1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_ddi.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_fifo_underrun.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdmi.h"
58 #include "intel_hotplug.h"
59 #include "intel_lspcon.h"
60 #include "intel_lvds.h"
61 #include "intel_panel.h"
62 #include "intel_psr.h"
63 #include "intel_sideband.h"
64 #include "intel_tc.h"
65 #include "intel_vdsc.h"
66
67 #define DP_DPRX_ESI_LEN 14
68
69 /* DP DSC throughput values used for slice count calculations KPixels/s */
70 #define DP_DSC_PEAK_PIXEL_RATE 2720000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
73
74 /* DP DSC FEC Overhead factor = 1/(0.972261) */
75 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
76
77 /* Compliance test status bits */
78 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
79 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82
83 struct dp_link_dpll {
84 int clock;
85 struct dpll dpll;
86 };
87
88 static const struct dp_link_dpll g4x_dpll[] = {
89 { 162000,
90 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91 { 270000,
92 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
93 };
94
95 static const struct dp_link_dpll pch_dpll[] = {
96 { 162000,
97 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98 { 270000,
99 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
100 };
101
102 static const struct dp_link_dpll vlv_dpll[] = {
103 { 162000,
104 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105 { 270000,
106 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
107 };
108
109 /*
110 * CHV supports eDP 1.4 that have more link rates.
111 * Below only provides the fixed rate but exclude variable rate.
112 */
113 static const struct dp_link_dpll chv_dpll[] = {
114 /*
115 * CHV requires to program fractional division for m2.
116 * m2 is stored in fixed point format using formula below
117 * (m2_int << 22) | m2_fraction
118 */
119 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
120 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121 { 270000, /* m2_int = 27, m2_fraction = 0 */
122 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
123 };
124
125 /* Constants for DP DSC configurations */
126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
127
128 /* With Single pipe configuration, HW is capable of supporting maximum
129 * of 4 slices per line.
130 */
131 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
132
133 /**
134 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135 * @intel_dp: DP struct
136 *
137 * If a CPU or PCH DP output is attached to an eDP panel, this function
138 * will return true, and false otherwise.
139 */
intel_dp_is_edp(struct intel_dp * intel_dp)140 bool intel_dp_is_edp(struct intel_dp *intel_dp)
141 {
142 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
143
144 return dig_port->base.type == INTEL_OUTPUT_EDP;
145 }
146
147 static void intel_dp_link_down(struct intel_encoder *encoder,
148 const struct intel_crtc_state *old_crtc_state);
149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
152 const struct intel_crtc_state *crtc_state);
153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
154 enum pipe pipe);
155 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
156
intel_dp_set_default_sink_rates(struct intel_dp * intel_dp)157 static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp)
158 {
159 intel_dp->sink_rates[0] = 162000;
160 intel_dp->num_sink_rates = 1;
161 }
162
163 /* update sink rates from dpcd */
intel_dp_set_sink_rates(struct intel_dp * intel_dp)164 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
165 {
166 static const int dp_rates[] = {
167 162000, 270000, 540000, 810000
168 };
169 int i, max_rate;
170
171 if (drm_dp_has_quirk(&intel_dp->desc, 0,
172 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
173 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
174 static const int quirk_rates[] = { 162000, 270000, 324000 };
175
176 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
177 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
178
179 return;
180 }
181
182 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
183
184 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
185 if (dp_rates[i] > max_rate)
186 break;
187 intel_dp->sink_rates[i] = dp_rates[i];
188 }
189
190 intel_dp->num_sink_rates = i;
191 }
192
193 /* Get length of rates array potentially limited by max_rate. */
intel_dp_rate_limit_len(const int * rates,int len,int max_rate)194 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
195 {
196 int i;
197
198 /* Limit results by potentially reduced max rate */
199 for (i = 0; i < len; i++) {
200 if (rates[len - i - 1] <= max_rate)
201 return len - i;
202 }
203
204 return 0;
205 }
206
207 /* Get length of common rates array potentially limited by max_rate. */
intel_dp_common_len_rate_limit(const struct intel_dp * intel_dp,int max_rate)208 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
209 int max_rate)
210 {
211 return intel_dp_rate_limit_len(intel_dp->common_rates,
212 intel_dp->num_common_rates, max_rate);
213 }
214
215 /* Theoretical max between source and sink */
intel_dp_max_common_rate(struct intel_dp * intel_dp)216 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
217 {
218 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
219 }
220
221 /* Theoretical max between source and sink */
intel_dp_max_common_lane_count(struct intel_dp * intel_dp)222 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
223 {
224 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
225 int source_max = dig_port->max_lanes;
226 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
227 int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
228
229 return min3(source_max, sink_max, fia_max);
230 }
231
intel_dp_max_lane_count(struct intel_dp * intel_dp)232 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
233 {
234 return intel_dp->max_link_lane_count;
235 }
236
237 int
intel_dp_link_required(int pixel_clock,int bpp)238 intel_dp_link_required(int pixel_clock, int bpp)
239 {
240 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
241 return DIV_ROUND_UP(pixel_clock * bpp, 8);
242 }
243
244 int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)245 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
246 {
247 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
248 * link rate that is generally expressed in Gbps. Since, 8 bits of data
249 * is transmitted every LS_Clk per lane, there is no need to account for
250 * the channel encoding that is done in the PHY layer here.
251 */
252
253 return max_link_clock * max_lanes;
254 }
255
cnl_max_source_rate(struct intel_dp * intel_dp)256 static int cnl_max_source_rate(struct intel_dp *intel_dp)
257 {
258 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
259 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
260 enum port port = dig_port->base.port;
261
262 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
263
264 /* Low voltage SKUs are limited to max of 5.4G */
265 if (voltage == VOLTAGE_INFO_0_85V)
266 return 540000;
267
268 /* For this SKU 8.1G is supported in all ports */
269 if (IS_CNL_WITH_PORT_F(dev_priv))
270 return 810000;
271
272 /* For other SKUs, max rate on ports A and D is 5.4G */
273 if (port == PORT_A || port == PORT_D)
274 return 540000;
275
276 return 810000;
277 }
278
icl_max_source_rate(struct intel_dp * intel_dp)279 static int icl_max_source_rate(struct intel_dp *intel_dp)
280 {
281 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
282 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
283 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
284
285 if (intel_phy_is_combo(dev_priv, phy) &&
286 !IS_ELKHARTLAKE(dev_priv) &&
287 !intel_dp_is_edp(intel_dp))
288 return 540000;
289
290 return 810000;
291 }
292
293 static void
intel_dp_set_source_rates(struct intel_dp * intel_dp)294 intel_dp_set_source_rates(struct intel_dp *intel_dp)
295 {
296 /* The values must be in increasing order */
297 static const int cnl_rates[] = {
298 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
299 };
300 static const int bxt_rates[] = {
301 162000, 216000, 243000, 270000, 324000, 432000, 540000
302 };
303 static const int skl_rates[] = {
304 162000, 216000, 270000, 324000, 432000, 540000
305 };
306 static const int hsw_rates[] = {
307 162000, 270000, 540000
308 };
309 static const int g4x_rates[] = {
310 162000, 270000
311 };
312 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &dig_port->base;
314 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
315 const int *source_rates;
316 int size, max_rate = 0, vbt_max_rate;
317
318 /* This should only be done once */
319 drm_WARN_ON(&dev_priv->drm,
320 intel_dp->source_rates || intel_dp->num_source_rates);
321
322 if (INTEL_GEN(dev_priv) >= 10) {
323 source_rates = cnl_rates;
324 size = ARRAY_SIZE(cnl_rates);
325 if (IS_GEN(dev_priv, 10))
326 max_rate = cnl_max_source_rate(intel_dp);
327 else
328 max_rate = icl_max_source_rate(intel_dp);
329 } else if (IS_GEN9_LP(dev_priv)) {
330 source_rates = bxt_rates;
331 size = ARRAY_SIZE(bxt_rates);
332 } else if (IS_GEN9_BC(dev_priv)) {
333 source_rates = skl_rates;
334 size = ARRAY_SIZE(skl_rates);
335 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
336 IS_BROADWELL(dev_priv)) {
337 source_rates = hsw_rates;
338 size = ARRAY_SIZE(hsw_rates);
339 } else {
340 source_rates = g4x_rates;
341 size = ARRAY_SIZE(g4x_rates);
342 }
343
344 vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
345 if (max_rate && vbt_max_rate)
346 max_rate = min(max_rate, vbt_max_rate);
347 else if (vbt_max_rate)
348 max_rate = vbt_max_rate;
349
350 if (max_rate)
351 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
352
353 intel_dp->source_rates = source_rates;
354 intel_dp->num_source_rates = size;
355 }
356
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)357 static int intersect_rates(const int *source_rates, int source_len,
358 const int *sink_rates, int sink_len,
359 int *common_rates)
360 {
361 int i = 0, j = 0, k = 0;
362
363 while (i < source_len && j < sink_len) {
364 if (source_rates[i] == sink_rates[j]) {
365 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
366 return k;
367 common_rates[k] = source_rates[i];
368 ++k;
369 ++i;
370 ++j;
371 } else if (source_rates[i] < sink_rates[j]) {
372 ++i;
373 } else {
374 ++j;
375 }
376 }
377 return k;
378 }
379
380 /* return index of rate in rates array, or -1 if not found */
intel_dp_rate_index(const int * rates,int len,int rate)381 static int intel_dp_rate_index(const int *rates, int len, int rate)
382 {
383 int i;
384
385 for (i = 0; i < len; i++)
386 if (rate == rates[i])
387 return i;
388
389 return -1;
390 }
391
intel_dp_set_common_rates(struct intel_dp * intel_dp)392 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
393 {
394 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
395
396 drm_WARN_ON(&i915->drm,
397 !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
398
399 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
400 intel_dp->num_source_rates,
401 intel_dp->sink_rates,
402 intel_dp->num_sink_rates,
403 intel_dp->common_rates);
404
405 /* Paranoia, there should always be something in common. */
406 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
407 intel_dp->common_rates[0] = 162000;
408 intel_dp->num_common_rates = 1;
409 }
410 }
411
intel_dp_link_params_valid(struct intel_dp * intel_dp,int link_rate,u8 lane_count)412 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
413 u8 lane_count)
414 {
415 /*
416 * FIXME: we need to synchronize the current link parameters with
417 * hardware readout. Currently fast link training doesn't work on
418 * boot-up.
419 */
420 if (link_rate == 0 ||
421 link_rate > intel_dp->max_link_rate)
422 return false;
423
424 if (lane_count == 0 ||
425 lane_count > intel_dp_max_lane_count(intel_dp))
426 return false;
427
428 return true;
429 }
430
intel_dp_can_link_train_fallback_for_edp(struct intel_dp * intel_dp,int link_rate,u8 lane_count)431 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
432 int link_rate,
433 u8 lane_count)
434 {
435 const struct drm_display_mode *fixed_mode =
436 intel_dp->attached_connector->panel.fixed_mode;
437 int mode_rate, max_rate;
438
439 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
440 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
441 if (mode_rate > max_rate)
442 return false;
443
444 return true;
445 }
446
intel_dp_get_link_train_fallback_values(struct intel_dp * intel_dp,int link_rate,u8 lane_count)447 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
448 int link_rate, u8 lane_count)
449 {
450 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
451 int index;
452
453 /*
454 * TODO: Enable fallback on MST links once MST link compute can handle
455 * the fallback params.
456 */
457 if (intel_dp->is_mst) {
458 drm_err(&i915->drm, "Link Training Unsuccessful\n");
459 return -1;
460 }
461
462 index = intel_dp_rate_index(intel_dp->common_rates,
463 intel_dp->num_common_rates,
464 link_rate);
465 if (index > 0) {
466 if (intel_dp_is_edp(intel_dp) &&
467 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
468 intel_dp->common_rates[index - 1],
469 lane_count)) {
470 drm_dbg_kms(&i915->drm,
471 "Retrying Link training for eDP with same parameters\n");
472 return 0;
473 }
474 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
475 intel_dp->max_link_lane_count = lane_count;
476 } else if (lane_count > 1) {
477 if (intel_dp_is_edp(intel_dp) &&
478 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
479 intel_dp_max_common_rate(intel_dp),
480 lane_count >> 1)) {
481 drm_dbg_kms(&i915->drm,
482 "Retrying Link training for eDP with same parameters\n");
483 return 0;
484 }
485 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
486 intel_dp->max_link_lane_count = lane_count >> 1;
487 } else {
488 drm_err(&i915->drm, "Link Training Unsuccessful\n");
489 return -1;
490 }
491
492 return 0;
493 }
494
intel_dp_mode_to_fec_clock(u32 mode_clock)495 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
496 {
497 return div_u64(mul_u32_u32(mode_clock, 1000000U),
498 DP_DSC_FEC_OVERHEAD_FACTOR);
499 }
500
501 static int
small_joiner_ram_size_bits(struct drm_i915_private * i915)502 small_joiner_ram_size_bits(struct drm_i915_private *i915)
503 {
504 if (INTEL_GEN(i915) >= 11)
505 return 7680 * 8;
506 else
507 return 6144 * 8;
508 }
509
intel_dp_dsc_get_output_bpp(struct drm_i915_private * i915,u32 link_clock,u32 lane_count,u32 mode_clock,u32 mode_hdisplay)510 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
511 u32 link_clock, u32 lane_count,
512 u32 mode_clock, u32 mode_hdisplay)
513 {
514 u32 bits_per_pixel, max_bpp_small_joiner_ram;
515 int i;
516
517 /*
518 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
519 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
520 * for SST -> TimeSlotsPerMTP is 1,
521 * for MST -> TimeSlotsPerMTP has to be calculated
522 */
523 bits_per_pixel = (link_clock * lane_count * 8) /
524 intel_dp_mode_to_fec_clock(mode_clock);
525 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
526
527 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
528 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
529 mode_hdisplay;
530 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
531 max_bpp_small_joiner_ram);
532
533 /*
534 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
535 * check, output bpp from small joiner RAM check)
536 */
537 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
538
539 /* Error out if the max bpp is less than smallest allowed valid bpp */
540 if (bits_per_pixel < valid_dsc_bpp[0]) {
541 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
542 bits_per_pixel, valid_dsc_bpp[0]);
543 return 0;
544 }
545
546 /* Find the nearest match in the array of known BPPs from VESA */
547 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
548 if (bits_per_pixel < valid_dsc_bpp[i + 1])
549 break;
550 }
551 bits_per_pixel = valid_dsc_bpp[i];
552
553 /*
554 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
555 * fractional part is 0
556 */
557 return bits_per_pixel << 4;
558 }
559
intel_dp_dsc_get_slice_count(struct intel_dp * intel_dp,int mode_clock,int mode_hdisplay)560 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
561 int mode_clock, int mode_hdisplay)
562 {
563 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
564 u8 min_slice_count, i;
565 int max_slice_width;
566
567 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
568 min_slice_count = DIV_ROUND_UP(mode_clock,
569 DP_DSC_MAX_ENC_THROUGHPUT_0);
570 else
571 min_slice_count = DIV_ROUND_UP(mode_clock,
572 DP_DSC_MAX_ENC_THROUGHPUT_1);
573
574 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
575 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
576 drm_dbg_kms(&i915->drm,
577 "Unsupported slice width %d by DP DSC Sink device\n",
578 max_slice_width);
579 return 0;
580 }
581 /* Also take into account max slice width */
582 min_slice_count = max_t(u8, min_slice_count,
583 DIV_ROUND_UP(mode_hdisplay,
584 max_slice_width));
585
586 /* Find the closest match to the valid slice count values */
587 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
588 if (valid_dsc_slicecount[i] >
589 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
590 false))
591 break;
592 if (min_slice_count <= valid_dsc_slicecount[i])
593 return valid_dsc_slicecount[i];
594 }
595
596 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
597 min_slice_count);
598 return 0;
599 }
600
intel_dp_hdisplay_bad(struct drm_i915_private * dev_priv,int hdisplay)601 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
602 int hdisplay)
603 {
604 /*
605 * Older platforms don't like hdisplay==4096 with DP.
606 *
607 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
608 * and frame counter increment), but we don't get vblank interrupts,
609 * and the pipe underruns immediately. The link also doesn't seem
610 * to get trained properly.
611 *
612 * On CHV the vblank interrupts don't seem to disappear but
613 * otherwise the symptoms are similar.
614 *
615 * TODO: confirm the behaviour on HSW+
616 */
617 return hdisplay == 4096 && !HAS_DDI(dev_priv);
618 }
619
620 static enum drm_mode_status
intel_dp_mode_valid_downstream(struct intel_connector * connector,const struct drm_display_mode * mode,int target_clock)621 intel_dp_mode_valid_downstream(struct intel_connector *connector,
622 const struct drm_display_mode *mode,
623 int target_clock)
624 {
625 struct intel_dp *intel_dp = intel_attached_dp(connector);
626 const struct drm_display_info *info = &connector->base.display_info;
627 int tmds_clock;
628
629 if (intel_dp->dfp.max_dotclock &&
630 target_clock > intel_dp->dfp.max_dotclock)
631 return MODE_CLOCK_HIGH;
632
633 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
634 tmds_clock = target_clock;
635 if (drm_mode_is_420_only(info, mode))
636 tmds_clock /= 2;
637
638 if (intel_dp->dfp.min_tmds_clock &&
639 tmds_clock < intel_dp->dfp.min_tmds_clock)
640 return MODE_CLOCK_LOW;
641 if (intel_dp->dfp.max_tmds_clock &&
642 tmds_clock > intel_dp->dfp.max_tmds_clock)
643 return MODE_CLOCK_HIGH;
644
645 return MODE_OK;
646 }
647
648 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)649 intel_dp_mode_valid(struct drm_connector *connector,
650 struct drm_display_mode *mode)
651 {
652 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
653 struct intel_connector *intel_connector = to_intel_connector(connector);
654 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
655 struct drm_i915_private *dev_priv = to_i915(connector->dev);
656 int target_clock = mode->clock;
657 int max_rate, mode_rate, max_lanes, max_link_clock;
658 int max_dotclk = dev_priv->max_dotclk_freq;
659 u16 dsc_max_output_bpp = 0;
660 u8 dsc_slice_count = 0;
661 enum drm_mode_status status;
662
663 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
664 return MODE_NO_DBLESCAN;
665
666 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
667 if (mode->hdisplay > fixed_mode->hdisplay)
668 return MODE_PANEL;
669
670 if (mode->vdisplay > fixed_mode->vdisplay)
671 return MODE_PANEL;
672
673 target_clock = fixed_mode->clock;
674 }
675
676 max_link_clock = intel_dp_max_link_rate(intel_dp);
677 max_lanes = intel_dp_max_lane_count(intel_dp);
678
679 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
680 mode_rate = intel_dp_link_required(target_clock, 18);
681
682 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
683 return MODE_H_ILLEGAL;
684
685 /*
686 * Output bpp is stored in 6.4 format so right shift by 4 to get the
687 * integer value since we support only integer values of bpp.
688 */
689 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
690 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
691 if (intel_dp_is_edp(intel_dp)) {
692 dsc_max_output_bpp =
693 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
694 dsc_slice_count =
695 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
696 true);
697 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
698 dsc_max_output_bpp =
699 intel_dp_dsc_get_output_bpp(dev_priv,
700 max_link_clock,
701 max_lanes,
702 target_clock,
703 mode->hdisplay) >> 4;
704 dsc_slice_count =
705 intel_dp_dsc_get_slice_count(intel_dp,
706 target_clock,
707 mode->hdisplay);
708 }
709 }
710
711 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
712 target_clock > max_dotclk)
713 return MODE_CLOCK_HIGH;
714
715 if (mode->clock < 10000)
716 return MODE_CLOCK_LOW;
717
718 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
719 return MODE_H_ILLEGAL;
720
721 status = intel_dp_mode_valid_downstream(intel_connector,
722 mode, target_clock);
723 if (status != MODE_OK)
724 return status;
725
726 return intel_mode_valid_max_plane_size(dev_priv, mode);
727 }
728
intel_dp_pack_aux(const u8 * src,int src_bytes)729 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
730 {
731 int i;
732 u32 v = 0;
733
734 if (src_bytes > 4)
735 src_bytes = 4;
736 for (i = 0; i < src_bytes; i++)
737 v |= ((u32)src[i]) << ((3 - i) * 8);
738 return v;
739 }
740
intel_dp_unpack_aux(u32 src,u8 * dst,int dst_bytes)741 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
742 {
743 int i;
744 if (dst_bytes > 4)
745 dst_bytes = 4;
746 for (i = 0; i < dst_bytes; i++)
747 dst[i] = src >> ((3-i) * 8);
748 }
749
750 static void
751 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
752 static void
753 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
754 bool force_disable_vdd);
755 static void
756 intel_dp_pps_init(struct intel_dp *intel_dp);
757
758 static intel_wakeref_t
pps_lock(struct intel_dp * intel_dp)759 pps_lock(struct intel_dp *intel_dp)
760 {
761 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
762 intel_wakeref_t wakeref;
763
764 /*
765 * See intel_power_sequencer_reset() why we need
766 * a power domain reference here.
767 */
768 wakeref = intel_display_power_get(dev_priv,
769 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
770
771 mutex_lock(&dev_priv->pps_mutex);
772
773 return wakeref;
774 }
775
776 static intel_wakeref_t
pps_unlock(struct intel_dp * intel_dp,intel_wakeref_t wakeref)777 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
778 {
779 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
780
781 mutex_unlock(&dev_priv->pps_mutex);
782 intel_display_power_put(dev_priv,
783 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
784 wakeref);
785 return 0;
786 }
787
788 #define with_pps_lock(dp, wf) \
789 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
790
791 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)792 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
793 {
794 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
795 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
796 enum pipe pipe = intel_dp->pps_pipe;
797 bool pll_enabled, release_cl_override = false;
798 enum dpio_phy phy = DPIO_PHY(pipe);
799 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
800 u32 DP;
801
802 if (drm_WARN(&dev_priv->drm,
803 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
804 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
805 pipe_name(pipe), dig_port->base.base.base.id,
806 dig_port->base.base.name))
807 return;
808
809 drm_dbg_kms(&dev_priv->drm,
810 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
811 pipe_name(pipe), dig_port->base.base.base.id,
812 dig_port->base.base.name);
813
814 /* Preserve the BIOS-computed detected bit. This is
815 * supposed to be read-only.
816 */
817 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
818 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
819 DP |= DP_PORT_WIDTH(1);
820 DP |= DP_LINK_TRAIN_PAT_1;
821
822 if (IS_CHERRYVIEW(dev_priv))
823 DP |= DP_PIPE_SEL_CHV(pipe);
824 else
825 DP |= DP_PIPE_SEL(pipe);
826
827 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
828
829 /*
830 * The DPLL for the pipe must be enabled for this to work.
831 * So enable temporarily it if it's not already enabled.
832 */
833 if (!pll_enabled) {
834 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
835 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
836
837 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
838 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
839 drm_err(&dev_priv->drm,
840 "Failed to force on pll for pipe %c!\n",
841 pipe_name(pipe));
842 return;
843 }
844 }
845
846 /*
847 * Similar magic as in intel_dp_enable_port().
848 * We _must_ do this port enable + disable trick
849 * to make this power sequencer lock onto the port.
850 * Otherwise even VDD force bit won't work.
851 */
852 intel_de_write(dev_priv, intel_dp->output_reg, DP);
853 intel_de_posting_read(dev_priv, intel_dp->output_reg);
854
855 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
856 intel_de_posting_read(dev_priv, intel_dp->output_reg);
857
858 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
859 intel_de_posting_read(dev_priv, intel_dp->output_reg);
860
861 if (!pll_enabled) {
862 vlv_force_pll_off(dev_priv, pipe);
863
864 if (release_cl_override)
865 chv_phy_powergate_ch(dev_priv, phy, ch, false);
866 }
867 }
868
vlv_find_free_pps(struct drm_i915_private * dev_priv)869 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
870 {
871 struct intel_encoder *encoder;
872 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
873
874 /*
875 * We don't have power sequencer currently.
876 * Pick one that's not used by other ports.
877 */
878 for_each_intel_dp(&dev_priv->drm, encoder) {
879 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
880
881 if (encoder->type == INTEL_OUTPUT_EDP) {
882 drm_WARN_ON(&dev_priv->drm,
883 intel_dp->active_pipe != INVALID_PIPE &&
884 intel_dp->active_pipe !=
885 intel_dp->pps_pipe);
886
887 if (intel_dp->pps_pipe != INVALID_PIPE)
888 pipes &= ~(1 << intel_dp->pps_pipe);
889 } else {
890 drm_WARN_ON(&dev_priv->drm,
891 intel_dp->pps_pipe != INVALID_PIPE);
892
893 if (intel_dp->active_pipe != INVALID_PIPE)
894 pipes &= ~(1 << intel_dp->active_pipe);
895 }
896 }
897
898 if (pipes == 0)
899 return INVALID_PIPE;
900
901 return ffs(pipes) - 1;
902 }
903
904 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)905 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
906 {
907 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
908 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
909 enum pipe pipe;
910
911 lockdep_assert_held(&dev_priv->pps_mutex);
912
913 /* We should never land here with regular DP ports */
914 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
915
916 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
917 intel_dp->active_pipe != intel_dp->pps_pipe);
918
919 if (intel_dp->pps_pipe != INVALID_PIPE)
920 return intel_dp->pps_pipe;
921
922 pipe = vlv_find_free_pps(dev_priv);
923
924 /*
925 * Didn't find one. This should not happen since there
926 * are two power sequencers and up to two eDP ports.
927 */
928 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
929 pipe = PIPE_A;
930
931 vlv_steal_power_sequencer(dev_priv, pipe);
932 intel_dp->pps_pipe = pipe;
933
934 drm_dbg_kms(&dev_priv->drm,
935 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
936 pipe_name(intel_dp->pps_pipe),
937 dig_port->base.base.base.id,
938 dig_port->base.base.name);
939
940 /* init power sequencer on this pipe and port */
941 intel_dp_init_panel_power_sequencer(intel_dp);
942 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
943
944 /*
945 * Even vdd force doesn't work until we've made
946 * the power sequencer lock in on the port.
947 */
948 vlv_power_sequencer_kick(intel_dp);
949
950 return intel_dp->pps_pipe;
951 }
952
953 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)954 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
955 {
956 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
957 int backlight_controller = dev_priv->vbt.backlight.controller;
958
959 lockdep_assert_held(&dev_priv->pps_mutex);
960
961 /* We should never land here with regular DP ports */
962 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
963
964 if (!intel_dp->pps_reset)
965 return backlight_controller;
966
967 intel_dp->pps_reset = false;
968
969 /*
970 * Only the HW needs to be reprogrammed, the SW state is fixed and
971 * has been setup during connector init.
972 */
973 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
974
975 return backlight_controller;
976 }
977
978 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
979 enum pipe pipe);
980
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)981 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
982 enum pipe pipe)
983 {
984 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
985 }
986
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)987 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
988 enum pipe pipe)
989 {
990 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
991 }
992
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)993 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
994 enum pipe pipe)
995 {
996 return true;
997 }
998
999 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)1000 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
1001 enum port port,
1002 vlv_pipe_check pipe_check)
1003 {
1004 enum pipe pipe;
1005
1006 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1007 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1008 PANEL_PORT_SELECT_MASK;
1009
1010 if (port_sel != PANEL_PORT_SELECT_VLV(port))
1011 continue;
1012
1013 if (!pipe_check(dev_priv, pipe))
1014 continue;
1015
1016 return pipe;
1017 }
1018
1019 return INVALID_PIPE;
1020 }
1021
1022 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)1023 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1024 {
1025 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1026 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1027 enum port port = dig_port->base.port;
1028
1029 lockdep_assert_held(&dev_priv->pps_mutex);
1030
1031 /* try to find a pipe with this port selected */
1032 /* first pick one where the panel is on */
1033 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1034 vlv_pipe_has_pp_on);
1035 /* didn't find one? pick one where vdd is on */
1036 if (intel_dp->pps_pipe == INVALID_PIPE)
1037 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1038 vlv_pipe_has_vdd_on);
1039 /* didn't find one? pick one with just the correct port */
1040 if (intel_dp->pps_pipe == INVALID_PIPE)
1041 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1042 vlv_pipe_any);
1043
1044 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1045 if (intel_dp->pps_pipe == INVALID_PIPE) {
1046 drm_dbg_kms(&dev_priv->drm,
1047 "no initial power sequencer for [ENCODER:%d:%s]\n",
1048 dig_port->base.base.base.id,
1049 dig_port->base.base.name);
1050 return;
1051 }
1052
1053 drm_dbg_kms(&dev_priv->drm,
1054 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1055 dig_port->base.base.base.id,
1056 dig_port->base.base.name,
1057 pipe_name(intel_dp->pps_pipe));
1058
1059 intel_dp_init_panel_power_sequencer(intel_dp);
1060 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1061 }
1062
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)1063 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1064 {
1065 struct intel_encoder *encoder;
1066
1067 if (drm_WARN_ON(&dev_priv->drm,
1068 !(IS_VALLEYVIEW(dev_priv) ||
1069 IS_CHERRYVIEW(dev_priv) ||
1070 IS_GEN9_LP(dev_priv))))
1071 return;
1072
1073 /*
1074 * We can't grab pps_mutex here due to deadlock with power_domain
1075 * mutex when power_domain functions are called while holding pps_mutex.
