1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28
29 #define DEBUG_TYPE "vectorutils"
30
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36 "max-interleave-group-factor", cl::Hidden,
37 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38 cl::init(8));
39
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
isTriviallyVectorizable(Intrinsic::ID ID)44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45 switch (ID) {
46 case Intrinsic::bswap: // Begin integer bit-manipulation.
47 case Intrinsic::bitreverse:
48 case Intrinsic::ctpop:
49 case Intrinsic::ctlz:
50 case Intrinsic::cttz:
51 case Intrinsic::fshl:
52 case Intrinsic::fshr:
53 case Intrinsic::sadd_sat:
54 case Intrinsic::ssub_sat:
55 case Intrinsic::uadd_sat:
56 case Intrinsic::usub_sat:
57 case Intrinsic::smul_fix:
58 case Intrinsic::smul_fix_sat:
59 case Intrinsic::umul_fix:
60 case Intrinsic::umul_fix_sat:
61 case Intrinsic::sqrt: // Begin floating-point.
62 case Intrinsic::sin:
63 case Intrinsic::cos:
64 case Intrinsic::exp:
65 case Intrinsic::exp2:
66 case Intrinsic::log:
67 case Intrinsic::log10:
68 case Intrinsic::log2:
69 case Intrinsic::fabs:
70 case Intrinsic::minnum:
71 case Intrinsic::maxnum:
72 case Intrinsic::minimum:
73 case Intrinsic::maximum:
74 case Intrinsic::copysign:
75 case Intrinsic::floor:
76 case Intrinsic::ceil:
77 case Intrinsic::trunc:
78 case Intrinsic::rint:
79 case Intrinsic::nearbyint:
80 case Intrinsic::round:
81 case Intrinsic::pow:
82 case Intrinsic::fma:
83 case Intrinsic::fmuladd:
84 case Intrinsic::powi:
85 case Intrinsic::canonicalize:
86 return true;
87 default:
88 return false;
89 }
90 }
91
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,unsigned ScalarOpdIdx)93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94 unsigned ScalarOpdIdx) {
95 switch (ID) {
96 case Intrinsic::ctlz:
97 case Intrinsic::cttz:
98 case Intrinsic::powi:
99 return (ScalarOpdIdx == 1);
100 case Intrinsic::smul_fix:
101 case Intrinsic::smul_fix_sat:
102 case Intrinsic::umul_fix:
103 case Intrinsic::umul_fix_sat:
104 return (ScalarOpdIdx == 2);
105 default:
106 return false;
107 }
108 }
109
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
getVectorIntrinsicIDForCall(const CallInst * CI,const TargetLibraryInfo * TLI)113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114 const TargetLibraryInfo *TLI) {
115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116 if (ID == Intrinsic::not_intrinsic)
117 return Intrinsic::not_intrinsic;
118
119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121 ID == Intrinsic::sideeffect)
122 return ID;
123 return Intrinsic::not_intrinsic;
124 }
125
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130 const DataLayout &DL = Gep->getModule()->getDataLayout();
131 unsigned LastOperand = Gep->getNumOperands() - 1;
132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133
134 // Walk backwards and try to peel off zeros.
135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136 // Find the type we're currently indexing into.
137 gep_type_iterator GEPTI = gep_type_begin(Gep);
138 std::advance(GEPTI, LastOperand - 2);
139
140 // If it's a type with the same allocation size as the result of the GEP we
141 // can peel off the zero index.
142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143 break;
144 --LastOperand;
145 }
146
147 return LastOperand;
148 }
149
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155 if (!GEP)
156 return Ptr;
157
158 unsigned InductionOperand = getGEPInductionOperand(GEP);
159
160 // Check that all of the gep indices are uniform except for our induction
161 // operand.
162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163 if (i != InductionOperand &&
164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165 return Ptr;
166 return GEP->getOperand(InductionOperand);
167 }
168
169 /// If a value has only one user that is a CastInst, return it.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171 Value *UniqueCast = nullptr;
172 for (User *U : Ptr->users()) {
173 CastInst *CI = dyn_cast<CastInst>(U);
174 if (CI && CI->getType() == Ty) {
175 if (!UniqueCast)
176 UniqueCast = CI;
177 else
178 return nullptr;
179 }
180 }
181 return UniqueCast;
182 }
183
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188 if (!PtrTy || PtrTy->isAggregateType())
189 return nullptr;
190
191 // Try to remove a gep instruction to make the pointer (actually index at this
192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193 // pointer, otherwise, we are analyzing the index.
194 Value *OrigPtr = Ptr;
195
196 // The size of the pointer access.
197 int64_t PtrAccessSize = 1;
198
199 Ptr = stripGetElementPtr(Ptr, SE, Lp);
200 const SCEV *V = SE->getSCEV(Ptr);
201
202 if (Ptr != OrigPtr)
203 // Strip off casts.
