1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "util/format/u_format.h"
33 #include "util/half_float.h"
34 #include "compiler/glsl_types.h"
35 #include "list.h"
36 #include "ir_visitor.h"
37 #include "ir_hierarchical_visitor.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_demote,
80 ir_type_emit_vertex,
81 ir_type_end_primitive,
82 ir_type_barrier,
83 ir_type_max, /**< maximum ir_type enum number, for validation */
84 ir_type_unset = ir_type_max
85 };
86
87
88 /**
89 * Base class of all IR instructions
90 */
91 class ir_instruction : public exec_node {
92 public:
93 enum ir_node_type ir_type;
94
95 /**
96 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
97 * there's a virtual destructor present. Because we almost
98 * universally use ralloc for our memory management of
99 * ir_instructions, the destructor doesn't need to do any work.
100 */
~ir_instruction()101 virtual ~ir_instruction()
102 {
103 }
104
105 /** ir_print_visitor helper for debugging. */
106 void print(void) const;
107 void fprint(FILE *f) const;
108
109 virtual void accept(ir_visitor *) = 0;
110 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
111 virtual ir_instruction *clone(void *mem_ctx,
112 struct hash_table *ht) const = 0;
113
is_rvalue()114 bool is_rvalue() const
115 {
116 return ir_type == ir_type_dereference_array ||
117 ir_type == ir_type_dereference_record ||
118 ir_type == ir_type_dereference_variable ||
119 ir_type == ir_type_constant ||
120 ir_type == ir_type_expression ||
121 ir_type == ir_type_swizzle ||
122 ir_type == ir_type_texture;
123 }
124
is_dereference()125 bool is_dereference() const
126 {
127 return ir_type == ir_type_dereference_array ||
128 ir_type == ir_type_dereference_record ||
129 ir_type == ir_type_dereference_variable;
130 }
131
is_jump()132 bool is_jump() const
133 {
134 return ir_type == ir_type_loop_jump ||
135 ir_type == ir_type_return ||
136 ir_type == ir_type_discard;
137 }
138
139 /**
140 * \name IR instruction downcast functions
141 *
142 * These functions either cast the object to a derived class or return
143 * \c NULL if the object's type does not match the specified derived class.
144 * Additional downcast functions will be added as needed.
145 */
146 /*@{*/
147 #define AS_BASE(TYPE) \
148 class ir_##TYPE *as_##TYPE() \
149 { \
150 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
151 } \
152 const class ir_##TYPE *as_##TYPE() const \
153 { \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE * as_##TYPE() const \
168 { \
169 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
170 }
171 AS_CHILD(variable)
172 AS_CHILD(function)
173 AS_CHILD(dereference_array)
174 AS_CHILD(dereference_variable)
175 AS_CHILD(dereference_record)
176 AS_CHILD(expression)
177 AS_CHILD(loop)
178 AS_CHILD(assignment)
179 AS_CHILD(call)
180 AS_CHILD(return)
181 AS_CHILD(if)
182 AS_CHILD(swizzle)
183 AS_CHILD(texture)
184 AS_CHILD(constant)
185 AS_CHILD(discard)
186 #undef AS_CHILD
187 /*@}*/
188
189 /**
190 * IR equality method: Return true if the referenced instruction would
191 * return the same value as this one.
192 *
193 * This intended to be used for CSE and algebraic optimizations, on rvalues
194 * in particular. No support for other instruction types (assignments,
195 * jumps, calls, etc.) is planned.
196 */
197 virtual bool equals(const ir_instruction *ir,
198 enum ir_node_type ignore = ir_type_unset) const;
199
200 protected:
ir_instruction(enum ir_node_type t)201 ir_instruction(enum ir_node_type t)
202 : ir_type(t)
203 {
204 }
205
206 private:
ir_instruction()207 ir_instruction()
208 {
209 assert(!"Should not get here.");
210 }
211 };
212
213
214 /**
215 * The base class for all "values"/expression trees.
216 */
217 class ir_rvalue : public ir_instruction {
218 public:
219 const struct glsl_type *type;
220
221 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
222
accept(ir_visitor * v)223 virtual void accept(ir_visitor *v)
224 {
225 v->visit(this);
226 }
227
228 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
229
230 virtual ir_constant *constant_expression_value(void *mem_ctx,
231 struct hash_table *variable_context = NULL);
232
233 ir_rvalue *as_rvalue_to_saturate();
234
235 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
236 {
237 return false;
238 }
239
240 /**
241 * Get the variable that is ultimately referenced by an r-value
242 */
variable_referenced()243 virtual ir_variable *variable_referenced() const
244 {
245 return NULL;
246 }
247
248
249 /**
250 * If an r-value is a reference to a whole variable, get that variable
251 *
252 * \return
253 * Pointer to a variable that is completely dereferenced by the r-value. If
254 * the r-value is not a dereference or the dereference does not access the
255 * entire variable (i.e., it's just one array element, struct field), \c NULL
256 * is returned.
257 */
whole_variable_referenced()258 virtual ir_variable *whole_variable_referenced()
259 {
260 return NULL;
261 }
262
263 /**
264 * Determine if an r-value has the value zero
265 *
266 * The base implementation of this function always returns \c false. The
267 * \c ir_constant class over-rides this function to return \c true \b only
268 * for vector and scalar types that have all elements set to the value
269 * zero (or \c false for booleans).
270 *
271 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
272 */
273 virtual bool is_zero() const;
274
275 /**
276 * Determine if an r-value has the value one
277 *
278 * The base implementation of this function always returns \c false. The
279 * \c ir_constant class over-rides this function to return \c true \b only
280 * for vector and scalar types that have all elements set to the value
281 * one (or \c true for booleans).
282 *
283 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
284 */
285 virtual bool is_one() const;
286
287 /**
288 * Determine if an r-value has the value negative one
289 *
290 * The base implementation of this function always returns \c false. The
291 * \c ir_constant class over-rides this function to return \c true \b only
292 * for vector and scalar types that have all elements set to the value
293 * negative one. For boolean types, the result is always \c false.
294 *
295 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
296 */
297 virtual bool is_negative_one() const;
298
299 /**
300 * Determine if an r-value is an unsigned integer constant which can be
301 * stored in 16 bits.
302 *
303 * \sa ir_constant::is_uint16_constant.
304 */
is_uint16_constant()305 virtual bool is_uint16_constant() const { return false; }
306
307 /**
308 * Return a generic value of error_type.
309 *
310 * Allocation will be performed with 'mem_ctx' as ralloc owner.
311 */
312 static ir_rvalue *error_value(void *mem_ctx);
313
314 protected:
315 ir_rvalue(enum ir_node_type t);
316 };
317
318
319 /**
320 * Variable storage classes
321 */
322 enum ir_variable_mode {
323 ir_var_auto = 0, /**< Function local variables and globals. */
324 ir_var_uniform, /**< Variable declared as a uniform. */
325 ir_var_shader_storage, /**< Variable declared as an ssbo. */
326 ir_var_shader_shared, /**< Variable declared as shared. */
327 ir_var_shader_in,
328 ir_var_shader_out,
329 ir_var_function_in,
330 ir_var_function_out,
331 ir_var_function_inout,
332 ir_var_const_in, /**< "in" param that must be a constant expression */
333 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
334 ir_var_temporary, /**< Temporary variable generated during compilation. */
335 ir_var_mode_count /**< Number of variable modes */
336 };
337
338 /**
339 * Enum keeping track of how a variable was declared. For error checking of
340 * the gl_PerVertex redeclaration rules.
341 */
342 enum ir_var_declaration_type {
343 /**
344 * Normal declaration (for most variables, this means an explicit
345 * declaration. Exception: temporaries are always implicitly declared, but
346 * they still use ir_var_declared_normally).
347 *
348 * Note: an ir_variable that represents a named interface block uses
349 * ir_var_declared_normally.
350 */
351 ir_var_declared_normally = 0,
352
353 /**
354 * Variable was explicitly declared (or re-declared) in an unnamed
355 * interface block.
356 */
357 ir_var_declared_in_block,
358
359 /**
360 * Variable is an implicitly declared built-in that has not been explicitly
361 * re-declared by the shader.
362 */
363 ir_var_declared_implicitly,
364
365 /**
366 * Variable is implicitly generated by the compiler and should not be
367 * visible via the API.
368 */
369 ir_var_hidden,
370 };
371
372 /**
373 * \brief Layout qualifiers for gl_FragDepth.
374 *
375 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
376 * with a layout qualifier.
377 */
378 enum ir_depth_layout {
379 ir_depth_layout_none, /**< No depth layout is specified. */
380 ir_depth_layout_any,
381 ir_depth_layout_greater,
382 ir_depth_layout_less,
383 ir_depth_layout_unchanged
384 };
385
386 /**
387 * \brief Convert depth layout qualifier to string.