1076 * That also means that in order to use pps_pipe the code needs to
1077 * hold both a power domain reference and pps_mutex, and the power domain
1078 * reference get/put must be done while _not_ holding pps_mutex.
1079 * pps_{lock,unlock}() do these steps in the correct order, so one
1080 * should use them always.
1081 */
1082
1083 for_each_intel_dp(&dev_priv->drm, encoder) {
1084 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1085
1086 drm_WARN_ON(&dev_priv->drm,
1087 intel_dp->active_pipe != INVALID_PIPE);
1088
1089 if (encoder->type != INTEL_OUTPUT_EDP)
1090 continue;
1091
1092 if (IS_GEN9_LP(dev_priv))
1093 intel_dp->pps_reset = true;
1094 else
1095 intel_dp->pps_pipe = INVALID_PIPE;
1096 }
1097 }
1098
1099 struct pps_registers {
1100 i915_reg_t pp_ctrl;
1101 i915_reg_t pp_stat;
1102 i915_reg_t pp_on;
1103 i915_reg_t pp_off;
1104 i915_reg_t pp_div;
1105 };
1106
intel_pps_get_registers(struct intel_dp * intel_dp,struct pps_registers * regs)1107 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1108 struct pps_registers *regs)
1109 {
1110 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1111 int pps_idx = 0;
1112
1113 memset(regs, 0, sizeof(*regs));
1114
1115 if (IS_GEN9_LP(dev_priv))
1116 pps_idx = bxt_power_sequencer_idx(intel_dp);
1117 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1118 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1119
1120 regs->pp_ctrl = PP_CONTROL(pps_idx);
1121 regs->pp_stat = PP_STATUS(pps_idx);
1122 regs->pp_on = PP_ON_DELAYS(pps_idx);
1123 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1124
1125 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1126 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1127 regs->pp_div = INVALID_MMIO_REG;
1128 else
1129 regs->pp_div = PP_DIVISOR(pps_idx);
1130 }
1131
1132 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)1133 _pp_ctrl_reg(struct intel_dp *intel_dp)
1134 {
1135 struct pps_registers regs;
1136
1137 intel_pps_get_registers(intel_dp, ®s);
1138
1139 return regs.pp_ctrl;
1140 }
1141
1142 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)1143 _pp_stat_reg(struct intel_dp *intel_dp)
1144 {
1145 struct pps_registers regs;
1146
1147 intel_pps_get_registers(intel_dp, ®s);
1148
1149 return regs.pp_stat;
1150 }
1151
1152 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1153 This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)1154 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1155 void *unused)
1156 {
1157 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1158 edp_notifier);
1159 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1160 intel_wakeref_t wakeref;
1161
1162 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1163 return 0;
1164
1165 with_pps_lock(intel_dp, wakeref) {
1166 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1167 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1168 i915_reg_t pp_ctrl_reg, pp_div_reg;
1169 u32 pp_div;
1170
1171 pp_ctrl_reg = PP_CONTROL(pipe);
1172 pp_div_reg = PP_DIVISOR(pipe);
1173 pp_div = intel_de_read(dev_priv, pp_div_reg);
1174 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1175
1176 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1177 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1178 intel_de_write(dev_priv, pp_ctrl_reg,
1179 PANEL_UNLOCK_REGS);
1180 msleep(intel_dp->panel_power_cycle_delay);
1181 }
1182 }
1183
1184 return 0;
1185 }
1186
edp_have_panel_power(struct intel_dp * intel_dp)1187 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1188 {
1189 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1190
1191 lockdep_assert_held(&dev_priv->pps_mutex);
1192
1193 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1194 intel_dp->pps_pipe == INVALID_PIPE)
1195 return false;
1196
1197 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1198 }
1199
edp_have_panel_vdd(struct intel_dp * intel_dp)1200 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1201 {
1202 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1203
1204 lockdep_assert_held(&dev_priv->pps_mutex);
1205
1206 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1207 intel_dp->pps_pipe == INVALID_PIPE)
1208 return false;
1209
1210 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1211 }
1212
1213 static void
intel_dp_check_edp(struct intel_dp * intel_dp)1214 intel_dp_check_edp(struct intel_dp *intel_dp)
1215 {
1216 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1217
1218 if (!intel_dp_is_edp(intel_dp))
1219 return;
1220
1221 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1222 drm_WARN(&dev_priv->drm, 1,
1223 "eDP powered off while attempting aux channel communication.\n");
1224 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1225 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1226 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1227 }
1228 }
1229
1230 static u32
intel_dp_aux_wait_done(struct intel_dp * intel_dp)1231 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1232 {
1233 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1234 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1235 const unsigned int timeout_ms = 10;
1236 u32 status;
1237 bool done;
1238
1239 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1240 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1241 msecs_to_jiffies_timeout(timeout_ms));
1242
1243 /* just trace the final value */
1244 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1245
1246 if (!done)
1247 drm_err(&i915->drm,
1248 "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1249 intel_dp->aux.name, timeout_ms, status);
1250 #undef C
1251
1252 return status;
1253 }
1254
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1255 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1256 {
1257 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1258
1259 if (index)
1260 return 0;
1261
1262 /*
1263 * The clock divider is based off the hrawclk, and would like to run at
1264 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1265 */
1266 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1267 }
1268
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1269 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1270 {
1271 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1272 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1273 u32 freq;
1274
1275 if (index)
1276 return 0;
1277
1278 /*
1279 * The clock divider is based off the cdclk or PCH rawclk, and would
1280 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1281 * divide by 2000 and use that
1282 */
1283 if (dig_port->aux_ch == AUX_CH_A)
1284 freq = dev_priv->cdclk.hw.cdclk;
1285 else
1286 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1287 return DIV_ROUND_CLOSEST(freq, 2000);
1288 }
1289
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1290 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1291 {
1292 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1294
1295 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1296 /* Workaround for non-ULT HSW */
1297 switch (index) {
1298 case 0: return 63;
1299 case 1: return 72;
1300 default: return 0;
1301 }
1302 }
1303
1304 return ilk_get_aux_clock_divider(intel_dp, index);
1305 }
1306
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1307 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1308 {
1309 /*
1310 * SKL doesn't need us to program the AUX clock divider (Hardware will
1311 * derive the clock from CDCLK automatically). We still implement the
1312 * get_aux_clock_divider vfunc to plug-in into the existing code.
1313 */
1314 return index ? 0 : 1;
1315 }
1316
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 aux_clock_divider)1317 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1318 int send_bytes,
1319 u32 aux_clock_divider)
1320 {
1321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1322 struct drm_i915_private *dev_priv =
1323 to_i915(dig_port->base.base.dev);
1324 u32 precharge, timeout;
1325
1326 if (IS_GEN(dev_priv, 6))
1327 precharge = 3;
1328 else
1329 precharge = 5;
1330
1331 if (IS_BROADWELL(dev_priv))
1332 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1333 else
1334 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1335
1336 return DP_AUX_CH_CTL_SEND_BUSY |
1337 DP_AUX_CH_CTL_DONE |
1338 DP_AUX_CH_CTL_INTERRUPT |
1339 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1340 timeout |
1341 DP_AUX_CH_CTL_RECEIVE_ERROR |
1342 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1343 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1344 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1345 }
1346
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 unused)1347 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1348 int send_bytes,
1349 u32 unused)
1350 {
1351 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1352 struct drm_i915_private *i915 =
1353 to_i915(dig_port->base.base.dev);
1354 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1355 u32 ret;
1356
1357 ret = DP_AUX_CH_CTL_SEND_BUSY |
1358 DP_AUX_CH_CTL_DONE |
1359 DP_AUX_CH_CTL_INTERRUPT |
1360 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1361 DP_AUX_CH_CTL_TIME_OUT_MAX |
1362 DP_AUX_CH_CTL_RECEIVE_ERROR |
1363 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1364 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1365 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1366
1367 if (intel_phy_is_tc(i915, phy) &&
1368 dig_port->tc_mode == TC_PORT_TBT_ALT)
1369 ret |= DP_AUX_CH_CTL_TBT_IO;
1370
1371 return ret;
1372 }
1373
1374 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const u8 * send,int send_bytes,u8 * recv,int recv_size,u32 aux_send_ctl_flags)1375 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1376 const u8 *send, int send_bytes,
1377 u8 *recv, int recv_size,
1378 u32 aux_send_ctl_flags)
1379 {
1380 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1381 struct drm_i915_private *i915 =
1382 to_i915(dig_port->base.base.dev);
1383 struct intel_uncore *uncore = &i915->uncore;
1384 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1385 bool is_tc_port = intel_phy_is_tc(i915, phy);
1386 i915_reg_t ch_ctl, ch_data[5];
1387 u32 aux_clock_divider;
1388 enum intel_display_power_domain aux_domain;
1389 intel_wakeref_t aux_wakeref;
1390 intel_wakeref_t pps_wakeref;
1391 int i, ret, recv_bytes;
1392 int try, clock = 0;
1393 u32 status;
1394 bool vdd;
1395
1396 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1397 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1398 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1399
1400 if (is_tc_port)
1401 intel_tc_port_lock(dig_port);
1402
1403 aux_domain = intel_aux_power_domain(dig_port);
1404
1405 aux_wakeref = intel_display_power_get(i915, aux_domain);
1406 pps_wakeref = pps_lock(intel_dp);
1407
1408 /*
1409 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1410 * In such cases we want to leave VDD enabled and it's up to upper layers
1411 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1412 * ourselves.
1413 */
1414 vdd = edp_panel_vdd_on(intel_dp);
1415
1416 /* dp aux is extremely sensitive to irq latency, hence request the
1417 * lowest possible wakeup latency and so prevent the cpu from going into
1418 * deep sleep states.
1419 */
1420 cpu_latency_qos_update_request(&intel_dp->pm_qos, 0);
1421
1422 intel_dp_check_edp(intel_dp);
1423
1424 /* Try to wait for any previous AUX channel activity */
1425 for (try = 0; try < 3; try++) {
1426 status = intel_uncore_read_notrace(uncore, ch_ctl);
1427 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1428 break;
1429 msleep(1);
1430 }
1431 /* just trace the final value */
1432 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1433
1434 if (try == 3) {
1435 const u32 status = intel_uncore_read(uncore, ch_ctl);
1436
1437 if (status != intel_dp->aux_busy_last_status) {
1438 drm_WARN(&i915->drm, 1,
1439 "%s: not started (status 0x%08x)\n",
1440 intel_dp->aux.name, status);
1441 intel_dp->aux_busy_last_status = status;
1442 }
1443
1444 ret = -EBUSY;
1445 goto out;
1446 }
1447
1448 /* Only 5 data registers! */
1449 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1450 ret = -E2BIG;
1451 goto out;
1452 }
1453
1454 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1455 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1456 send_bytes,
1457 aux_clock_divider);
1458
1459 send_ctl |= aux_send_ctl_flags;
1460
1461 /* Must try at least 3 times according to DP spec */
1462 for (try = 0; try < 5; try++) {
1463 /* Load the send data into the aux channel data registers */
1464 for (i = 0; i < send_bytes; i += 4)
1465 intel_uncore_write(uncore,
1466 ch_data[i >> 2],
1467 intel_dp_pack_aux(send + i,
1468 send_bytes - i));
1469
1470 /* Send the command and wait for it to complete */
1471 intel_uncore_write(uncore, ch_ctl, send_ctl);
1472
1473 status = intel_dp_aux_wait_done(intel_dp);
1474
1475 /* Clear done status and any errors */
1476 intel_uncore_write(uncore,
1477 ch_ctl,
1478 status |
1479 DP_AUX_CH_CTL_DONE |
1480 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1481 DP_AUX_CH_CTL_RECEIVE_ERROR);
1482
1483 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1484 * 400us delay required for errors and timeouts
1485 * Timeout errors from the HW already meet this
1486 * requirement so skip to next iteration
1487 */
1488 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1489 continue;
1490
1491 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1492 usleep_range(400, 500);
1493 continue;
1494 }
1495 if (status & DP_AUX_CH_CTL_DONE)
1496 goto done;
1497 }
1498 }
1499
1500 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1501 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1502 intel_dp->aux.name, status);
1503 ret = -EBUSY;
1504 goto out;
1505 }
1506
1507 done:
1508 /* Check for timeout or receive error.
1509 * Timeouts occur when the sink is not connected
1510 */
1511 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1512 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1513 intel_dp->aux.name, status);
1514 ret = -EIO;
1515 goto out;
1516 }
1517
1518 /* Timeouts occur when the device isn't connected, so they're
1519 * "normal" -- don't fill the kernel log with these */
1520 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1521 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1522 intel_dp->aux.name, status);
1523 ret = -ETIMEDOUT;
1524 goto out;
1525 }
1526
1527 /* Unload any bytes sent back from the other side */
1528 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1529 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1530
1531 /*
1532 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1533 * We have no idea of what happened so we return -EBUSY so
1534 * drm layer takes care for the necessary retries.
1535 */
1536 if (recv_bytes == 0 || recv_bytes > 20) {
1537 drm_dbg_kms(&i915->drm,
1538 "%s: Forbidden recv_bytes = %d on aux transaction\n",
1539 intel_dp->aux.name, recv_bytes);
1540 ret = -EBUSY;
1541 goto out;
1542 }
1543
1544 if (recv_bytes > recv_size)
1545 recv_bytes = recv_size;
1546
1547 for (i = 0; i < recv_bytes; i += 4)
1548 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1549 recv + i, recv_bytes - i);
1550
1551 ret = recv_bytes;
1552 out:
1553 cpu_latency_qos_update_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1554
1555 if (vdd)
1556 edp_panel_vdd_off(intel_dp, false);
1557
1558 pps_unlock(intel_dp, pps_wakeref);
1559 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1560
1561 if (is_tc_port)
1562 intel_tc_port_unlock(dig_port);
1563
1564 return ret;
1565 }
1566
1567 #define BARE_ADDRESS_SIZE 3
1568 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1569
1570 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)1571 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1572 const struct drm_dp_aux_msg *msg)
1573 {
1574 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1575 txbuf[1] = (msg->address >> 8) & 0xff;
1576 txbuf[2] = msg->address & 0xff;
1577 txbuf[3] = msg->size - 1;
1578 }
1579
intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg * msg)1580 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1581 {
1582 /*
1583 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1584 * select bit to inform the hardware to send the Aksv after our header
1585 * since we can't access that data from software.
1586 */
1587 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1588 msg->address == DP_AUX_HDCP_AKSV)
1589 return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1590
1591 return 0;
1592 }
1593
1594 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1595 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1596 {
1597 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1598 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1599 u8 txbuf[20], rxbuf[20];
1600 size_t txsize, rxsize;
1601 u32 flags = intel_dp_aux_xfer_flags(msg);
1602 int ret;
1603
1604 intel_dp_aux_header(txbuf, msg);
1605
1606 switch (msg->request & ~DP_AUX_I2C_MOT) {
1607 case DP_AUX_NATIVE_WRITE:
1608 case DP_AUX_I2C_WRITE:
1609 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1610 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1611 rxsize = 2; /* 0 or 1 data bytes */
1612
1613 if (drm_WARN_ON(&i915->drm, txsize > 20))
1614 return -E2BIG;
1615
1616 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1617
1618 if (msg->buffer)
1619 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1620
1621 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1622 rxbuf, rxsize, flags);
1623 if (ret > 0) {
1624 msg->reply = rxbuf[0] >> 4;
1625
1626 if (ret > 1) {
1627 /* Number of bytes written in a short write. */
1628 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1629 } else {
1630 /* Return payload size. */
1631 ret = msg->size;
1632 }
1633 }
1634 break;
1635
1636 case DP_AUX_NATIVE_READ:
1637 case DP_AUX_I2C_READ:
1638 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1639 rxsize = msg->size + 1;
1640
1641 if (drm_WARN_ON(&i915->drm, rxsize > 20))
1642 return -E2BIG;
1643
1644 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1645 rxbuf, rxsize, flags);
1646 if (ret > 0) {
1647 msg->reply = rxbuf[0] >> 4;
1648 /*
1649 * Assume happy day, and copy the data. The caller is
1650 * expected to check msg->reply before touching it.
1651 *
1652 * Return payload size.
1653 */
1654 ret--;
1655 memcpy(msg->buffer, rxbuf + 1, ret);
1656 }
1657 break;
1658
1659 default:
1660 ret = -EINVAL;
1661 break;
1662 }
1663
1664 return ret;
1665 }
1666
1667
g4x_aux_ctl_reg(struct intel_dp * intel_dp)1668 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1669 {
1670 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1671 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1672 enum aux_ch aux_ch = dig_port->aux_ch;
1673
1674 switch (aux_ch) {
1675 case AUX_CH_B:
1676 case AUX_CH_C:
1677 case AUX_CH_D:
1678 return DP_AUX_CH_CTL(aux_ch);
1679 default:
1680 MISSING_CASE(aux_ch);
1681 return DP_AUX_CH_CTL(AUX_CH_B);
1682 }
1683 }
1684
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)1685 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1686 {
1687 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1688 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1689 enum aux_ch aux_ch = dig_port->aux_ch;
1690
1691 switch (aux_ch) {
1692 case AUX_CH_B:
1693 case AUX_CH_C:
1694 case AUX_CH_D:
1695 return DP_AUX_CH_DATA(aux_ch, index);
1696 default:
1697 MISSING_CASE(aux_ch);
1698 return DP_AUX_CH_DATA(AUX_CH_B, index);
1699 }
1700 }
1701
ilk_aux_ctl_reg(struct intel_dp * intel_dp)1702 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1703 {
1704 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706 enum aux_ch aux_ch = dig_port->aux_ch;
1707
1708 switch (aux_ch) {
1709 case AUX_CH_A:
1710 return DP_AUX_CH_CTL(aux_ch);
1711 case AUX_CH_B:
1712 case AUX_CH_C:
1713 case AUX_CH_D:
1714 return PCH_DP_AUX_CH_CTL(aux_ch);
1715 default:
1716 MISSING_CASE(aux_ch);
1717 return DP_AUX_CH_CTL(AUX_CH_A);
1718 }
1719 }
1720
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)1721 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1722 {
1723 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1724 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1725 enum aux_ch aux_ch = dig_port->aux_ch;
1726
1727 switch (aux_ch) {
1728 case AUX_CH_A:
1729 return DP_AUX_CH_DATA(aux_ch, index);
1730 case AUX_CH_B:
1731 case AUX_CH_C:
1732 case AUX_CH_D:
1733 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1734 default:
1735 MISSING_CASE(aux_ch);
1736 return DP_AUX_CH_DATA(AUX_CH_A, index);
1737 }
1738 }
1739
skl_aux_ctl_reg(struct intel_dp * intel_dp)1740 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1741 {
1742 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1743 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1744 enum aux_ch aux_ch = dig_port->aux_ch;
1745
1746 switch (aux_ch) {
1747 case AUX_CH_A:
1748 case AUX_CH_B:
1749 case AUX_CH_C:
1750 case AUX_CH_D:
1751 case AUX_CH_E:
1752 case AUX_CH_F:
1753 case AUX_CH_G:
1754 return DP_AUX_CH_CTL(aux_ch);
1755 default:
1756 MISSING_CASE(aux_ch);
1757 return DP_AUX_CH_CTL(AUX_CH_A);
1758 }
1759 }
1760
skl_aux_data_reg(struct intel_dp * intel_dp,int index)1761 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1762 {
1763 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1764 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1765 enum aux_ch aux_ch = dig_port->aux_ch;
1766
1767 switch (aux_ch) {
1768 case AUX_CH_A:
1769 case AUX_CH_B:
1770 case AUX_CH_C:
1771 case AUX_CH_D:
1772 case AUX_CH_E:
1773 case AUX_CH_F:
1774 case AUX_CH_G:
1775 return DP_AUX_CH_DATA(aux_ch, index);
1776 default:
1777 MISSING_CASE(aux_ch);
1778 return DP_AUX_CH_DATA(AUX_CH_A, index);
1779 }
1780 }
1781
1782 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1783 intel_dp_aux_fini(struct intel_dp *intel_dp)
1784 {
1785 if (cpu_latency_qos_request_active(&intel_dp->pm_qos))
1786 cpu_latency_qos_remove_request(&intel_dp->pm_qos);
1787
1788 kfree(intel_dp->aux.name);
1789 }
1790
1791 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1792 intel_dp_aux_init(struct intel_dp *intel_dp)
1793 {
1794 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1795 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1796 struct intel_encoder *encoder = &dig_port->base;
1797
1798 if (INTEL_GEN(dev_priv) >= 9) {
1799 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1800 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1801 } else if (HAS_PCH_SPLIT(dev_priv)) {
1802 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1803 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1804 } else {
1805 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1806 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1807 }
1808
1809 if (INTEL_GEN(dev_priv) >= 9)
1810 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1811 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1812 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1813 else if (HAS_PCH_SPLIT(dev_priv))
1814 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1815 else
1816 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1817
1818 if (INTEL_GEN(dev_priv) >= 9)
1819 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1820 else
1821 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1822
1823 drm_dp_aux_init(&intel_dp->aux);
1824
1825 /* Failure to allocate our preferred name is not critical */
1826 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1827 aux_ch_name(dig_port->aux_ch),
1828 port_name(encoder->port));
1829 intel_dp->aux.transfer = intel_dp_aux_transfer;
1830 cpu_latency_qos_add_request(&intel_dp->pm_qos, PM_QOS_DEFAULT_VALUE);
1831 }
1832
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1833 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1834 {
1835 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1836
1837 return max_rate >= 540000;
1838 }
1839
intel_dp_source_supports_hbr3(struct intel_dp * intel_dp)1840 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1841 {
1842 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1843
1844 return max_rate >= 810000;
1845 }
1846
1847 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1848 intel_dp_set_clock(struct intel_encoder *encoder,
1849 struct intel_crtc_state *pipe_config)
1850 {
1851 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1852 const struct dp_link_dpll *divisor = NULL;
1853 int i, count = 0;
1854
1855 if (IS_G4X(dev_priv)) {
1856 divisor = g4x_dpll;
1857 count = ARRAY_SIZE(g4x_dpll);
1858 } else if (HAS_PCH_SPLIT(dev_priv)) {
1859 divisor = pch_dpll;
1860 count = ARRAY_SIZE(pch_dpll);
1861 } else if (IS_CHERRYVIEW(dev_priv)) {
1862 divisor = chv_dpll;
1863 count = ARRAY_SIZE(chv_dpll);
1864 } else if (IS_VALLEYVIEW(dev_priv)) {
1865 divisor = vlv_dpll;
1866 count = ARRAY_SIZE(vlv_dpll);
1867 }
1868
1869 if (divisor && count) {
1870 for (i = 0; i < count; i++) {
1871 if (pipe_config->port_clock == divisor[i].clock) {
1872 pipe_config->dpll = divisor[i].dpll;
1873 pipe_config->clock_set = true;
1874 break;
1875 }
1876 }
1877 }
1878 }
1879
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1880 static void snprintf_int_array(char *str, size_t len,
1881 const int *array, int nelem)
1882 {
1883 int i;
1884
1885 str[0] = '\0';
1886
1887 for (i = 0; i < nelem; i++) {
1888 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1889 if (r >= len)
1890 return;
1891 str += r;
1892 len -= r;
1893 }
1894 }
1895
intel_dp_print_rates(struct intel_dp * intel_dp)1896 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1897 {
1898 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1899 char str[128]; /* FIXME: too big for stack? */
1900
1901 if (!drm_debug_enabled(DRM_UT_KMS))
1902 return;
1903
1904 snprintf_int_array(str, sizeof(str),
1905 intel_dp->source_rates, intel_dp->num_source_rates);
1906 drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1907
1908 snprintf_int_array(str, sizeof(str),
1909 intel_dp->sink_rates, intel_dp->num_sink_rates);
1910 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1911
1912 snprintf_int_array(str, sizeof(str),
1913 intel_dp->common_rates, intel_dp->num_common_rates);
1914 drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1915 }
1916
1917 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1918 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1919 {
1920 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1921 int len;
1922
1923 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1924 if (drm_WARN_ON(&i915->drm, len <= 0))
1925 return 162000;
1926
1927 return intel_dp->common_rates[len - 1];
1928 }
1929
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1930 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1931 {
1932 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1933 int i = intel_dp_rate_index(intel_dp->sink_rates,
1934 intel_dp->num_sink_rates, rate);
1935
1936 if (drm_WARN_ON(&i915->drm, i < 0))
1937 i = 0;
1938
1939 return i;
1940 }
1941
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,u8 * link_bw,u8 * rate_select)1942 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1943 u8 *link_bw, u8 *rate_select)
1944 {
1945 /* eDP 1.4 rate select method. */
1946 if (intel_dp->use_rate_select) {
1947 *link_bw = 0;
1948 *rate_select =
1949 intel_dp_rate_select(intel_dp, port_clock);
1950 } else {
1951 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1952 *rate_select = 0;
1953 }
1954 }
1955
intel_dp_source_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1956 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1957 const struct intel_crtc_state *pipe_config)
1958 {
1959 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1960
1961 /* On TGL, FEC is supported on all Pipes */
1962 if (INTEL_GEN(dev_priv) >= 12)
1963 return true;
1964
1965 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1966 return true;
1967
1968 return false;
1969 }
1970
intel_dp_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1971 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1972 const struct intel_crtc_state *pipe_config)
1973 {
1974 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1975 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1976 }
1977
intel_dp_supports_dsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1978 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1979 const struct intel_crtc_state *crtc_state)
1980 {
1981 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1982
1983 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1984 return false;
1985
1986 return intel_dsc_source_support(encoder, crtc_state) &&
1987 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1988 }
1989
intel_dp_hdmi_ycbcr420(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1990 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
1991 const struct intel_crtc_state *crtc_state)
1992 {
1993 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
1994 (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
1995 intel_dp->dfp.ycbcr_444_to_420);
1996 }
1997
intel_dp_hdmi_tmds_clock(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)1998 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
1999 const struct intel_crtc_state *crtc_state, int bpc)
2000 {
2001 int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
2002
2003 if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
2004 clock /= 2;
2005
2006 return clock;
2007 }
2008
intel_dp_hdmi_tmds_clock_valid(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)2009 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2010 const struct intel_crtc_state *crtc_state, int bpc)
2011 {
2012 int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2013
2014 if (intel_dp->dfp.min_tmds_clock &&
2015 tmds_clock < intel_dp->dfp.min_tmds_clock)
2016 return false;
2017
2018 if (intel_dp->dfp.max_tmds_clock &&
2019 tmds_clock > intel_dp->dfp.max_tmds_clock)
2020 return false;
2021
2022 return true;
2023 }
2024
intel_dp_hdmi_deep_color_possible(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)2025 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2026 const struct intel_crtc_state *crtc_state,
2027 int bpc)
2028 {
2029
2030 return intel_hdmi_deep_color_possible(crtc_state, bpc,
2031 intel_dp->has_hdmi_sink,
2032 intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2033 intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2034 }
2035
intel_dp_max_bpp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)2036 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2037 const struct intel_crtc_state *crtc_state)
2038 {
2039 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2040 struct intel_connector *intel_connector = intel_dp->attached_connector;
2041 int bpp, bpc;
2042
2043 bpc = crtc_state->pipe_bpp / 3;
2044
2045 if (intel_dp->dfp.max_bpc)
2046 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2047
2048 if (intel_dp->dfp.min_tmds_clock) {
2049 for (; bpc >= 10; bpc -= 2) {
2050 if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2051 break;
2052 }
2053 }
2054
2055 bpp = bpc * 3;
2056 if (intel_dp_is_edp(intel_dp)) {
2057 /* Get bpp from vbt only for panels that dont have bpp in edid */
2058 if (intel_connector->base.display_info.bpc == 0 &&
2059 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2060 drm_dbg_kms(&dev_priv->drm,
2061 "clamping bpp for eDP panel to BIOS-provided %i\n",
2062 dev_priv->vbt.edp.bpp);
2063 bpp = dev_priv->vbt.edp.bpp;
2064 }
2065 }
2066
2067 return bpp;
2068 }
2069
2070 /* Adjust link config limits based on compliance test requests. */
2071 void
intel_dp_adjust_compliance_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct link_config_limits * limits)2072 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2073 struct intel_crtc_state *pipe_config,
2074 struct link_config_limits *limits)
2075 {
2076 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2077
2078 /* For DP Compliance we override the computed bpp for the pipe */
2079 if (intel_dp->compliance.test_data.bpc != 0) {
2080 int bpp = 3 * intel_dp->compliance.test_data.bpc;
2081
2082 limits->min_bpp = limits->max_bpp = bpp;
2083 pipe_config->dither_force_disable = bpp == 6 * 3;
2084
2085 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2086 }
2087
2088 /* Use values requested by Compliance Test Request */
2089 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2090 int index;
2091
2092 /* Validate the compliance test data since max values
2093 * might have changed due to link train fallback.