204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205 V = C->getOperand();
206
207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208 if (!S)
209 return nullptr;
210
211 V = S->getStepRecurrence(*SE);
212 if (!V)
213 return nullptr;
214
215 // Strip off the size of access multiplication if we are still analyzing the
216 // pointer.
217 if (OrigPtr == Ptr) {
218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219 if (M->getOperand(0)->getSCEVType() != scConstant)
220 return nullptr;
221
222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223
224 // Huge step value - give up.
225 if (APStepVal.getBitWidth() > 64)
226 return nullptr;
227
228 int64_t StepVal = APStepVal.getSExtValue();
229 if (PtrAccessSize != StepVal)
230 return nullptr;
231 V = M->getOperand(1);
232 }
233 }
234
235 // Strip off casts.
236 Type *StripedOffRecurrenceCast = nullptr;
237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238 StripedOffRecurrenceCast = C->getType();
239 V = C->getOperand();
240 }
241
242 // Look for the loop invariant symbolic value.
243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244 if (!U)
245 return nullptr;
246
247 Value *Stride = U->getValue();
248 if (!Lp->isLoopInvariant(Stride))
249 return nullptr;
250
251 // If we have stripped off the recurrence cast we have to make sure that we
252 // return the value that is used in this loop so that we can replace it later.
253 if (StripedOffRecurrenceCast)
254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255
256 return Stride;
257 }
258
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
findScalarElement(Value * V,unsigned EltNo)262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264 VectorType *VTy = cast<VectorType>(V->getType());
265 unsigned Width = VTy->getNumElements();
266 if (EltNo >= Width) // Out of range access.
267 return UndefValue::get(VTy->getElementType());
268
269 if (Constant *C = dyn_cast<Constant>(V))
270 return C->getAggregateElement(EltNo);
271
272 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
273 // If this is an insert to a variable element, we don't know what it is.
274 if (!isa<ConstantInt>(III->getOperand(2)))
275 return nullptr;
276 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
277
278 // If this is an insert to the element we are looking for, return the
279 // inserted value.
280 if (EltNo == IIElt)
281 return III->getOperand(1);
282
283 // Otherwise, the insertelement doesn't modify the value, recurse on its
284 // vector input.
285 return findScalarElement(III->getOperand(0), EltNo);
286 }
287
288 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
289 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
290 int InEl = SVI->getMaskValue(EltNo);
291 if (InEl < 0)
292 return UndefValue::get(VTy->getElementType());
293 if (InEl < (int)LHSWidth)
294 return findScalarElement(SVI->getOperand(0), InEl);
295 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
296 }
297
298 // Extract a value from a vector add operation with a constant zero.
299 // TODO: Use getBinOpIdentity() to generalize this.
300 Value *Val; Constant *C;
301 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
302 if (Constant *Elt = C->getAggregateElement(EltNo))
303 if (Elt->isNullValue())
304 return findScalarElement(Val, EltNo);
305
306 // Otherwise, we don't know.
307 return nullptr;
308 }
309
310 /// Get splat value if the input is a splat vector or return nullptr.
311 /// This function is not fully general. It checks only 2 cases:
312 /// the input value is (1) a splat constant vector or (2) a sequence
313 /// of instructions that broadcasts a scalar at element 0.
getSplatValue(const Value * V)314 const llvm::Value *llvm::getSplatValue(const Value *V) {
315 if (isa<VectorType>(V->getType()))
316 if (auto *C = dyn_cast<Constant>(V))
317 return C->getSplatValue();
318
319 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
320 Value *Splat;
321 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
322 m_ZeroInt()),
323 m_Value(), m_ZeroInt())))
324 return Splat;
325
326 return nullptr;
327 }
328
329 // This setting is based on its counterpart in value tracking, but it could be
330 // adjusted if needed.
331 const unsigned MaxDepth = 6;
332
isSplatValue(const Value * V,unsigned Depth)333 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
334 assert(Depth <= MaxDepth && "Limit Search Depth");
335
336 if (isa<VectorType>(V->getType())) {
337 if (isa<UndefValue>(V))
338 return true;
339 // FIXME: Constant splat analysis does not allow undef elements.
340 if (auto *C = dyn_cast<Constant>(V))
341 return C->getSplatValue() != nullptr;
342 }
343
344 // FIXME: Constant splat analysis does not allow undef elements.
345 Constant *Mask;
346 if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
347 return Mask->getSplatValue() != nullptr;
348
349 // The remaining tests are all recursive, so bail out if we hit the limit.
350 if (Depth++ == MaxDepth)
351 return false;
352
353 // If both operands of a binop are splats, the result is a splat.
354 Value *X, *Y, *Z;
355 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
356 return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
357
358 // If all operands of a select are splats, the result is a splat.
359 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
360 return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
361 isSplatValue(Z, Depth);
362
363 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
364
365 return false;
366 }
367
368 MapVector<Instruction *, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock * > Blocks,DemandedBits & DB,const TargetTransformInfo * TTI)369 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
370 const TargetTransformInfo *TTI) {
371
372 // DemandedBits will give us every value's live-out bits. But we want
373 // to ensure no extra casts would need to be inserted, so every DAG
374 // of connected values must have the same minimum bitwidth.
