• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetLowering.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
NodeInserted(SDNode *)92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
anchor()94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
isExactlyValue(const APFloat & V) const118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
isValueValidForType(EVT VT,const APFloat & Val)122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
isConstantSplatVector(const SDNode * N,APInt & SplatVal)139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   auto *BV = dyn_cast<BuildVectorSDNode>(N);
141   if (!BV)
142     return false;
143 
144   APInt SplatUndef;
145   unsigned SplatBitSize;
146   bool HasUndefs;
147   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
148   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
149                              EltSize) &&
150          EltSize == SplatBitSize;
151 }
152 
153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
154 // specializations of the more general isConstantSplatVector()?
155 
isBuildVectorAllOnes(const SDNode * N)156 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
157   // Look through a bit convert.
158   while (N->getOpcode() == ISD::BITCAST)
159     N = N->getOperand(0).getNode();
160 
161   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
162 
163   unsigned i = 0, e = N->getNumOperands();
164 
165   // Skip over all of the undef values.
166   while (i != e && N->getOperand(i).isUndef())
167     ++i;
168 
169   // Do not accept an all-undef vector.
170   if (i == e) return false;
171 
172   // Do not accept build_vectors that aren't all constants or which have non-~0
173   // elements. We have to be a bit careful here, as the type of the constant
174   // may not be the same as the type of the vector elements due to type
175   // legalization (the elements are promoted to a legal type for the target and
176   // a vector of a type may be legal when the base element type is not).
177   // We only want to check enough bits to cover the vector elements, because
178   // we care if the resultant vector is all ones, not whether the individual
179   // constants are.
180   SDValue NotZero = N->getOperand(i);
181   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
182   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
183     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
184       return false;
185   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
186     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
187       return false;
188   } else
189     return false;
190 
191   // Okay, we have at least one ~0 value, check to see if the rest match or are
192   // undefs. Even with the above element type twiddling, this should be OK, as
193   // the same type legalization should have applied to all the elements.
194   for (++i; i != e; ++i)
195     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
196       return false;
197   return true;
198 }
199 
isBuildVectorAllZeros(const SDNode * N)200 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
201   // Look through a bit convert.
202   while (N->getOpcode() == ISD::BITCAST)
203     N = N->getOperand(0).getNode();
204 
205   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
206 
207   bool IsAllUndef = true;
208   for (const SDValue &Op : N->op_values()) {
209     if (Op.isUndef())
210       continue;
211     IsAllUndef = false;
212     // Do not accept build_vectors that aren't all constants or which have non-0
213     // elements. We have to be a bit careful here, as the type of the constant
214     // may not be the same as the type of the vector elements due to type
215     // legalization (the elements are promoted to a legal type for the target
216     // and a vector of a type may be legal when the base element type is not).
217     // We only want to check enough bits to cover the vector elements, because
218     // we care if the resultant vector is all zeros, not whether the individual
219     // constants are.
220     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
221     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
222       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
223         return false;
224     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
225       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
226         return false;
227     } else
228       return false;
229   }
230 
231   // Do not accept an all-undef vector.
232   if (IsAllUndef)
233     return false;
234   return true;
235 }
236 
isBuildVectorOfConstantSDNodes(const SDNode * N)237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
238   if (N->getOpcode() != ISD::BUILD_VECTOR)
239     return false;
240 
241   for (const SDValue &Op : N->op_values()) {
242     if (Op.isUndef())
243       continue;
244     if (!isa<ConstantSDNode>(Op))
245       return false;
246   }
247   return true;
248 }
249 
isBuildVectorOfConstantFPSDNodes(const SDNode * N)250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
251   if (N->getOpcode() != ISD::BUILD_VECTOR)
252     return false;
253 
254   for (const SDValue &Op : N->op_values()) {
255     if (Op.isUndef())
256       continue;
257     if (!isa<ConstantFPSDNode>(Op))
258       return false;
259   }
260   return true;
261 }
262 
allOperandsUndef(const SDNode * N)263 bool ISD::allOperandsUndef(const SDNode *N) {
264   // Return false if the node has no operands.