2094 */
2095 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2096 intel_dp->compliance.test_lane_count)) {
2097 index = intel_dp_rate_index(intel_dp->common_rates,
2098 intel_dp->num_common_rates,
2099 intel_dp->compliance.test_link_rate);
2100 if (index >= 0)
2101 limits->min_clock = limits->max_clock = index;
2102 limits->min_lane_count = limits->max_lane_count =
2103 intel_dp->compliance.test_lane_count;
2104 }
2105 }
2106 }
2107
intel_dp_output_bpp(const struct intel_crtc_state * crtc_state,int bpp)2108 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2109 {
2110 /*
2111 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2112 * format of the number of bytes per pixel will be half the number
2113 * of bytes of RGB pixel.
2114 */
2115 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2116 bpp /= 2;
2117
2118 return bpp;
2119 }
2120
2121 /* Optimize link config in order: max bpp, min clock, min lanes */
2122 static int
intel_dp_compute_link_config_wide(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,const struct link_config_limits * limits)2123 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2124 struct intel_crtc_state *pipe_config,
2125 const struct link_config_limits *limits)
2126 {
2127 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2128 int bpp, clock, lane_count;
2129 int mode_rate, link_clock, link_avail;
2130
2131 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2132 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2133
2134 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2135 output_bpp);
2136
2137 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2138 for (lane_count = limits->min_lane_count;
2139 lane_count <= limits->max_lane_count;
2140 lane_count <<= 1) {
2141 link_clock = intel_dp->common_rates[clock];
2142 link_avail = intel_dp_max_data_rate(link_clock,
2143 lane_count);
2144
2145 if (mode_rate <= link_avail) {
2146 pipe_config->lane_count = lane_count;
2147 pipe_config->pipe_bpp = bpp;
2148 pipe_config->port_clock = link_clock;
2149
2150 return 0;
2151 }
2152 }
2153 }
2154 }
2155
2156 return -EINVAL;
2157 }
2158
intel_dp_dsc_compute_bpp(struct intel_dp * intel_dp,u8 dsc_max_bpc)2159 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2160 {
2161 int i, num_bpc;
2162 u8 dsc_bpc[3] = {0};
2163
2164 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2165 dsc_bpc);
2166 for (i = 0; i < num_bpc; i++) {
2167 if (dsc_max_bpc >= dsc_bpc[i])
2168 return dsc_bpc[i] * 3;
2169 }
2170
2171 return 0;
2172 }
2173
2174 #define DSC_SUPPORTED_VERSION_MIN 1
2175
intel_dp_dsc_compute_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)2176 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2177 struct intel_crtc_state *crtc_state)
2178 {
2179 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2180 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2181 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2182 u8 line_buf_depth;
2183 int ret;
2184
2185 ret = intel_dsc_compute_params(encoder, crtc_state);
2186 if (ret)
2187 return ret;
2188
2189 /*
2190 * Slice Height of 8 works for all currently available panels. So start
2191 * with that if pic_height is an integral multiple of 8. Eventually add
2192 * logic to try multiple slice heights.
2193 */
2194 if (vdsc_cfg->pic_height % 8 == 0)
2195 vdsc_cfg->slice_height = 8;
2196 else if (vdsc_cfg->pic_height % 4 == 0)
2197 vdsc_cfg->slice_height = 4;
2198 else
2199 vdsc_cfg->slice_height = 2;
2200
2201 vdsc_cfg->dsc_version_major =
2202 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2203 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2204 vdsc_cfg->dsc_version_minor =
2205 min(DSC_SUPPORTED_VERSION_MIN,
2206 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2207 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2208
2209 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2210 DP_DSC_RGB;
2211
2212 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2213 if (!line_buf_depth) {
2214 drm_dbg_kms(&i915->drm,
2215 "DSC Sink Line Buffer Depth invalid\n");
2216 return -EINVAL;
2217 }
2218
2219 if (vdsc_cfg->dsc_version_minor == 2)
2220 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2221 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2222 else
2223 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2224 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2225
2226 vdsc_cfg->block_pred_enable =
2227 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2228 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2229
2230 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2231 }
2232
intel_dp_dsc_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state,struct link_config_limits * limits)2233 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2234 struct intel_crtc_state *pipe_config,
2235 struct drm_connector_state *conn_state,
2236 struct link_config_limits *limits)
2237 {
2238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2239 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2240 const struct drm_display_mode *adjusted_mode =
2241 &pipe_config->hw.adjusted_mode;
2242 u8 dsc_max_bpc;
2243 int pipe_bpp;
2244 int ret;
2245
2246 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2247 intel_dp_supports_fec(intel_dp, pipe_config);
2248
2249 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2250 return -EINVAL;
2251
2252 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2253 if (INTEL_GEN(dev_priv) >= 12)
2254 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2255 else
2256 dsc_max_bpc = min_t(u8, 10,
2257 conn_state->max_requested_bpc);
2258
2259 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2260
2261 /* Min Input BPC for ICL+ is 8 */
2262 if (pipe_bpp < 8 * 3) {
2263 drm_dbg_kms(&dev_priv->drm,
2264 "No DSC support for less than 8bpc\n");
2265 return -EINVAL;
2266 }
2267
2268 /*
2269 * For now enable DSC for max bpp, max link rate, max lane count.
2270 * Optimize this later for the minimum possible link rate/lane count
2271 * with DSC enabled for the requested mode.
2272 */
2273 pipe_config->pipe_bpp = pipe_bpp;
2274 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2275 pipe_config->lane_count = limits->max_lane_count;
2276
2277 if (intel_dp_is_edp(intel_dp)) {
2278 pipe_config->dsc.compressed_bpp =
2279 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2280 pipe_config->pipe_bpp);
2281 pipe_config->dsc.slice_count =
2282 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2283 true);
2284 } else {
2285 u16 dsc_max_output_bpp;
2286 u8 dsc_dp_slice_count;
2287
2288 dsc_max_output_bpp =
2289 intel_dp_dsc_get_output_bpp(dev_priv,
2290 pipe_config->port_clock,
2291 pipe_config->lane_count,
2292 adjusted_mode->crtc_clock,
2293 adjusted_mode->crtc_hdisplay);
2294 dsc_dp_slice_count =
2295 intel_dp_dsc_get_slice_count(intel_dp,
2296 adjusted_mode->crtc_clock,
2297 adjusted_mode->crtc_hdisplay);
2298 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2299 drm_dbg_kms(&dev_priv->drm,
2300 "Compressed BPP/Slice Count not supported\n");
2301 return -EINVAL;
2302 }
2303 pipe_config->dsc.compressed_bpp = min_t(u16,
2304 dsc_max_output_bpp >> 4,
2305 pipe_config->pipe_bpp);
2306 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2307 }
2308 /*
2309 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2310 * is greater than the maximum Cdclock and if slice count is even
2311 * then we need to use 2 VDSC instances.
2312 */
2313 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2314 if (pipe_config->dsc.slice_count > 1) {
2315 pipe_config->dsc.dsc_split = true;
2316 } else {
2317 drm_dbg_kms(&dev_priv->drm,
2318 "Cannot split stream to use 2 VDSC instances\n");
2319 return -EINVAL;
2320 }
2321 }
2322
2323 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2324 if (ret < 0) {
2325 drm_dbg_kms(&dev_priv->drm,
2326 "Cannot compute valid DSC parameters for Input Bpp = %d "
2327 "Compressed BPP = %d\n",
2328 pipe_config->pipe_bpp,
2329 pipe_config->dsc.compressed_bpp);
2330 return ret;
2331 }
2332
2333 pipe_config->dsc.compression_enable = true;
2334 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2335 "Compressed Bpp = %d Slice Count = %d\n",
2336 pipe_config->pipe_bpp,
2337 pipe_config->dsc.compressed_bpp,
2338 pipe_config->dsc.slice_count);
2339
2340 return 0;
2341 }
2342
intel_dp_min_bpp(const struct intel_crtc_state * crtc_state)2343 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2344 {
2345 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2346 return 6 * 3;
2347 else
2348 return 8 * 3;
2349 }
2350
2351 static int
intel_dp_compute_link_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2352 intel_dp_compute_link_config(struct intel_encoder *encoder,
2353 struct intel_crtc_state *pipe_config,
2354 struct drm_connector_state *conn_state)
2355 {
2356 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2357 const struct drm_display_mode *adjusted_mode =
2358 &pipe_config->hw.adjusted_mode;
2359 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2360 struct link_config_limits limits;
2361 int common_len;
2362 int ret;
2363
2364 common_len = intel_dp_common_len_rate_limit(intel_dp,
2365 intel_dp->max_link_rate);
2366
2367 /* No common link rates between source and sink */
2368 drm_WARN_ON(encoder->base.dev, common_len <= 0);
2369
2370 limits.min_clock = 0;
2371 limits.max_clock = common_len - 1;
2372
2373 limits.min_lane_count = 1;
2374 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2375
2376 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2377 limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2378
2379 if (intel_dp_is_edp(intel_dp)) {
2380 /*
2381 * Use the maximum clock and number of lanes the eDP panel
2382 * advertizes being capable of. The panels are generally
2383 * designed to support only a single clock and lane
2384 * configuration, and typically these values correspond to the
2385 * native resolution of the panel.
2386 */
2387 limits.min_lane_count = limits.max_lane_count;
2388 limits.min_clock = limits.max_clock;
2389 }
2390
2391 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2392
2393 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2394 "max rate %d max bpp %d pixel clock %iKHz\n",
2395 limits.max_lane_count,
2396 intel_dp->common_rates[limits.max_clock],
2397 limits.max_bpp, adjusted_mode->crtc_clock);
2398
2399 /*
2400 * Optimize for slow and wide. This is the place to add alternative
2401 * optimization policy.
2402 */
2403 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2404
2405 /* enable compression if the mode doesn't fit available BW */
2406 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2407 if (ret || intel_dp->force_dsc_en) {
2408 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2409 conn_state, &limits);
2410 if (ret < 0)
2411 return ret;
2412 }
2413
2414 if (pipe_config->dsc.compression_enable) {
2415 drm_dbg_kms(&i915->drm,
2416 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2417 pipe_config->lane_count, pipe_config->port_clock,
2418 pipe_config->pipe_bpp,
2419 pipe_config->dsc.compressed_bpp);
2420
2421 drm_dbg_kms(&i915->drm,
2422 "DP link rate required %i available %i\n",
2423 intel_dp_link_required(adjusted_mode->crtc_clock,
2424 pipe_config->dsc.compressed_bpp),
2425 intel_dp_max_data_rate(pipe_config->port_clock,
2426 pipe_config->lane_count));
2427 } else {
2428 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2429 pipe_config->lane_count, pipe_config->port_clock,
2430 pipe_config->pipe_bpp);
2431
2432 drm_dbg_kms(&i915->drm,
2433 "DP link rate required %i available %i\n",
2434 intel_dp_link_required(adjusted_mode->crtc_clock,
2435 pipe_config->pipe_bpp),
2436 intel_dp_max_data_rate(pipe_config->port_clock,
2437 pipe_config->lane_count));
2438 }
2439 return 0;
2440 }
2441
2442 static int
intel_dp_ycbcr420_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2443 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2444 struct intel_crtc_state *crtc_state,
2445 const struct drm_connector_state *conn_state)
2446 {
2447 struct drm_connector *connector = conn_state->connector;
2448 const struct drm_display_info *info = &connector->display_info;
2449 const struct drm_display_mode *adjusted_mode =
2450 &crtc_state->hw.adjusted_mode;
2451
2452 if (!connector->ycbcr_420_allowed)
2453 return 0;
2454
2455 if (!drm_mode_is_420_only(info, adjusted_mode))
2456 return 0;
2457
2458 if (intel_dp->dfp.ycbcr_444_to_420) {
2459 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
2460 return 0;
2461 }
2462
2463 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2464
2465 return intel_pch_panel_fitting(crtc_state, conn_state);
2466 }
2467
intel_dp_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2468 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2469 const struct drm_connector_state *conn_state)
2470 {
2471 const struct intel_digital_connector_state *intel_conn_state =
2472 to_intel_digital_connector_state(conn_state);
2473 const struct drm_display_mode *adjusted_mode =
2474 &crtc_state->hw.adjusted_mode;
2475
2476 /*
2477 * Our YCbCr output is always limited range.
2478 * crtc_state->limited_color_range only applies to RGB,
2479 * and it must never be set for YCbCr or we risk setting
2480 * some conflicting bits in PIPECONF which will mess up
2481 * the colors on the monitor.
2482 */
2483 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2484 return false;
2485
2486 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2487 /*
2488 * See:
2489 * CEA-861-E - 5.1 Default Encoding Parameters
2490 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2491 */
2492 return crtc_state->pipe_bpp != 18 &&
2493 drm_default_rgb_quant_range(adjusted_mode) ==
2494 HDMI_QUANTIZATION_RANGE_LIMITED;
2495 } else {
2496 return intel_conn_state->broadcast_rgb ==
2497 INTEL_BROADCAST_RGB_LIMITED;
2498 }
2499 }
2500
intel_dp_port_has_audio(struct drm_i915_private * dev_priv,enum port port)2501 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2502 enum port port)
2503 {
2504 if (IS_G4X(dev_priv))
2505 return false;
2506 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2507 return false;
2508
2509 return true;
2510 }
2511
intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2512 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2513 const struct drm_connector_state *conn_state,
2514 struct drm_dp_vsc_sdp *vsc)
2515 {
2516 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2517 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2518
2519 /*
2520 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2521 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2522 * Colorimetry Format indication.
2523 */
2524 vsc->revision = 0x5;
2525 vsc->length = 0x13;
2526
2527 /* DP 1.4a spec, Table 2-120 */
2528 switch (crtc_state->output_format) {
2529 case INTEL_OUTPUT_FORMAT_YCBCR444:
2530 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2531 break;
2532 case INTEL_OUTPUT_FORMAT_YCBCR420:
2533 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2534 break;
2535 case INTEL_OUTPUT_FORMAT_RGB:
2536 default:
2537 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2538 }
2539
2540 switch (conn_state->colorspace) {
2541 case DRM_MODE_COLORIMETRY_BT709_YCC:
2542 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2543 break;
2544 case DRM_MODE_COLORIMETRY_XVYCC_601:
2545 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2546 break;
2547 case DRM_MODE_COLORIMETRY_XVYCC_709:
2548 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2549 break;
2550 case DRM_MODE_COLORIMETRY_SYCC_601:
2551 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2552 break;
2553 case DRM_MODE_COLORIMETRY_OPYCC_601:
2554 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2555 break;
2556 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2557 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2558 break;
2559 case DRM_MODE_COLORIMETRY_BT2020_RGB:
2560 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2561 break;
2562 case DRM_MODE_COLORIMETRY_BT2020_YCC:
2563 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2564 break;
2565 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2566 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2567 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2568 break;
2569 default:
2570 /*
2571 * RGB->YCBCR color conversion uses the BT.709
2572 * color space.
2573 */
2574 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2575 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2576 else
2577 vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2578 break;
2579 }
2580
2581 vsc->bpc = crtc_state->pipe_bpp / 3;
2582
2583 /* only RGB pixelformat supports 6 bpc */
2584 drm_WARN_ON(&dev_priv->drm,
2585 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2586
2587 /* all YCbCr are always limited range */
2588 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2589 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2590 }
2591
intel_dp_compute_vsc_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2592 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2593 struct intel_crtc_state *crtc_state,
2594 const struct drm_connector_state *conn_state)
2595 {
2596 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2597
2598 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2599 if (crtc_state->has_psr)
2600 return;
2601
2602 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2603 return;
2604
2605 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2606 vsc->sdp_type = DP_SDP_VSC;
2607 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2608 &crtc_state->infoframes.vsc);
2609 }
2610
intel_dp_compute_psr_vsc_sdp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2611 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2612 const struct intel_crtc_state *crtc_state,
2613 const struct drm_connector_state *conn_state,
2614 struct drm_dp_vsc_sdp *vsc)
2615 {
2616 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2617
2618 vsc->sdp_type = DP_SDP_VSC;
2619
2620 if (dev_priv->psr.psr2_enabled) {
2621 if (dev_priv->psr.colorimetry_support &&
2622 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2623 /* [PSR2, +Colorimetry] */
2624 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2625 vsc);
2626 } else {
2627 /*
2628 * [PSR2, -Colorimetry]
2629 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2630 * 3D stereo + PSR/PSR2 + Y-coordinate.
2631 */
2632 vsc->revision = 0x4;
2633 vsc->length = 0xe;
2634 }
2635 } else {
2636 /*
2637 * [PSR1]
2638 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2639 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2640 * higher).
2641 */
2642 vsc->revision = 0x2;
2643 vsc->length = 0x8;
2644 }
2645 }
2646
2647 static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2648 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2649 struct intel_crtc_state *crtc_state,
2650 const struct drm_connector_state *conn_state)
2651 {
2652 int ret;
2653 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2654 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2655
2656 if (!conn_state->hdr_output_metadata)
2657 return;
2658
2659 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2660
2661 if (ret) {
2662 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2663 return;
2664 }
2665
2666 crtc_state->infoframes.enable |=
2667 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2668 }
2669
2670 static void
intel_dp_drrs_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,int output_bpp,bool constant_n)2671 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2672 struct intel_crtc_state *pipe_config,
2673 int output_bpp, bool constant_n)
2674 {
2675 struct intel_connector *intel_connector = intel_dp->attached_connector;
2676 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2677
2678 /*
2679 * DRRS and PSR can't be enable together, so giving preference to PSR
2680 * as it allows more power-savings by complete shutting down display,
2681 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2682 * after intel_psr_compute_config().
2683 */
2684 if (pipe_config->has_psr)
2685 return;
2686
2687 if (!intel_connector->panel.downclock_mode ||
2688 dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2689 return;
2690
2691 pipe_config->has_drrs = true;
2692 intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2693 intel_connector->panel.downclock_mode->clock,
2694 pipe_config->port_clock, &pipe_config->dp_m2_n2,
2695 constant_n, pipe_config->fec_enable);
2696 }
2697
2698 int
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2699 intel_dp_compute_config(struct intel_encoder *encoder,
2700 struct intel_crtc_state *pipe_config,
2701 struct drm_connector_state *conn_state)
2702 {
2703 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2704 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2705 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2706 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2707 enum port port = encoder->port;
2708 struct intel_connector *intel_connector = intel_dp->attached_connector;
2709 struct intel_digital_connector_state *intel_conn_state =
2710 to_intel_digital_connector_state(conn_state);
2711 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2712 DP_DPCD_QUIRK_CONSTANT_N);
2713 int ret = 0, output_bpp;
2714
2715 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2716 pipe_config->has_pch_encoder = true;
2717
2718 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2719
2720 if (lspcon->active)
2721 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2722 else
2723 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2724 conn_state);
2725 if (ret)
2726 return ret;
2727
2728 if (!intel_dp_port_has_audio(dev_priv, port))
2729 pipe_config->has_audio = false;
2730 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2731 pipe_config->has_audio = intel_dp->has_audio;
2732 else
2733 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2734
2735 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2736 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2737 adjusted_mode);
2738
2739 if (HAS_GMCH(dev_priv))
2740 ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2741 else
2742 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2743 if (ret)
2744 return ret;
2745 }
2746
2747 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2748 return -EINVAL;
2749
2750 if (HAS_GMCH(dev_priv) &&
2751 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2752 return -EINVAL;
2753
2754 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2755 return -EINVAL;
2756
2757 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2758 return -EINVAL;
2759
2760 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2761 if (ret < 0)
2762 return ret;
2763
2764 pipe_config->limited_color_range =
2765 intel_dp_limited_color_range(pipe_config, conn_state);
2766
2767 if (pipe_config->dsc.compression_enable)
2768 output_bpp = pipe_config->dsc.compressed_bpp;
2769 else
2770 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2771
2772 intel_link_compute_m_n(output_bpp,
2773 pipe_config->lane_count,
2774 adjusted_mode->crtc_clock,
2775 pipe_config->port_clock,
2776 &pipe_config->dp_m_n,
2777 constant_n, pipe_config->fec_enable);
2778
2779 if (!HAS_DDI(dev_priv))
2780 intel_dp_set_clock(encoder, pipe_config);
2781
2782 intel_psr_compute_config(intel_dp, pipe_config);
2783 intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2784 constant_n);
2785 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2786 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2787
2788 return 0;
2789 }
2790
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,u8 lane_count,bool link_mst)2791 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2792 int link_rate, u8 lane_count,
2793 bool link_mst)
2794 {
2795 intel_dp->link_trained = false;
2796 intel_dp->link_rate = link_rate;
2797 intel_dp->lane_count = lane_count;
2798 intel_dp->link_mst = link_mst;
2799 }
2800
intel_dp_prepare(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)2801 static void intel_dp_prepare(struct intel_encoder *encoder,
2802 const struct intel_crtc_state *pipe_config)
2803 {
2804 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2805 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2806 enum port port = encoder->port;
2807 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2808 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2809
2810 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2811 pipe_config->lane_count,
2812 intel_crtc_has_type(pipe_config,
2813 INTEL_OUTPUT_DP_MST));
2814
2815 /*
2816 * There are four kinds of DP registers:
2817 *
2818 * IBX PCH
2819 * SNB CPU
2820 * IVB CPU
2821 * CPT PCH
2822 *
2823 * IBX PCH and CPU are the same for almost everything,
2824 * except that the CPU DP PLL is configured in this
2825 * register
2826 *
2827 * CPT PCH is quite different, having many bits moved
2828 * to the TRANS_DP_CTL register instead. That
2829 * configuration happens (oddly) in ilk_pch_enable
2830 */
2831
2832 /* Preserve the BIOS-computed detected bit. This is
2833 * supposed to be read-only.
2834 */
2835 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2836
2837 /* Handle DP bits in common between all three register formats */
2838 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2839 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2840
2841 /* Split out the IBX/CPU vs CPT settings */
2842
2843 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2844 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2845 intel_dp->DP |= DP_SYNC_HS_HIGH;
2846 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2847 intel_dp->DP |= DP_SYNC_VS_HIGH;
2848 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2849
2850 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2851 intel_dp->DP |= DP_ENHANCED_FRAMING;
2852
2853 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2854 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2855 u32 trans_dp;
2856
2857 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2858
2859 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2860 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2861 trans_dp |= TRANS_DP_ENH_FRAMING;
2862 else
2863 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2864 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2865 } else {
2866 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2867 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2868
2869 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2870 intel_dp->DP |= DP_SYNC_HS_HIGH;
2871 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2872 intel_dp->DP |= DP_SYNC_VS_HIGH;
2873 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2874
2875 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2876 intel_dp->DP |= DP_ENHANCED_FRAMING;
2877
2878 if (IS_CHERRYVIEW(dev_priv))
2879 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2880 else
2881 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2882 }
2883 }
2884
2885 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2886 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2887
2888 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2889 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2890
2891 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2892 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2893
2894 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2895
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)2896 static void wait_panel_status(struct intel_dp *intel_dp,
2897 u32 mask,
2898 u32 value)
2899 {
2900 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2901 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2902
2903 lockdep_assert_held(&dev_priv->pps_mutex);
2904
2905 intel_pps_verify_state(intel_dp);
2906
2907 pp_stat_reg = _pp_stat_reg(intel_dp);
2908 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2909
2910 drm_dbg_kms(&dev_priv->drm,
2911 "mask %08x value %08x status %08x control %08x\n",
2912 mask, value,
2913 intel_de_read(dev_priv, pp_stat_reg),
2914 intel_de_read(dev_priv, pp_ctrl_reg));
2915
2916 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2917 mask, value, 5000))
2918 drm_err(&dev_priv->drm,
2919 "Panel status timeout: status %08x control %08x\n",
2920 intel_de_read(dev_priv, pp_stat_reg),
2921 intel_de_read(dev_priv, pp_ctrl_reg));
2922
2923 drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2924 }
2925
wait_panel_on(struct intel_dp * intel_dp)2926 static void wait_panel_on(struct intel_dp *intel_dp)
2927 {
2928 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2929
2930 drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2931 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2932 }
2933
wait_panel_off(struct intel_dp * intel_dp)2934 static void wait_panel_off(struct intel_dp *intel_dp)
2935 {
2936 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2937
2938 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2939 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2940 }
2941
wait_panel_power_cycle(struct intel_dp * intel_dp)2942 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2943 {
2944 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2945 ktime_t panel_power_on_time;
2946 s64 panel_power_off_duration;
2947
2948 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2949
2950 /* take the difference of currrent time and panel power off time
2951 * and then make panel wait for t11_t12 if needed. */
2952 panel_power_on_time = ktime_get_boottime();
2953 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2954
2955 /* When we disable the VDD override bit last we have to do the manual
2956 * wait. */
2957 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2958 wait_remaining_ms_from_jiffies(jiffies,
2959 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2960
2961 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2962 }
2963
wait_backlight_on(struct intel_dp * intel_dp)2964 static void wait_backlight_on(struct intel_dp *intel_dp)
2965 {
2966 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2967 intel_dp->backlight_on_delay);
2968 }
2969
edp_wait_backlight_off(struct intel_dp * intel_dp)2970 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2971 {
2972 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2973 intel_dp->backlight_off_delay);
2974 }
2975
2976 /* Read the current pp_control value, unlocking the register if it
2977 * is locked
2978 */
2979
ilk_get_pp_control(struct intel_dp * intel_dp)2980 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2981 {
2982 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2983 u32 control;
2984
2985 lockdep_assert_held(&dev_priv->pps_mutex);
2986
2987 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2988 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2989 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2990 control &= ~PANEL_UNLOCK_MASK;
2991 control |= PANEL_UNLOCK_REGS;
2992 }
2993 return control;
2994 }
2995
2996 /*
2997 * Must be paired with edp_panel_vdd_off().
2998 * Must hold pps_mutex around the whole on/off sequence.
2999 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3000 */
edp_panel_vdd_on(struct intel_dp * intel_dp)3001 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
3002 {
3003 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3004 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3005 u32 pp;
3006 i915_reg_t pp_stat_reg, pp_ctrl_reg;
3007 bool need_to_disable = !intel_dp->want_panel_vdd;
3008
3009 lockdep_assert_held(&dev_priv->pps_mutex);
3010
3011 if (!intel_dp_is_edp(intel_dp))
3012 return false;
3013
3014 cancel_delayed_work(&intel_dp->panel_vdd_work);
3015 intel_dp->want_panel_vdd = true;
3016
3017 if (edp_have_panel_vdd(intel_dp))
3018 return need_to_disable;
3019
3020 intel_display_power_get(dev_priv,
3021 intel_aux_power_domain(dig_port));
3022
3023 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3024 dig_port->base.base.base.id,
3025 dig_port->base.base.name);
3026
3027 if (!edp_have_panel_power(intel_dp))
3028 wait_panel_power_cycle(intel_dp);
3029
3030 pp = ilk_get_pp_control(intel_dp);
3031 pp |= EDP_FORCE_VDD;
3032
3033 pp_stat_reg = _pp_stat_reg(intel_dp);
3034 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3035
3036 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3037 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3038 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3039 intel_de_read(dev_priv, pp_stat_reg),
3040 intel_de_read(dev_priv, pp_ctrl_reg));
3041 /*
3042 * If the panel wasn't on, delay before accessing aux channel
3043 */
3044 if (!edp_have_panel_power(intel_dp)) {
3045 drm_dbg_kms(&dev_priv->drm,
3046 "[ENCODER:%d:%s] panel power wasn't enabled\n",
3047 dig_port->base.base.base.id,
3048 dig_port->base.base.name);
3049 msleep(intel_dp->panel_power_up_delay);
3050 }
3051
3052 return need_to_disable;
3053 }
3054
3055 /*
3056 * Must be paired with intel_edp_panel_vdd_off() or
3057 * intel_edp_panel_off().
3058 * Nested calls to these functions are not allowed since
3059 * we drop the lock. Caller must use some higher level
3060 * locking to prevent nested calls from other threads.