375 EquivalenceClasses<Value *> ECs;
376 SmallVector<Value *, 16> Worklist;
377 SmallPtrSet<Value *, 4> Roots;
378 SmallPtrSet<Value *, 16> Visited;
379 DenseMap<Value *, uint64_t> DBits;
380 SmallPtrSet<Instruction *, 4> InstructionSet;
381 MapVector<Instruction *, uint64_t> MinBWs;
382
383 // Determine the roots. We work bottom-up, from truncs or icmps.
384 bool SeenExtFromIllegalType = false;
385 for (auto *BB : Blocks)
386 for (auto &I : *BB) {
387 InstructionSet.insert(&I);
388
389 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
390 !TTI->isTypeLegal(I.getOperand(0)->getType()))
391 SeenExtFromIllegalType = true;
392
393 // Only deal with non-vector integers up to 64-bits wide.
394 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
395 !I.getType()->isVectorTy() &&
396 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
397 // Don't make work for ourselves. If we know the loaded type is legal,
398 // don't add it to the worklist.
399 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
400 continue;
401
402 Worklist.push_back(&I);
403 Roots.insert(&I);
404 }
405 }
406 // Early exit.
407 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
408 return MinBWs;
409
410 // Now proceed breadth-first, unioning values together.
411 while (!Worklist.empty()) {
412 Value *Val = Worklist.pop_back_val();
413 Value *Leader = ECs.getOrInsertLeaderValue(Val);
414
415 if (Visited.count(Val))
416 continue;
417 Visited.insert(Val);
418
419 // Non-instructions terminate a chain successfully.
420 if (!isa<Instruction>(Val))
421 continue;
422 Instruction *I = cast<Instruction>(Val);
423
424 // If we encounter a type that is larger than 64 bits, we can't represent
425 // it so bail out.
426 if (DB.getDemandedBits(I).getBitWidth() > 64)
427 return MapVector<Instruction *, uint64_t>();
428
429 uint64_t V = DB.getDemandedBits(I).getZExtValue();
430 DBits[Leader] |= V;
431 DBits[I] = V;
432
433 // Casts, loads and instructions outside of our range terminate a chain
434 // successfully.
435 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
436 !InstructionSet.count(I))
437 continue;
438
439 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
440 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
441 // transform anything that relies on them.
442 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
443 !I->getType()->isIntegerTy()) {
444 DBits[Leader] |= ~0ULL;
445 continue;
446 }
447
448 // We don't modify the types of PHIs. Reductions will already have been
449 // truncated if possible, and inductions' sizes will have been chosen by
450 // indvars.
451 if (isa<PHINode>(I))
452 continue;
453
454 if (DBits[Leader] == ~0ULL)
455 // All bits demanded, no point continuing.
456 continue;
457
458 for (Value *O : cast<User>(I)->operands()) {
459 ECs.unionSets(Leader, O);
460 Worklist.push_back(O);
461 }
462 }
463
464 // Now we've discovered all values, walk them to see if there are
465 // any users we didn't see. If there are, we can't optimize that
466 // chain.
467 for (auto &I : DBits)
468 for (auto *U : I.first->users())
469 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
470 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
471
472 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
473 uint64_t LeaderDemandedBits = 0;
474 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
475 LeaderDemandedBits |= DBits[*MI];
476
477 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
478 llvm::countLeadingZeros(LeaderDemandedBits);
479 // Round up to a power of 2
480 if (!isPowerOf2_64((uint64_t)MinBW))
481 MinBW = NextPowerOf2(MinBW);
482
483 // We don't modify the types of PHIs. Reductions will already have been
484 // truncated if possible, and inductions' sizes will have been chosen by
485 // indvars.
486 // If we are required to shrink a PHI, abandon this entire equivalence class.
487 bool Abort = false;
488 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
489 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
490 Abort = true;
491 break;
492 }
493 if (Abort)
494 continue;
495
496 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
497 if (!isa<Instruction>(*MI))
498 continue;
499 Type *Ty = (*MI)->getType();
500 if (Roots.count(*MI))
501 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
502 if (MinBW < Ty->getScalarSizeInBits())
503 MinBWs[cast<Instruction>(*MI)] = MinBW;
504 }
505 }
506
507 return MinBWs;
508 }
509
510 /// Add all access groups in @p AccGroups to @p List.
511 template <typename ListT>
addToAccessGroupList(ListT & List,MDNode * AccGroups)512 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
513 // Interpret an access group as a list containing itself.