388 */
389 const char*
390 depth_layout_string(ir_depth_layout layout);
391
392 /**
393 * Description of built-in state associated with a uniform
394 *
395 * \sa ir_variable::state_slots
396 */
397 struct ir_state_slot {
398 gl_state_index16 tokens[STATE_LENGTH];
399 int swizzle;
400 };
401
402
403 /**
404 * Get the string value for an interpolation qualifier
405 *
406 * \return The string that would be used in a shader to specify \c
407 * mode will be returned.
408 *
409 * This function is used to generate error messages of the form "shader
410 * uses %s interpolation qualifier", so in the case where there is no
411 * interpolation qualifier, it returns "no".
412 *
413 * This function should only be used on a shader input or output variable.
414 */
415 const char *interpolation_string(unsigned interpolation);
416
417
418 class ir_variable : public ir_instruction {
419 public:
420 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
421
422 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
423
accept(ir_visitor * v)424 virtual void accept(ir_visitor *v)
425 {
426 v->visit(this);
427 }
428
429 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
430
431
432 /**
433 * Determine whether or not a variable is part of a uniform or
434 * shader storage block.
435 */
is_in_buffer_block()436 inline bool is_in_buffer_block() const
437 {
438 return (this->data.mode == ir_var_uniform ||
439 this->data.mode == ir_var_shader_storage) &&
440 this->interface_type != NULL;
441 }
442
443 /**
444 * Determine whether or not a variable is part of a shader storage block.
445 */
is_in_shader_storage_block()446 inline bool is_in_shader_storage_block() const
447 {
448 return this->data.mode == ir_var_shader_storage &&
449 this->interface_type != NULL;
450 }
451
452 /**
453 * Determine whether or not a variable is the declaration of an interface
454 * block
455 *
456 * For the first declaration below, there will be an \c ir_variable named
457 * "instance" whose type and whose instance_type will be the same
458 * \c glsl_type. For the second declaration, there will be an \c ir_variable
459 * named "f" whose type is float and whose instance_type is B2.
460 *
461 * "instance" is an interface instance variable, but "f" is not.
462 *
463 * uniform B1 {
464 * float f;
465 * } instance;
466 *
467 * uniform B2 {
468 * float f;
469 * };
470 */
is_interface_instance()471 inline bool is_interface_instance() const
472 {
473 return this->type->without_array() == this->interface_type;
474 }
475
476 /**
477 * Return whether this variable contains a bindless sampler/image.
478 */
contains_bindless()479 inline bool contains_bindless() const
480 {
481 if (!this->type->contains_sampler() && !this->type->contains_image())
482 return false;
483
484 return this->data.bindless || this->data.mode != ir_var_uniform;
485 }
486
487 /**
488 * Set this->interface_type on a newly created variable.
489 */
init_interface_type(const struct glsl_type * type)490 void init_interface_type(const struct glsl_type *type)
491 {
492 assert(this->interface_type == NULL);
493 this->interface_type = type;
494 if (this->is_interface_instance()) {
495 this->u.max_ifc_array_access =
496 ralloc_array(this, int, type->length);
497 for (unsigned i = 0; i < type->length; i++) {
498 this->u.max_ifc_array_access[i] = -1;
499 }
500 }
501 }
502
503 /**
504 * Change this->interface_type on a variable that previously had a
505 * different, but compatible, interface_type. This is used during linking
506 * to set the size of arrays in interface blocks.
507 */
change_interface_type(const struct glsl_type * type)508 void change_interface_type(const struct glsl_type *type)
509 {
510 if (this->u.max_ifc_array_access != NULL) {
511 /* max_ifc_array_access has already been allocated, so make sure the
512 * new interface has the same number of fields as the old one.
513 */
514 assert(this->interface_type->length == type->length);
515 }
516 this->interface_type = type;
517 }
518
519 /**
520 * Change this->interface_type on a variable that previously had a
521 * different, and incompatible, interface_type. This is used during
522 * compilation to handle redeclaration of the built-in gl_PerVertex
523 * interface block.
524 */
reinit_interface_type(const struct glsl_type * type)525 void reinit_interface_type(const struct glsl_type *type)
526 {
527 if (this->u.max_ifc_array_access != NULL) {
528 #ifndef NDEBUG
529 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
530 * it defines have been accessed yet; so it's safe to throw away the
531 * old max_ifc_array_access pointer, since all of its values are
532 * zero.
533 */
534 for (unsigned i = 0; i < this->interface_type->length; i++)
535 assert(this->u.max_ifc_array_access[i] == -1);
536 #endif
537 ralloc_free(this->u.max_ifc_array_access);
538 this->u.max_ifc_array_access = NULL;
539 }
540 this->interface_type = NULL;
541 init_interface_type(type);
542 }
543
get_interface_type()544 const glsl_type *get_interface_type() const
545 {
546 return this->interface_type;
547 }
548
get_interface_type_packing()549 enum glsl_interface_packing get_interface_type_packing() const
550 {
551 return this->interface_type->get_interface_packing();
552 }
553 /**
554 * Get the max_ifc_array_access pointer
555 *
556 * A "set" function is not needed because the array is dynamically allocated
557 * as necessary.
558 */
get_max_ifc_array_access()559 inline int *get_max_ifc_array_access()
560 {
561 assert(this->data._num_state_slots == 0);
562 return this->u.max_ifc_array_access;
563 }
564
get_num_state_slots()565 inline unsigned get_num_state_slots() const
566 {
567 assert(!this->is_interface_instance()
568 || this->data._num_state_slots == 0);
569 return this->data._num_state_slots;
570 }
571
set_num_state_slots(unsigned n)572 inline void set_num_state_slots(unsigned n)
573 {
574 assert(!this->is_interface_instance()
575 || n == 0);
576 this->data._num_state_slots = n;
577 }
578
get_state_slots()579 inline ir_state_slot *get_state_slots()
580 {
581 return this->is_interface_instance() ? NULL : this->u.state_slots;
582 }
583
get_state_slots()584 inline const ir_state_slot *get_state_slots() const
585 {
586 return this->is_interface_instance() ? NULL : this->u.state_slots;
587 }
588
allocate_state_slots(unsigned n)589 inline ir_state_slot *allocate_state_slots(unsigned n)
590 {
591 assert(!this->is_interface_instance());
592
593 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
594 this->data._num_state_slots = 0;
595
596 if (this->u.state_slots != NULL)
597 this->data._num_state_slots = n;
598
599 return this->u.state_slots;
600 }
601
is_interpolation_flat()602 inline bool is_interpolation_flat() const
603 {
604 return this->data.interpolation == INTERP_MODE_FLAT ||
605 this->type->contains_integer() ||
606 this->type->contains_double();
607 }
608
is_name_ralloced()609 inline bool is_name_ralloced() const
610 {
611 return this->name != ir_variable::tmp_name &&
612 this->name != this->name_storage;
613 }
614
is_fb_fetch_color_output()615 inline bool is_fb_fetch_color_output() const
616 {
617 return this->data.fb_fetch_output &&
618 this->data.location != FRAG_RESULT_DEPTH &&
619 this->data.location != FRAG_RESULT_STENCIL;
620 }
621
622 /**
623 * Enable emitting extension warnings for this variable
624 */
625 void enable_extension_warning(const char *extension);
626
627 /**
628 * Get the extension warning string for this variable
629 *
630 * If warnings are not enabled, \c NULL is returned.
631 */
632 const char *get_extension_warning() const;
633
634 /**
635 * Declared type of the variable
636 */
637 const struct glsl_type *type;
638
639 /**
640 * Declared name of the variable
641 */
642 const char *name;
643
644 private:
645 /**
646 * If the name length fits into name_storage, it's used, otherwise
647 * the name is ralloc'd. shader-db mining showed that 70% of variables
648 * fit here. This is a win over ralloc where only ralloc_header has
649 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
650 */
651 char name_storage[16];
652
653 public:
654 struct ir_variable_data {
655
656 /**
657 * Is the variable read-only?
658 *
659 * This is set for variables declared as \c const, shader inputs,
660 * and uniforms.
661 */
662 unsigned read_only:1;
663 unsigned centroid:1;
664 unsigned sample:1;
665 unsigned patch:1;
666 /**
667 * Was an 'invariant' qualifier explicitly set in the shader?
668 *
669 * This is used to cross validate qualifiers.
670 */
671 unsigned explicit_invariant:1;
672 /**
673 * Is the variable invariant?
674 *
675 * It can happen either by having the 'invariant' qualifier
676 * explicitly set in the shader or by being used in calculations
677 * of other invariant variables.
678 */
679 unsigned invariant:1;
680 unsigned precise:1;
681
682 /**
683 * Has this variable been used for reading or writing?
684 *
685 * Several GLSL semantic checks require knowledge of whether or not a
686 * variable has been used. For example, it is an error to redeclare a
687 * variable as invariant after it has been used.
688 *
689 * This is maintained in the ast_to_hir.cpp path and during linking,
690 * but not in Mesa's fixed function or ARB program paths.
691 */
692 unsigned used:1;
693
694 /**
695 * Has this variable been statically assigned?