3061 */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)3062 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3063 {
3064 intel_wakeref_t wakeref;
3065 bool vdd;
3066
3067 if (!intel_dp_is_edp(intel_dp))
3068 return;
3069
3070 vdd = false;
3071 with_pps_lock(intel_dp, wakeref)
3072 vdd = edp_panel_vdd_on(intel_dp);
3073 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3074 dp_to_dig_port(intel_dp)->base.base.base.id,
3075 dp_to_dig_port(intel_dp)->base.base.name);
3076 }
3077
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)3078 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3079 {
3080 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3081 struct intel_digital_port *dig_port =
3082 dp_to_dig_port(intel_dp);
3083 u32 pp;
3084 i915_reg_t pp_stat_reg, pp_ctrl_reg;
3085
3086 lockdep_assert_held(&dev_priv->pps_mutex);
3087
3088 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3089
3090 if (!edp_have_panel_vdd(intel_dp))
3091 return;
3092
3093 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3094 dig_port->base.base.base.id,
3095 dig_port->base.base.name);
3096
3097 pp = ilk_get_pp_control(intel_dp);
3098 pp &= ~EDP_FORCE_VDD;
3099
3100 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3101 pp_stat_reg = _pp_stat_reg(intel_dp);
3102
3103 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3104 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3105
3106 /* Make sure sequencer is idle before allowing subsequent activity */
3107 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3108 intel_de_read(dev_priv, pp_stat_reg),
3109 intel_de_read(dev_priv, pp_ctrl_reg));
3110
3111 if ((pp & PANEL_POWER_ON) == 0)
3112 intel_dp->panel_power_off_time = ktime_get_boottime();
3113
3114 intel_display_power_put_unchecked(dev_priv,
3115 intel_aux_power_domain(dig_port));
3116 }
3117
edp_panel_vdd_work(struct work_struct * __work)3118 static void edp_panel_vdd_work(struct work_struct *__work)
3119 {
3120 struct intel_dp *intel_dp =
3121 container_of(to_delayed_work(__work),
3122 struct intel_dp, panel_vdd_work);
3123 intel_wakeref_t wakeref;
3124
3125 with_pps_lock(intel_dp, wakeref) {
3126 if (!intel_dp->want_panel_vdd)
3127 edp_panel_vdd_off_sync(intel_dp);
3128 }
3129 }
3130
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)3131 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3132 {
3133 unsigned long delay;
3134
3135 /*
3136 * Queue the timer to fire a long time from now (relative to the power
3137 * down delay) to keep the panel power up across a sequence of
3138 * operations.
3139 */
3140 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3141 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3142 }
3143
3144 /*
3145 * Must be paired with edp_panel_vdd_on().
3146 * Must hold pps_mutex around the whole on/off sequence.
3147 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3148 */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)3149 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3150 {
3151 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3152
3153 lockdep_assert_held(&dev_priv->pps_mutex);
3154
3155 if (!intel_dp_is_edp(intel_dp))
3156 return;
3157
3158 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3159 dp_to_dig_port(intel_dp)->base.base.base.id,
3160 dp_to_dig_port(intel_dp)->base.base.name);
3161
3162 intel_dp->want_panel_vdd = false;
3163
3164 if (sync)
3165 edp_panel_vdd_off_sync(intel_dp);
3166 else
3167 edp_panel_vdd_schedule_off(intel_dp);
3168 }
3169
edp_panel_on(struct intel_dp * intel_dp)3170 static void edp_panel_on(struct intel_dp *intel_dp)
3171 {
3172 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3173 u32 pp;
3174 i915_reg_t pp_ctrl_reg;
3175
3176 lockdep_assert_held(&dev_priv->pps_mutex);
3177
3178 if (!intel_dp_is_edp(intel_dp))
3179 return;
3180
3181 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3182 dp_to_dig_port(intel_dp)->base.base.base.id,
3183 dp_to_dig_port(intel_dp)->base.base.name);
3184
3185 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3186 "[ENCODER:%d:%s] panel power already on\n",
3187 dp_to_dig_port(intel_dp)->base.base.base.id,
3188 dp_to_dig_port(intel_dp)->base.base.name))
3189 return;
3190
3191 wait_panel_power_cycle(intel_dp);
3192
3193 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3194 pp = ilk_get_pp_control(intel_dp);
3195 if (IS_GEN(dev_priv, 5)) {
3196 /* ILK workaround: disable reset around power sequence */
3197 pp &= ~PANEL_POWER_RESET;
3198 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3199 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3200 }
3201
3202 pp |= PANEL_POWER_ON;
3203 if (!IS_GEN(dev_priv, 5))
3204 pp |= PANEL_POWER_RESET;
3205
3206 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3207 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3208
3209 wait_panel_on(intel_dp);
3210 intel_dp->last_power_on = jiffies;
3211
3212 if (IS_GEN(dev_priv, 5)) {
3213 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3214 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3215 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3216 }
3217 }
3218
intel_edp_panel_on(struct intel_dp * intel_dp)3219 void intel_edp_panel_on(struct intel_dp *intel_dp)
3220 {
3221 intel_wakeref_t wakeref;
3222
3223 if (!intel_dp_is_edp(intel_dp))
3224 return;
3225
3226 with_pps_lock(intel_dp, wakeref)
3227 edp_panel_on(intel_dp);
3228 }
3229
3230
edp_panel_off(struct intel_dp * intel_dp)3231 static void edp_panel_off(struct intel_dp *intel_dp)
3232 {
3233 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3234 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3235 u32 pp;
3236 i915_reg_t pp_ctrl_reg;
3237
3238 lockdep_assert_held(&dev_priv->pps_mutex);
3239
3240 if (!intel_dp_is_edp(intel_dp))
3241 return;
3242
3243 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3244 dig_port->base.base.base.id, dig_port->base.base.name);
3245
3246 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3247 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3248 dig_port->base.base.base.id, dig_port->base.base.name);
3249
3250 pp = ilk_get_pp_control(intel_dp);
3251 /* We need to switch off panel power _and_ force vdd, for otherwise some
3252 * panels get very unhappy and cease to work. */
3253 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3254 EDP_BLC_ENABLE);
3255
3256 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3257
3258 intel_dp->want_panel_vdd = false;
3259
3260 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3261 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3262
3263 wait_panel_off(intel_dp);
3264 intel_dp->panel_power_off_time = ktime_get_boottime();
3265
3266 /* We got a reference when we enabled the VDD. */
3267 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3268 }
3269
intel_edp_panel_off(struct intel_dp * intel_dp)3270 void intel_edp_panel_off(struct intel_dp *intel_dp)
3271 {
3272 intel_wakeref_t wakeref;
3273
3274 if (!intel_dp_is_edp(intel_dp))
3275 return;
3276
3277 with_pps_lock(intel_dp, wakeref)
3278 edp_panel_off(intel_dp);
3279 }
3280
3281 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)3282 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3283 {
3284 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3285 intel_wakeref_t wakeref;
3286
3287 /*
3288 * If we enable the backlight right away following a panel power
3289 * on, we may see slight flicker as the panel syncs with the eDP
3290 * link. So delay a bit to make sure the image is solid before
3291 * allowing it to appear.
3292 */
3293 wait_backlight_on(intel_dp);
3294
3295 with_pps_lock(intel_dp, wakeref) {
3296 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3297 u32 pp;
3298
3299 pp = ilk_get_pp_control(intel_dp);
3300 pp |= EDP_BLC_ENABLE;
3301
3302 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3303 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3304 }
3305 }
3306
3307 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)3308 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3309 const struct drm_connector_state *conn_state)
3310 {
3311 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3312 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3313
3314 if (!intel_dp_is_edp(intel_dp))
3315 return;
3316
3317 drm_dbg_kms(&i915->drm, "\n");
3318
3319 intel_panel_enable_backlight(crtc_state, conn_state);
3320 _intel_edp_backlight_on(intel_dp);
3321 }
3322
3323 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)3324 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3325 {
3326 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3327 intel_wakeref_t wakeref;
3328
3329 if (!intel_dp_is_edp(intel_dp))
3330 return;
3331
3332 with_pps_lock(intel_dp, wakeref) {
3333 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3334 u32 pp;
3335
3336 pp = ilk_get_pp_control(intel_dp);
3337 pp &= ~EDP_BLC_ENABLE;
3338
3339 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3340 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3341 }
3342
3343 intel_dp->last_backlight_off = jiffies;
3344 edp_wait_backlight_off(intel_dp);
3345 }
3346
3347 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(const struct drm_connector_state * old_conn_state)3348 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3349 {
3350 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3351 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3352
3353 if (!intel_dp_is_edp(intel_dp))
3354 return;
3355
3356 drm_dbg_kms(&i915->drm, "\n");
3357
3358 _intel_edp_backlight_off(intel_dp);
3359 intel_panel_disable_backlight(old_conn_state);
3360 }
3361
3362 /*
3363 * Hook for controlling the panel power control backlight through the bl_power
3364 * sysfs attribute. Take care to handle multiple calls.
3365 */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)3366 static void intel_edp_backlight_power(struct intel_connector *connector,
3367 bool enable)
3368 {
3369 struct drm_i915_private *i915 = to_i915(connector->base.dev);
3370 struct intel_dp *intel_dp = intel_attached_dp(connector);
3371 intel_wakeref_t wakeref;
3372 bool is_enabled;
3373
3374 is_enabled = false;
3375 with_pps_lock(intel_dp, wakeref)
3376 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3377 if (is_enabled == enable)
3378 return;
3379
3380 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3381 enable ? "enable" : "disable");
3382
3383 if (enable)
3384 _intel_edp_backlight_on(intel_dp);
3385 else
3386 _intel_edp_backlight_off(intel_dp);
3387 }
3388
assert_dp_port(struct intel_dp * intel_dp,bool state)3389 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3390 {
3391 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3392 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3393 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3394
3395 I915_STATE_WARN(cur_state != state,
3396 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3397 dig_port->base.base.base.id, dig_port->base.base.name,
3398 onoff(state), onoff(cur_state));
3399 }
3400 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3401
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)3402 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3403 {
3404 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3405
3406 I915_STATE_WARN(cur_state != state,
3407 "eDP PLL state assertion failure (expected %s, current %s)\n",
3408 onoff(state), onoff(cur_state));
3409 }
3410 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3411 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3412
ilk_edp_pll_on(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)3413 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3414 const struct intel_crtc_state *pipe_config)
3415 {
3416 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3418
3419 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3420 assert_dp_port_disabled(intel_dp);
3421 assert_edp_pll_disabled(dev_priv);
3422
3423 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3424 pipe_config->port_clock);
3425
3426 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3427
3428 if (pipe_config->port_clock == 162000)
3429 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3430 else
3431 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3432
3433 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3434 intel_de_posting_read(dev_priv, DP_A);
3435 udelay(500);
3436
3437 /*
3438 * [DevILK] Work around required when enabling DP PLL
3439 * while a pipe is enabled going to FDI:
3440 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3441 * 2. Program DP PLL enable
3442 */
3443 if (IS_GEN(dev_priv, 5))
3444 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3445
3446 intel_dp->DP |= DP_PLL_ENABLE;
3447
3448 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3449 intel_de_posting_read(dev_priv, DP_A);
3450 udelay(200);
3451 }
3452
ilk_edp_pll_off(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3453 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3454 const struct intel_crtc_state *old_crtc_state)
3455 {
3456 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3458
3459 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3460 assert_dp_port_disabled(intel_dp);
3461 assert_edp_pll_enabled(dev_priv);
3462
3463 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3464
3465 intel_dp->DP &= ~DP_PLL_ENABLE;
3466
3467 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3468 intel_de_posting_read(dev_priv, DP_A);
3469 udelay(200);
3470 }
3471
downstream_hpd_needs_d0(struct intel_dp * intel_dp)3472 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3473 {
3474 /*
3475 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3476 * be capable of signalling downstream hpd with a long pulse.
3477 * Whether or not that means D3 is safe to use is not clear,
3478 * but let's assume so until proven otherwise.
3479 *
3480 * FIXME should really check all downstream ports...
3481 */
3482 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3483 drm_dp_is_branch(intel_dp->dpcd) &&
3484 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3485 }
3486
intel_dp_sink_set_decompression_state(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,bool enable)3487 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3488 const struct intel_crtc_state *crtc_state,
3489 bool enable)
3490 {
3491 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3492 int ret;
3493
3494 if (!crtc_state->dsc.compression_enable)
3495 return;
3496
3497 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3498 enable ? DP_DECOMPRESSION_EN : 0);
3499 if (ret < 0)
3500 drm_dbg_kms(&i915->drm,
3501 "Failed to %s sink decompression state\n",
3502 enable ? "enable" : "disable");
3503 }
3504
3505 /* If the device supports it, try to set the power state appropriately */
intel_dp_set_power(struct intel_dp * intel_dp,u8 mode)3506 void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode)
3507 {
3508 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3509 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3510 int ret, i;
3511
3512 /* Should have a valid DPCD by this point */
3513 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3514 return;
3515
3516 if (mode != DP_SET_POWER_D0) {
3517 if (downstream_hpd_needs_d0(intel_dp))
3518 return;
3519
3520 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3521 } else {
3522 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3523
3524 /*
3525 * When turning on, we need to retry for 1ms to give the sink
3526 * time to wake up.
3527 */
3528 for (i = 0; i < 3; i++) {
3529 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode);
3530 if (ret == 1)
3531 break;
3532 msleep(1);
3533 }
3534
3535 if (ret == 1 && lspcon->active)
3536 lspcon_wait_pcon_mode(lspcon);
3537 }
3538
3539 if (ret != 1)
3540 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n",
3541 encoder->base.base.id, encoder->base.name,
3542 mode == DP_SET_POWER_D0 ? "D0" : "D3");
3543 }
3544
cpt_dp_port_selected(struct drm_i915_private * dev_priv,enum port port,enum pipe * pipe)3545 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3546 enum port port, enum pipe *pipe)
3547 {
3548 enum pipe p;
3549
3550 for_each_pipe(dev_priv, p) {
3551 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3552
3553 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3554 *pipe = p;
3555 return true;
3556 }
3557 }
3558
3559 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3560 port_name(port));
3561
3562 /* must initialize pipe to something for the asserts */
3563 *pipe = PIPE_A;
3564
3565 return false;
3566 }
3567
intel_dp_port_enabled(struct drm_i915_private * dev_priv,i915_reg_t dp_reg,enum port port,enum pipe * pipe)3568 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3569 i915_reg_t dp_reg, enum port port,
3570 enum pipe *pipe)
3571 {
3572 bool ret;
3573 u32 val;
3574
3575 val = intel_de_read(dev_priv, dp_reg);
3576
3577 ret = val & DP_PORT_EN;
3578
3579 /* asserts want to know the pipe even if the port is disabled */
3580 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3581 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3582 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3583 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3584 else if (IS_CHERRYVIEW(dev_priv))
3585 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3586 else
3587 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3588
3589 return ret;
3590 }
3591
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)3592 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3593 enum pipe *pipe)
3594 {
3595 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3596 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3597 intel_wakeref_t wakeref;
3598 bool ret;
3599
3600 wakeref = intel_display_power_get_if_enabled(dev_priv,
3601 encoder->power_domain);
3602 if (!wakeref)
3603 return false;
3604
3605 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3606 encoder->port, pipe);
3607
3608 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3609
3610 return ret;
3611 }
3612
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)3613 static void intel_dp_get_config(struct intel_encoder *encoder,
3614 struct intel_crtc_state *pipe_config)
3615 {
3616 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3617 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3618 u32 tmp, flags = 0;
3619 enum port port = encoder->port;
3620 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3621
3622 if (encoder->type == INTEL_OUTPUT_EDP)
3623 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3624 else
3625 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3626
3627 tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3628
3629 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3630
3631 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3632 u32 trans_dp = intel_de_read(dev_priv,
3633 TRANS_DP_CTL(crtc->pipe));
3634
3635 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3636 flags |= DRM_MODE_FLAG_PHSYNC;
3637 else
3638 flags |= DRM_MODE_FLAG_NHSYNC;
3639
3640 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3641 flags |= DRM_MODE_FLAG_PVSYNC;
3642 else
3643 flags |= DRM_MODE_FLAG_NVSYNC;
3644 } else {
3645 if (tmp & DP_SYNC_HS_HIGH)
3646 flags |= DRM_MODE_FLAG_PHSYNC;
3647 else
3648 flags |= DRM_MODE_FLAG_NHSYNC;
3649
3650 if (tmp & DP_SYNC_VS_HIGH)
3651 flags |= DRM_MODE_FLAG_PVSYNC;
3652 else
3653 flags |= DRM_MODE_FLAG_NVSYNC;
3654 }
3655
3656 pipe_config->hw.adjusted_mode.flags |= flags;
3657
3658 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3659 pipe_config->limited_color_range = true;
3660
3661 pipe_config->lane_count =
3662 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3663
3664 intel_dp_get_m_n(crtc, pipe_config);
3665
3666 if (port == PORT_A) {
3667 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3668 pipe_config->port_clock = 162000;
3669 else
3670 pipe_config->port_clock = 270000;
3671 }
3672
3673 pipe_config->hw.adjusted_mode.crtc_clock =
3674 intel_dotclock_calculate(pipe_config->port_clock,
3675 &pipe_config->dp_m_n);
3676
3677 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3678 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3679 /*
3680 * This is a big fat ugly hack.
3681 *
3682 * Some machines in UEFI boot mode provide us a VBT that has 18
3683 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3684 * unknown we fail to light up. Yet the same BIOS boots up with
3685 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3686 * max, not what it tells us to use.
3687 *
3688 * Note: This will still be broken if the eDP panel is not lit
3689 * up by the BIOS, and thus we can't get the mode at module
3690 * load.
3691 */
3692 drm_dbg_kms(&dev_priv->drm,
3693 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3694 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3695 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3696 }
3697 }
3698
intel_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3699 static void intel_disable_dp(struct intel_atomic_state *state,
3700 struct intel_encoder *encoder,
3701 const struct intel_crtc_state *old_crtc_state,
3702 const struct drm_connector_state *old_conn_state)
3703 {
3704 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3705
3706 intel_dp->link_trained = false;
3707
3708 if (old_crtc_state->has_audio)
3709 intel_audio_codec_disable(encoder,
3710 old_crtc_state, old_conn_state);
3711
3712 /* Make sure the panel is off before trying to change the mode. But also
3713 * ensure that we have vdd while we switch off the panel. */
3714 intel_edp_panel_vdd_on(intel_dp);
3715 intel_edp_backlight_off(old_conn_state);
3716 intel_dp_set_power(intel_dp, DP_SET_POWER_D3);
3717 intel_edp_panel_off(intel_dp);
3718 }
3719
g4x_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3720 static void g4x_disable_dp(struct intel_atomic_state *state,
3721 struct intel_encoder *encoder,
3722 const struct intel_crtc_state *old_crtc_state,
3723 const struct drm_connector_state *old_conn_state)
3724 {
3725 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3726 }
3727
vlv_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3728 static void vlv_disable_dp(struct intel_atomic_state *state,
3729 struct intel_encoder *encoder,
3730 const struct intel_crtc_state *old_crtc_state,
3731 const struct drm_connector_state *old_conn_state)
3732 {
3733 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3734 }
3735
g4x_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3736 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3737 struct intel_encoder *encoder,
3738 const struct intel_crtc_state *old_crtc_state,
3739 const struct drm_connector_state *old_conn_state)
3740 {
3741 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3742 enum port port = encoder->port;
3743
3744 /*
3745 * Bspec does not list a specific disable sequence for g4x DP.
3746 * Follow the ilk+ sequence (disable pipe before the port) for
3747 * g4x DP as it does not suffer from underruns like the normal
3748 * g4x modeset sequence (disable pipe after the port).
3749 */
3750 intel_dp_link_down(encoder, old_crtc_state);
3751
3752 /* Only ilk+ has port A */
3753 if (port == PORT_A)
3754 ilk_edp_pll_off(intel_dp, old_crtc_state);
3755 }
3756
vlv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3757 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3758 struct intel_encoder *encoder,
3759 const struct intel_crtc_state *old_crtc_state,
3760 const struct drm_connector_state *old_conn_state)
3761 {
3762 intel_dp_link_down(encoder, old_crtc_state);
3763 }
3764
chv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3765 static void chv_post_disable_dp(struct intel_atomic_state *state,
3766 struct intel_encoder *encoder,
3767 const struct intel_crtc_state *old_crtc_state,
3768 const struct drm_connector_state *old_conn_state)
3769 {
3770 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3771
3772 intel_dp_link_down(encoder, old_crtc_state);
3773
3774 vlv_dpio_get(dev_priv);
3775
3776 /* Assert data lane reset */
3777 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3778
3779 vlv_dpio_put(dev_priv);
3780 }
3781
3782 static void
cpt_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3783 cpt_set_link_train(struct intel_dp *intel_dp,
3784 u8 dp_train_pat)
3785 {
3786 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3787 u32 *DP = &intel_dp->DP;
3788
3789 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3790
3791 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3792 case DP_TRAINING_PATTERN_DISABLE:
3793 *DP |= DP_LINK_TRAIN_OFF_CPT;
3794 break;
3795 case DP_TRAINING_PATTERN_1:
3796 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3797 break;
3798 case DP_TRAINING_PATTERN_2:
3799 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3800 break;
3801 case DP_TRAINING_PATTERN_3:
3802 drm_dbg_kms(&dev_priv->drm,
3803 "TPS3 not supported, using TPS2 instead\n");
3804 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3805 break;
3806 }
3807
3808 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3809 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3810 }
3811
3812 static void
g4x_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3813 g4x_set_link_train(struct intel_dp *intel_dp,
3814 u8 dp_train_pat)
3815 {
3816 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3817 u32 *DP = &intel_dp->DP;
3818
3819 *DP &= ~DP_LINK_TRAIN_MASK;
3820
3821 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3822 case DP_TRAINING_PATTERN_DISABLE:
3823 *DP |= DP_LINK_TRAIN_OFF;
3824 break;
3825 case DP_TRAINING_PATTERN_1:
3826 *DP |= DP_LINK_TRAIN_PAT_1;
3827 break;
3828 case DP_TRAINING_PATTERN_2:
3829 *DP |= DP_LINK_TRAIN_PAT_2;
3830 break;
3831 case DP_TRAINING_PATTERN_3:
3832 drm_dbg_kms(&dev_priv->drm,
3833 "TPS3 not supported, using TPS2 instead\n");
3834 *DP |= DP_LINK_TRAIN_PAT_2;
3835 break;
3836 }
3837
3838 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3839 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3840 }
3841
intel_dp_enable_port(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3842 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3843 const struct intel_crtc_state *old_crtc_state)
3844 {
3845 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3846
3847 /* enable with pattern 1 (as per spec) */
3848
3849 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3850
3851 /*
3852 * Magic for VLV/CHV. We _must_ first set up the register
3853 * without actually enabling the port, and then do another
3854 * write to enable the port. Otherwise link training will
3855 * fail when the power sequencer is freshly used for this port.
3856 */
3857 intel_dp->DP |= DP_PORT_EN;
3858 if (old_crtc_state->has_audio)
3859 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3860
3861 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3862 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3863 }
3864
intel_dp_configure_protocol_converter(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)3865 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp,
3866 const struct intel_crtc_state *crtc_state)
3867 {
3868 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3869 u8 tmp;
3870
3871 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
3872 return;
3873
3874 if (!drm_dp_is_branch(intel_dp->dpcd))
3875 return;
3876
3877 tmp = intel_dp->has_hdmi_sink ?
3878 DP_HDMI_DVI_OUTPUT_CONFIG : 0;
3879
3880 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3881 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
3882 drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
3883 enableddisabled(intel_dp->has_hdmi_sink));
3884
3885 tmp = crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
3886 intel_dp->dfp.ycbcr_444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
3887
3888 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3889 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
3890 drm_dbg_kms(&i915->drm,
3891 "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
3892 enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
3893
3894 tmp = 0;
3895
3896 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3897 DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
3898 drm_dbg_kms(&i915->drm,
3899 "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
3900 enableddisabled(false));
3901 }
3902
intel_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3903 static void intel_enable_dp(struct intel_atomic_state *state,
3904 struct intel_encoder *encoder,
3905 const struct intel_crtc_state *pipe_config,
3906 const struct drm_connector_state *conn_state)
3907 {
3908 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3909 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3910 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3911 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3912 enum pipe pipe = crtc->pipe;
3913 intel_wakeref_t wakeref;
3914
3915 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3916 return;
3917
3918 with_pps_lock(intel_dp, wakeref) {
3919 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3920 vlv_init_panel_power_sequencer(encoder, pipe_config);
3921
3922 intel_dp_enable_port(intel_dp, pipe_config);
3923
3924 edp_panel_vdd_on(intel_dp);
3925 edp_panel_on(intel_dp);
3926 edp_panel_vdd_off(intel_dp, true);
3927 }
3928
3929 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3930 unsigned int lane_mask = 0x0;
3931
3932 if (IS_CHERRYVIEW(dev_priv))
3933 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3934
3935 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3936 lane_mask);
3937 }
3938
3939 intel_dp_set_power(intel_dp, DP_SET_POWER_D0);
3940 intel_dp_configure_protocol_converter(intel_dp, pipe_config);
3941 intel_dp_start_link_train(intel_dp);
3942 intel_dp_stop_link_train(intel_dp);
3943
3944 if (pipe_config->has_audio) {
3945 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3946 pipe_name(pipe));
3947 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3948 }
3949 }
3950
g4x_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3951 static void g4x_enable_dp(struct intel_atomic_state *state,
3952 struct intel_encoder *encoder,
3953 const struct intel_crtc_state *pipe_config,
3954 const struct drm_connector_state *conn_state)
3955 {
3956 intel_enable_dp(state, encoder, pipe_config, conn_state);
3957 intel_edp_backlight_on(pipe_config, conn_state);
3958 }
3959
vlv_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3960 static void vlv_enable_dp(struct intel_atomic_state *state,
3961 struct intel_encoder *encoder,
3962 const struct intel_crtc_state *pipe_config,
3963 const struct drm_connector_state *conn_state)
3964 {
3965 intel_edp_backlight_on(pipe_config, conn_state);
3966 }
3967
g4x_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3968 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3969 struct intel_encoder *encoder,
3970 const struct intel_crtc_state *pipe_config,
3971 const struct drm_connector_state *conn_state)
3972 {
3973 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3974 enum port port = encoder->port;
3975
3976 intel_dp_prepare(encoder, pipe_config);
3977
3978 /* Only ilk+ has port A */
3979 if (port == PORT_A)
3980 ilk_edp_pll_on(intel_dp, pipe_config);
3981 }
3982
vlv_detach_power_sequencer(struct intel_dp * intel_dp)3983 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3984 {
3985 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3986 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3987 enum pipe pipe = intel_dp->pps_pipe;
3988 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3989
3990 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3991
3992 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3993 return;
3994
3995 edp_panel_vdd_off_sync(intel_dp);
3996
3997 /*
3998 * VLV seems to get confused when multiple power sequencers
3999 * have the same port selected (even if only one has power/vdd
4000 * enabled). The failure manifests as vlv_wait_port_ready() failing
4001 * CHV on the other hand doesn't seem to mind having the same port
4002 * selected in multiple power sequencers, but let's clear the
4003 * port select always when logically disconnecting a power sequencer
4004 * from a port.
4005 */
4006 drm_dbg_kms(&dev_priv->drm,
4007 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
4008 pipe_name(pipe), dig_port->base.base.base.id,
4009 dig_port->base.base.name);
4010 intel_de_write(dev_priv, pp_on_reg, 0);
4011 intel_de_posting_read(dev_priv, pp_on_reg);
4012
4013 intel_dp->pps_pipe = INVALID_PIPE;
4014 }
4015
vlv_steal_power_sequencer(struct drm_i915_private * dev_priv,enum pipe pipe)4016 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4017 enum pipe pipe)
4018 {
4019 struct intel_encoder *encoder;
4020
4021 lockdep_assert_held(&dev_priv->pps_mutex);
4022
4023 for_each_intel_dp(&dev_priv->drm, encoder) {
4024 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4025
4026 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4027 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4028 pipe_name(pipe), encoder->base.base.id,
4029 encoder->base.name);
4030
4031 if (intel_dp->pps_pipe != pipe)
4032 continue;
4033
4034 drm_dbg_kms(&dev_priv->drm,
4035 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4036 pipe_name(pipe), encoder->base.base.id,
4037 encoder->base.name);
4038
4039 /* make sure vdd is off before we steal it */
4040 vlv_detach_power_sequencer(intel_dp);
4041 }
4042 }
4043
vlv_init_panel_power_sequencer(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)4044 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4045 const struct intel_crtc_state *crtc_state)
4046 {
4047 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4048 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4049 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4050
4051 lockdep_assert_held(&dev_priv->pps_mutex);
4052
4053 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4054
4055 if (intel_dp->pps_pipe != INVALID_PIPE &&
4056 intel_dp->pps_pipe != crtc->pipe) {
4057 /*
4058 * If another power sequencer was being used on this
4059 * port previously make sure to turn off vdd there while
4060 * we still have control of it.
4061 */
4062 vlv_detach_power_sequencer(intel_dp);
4063 }
4064
4065 /*
4066 * We may be stealing the power
4067 * sequencer from another port.