514 if (AccGroups->getNumOperands() == 0) {
515 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
516 List.insert(AccGroups);
517 return;
518 }
519
520 for (auto &AccGroupListOp : AccGroups->operands()) {
521 auto *Item = cast<MDNode>(AccGroupListOp.get());
522 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
523 List.insert(Item);
524 }
525 }
526
uniteAccessGroups(MDNode * AccGroups1,MDNode * AccGroups2)527 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
528 if (!AccGroups1)
529 return AccGroups2;
530 if (!AccGroups2)
531 return AccGroups1;
532 if (AccGroups1 == AccGroups2)
533 return AccGroups1;
534
535 SmallSetVector<Metadata *, 4> Union;
536 addToAccessGroupList(Union, AccGroups1);
537 addToAccessGroupList(Union, AccGroups2);
538
539 if (Union.size() == 0)
540 return nullptr;
541 if (Union.size() == 1)
542 return cast<MDNode>(Union.front());
543
544 LLVMContext &Ctx = AccGroups1->getContext();
545 return MDNode::get(Ctx, Union.getArrayRef());
546 }
547
intersectAccessGroups(const Instruction * Inst1,const Instruction * Inst2)548 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
549 const Instruction *Inst2) {
550 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
551 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
552
553 if (!MayAccessMem1 && !MayAccessMem2)
554 return nullptr;
555 if (!MayAccessMem1)
556 return Inst2->getMetadata(LLVMContext::MD_access_group);
557 if (!MayAccessMem2)
558 return Inst1->getMetadata(LLVMContext::MD_access_group);
559
560 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
561 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
562 if (!MD1 || !MD2)
563 return nullptr;
564 if (MD1 == MD2)
565 return MD1;
566
567 // Use set for scalable 'contains' check.
568 SmallPtrSet<Metadata *, 4> AccGroupSet2;
569 addToAccessGroupList(AccGroupSet2, MD2);
570
571 SmallVector<Metadata *, 4> Intersection;
572 if (MD1->getNumOperands() == 0) {
573 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
574 if (AccGroupSet2.count(MD1))
575 Intersection.push_back(MD1);
576 } else {
577 for (const MDOperand &Node : MD1->operands()) {
578 auto *Item = cast<MDNode>(Node.get());
579 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
580 if (AccGroupSet2.count(Item))
581 Intersection.push_back(Item);
582 }
583 }
584
585 if (Intersection.size() == 0)
586 return nullptr;
587 if (Intersection.size() == 1)
588 return cast<MDNode>(Intersection.front());
589
590 LLVMContext &Ctx = Inst1->getContext();
591 return MDNode::get(Ctx, Intersection);
592 }
593
594 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * Inst,ArrayRef<Value * > VL)595 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
596 Instruction *I0 = cast<Instruction>(VL[0]);
597 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
598 I0->getAllMetadataOtherThanDebugLoc(Metadata);
599
600 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
601 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
602 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
603 LLVMContext::MD_access_group}) {
604 MDNode *MD = I0->getMetadata(Kind);
605
606 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
607 const Instruction *IJ = cast<Instruction>(VL[J]);
608 MDNode *IMD = IJ->getMetadata(Kind);
609 switch (Kind) {
610 case LLVMContext::MD_tbaa:
611 MD = MDNode::getMostGenericTBAA(MD, IMD);
612 break;
613 case LLVMContext::MD_alias_scope:
614 MD = MDNode::getMostGenericAliasScope(MD, IMD);
615 break;
616 case LLVMContext::MD_fpmath:
617 MD = MDNode::getMostGenericFPMath(MD, IMD);
618 break;
619 case LLVMContext::MD_noalias:
620 case LLVMContext::MD_nontemporal:
621 case LLVMContext::MD_invariant_load:
622 MD = MDNode::intersect(MD, IMD);
623 break;
624 case LLVMContext::MD_access_group:
625 MD = intersectAccessGroups(Inst, IJ);
626 break;
627 default:
628 llvm_unreachable("unhandled metadata");
629 }
630 }
631
632 Inst->setMetadata(Kind, MD);
633 }
634
635 return Inst;
636 }
637
638 Constant *
createBitMaskForGaps(IRBuilder<> & Builder,unsigned VF,const InterleaveGroup<Instruction> & Group)639 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
640 const InterleaveGroup<Instruction> &Group) {
641 // All 1's means mask is not needed.
642 if (Group.getNumMembers() == Group.getFactor())
643 return nullptr;
644
645 // TODO: support reversed access.