265   // This is "logically inconsistent" with the definition of "all" but
266   // is probably the desired behavior.
267   if (N->getNumOperands() == 0)
268     return false;
269   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
270 }
271 
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match,bool AllowUndefs)272 bool ISD::matchUnaryPredicate(SDValue Op,
273                               std::function<bool(ConstantSDNode *)> Match,
274                               bool AllowUndefs) {
275   // FIXME: Add support for scalar UNDEF cases?
276   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
277     return Match(Cst);
278 
279   // FIXME: Add support for vector UNDEF cases?
280   if (ISD::BUILD_VECTOR != Op.getOpcode())
281     return false;
282 
283   EVT SVT = Op.getValueType().getScalarType();
284   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
285     if (AllowUndefs && Op.getOperand(i).isUndef()) {
286       if (!Match(nullptr))
287         return false;
288       continue;
289     }
290 
291     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
292     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
293       return false;
294   }
295   return true;
296 }
297 
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match,bool AllowUndefs,bool AllowTypeMismatch)298 bool ISD::matchBinaryPredicate(
299     SDValue LHS, SDValue RHS,
300     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
301     bool AllowUndefs, bool AllowTypeMismatch) {
302   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
303     return false;
304 
305   // TODO: Add support for scalar UNDEF cases?
306   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
307     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
308       return Match(LHSCst, RHSCst);
309 
310   // TODO: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
312       ISD::BUILD_VECTOR != RHS.getOpcode())
313     return false;
314 
315   EVT SVT = LHS.getValueType().getScalarType();
316   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
317     SDValue LHSOp = LHS.getOperand(i);
318     SDValue RHSOp = RHS.getOperand(i);
319     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
320     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
321     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
322     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
323     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
324       return false;
325     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
326                                LHSOp.getValueType() != RHSOp.getValueType()))
327       return false;
328     if (!Match(LHSCst, RHSCst))
329       return false;
330   }
331   return true;
332 }
333 
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
335   switch (ExtType) {
336   case ISD::EXTLOAD:
337     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
338   case ISD::SEXTLOAD:
339     return ISD::SIGN_EXTEND;
340   case ISD::ZEXTLOAD:
341     return ISD::ZERO_EXTEND;
342   default:
343     break;
344   }
345 
346   llvm_unreachable("Invalid LoadExtType");
347 }
348 
getSetCCSwappedOperands(ISD::CondCode Operation)349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
350   // To perform this operation, we just need to swap the L and G bits of the
351   // operation.
352   unsigned OldL = (Operation >> 2) & 1;
353   unsigned OldG = (Operation >> 1) & 1;
354   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
355                        (OldL << 1) |       // New G bit
356                        (OldG << 2));       // New L bit.
357 }
358 
getSetCCInverseImpl(ISD::CondCode Op,bool isIntegerLike)359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
360   unsigned Operation = Op;
361   if (isIntegerLike)
362     Operation ^= 7;   // Flip L, G, E bits, but not U.
363   else
364     Operation ^= 15;  // Flip all of the condition bits.
365 
366   if (Operation > ISD::SETTRUE2)
367     Operation &= ~8;  // Don't let N and U bits get set.
368 
369   return ISD::CondCode(Operation);
370 }
371 
getSetCCInverse(ISD::CondCode Op,EVT Type)372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
373   return getSetCCInverseImpl(Op, Type.isInteger());
374 }
375 
getSetCCInverse(ISD::CondCode Op,bool isIntegerLike)376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
377                                                bool isIntegerLike) {
378   return getSetCCInverseImpl(Op, isIntegerLike);
379 }
380 
381 /// For an integer comparison, return 1 if the comparison is a signed operation
382 /// and 2 if the result is an unsigned comparison. Return zero if the operation
383 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)384 static int isSignedOp(ISD::CondCode Opcode) {
385   switch (Opcode) {
386   default: llvm_unreachable("Illegal integer setcc operation!");
387   case ISD::SETEQ:
388   case ISD::SETNE: return 0;
389   case ISD::SETLT:
390   case ISD::SETLE:
391   case ISD::SETGT:
392   case ISD::SETGE: return 1;
393   case ISD::SETULT:
394   case ISD::SETULE:
395   case ISD::SETUGT:
396   case ISD::SETUGE: return 2;
397   }
398 }
399 
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
401                                        EVT Type) {
402   bool IsInteger = Type.isInteger();
403   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
404     // Cannot fold a signed integer setcc with an unsigned integer setcc.