696 *
697 * This answers whether the variable was assigned in any path of
698 * the shader during ast_to_hir. This doesn't answer whether it is
699 * still written after dead code removal, nor is it maintained in
700 * non-ast_to_hir.cpp (GLSL parsing) paths.
701 */
702 unsigned assigned:1;
703
704 /**
705 * When separate shader programs are enabled, only input/outputs between
706 * the stages of a multi-stage separate program can be safely removed
707 * from the shader interface. Other input/outputs must remains active.
708 */
709 unsigned always_active_io:1;
710
711 /**
712 * Enum indicating how the variable was declared. See
713 * ir_var_declaration_type.
714 *
715 * This is used to detect certain kinds of illegal variable redeclarations.
716 */
717 unsigned how_declared:2;
718
719 /**
720 * Storage class of the variable.
721 *
722 * \sa ir_variable_mode
723 */
724 unsigned mode:4;
725
726 /**
727 * Interpolation mode for shader inputs / outputs
728 *
729 * \sa glsl_interp_mode
730 */
731 unsigned interpolation:2;
732
733 /**
734 * Was the location explicitly set in the shader?
735 *
736 * If the location is explicitly set in the shader, it \b cannot be changed
737 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
738 * no effect).
739 */
740 unsigned explicit_location:1;
741 unsigned explicit_index:1;
742
743 /**
744 * Was an initial binding explicitly set in the shader?
745 *
746 * If so, constant_value contains an integer ir_constant representing the
747 * initial binding point.
748 */
749 unsigned explicit_binding:1;
750
751 /**
752 * Was an initial component explicitly set in the shader?
753 */
754 unsigned explicit_component:1;
755
756 /**
757 * Does this variable have an initializer?
758 *
759 * This is used by the linker to cross-validiate initializers of global
760 * variables.
761 */
762 unsigned has_initializer:1;
763
764 /**
765 * Is the initializer created by the compiler (glsl_zero_init)
766 */
767 unsigned is_implicit_initializer:1;
768
769 /**
770 * Is this varying used by transform feedback?
771 *
772 * This is used by the linker to decide if it's safe to pack the varying.
773 */
774 unsigned is_xfb:1;
775
776 /**
777 * Is this varying used only by transform feedback?
778 *
779 * This is used by the linker to decide if its safe to pack the varying.
780 */
781 unsigned is_xfb_only:1;
782
783 /**
784 * Was a transform feedback buffer set in the shader?
785 */
786 unsigned explicit_xfb_buffer:1;
787
788 /**
789 * Was a transform feedback offset set in the shader?
790 */
791 unsigned explicit_xfb_offset:1;
792
793 /**
794 * Was a transform feedback stride set in the shader?
795 */
796 unsigned explicit_xfb_stride:1;
797
798 /**
799 * If non-zero, then this variable may be packed along with other variables
800 * into a single varying slot, so this offset should be applied when
801 * accessing components. For example, an offset of 1 means that the x
802 * component of this variable is actually stored in component y of the
803 * location specified by \c location.
804 */
805 unsigned location_frac:2;
806
807 /**
808 * Layout of the matrix. Uses glsl_matrix_layout values.
809 */
810 unsigned matrix_layout:2;
811
812 /**
813 * Non-zero if this variable was created by lowering a named interface
814 * block.
815 */
816 unsigned from_named_ifc_block:1;
817
818 /**
819 * Non-zero if the variable must be a shader input. This is useful for
820 * constraints on function parameters.
821 */
822 unsigned must_be_shader_input:1;
823
824 /**
825 * Output index for dual source blending.
826 *
827 * \note
828 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
829 * source blending.
830 */
831 unsigned index:1;
832
833 /**
834 * Precision qualifier.
835 *
836 * In desktop GLSL we do not care about precision qualifiers at all, in
837 * fact, the spec says that precision qualifiers are ignored.
838 *
839 * To make things easy, we make it so that this field is always
840 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
841 * have the same precision value and the checks we add in the compiler
842 * for this field will never break a desktop shader compile.
843 */
844 unsigned precision:2;
845
846 /**
847 * \brief Layout qualifier for gl_FragDepth.
848 *
849 * This is not equal to \c ir_depth_layout_none if and only if this
850 * variable is \c gl_FragDepth and a layout qualifier is specified.
851 */
852 ir_depth_layout depth_layout:3;
853
854 /**
855 * Memory qualifiers.
856 */
857 unsigned memory_read_only:1; /**< "readonly" qualifier. */
858 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
859 unsigned memory_coherent:1;
860 unsigned memory_volatile:1;
861 unsigned memory_restrict:1;
862
863 /**
864 * ARB_shader_storage_buffer_object
865 */
866 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
867
868 unsigned implicit_sized_array:1;
869
870 /**
871 * Whether this is a fragment shader output implicitly initialized with
872 * the previous contents of the specified render target at the
873 * framebuffer location corresponding to this shader invocation.
874 */
875 unsigned fb_fetch_output:1;
876
877 /**
878 * Non-zero if this variable is considered bindless as defined by
879 * ARB_bindless_texture.
880 */
881 unsigned bindless:1;
882
883 /**
884 * Non-zero if this variable is considered bound as defined by
885 * ARB_bindless_texture.
886 */
887 unsigned bound:1;
888
889 /**
890 * Non-zero if the variable shall not be implicitly converted during
891 * functions matching.
892 */
893 unsigned implicit_conversion_prohibited:1;
894
895 /**
896 * Emit a warning if this variable is accessed.
897 */
898 private:
899 uint8_t warn_extension_index;
900
901 public:
902 /**
903 * Image internal format if specified explicitly, otherwise
904 * PIPE_FORMAT_NONE.
905 */
906 enum pipe_format image_format;
907
908 private:
909 /**
910 * Number of state slots used
911 *
912 * \note
913 * This could be stored in as few as 7-bits, if necessary. If it is made
914 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
915 * be safe.
916 */
917 uint16_t _num_state_slots;
918
919 public:
920 /**
921 * Initial binding point for a sampler, atomic, or UBO.
922 *
923 * For array types, this represents the binding point for the first element.
924 */
925 uint16_t binding;
926
927 /**
928 * Storage location of the base of this variable
929 *
930 * The precise meaning of this field depends on the nature of the variable.
931 *
932 * - Vertex shader input: one of the values from \c gl_vert_attrib.
933 * - Vertex shader output: one of the values from \c gl_varying_slot.
934 * - Geometry shader input: one of the values from \c gl_varying_slot.
935 * - Geometry shader output: one of the values from \c gl_varying_slot.
936 * - Fragment shader input: one of the values from \c gl_varying_slot.
937 * - Fragment shader output: one of the values from \c gl_frag_result.
938 * - Uniforms: Per-stage uniform slot number for default uniform block.
939 * - Uniforms: Index within the uniform block definition for UBO members.
940 * - Non-UBO Uniforms: explicit location until linking then reused to
941 * store uniform slot number.
942 * - Other: This field is not currently used.
943 *
944 * If the variable is a uniform, shader input, or shader output, and the
945 * slot has not been assigned, the value will be -1.
946 */
947 int location;
948
949 /**
950 * for glsl->tgsi/mesa IR we need to store the index into the
951 * parameters for uniforms, initially the code overloaded location
952 * but this causes problems with indirect samplers and AoA.
953 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
954 */
955 int param_index;
956
957 /**
958 * Vertex stream output identifier.
959 *
960 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
961 * stream of the i-th component.
962 */
963 unsigned stream;
964
965 /**
966 * Atomic, transform feedback or block member offset.
967 */
968 unsigned offset;
969
970 /**
971 * Highest element accessed with a constant expression array index
972 *
973 * Not used for non-array variables. -1 is never accessed.
974 */
975 int max_array_access;
976
977 /**
978 * Transform feedback buffer.
979 */
980 unsigned xfb_buffer;
981
982 /**
983 * Transform feedback stride.
984 */
985 unsigned xfb_stride;
986
987 /**
988 * Allow (only) ir_variable direct access private members.
989 */
990 friend class ir_variable;
991 } data;
992
993 /**
994 * Value assigned in the initializer of a variable declared "const"
995 */
996 ir_constant *constant_value;
997
998 /**
999 * Constant expression assigned in the initializer of the variable
1000 *
1001 * \warning
1002 * This field and \c ::constant_value are distinct. Even if the two fields
1003 * refer to constants with the same value, they must point to separate
1004 * objects.
1005 */
1006 ir_constant *constant_initializer;
1007
1008 private:
1009 static const char *const warn_extension_table[];
1010
1011 union {
1012 /**
1013 * For variables which satisfy the is_interface_instance() predicate,
1014 * this points to an array of integers such that if the ith member of
1015 * the interface block is an array, max_ifc_array_access[i] is the
1016 * maximum array element of that member that has been accessed. If the
1017 * ith member of the interface block is not an array,
1018 * max_ifc_array_access[i] is unused.
1019 *
1020 * For variables whose type is not an interface block, this pointer is
1021 * NULL.
1022 */
1023 int *max_ifc_array_access;
1024
1025 /**
1026 * Built-in state that backs this uniform
1027 *
1028 * Once set at variable creation, \c state_slots must remain invariant.