646 assert(!Group.isReverse() && "Reversed group not supported.");
647
648 SmallVector<Constant *, 16> Mask;
649 for (unsigned i = 0; i < VF; i++)
650 for (unsigned j = 0; j < Group.getFactor(); ++j) {
651 unsigned HasMember = Group.getMember(j) ? 1 : 0;
652 Mask.push_back(Builder.getInt1(HasMember));
653 }
654
655 return ConstantVector::get(Mask);
656 }
657
createReplicatedMask(IRBuilder<> & Builder,unsigned ReplicationFactor,unsigned VF)658 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
659 unsigned ReplicationFactor, unsigned VF) {
660 SmallVector<Constant *, 16> MaskVec;
661 for (unsigned i = 0; i < VF; i++)
662 for (unsigned j = 0; j < ReplicationFactor; j++)
663 MaskVec.push_back(Builder.getInt32(i));
664
665 return ConstantVector::get(MaskVec);
666 }
667
createInterleaveMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVecs)668 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
669 unsigned NumVecs) {
670 SmallVector<Constant *, 16> Mask;
671 for (unsigned i = 0; i < VF; i++)
672 for (unsigned j = 0; j < NumVecs; j++)
673 Mask.push_back(Builder.getInt32(j * VF + i));
674
675 return ConstantVector::get(Mask);
676 }
677
createStrideMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)678 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
679 unsigned Stride, unsigned VF) {
680 SmallVector<Constant *, 16> Mask;
681 for (unsigned i = 0; i < VF; i++)
682 Mask.push_back(Builder.getInt32(Start + i * Stride));
683
684 return ConstantVector::get(Mask);
685 }
686
createSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumInts,unsigned NumUndefs)687 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
688 unsigned NumInts, unsigned NumUndefs) {
689 SmallVector<Constant *, 16> Mask;
690 for (unsigned i = 0; i < NumInts; i++)
691 Mask.push_back(Builder.getInt32(Start + i));
692
693 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
694 for (unsigned i = 0; i < NumUndefs; i++)
695 Mask.push_back(Undef);
696
697 return ConstantVector::get(Mask);
698 }
699
700 /// A helper function for concatenating vectors. This function concatenates two
701 /// vectors having the same element type. If the second vector has fewer
702 /// elements than the first, it is padded with undefs.
concatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)703 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
704 Value *V2) {
705 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
706 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
707 assert(VecTy1 && VecTy2 &&
708 VecTy1->getScalarType() == VecTy2->getScalarType() &&
709 "Expect two vectors with the same element type");
710
711 unsigned NumElts1 = VecTy1->getNumElements();
712 unsigned NumElts2 = VecTy2->getNumElements();
713 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
714
715 if (NumElts1 > NumElts2) {
716 // Extend with UNDEFs.
717 Constant *ExtMask =
718 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
719 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
720 }
721
722 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
723 return Builder.CreateShuffleVector(V1, V2, Mask);
724 }
725
concatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > Vecs)726 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
727 unsigned NumVecs = Vecs.size();
728 assert(NumVecs > 1 && "Should be at least two vectors");
729
730 SmallVector<Value *, 8> ResList;
731 ResList.append(Vecs.begin(), Vecs.end());
732 do {
733 SmallVector<Value *, 8> TmpList;
734 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
735 Value *V0 = ResList[i], *V1 = ResList[i + 1];
736 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
737 "Only the last vector may have a different type");
738
739 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
740 }
741
742 // Push the last vector if the total number of vectors is odd.
743 if (NumVecs % 2 != 0)
744 TmpList.push_back(ResList[NumVecs - 1]);
745
746 ResList = TmpList;
747 NumVecs = ResList.size();
748 } while (NumVecs > 1);
749
750 return ResList[0];
751 }
752
maskIsAllZeroOrUndef(Value * Mask)753 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
754 auto *ConstMask = dyn_cast<Constant>(Mask);
755 if (!ConstMask)
756 return false;
757 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
758 return true;
759 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
760 ++I) {
761 if (auto *MaskElt = ConstMask->getAggregateElement(I))
762 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
763 continue;
764 return false;
765 }
766 return true;
767 }
768
769
maskIsAllOneOrUndef(Value * Mask)770 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
771 auto *ConstMask = dyn_cast<Constant>(Mask);
772 if (!ConstMask)
773 return false;
774 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
775 return true;
776 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
777 ++I) {
778 if (auto *MaskElt = ConstMask->getAggregateElement(I))
779 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
780 continue;
781 return false;
782 }
783 return true;
784 }
785
786 /// TODO: This is a lot like known bits, but for
787 /// vectors. Is there something we can common this with?
possiblyDemandedEltsInMask(Value * Mask)788 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
789
790 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
791 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
792 if (auto *CV = dyn_cast<ConstantVector>(Mask))
793 for (unsigned i = 0; i < VWidth; i++)
794 if (CV->getAggregateElement(i)->isNullValue())
795 DemandedElts.clearBit(i);
796 return DemandedElts;
797 }
798
isStrided(int Stride)799 bool InterleavedAccessInfo::isStrided(int Stride) {
800 unsigned Factor = std::abs(Stride);
801 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
802 }
803
collectConstStrideAccesses(MapVector<Instruction *,StrideDescriptor> & AccessStrideInfo,const ValueToValueMap & Strides)804 void InterleavedAccessInfo::collectConstStrideAccesses(
805 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
806 const ValueToValueMap &Strides) {
807 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
808
809 // Since it's desired that the load/store instructions be maintained in
810 // "program order" for the interleaved access analysis, we have to visit the
811 // blocks in the loop in reverse postorder (i.e., in a topological order).