4068 */
4069 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4070
4071 intel_dp->active_pipe = crtc->pipe;
4072
4073 if (!intel_dp_is_edp(intel_dp))
4074 return;
4075
4076 /* now it's all ours */
4077 intel_dp->pps_pipe = crtc->pipe;
4078
4079 drm_dbg_kms(&dev_priv->drm,
4080 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4081 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4082 encoder->base.name);
4083
4084 /* init power sequencer on this pipe and port */
4085 intel_dp_init_panel_power_sequencer(intel_dp);
4086 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4087 }
4088
vlv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4089 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4090 struct intel_encoder *encoder,
4091 const struct intel_crtc_state *pipe_config,
4092 const struct drm_connector_state *conn_state)
4093 {
4094 vlv_phy_pre_encoder_enable(encoder, pipe_config);
4095
4096 intel_enable_dp(state, encoder, pipe_config, conn_state);
4097 }
4098
vlv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4099 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4100 struct intel_encoder *encoder,
4101 const struct intel_crtc_state *pipe_config,
4102 const struct drm_connector_state *conn_state)
4103 {
4104 intel_dp_prepare(encoder, pipe_config);
4105
4106 vlv_phy_pre_pll_enable(encoder, pipe_config);
4107 }
4108
chv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4109 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4110 struct intel_encoder *encoder,
4111 const struct intel_crtc_state *pipe_config,
4112 const struct drm_connector_state *conn_state)
4113 {
4114 chv_phy_pre_encoder_enable(encoder, pipe_config);
4115
4116 intel_enable_dp(state, encoder, pipe_config, conn_state);
4117
4118 /* Second common lane will stay alive on its own now */
4119 chv_phy_release_cl2_override(encoder);
4120 }
4121
chv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4122 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4123 struct intel_encoder *encoder,
4124 const struct intel_crtc_state *pipe_config,
4125 const struct drm_connector_state *conn_state)
4126 {
4127 intel_dp_prepare(encoder, pipe_config);
4128
4129 chv_phy_pre_pll_enable(encoder, pipe_config);
4130 }
4131
chv_dp_post_pll_disable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)4132 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4133 struct intel_encoder *encoder,
4134 const struct intel_crtc_state *old_crtc_state,
4135 const struct drm_connector_state *old_conn_state)
4136 {
4137 chv_phy_post_pll_disable(encoder, old_crtc_state);
4138 }
4139
4140 /*
4141 * Fetch AUX CH registers 0x202 - 0x207 which contain
4142 * link status information
4143 */
4144 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,u8 * link_status)4145 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 *link_status)
4146 {
4147 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4148 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4149 }
4150
intel_dp_voltage_max_2(struct intel_dp * intel_dp)4151 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4152 {
4153 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4154 }
4155
intel_dp_voltage_max_3(struct intel_dp * intel_dp)4156 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4157 {
4158 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4159 }
4160
intel_dp_pre_empemph_max_2(struct intel_dp * intel_dp)4161 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4162 {
4163 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4164 }
4165
intel_dp_pre_empemph_max_3(struct intel_dp * intel_dp)4166 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4167 {
4168 return DP_TRAIN_PRE_EMPH_LEVEL_3;
4169 }
4170
vlv_set_signal_levels(struct intel_dp * intel_dp)4171 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4172 {
4173 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4174 unsigned long demph_reg_value, preemph_reg_value,
4175 uniqtranscale_reg_value;
4176 u8 train_set = intel_dp->train_set[0];
4177
4178 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4179 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4180 preemph_reg_value = 0x0004000;
4181 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4183 demph_reg_value = 0x2B405555;
4184 uniqtranscale_reg_value = 0x552AB83A;
4185 break;
4186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4187 demph_reg_value = 0x2B404040;
4188 uniqtranscale_reg_value = 0x5548B83A;
4189 break;
4190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4191 demph_reg_value = 0x2B245555;
4192 uniqtranscale_reg_value = 0x5560B83A;
4193 break;
4194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4195 demph_reg_value = 0x2B405555;
4196 uniqtranscale_reg_value = 0x5598DA3A;
4197 break;
4198 default:
4199 return;
4200 }
4201 break;
4202 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4203 preemph_reg_value = 0x0002000;
4204 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4206 demph_reg_value = 0x2B404040;
4207 uniqtranscale_reg_value = 0x5552B83A;
4208 break;
4209 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4210 demph_reg_value = 0x2B404848;
4211 uniqtranscale_reg_value = 0x5580B83A;
4212 break;
4213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4214 demph_reg_value = 0x2B404040;
4215 uniqtranscale_reg_value = 0x55ADDA3A;
4216 break;
4217 default:
4218 return;
4219 }
4220 break;
4221 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4222 preemph_reg_value = 0x0000000;
4223 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4224 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4225 demph_reg_value = 0x2B305555;
4226 uniqtranscale_reg_value = 0x5570B83A;
4227 break;
4228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4229 demph_reg_value = 0x2B2B4040;
4230 uniqtranscale_reg_value = 0x55ADDA3A;
4231 break;
4232 default:
4233 return;
4234 }
4235 break;
4236 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4237 preemph_reg_value = 0x0006000;
4238 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4239 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4240 demph_reg_value = 0x1B405555;
4241 uniqtranscale_reg_value = 0x55ADDA3A;
4242 break;
4243 default:
4244 return;
4245 }
4246 break;
4247 default:
4248 return;
4249 }
4250
4251 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4252 uniqtranscale_reg_value, 0);
4253 }
4254
chv_set_signal_levels(struct intel_dp * intel_dp)4255 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4256 {
4257 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4258 u32 deemph_reg_value, margin_reg_value;
4259 bool uniq_trans_scale = false;
4260 u8 train_set = intel_dp->train_set[0];
4261
4262 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4263 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4264 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4265 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4266 deemph_reg_value = 128;
4267 margin_reg_value = 52;
4268 break;
4269 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4270 deemph_reg_value = 128;
4271 margin_reg_value = 77;
4272 break;
4273 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4274 deemph_reg_value = 128;
4275 margin_reg_value = 102;
4276 break;
4277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4278 deemph_reg_value = 128;
4279 margin_reg_value = 154;
4280 uniq_trans_scale = true;
4281 break;
4282 default:
4283 return;
4284 }
4285 break;
4286 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4287 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4288 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4289 deemph_reg_value = 85;
4290 margin_reg_value = 78;
4291 break;
4292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4293 deemph_reg_value = 85;
4294 margin_reg_value = 116;
4295 break;
4296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4297 deemph_reg_value = 85;
4298 margin_reg_value = 154;
4299 break;
4300 default:
4301 return;
4302 }
4303 break;
4304 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4305 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4306 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4307 deemph_reg_value = 64;
4308 margin_reg_value = 104;
4309 break;
4310 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4311 deemph_reg_value = 64;
4312 margin_reg_value = 154;
4313 break;
4314 default:
4315 return;
4316 }
4317 break;
4318 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4319 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4321 deemph_reg_value = 43;
4322 margin_reg_value = 154;
4323 break;
4324 default:
4325 return;
4326 }
4327 break;
4328 default:
4329 return;
4330 }
4331
4332 chv_set_phy_signal_level(encoder, deemph_reg_value,
4333 margin_reg_value, uniq_trans_scale);
4334 }
4335
g4x_signal_levels(u8 train_set)4336 static u32 g4x_signal_levels(u8 train_set)
4337 {
4338 u32 signal_levels = 0;
4339
4340 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4342 default:
4343 signal_levels |= DP_VOLTAGE_0_4;
4344 break;
4345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4346 signal_levels |= DP_VOLTAGE_0_6;
4347 break;
4348 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4349 signal_levels |= DP_VOLTAGE_0_8;
4350 break;
4351 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4352 signal_levels |= DP_VOLTAGE_1_2;
4353 break;
4354 }
4355 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4356 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4357 default:
4358 signal_levels |= DP_PRE_EMPHASIS_0;
4359 break;
4360 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4361 signal_levels |= DP_PRE_EMPHASIS_3_5;
4362 break;
4363 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4364 signal_levels |= DP_PRE_EMPHASIS_6;
4365 break;
4366 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4367 signal_levels |= DP_PRE_EMPHASIS_9_5;
4368 break;
4369 }
4370 return signal_levels;
4371 }
4372
4373 static void
g4x_set_signal_levels(struct intel_dp * intel_dp)4374 g4x_set_signal_levels(struct intel_dp *intel_dp)
4375 {
4376 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4377 u8 train_set = intel_dp->train_set[0];
4378 u32 signal_levels;
4379
4380 signal_levels = g4x_signal_levels(train_set);
4381
4382 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4383 signal_levels);
4384
4385 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4386 intel_dp->DP |= signal_levels;
4387
4388 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4389 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4390 }
4391
4392 /* SNB CPU eDP voltage swing and pre-emphasis control */
snb_cpu_edp_signal_levels(u8 train_set)4393 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4394 {
4395 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4396 DP_TRAIN_PRE_EMPHASIS_MASK);
4397
4398 switch (signal_levels) {
4399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4401 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4402 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4403 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4406 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4407 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4408 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4409 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4410 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4411 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4412 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4413 default:
4414 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4415 "0x%x\n", signal_levels);
4416 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4417 }
4418 }
4419
4420 static void
snb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4421 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4422 {
4423 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4424 u8 train_set = intel_dp->train_set[0];
4425 u32 signal_levels;
4426
4427 signal_levels = snb_cpu_edp_signal_levels(train_set);
4428
4429 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4430 signal_levels);
4431
4432 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4433 intel_dp->DP |= signal_levels;
4434
4435 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4436 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4437 }
4438
4439 /* IVB CPU eDP voltage swing and pre-emphasis control */
ivb_cpu_edp_signal_levels(u8 train_set)4440 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4441 {
4442 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4443 DP_TRAIN_PRE_EMPHASIS_MASK);
4444
4445 switch (signal_levels) {
4446 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4447 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4449 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4452 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4453
4454 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4455 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4457 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4458
4459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4460 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4462 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4463
4464 default:
4465 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4466 "0x%x\n", signal_levels);
4467 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4468 }
4469 }
4470
4471 static void
ivb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4472 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4473 {
4474 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4475 u8 train_set = intel_dp->train_set[0];
4476 u32 signal_levels;
4477
4478 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4479
4480 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4481 signal_levels);
4482
4483 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4484 intel_dp->DP |= signal_levels;
4485
4486 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4487 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4488 }
4489
intel_dp_set_signal_levels(struct intel_dp * intel_dp)4490 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4491 {
4492 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4493 u8 train_set = intel_dp->train_set[0];
4494
4495 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4496 train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4497 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4498 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4499 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4500 DP_TRAIN_PRE_EMPHASIS_SHIFT,
4501 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4502 " (max)" : "");
4503
4504 intel_dp->set_signal_levels(intel_dp);
4505 }
4506
4507 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,u8 dp_train_pat)4508 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4509 u8 dp_train_pat)
4510 {
4511 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4512 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4513
4514 if (dp_train_pat & train_pat_mask)
4515 drm_dbg_kms(&dev_priv->drm,
4516 "Using DP training pattern TPS%d\n",
4517 dp_train_pat & train_pat_mask);
4518
4519 intel_dp->set_link_train(intel_dp, dp_train_pat);
4520 }
4521
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)4522 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4523 {
4524 if (intel_dp->set_idle_link_train)
4525 intel_dp->set_idle_link_train(intel_dp);
4526 }
4527
4528 static void
intel_dp_link_down(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)4529 intel_dp_link_down(struct intel_encoder *encoder,
4530 const struct intel_crtc_state *old_crtc_state)
4531 {
4532 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4533 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4534 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4535 enum port port = encoder->port;
4536 u32 DP = intel_dp->DP;
4537
4538 if (drm_WARN_ON(&dev_priv->drm,
4539 (intel_de_read(dev_priv, intel_dp->output_reg) &
4540 DP_PORT_EN) == 0))
4541 return;
4542
4543 drm_dbg_kms(&dev_priv->drm, "\n");
4544
4545 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4546 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4547 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4548 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4549 } else {
4550 DP &= ~DP_LINK_TRAIN_MASK;
4551 DP |= DP_LINK_TRAIN_PAT_IDLE;
4552 }
4553 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4554 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4555
4556 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4557 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4558 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4559
4560 /*
4561 * HW workaround for IBX, we need to move the port
4562 * to transcoder A after disabling it to allow the
4563 * matching HDMI port to be enabled on transcoder A.
4564 */
4565 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4566 /*
4567 * We get CPU/PCH FIFO underruns on the other pipe when
4568 * doing the workaround. Sweep them under the rug.
4569 */
4570 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4571 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4572
4573 /* always enable with pattern 1 (as per spec) */
4574 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4575 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4576 DP_LINK_TRAIN_PAT_1;
4577 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4578 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4579
4580 DP &= ~DP_PORT_EN;
4581 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4582 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4583
4584 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4585 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4586 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4587 }
4588
4589 msleep(intel_dp->panel_power_down_delay);
4590
4591 intel_dp->DP = DP;
4592
4593 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4594 intel_wakeref_t wakeref;
4595
4596 with_pps_lock(intel_dp, wakeref)
4597 intel_dp->active_pipe = INVALID_PIPE;
4598 }
4599 }
4600
intel_dp_get_colorimetry_status(struct intel_dp * intel_dp)4601 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4602 {
4603 u8 dprx = 0;
4604
4605 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4606 &dprx) != 1)
4607 return false;
4608 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4609 }
4610
intel_dp_get_dsc_sink_cap(struct intel_dp * intel_dp)4611 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4612 {
4613 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4614
4615 /*
4616 * Clear the cached register set to avoid using stale values
4617 * for the sinks that do not support DSC.
4618 */
4619 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4620
4621 /* Clear fec_capable to avoid using stale values */
4622 intel_dp->fec_capable = 0;
4623
4624 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4625 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4626 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4627 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4628 intel_dp->dsc_dpcd,
4629 sizeof(intel_dp->dsc_dpcd)) < 0)
4630 drm_err(&i915->drm,
4631 "Failed to read DPCD register 0x%x\n",
4632 DP_DSC_SUPPORT);
4633
4634 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4635 (int)sizeof(intel_dp->dsc_dpcd),
4636 intel_dp->dsc_dpcd);
4637
4638 /* FEC is supported only on DP 1.4 */
4639 if (!intel_dp_is_edp(intel_dp) &&
4640 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4641 &intel_dp->fec_capable) < 0)
4642 drm_err(&i915->drm,
4643 "Failed to read FEC DPCD register\n");
4644
4645 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4646 intel_dp->fec_capable);
4647 }
4648 }
4649
4650 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)4651 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4652 {
4653 struct drm_i915_private *dev_priv =
4654 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4655
4656 /* this function is meant to be called only once */
4657 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4658
4659 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4660 return false;
4661
4662 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4663 drm_dp_is_branch(intel_dp->dpcd));
4664
4665 /*
4666 * Read the eDP display control registers.
4667 *
4668 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4669 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4670 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4671 * method). The display control registers should read zero if they're
4672 * not supported anyway.
4673 */
4674 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4675 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4676 sizeof(intel_dp->edp_dpcd))
4677 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4678 (int)sizeof(intel_dp->edp_dpcd),
4679 intel_dp->edp_dpcd);
4680
4681 /*
4682 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4683 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4684 */
4685 intel_psr_init_dpcd(intel_dp);
4686
4687 /* Clear the default sink rates */
4688 intel_dp->num_sink_rates = 0;
4689
4690 /* Read the eDP 1.4+ supported link rates. */
4691 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4692 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4693 int i;
4694
4695 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4696 sink_rates, sizeof(sink_rates));
4697
4698 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4699 int val = le16_to_cpu(sink_rates[i]);
4700
4701 if (val == 0)
4702 break;
4703
4704 /* Value read multiplied by 200kHz gives the per-lane
4705 * link rate in kHz. The source rates are, however,
4706 * stored in terms of LS_Clk kHz. The full conversion
4707 * back to symbols is
4708 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4709 */
4710 intel_dp->sink_rates[i] = (val * 200) / 10;
4711 }
4712 intel_dp->num_sink_rates = i;
4713 }
4714
4715 /*
4716 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4717 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4718 */
4719 if (intel_dp->num_sink_rates)
4720 intel_dp->use_rate_select = true;
4721 else
4722 intel_dp_set_sink_rates(intel_dp);
4723
4724 intel_dp_set_common_rates(intel_dp);
4725
4726 /* Read the eDP DSC DPCD registers */
4727 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4728 intel_dp_get_dsc_sink_cap(intel_dp);
4729
4730 return true;
4731 }
4732
4733 static bool
intel_dp_has_sink_count(struct intel_dp * intel_dp)4734 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4735 {
4736 if (!intel_dp->attached_connector)
4737 return false;
4738
4739 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4740 intel_dp->dpcd,
4741 &intel_dp->desc);
4742 }
4743
4744 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)4745 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4746 {
4747 int ret;
4748
4749 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4750 return false;
4751
4752 /*
4753 * Don't clobber cached eDP rates. Also skip re-reading
4754 * the OUI/ID since we know it won't change.
4755 */
4756 if (!intel_dp_is_edp(intel_dp)) {
4757 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4758 drm_dp_is_branch(intel_dp->dpcd));
4759
4760 intel_dp_set_sink_rates(intel_dp);
4761 intel_dp_set_common_rates(intel_dp);
4762 }
4763
4764 if (intel_dp_has_sink_count(intel_dp)) {
4765 ret = drm_dp_read_sink_count(&intel_dp->aux);
4766 if (ret < 0)
4767 return false;
4768
4769 /*
4770 * Sink count can change between short pulse hpd hence
4771 * a member variable in intel_dp will track any changes
4772 * between short pulse interrupts.
4773 */
4774 intel_dp->sink_count = ret;
4775
4776 /*
4777 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4778 * a dongle is present but no display. Unless we require to know
4779 * if a dongle is present or not, we don't need to update
4780 * downstream port information. So, an early return here saves
4781 * time from performing other operations which are not required.
4782 */
4783 if (!intel_dp->sink_count)
4784 return false;
4785 }
4786
4787 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4788 intel_dp->downstream_ports) == 0;
4789 }
4790
4791 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)4792 intel_dp_can_mst(struct intel_dp *intel_dp)
4793 {
4794 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4795
4796 return i915->params.enable_dp_mst &&
4797 intel_dp->can_mst &&
4798 drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4799 }
4800
4801 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)4802 intel_dp_configure_mst(struct intel_dp *intel_dp)
4803 {
4804 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4805 struct intel_encoder *encoder =
4806 &dp_to_dig_port(intel_dp)->base;
4807 bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4808
4809 drm_dbg_kms(&i915->drm,
4810 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4811 encoder->base.base.id, encoder->base.name,
4812 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4813 yesno(i915->params.enable_dp_mst));
4814
4815 if (!intel_dp->can_mst)
4816 return;
4817
4818 intel_dp->is_mst = sink_can_mst &&
4819 i915->params.enable_dp_mst;
4820
4821 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4822 intel_dp->is_mst);
4823 }
4824
4825 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)4826 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4827 {
4828 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4829 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4830 DP_DPRX_ESI_LEN;
4831 }
4832
4833 bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)4834 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4835 const struct drm_connector_state *conn_state)
4836 {
4837 /*
4838 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4839 * of Color Encoding Format and Content Color Gamut], in order to
4840 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4841 */
4842 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4843 return true;
4844
4845 switch (conn_state->colorspace) {
4846 case DRM_MODE_COLORIMETRY_SYCC_601:
4847 case DRM_MODE_COLORIMETRY_OPYCC_601:
4848 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4849 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4850 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4851 return true;
4852 default:
4853 break;
4854 }
4855
4856 return false;
4857 }
4858
intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp,size_t size)4859 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4860 struct dp_sdp *sdp, size_t size)
4861 {
4862 size_t length = sizeof(struct dp_sdp);
4863
4864 if (size < length)
4865 return -ENOSPC;
4866
4867 memset(sdp, 0, size);
4868
4869 /*
4870 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4871 * VSC SDP Header Bytes
4872 */
4873 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4874 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4875 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4876 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4877
4878 /*
4879 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4880 * per DP 1.4a spec.
4881 */
4882 if (vsc->revision != 0x5)
4883 goto out;
4884
4885 /* VSC SDP Payload for DB16 through DB18 */
4886 /* Pixel Encoding and Colorimetry Formats */
4887 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4888 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4889
4890 switch (vsc->bpc) {
4891 case 6:
4892 /* 6bpc: 0x0 */
4893 break;
4894 case 8:
4895 sdp->db[17] = 0x1; /* DB17[3:0] */
4896 break;
4897 case 10:
4898 sdp->db[17] = 0x2;
4899 break;
4900 case 12:
4901 sdp->db[17] = 0x3;
4902 break;
4903 case 16:
4904 sdp->db[17] = 0x4;
4905 break;
4906 default:
4907 MISSING_CASE(vsc->bpc);
4908 break;
4909 }
4910 /* Dynamic Range and Component Bit Depth */
4911 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4912 sdp->db[17] |= 0x80; /* DB17[7] */
4913
4914 /* Content Type */
4915 sdp->db[18] = vsc->content_type & 0x7;
4916
4917 out:
4918 return length;
4919 }
4920
4921 static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe * drm_infoframe,struct dp_sdp * sdp,size_t size)4922 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4923 struct dp_sdp *sdp,
4924 size_t size)
4925 {
4926 size_t length = sizeof(struct dp_sdp);
4927 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4928 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4929 ssize_t len;
4930
4931 if (size < length)
4932 return -ENOSPC;
4933
4934 memset(sdp, 0, size);
4935
4936 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4937 if (len < 0) {
4938 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4939 return -ENOSPC;
4940 }
4941
4942 if (len != infoframe_size) {
4943 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4944 return -ENOSPC;
4945 }
4946
4947 /*
4948 * Set up the infoframe sdp packet for HDR static metadata.
4949 * Prepare VSC Header for SU as per DP 1.4a spec,
4950 * Table 2-100 and Table 2-101
4951 */
4952
4953 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4954 sdp->sdp_header.HB0 = 0;
4955 /*
4956 * Packet Type 80h + Non-audio INFOFRAME Type value
4957 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4958 * - 80h + Non-audio INFOFRAME Type value
4959 * - InfoFrame Type: 0x07
4960 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4961 */
4962 sdp->sdp_header.HB1 = drm_infoframe->type;
4963 /*
4964 * Least Significant Eight Bits of (Data Byte Count – 1)
4965 * infoframe_size - 1
4966 */
4967 sdp->sdp_header.HB2 = 0x1D;
4968 /* INFOFRAME SDP Version Number */
4969 sdp->sdp_header.HB3 = (0x13 << 2);
4970 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4971 sdp->db[0] = drm_infoframe->version;
4972 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4973 sdp->db[1] = drm_infoframe->length;
4974 /*
4975 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4976 * HDMI_INFOFRAME_HEADER_SIZE
4977 */
4978 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4979 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4980 HDMI_DRM_INFOFRAME_SIZE);
4981
4982 /*
4983 * Size of DP infoframe sdp packet for HDR static metadata consists of
4984 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4985 * - Two Data Blocks: 2 bytes
4986 * CTA Header Byte2 (INFOFRAME Version Number)
4987 * CTA Header Byte3 (Length of INFOFRAME)
4988 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4989 *
4990 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4991 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4992 * will pad rest of the size.
4993 */
4994 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4995 }
4996
intel_write_dp_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type)4997 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4998 const struct intel_crtc_state *crtc_state,
4999 unsigned int type)
5000 {
5001 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5002 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5003 struct dp_sdp sdp = {};
5004 ssize_t len;
5005
5006 if ((crtc_state->infoframes.enable &
5007 intel_hdmi_infoframe_enable(type)) == 0)
5008 return;
5009
5010 switch (type) {
5011 case DP_SDP_VSC:
5012 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
5013 sizeof(sdp));
5014 break;
5015 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5016 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5017 &sdp, sizeof(sdp));
5018 break;
5019 default:
5020 MISSING_CASE(type);
5021 return;
5022 }
5023
5024 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5025 return;
5026
5027 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5028 }
5029
intel_write_dp_vsc_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5030 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5031 const struct intel_crtc_state *crtc_state,
5032 struct drm_dp_vsc_sdp *vsc)
5033 {
5034 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5035 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5036 struct dp_sdp sdp = {};
5037 ssize_t len;
5038
5039 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5040
5041 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5042 return;
5043
5044 dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5045 &sdp, len);
5046 }
5047
intel_dp_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)5048 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5049 bool enable,
5050 const struct intel_crtc_state *crtc_state,
5051 const struct drm_connector_state *conn_state)
5052 {
5053 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5054 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5055 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5056 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5057 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5058 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5059 u32 val = intel_de_read(dev_priv, reg);
5060
5061 /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5062 /* When PSR is enabled, this routine doesn't disable VSC DIP */
5063 if (intel_psr_enabled(intel_dp))
5064 val &= ~dip_enable;
5065 else
5066 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5067
5068 if (!enable) {
5069 intel_de_write(dev_priv, reg, val);
5070 intel_de_posting_read(dev_priv, reg);
5071 return;
5072 }
5073
5074 intel_de_write(dev_priv, reg, val);
5075 intel_de_posting_read(dev_priv, reg);
5076
5077 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5078 if (!intel_psr_enabled(intel_dp))
5079 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5080
5081 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5082 }
5083
intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp * vsc,const void * buffer,size_t size)5084 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5085 const void *buffer, size_t size)
5086 {
5087 const struct dp_sdp *sdp = buffer;
5088
5089 if (size < sizeof(struct dp_sdp))
5090 return -EINVAL;
5091
5092 memset(vsc, 0, sizeof(*vsc));
5093
5094 if (sdp->sdp_header.HB0 != 0)
5095 return -EINVAL;
5096
5097 if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5098 return -EINVAL;
5099
5100 vsc->sdp_type = sdp->sdp_header.HB1;
5101 vsc->revision = sdp->sdp_header.HB2;
5102 vsc->length = sdp->sdp_header.HB3;
5103
5104 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5105 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5106 /*
5107 * - HB2 = 0x2, HB3 = 0x8
5108 * VSC SDP supporting 3D stereo + PSR
5109 * - HB2 = 0x4, HB3 = 0xe
5110 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5111 * first scan line of the SU region (applies to eDP v1.4b
5112 * and higher).
5113 */
5114 return 0;
5115 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5116 /*
5117 * - HB2 = 0x5, HB3 = 0x13
5118 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5119 * Format.
5120 */
5121 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5122 vsc->colorimetry = sdp->db[16] & 0xf;
5123 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5124
5125 switch (sdp->db[17] & 0x7) {
5126 case 0x0:
5127 vsc->bpc = 6;
5128 break;
5129 case 0x1:
5130 vsc->bpc = 8;
5131 break;
5132 case 0x2:
5133 vsc->bpc = 10;
5134 break;
5135 case 0x3:
5136 vsc->bpc = 12;
5137 break;
5138 case 0x4:
5139 vsc->bpc = 16;
5140 break;
5141 default:
5142 MISSING_CASE(sdp->db[17] & 0x7);
5143 return -EINVAL;
5144 }
5145
5146 vsc->content_type = sdp->db[18] & 0x7;
5147 } else {
5148 return -EINVAL;
5149 }
5150
5151 return 0;
5152 }
5153
5154 static int
intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe * drm_infoframe,const void * buffer,size_t size)5155 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5156 const void *buffer, size_t size)
5157 {
5158 int ret;
5159
5160 const struct dp_sdp *sdp = buffer;
5161
5162 if (size < sizeof(struct dp_sdp))
5163 return -EINVAL;
5164
5165 if (sdp->sdp_header.HB0 != 0)
5166 return -EINVAL;
5167
5168 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5169 return -EINVAL;
5170
5171 /*
5172 * Least Significant Eight Bits of (Data Byte Count – 1)
5173 * 1Dh (i.e., Data Byte Count = 30 bytes).