1029 *
1030 * If the variable is not a uniform, \c _num_state_slots will be zero
1031 * and \c state_slots will be \c NULL.
1032 */
1033 ir_state_slot *state_slots;
1034 } u;
1035
1036 /**
1037 * For variables that are in an interface block or are an instance of an
1038 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1039 *
1040 * \sa ir_variable::location
1041 */
1042 const glsl_type *interface_type;
1043
1044 /**
1045 * Name used for anonymous compiler temporaries
1046 */
1047 static const char tmp_name[];
1048
1049 public:
1050 /**
1051 * Should the construct keep names for ir_var_temporary variables?
1052 *
1053 * When this global is false, names passed to the constructor for
1054 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1055 * be named "compiler_temp". This name will be in static storage.
1056 *
1057 * \warning
1058 * \b NEVER change the mode of an \c ir_var_temporary.
1059 *
1060 * \warning
1061 * This variable is \b not thread-safe. It is global, \b not
1062 * per-context. It begins life false. A context can, at some point, make
1063 * it true. From that point on, it will be true forever. This should be
1064 * okay since it will only be set true while debugging.
1065 */
1066 static bool temporaries_allocate_names;
1067 };
1068
1069 /**
1070 * A function that returns whether a built-in function is available in the
1071 * current shading language (based on version, ES or desktop, and extensions).
1072 */
1073 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1074
1075 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1076 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1077
1078 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1079 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1080
1081 enum ir_intrinsic_id {
1082 ir_intrinsic_invalid = 0,
1083
1084 /**
1085 * \name Generic intrinsics
1086 *
1087 * Each of these intrinsics has a specific version for shared variables and
1088 * SSBOs.
1089 */
1090 /*@{*/
1091 ir_intrinsic_generic_load,
1092 ir_intrinsic_generic_store,
1093 ir_intrinsic_generic_atomic_add,
1094 ir_intrinsic_generic_atomic_and,
1095 ir_intrinsic_generic_atomic_or,
1096 ir_intrinsic_generic_atomic_xor,
1097 ir_intrinsic_generic_atomic_min,
1098 ir_intrinsic_generic_atomic_max,
1099 ir_intrinsic_generic_atomic_exchange,
1100 ir_intrinsic_generic_atomic_comp_swap,
1101 /*@}*/
1102
1103 ir_intrinsic_atomic_counter_read,
1104 ir_intrinsic_atomic_counter_increment,
1105 ir_intrinsic_atomic_counter_predecrement,
1106 ir_intrinsic_atomic_counter_add,
1107 ir_intrinsic_atomic_counter_and,
1108 ir_intrinsic_atomic_counter_or,
1109 ir_intrinsic_atomic_counter_xor,
1110 ir_intrinsic_atomic_counter_min,
1111 ir_intrinsic_atomic_counter_max,
1112 ir_intrinsic_atomic_counter_exchange,
1113 ir_intrinsic_atomic_counter_comp_swap,
1114
1115 ir_intrinsic_image_load,
1116 ir_intrinsic_image_store,
1117 ir_intrinsic_image_atomic_add,
1118 ir_intrinsic_image_atomic_and,
1119 ir_intrinsic_image_atomic_or,
1120 ir_intrinsic_image_atomic_xor,
1121 ir_intrinsic_image_atomic_min,
1122 ir_intrinsic_image_atomic_max,
1123 ir_intrinsic_image_atomic_exchange,
1124 ir_intrinsic_image_atomic_comp_swap,
1125 ir_intrinsic_image_size,
1126 ir_intrinsic_image_samples,
1127 ir_intrinsic_image_atomic_inc_wrap,
1128 ir_intrinsic_image_atomic_dec_wrap,
1129 ir_intrinsic_image_sparse_load,
1130
1131 ir_intrinsic_ssbo_load,
1132 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1133 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1134 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1135 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1136 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1137 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1138 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1139 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1140 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1141
1142 ir_intrinsic_memory_barrier,
1143 ir_intrinsic_shader_clock,
1144 ir_intrinsic_group_memory_barrier,
1145 ir_intrinsic_memory_barrier_atomic_counter,
1146 ir_intrinsic_memory_barrier_buffer,
1147 ir_intrinsic_memory_barrier_image,
1148 ir_intrinsic_memory_barrier_shared,
1149 ir_intrinsic_begin_invocation_interlock,
1150 ir_intrinsic_end_invocation_interlock,
1151
1152 ir_intrinsic_vote_all,
1153 ir_intrinsic_vote_any,
1154 ir_intrinsic_vote_eq,
1155 ir_intrinsic_ballot,
1156 ir_intrinsic_read_invocation,
1157 ir_intrinsic_read_first_invocation,
1158
1159 ir_intrinsic_helper_invocation,
1160
1161 ir_intrinsic_shared_load,
1162 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1163 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1164 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1165 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1166 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1167 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1168 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1169 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1170 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1171
1172 ir_intrinsic_is_sparse_texels_resident,
1173 };
1174
1175 /*@{*/
1176 /**
1177 * The representation of a function instance; may be the full definition or
1178 * simply a prototype.
1179 */
1180 class ir_function_signature : public ir_instruction {
1181 /* An ir_function_signature will be part of the list of signatures in
1182 * an ir_function.
1183 */
1184 public:
1185 ir_function_signature(const glsl_type *return_type,
1186 builtin_available_predicate builtin_avail = NULL);
1187
1188 virtual ir_function_signature *clone(void *mem_ctx,
1189 struct hash_table *ht) const;
1190 ir_function_signature *clone_prototype(void *mem_ctx,
1191 struct hash_table *ht) const;
1192
accept(ir_visitor * v)1193 virtual void accept(ir_visitor *v)
1194 {
1195 v->visit(this);
1196 }
1197
1198 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1199
1200 /**
1201 * Attempt to evaluate this function as a constant expression,
1202 * given a list of the actual parameters and the variable context.
1203 * Returns NULL for non-built-ins.
1204 */
1205 ir_constant *constant_expression_value(void *mem_ctx,
1206 exec_list *actual_parameters,
1207 struct hash_table *variable_context);
1208
1209 /**
1210 * Get the name of the function for which this is a signature
1211 */
1212 const char *function_name() const;
1213
1214 /**
1215 * Get a handle to the function for which this is a signature
1216 *
1217 * There is no setter function, this function returns a \c const pointer,
1218 * and \c ir_function_signature::_function is private for a reason. The
1219 * only way to make a connection between a function and function signature
1220 * is via \c ir_function::add_signature. This helps ensure that certain
1221 * invariants (i.e., a function signature is in the list of signatures for
1222 * its \c _function) are met.
1223 *
1224 * \sa ir_function::add_signature
1225 */
function()1226 inline const class ir_function *function() const
1227 {
1228 return this->_function;
1229 }
1230
1231 /**
1232 * Check whether the qualifiers match between this signature's parameters
1233 * and the supplied parameter list. If not, returns the name of the first
1234 * parameter with mismatched qualifiers (for use in error messages).
1235 */
1236 const char *qualifiers_match(exec_list *params);
1237
1238 /**
1239 * Replace the current parameter list with the given one. This is useful
1240 * if the current information came from a prototype, and either has invalid
1241 * or missing parameter names.
1242 */
1243 void replace_parameters(exec_list *new_params);
1244
1245 /**
1246 * Function return type.
1247 *
1248 * \note The precision qualifier is stored separately in return_precision.
1249 */
1250 const struct glsl_type *return_type;
1251
1252 /**
1253 * List of ir_variable of function parameters.
1254 *
1255 * This represents the storage. The paramaters passed in a particular
1256 * call will be in ir_call::actual_paramaters.
1257 */
1258 struct exec_list parameters;
1259
1260 /** Whether or not this function has a body (which may be empty). */
1261 unsigned is_defined:1;
1262
1263 /*
1264 * Precision qualifier for the return type.
1265 *
1266 * See the comment for ir_variable_data::precision for more details.
1267 */
1268 unsigned return_precision:2;
1269
1270 /** Whether or not this function signature is a built-in. */
1271 bool is_builtin() const;
1272
1273 /**
1274 * Whether or not this function is an intrinsic to be implemented
1275 * by the driver.
1276 */
is_intrinsic()1277 inline bool is_intrinsic() const
1278 {
1279 return intrinsic_id != ir_intrinsic_invalid;
1280 }
1281
1282 /** Identifier for this intrinsic. */
1283 enum ir_intrinsic_id intrinsic_id;
1284
1285 /** Whether or not a built-in is available for this shader. */
1286 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1287
1288 /** Body of instructions in the function. */
1289 struct exec_list body;
1290
1291 private:
1292 /**
1293 * A function pointer to a predicate that answers whether a built-in
1294 * function is available in the current shader. NULL if not a built-in.