812 // Such an ordering will ensure that any load/store that may be executed
813 // before a second load/store will precede the second load/store in
814 // AccessStrideInfo.
815 LoopBlocksDFS DFS(TheLoop);
816 DFS.perform(LI);
817 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
818 for (auto &I : *BB) {
819 auto *LI = dyn_cast<LoadInst>(&I);
820 auto *SI = dyn_cast<StoreInst>(&I);
821 if (!LI && !SI)
822 continue;
823
824 Value *Ptr = getLoadStorePointerOperand(&I);
825 // We don't check wrapping here because we don't know yet if Ptr will be
826 // part of a full group or a group with gaps. Checking wrapping for all
827 // pointers (even those that end up in groups with no gaps) will be overly
828 // conservative. For full groups, wrapping should be ok since if we would
829 // wrap around the address space we would do a memory access at nullptr
830 // even without the transformation. The wrapping checks are therefore
831 // deferred until after we've formed the interleaved groups.
832 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
833 /*Assume=*/true, /*ShouldCheckWrap=*/false);
834
835 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
836 PointerType *PtrTy = cast<PointerType>(Ptr->getType());
837 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
838
839 // An alignment of 0 means target ABI alignment.
840 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
841 if (!Alignment)
842 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
843
844 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
845 }
846 }
847
848 // Analyze interleaved accesses and collect them into interleaved load and
849 // store groups.
850 //
851 // When generating code for an interleaved load group, we effectively hoist all
852 // loads in the group to the location of the first load in program order. When
853 // generating code for an interleaved store group, we sink all stores to the
854 // location of the last store. This code motion can change the order of load
855 // and store instructions and may break dependences.
856 //
857 // The code generation strategy mentioned above ensures that we won't violate
858 // any write-after-read (WAR) dependences.
859 //
860 // E.g., for the WAR dependence: a = A[i]; // (1)
861 // A[i] = b; // (2)
862 //
863 // The store group of (2) is always inserted at or below (2), and the load
864 // group of (1) is always inserted at or above (1). Thus, the instructions will
865 // never be reordered. All other dependences are checked to ensure the
866 // correctness of the instruction reordering.
867 //
868 // The algorithm visits all memory accesses in the loop in bottom-up program
869 // order. Program order is established by traversing the blocks in the loop in
870 // reverse postorder when collecting the accesses.
871 //
872 // We visit the memory accesses in bottom-up order because it can simplify the
873 // construction of store groups in the presence of write-after-write (WAW)
874 // dependences.
875 //
876 // E.g., for the WAW dependence: A[i] = a; // (1)
877 // A[i] = b; // (2)
878 // A[i + 1] = c; // (3)
879 //
880 // We will first create a store group with (3) and (2). (1) can't be added to
881 // this group because it and (2) are dependent. However, (1) can be grouped
882 // with other accesses that may precede it in program order. Note that a
883 // bottom-up order does not imply that WAW dependences should not be checked.
analyzeInterleaving(bool EnablePredicatedInterleavedMemAccesses)884 void InterleavedAccessInfo::analyzeInterleaving(
885 bool EnablePredicatedInterleavedMemAccesses) {
886 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
887 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
888
889 // Holds all accesses with a constant stride.
890 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
891 collectConstStrideAccesses(AccessStrideInfo, Strides);
892
893 if (AccessStrideInfo.empty())
894 return;
895
896 // Collect the dependences in the loop.
897 collectDependences();
898
899 // Holds all interleaved store groups temporarily.
900 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
901 // Holds all interleaved load groups temporarily.
902 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
903
904 // Search in bottom-up program order for pairs of accesses (A and B) that can
905 // form interleaved load or store groups. In the algorithm below, access A
906 // precedes access B in program order. We initialize a group for B in the
907 // outer loop of the algorithm, and then in the inner loop, we attempt to
908 // insert each A into B's group if:
909 //
910 // 1. A and B have the same stride,
911 // 2. A and B have the same memory object size, and
912 // 3. A belongs in B's group according to its distance from B.
913 //
914 // Special care is taken to ensure group formation will not break any
915 // dependences.
916 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
917 BI != E; ++BI) {
918 Instruction *B = BI->first;
919 StrideDescriptor DesB = BI->second;
920
921 // Initialize a group for B if it has an allowable stride. Even if we don't
922 // create a group for B, we continue with the bottom-up algorithm to ensure
923 // we don't break any of B's dependences.
924 InterleaveGroup<Instruction> *Group = nullptr;
925 if (isStrided(DesB.Stride) &&
926 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
927 Group = getInterleaveGroup(B);
928 if (!Group) {
929 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
930 << '\n');
931 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
932 }
933 if (B->mayWriteToMemory())
934 StoreGroups.insert(Group);
935 else
936 LoadGroups.insert(Group);
937 }
938
939 for (auto AI = std::next(BI); AI != E; ++AI) {
940 Instruction *A = AI->first;
941 StrideDescriptor DesA = AI->second;
942
943 // Our code motion strategy implies that we can't have dependences
944 // between accesses in an interleaved group and other accesses located
945 // between the first and last member of the group. Note that this also
946 // means that a group can't have more than one member at a given offset.