405     return ISD::SETCC_INVALID;
406 
407   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
408 
409   // If the N and U bits get set, then the resultant comparison DOES suddenly
410   // care about orderedness, and it is true when ordered.
411   if (Op > ISD::SETTRUE2)
412     Op &= ~16;     // Clear the U bit if the N bit is set.
413 
414   // Canonicalize illegal integer setcc's.
415   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
416     Op = ISD::SETNE;
417 
418   return ISD::CondCode(Op);
419 }
420 
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
422                                         EVT Type) {
423   bool IsInteger = Type.isInteger();
424   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
425     // Cannot fold a signed setcc with an unsigned setcc.
426     return ISD::SETCC_INVALID;
427 
428   // Combine all of the condition bits.
429   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
430 
431   // Canonicalize illegal integer setcc's.
432   if (IsInteger) {
433     switch (Result) {
434     default: break;
435     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
436     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
437     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
438     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
439     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
440     }
441   }
442 
443   return Result;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //                           SDNode Profile Support
448 //===----------------------------------------------------------------------===//
449 
450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
452   ID.AddInteger(OpC);
453 }
454 
455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
456 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
458   ID.AddPointer(VTList.VTs);
459 }
460 
461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)462 static void AddNodeIDOperands(FoldingSetNodeID &ID,
463                               ArrayRef<SDValue> Ops) {
464   for (auto& Op : Ops) {
465     ID.AddPointer(Op.getNode());
466     ID.AddInteger(Op.getResNo());
467   }
468 }
469 
470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)471 static void AddNodeIDOperands(FoldingSetNodeID &ID,
472                               ArrayRef<SDUse> Ops) {
473   for (auto& Op : Ops) {
474     ID.AddPointer(Op.getNode());
475     ID.AddInteger(Op.getResNo());
476   }
477 }
478 
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
480                           SDVTList VTList, ArrayRef<SDValue> OpList) {
481   AddNodeIDOpcode(ID, OpC);
482   AddNodeIDValueTypes(ID, VTList);
483   AddNodeIDOperands(ID, OpList);
484 }
485 
486 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
488   switch (N->getOpcode()) {
489   case ISD::TargetExternalSymbol:
490   case ISD::ExternalSymbol:
491   case ISD::MCSymbol:
492     llvm_unreachable("Should only be used on nodes with operands");
493   default: break;  // Normal nodes don't need extra info.