1295 */
1296 builtin_available_predicate builtin_avail;
1297
1298 /** Function of which this signature is one overload. */
1299 class ir_function *_function;
1300
1301 /** Function signature of which this one is a prototype clone */
1302 const ir_function_signature *origin;
1303
1304 friend class ir_function;
1305
1306 /**
1307 * Helper function to run a list of instructions for constant
1308 * expression evaluation.
1309 *
1310 * The hash table represents the values of the visible variables.
1311 * There are no scoping issues because the table is indexed on
1312 * ir_variable pointers, not variable names.
1313 *
1314 * Returns false if the expression is not constant, true otherwise,
1315 * and the value in *result if result is non-NULL.
1316 */
1317 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1318 const struct exec_list &body,
1319 struct hash_table *variable_context,
1320 ir_constant **result);
1321 };
1322
1323
1324 /**
1325 * Header for tracking multiple overloaded functions with the same name.
1326 * Contains a list of ir_function_signatures representing each of the
1327 * actual functions.
1328 */
1329 class ir_function : public ir_instruction {
1330 public:
1331 ir_function(const char *name);
1332
1333 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1334
accept(ir_visitor * v)1335 virtual void accept(ir_visitor *v)
1336 {
1337 v->visit(this);
1338 }
1339
1340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
add_signature(ir_function_signature * sig)1342 void add_signature(ir_function_signature *sig)
1343 {
1344 sig->_function = this;
1345 this->signatures.push_tail(sig);
1346 }
1347
1348 /**
1349 * Find a signature that matches a set of actual parameters, taking implicit
1350 * conversions into account. Also flags whether the match was exact.
1351 */
1352 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1353 const exec_list *actual_param,
1354 bool allow_builtins,
1355 bool *match_is_exact);
1356
1357 /**
1358 * Find a signature that matches a set of actual parameters, taking implicit
1359 * conversions into account.
1360 */
1361 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1362 const exec_list *actual_param,
1363 bool allow_builtins);
1364
1365 /**
1366 * Find a signature that exactly matches a set of actual parameters without
1367 * any implicit type conversions.
1368 */
1369 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1370 const exec_list *actual_ps);
1371
1372 /**
1373 * Name of the function.
1374 */
1375 const char *name;
1376
1377 /** Whether or not this function has a signature that isn't a built-in. */
1378 bool has_user_signature();
1379
1380 /**
1381 * List of ir_function_signature for each overloaded function with this name.
1382 */
1383 struct exec_list signatures;
1384
1385 /**
1386 * is this function a subroutine type declaration
1387 * e.g. subroutine void type1(float arg1);
1388 */
1389 bool is_subroutine;
1390
1391 /**
1392 * is this function associated to a subroutine type
1393 * e.g. subroutine (type1, type2) function_name { function_body };
1394 * would have num_subroutine_types 2,
1395 * and pointers to the type1 and type2 types.
1396 */
1397 int num_subroutine_types;
1398 const struct glsl_type **subroutine_types;
1399
1400 int subroutine_index;
1401 };
1402
function_name()1403 inline const char *ir_function_signature::function_name() const
1404 {
1405 return this->_function->name;
1406 }
1407 /*@}*/
1408
1409
1410 /**
1411 * IR instruction representing high-level if-statements
1412 */
1413 class ir_if : public ir_instruction {
1414 public:
ir_if(ir_rvalue * condition)1415 ir_if(ir_rvalue *condition)
1416 : ir_instruction(ir_type_if), condition(condition)
1417 {
1418 }
1419
1420 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1421
accept(ir_visitor * v)1422 virtual void accept(ir_visitor *v)
1423 {
1424 v->visit(this);
1425 }
1426
1427 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1428
1429 ir_rvalue *condition;
1430 /** List of ir_instruction for the body of the then branch */
1431 exec_list then_instructions;
1432 /** List of ir_instruction for the body of the else branch */
1433 exec_list else_instructions;
1434 };
1435
1436
1437 /**
1438 * IR instruction representing a high-level loop structure.
1439 */
1440 class ir_loop : public ir_instruction {
1441 public:
1442 ir_loop();
1443
1444 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1445
accept(ir_visitor * v)1446 virtual void accept(ir_visitor *v)
1447 {
1448 v->visit(this);
1449 }
1450
1451 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1452
1453 /** List of ir_instruction that make up the body of the loop. */
1454 exec_list body_instructions;
1455 };
1456
1457
1458 class ir_assignment : public ir_instruction {
1459 public:
1460 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs);
1461
1462 /**
1463 * Construct an assignment with an explicit write mask
1464 *
1465 * \note
1466 * Since a write mask is supplied, the LHS must already be a bare
1467 * \c ir_dereference. The cannot be any swizzles in the LHS.
1468 */
1469 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, unsigned write_mask);
1470
1471 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1472
1473 virtual ir_constant *constant_expression_value(void *mem_ctx,
1474 struct hash_table *variable_context = NULL);
1475
accept(ir_visitor * v)1476 virtual void accept(ir_visitor *v)
1477 {
1478 v->visit(this);
1479 }
1480
1481 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1482
1483 /**
1484 * Get a whole variable written by an assignment
1485 *
1486 * If the LHS of the assignment writes a whole variable, the variable is
1487 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1488 * assignment are:
1489 *
1490 * - Assigning to a scalar
1491 * - Assigning to all components of a vector
1492 * - Whole array (or matrix) assignment
1493 * - Whole structure assignment
1494 */
1495 ir_variable *whole_variable_written();
1496
1497 /**
1498 * Set the LHS of an assignment
1499 */
1500 void set_lhs(ir_rvalue *lhs);
1501
1502 /**
1503 * Left-hand side of the assignment.
1504 *
1505 * This should be treated as read only. If you need to set the LHS of an
1506 * assignment, use \c ir_assignment::set_lhs.
1507 */
1508 ir_dereference *lhs;
1509
1510 /**
1511 * Value being assigned
1512 */
1513 ir_rvalue *rhs;
1514
1515 /**
1516 * Component mask written
1517 *
1518 * For non-vector types in the LHS, this field will be zero. For vector
1519 * types, a bit will be set for each component that is written. Note that
1520 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1521 *
1522 * A partially-set write mask means that each enabled channel gets
1523 * the value from a consecutive channel of the rhs. For example,
1524 * to write just .xyw of gl_FrontColor with color:
1525 *
1526 * (assign (constant bool (1)) (xyw)
1527 * (var_ref gl_FragColor)
1528 * (swiz xyw (var_ref color)))
1529 */
1530 unsigned write_mask:4;
1531 };
1532
1533 #include "ir_expression_operation.h"
1534
1535 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1536 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1537
1538 class ir_expression : public ir_rvalue {
1539 public:
1540 ir_expression(int op, const struct glsl_type *type,
1541 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1542 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1543
1544 /**
1545 * Constructor for unary operation expressions
1546 */
1547 ir_expression(int op, ir_rvalue *);
1548
1549 /**
1550 * Constructor for binary operation expressions
1551 */
1552 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1553
1554 /**
1555 * Constructor for ternary operation expressions
1556 */
1557 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1558
1559 virtual bool equals(const ir_instruction *ir,
1560 enum ir_node_type ignore = ir_type_unset) const;
1561
1562 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1563
1564 /**
1565 * Attempt to constant-fold the expression
1566 *
1567 * The "variable_context" hash table links ir_variable * to ir_constant *
1568 * that represent the variables' values. \c NULL represents an empty
1569 * context.
1570 *
1571 * If the expression cannot be constant folded, this method will return
1572 * \c NULL.
1573 */
1574 virtual ir_constant *constant_expression_value(void *mem_ctx,
1575 struct hash_table *variable_context = NULL);
1576
1577 /**
1578 * This is only here for ir_reader to used for testing purposes please use
1579 * the precomputed num_operands field if you need the number of operands.
1580 */
1581 static unsigned get_num_operands(ir_expression_operation);
1582
1583 /**
1584 * Return whether the expression operates on vectors horizontally.
1585 */
is_horizontal()1586 bool is_horizontal() const
1587 {
1588 return operation == ir_binop_all_equal ||
1589 operation == ir_binop_any_nequal ||
1590 operation == ir_binop_dot ||
1591 operation == ir_binop_vector_extract ||
1592 operation == ir_triop_vector_insert ||
1593 operation == ir_binop_ubo_load ||
1594 operation == ir_quadop_vector;
1595 }
1596
1597 /**
1598 * Do a reverse-lookup to translate the given string into an operator.
1599 */
1600 static ir_expression_operation get_operator(const char *);
1601
accept(ir_visitor * v)1602 virtual void accept(ir_visitor *v)
1603 {
1604 v->visit(this);
1605 }
1606
1607 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1608
1609 virtual ir_variable *variable_referenced() const;
1610
1611 /**
1612 * Determine the number of operands used by an expression
1613 */
init_num_operands()1614 void init_num_operands()
1615 {
1616 if (operation == ir_quadop_vector) {
1617 num_operands = this->type->vector_elements;
1618 } else {
1619 num_operands = get_num_operands(operation);
1620 }
1621 }
1622
1623 ir_expression_operation operation;
1624 ir_rvalue *operands[4];
1625 uint8_t num_operands;
1626 };
1627
1628
1629 /**
1630 * HIR instruction representing a high-level function call, containing a list
1631 * of parameters and returning a value in the supplied temporary.