947 // The accesses in a group can have dependences with other accesses, but
948 // we must ensure we don't extend the boundaries of the group such that
949 // we encompass those dependent accesses.
950 //
951 // For example, assume we have the sequence of accesses shown below in a
952 // stride-2 loop:
953 //
954 // (1, 2) is a group | A[i] = a; // (1)
955 // | A[i-1] = b; // (2) |
956 // A[i-3] = c; // (3)
957 // A[i] = d; // (4) | (2, 4) is not a group
958 //
959 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
960 // but not with (4). If we did, the dependent access (3) would be within
961 // the boundaries of the (2, 4) group.
962 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
963 // If a dependence exists and A is already in a group, we know that A
964 // must be a store since A precedes B and WAR dependences are allowed.
965 // Thus, A would be sunk below B. We release A's group to prevent this
966 // illegal code motion. A will then be free to form another group with
967 // instructions that precede it.
968 if (isInterleaved(A)) {
969 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
970
971 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
972 "dependence between " << *A << " and "<< *B << '\n');
973
974 StoreGroups.remove(StoreGroup);
975 releaseGroup(StoreGroup);
976 }
977
978 // If a dependence exists and A is not already in a group (or it was
979 // and we just released it), B might be hoisted above A (if B is a
980 // load) or another store might be sunk below A (if B is a store). In
981 // either case, we can't add additional instructions to B's group. B
982 // will only form a group with instructions that it precedes.
983 break;
984 }
985
986 // At this point, we've checked for illegal code motion. If either A or B
987 // isn't strided, there's nothing left to do.
988 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
989 continue;
990
991 // Ignore A if it's already in a group or isn't the same kind of memory
992 // operation as B.
993 // Note that mayReadFromMemory() isn't mutually exclusive to
994 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
995 // here, canVectorizeMemory() should have returned false - except for the
996 // case we asked for optimization remarks.
997 if (isInterleaved(A) ||
998 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
999 (A->mayWriteToMemory() != B->mayWriteToMemory()))
1000 continue;
1001
1002 // Check rules 1 and 2. Ignore A if its stride or size is different from
1003 // that of B.
1004 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1005 continue;
1006
1007 // Ignore A if the memory object of A and B don't belong to the same
1008 // address space
1009 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1010 continue;
1011
1012 // Calculate the distance from A to B.
1013 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1014 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1015 if (!DistToB)
1016 continue;
1017 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1018
1019 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1020 // size.
1021 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1022 continue;
1023
1024 // All members of a predicated interleave-group must have the same predicate,
1025 // and currently must reside in the same BB.
1026 BasicBlock *BlockA = A->getParent();
1027 BasicBlock *BlockB = B->getParent();
1028 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1029 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1030 continue;
1031
1032 // The index of A is the index of B plus A's distance to B in multiples
1033 // of the size.
1034 int IndexA =
1035 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1036
1037 // Try to insert A into B's group.
1038 if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1039 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1040 << " into the interleave group with" << *B
1041 << '\n');
1042 InterleaveGroupMap[A] = Group;
1043
1044 // Set the first load in program order as the insert position.
1045 if (A->mayReadFromMemory())
1046 Group->setInsertPos(A);
1047 }
1048 } // Iteration over A accesses.
1049 } // Iteration over B accesses.
1050
1051 // Remove interleaved store groups with gaps.
1052 for (auto *Group : StoreGroups)
1053 if (Group->getNumMembers() != Group->getFactor()) {
1054 LLVM_DEBUG(
1055 dbgs() << "LV: Invalidate candidate interleaved store group due "
1056 "to gaps.\n");
1057 releaseGroup(Group);
1058 }
1059 // Remove interleaved groups with gaps (currently only loads) whose memory
1060 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1061 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1062 // not check wrapping (see documentation there).
1063 // FORNOW we use Assume=false;
1064 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1065 // of runtime SCEV assumptions checks (thereby potentially failing to
1066 // vectorize altogether).
1067 // Additional optional optimizations:
1068 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1069 // wrap then we can deduce that all pointers in the group don't wrap.
1070 // This means that we can forcefully peel the loop in order to only have to
1071 // check the first pointer for no-wrap. When we'll change to use Assume=true
1072 // we'll only need at most one runtime check per interleaved group.
1073 for (auto *Group : LoadGroups) {
1074 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1075 // load would wrap around the address space we would do a memory access at
1076 // nullptr even without the transformation.
1077 if (Group->getNumMembers() == Group->getFactor())
1078 continue;
1079
1080 // Case 2: If first and last members of the group don't wrap this implies
1081 // that all the pointers in the group don't wrap.
1082 // So we check only group member 0 (which is always guaranteed to exist),
1083 // and group member Factor - 1; If the latter doesn't exist we rely on
1084 // peeling (if it is a non-reversed accsess -- see Case 3).