5174 */
5175 if (sdp->sdp_header.HB2 != 0x1D)
5176 return -EINVAL;
5177
5178 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5179 if ((sdp->sdp_header.HB3 & 0x3) != 0)
5180 return -EINVAL;
5181
5182 /* INFOFRAME SDP Version Number */
5183 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5184 return -EINVAL;
5185
5186 /* CTA Header Byte 2 (INFOFRAME Version Number) */
5187 if (sdp->db[0] != 1)
5188 return -EINVAL;
5189
5190 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5191 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5192 return -EINVAL;
5193
5194 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5195 HDMI_DRM_INFOFRAME_SIZE);
5196
5197 return ret;
5198 }
5199
intel_read_dp_vsc_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5200 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5201 struct intel_crtc_state *crtc_state,
5202 struct drm_dp_vsc_sdp *vsc)
5203 {
5204 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5205 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5206 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5207 unsigned int type = DP_SDP_VSC;
5208 struct dp_sdp sdp = {};
5209 int ret;
5210
5211 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5212 if (intel_psr_enabled(intel_dp))
5213 return;
5214
5215 if ((crtc_state->infoframes.enable &
5216 intel_hdmi_infoframe_enable(type)) == 0)
5217 return;
5218
5219 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5220
5221 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5222
5223 if (ret)
5224 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5225 }
5226
intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct hdmi_drm_infoframe * drm_infoframe)5227 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5228 struct intel_crtc_state *crtc_state,
5229 struct hdmi_drm_infoframe *drm_infoframe)
5230 {
5231 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5232 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5233 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5234 struct dp_sdp sdp = {};
5235 int ret;
5236
5237 if ((crtc_state->infoframes.enable &
5238 intel_hdmi_infoframe_enable(type)) == 0)
5239 return;
5240
5241 dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5242 sizeof(sdp));
5243
5244 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5245 sizeof(sdp));
5246
5247 if (ret)
5248 drm_dbg_kms(&dev_priv->drm,
5249 "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5250 }
5251
intel_read_dp_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,unsigned int type)5252 void intel_read_dp_sdp(struct intel_encoder *encoder,
5253 struct intel_crtc_state *crtc_state,
5254 unsigned int type)
5255 {
5256 if (encoder->type != INTEL_OUTPUT_DDI)
5257 return;
5258
5259 switch (type) {
5260 case DP_SDP_VSC:
5261 intel_read_dp_vsc_sdp(encoder, crtc_state,
5262 &crtc_state->infoframes.vsc);
5263 break;
5264 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5265 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5266 &crtc_state->infoframes.drm.drm);
5267 break;
5268 default:
5269 MISSING_CASE(type);
5270 break;
5271 }
5272 }
5273
intel_dp_autotest_link_training(struct intel_dp * intel_dp)5274 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5275 {
5276 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5277 int status = 0;
5278 int test_link_rate;
5279 u8 test_lane_count, test_link_bw;
5280 /* (DP CTS 1.2)
5281 * 4.3.1.11
5282 */
5283 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5284 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5285 &test_lane_count);
5286
5287 if (status <= 0) {
5288 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5289 return DP_TEST_NAK;
5290 }
5291 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5292
5293 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5294 &test_link_bw);
5295 if (status <= 0) {
5296 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5297 return DP_TEST_NAK;
5298 }
5299 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5300
5301 /* Validate the requested link rate and lane count */
5302 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5303 test_lane_count))
5304 return DP_TEST_NAK;
5305
5306 intel_dp->compliance.test_lane_count = test_lane_count;
5307 intel_dp->compliance.test_link_rate = test_link_rate;
5308
5309 return DP_TEST_ACK;
5310 }
5311
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)5312 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5313 {
5314 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5315 u8 test_pattern;
5316 u8 test_misc;
5317 __be16 h_width, v_height;
5318 int status = 0;
5319
5320 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5321 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5322 &test_pattern);
5323 if (status <= 0) {
5324 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5325 return DP_TEST_NAK;
5326 }
5327 if (test_pattern != DP_COLOR_RAMP)
5328 return DP_TEST_NAK;
5329
5330 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5331 &h_width, 2);
5332 if (status <= 0) {
5333 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5334 return DP_TEST_NAK;
5335 }
5336
5337 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5338 &v_height, 2);
5339 if (status <= 0) {
5340 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5341 return DP_TEST_NAK;
5342 }
5343
5344 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5345 &test_misc);
5346 if (status <= 0) {
5347 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5348 return DP_TEST_NAK;
5349 }
5350 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5351 return DP_TEST_NAK;
5352 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5353 return DP_TEST_NAK;
5354 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5355 case DP_TEST_BIT_DEPTH_6:
5356 intel_dp->compliance.test_data.bpc = 6;
5357 break;
5358 case DP_TEST_BIT_DEPTH_8:
5359 intel_dp->compliance.test_data.bpc = 8;
5360 break;
5361 default:
5362 return DP_TEST_NAK;
5363 }
5364
5365 intel_dp->compliance.test_data.video_pattern = test_pattern;
5366 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5367 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5368 /* Set test active flag here so userspace doesn't interrupt things */
5369 intel_dp->compliance.test_active = true;
5370
5371 return DP_TEST_ACK;
5372 }
5373
intel_dp_autotest_edid(struct intel_dp * intel_dp)5374 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5375 {
5376 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5377 u8 test_result = DP_TEST_ACK;
5378 struct intel_connector *intel_connector = intel_dp->attached_connector;
5379 struct drm_connector *connector = &intel_connector->base;
5380
5381 if (intel_connector->detect_edid == NULL ||
5382 connector->edid_corrupt ||
5383 intel_dp->aux.i2c_defer_count > 6) {
5384 /* Check EDID read for NACKs, DEFERs and corruption
5385 * (DP CTS 1.2 Core r1.1)
5386 * 4.2.2.4 : Failed EDID read, I2C_NAK
5387 * 4.2.2.5 : Failed EDID read, I2C_DEFER
5388 * 4.2.2.6 : EDID corruption detected
5389 * Use failsafe mode for all cases
5390 */
5391 if (intel_dp->aux.i2c_nack_count > 0 ||
5392 intel_dp->aux.i2c_defer_count > 0)
5393 drm_dbg_kms(&i915->drm,
5394 "EDID read had %d NACKs, %d DEFERs\n",
5395 intel_dp->aux.i2c_nack_count,
5396 intel_dp->aux.i2c_defer_count);
5397 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5398 } else {
5399 struct edid *block = intel_connector->detect_edid;
5400
5401 /* We have to write the checksum
5402 * of the last block read
5403 */
5404 block += intel_connector->detect_edid->extensions;
5405
5406 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5407 block->checksum) <= 0)
5408 drm_dbg_kms(&i915->drm,
5409 "Failed to write EDID checksum\n");
5410
5411 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5412 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5413 }
5414
5415 /* Set test active flag here so userspace doesn't interrupt things */
5416 intel_dp->compliance.test_active = true;
5417
5418 return test_result;
5419 }
5420
intel_dp_prepare_phytest(struct intel_dp * intel_dp)5421 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5422 {
5423 struct drm_dp_phy_test_params *data =
5424 &intel_dp->compliance.test_data.phytest;
5425
5426 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5427 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5428 return DP_TEST_NAK;
5429 }
5430
5431 /*
5432 * link_mst is set to false to avoid executing mst related code
5433 * during compliance testing.
5434 */
5435 intel_dp->link_mst = false;
5436
5437 return DP_TEST_ACK;
5438 }
5439
intel_dp_phy_pattern_update(struct intel_dp * intel_dp)5440 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5441 {
5442 struct drm_i915_private *dev_priv =
5443 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5444 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5445 struct drm_dp_phy_test_params *data =
5446 &intel_dp->compliance.test_data.phytest;
5447 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5448 enum pipe pipe = crtc->pipe;
5449 u32 pattern_val;
5450
5451 switch (data->phy_pattern) {
5452 case DP_PHY_TEST_PATTERN_NONE:
5453 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5454 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5455 break;
5456 case DP_PHY_TEST_PATTERN_D10_2:
5457 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5458 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5459 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5460 break;
5461 case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5462 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5463 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5464 DDI_DP_COMP_CTL_ENABLE |
5465 DDI_DP_COMP_CTL_SCRAMBLED_0);
5466 break;
5467 case DP_PHY_TEST_PATTERN_PRBS7:
5468 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5469 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5470 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5471 break;
5472 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5473 /*
5474 * FIXME: Ideally pattern should come from DPCD 0x250. As
5475 * current firmware of DPR-100 could not set it, so hardcoding
5476 * now for complaince test.
5477 */
5478 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5479 pattern_val = 0x3e0f83e0;
5480 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5481 pattern_val = 0x0f83e0f8;
5482 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5483 pattern_val = 0x0000f83e;
5484 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5485 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5486 DDI_DP_COMP_CTL_ENABLE |
5487 DDI_DP_COMP_CTL_CUSTOM80);
5488 break;
5489 case DP_PHY_TEST_PATTERN_CP2520:
5490 /*
5491 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5492 * current firmware of DPR-100 could not set it, so hardcoding
5493 * now for complaince test.
5494 */
5495 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5496 pattern_val = 0xFB;
5497 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5498 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5499 pattern_val);
5500 break;
5501 default:
5502 WARN(1, "Invalid Phy Test Pattern\n");
5503 }
5504 }
5505
5506 static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp * intel_dp)5507 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5508 {
5509 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5510 struct drm_device *dev = dig_port->base.base.dev;
5511 struct drm_i915_private *dev_priv = to_i915(dev);
5512 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5513 enum pipe pipe = crtc->pipe;
5514 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5515
5516 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5517 TRANS_DDI_FUNC_CTL(pipe));
5518 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5519 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5520
5521 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5522 TGL_TRANS_DDI_PORT_MASK);
5523 trans_conf_value &= ~PIPECONF_ENABLE;
5524 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5525
5526 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5527 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5528 trans_ddi_func_ctl_value);
5529 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5530 }
5531
5532 static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp * intel_dp,uint8_t lane_cnt)5533 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5534 {
5535 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5536 struct drm_device *dev = dig_port->base.base.dev;
5537 struct drm_i915_private *dev_priv = to_i915(dev);
5538 enum port port = dig_port->base.port;
5539 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5540 enum pipe pipe = crtc->pipe;
5541 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5542
5543 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5544 TRANS_DDI_FUNC_CTL(pipe));
5545 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5546 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5547
5548 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5549 TGL_TRANS_DDI_SELECT_PORT(port);
5550 trans_conf_value |= PIPECONF_ENABLE;
5551 dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5552
5553 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5554 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5555 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5556 trans_ddi_func_ctl_value);
5557 }
5558
intel_dp_process_phy_request(struct intel_dp * intel_dp)5559 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5560 {
5561 struct drm_dp_phy_test_params *data =
5562 &intel_dp->compliance.test_data.phytest;
5563 u8 link_status[DP_LINK_STATUS_SIZE];
5564
5565 if (!intel_dp_get_link_status(intel_dp, link_status)) {
5566 DRM_DEBUG_KMS("failed to get link status\n");
5567 return;
5568 }
5569
5570 /* retrieve vswing & pre-emphasis setting */
5571 intel_dp_get_adjust_train(intel_dp, link_status);
5572
5573 intel_dp_autotest_phy_ddi_disable(intel_dp);
5574
5575 intel_dp_set_signal_levels(intel_dp);
5576
5577 intel_dp_phy_pattern_update(intel_dp);
5578
5579 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5580
5581 drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5582 link_status[DP_DPCD_REV]);
5583 }
5584
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)5585 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5586 {
5587 u8 test_result;
5588
5589 test_result = intel_dp_prepare_phytest(intel_dp);
5590 if (test_result != DP_TEST_ACK)
5591 DRM_ERROR("Phy test preparation failed\n");
5592
5593 intel_dp_process_phy_request(intel_dp);
5594
5595 return test_result;
5596 }
5597
intel_dp_handle_test_request(struct intel_dp * intel_dp)5598 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5599 {
5600 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5601 u8 response = DP_TEST_NAK;
5602 u8 request = 0;
5603 int status;
5604
5605 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5606 if (status <= 0) {
5607 drm_dbg_kms(&i915->drm,
5608 "Could not read test request from sink\n");
5609 goto update_status;
5610 }
5611
5612 switch (request) {
5613 case DP_TEST_LINK_TRAINING:
5614 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5615 response = intel_dp_autotest_link_training(intel_dp);
5616 break;
5617 case DP_TEST_LINK_VIDEO_PATTERN:
5618 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5619 response = intel_dp_autotest_video_pattern(intel_dp);
5620 break;
5621 case DP_TEST_LINK_EDID_READ:
5622 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5623 response = intel_dp_autotest_edid(intel_dp);
5624 break;
5625 case DP_TEST_LINK_PHY_TEST_PATTERN:
5626 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5627 response = intel_dp_autotest_phy_pattern(intel_dp);
5628 break;
5629 default:
5630 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5631 request);
5632 break;
5633 }
5634
5635 if (response & DP_TEST_ACK)
5636 intel_dp->compliance.test_type = request;
5637
5638 update_status:
5639 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5640 if (status <= 0)
5641 drm_dbg_kms(&i915->drm,
5642 "Could not write test response to sink\n");
5643 }
5644
5645 /**
5646 * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5647 * @intel_dp: Intel DP struct
5648 *
5649 * Read any pending MST interrupts, call MST core to handle these and ack the
5650 * interrupts. Check if the main and AUX link state is ok.
5651 *
5652 * Returns:
5653 * - %true if pending interrupts were serviced (or no interrupts were
5654 * pending) w/o detecting an error condition.
5655 * - %false if an error condition - like AUX failure or a loss of link - is
5656 * detected, which needs servicing from the hotplug work.
5657 */
5658 static bool
intel_dp_check_mst_status(struct intel_dp * intel_dp)5659 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5660 {
5661 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5662 bool link_ok = true;
5663
5664 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5665
5666 for (;;) {
5667 /*
5668 * The +2 is because DP_DPRX_ESI_LEN is 14, but we then
5669 * pass in "esi+10" to drm_dp_channel_eq_ok(), which
5670 * takes a 6-byte array. So we actually need 16 bytes
5671 * here.
5672 *
5673 * Somebody who knows what the limits actually are
5674 * should check this, but for now this is at least
5675 * harmless and avoids a valid compiler warning about
5676 * using more of the array than we have allocated.
5677 */
5678 u8 esi[DP_DPRX_ESI_LEN+2] = {};
5679 bool handled;
5680 int retry;
5681
5682 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5683 drm_dbg_kms(&i915->drm,
5684 "failed to get ESI - device may have failed\n");
5685 link_ok = false;
5686
5687 break;
5688 }
5689
5690 /* check link status - esi[10] = 0x200c */
5691 if (intel_dp->active_mst_links > 0 && link_ok &&
5692 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5693 drm_dbg_kms(&i915->drm,
5694 "channel EQ not ok, retraining\n");
5695 link_ok = false;
5696 }
5697
5698 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5699
5700 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5701 if (!handled)
5702 break;
5703
5704 for (retry = 0; retry < 3; retry++) {
5705 int wret;
5706
5707 wret = drm_dp_dpcd_write(&intel_dp->aux,
5708 DP_SINK_COUNT_ESI+1,
5709 &esi[1], 3);
5710 if (wret == 3)
5711 break;
5712 }
5713 }
5714
5715 return link_ok;
5716 }
5717
5718 static bool
intel_dp_needs_link_retrain(struct intel_dp * intel_dp)5719 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5720 {
5721 u8 link_status[DP_LINK_STATUS_SIZE];
5722
5723 if (!intel_dp->link_trained)
5724 return false;
5725
5726 /*
5727 * While PSR source HW is enabled, it will control main-link sending
5728 * frames, enabling and disabling it so trying to do a retrain will fail
5729 * as the link would or not be on or it could mix training patterns
5730 * and frame data at the same time causing retrain to fail.
5731 * Also when exiting PSR, HW will retrain the link anyways fixing
5732 * any link status error.
5733 */
5734 if (intel_psr_enabled(intel_dp))
5735 return false;
5736
5737 if (!intel_dp_get_link_status(intel_dp, link_status))
5738 return false;
5739
5740 /*
5741 * Validate the cached values of intel_dp->link_rate and
5742 * intel_dp->lane_count before attempting to retrain.
5743 */
5744 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5745 intel_dp->lane_count))
5746 return false;
5747
5748 /* Retrain if Channel EQ or CR not ok */
5749 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5750 }
5751
intel_dp_has_connector(struct intel_dp * intel_dp,const struct drm_connector_state * conn_state)5752 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5753 const struct drm_connector_state *conn_state)
5754 {
5755 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5756 struct intel_encoder *encoder;
5757 enum pipe pipe;
5758
5759 if (!conn_state->best_encoder)
5760 return false;
5761
5762 /* SST */
5763 encoder = &dp_to_dig_port(intel_dp)->base;
5764 if (conn_state->best_encoder == &encoder->base)
5765 return true;
5766
5767 /* MST */
5768 for_each_pipe(i915, pipe) {
5769 encoder = &intel_dp->mst_encoders[pipe]->base;
5770 if (conn_state->best_encoder == &encoder->base)
5771 return true;
5772 }
5773
5774 return false;
5775 }
5776
intel_dp_prep_link_retrain(struct intel_dp * intel_dp,struct drm_modeset_acquire_ctx * ctx,u32 * crtc_mask)5777 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5778 struct drm_modeset_acquire_ctx *ctx,
5779 u32 *crtc_mask)
5780 {
5781 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5782 struct drm_connector_list_iter conn_iter;
5783 struct intel_connector *connector;
5784 int ret = 0;
5785
5786 *crtc_mask = 0;
5787
5788 if (!intel_dp_needs_link_retrain(intel_dp))
5789 return 0;
5790
5791 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5792 for_each_intel_connector_iter(connector, &conn_iter) {
5793 struct drm_connector_state *conn_state =
5794 connector->base.state;
5795 struct intel_crtc_state *crtc_state;
5796 struct intel_crtc *crtc;
5797
5798 if (!intel_dp_has_connector(intel_dp, conn_state))
5799 continue;
5800
5801 crtc = to_intel_crtc(conn_state->crtc);
5802 if (!crtc)
5803 continue;
5804
5805 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5806 if (ret)
5807 break;
5808
5809 crtc_state = to_intel_crtc_state(crtc->base.state);
5810
5811 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5812
5813 if (!crtc_state->hw.active)
5814 continue;
5815
5816 if (conn_state->commit &&
5817 !try_wait_for_completion(&conn_state->commit->hw_done))
5818 continue;
5819
5820 *crtc_mask |= drm_crtc_mask(&crtc->base);
5821 }
5822 drm_connector_list_iter_end(&conn_iter);
5823
5824 if (!intel_dp_needs_link_retrain(intel_dp))
5825 *crtc_mask = 0;
5826
5827 return ret;
5828 }
5829
intel_dp_is_connected(struct intel_dp * intel_dp)5830 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5831 {
5832 struct intel_connector *connector = intel_dp->attached_connector;
5833
5834 return connector->base.status == connector_status_connected ||
5835 intel_dp->is_mst;
5836 }
5837
intel_dp_retrain_link(struct intel_encoder * encoder,struct drm_modeset_acquire_ctx * ctx)5838 int intel_dp_retrain_link(struct intel_encoder *encoder,
5839 struct drm_modeset_acquire_ctx *ctx)
5840 {
5841 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5842 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5843 struct intel_crtc *crtc;
5844 u32 crtc_mask;
5845 int ret;
5846
5847 if (!intel_dp_is_connected(intel_dp))
5848 return 0;
5849
5850 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5851 ctx);
5852 if (ret)
5853 return ret;
5854
5855 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5856 if (ret)
5857 return ret;
5858
5859 if (crtc_mask == 0)
5860 return 0;
5861
5862 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5863 encoder->base.base.id, encoder->base.name);
5864
5865 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5866 const struct intel_crtc_state *crtc_state =
5867 to_intel_crtc_state(crtc->base.state);
5868
5869 /* Suppress underruns caused by re-training */
5870 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5871 if (crtc_state->has_pch_encoder)
5872 intel_set_pch_fifo_underrun_reporting(dev_priv,
5873 intel_crtc_pch_transcoder(crtc), false);
5874 }
5875
5876 intel_dp_start_link_train(intel_dp);
5877 intel_dp_stop_link_train(intel_dp);
5878
5879 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5880 const struct intel_crtc_state *crtc_state =
5881 to_intel_crtc_state(crtc->base.state);
5882
5883 /* Keep underrun reporting disabled until things are stable */
5884 intel_wait_for_vblank(dev_priv, crtc->pipe);
5885
5886 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5887 if (crtc_state->has_pch_encoder)
5888 intel_set_pch_fifo_underrun_reporting(dev_priv,
5889 intel_crtc_pch_transcoder(crtc), true);
5890 }
5891
5892 return 0;
5893 }
5894
5895 /*
5896 * If display is now connected check links status,
5897 * there has been known issues of link loss triggering
5898 * long pulse.
5899 *
5900 * Some sinks (eg. ASUS PB287Q) seem to perform some
5901 * weird HPD ping pong during modesets. So we can apparently
5902 * end up with HPD going low during a modeset, and then
5903 * going back up soon after. And once that happens we must
5904 * retrain the link to get a picture. That's in case no
5905 * userspace component reacted to intermittent HPD dip.
5906 */
5907 static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder * encoder,struct intel_connector * connector)5908 intel_dp_hotplug(struct intel_encoder *encoder,
5909 struct intel_connector *connector)
5910 {
5911 struct drm_modeset_acquire_ctx ctx;
5912 enum intel_hotplug_state state;
5913 int ret;
5914
5915 state = intel_encoder_hotplug(encoder, connector);
5916
5917 drm_modeset_acquire_init(&ctx, 0);
5918
5919 for (;;) {
5920 ret = intel_dp_retrain_link(encoder, &ctx);
5921
5922 if (ret == -EDEADLK) {
5923 drm_modeset_backoff(&ctx);
5924 continue;
5925 }
5926
5927 break;
5928 }
5929
5930 drm_modeset_drop_locks(&ctx);
5931 drm_modeset_acquire_fini(&ctx);
5932 drm_WARN(encoder->base.dev, ret,
5933 "Acquiring modeset locks failed with %i\n", ret);
5934
5935 /*
5936 * Keeping it consistent with intel_ddi_hotplug() and
5937 * intel_hdmi_hotplug().
5938 */
5939 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5940 state = INTEL_HOTPLUG_RETRY;
5941
5942 return state;
5943 }
5944
intel_dp_check_service_irq(struct intel_dp * intel_dp)5945 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5946 {
5947 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5948 u8 val;
5949
5950 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5951 return;
5952
5953 if (drm_dp_dpcd_readb(&intel_dp->aux,
5954 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5955 return;
5956
5957 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5958
5959 if (val & DP_AUTOMATED_TEST_REQUEST)
5960 intel_dp_handle_test_request(intel_dp);
5961
5962 if (val & DP_CP_IRQ)
5963 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5964
5965 if (val & DP_SINK_SPECIFIC_IRQ)
5966 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5967 }
5968
5969 /*
5970 * According to DP spec
5971 * 5.1.2:
5972 * 1. Read DPCD
5973 * 2. Configure link according to Receiver Capabilities
5974 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5975 * 4. Check link status on receipt of hot-plug interrupt
5976 *
5977 * intel_dp_short_pulse - handles short pulse interrupts
5978 * when full detection is not required.
5979 * Returns %true if short pulse is handled and full detection
5980 * is NOT required and %false otherwise.
5981 */
5982 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)5983 intel_dp_short_pulse(struct intel_dp *intel_dp)
5984 {
5985 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5986 u8 old_sink_count = intel_dp->sink_count;
5987 bool ret;
5988
5989 /*
5990 * Clearing compliance test variables to allow capturing
5991 * of values for next automated test request.
5992 */
5993 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5994
5995 /*
5996 * Now read the DPCD to see if it's actually running
5997 * If the current value of sink count doesn't match with
5998 * the value that was stored earlier or dpcd read failed
5999 * we need to do full detection
6000 */
6001 ret = intel_dp_get_dpcd(intel_dp);
6002
6003 if ((old_sink_count != intel_dp->sink_count) || !ret) {
6004 /* No need to proceed if we are going to do full detect */
6005 return false;
6006 }
6007
6008 intel_dp_check_service_irq(intel_dp);
6009
6010 /* Handle CEC interrupts, if any */
6011 drm_dp_cec_irq(&intel_dp->aux);
6012
6013 /* defer to the hotplug work for link retraining if needed */
6014 if (intel_dp_needs_link_retrain(intel_dp))
6015 return false;
6016
6017 intel_psr_short_pulse(intel_dp);
6018
6019 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
6020 drm_dbg_kms(&dev_priv->drm,
6021 "Link Training Compliance Test requested\n");
6022 /* Send a Hotplug Uevent to userspace to start modeset */
6023 drm_kms_helper_hotplug_event(&dev_priv->drm);
6024 }
6025
6026 return true;
6027 }
6028
6029 /* XXX this is probably wrong for multiple downstream ports */
6030 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)6031 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6032 {
6033 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6034 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6035 u8 *dpcd = intel_dp->dpcd;
6036 u8 type;
6037
6038 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6039 return connector_status_connected;
6040
6041 if (lspcon->active)
6042 lspcon_resume(lspcon);
6043
6044 if (!intel_dp_get_dpcd(intel_dp))
6045 return connector_status_disconnected;
6046
6047 /* if there's no downstream port, we're done */
6048 if (!drm_dp_is_branch(dpcd))
6049 return connector_status_connected;
6050
6051 /* If we're HPD-aware, SINK_COUNT changes dynamically */
6052 if (intel_dp_has_sink_count(intel_dp) &&
6053 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6054 return intel_dp->sink_count ?
6055 connector_status_connected : connector_status_disconnected;
6056 }
6057
6058 if (intel_dp_can_mst(intel_dp))
6059 return connector_status_connected;
6060
6061 /* If no HPD, poke DDC gently */
6062 if (drm_probe_ddc(&intel_dp->aux.ddc))
6063 return connector_status_connected;
6064
6065 /* Well we tried, say unknown for unreliable port types */
6066 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6067 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6068 if (type == DP_DS_PORT_TYPE_VGA ||
6069 type == DP_DS_PORT_TYPE_NON_EDID)
6070 return connector_status_unknown;
6071 } else {
6072 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6073 DP_DWN_STRM_PORT_TYPE_MASK;
6074 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6075 type == DP_DWN_STRM_PORT_TYPE_OTHER)
6076 return connector_status_unknown;
6077 }
6078
6079 /* Anything else is out of spec, warn and ignore */
6080 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6081 return connector_status_disconnected;
6082 }
6083
6084 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)6085 edp_detect(struct intel_dp *intel_dp)
6086 {
6087 return connector_status_connected;
6088 }
6089
ibx_digital_port_connected(struct intel_encoder * encoder)6090 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6091 {
6092 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6093 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6094
6095 return intel_de_read(dev_priv, SDEISR) & bit;
6096 }
6097
g4x_digital_port_connected(struct intel_encoder * encoder)6098 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6099 {
6100 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6101 u32 bit;
6102
6103 switch (encoder->hpd_pin) {
6104 case HPD_PORT_B:
6105 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6106 break;
6107 case HPD_PORT_C:
6108 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6109 break;
6110 case HPD_PORT_D:
6111 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6112 break;
6113 default:
6114 MISSING_CASE(encoder->hpd_pin);
6115 return false;
6116 }
6117
6118 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6119 }
6120
gm45_digital_port_connected(struct intel_encoder * encoder)6121 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6122 {
6123 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6124 u32 bit;
6125
6126 switch (encoder->hpd_pin) {
6127 case HPD_PORT_B:
6128 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6129 break;
6130 case HPD_PORT_C:
6131 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6132 break;
6133 case HPD_PORT_D:
6134 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6135 break;
6136 default:
6137 MISSING_CASE(encoder->hpd_pin);
6138 return false;
6139 }
6140
6141 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6142 }
6143
ilk_digital_port_connected(struct intel_encoder * encoder)6144 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6145 {
6146 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6147 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6148
6149 return intel_de_read(dev_priv, DEISR) & bit;
6150 }
6151
6152 /*
6153 * intel_digital_port_connected - is the specified port connected?
6154 * @encoder: intel_encoder
6155 *
6156 * In cases where there's a connector physically connected but it can't be used
6157 * by our hardware we also return false, since the rest of the driver should
6158 * pretty much treat the port as disconnected. This is relevant for type-C
6159 * (starting on ICL) where there's ownership involved.
6160 *
6161 * Return %true if port is connected, %false otherwise.
6162 */
intel_digital_port_connected(struct intel_encoder * encoder)6163 bool intel_digital_port_connected(struct intel_encoder *encoder)
6164 {
6165 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6166 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6167 bool is_connected = false;
6168 intel_wakeref_t wakeref;
6169
6170 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6171 is_connected = dig_port->connected(encoder);
6172
6173 return is_connected;
6174 }
6175
6176 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)6177 intel_dp_get_edid(struct intel_dp *intel_dp)
6178 {
6179 struct intel_connector *intel_connector = intel_dp->attached_connector;
6180
6181 /* use cached edid if we have one */
6182 if (intel_connector->edid) {
6183 /* invalid edid */
6184 if (IS_ERR(intel_connector->edid))
6185 return NULL;
6186
6187 return drm_edid_duplicate(intel_connector->edid);
6188 } else
6189 return drm_get_edid(&intel_connector->base,
6190 &intel_dp->aux.ddc);
6191 }
6192
6193 static void
intel_dp_update_dfp(struct intel_dp * intel_dp,const struct edid * edid)6194 intel_dp_update_dfp(struct intel_dp *intel_dp,
6195 const struct edid *edid)
6196 {
6197 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6198 struct intel_connector *connector = intel_dp->attached_connector;
6199
6200 intel_dp->dfp.max_bpc =
6201 drm_dp_downstream_max_bpc(intel_dp->dpcd,
6202 intel_dp->downstream_ports, edid);
6203
6204 intel_dp->dfp.max_dotclock =
6205 drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6206 intel_dp->downstream_ports);
6207
6208 intel_dp->dfp.min_tmds_clock =
6209 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6210 intel_dp->downstream_ports,
6211 edid);
6212 intel_dp->dfp.max_tmds_clock =
6213 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6214 intel_dp->downstream_ports,
6215 edid);
6216
6217 drm_dbg_kms(&i915->drm,
6218 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6219 connector->base.base.id, connector->base.name,
6220 intel_dp->dfp.max_bpc,
6221 intel_dp->dfp.max_dotclock,
6222 intel_dp->dfp.min_tmds_clock,
6223 intel_dp->dfp.max_tmds_clock);
6224 }
6225
6226 static void
intel_dp_update_420(struct intel_dp * intel_dp)6227 intel_dp_update_420(struct intel_dp *intel_dp)
6228 {
6229 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6230 struct intel_connector *connector = intel_dp->attached_connector;
6231 bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6232
6233 /* No YCbCr output support on gmch platforms */
6234 if (HAS_GMCH(i915))
6235 return;
6236
6237 /*
6238 * ILK doesn't seem capable of DP YCbCr output. The
6239 * displayed image is severly corrupted. SNB+ is fine.