1632 */
1633 class ir_call : public ir_instruction {
1634 public:
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters)1635 ir_call(ir_function_signature *callee,
1636 ir_dereference_variable *return_deref,
1637 exec_list *actual_parameters)
1638 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1639 {
1640 assert(callee->return_type != NULL);
1641 actual_parameters->move_nodes_to(& this->actual_parameters);
1642 }
1643
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters,ir_variable * var,ir_rvalue * array_idx)1644 ir_call(ir_function_signature *callee,
1645 ir_dereference_variable *return_deref,
1646 exec_list *actual_parameters,
1647 ir_variable *var, ir_rvalue *array_idx)
1648 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1649 {
1650 assert(callee->return_type != NULL);
1651 actual_parameters->move_nodes_to(& this->actual_parameters);
1652 }
1653
1654 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1655
1656 virtual ir_constant *constant_expression_value(void *mem_ctx,
1657 struct hash_table *variable_context = NULL);
1658
accept(ir_visitor * v)1659 virtual void accept(ir_visitor *v)
1660 {
1661 v->visit(this);
1662 }
1663
1664 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1665
1666 /**
1667 * Get the name of the function being called.
1668 */
callee_name()1669 const char *callee_name() const
1670 {
1671 return callee->function_name();
1672 }
1673
1674 /**
1675 * Generates an inline version of the function before @ir,
1676 * storing the return value in return_deref.
1677 */
1678 void generate_inline(ir_instruction *ir);
1679
1680 /**
1681 * Storage for the function's return value.
1682 * This must be NULL if the return type is void.
1683 */
1684 ir_dereference_variable *return_deref;
1685
1686 /**
1687 * The specific function signature being called.
1688 */
1689 ir_function_signature *callee;
1690
1691 /* List of ir_rvalue of paramaters passed in this call. */
1692 exec_list actual_parameters;
1693
1694 /*
1695 * ARB_shader_subroutine support -
1696 * the subroutine uniform variable and array index
1697 * rvalue to be used in the lowering pass later.
1698 */
1699 ir_variable *sub_var;
1700 ir_rvalue *array_idx;
1701 };
1702
1703
1704 /**
1705 * \name Jump-like IR instructions.
1706 *
1707 * These include \c break, \c continue, \c return, and \c discard.
1708 */
1709 /*@{*/
1710 class ir_jump : public ir_instruction {
1711 protected:
ir_jump(enum ir_node_type t)1712 ir_jump(enum ir_node_type t)
1713 : ir_instruction(t)
1714 {
1715 }
1716 };
1717
1718 class ir_return : public ir_jump {
1719 public:
ir_return()1720 ir_return()
1721 : ir_jump(ir_type_return), value(NULL)
1722 {
1723 }
1724
ir_return(ir_rvalue * value)1725 ir_return(ir_rvalue *value)
1726 : ir_jump(ir_type_return), value(value)
1727 {
1728 }
1729
1730 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1731
get_value()1732 ir_rvalue *get_value() const
1733 {
1734 return value;
1735 }
1736
accept(ir_visitor * v)1737 virtual void accept(ir_visitor *v)
1738 {
1739 v->visit(this);
1740 }
1741
1742 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1743
1744 ir_rvalue *value;
1745 };
1746
1747
1748 /**
1749 * Jump instructions used inside loops
1750 *
1751 * These include \c break and \c continue. The \c break within a loop is
1752 * different from the \c break within a switch-statement.
1753 *
1754 * \sa ir_switch_jump
1755 */
1756 class ir_loop_jump : public ir_jump {
1757 public:
1758 enum jump_mode {
1759 jump_break,
1760 jump_continue
1761 };
1762
ir_loop_jump(jump_mode mode)1763 ir_loop_jump(jump_mode mode)
1764 : ir_jump(ir_type_loop_jump)
1765 {
1766 this->mode = mode;
1767 }
1768
1769 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1770
accept(ir_visitor * v)1771 virtual void accept(ir_visitor *v)
1772 {
1773 v->visit(this);
1774 }
1775
1776 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1777
is_break()1778 bool is_break() const
1779 {
1780 return mode == jump_break;
1781 }
1782
is_continue()1783 bool is_continue() const
1784 {
1785 return mode == jump_continue;
1786 }
1787
1788 /** Mode selector for the jump instruction. */
1789 enum jump_mode mode;
1790 };
1791
1792 /**
1793 * IR instruction representing discard statements.
1794 */
1795 class ir_discard : public ir_jump {
1796 public:
ir_discard()1797 ir_discard()
1798 : ir_jump(ir_type_discard)
1799 {
1800 this->condition = NULL;
1801 }
1802
ir_discard(ir_rvalue * cond)1803 ir_discard(ir_rvalue *cond)
1804 : ir_jump(ir_type_discard)
1805 {
1806 this->condition = cond;
1807 }
1808
1809 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1810
accept(ir_visitor * v)1811 virtual void accept(ir_visitor *v)
1812 {
1813 v->visit(this);
1814 }
1815
1816 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1817
1818 ir_rvalue *condition;
1819 };
1820 /*@}*/
1821
1822
1823 /**
1824 * IR instruction representing demote statements from
1825 * GL_EXT_demote_to_helper_invocation.
1826 */
1827 class ir_demote : public ir_instruction {
1828 public:
ir_demote()1829 ir_demote()
1830 : ir_instruction(ir_type_demote)
1831 {
1832 }
1833
1834 virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1835
accept(ir_visitor * v)1836 virtual void accept(ir_visitor *v)
1837 {
1838 v->visit(this);
1839 }
1840
1841 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1842 };
1843
1844
1845 /**
1846 * Texture sampling opcodes used in ir_texture
1847 */
1848 enum ir_texture_opcode {
1849 ir_tex, /**< Regular texture look-up */
1850 ir_txb, /**< Texture look-up with LOD bias */
1851 ir_txl, /**< Texture look-up with explicit LOD */
1852 ir_txd, /**< Texture look-up with partial derivatives */
1853 ir_txf, /**< Texel fetch with explicit LOD */
1854 ir_txf_ms, /**< Multisample texture fetch */
1855 ir_txs, /**< Texture size */
1856 ir_lod, /**< Texture lod query */
1857 ir_tg4, /**< Texture gather */
1858 ir_query_levels, /**< Texture levels query */
1859 ir_texture_samples, /**< Texture samples query */
1860 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1861 };
1862
1863
1864 /**
1865 * IR instruction to sample a texture
1866 *
1867 * The specific form of the IR instruction depends on the \c mode value
1868 * selected from \c ir_texture_opcodes. In the printed IR, these will
1869 * appear as:
1870 *
1871 * Texel offset (0 or an expression)
1872 * | Projection divisor
1873 * | | Shadow comparator
1874 * | | | Lod clamp
1875 * | | | |
1876 * v v v v
1877 * (tex <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ))
1878 * (txb <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) <bias>)
1879 * (txl <type> <sampler> <coordinate> <sparse> 0 1 ( ) <lod>)
1880 * (txd <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) (dPdx dPdy))
1881 * (txf <type> <sampler> <coordinate> <sparse> 0 <lod>)
1882 * (txf_ms
1883 * <type> <sampler> <coordinate> <sparse> <sample_index>)
1884 * (txs <type> <sampler> <lod>)
1885 * (lod <type> <sampler> <coordinate>)
1886 * (tg4 <type> <sampler> <coordinate> <sparse> <offset> <component>)
1887 * (query_levels <type> <sampler>)
1888 * (samples_identical <sampler> <coordinate>)
1889 */
1890 class ir_texture : public ir_rvalue {
1891 public:
1892 ir_texture(enum ir_texture_opcode op, bool sparse = false)
ir_rvalue(ir_type_texture)1893 : ir_rvalue(ir_type_texture),
1894 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1895 shadow_comparator(NULL), offset(NULL), clamp(NULL),
1896 is_sparse(sparse)
1897 {
1898 memset(&lod_info, 0, sizeof(lod_info));
1899 }
1900
1901 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1902
1903 virtual ir_constant *constant_expression_value(void *mem_ctx,
1904 struct hash_table *variable_context = NULL);
1905
accept(ir_visitor * v)1906 virtual void accept(ir_visitor *v)
1907 {
1908 v->visit(this);
1909 }
1910
1911 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1912
1913 virtual bool equals(const ir_instruction *ir,
1914 enum ir_node_type ignore = ir_type_unset) const;
1915
1916 /**
1917 * Return a string representing the ir_texture_opcode.
1918 */
1919 const char *opcode_string();
1920
1921 /** Set the sampler and type. */
1922 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1923
1924 /**
1925 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1926 */
1927 static ir_texture_opcode get_opcode(const char *);
1928
1929 enum ir_texture_opcode op;
1930
1931 /** Sampler to use for the texture access. */
1932 ir_dereference *sampler;
1933
1934 /** Texture coordinate to sample */
1935 ir_rvalue *coordinate;
1936
1937 /**
1938 * Value used for projective divide.
