
12492 if (++Generation == 0) {
12493 for (auto &II : RewriteMap) {
12494 const SCEV *Rewritten = II.second.second;
12495 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12496 }
12497 }
12498 }
12499
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12500 void PredicatedScalarEvolution::setNoOverflow(
12501 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12502 const SCEV *Expr = getSCEV(V);
12503 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12504
12505 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12506
12507 // Clear the statically implied flags.
12508 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12509 addPredicate(*SE.getWrapPredicate(AR, Flags));
12510
12511 auto II = FlagsMap.insert({V, Flags});
12512 if (!II.second)
12513 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12514 }
12515
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12516 bool PredicatedScalarEvolution::hasNoOverflow(
12517 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12518 const SCEV *Expr = getSCEV(V);
12519 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12520
12521 Flags = SCEVWrapPredicate::clearFlags(
12522 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12523
12524 auto II = FlagsMap.find(V);
12525
12526 if (II != FlagsMap.end())
12527 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12528
12529 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12530 }
12531
getAsAddRec(Value * V)12532 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12533 const SCEV *Expr = this->getSCEV(V);
12534 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12535 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12536
12537 if (!New)
12538 return nullptr;
12539
12540 for (auto *P : NewPreds)
12541 Preds.add(P);
12542
12543 updateGeneration();
12544 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12545 return New;
12546 }
12547
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)12548 PredicatedScalarEvolution::PredicatedScalarEvolution(
12549 const PredicatedScalarEvolution &Init)
12550 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12551 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12552 for (auto I : Init.FlagsMap)
12553 FlagsMap.insert(I);
12554 }
12555
print(raw_ostream & OS,unsigned Depth) const12556 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12557 // For each block.
12558 for (auto *BB : L.getBlocks())
12559 for (auto &I : *BB) {
12560 if (!SE.isSCEVable(I.getType()))
12561 continue;
12562
12563 auto *Expr = SE.getSCEV(&I);
12564 auto II = RewriteMap.find(Expr);
12565
12566 if (II == RewriteMap.end())
12567 continue;
12568
12569 // Don't print things that are not interesting.
12570 if (II->second.second == Expr)
12571 continue;
12572
12573 OS.indent(Depth) << "[PSE]" << I << ":\n";
12574 OS.indent(Depth + 2) << *Expr << "\n";
12575 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12576 }
12577 }
12578
12579 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12580 // arbitrary expressions.
12581 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12582 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)12583 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12584 const SCEV *&RHS) {
12585 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12586 if (Add == nullptr || Add->getNumOperands() != 2)
12587 return false;
12588
12589 const SCEV *A = Add->getOperand(1);
12590 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12591
12592 if (Mul == nullptr)
12593 return false;
12594
12595 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12596 // (SomeExpr + (-(SomeExpr / B) * B)).
12597 if (Expr == getURemExpr(A, B)) {
12598 LHS = A;
12599 RHS = B;
12600 return true;
12601 }
12602 return false;
12603 };
12604
12605 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12606 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12607 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12608 MatchURemWithDivisor(Mul->getOperand(2));
12609
12610 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12611 if (Mul->getNumOperands() == 2)
12612 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12613 MatchURemWithDivisor(Mul->getOperand(0)) ||
12614 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12615 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12616 return false;
12617 }
12618