6240 */
6241 if (IS_GEN(i915, 5))
6242 return;
6243
6244 is_branch = drm_dp_is_branch(intel_dp->dpcd);
6245 ycbcr_420_passthrough =
6246 drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6247 intel_dp->downstream_ports);
6248 ycbcr_444_to_420 =
6249 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6250 intel_dp->downstream_ports);
6251
6252 if (INTEL_GEN(i915) >= 11) {
6253 /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6254 intel_dp->dfp.ycbcr_444_to_420 =
6255 ycbcr_444_to_420 && !ycbcr_420_passthrough;
6256
6257 connector->base.ycbcr_420_allowed =
6258 !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6259 } else {
6260 /* 4:4:4->4:2:0 conversion is the only way */
6261 intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6262
6263 connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6264 }
6265
6266 drm_dbg_kms(&i915->drm,
6267 "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6268 connector->base.base.id, connector->base.name,
6269 yesno(connector->base.ycbcr_420_allowed),
6270 yesno(intel_dp->dfp.ycbcr_444_to_420));
6271 }
6272
6273 static void
intel_dp_set_edid(struct intel_dp * intel_dp)6274 intel_dp_set_edid(struct intel_dp *intel_dp)
6275 {
6276 struct intel_connector *connector = intel_dp->attached_connector;
6277 struct edid *edid;
6278
6279 intel_dp_unset_edid(intel_dp);
6280 edid = intel_dp_get_edid(intel_dp);
6281 connector->detect_edid = edid;
6282
6283 intel_dp_update_dfp(intel_dp, edid);
6284 intel_dp_update_420(intel_dp);
6285
6286 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6287 intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6288 intel_dp->has_audio = drm_detect_monitor_audio(edid);
6289 }
6290
6291 drm_dp_cec_set_edid(&intel_dp->aux, edid);
6292 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6293 }
6294
6295 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)6296 intel_dp_unset_edid(struct intel_dp *intel_dp)
6297 {
6298 struct intel_connector *connector = intel_dp->attached_connector;
6299
6300 drm_dp_cec_unset_edid(&intel_dp->aux);
6301 kfree(connector->detect_edid);
6302 connector->detect_edid = NULL;
6303
6304 intel_dp->has_hdmi_sink = false;
6305 intel_dp->has_audio = false;
6306 intel_dp->edid_quirks = 0;
6307
6308 intel_dp->dfp.max_bpc = 0;
6309 intel_dp->dfp.max_dotclock = 0;
6310 intel_dp->dfp.min_tmds_clock = 0;
6311 intel_dp->dfp.max_tmds_clock = 0;
6312
6313 intel_dp->dfp.ycbcr_444_to_420 = false;
6314 connector->base.ycbcr_420_allowed = false;
6315 }
6316
6317 static int
intel_dp_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)6318 intel_dp_detect(struct drm_connector *connector,
6319 struct drm_modeset_acquire_ctx *ctx,
6320 bool force)
6321 {
6322 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6323 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6324 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6325 struct intel_encoder *encoder = &dig_port->base;
6326 enum drm_connector_status status;
6327
6328 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6329 connector->base.id, connector->name);
6330 drm_WARN_ON(&dev_priv->drm,
6331 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6332
6333 if (!INTEL_DISPLAY_ENABLED(dev_priv))
6334 return connector_status_disconnected;
6335
6336 /* Can't disconnect eDP */
6337 if (intel_dp_is_edp(intel_dp))
6338 status = edp_detect(intel_dp);
6339 else if (intel_digital_port_connected(encoder))
6340 status = intel_dp_detect_dpcd(intel_dp);
6341 else
6342 status = connector_status_disconnected;
6343
6344 if (status == connector_status_disconnected) {
6345 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6346 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6347
6348 if (intel_dp->is_mst) {
6349 drm_dbg_kms(&dev_priv->drm,
6350 "MST device may have disappeared %d vs %d\n",
6351 intel_dp->is_mst,
6352 intel_dp->mst_mgr.mst_state);
6353 intel_dp->is_mst = false;
6354 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6355 intel_dp->is_mst);
6356 }
6357
6358 goto out;
6359 }
6360
6361 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6362 if (INTEL_GEN(dev_priv) >= 11)
6363 intel_dp_get_dsc_sink_cap(intel_dp);
6364
6365 intel_dp_configure_mst(intel_dp);
6366
6367 /*
6368 * TODO: Reset link params when switching to MST mode, until MST
6369 * supports link training fallback params.
6370 */
6371 if (intel_dp->reset_link_params || intel_dp->is_mst) {
6372 /* Initial max link lane count */
6373 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6374
6375 /* Initial max link rate */
6376 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6377
6378 intel_dp->reset_link_params = false;
6379 }
6380
6381 intel_dp_print_rates(intel_dp);
6382
6383 if (intel_dp->is_mst) {
6384 /*
6385 * If we are in MST mode then this connector
6386 * won't appear connected or have anything
6387 * with EDID on it
6388 */
6389 status = connector_status_disconnected;
6390 goto out;
6391 }
6392
6393 /*
6394 * Some external monitors do not signal loss of link synchronization
6395 * with an IRQ_HPD, so force a link status check.
6396 */
6397 if (!intel_dp_is_edp(intel_dp)) {
6398 int ret;
6399
6400 ret = intel_dp_retrain_link(encoder, ctx);
6401 if (ret)
6402 return ret;
6403 }
6404
6405 /*
6406 * Clearing NACK and defer counts to get their exact values
6407 * while reading EDID which are required by Compliance tests
6408 * 4.2.2.4 and 4.2.2.5
6409 */
6410 intel_dp->aux.i2c_nack_count = 0;
6411 intel_dp->aux.i2c_defer_count = 0;
6412
6413 intel_dp_set_edid(intel_dp);
6414 if (intel_dp_is_edp(intel_dp) ||
6415 to_intel_connector(connector)->detect_edid)
6416 status = connector_status_connected;
6417
6418 intel_dp_check_service_irq(intel_dp);
6419
6420 out:
6421 if (status != connector_status_connected && !intel_dp->is_mst)
6422 intel_dp_unset_edid(intel_dp);
6423
6424 /*
6425 * Make sure the refs for power wells enabled during detect are
6426 * dropped to avoid a new detect cycle triggered by HPD polling.
6427 */
6428 intel_display_power_flush_work(dev_priv);
6429
6430 if (!intel_dp_is_edp(intel_dp))
6431 drm_dp_set_subconnector_property(connector,
6432 status,
6433 intel_dp->dpcd,
6434 intel_dp->downstream_ports);
6435 return status;
6436 }
6437
6438 static void
intel_dp_force(struct drm_connector * connector)6439 intel_dp_force(struct drm_connector *connector)
6440 {
6441 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6442 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6443 struct intel_encoder *intel_encoder = &dig_port->base;
6444 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6445 enum intel_display_power_domain aux_domain =
6446 intel_aux_power_domain(dig_port);
6447 intel_wakeref_t wakeref;
6448
6449 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6450 connector->base.id, connector->name);
6451 intel_dp_unset_edid(intel_dp);
6452
6453 if (connector->status != connector_status_connected)
6454 return;
6455
6456 wakeref = intel_display_power_get(dev_priv, aux_domain);
6457
6458 intel_dp_set_edid(intel_dp);
6459
6460 intel_display_power_put(dev_priv, aux_domain, wakeref);
6461 }
6462
intel_dp_get_modes(struct drm_connector * connector)6463 static int intel_dp_get_modes(struct drm_connector *connector)
6464 {
6465 struct intel_connector *intel_connector = to_intel_connector(connector);
6466 struct edid *edid;
6467
6468 edid = intel_connector->detect_edid;
6469 if (edid) {
6470 int ret = intel_connector_update_modes(connector, edid);
6471 if (ret)
6472 return ret;
6473 }
6474
6475 /* if eDP has no EDID, fall back to fixed mode */
6476 if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6477 intel_connector->panel.fixed_mode) {
6478 struct drm_display_mode *mode;
6479
6480 mode = drm_mode_duplicate(connector->dev,
6481 intel_connector->panel.fixed_mode);
6482 if (mode) {
6483 drm_mode_probed_add(connector, mode);
6484 return 1;
6485 }
6486 }
6487
6488 if (!edid) {
6489 struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6490 struct drm_display_mode *mode;
6491
6492 mode = drm_dp_downstream_mode(connector->dev,
6493 intel_dp->dpcd,
6494 intel_dp->downstream_ports);
6495 if (mode) {
6496 drm_mode_probed_add(connector, mode);
6497 return 1;
6498 }
6499 }
6500
6501 return 0;
6502 }
6503
6504 static int
intel_dp_connector_register(struct drm_connector * connector)6505 intel_dp_connector_register(struct drm_connector *connector)
6506 {
6507 struct drm_i915_private *i915 = to_i915(connector->dev);
6508 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6509 int ret;
6510
6511 ret = intel_connector_register(connector);
6512 if (ret)
6513 return ret;
6514
6515 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6516 intel_dp->aux.name, connector->kdev->kobj.name);
6517
6518 intel_dp->aux.dev = connector->kdev;
6519 ret = drm_dp_aux_register(&intel_dp->aux);
6520 if (!ret)
6521 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6522 return ret;
6523 }
6524
6525 static void
intel_dp_connector_unregister(struct drm_connector * connector)6526 intel_dp_connector_unregister(struct drm_connector *connector)
6527 {
6528 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6529
6530 drm_dp_cec_unregister_connector(&intel_dp->aux);
6531 drm_dp_aux_unregister(&intel_dp->aux);
6532 intel_connector_unregister(connector);
6533 }
6534
intel_dp_encoder_flush_work(struct drm_encoder * encoder)6535 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6536 {
6537 struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6538 struct intel_dp *intel_dp = &dig_port->dp;
6539
6540 intel_dp_mst_encoder_cleanup(dig_port);
6541 if (intel_dp_is_edp(intel_dp)) {
6542 intel_wakeref_t wakeref;
6543
6544 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6545 /*
6546 * vdd might still be enabled do to the delayed vdd off.
6547 * Make sure vdd is actually turned off here.
6548 */
6549 with_pps_lock(intel_dp, wakeref)
6550 edp_panel_vdd_off_sync(intel_dp);
6551
6552 if (intel_dp->edp_notifier.notifier_call) {
6553 unregister_reboot_notifier(&intel_dp->edp_notifier);
6554 intel_dp->edp_notifier.notifier_call = NULL;
6555 }
6556 }
6557
6558 intel_dp_aux_fini(intel_dp);
6559 }
6560
intel_dp_encoder_destroy(struct drm_encoder * encoder)6561 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6562 {
6563 intel_dp_encoder_flush_work(encoder);
6564
6565 drm_encoder_cleanup(encoder);
6566 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6567 }
6568
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)6569 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6570 {
6571 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6572 intel_wakeref_t wakeref;
6573
6574 if (!intel_dp_is_edp(intel_dp))
6575 return;
6576
6577 /*
6578 * vdd might still be enabled do to the delayed vdd off.
6579 * Make sure vdd is actually turned off here.
6580 */
6581 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6582 with_pps_lock(intel_dp, wakeref)
6583 edp_panel_vdd_off_sync(intel_dp);
6584 }
6585
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)6586 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6587 {
6588 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6589 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6590
6591 lockdep_assert_held(&dev_priv->pps_mutex);
6592
6593 if (!edp_have_panel_vdd(intel_dp))
6594 return;
6595
6596 /*
6597 * The VDD bit needs a power domain reference, so if the bit is
6598 * already enabled when we boot or resume, grab this reference and
6599 * schedule a vdd off, so we don't hold on to the reference
6600 * indefinitely.
6601 */
6602 drm_dbg_kms(&dev_priv->drm,
6603 "VDD left on by BIOS, adjusting state tracking\n");
6604 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6605
6606 edp_panel_vdd_schedule_off(intel_dp);
6607 }
6608
vlv_active_pipe(struct intel_dp * intel_dp)6609 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6610 {
6611 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6612 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6613 enum pipe pipe;
6614
6615 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6616 encoder->port, &pipe))
6617 return pipe;
6618
6619 return INVALID_PIPE;
6620 }
6621
intel_dp_encoder_reset(struct drm_encoder * encoder)6622 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6623 {
6624 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6625 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6626 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6627 intel_wakeref_t wakeref;
6628
6629 if (!HAS_DDI(dev_priv))
6630 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6631
6632 if (lspcon->active)
6633 lspcon_resume(lspcon);
6634
6635 intel_dp->reset_link_params = true;
6636
6637 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6638 !intel_dp_is_edp(intel_dp))
6639 return;
6640
6641 with_pps_lock(intel_dp, wakeref) {
6642 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6643 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6644
6645 if (intel_dp_is_edp(intel_dp)) {
6646 /*
6647 * Reinit the power sequencer, in case BIOS did
6648 * something nasty with it.
6649 */
6650 intel_dp_pps_init(intel_dp);
6651 intel_edp_panel_vdd_sanitize(intel_dp);
6652 }
6653 }
6654 }
6655
intel_modeset_tile_group(struct intel_atomic_state * state,int tile_group_id)6656 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6657 int tile_group_id)
6658 {
6659 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6660 struct drm_connector_list_iter conn_iter;
6661 struct drm_connector *connector;
6662 int ret = 0;
6663
6664 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6665 drm_for_each_connector_iter(connector, &conn_iter) {
6666 struct drm_connector_state *conn_state;
6667 struct intel_crtc_state *crtc_state;
6668 struct intel_crtc *crtc;
6669
6670 if (!connector->has_tile ||
6671 connector->tile_group->id != tile_group_id)
6672 continue;
6673
6674 conn_state = drm_atomic_get_connector_state(&state->base,
6675 connector);
6676 if (IS_ERR(conn_state)) {
6677 ret = PTR_ERR(conn_state);
6678 break;
6679 }
6680
6681 crtc = to_intel_crtc(conn_state->crtc);
6682
6683 if (!crtc)
6684 continue;
6685
6686 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6687 crtc_state->uapi.mode_changed = true;
6688
6689 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6690 if (ret)
6691 break;
6692 }
6693 drm_connector_list_iter_end(&conn_iter);
6694
6695 return ret;
6696 }
6697
intel_modeset_affected_transcoders(struct intel_atomic_state * state,u8 transcoders)6698 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6699 {
6700 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6701 struct intel_crtc *crtc;
6702
6703 if (transcoders == 0)
6704 return 0;
6705
6706 for_each_intel_crtc(&dev_priv->drm, crtc) {
6707 struct intel_crtc_state *crtc_state;
6708 int ret;
6709
6710 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6711 if (IS_ERR(crtc_state))
6712 return PTR_ERR(crtc_state);
6713
6714 if (!crtc_state->hw.enable)
6715 continue;
6716
6717 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6718 continue;
6719
6720 crtc_state->uapi.mode_changed = true;
6721
6722 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6723 if (ret)
6724 return ret;
6725
6726 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6727 if (ret)
6728 return ret;
6729
6730 transcoders &= ~BIT(crtc_state->cpu_transcoder);
6731 }
6732
6733 drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6734
6735 return 0;
6736 }
6737
intel_modeset_synced_crtcs(struct intel_atomic_state * state,struct drm_connector * connector)6738 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6739 struct drm_connector *connector)
6740 {
6741 const struct drm_connector_state *old_conn_state =
6742 drm_atomic_get_old_connector_state(&state->base, connector);
6743 const struct intel_crtc_state *old_crtc_state;
6744 struct intel_crtc *crtc;
6745 u8 transcoders;
6746
6747 crtc = to_intel_crtc(old_conn_state->crtc);
6748 if (!crtc)
6749 return 0;
6750
6751 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6752
6753 if (!old_crtc_state->hw.active)
6754 return 0;
6755
6756 transcoders = old_crtc_state->sync_mode_slaves_mask;
6757 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6758 transcoders |= BIT(old_crtc_state->master_transcoder);
6759
6760 return intel_modeset_affected_transcoders(state,
6761 transcoders);
6762 }
6763
intel_dp_connector_atomic_check(struct drm_connector * conn,struct drm_atomic_state * _state)6764 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6765 struct drm_atomic_state *_state)
6766 {
6767 struct drm_i915_private *dev_priv = to_i915(conn->dev);
6768 struct intel_atomic_state *state = to_intel_atomic_state(_state);
6769 int ret;
6770
6771 ret = intel_digital_connector_atomic_check(conn, &state->base);
6772 if (ret)
6773 return ret;
6774
6775 /*
6776 * We don't enable port sync on BDW due to missing w/as and
6777 * due to not having adjusted the modeset sequence appropriately.
6778 */
6779 if (INTEL_GEN(dev_priv) < 9)
6780 return 0;
6781
6782 if (!intel_connector_needs_modeset(state, conn))
6783 return 0;
6784
6785 if (conn->has_tile) {
6786 ret = intel_modeset_tile_group(state, conn->tile_group->id);
6787 if (ret)
6788 return ret;
6789 }
6790
6791 return intel_modeset_synced_crtcs(state, conn);
6792 }
6793
6794 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6795 .force = intel_dp_force,
6796 .fill_modes = drm_helper_probe_single_connector_modes,
6797 .atomic_get_property = intel_digital_connector_atomic_get_property,
6798 .atomic_set_property = intel_digital_connector_atomic_set_property,
6799 .late_register = intel_dp_connector_register,
6800 .early_unregister = intel_dp_connector_unregister,
6801 .destroy = intel_connector_destroy,
6802 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6803 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6804 };
6805
6806 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6807 .detect_ctx = intel_dp_detect,
6808 .get_modes = intel_dp_get_modes,
6809 .mode_valid = intel_dp_mode_valid,
6810 .atomic_check = intel_dp_connector_atomic_check,
6811 };
6812
6813 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6814 .reset = intel_dp_encoder_reset,
6815 .destroy = intel_dp_encoder_destroy,
6816 };
6817
intel_edp_have_power(struct intel_dp * intel_dp)6818 static bool intel_edp_have_power(struct intel_dp *intel_dp)
6819 {
6820 intel_wakeref_t wakeref;
6821 bool have_power = false;
6822
6823 with_pps_lock(intel_dp, wakeref) {
6824 have_power = edp_have_panel_power(intel_dp) &&
6825 edp_have_panel_vdd(intel_dp);
6826 }
6827
6828 return have_power;
6829 }
6830
6831 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * dig_port,bool long_hpd)6832 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
6833 {
6834 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6835 struct intel_dp *intel_dp = &dig_port->dp;
6836
6837 if (dig_port->base.type == INTEL_OUTPUT_EDP &&
6838 (long_hpd || !intel_edp_have_power(intel_dp))) {
6839 /*
6840 * vdd off can generate a long/short pulse on eDP which
6841 * would require vdd on to handle it, and thus we
6842 * would end up in an endless cycle of
6843 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
6844 */
6845 drm_dbg_kms(&i915->drm,
6846 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
6847 long_hpd ? "long" : "short",
6848 dig_port->base.base.base.id,
6849 dig_port->base.base.name);
6850 return IRQ_HANDLED;
6851 }
6852
6853 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
6854 dig_port->base.base.base.id,
6855 dig_port->base.base.name,
6856 long_hpd ? "long" : "short");
6857
6858 if (long_hpd) {
6859 intel_dp->reset_link_params = true;
6860 return IRQ_NONE;
6861 }
6862
6863 if (intel_dp->is_mst) {
6864 if (!intel_dp_check_mst_status(intel_dp))
6865 return IRQ_NONE;
6866 } else if (!intel_dp_short_pulse(intel_dp)) {
6867 return IRQ_NONE;
6868 }
6869
6870 return IRQ_HANDLED;
6871 }
6872
6873 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_port_edp(struct drm_i915_private * dev_priv,enum port port)6874 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6875 {
6876 /*
6877 * eDP not supported on g4x. so bail out early just
6878 * for a bit extra safety in case the VBT is bonkers.
6879 */
6880 if (INTEL_GEN(dev_priv) < 5)
6881 return false;
6882
6883 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6884 return true;
6885
6886 return intel_bios_is_port_edp(dev_priv, port);
6887 }
6888
6889 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)6890 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6891 {
6892 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6893 enum port port = dp_to_dig_port(intel_dp)->base.port;
6894
6895 if (!intel_dp_is_edp(intel_dp))
6896 drm_connector_attach_dp_subconnector_property(connector);
6897
6898 if (!IS_G4X(dev_priv) && port != PORT_A)
6899 intel_attach_force_audio_property(connector);
6900
6901 intel_attach_broadcast_rgb_property(connector);
6902 if (HAS_GMCH(dev_priv))
6903 drm_connector_attach_max_bpc_property(connector, 6, 10);
6904 else if (INTEL_GEN(dev_priv) >= 5)
6905 drm_connector_attach_max_bpc_property(connector, 6, 12);
6906
6907 intel_attach_colorspace_property(connector);
6908
6909 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6910 drm_object_attach_property(&connector->base,
6911 connector->dev->mode_config.hdr_output_metadata_property,
6912 0);
6913
6914 if (intel_dp_is_edp(intel_dp)) {
6915 u32 allowed_scalers;
6916
6917 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6918 if (!HAS_GMCH(dev_priv))
6919 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6920
6921 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6922
6923 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6924
6925 }
6926 }
6927
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)6928 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6929 {
6930 intel_dp->panel_power_off_time = ktime_get_boottime();
6931 intel_dp->last_power_on = jiffies;
6932 intel_dp->last_backlight_off = jiffies;
6933 }
6934
6935 static void
intel_pps_readout_hw_state(struct intel_dp * intel_dp,struct edp_power_seq * seq)6936 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6937 {
6938 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6939 u32 pp_on, pp_off, pp_ctl;
6940 struct pps_registers regs;
6941
6942 intel_pps_get_registers(intel_dp, ®s);
6943
6944 pp_ctl = ilk_get_pp_control(intel_dp);
6945
6946 /* Ensure PPS is unlocked */
6947 if (!HAS_DDI(dev_priv))
6948 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6949
6950 pp_on = intel_de_read(dev_priv, regs.pp_on);
6951 pp_off = intel_de_read(dev_priv, regs.pp_off);
6952
6953 /* Pull timing values out of registers */
6954 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6955 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6956 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6957 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6958
6959 if (i915_mmio_reg_valid(regs.pp_div)) {
6960 u32 pp_div;
6961
6962 pp_div = intel_de_read(dev_priv, regs.pp_div);
6963
6964 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6965 } else {
6966 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6967 }
6968 }
6969
6970 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)6971 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6972 {
6973 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6974 state_name,
6975 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6976 }
6977
6978 static void
intel_pps_verify_state(struct intel_dp * intel_dp)6979 intel_pps_verify_state(struct intel_dp *intel_dp)
6980 {
6981 struct edp_power_seq hw;
6982 struct edp_power_seq *sw = &intel_dp->pps_delays;
6983
6984 intel_pps_readout_hw_state(intel_dp, &hw);
6985
6986 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6987 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6988 DRM_ERROR("PPS state mismatch\n");
6989 intel_pps_dump_state("sw", sw);
6990 intel_pps_dump_state("hw", &hw);
6991 }
6992 }
6993
6994 static void
intel_dp_init_panel_power_sequencer(struct intel_dp * intel_dp)6995 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6996 {
6997 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6998 struct edp_power_seq cur, vbt, spec,
6999 *final = &intel_dp->pps_delays;
7000
7001 lockdep_assert_held(&dev_priv->pps_mutex);
7002
7003 /* already initialized? */
7004 if (final->t11_t12 != 0)
7005 return;
7006
7007 intel_pps_readout_hw_state(intel_dp, &cur);
7008
7009 intel_pps_dump_state("cur", &cur);
7010
7011 vbt = dev_priv->vbt.edp.pps;
7012 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7013 * of 500ms appears to be too short. Ocassionally the panel
7014 * just fails to power back on. Increasing the delay to 800ms
7015 * seems sufficient to avoid this problem.
7016 */
7017 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7018 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7019 drm_dbg_kms(&dev_priv->drm,
7020 "Increasing T12 panel delay as per the quirk to %d\n",
7021 vbt.t11_t12);
7022 }
7023 /* T11_T12 delay is special and actually in units of 100ms, but zero
7024 * based in the hw (so we need to add 100 ms). But the sw vbt
7025 * table multiplies it with 1000 to make it in units of 100usec,
7026 * too. */
7027 vbt.t11_t12 += 100 * 10;
7028
7029 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7030 * our hw here, which are all in 100usec. */
7031 spec.t1_t3 = 210 * 10;
7032 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7033 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7034 spec.t10 = 500 * 10;
7035 /* This one is special and actually in units of 100ms, but zero
7036 * based in the hw (so we need to add 100 ms). But the sw vbt
7037 * table multiplies it with 1000 to make it in units of 100usec,
7038 * too. */
7039 spec.t11_t12 = (510 + 100) * 10;
7040
7041 intel_pps_dump_state("vbt", &vbt);
7042
7043 /* Use the max of the register settings and vbt. If both are
7044 * unset, fall back to the spec limits. */
7045 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
7046 spec.field : \
7047 max(cur.field, vbt.field))
7048 assign_final(t1_t3);
7049 assign_final(t8);
7050 assign_final(t9);
7051 assign_final(t10);
7052 assign_final(t11_t12);
7053 #undef assign_final
7054
7055 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
7056 intel_dp->panel_power_up_delay = get_delay(t1_t3);
7057 intel_dp->backlight_on_delay = get_delay(t8);
7058 intel_dp->backlight_off_delay = get_delay(t9);
7059 intel_dp->panel_power_down_delay = get_delay(t10);
7060 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7061 #undef get_delay
7062
7063 drm_dbg_kms(&dev_priv->drm,
7064 "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7065 intel_dp->panel_power_up_delay,
7066 intel_dp->panel_power_down_delay,
7067 intel_dp->panel_power_cycle_delay);
7068
7069 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7070 intel_dp->backlight_on_delay,
7071 intel_dp->backlight_off_delay);
7072
7073 /*
7074 * We override the HW backlight delays to 1 because we do manual waits
7075 * on them. For T8, even BSpec recommends doing it. For T9, if we
7076 * don't do this, we'll end up waiting for the backlight off delay
7077 * twice: once when we do the manual sleep, and once when we disable
7078 * the panel and wait for the PP_STATUS bit to become zero.
7079 */
7080 final->t8 = 1;
7081 final->t9 = 1;
7082
7083 /*
7084 * HW has only a 100msec granularity for t11_t12 so round it up
7085 * accordingly.
7086 */
7087 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7088 }
7089
7090 static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp * intel_dp,bool force_disable_vdd)7091 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7092 bool force_disable_vdd)
7093 {
7094 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7095 u32 pp_on, pp_off, port_sel = 0;
7096 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7097 struct pps_registers regs;
7098 enum port port = dp_to_dig_port(intel_dp)->base.port;
7099 const struct edp_power_seq *seq = &intel_dp->pps_delays;
7100
7101 lockdep_assert_held(&dev_priv->pps_mutex);
7102
7103 intel_pps_get_registers(intel_dp, ®s);
7104
7105 /*
7106 * On some VLV machines the BIOS can leave the VDD
7107 * enabled even on power sequencers which aren't
7108 * hooked up to any port. This would mess up the
7109 * power domain tracking the first time we pick
7110 * one of these power sequencers for use since
7111 * edp_panel_vdd_on() would notice that the VDD was
7112 * already on and therefore wouldn't grab the power
7113 * domain reference. Disable VDD first to avoid this.
7114 * This also avoids spuriously turning the VDD on as
7115 * soon as the new power sequencer gets initialized.