1939 *
1940 * If there is no projective divide (the common case), this will be
1941 * \c NULL. Optimization passes should check for this to point to a constant
1942 * of 1.0 and replace that with \c NULL.
1943 */
1944 ir_rvalue *projector;
1945
1946 /**
1947 * Coordinate used for comparison on shadow look-ups.
1948 *
1949 * If there is no shadow comparison, this will be \c NULL. For the
1950 * \c ir_txf opcode, this *must* be \c NULL.
1951 */
1952 ir_rvalue *shadow_comparator;
1953
1954 /** Texel offset. */
1955 ir_rvalue *offset;
1956
1957 /** Lod clamp. */
1958 ir_rvalue *clamp;
1959
1960 union {
1961 ir_rvalue *lod; /**< Floating point LOD */
1962 ir_rvalue *bias; /**< Floating point LOD bias */
1963 ir_rvalue *sample_index; /**< MSAA sample index */
1964 ir_rvalue *component; /**< Gather component selector */
1965 struct {
1966 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1967 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1968 } grad;
1969 } lod_info;
1970
1971 /* Whether a sparse texture */
1972 bool is_sparse;
1973 };
1974
1975
1976 struct ir_swizzle_mask {
1977 unsigned x:2;
1978 unsigned y:2;
1979 unsigned z:2;
1980 unsigned w:2;
1981
1982 /**
1983 * Number of components in the swizzle.
1984 */
1985 unsigned num_components:3;
1986
1987 /**
1988 * Does the swizzle contain duplicate components?
1989 *
1990 * L-value swizzles cannot contain duplicate components.
1991 */
1992 unsigned has_duplicates:1;
1993 };
1994
1995
1996 class ir_swizzle : public ir_rvalue {
1997 public:
1998 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1999 unsigned count);
2000
2001 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2002
2003 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2004
2005 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2006
2007 virtual ir_constant *constant_expression_value(void *mem_ctx,
2008 struct hash_table *variable_context = NULL);
2009
2010 /**
2011 * Construct an ir_swizzle from the textual representation. Can fail.
2012 */
2013 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2014
accept(ir_visitor * v)2015 virtual void accept(ir_visitor *v)
2016 {
2017 v->visit(this);
2018 }
2019
2020 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2021
2022 virtual bool equals(const ir_instruction *ir,
2023 enum ir_node_type ignore = ir_type_unset) const;
2024
is_lvalue(const struct _mesa_glsl_parse_state * state)2025 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2026 {
2027 return val->is_lvalue(state) && !mask.has_duplicates;
2028 }
2029
2030 /**
2031 * Get the variable that is ultimately referenced by an r-value
2032 */
2033 virtual ir_variable *variable_referenced() const;
2034
2035 ir_rvalue *val;
2036 ir_swizzle_mask mask;
2037
2038 private:
2039 /**
2040 * Initialize the mask component of a swizzle
2041 *
2042 * This is used by the \c ir_swizzle constructors.
2043 */
2044 void init_mask(const unsigned *components, unsigned count);
2045 };
2046
2047
2048 class ir_dereference : public ir_rvalue {
2049 public:
2050 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2051
2052 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2053
2054 /**
2055 * Get the variable that is ultimately referenced by an r-value
2056 */
2057 virtual ir_variable *variable_referenced() const = 0;
2058
2059 /**
2060 * Get the precision. This can either come from the eventual variable that
2061 * is dereferenced, or from a record member.
2062 */
2063 virtual int precision() const = 0;
2064
2065 protected:
ir_dereference(enum ir_node_type t)2066 ir_dereference(enum ir_node_type t)
2067 : ir_rvalue(t)
2068 {
2069 }
2070 };
2071
2072
2073 class ir_dereference_variable : public ir_dereference {
2074 public:
2075 ir_dereference_variable(ir_variable *var);
2076
2077 virtual ir_dereference_variable *clone(void *mem_ctx,
2078 struct hash_table *) const;
2079
2080 virtual ir_constant *constant_expression_value(void *mem_ctx,
2081 struct hash_table *variable_context = NULL);
2082
2083 virtual bool equals(const ir_instruction *ir,
2084 enum ir_node_type ignore = ir_type_unset) const;
2085
2086 /**
2087 * Get the variable that is ultimately referenced by an r-value
2088 */
variable_referenced()2089 virtual ir_variable *variable_referenced() const
2090 {
2091 return this->var;
2092 }
2093
precision()2094 virtual int precision() const
2095 {
2096 return this->var->data.precision;
2097 }
2098
whole_variable_referenced()2099 virtual ir_variable *whole_variable_referenced()
2100 {
2101 /* ir_dereference_variable objects always dereference the entire
2102 * variable. However, if this dereference is dereferenced by anything
2103 * else, the complete dereference chain is not a whole-variable
2104 * dereference. This method should only be called on the top most
2105 * ir_rvalue in a dereference chain.
2106 */
2107 return this->var;
2108 }
2109
accept(ir_visitor * v)2110 virtual void accept(ir_visitor *v)
2111 {
2112 v->visit(this);
2113 }
2114
2115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2116
2117 /**
2118 * Object being dereferenced.
2119 */
2120 ir_variable *var;
2121 };
2122
2123
2124 class ir_dereference_array : public ir_dereference {
2125 public:
2126 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2127
2128 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2129
2130 virtual ir_dereference_array *clone(void *mem_ctx,
2131 struct hash_table *) const;
2132
2133 virtual ir_constant *constant_expression_value(void *mem_ctx,
2134 struct hash_table *variable_context = NULL);
2135
2136 virtual bool equals(const ir_instruction *ir,
2137 enum ir_node_type ignore = ir_type_unset) const;
2138
2139 /**
2140 * Get the variable that is ultimately referenced by an r-value
2141 */
variable_referenced()2142 virtual ir_variable *variable_referenced() const
2143 {
2144 return this->array->variable_referenced();
2145 }
2146
precision()2147 virtual int precision() const
2148 {
2149 ir_dereference *deref = this->array->as_dereference();
2150
2151 if (deref == NULL)
2152 return GLSL_PRECISION_NONE;
2153 else
2154 return deref->precision();
2155 }
2156
accept(ir_visitor * v)2157 virtual void accept(ir_visitor *v)
2158 {
2159 v->visit(this);
2160 }
2161
2162 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2163
2164 ir_rvalue *array;
2165 ir_rvalue *array_index;
2166
2167 private:
2168 void set_array(ir_rvalue *value);
2169 };
2170
2171
2172 class ir_dereference_record : public ir_dereference {
2173 public:
2174 ir_dereference_record(ir_rvalue *value, const char *field);
2175
2176 ir_dereference_record(ir_variable *var, const char *field);
2177
2178 virtual ir_dereference_record *clone(void *mem_ctx,
2179 struct hash_table *) const;
2180
2181 virtual ir_constant *constant_expression_value(void *mem_ctx,
2182 struct hash_table *variable_context = NULL);
2183
2184 /**
2185 * Get the variable that is ultimately referenced by an r-value
2186 */
variable_referenced()2187 virtual ir_variable *variable_referenced() const
2188 {
2189 return this->record->variable_referenced();
2190 }
2191
precision()2192 virtual int precision() const
2193 {
2194 glsl_struct_field *field = record->type->fields.structure + field_idx;
2195
2196 return field->precision;
2197 }
2198
accept(ir_visitor * v)2199 virtual void accept(ir_visitor *v)
2200 {
2201 v->visit(this);
2202 }
2203
2204 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2205
2206 ir_rvalue *record;
2207 int field_idx;
2208 };
2209
2210
2211 /**
2212 * Data stored in an ir_constant
2213 */
2214 union ir_constant_data {
2215 unsigned u[16];
2216 int i[16];
2217 float f[16];
2218 bool b[16];
2219 double d[16];
2220 uint16_t f16[16];
2221 uint16_t u16[16];
2222 int16_t i16[16];
2223 uint64_t u64[16];
2224 int64_t i64[16];
2225 };
2226
2227
2228 class ir_constant : public ir_rvalue {
2229 public:
2230 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2231 ir_constant(bool b, unsigned vector_elements=1);
2232 ir_constant(int16_t i16, unsigned vector_elements=1);
2233 ir_constant(uint16_t u16, unsigned vector_elements=1);
2234 ir_constant(unsigned int u, unsigned vector_elements=1);
2235 ir_constant(int i, unsigned vector_elements=1);
2236 ir_constant(float16_t f16, unsigned vector_elements=1);
2237 ir_constant(float f, unsigned vector_elements=1);
2238 ir_constant(double d, unsigned vector_elements=1);
2239 ir_constant(uint64_t u64, unsigned vector_elements=1);
2240 ir_constant(int64_t i64, unsigned vector_elements=1);
2241
2242 /**
2243 * Construct an ir_constant from a list of ir_constant values
2244 */
2245 ir_constant(const struct glsl_type *type, exec_list *values);
2246
2247 /**
2248 * Construct an ir_constant from a scalar component of another ir_constant
2249 *
2250 * The new \c ir_constant inherits the type of the component from the
2251 * source constant.