1085 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1086 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1087 /*ShouldCheckWrap=*/true)) {
1088 LLVM_DEBUG(
1089 dbgs() << "LV: Invalidate candidate interleaved group due to "
1090 "first group member potentially pointer-wrapping.\n");
1091 releaseGroup(Group);
1092 continue;
1093 }
1094 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1095 if (LastMember) {
1096 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1097 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1098 /*ShouldCheckWrap=*/true)) {
1099 LLVM_DEBUG(
1100 dbgs() << "LV: Invalidate candidate interleaved group due to "
1101 "last group member potentially pointer-wrapping.\n");
1102 releaseGroup(Group);
1103 }
1104 } else {
1105 // Case 3: A non-reversed interleaved load group with gaps: We need
1106 // to execute at least one scalar epilogue iteration. This will ensure
1107 // we don't speculatively access memory out-of-bounds. We only need
1108 // to look for a member at index factor - 1, since every group must have
1109 // a member at index zero.
1110 if (Group->isReverse()) {
1111 LLVM_DEBUG(
1112 dbgs() << "LV: Invalidate candidate interleaved group due to "
1113 "a reverse access with gaps.\n");
1114 releaseGroup(Group);
1115 continue;
1116 }
1117 LLVM_DEBUG(
1118 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1119 RequiresScalarEpilogue = true;
1120 }
1121 }
1122 }
1123
invalidateGroupsRequiringScalarEpilogue()1124 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1125 // If no group had triggered the requirement to create an epilogue loop,
1126 // there is nothing to do.
1127 if (!requiresScalarEpilogue())
1128 return;
1129
1130 // Avoid releasing a Group twice.
1131 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1132 for (auto &I : InterleaveGroupMap) {
1133 InterleaveGroup<Instruction> *Group = I.second;
1134 if (Group->requiresScalarEpilogue())
1135 DelSet.insert(Group);
1136 }
1137 for (auto *Ptr : DelSet) {
1138 LLVM_DEBUG(
1139 dbgs()
1140 << "LV: Invalidate candidate interleaved group due to gaps that "
1141 "require a scalar epilogue (not allowed under optsize) and cannot "
1142 "be masked (not enabled). \n");
1143 releaseGroup(Ptr);
1144 }
1145
1146 RequiresScalarEpilogue = false;
1147 }
1148
1149 template <typename InstT>
addMetadata(InstT * NewInst) const1150 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1151 llvm_unreachable("addMetadata can only be used for Instruction");
1152 }
1153
1154 namespace llvm {
1155 template <>
addMetadata(Instruction * NewInst) const1156 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1157 SmallVector<Value *, 4> VL;
1158 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1159 [](std::pair<int, Instruction *> p) { return p.second; });
1160 propagateMetadata(NewInst, VL);
1161 }
1162 }
1163
getVectorVariantNames(const CallInst & CI,SmallVectorImpl<std::string> & VariantMappings)1164 void VFABI::getVectorVariantNames(
1165 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1166 const StringRef S =
1167 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1168 .getValueAsString();
1169 if (S.empty())
1170 return;
1171
1172 SmallVector<StringRef, 8> ListAttr;
1173 S.split(ListAttr, ",");
1174
1175 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1176 #ifndef NDEBUG
1177 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S);
1178 assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1179 assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1180 "Vector function is missing.");
1181 #endif
1182 VariantMappings.push_back(S);
1183 }
1184 }
1185
hasValidParameterList() const1186 bool VFShape::hasValidParameterList() const {
1187 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1188 ++Pos) {
1189 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1190
1191 switch (Parameters[Pos].ParamKind) {
1192 default: // Nothing to check.
1193 break;
1194 case VFParamKind::OMP_Linear:
1195 case VFParamKind::OMP_LinearRef:
1196 case VFParamKind::OMP_LinearVal:
1197 case VFParamKind::OMP_LinearUVal:
1198 // Compile time linear steps must be non-zero.
1199 if (Parameters[Pos].LinearStepOrPos == 0)
1200 return false;
1201 break;
1202 case VFParamKind::OMP_LinearPos:
1203 case VFParamKind::OMP_LinearRefPos:
1204 case VFParamKind::OMP_LinearValPos:
1205 case VFParamKind::OMP_LinearUValPos:
1206 // The runtime linear step must be referring to some other
1207 // parameters in the signature.
1208 if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1209 return false;
1210 // The linear step parameter must be marked as uniform.
1211 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1212 VFParamKind::OMP_Uniform)
1213 return false;
1214 // The linear step parameter can't point at itself.
1215 if (Parameters[Pos].LinearStepOrPos == int(Pos))
1216 return false;
1217 break;
1218 case VFParamKind::GlobalPredicate:
1219 // The global predicate must be the unique. Can be placed anywhere in the
1220 // signature.
1221 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1222 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1223 return false;
1224 break;
1225 }
1226 }
1227 return true;
1228 }
1229