7116 */
7117 if (force_disable_vdd) {
7118 u32 pp = ilk_get_pp_control(intel_dp);
7119
7120 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7121 "Panel power already on\n");
7122
7123 if (pp & EDP_FORCE_VDD)
7124 drm_dbg_kms(&dev_priv->drm,
7125 "VDD already on, disabling first\n");
7126
7127 pp &= ~EDP_FORCE_VDD;
7128
7129 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7130 }
7131
7132 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7133 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7134 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7135 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7136
7137 /* Haswell doesn't have any port selection bits for the panel
7138 * power sequencer any more. */
7139 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7140 port_sel = PANEL_PORT_SELECT_VLV(port);
7141 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7142 switch (port) {
7143 case PORT_A:
7144 port_sel = PANEL_PORT_SELECT_DPA;
7145 break;
7146 case PORT_C:
7147 port_sel = PANEL_PORT_SELECT_DPC;
7148 break;
7149 case PORT_D:
7150 port_sel = PANEL_PORT_SELECT_DPD;
7151 break;
7152 default:
7153 MISSING_CASE(port);
7154 break;
7155 }
7156 }
7157
7158 pp_on |= port_sel;
7159
7160 intel_de_write(dev_priv, regs.pp_on, pp_on);
7161 intel_de_write(dev_priv, regs.pp_off, pp_off);
7162
7163 /*
7164 * Compute the divisor for the pp clock, simply match the Bspec formula.
7165 */
7166 if (i915_mmio_reg_valid(regs.pp_div)) {
7167 intel_de_write(dev_priv, regs.pp_div,
7168 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7169 } else {
7170 u32 pp_ctl;
7171
7172 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7173 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7174 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7175 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7176 }
7177
7178 drm_dbg_kms(&dev_priv->drm,
7179 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7180 intel_de_read(dev_priv, regs.pp_on),
7181 intel_de_read(dev_priv, regs.pp_off),
7182 i915_mmio_reg_valid(regs.pp_div) ?
7183 intel_de_read(dev_priv, regs.pp_div) :
7184 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7185 }
7186
intel_dp_pps_init(struct intel_dp * intel_dp)7187 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7188 {
7189 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7190
7191 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7192 vlv_initial_power_sequencer_setup(intel_dp);
7193 } else {
7194 intel_dp_init_panel_power_sequencer(intel_dp);
7195 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7196 }
7197 }
7198
7199 /**
7200 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7201 * @dev_priv: i915 device
7202 * @crtc_state: a pointer to the active intel_crtc_state
7203 * @refresh_rate: RR to be programmed
7204 *
7205 * This function gets called when refresh rate (RR) has to be changed from
7206 * one frequency to another. Switches can be between high and low RR
7207 * supported by the panel or to any other RR based on media playback (in
7208 * this case, RR value needs to be passed from user space).
7209 *
7210 * The caller of this function needs to take a lock on dev_priv->drrs.
7211 */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,int refresh_rate)7212 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7213 const struct intel_crtc_state *crtc_state,
7214 int refresh_rate)
7215 {
7216 struct intel_dp *intel_dp = dev_priv->drrs.dp;
7217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7218 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7219
7220 if (refresh_rate <= 0) {
7221 drm_dbg_kms(&dev_priv->drm,
7222 "Refresh rate should be positive non-zero.\n");
7223 return;
7224 }
7225
7226 if (intel_dp == NULL) {
7227 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7228 return;
7229 }
7230
7231 if (!intel_crtc) {
7232 drm_dbg_kms(&dev_priv->drm,
7233 "DRRS: intel_crtc not initialized\n");
7234 return;
7235 }
7236
7237 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7238 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7239 return;
7240 }
7241
7242 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7243 refresh_rate)
7244 index = DRRS_LOW_RR;
7245
7246 if (index == dev_priv->drrs.refresh_rate_type) {
7247 drm_dbg_kms(&dev_priv->drm,
7248 "DRRS requested for previously set RR...ignoring\n");
7249 return;
7250 }
7251
7252 if (!crtc_state->hw.active) {
7253 drm_dbg_kms(&dev_priv->drm,
7254 "eDP encoder disabled. CRTC not Active\n");
7255 return;
7256 }
7257
7258 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7259 switch (index) {
7260 case DRRS_HIGH_RR:
7261 intel_dp_set_m_n(crtc_state, M1_N1);
7262 break;
7263 case DRRS_LOW_RR:
7264 intel_dp_set_m_n(crtc_state, M2_N2);
7265 break;
7266 case DRRS_MAX_RR:
7267 default:
7268 drm_err(&dev_priv->drm,
7269 "Unsupported refreshrate type\n");
7270 }
7271 } else if (INTEL_GEN(dev_priv) > 6) {
7272 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7273 u32 val;
7274
7275 val = intel_de_read(dev_priv, reg);
7276 if (index > DRRS_HIGH_RR) {
7277 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7278 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7279 else
7280 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7281 } else {
7282 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7283 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7284 else
7285 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7286 }
7287 intel_de_write(dev_priv, reg, val);
7288 }
7289
7290 dev_priv->drrs.refresh_rate_type = index;
7291
7292 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7293 refresh_rate);
7294 }
7295
7296 static void
intel_edp_drrs_enable_locked(struct intel_dp * intel_dp)7297 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7298 {
7299 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7300
7301 dev_priv->drrs.busy_frontbuffer_bits = 0;
7302 dev_priv->drrs.dp = intel_dp;
7303 }
7304
7305 /**
7306 * intel_edp_drrs_enable - init drrs struct if supported
7307 * @intel_dp: DP struct
7308 * @crtc_state: A pointer to the active crtc state.
7309 *
7310 * Initializes frontbuffer_bits and drrs.dp
7311 */
intel_edp_drrs_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7312 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7313 const struct intel_crtc_state *crtc_state)
7314 {
7315 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7316
7317 if (!crtc_state->has_drrs)
7318 return;
7319
7320 drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7321
7322 mutex_lock(&dev_priv->drrs.mutex);
7323
7324 if (dev_priv->drrs.dp) {
7325 drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7326 goto unlock;
7327 }
7328
7329 intel_edp_drrs_enable_locked(intel_dp);
7330
7331 unlock:
7332 mutex_unlock(&dev_priv->drrs.mutex);
7333 }
7334
7335 static void
intel_edp_drrs_disable_locked(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7336 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7337 const struct intel_crtc_state *crtc_state)
7338 {
7339 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7340
7341 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7342 int refresh;
7343
7344 refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7345 intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7346 }
7347
7348 dev_priv->drrs.dp = NULL;
7349 }
7350
7351 /**
7352 * intel_edp_drrs_disable - Disable DRRS
7353 * @intel_dp: DP struct
7354 * @old_crtc_state: Pointer to old crtc_state.
7355 *
7356 */
intel_edp_drrs_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)7357 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7358 const struct intel_crtc_state *old_crtc_state)
7359 {
7360 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7361
7362 if (!old_crtc_state->has_drrs)
7363 return;
7364
7365 mutex_lock(&dev_priv->drrs.mutex);
7366 if (!dev_priv->drrs.dp) {
7367 mutex_unlock(&dev_priv->drrs.mutex);
7368 return;
7369 }
7370
7371 intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7372 mutex_unlock(&dev_priv->drrs.mutex);
7373
7374 cancel_delayed_work_sync(&dev_priv->drrs.work);
7375 }
7376
7377 /**
7378 * intel_edp_drrs_update - Update DRRS state
7379 * @intel_dp: Intel DP
7380 * @crtc_state: new CRTC state
7381 *
7382 * This function will update DRRS states, disabling or enabling DRRS when
7383 * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7384 * intel_edp_drrs_enable() should be called instead.
7385 */
7386 void
intel_edp_drrs_update(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7387 intel_edp_drrs_update(struct intel_dp *intel_dp,
7388 const struct intel_crtc_state *crtc_state)
7389 {
7390 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7391
7392 if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7393 return;
7394
7395 mutex_lock(&dev_priv->drrs.mutex);
7396
7397 /* New state matches current one? */
7398 if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7399 goto unlock;
7400
7401 if (crtc_state->has_drrs)
7402 intel_edp_drrs_enable_locked(intel_dp);
7403 else
7404 intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7405
7406 unlock:
7407 mutex_unlock(&dev_priv->drrs.mutex);
7408 }
7409
intel_edp_drrs_downclock_work(struct work_struct * work)7410 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7411 {
7412 struct drm_i915_private *dev_priv =
7413 container_of(work, typeof(*dev_priv), drrs.work.work);
7414 struct intel_dp *intel_dp;
7415
7416 mutex_lock(&dev_priv->drrs.mutex);
7417
7418 intel_dp = dev_priv->drrs.dp;
7419
7420 if (!intel_dp)
7421 goto unlock;
7422
7423 /*
7424 * The delayed work can race with an invalidate hence we need to
7425 * recheck.
7426 */
7427
7428 if (dev_priv->drrs.busy_frontbuffer_bits)
7429 goto unlock;
7430
7431 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7432 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7433
7434 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7435 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7436 }
7437
7438 unlock:
7439 mutex_unlock(&dev_priv->drrs.mutex);
7440 }
7441
7442 /**
7443 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7444 * @dev_priv: i915 device
7445 * @frontbuffer_bits: frontbuffer plane tracking bits
7446 *
7447 * This function gets called everytime rendering on the given planes start.
7448 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7449 *
7450 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7451 */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7452 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7453 unsigned int frontbuffer_bits)
7454 {
7455 struct intel_dp *intel_dp;
7456 struct drm_crtc *crtc;
7457 enum pipe pipe;
7458
7459 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7460 return;
7461
7462 cancel_delayed_work(&dev_priv->drrs.work);
7463
7464 mutex_lock(&dev_priv->drrs.mutex);
7465
7466 intel_dp = dev_priv->drrs.dp;
7467 if (!intel_dp) {
7468 mutex_unlock(&dev_priv->drrs.mutex);
7469 return;
7470 }
7471
7472 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7473 pipe = to_intel_crtc(crtc)->pipe;
7474
7475 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7476 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7477
7478 /* invalidate means busy screen hence upclock */
7479 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7480 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7481 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7482
7483 mutex_unlock(&dev_priv->drrs.mutex);
7484 }
7485
7486 /**
7487 * intel_edp_drrs_flush - Restart Idleness DRRS
7488 * @dev_priv: i915 device
7489 * @frontbuffer_bits: frontbuffer plane tracking bits
7490 *
7491 * This function gets called every time rendering on the given planes has
7492 * completed or flip on a crtc is completed. So DRRS should be upclocked
7493 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7494 * if no other planes are dirty.
7495 *
7496 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7497 */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7498 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7499 unsigned int frontbuffer_bits)
7500 {
7501 struct intel_dp *intel_dp;
7502 struct drm_crtc *crtc;
7503 enum pipe pipe;
7504
7505 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7506 return;
7507
7508 cancel_delayed_work(&dev_priv->drrs.work);
7509
7510 mutex_lock(&dev_priv->drrs.mutex);
7511
7512 intel_dp = dev_priv->drrs.dp;
7513 if (!intel_dp) {
7514 mutex_unlock(&dev_priv->drrs.mutex);
7515 return;
7516 }
7517
7518 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7519 pipe = to_intel_crtc(crtc)->pipe;
7520
7521 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7522 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7523
7524 /* flush means busy screen hence upclock */
7525 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7526 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7527 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7528
7529 /*
7530 * flush also means no more activity hence schedule downclock, if all
7531 * other fbs are quiescent too
7532 */
7533 if (!dev_priv->drrs.busy_frontbuffer_bits)
7534 schedule_delayed_work(&dev_priv->drrs.work,
7535 msecs_to_jiffies(1000));
7536 mutex_unlock(&dev_priv->drrs.mutex);
7537 }
7538
7539 /**
7540 * DOC: Display Refresh Rate Switching (DRRS)
7541 *
7542 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7543 * which enables swtching between low and high refresh rates,
7544 * dynamically, based on the usage scenario. This feature is applicable
7545 * for internal panels.
7546 *
7547 * Indication that the panel supports DRRS is given by the panel EDID, which
7548 * would list multiple refresh rates for one resolution.
7549 *
7550 * DRRS is of 2 types - static and seamless.
7551 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7552 * (may appear as a blink on screen) and is used in dock-undock scenario.
7553 * Seamless DRRS involves changing RR without any visual effect to the user
7554 * and can be used during normal system usage. This is done by programming
7555 * certain registers.
7556 *
7557 * Support for static/seamless DRRS may be indicated in the VBT based on
7558 * inputs from the panel spec.
7559 *
7560 * DRRS saves power by switching to low RR based on usage scenarios.
7561 *
7562 * The implementation is based on frontbuffer tracking implementation. When
7563 * there is a disturbance on the screen triggered by user activity or a periodic
7564 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7565 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7566 * made.
7567 *
7568 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7569 * and intel_edp_drrs_flush() are called.
7570 *
7571 * DRRS can be further extended to support other internal panels and also
7572 * the scenario of video playback wherein RR is set based on the rate
7573 * requested by userspace.
7574 */
7575
7576 /**
7577 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7578 * @connector: eDP connector
7579 * @fixed_mode: preferred mode of panel
7580 *
7581 * This function is called only once at driver load to initialize basic
7582 * DRRS stuff.
7583 *
7584 * Returns:
7585 * Downclock mode if panel supports it, else return NULL.
7586 * DRRS support is determined by the presence of downclock mode (apart
7587 * from VBT setting).
7588 */
7589 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * connector,struct drm_display_mode * fixed_mode)7590 intel_dp_drrs_init(struct intel_connector *connector,
7591 struct drm_display_mode *fixed_mode)
7592 {
7593 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7594 struct drm_display_mode *downclock_mode = NULL;
7595
7596 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7597 mutex_init(&dev_priv->drrs.mutex);
7598
7599 if (INTEL_GEN(dev_priv) <= 6) {
7600 drm_dbg_kms(&dev_priv->drm,
7601 "DRRS supported for Gen7 and above\n");
7602 return NULL;
7603 }
7604
7605 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7606 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7607 return NULL;
7608 }
7609
7610 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7611 if (!downclock_mode) {
7612 drm_dbg_kms(&dev_priv->drm,
7613 "Downclock mode is not found. DRRS not supported\n");
7614 return NULL;
7615 }
7616
7617 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7618
7619 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7620 drm_dbg_kms(&dev_priv->drm,
7621 "seamless DRRS supported for eDP panel.\n");
7622 return downclock_mode;
7623 }
7624
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)7625 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7626 struct intel_connector *intel_connector)
7627 {
7628 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7629 struct drm_device *dev = &dev_priv->drm;
7630 struct drm_connector *connector = &intel_connector->base;
7631 struct drm_display_mode *fixed_mode = NULL;
7632 struct drm_display_mode *downclock_mode = NULL;
7633 bool has_dpcd;
7634 enum pipe pipe = INVALID_PIPE;
7635 intel_wakeref_t wakeref;
7636 struct edid *edid;
7637
7638 if (!intel_dp_is_edp(intel_dp))
7639 return true;
7640
7641 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7642
7643 /*
7644 * On IBX/CPT we may get here with LVDS already registered. Since the
7645 * driver uses the only internal power sequencer available for both
7646 * eDP and LVDS bail out early in this case to prevent interfering
7647 * with an already powered-on LVDS power sequencer.
7648 */
7649 if (intel_get_lvds_encoder(dev_priv)) {
7650 drm_WARN_ON(dev,
7651 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7652 drm_info(&dev_priv->drm,
7653 "LVDS was detected, not registering eDP\n");
7654
7655 return false;
7656 }
7657
7658 with_pps_lock(intel_dp, wakeref) {
7659 intel_dp_init_panel_power_timestamps(intel_dp);
7660 intel_dp_pps_init(intel_dp);
7661 intel_edp_panel_vdd_sanitize(intel_dp);
7662 }
7663
7664 /* Cache DPCD and EDID for edp. */
7665 has_dpcd = intel_edp_init_dpcd(intel_dp);
7666
7667 if (!has_dpcd) {
7668 /* if this fails, presume the device is a ghost */
7669 drm_info(&dev_priv->drm,
7670 "failed to retrieve link info, disabling eDP\n");
7671 goto out_vdd_off;
7672 }
7673
7674 mutex_lock(&dev->mode_config.mutex);
7675 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7676 if (edid) {
7677 if (drm_add_edid_modes(connector, edid)) {
7678 drm_connector_update_edid_property(connector, edid);
7679 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7680 } else {
7681 kfree(edid);
7682 edid = ERR_PTR(-EINVAL);
7683 }
7684 } else {
7685 edid = ERR_PTR(-ENOENT);
7686 }
7687 intel_connector->edid = edid;
7688
7689 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7690 if (fixed_mode)
7691 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7692
7693 /* fallback to VBT if available for eDP */
7694 if (!fixed_mode)
7695 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7696 mutex_unlock(&dev->mode_config.mutex);
7697
7698 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7699 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7700 register_reboot_notifier(&intel_dp->edp_notifier);
7701
7702 /*
7703 * Figure out the current pipe for the initial backlight setup.
7704 * If the current pipe isn't valid, try the PPS pipe, and if that
7705 * fails just assume pipe A.
7706 */
7707 pipe = vlv_active_pipe(intel_dp);
7708
7709 if (pipe != PIPE_A && pipe != PIPE_B)
7710 pipe = intel_dp->pps_pipe;
7711
7712 if (pipe != PIPE_A && pipe != PIPE_B)
7713 pipe = PIPE_A;
7714
7715 drm_dbg_kms(&dev_priv->drm,
7716 "using pipe %c for initial backlight setup\n",
7717 pipe_name(pipe));
7718 }
7719
7720 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7721 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7722 intel_panel_setup_backlight(connector, pipe);
7723
7724 if (fixed_mode) {
7725 drm_connector_set_panel_orientation_with_quirk(connector,
7726 dev_priv->vbt.orientation,
7727 fixed_mode->hdisplay, fixed_mode->vdisplay);
7728 }
7729
7730 return true;
7731
7732 out_vdd_off:
7733 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7734 /*
7735 * vdd might still be enabled do to the delayed vdd off.
7736 * Make sure vdd is actually turned off here.
7737 */
7738 with_pps_lock(intel_dp, wakeref)
7739 edp_panel_vdd_off_sync(intel_dp);
7740
7741 return false;
7742 }
7743
intel_dp_modeset_retry_work_fn(struct work_struct * work)7744 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7745 {
7746 struct intel_connector *intel_connector;
7747 struct drm_connector *connector;
7748
7749 intel_connector = container_of(work, typeof(*intel_connector),
7750 modeset_retry_work);
7751 connector = &intel_connector->base;
7752 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7753 connector->name);
7754
7755 /* Grab the locks before changing connector property*/
7756 mutex_lock(&connector->dev->mode_config.mutex);
7757 /* Set connector link status to BAD and send a Uevent to notify
7758 * userspace to do a modeset.
7759 */
7760 drm_connector_set_link_status_property(connector,
7761 DRM_MODE_LINK_STATUS_BAD);
7762 mutex_unlock(&connector->dev->mode_config.mutex);
7763 /* Send Hotplug uevent so userspace can reprobe */
7764 drm_kms_helper_hotplug_event(connector->dev);
7765 }
7766
7767 bool
intel_dp_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)7768 intel_dp_init_connector(struct intel_digital_port *dig_port,
7769 struct intel_connector *intel_connector)
7770 {
7771 struct drm_connector *connector = &intel_connector->base;
7772 struct intel_dp *intel_dp = &dig_port->dp;
7773 struct intel_encoder *intel_encoder = &dig_port->base;
7774 struct drm_device *dev = intel_encoder->base.dev;
7775 struct drm_i915_private *dev_priv = to_i915(dev);
7776 enum port port = intel_encoder->port;
7777 enum phy phy = intel_port_to_phy(dev_priv, port);
7778 int type;
7779
7780 /* Initialize the work for modeset in case of link train failure */
7781 INIT_WORK(&intel_connector->modeset_retry_work,
7782 intel_dp_modeset_retry_work_fn);
7783
7784 if (drm_WARN(dev, dig_port->max_lanes < 1,
7785 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7786 dig_port->max_lanes, intel_encoder->base.base.id,
7787 intel_encoder->base.name))
7788 return false;
7789
7790 intel_dp_set_source_rates(intel_dp);
7791 intel_dp_set_default_sink_rates(intel_dp);
7792 intel_dp_set_common_rates(intel_dp);
7793
7794 intel_dp->reset_link_params = true;
7795 intel_dp->pps_pipe = INVALID_PIPE;
7796 intel_dp->active_pipe = INVALID_PIPE;
7797
7798 /* Preserve the current hw state. */
7799 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7800 intel_dp->attached_connector = intel_connector;
7801
7802 if (intel_dp_is_port_edp(dev_priv, port)) {
7803 /*
7804 * Currently we don't support eDP on TypeC ports, although in
7805 * theory it could work on TypeC legacy ports.
7806 */
7807 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7808 type = DRM_MODE_CONNECTOR_eDP;
7809 } else {
7810 type = DRM_MODE_CONNECTOR_DisplayPort;
7811 }
7812
7813 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7814 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7815
7816 /*
7817 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7818 * for DP the encoder type can be set by the caller to
7819 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7820 */
7821 if (type == DRM_MODE_CONNECTOR_eDP)
7822 intel_encoder->type = INTEL_OUTPUT_EDP;
7823
7824 /* eDP only on port B and/or C on vlv/chv */
7825 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7826 IS_CHERRYVIEW(dev_priv)) &&
7827 intel_dp_is_edp(intel_dp) &&
7828 port != PORT_B && port != PORT_C))
7829 return false;
7830
7831 drm_dbg_kms(&dev_priv->drm,
7832 "Adding %s connector on [ENCODER:%d:%s]\n",
7833 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7834 intel_encoder->base.base.id, intel_encoder->base.name);
7835
7836 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7837 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7838
7839 if (!HAS_GMCH(dev_priv))
7840 connector->interlace_allowed = true;
7841 connector->doublescan_allowed = 0;
7842
7843 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7844
7845 intel_dp_aux_init(intel_dp);
7846
7847 intel_connector_attach_encoder(intel_connector, intel_encoder);
7848
7849 if (HAS_DDI(dev_priv))
7850 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7851 else
7852 intel_connector->get_hw_state = intel_connector_get_hw_state;
7853
7854 /* init MST on ports that can support it */
7855 intel_dp_mst_encoder_init(dig_port,
7856 intel_connector->base.base.id);
7857
7858 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7859 intel_dp_aux_fini(intel_dp);
7860 intel_dp_mst_encoder_cleanup(dig_port);
7861 goto fail;
7862 }
7863
7864 intel_dp_add_properties(intel_dp, connector);
7865
7866 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7867 int ret = intel_dp_init_hdcp(dig_port, intel_connector);
7868 if (ret)
7869 drm_dbg_kms(&dev_priv->drm,
7870 "HDCP init failed, skipping.\n");
7871 }
7872
7873 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7874 * 0xd. Failure to do so will result in spurious interrupts being
7875 * generated on the port when a cable is not attached.
7876 */
7877 if (IS_G45(dev_priv)) {
7878 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7879 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7880 (temp & ~0xf) | 0xd);
7881 }
7882
7883 return true;
7884
7885 fail:
7886 drm_connector_cleanup(connector);
7887
7888 return false;
7889 }
7890
intel_dp_init(struct drm_i915_private * dev_priv,i915_reg_t output_reg,enum port port)7891 bool intel_dp_init(struct drm_i915_private *dev_priv,
7892 i915_reg_t output_reg,
7893 enum port port)
7894 {
7895 struct intel_digital_port *dig_port;
7896 struct intel_encoder *intel_encoder;
7897 struct drm_encoder *encoder;
7898 struct intel_connector *intel_connector;
7899
7900 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
7901 if (!dig_port)
7902 return false;
7903
7904 intel_connector = intel_connector_alloc();
7905 if (!intel_connector)
7906 goto err_connector_alloc;
7907
7908 intel_encoder = &dig_port->base;
7909 encoder = &intel_encoder->base;
7910
7911 mutex_init(&dig_port->hdcp_mutex);
7912
7913 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7914 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7915 "DP %c", port_name(port)))
7916 goto err_encoder_init;
7917
7918 intel_encoder->hotplug = intel_dp_hotplug;
7919 intel_encoder->compute_config = intel_dp_compute_config;
7920 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7921 intel_encoder->get_config = intel_dp_get_config;
7922 intel_encoder->update_pipe = intel_panel_update_backlight;
7923 intel_encoder->suspend = intel_dp_encoder_suspend;
7924 if (IS_CHERRYVIEW(dev_priv)) {
7925 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7926 intel_encoder->pre_enable = chv_pre_enable_dp;
7927 intel_encoder->enable = vlv_enable_dp;
7928 intel_encoder->disable = vlv_disable_dp;
7929 intel_encoder->post_disable = chv_post_disable_dp;
7930 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7931 } else if (IS_VALLEYVIEW(dev_priv)) {
7932 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7933 intel_encoder->pre_enable = vlv_pre_enable_dp;
7934 intel_encoder->enable = vlv_enable_dp;
7935 intel_encoder->disable = vlv_disable_dp;
7936 intel_encoder->post_disable = vlv_post_disable_dp;
7937 } else {
7938 intel_encoder->pre_enable = g4x_pre_enable_dp;
7939 intel_encoder->enable = g4x_enable_dp;
7940 intel_encoder->disable = g4x_disable_dp;
7941 intel_encoder->post_disable = g4x_post_disable_dp;
7942 }
7943
7944 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
7945 (HAS_PCH_CPT(dev_priv) && port != PORT_A))
7946 dig_port->dp.set_link_train = cpt_set_link_train;
7947 else
7948 dig_port->dp.set_link_train = g4x_set_link_train;
7949
7950 if (IS_CHERRYVIEW(dev_priv))
7951 dig_port->dp.set_signal_levels = chv_set_signal_levels;
7952 else if (IS_VALLEYVIEW(dev_priv))
7953 dig_port->dp.set_signal_levels = vlv_set_signal_levels;
7954 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
7955 dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
7956 else if (IS_GEN(dev_priv, 6) && port == PORT_A)
7957 dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
7958 else
7959 dig_port->dp.set_signal_levels = g4x_set_signal_levels;
7960
7961 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
7962 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
7963 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
7964 dig_port->dp.voltage_max = intel_dp_voltage_max_3;
7965 } else {
7966 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
7967 dig_port->dp.voltage_max = intel_dp_voltage_max_2;
7968 }
7969
7970 dig_port->dp.output_reg = output_reg;
7971 dig_port->max_lanes = 4;
7972 dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7973 dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7974
7975 intel_encoder->type = INTEL_OUTPUT_DP;
7976 intel_encoder->power_domain = intel_port_to_power_domain(port);
7977 if (IS_CHERRYVIEW(dev_priv)) {
7978 if (port == PORT_D)
7979 intel_encoder->pipe_mask = BIT(PIPE_C);
7980 else
7981 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7982 } else {
7983 intel_encoder->pipe_mask = ~0;
7984 }
7985 intel_encoder->cloneable = 0;
7986 intel_encoder->port = port;
7987 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7988
7989 dig_port->hpd_pulse = intel_dp_hpd_pulse;
7990
7991 if (HAS_GMCH(dev_priv)) {
7992 if (IS_GM45(dev_priv))
7993 dig_port->connected = gm45_digital_port_connected;
7994 else
7995 dig_port->connected = g4x_digital_port_connected;
7996 } else {
7997 if (port == PORT_A)
7998 dig_port->connected = ilk_digital_port_connected;
7999 else
8000 dig_port->connected = ibx_digital_port_connected;
8001 }
8002
8003 if (port != PORT_A)
8004 intel_infoframe_init(dig_port);
8005
8006 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8007 if (!intel_dp_init_connector(dig_port, intel_connector))
8008 goto err_init_connector;
8009
8010 return true;
8011
8012 err_init_connector:
8013 drm_encoder_cleanup(encoder);
8014 err_encoder_init:
8015 kfree(intel_connector);
8016 err_connector_alloc:
8017 kfree(dig_port);
8018 return false;
8019 }
8020
intel_dp_mst_suspend(struct drm_i915_private * dev_priv)8021 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8022 {
8023 struct intel_encoder *encoder;
8024
8025 for_each_intel_encoder(&dev_priv->drm, encoder) {
8026 struct intel_dp *intel_dp;
8027
8028 if (encoder->type != INTEL_OUTPUT_DDI)
8029 continue;
8030
8031 intel_dp = enc_to_intel_dp(encoder);
8032
8033 if (!intel_dp->can_mst)
8034 continue;
8035
8036 if (intel_dp->is_mst)
8037 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8038 }
8039 }
8040
intel_dp_mst_resume(struct drm_i915_private * dev_priv)8041 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8042 {
8043 struct intel_encoder *encoder;
8044
8045 for_each_intel_encoder(&dev_priv->drm, encoder) {
8046 struct intel_dp *intel_dp;
8047 int ret;
8048
8049 if (encoder->type != INTEL_OUTPUT_DDI)
8050 continue;
8051
8052 intel_dp = enc_to_intel_dp(encoder);
8053
8054 if (!intel_dp->can_mst)
8055 continue;
8056
8057 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8058 true);
8059 if (ret) {
8060 intel_dp->is_mst = false;
8061 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8062 false);
8063 }
8064 }
8065 }
8066