2252 *
2253 * \note
2254 * In the case of a matrix constant, the new constant is a scalar, \b not
2255 * a vector.
2256 */
2257 ir_constant(const ir_constant *c, unsigned i);
2258
2259 /**
2260 * Return a new ir_constant of the specified type containing all zeros.
2261 */
2262 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2263
2264 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2265
2266 virtual ir_constant *constant_expression_value(void *mem_ctx,
2267 struct hash_table *variable_context = NULL);
2268
accept(ir_visitor * v)2269 virtual void accept(ir_visitor *v)
2270 {
2271 v->visit(this);
2272 }
2273
2274 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2275
2276 virtual bool equals(const ir_instruction *ir,
2277 enum ir_node_type ignore = ir_type_unset) const;
2278
2279 /**
2280 * Get a particular component of a constant as a specific type
2281 *
2282 * This is useful, for example, to get a value from an integer constant
2283 * as a float or bool. This appears frequently when constructors are
2284 * called with all constant parameters.
2285 */
2286 /*@{*/
2287 bool get_bool_component(unsigned i) const;
2288 float get_float_component(unsigned i) const;
2289 uint16_t get_float16_component(unsigned i) const;
2290 double get_double_component(unsigned i) const;
2291 int16_t get_int16_component(unsigned i) const;
2292 uint16_t get_uint16_component(unsigned i) const;
2293 int get_int_component(unsigned i) const;
2294 unsigned get_uint_component(unsigned i) const;
2295 int64_t get_int64_component(unsigned i) const;
2296 uint64_t get_uint64_component(unsigned i) const;
2297 /*@}*/
2298
2299 ir_constant *get_array_element(unsigned i) const;
2300
2301 ir_constant *get_record_field(int idx);
2302
2303 /**
2304 * Copy the values on another constant at a given offset.
2305 *
2306 * The offset is ignored for array or struct copies, it's only for
2307 * scalars or vectors into vectors or matrices.
2308 *
2309 * With identical types on both sides and zero offset it's clone()
2310 * without creating a new object.
2311 */
2312
2313 void copy_offset(ir_constant *src, int offset);
2314
2315 /**
2316 * Copy the values on another constant at a given offset and
2317 * following an assign-like mask.
2318 *
2319 * The mask is ignored for scalars.
2320 *
2321 * Note that this function only handles what assign can handle,
2322 * i.e. at most a vector as source and a column of a matrix as
2323 * destination.
2324 */
2325
2326 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2327
2328 /**
2329 * Determine whether a constant has the same value as another constant
2330 *
2331 * \sa ir_constant::is_zero, ir_constant::is_one,
2332 * ir_constant::is_negative_one
2333 */
2334 bool has_value(const ir_constant *) const;
2335
2336 /**
2337 * Return true if this ir_constant represents the given value.
2338 *
2339 * For vectors, this checks that each component is the given value.
2340 */
2341 virtual bool is_value(float f, int i) const;
2342 virtual bool is_zero() const;
2343 virtual bool is_one() const;
2344 virtual bool is_negative_one() const;
2345
2346 /**
2347 * Return true for constants that could be stored as 16-bit unsigned values.
2348 *
2349 * Note that this will return true even for signed integer ir_constants, as
2350 * long as the value is non-negative and fits in 16-bits.
2351 */
2352 virtual bool is_uint16_constant() const;
2353
2354 /**
2355 * Value of the constant.
2356 *
2357 * The field used to back the values supplied by the constant is determined
2358 * by the type associated with the \c ir_instruction. Constants may be
2359 * scalars, vectors, or matrices.
2360 */
2361 union ir_constant_data value;
2362
2363 /* Array elements and structure fields */
2364 ir_constant **const_elements;
2365
2366 private:
2367 /**
2368 * Parameterless constructor only used by the clone method
2369 */
2370 ir_constant(void);
2371 };
2372
2373 /**
2374 * IR instruction to emit a vertex in a geometry shader.
2375 */
2376 class ir_emit_vertex : public ir_instruction {
2377 public:
ir_emit_vertex(ir_rvalue * stream)2378 ir_emit_vertex(ir_rvalue *stream)
2379 : ir_instruction(ir_type_emit_vertex),
2380 stream(stream)
2381 {
2382 assert(stream);
2383 }
2384
accept(ir_visitor * v)2385 virtual void accept(ir_visitor *v)
2386 {
2387 v->visit(this);
2388 }
2389
clone(void * mem_ctx,struct hash_table * ht)2390 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2391 {
2392 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2393 }
2394
2395 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2396
stream_id()2397 int stream_id() const
2398 {
2399 return stream->as_constant()->value.i[0];
2400 }
2401
2402 ir_rvalue *stream;
2403 };
2404
2405 /**
2406 * IR instruction to complete the current primitive and start a new one in a
2407 * geometry shader.
2408 */
2409 class ir_end_primitive : public ir_instruction {
2410 public:
ir_end_primitive(ir_rvalue * stream)2411 ir_end_primitive(ir_rvalue *stream)
2412 : ir_instruction(ir_type_end_primitive),
2413 stream(stream)
2414 {
2415 assert(stream);
2416 }
2417
accept(ir_visitor * v)2418 virtual void accept(ir_visitor *v)
2419 {
2420 v->visit(this);
2421 }
2422
clone(void * mem_ctx,struct hash_table * ht)2423 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2424 {
2425 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2426 }
2427
2428 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2429
stream_id()2430 int stream_id() const
2431 {
2432 return stream->as_constant()->value.i[0];
2433 }
2434
2435 ir_rvalue *stream;
2436 };
2437
2438 /**
2439 * IR instruction for tessellation control and compute shader barrier.
2440 */
2441 class ir_barrier : public ir_instruction {
2442 public:
ir_barrier()2443 ir_barrier()
2444 : ir_instruction(ir_type_barrier)
2445 {
2446 }
2447
accept(ir_visitor * v)2448 virtual void accept(ir_visitor *v)
2449 {
2450 v->visit(this);
2451 }
2452
clone(void * mem_ctx,struct hash_table *)2453 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2454 {
2455 return new(mem_ctx) ir_barrier();
2456 }
2457
2458 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2459 };
2460
2461 /*@}*/
2462
2463 /**
2464 * Apply a visitor to each IR node in a list
2465 */
2466 void
2467 visit_exec_list(exec_list *list, ir_visitor *visitor);
2468
2469 /**
2470 * Validate invariants on each IR node in a list
2471 */
2472 void validate_ir_tree(exec_list *instructions);
2473
2474 struct _mesa_glsl_parse_state;
2475 struct gl_shader_program;
2476
2477 /**
2478 * Detect whether an unlinked shader contains static recursion
2479 *
2480 * If the list of instructions is determined to contain static recursion,
2481 * \c _mesa_glsl_error will be called to emit error messages for each function
2482 * that is in the recursion cycle.
2483 */
2484 void
2485 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2486 exec_list *instructions);
2487
2488 /**
2489 * Detect whether a linked shader contains static recursion
2490 *
2491 * If the list of instructions is determined to contain static recursion,
2492 * \c link_error_printf will be called to emit error messages for each function
2493 * that is in the recursion cycle. In addition,
2494 * \c gl_shader_program::LinkStatus will be set to false.
2495 */
2496 void
2497 detect_recursion_linked(struct gl_shader_program *prog,
2498 exec_list *instructions);
2499
2500 /**
2501 * Make a clone of each IR instruction in a list
2502 *
2503 * \param in List of IR instructions that are to be cloned
2504 * \param out List to hold the cloned instructions
2505 */
2506 void
2507 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2508
2509 extern void
2510 _mesa_glsl_initialize_variables(exec_list *instructions,
2511 struct _mesa_glsl_parse_state *state);
2512
2513 extern void
2514 reparent_ir(exec_list *list, void *mem_ctx);
2515
2516 extern void
2517 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2518 gl_shader_stage shader_stage);
2519
2520 extern char *
2521 prototype_string(const glsl_type *return_type, const char *name,
2522 exec_list *parameters);
2523
2524 const char *
2525 mode_string(const ir_variable *var);
2526
2527 /**
2528 * Built-in / reserved GL variables names start with "gl_"
2529 */
2530 static inline bool
is_gl_identifier(const char * s)2531 is_gl_identifier(const char *s)
2532 {
2533 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2534 }
2535
2536 extern "C" {
2537 #endif /* __cplusplus */
2538
2539 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2540 struct _mesa_glsl_parse_state *state);
2541
2542 extern void
2543 fprint_ir(FILE *f, const void *instruction);
2544
2545 extern const struct gl_builtin_uniform_desc *
2546 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2547
2548 #ifdef __cplusplus
2549 } /* extern "C" */
2550 #endif
2551
2552 unsigned
2553 vertices_per_prim(GLenum prim);
2554
2555 #endif /* IR_H */
2556