494   case ISD::TargetConstant:
495   case ISD::Constant: {
496     const ConstantSDNode *C = cast<ConstantSDNode>(N);
497     ID.AddPointer(C->getConstantIntValue());
498     ID.AddBoolean(C->isOpaque());
499     break;
500   }
501   case ISD::TargetConstantFP:
502   case ISD::ConstantFP:
503     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
504     break;
505   case ISD::TargetGlobalAddress:
506   case ISD::GlobalAddress:
507   case ISD::TargetGlobalTLSAddress:
508   case ISD::GlobalTLSAddress: {
509     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
510     ID.AddPointer(GA->getGlobal());
511     ID.AddInteger(GA->getOffset());
512     ID.AddInteger(GA->getTargetFlags());
513     break;
514   }
515   case ISD::BasicBlock:
516     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
517     break;
518   case ISD::Register:
519     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
520     break;
521   case ISD::RegisterMask:
522     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
523     break;
524   case ISD::SRCVALUE:
525     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
526     break;
527   case ISD::FrameIndex:
528   case ISD::TargetFrameIndex:
529     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
530     break;
531   case ISD::LIFETIME_START:
532   case ISD::LIFETIME_END:
533     if (cast<LifetimeSDNode>(N)->hasOffset()) {
534       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
536     }
537     break;
538   case ISD::JumpTable:
539   case ISD::TargetJumpTable:
540     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
542     break;
543   case ISD::ConstantPool:
544   case ISD::TargetConstantPool: {
545     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
546     ID.AddInteger(CP->getAlignment());
547     ID.AddInteger(CP->getOffset());
548     if (CP->isMachineConstantPoolEntry())
549       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
550     else
551       ID.AddPointer(CP->getConstVal());
552     ID.AddInteger(CP->getTargetFlags());
553     break;
554   }
555   case ISD::TargetIndex: {
556     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
557     ID.AddInteger(TI->getIndex());
558     ID.AddInteger(TI->getOffset());
559     ID.AddInteger(TI->getTargetFlags());
560     break;
561   }
562   case ISD::LOAD: {
563     const LoadSDNode *LD = cast<LoadSDNode>(N);
564     ID.AddInteger(LD->getMemoryVT().getRawBits());
565     ID.AddInteger(LD->getRawSubclassData());
566     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
567     break;
568   }
569   case ISD::STORE: {
570     const StoreSDNode *ST = cast<StoreSDNode>(N);
571     ID.AddInteger(ST->getMemoryVT().getRawBits());
572     ID.AddInteger(ST->getRawSubclassData());
573     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
574     break;
575   }
576   case ISD::MLOAD: {
577     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
578     ID.AddInteger(MLD->getMemoryVT().getRawBits());
579     ID.AddInteger(MLD->getRawSubclassData());
580     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
581     break;
582   }
583   case ISD::MSTORE: {
584     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
585     ID.AddInteger(MST->getMemoryVT().getRawBits());
586     ID.AddInteger(MST->getRawSubclassData());
587     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
588     break;
589   }
590   case ISD::MGATHER: {
591     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
592     ID.AddInteger(MG->getMemoryVT().getRawBits());
593     ID.AddInteger(MG->getRawSubclassData());
594     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
595     break;
596   }
597   case ISD::MSCATTER: {
598     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
599     ID.AddInteger(MS->getMemoryVT().getRawBits());
600     ID.AddInteger(MS->getRawSubclassData());
601     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
602     break;
603   }
604   case ISD::ATOMIC_CMP_SWAP:
605   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
606   case ISD::ATOMIC_SWAP:
607   case ISD::ATOMIC_LOAD_ADD:
608   case ISD::ATOMIC_LOAD_SUB:
609   case ISD::ATOMIC_LOAD_AND:
610   case ISD::ATOMIC_LOAD_CLR:
611   case ISD::ATOMIC_LOAD_OR:
612   case ISD::ATOMIC_LOAD_XOR:
613   case ISD::ATOMIC_LOAD_NAND:
614   case ISD::ATOMIC_LOAD_MIN:
615   case ISD::ATOMIC_LOAD_MAX:
616   case ISD::ATOMIC_LOAD_UMIN:
617   case ISD::ATOMIC_LOAD_UMAX:
618   case ISD::ATOMIC_LOAD:
619   case ISD::ATOMIC_STORE: {
620     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
621     ID.AddInteger(AT->getMemoryVT().getRawBits());
622     ID.AddInteger(AT->getRawSubclassData());
623     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
624     break;
625   }
626   case ISD::PREFETCH: {
627     const MemSDNode *PF = cast<MemSDNode>(N);
628     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
629     break;
630   }
631   case ISD::VECTOR_SHUFFLE: {
632     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
633     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
634          i != e; ++i)
635       ID.AddInteger(SVN->getMaskElt(i));
636     break;
637   }
638   case ISD::TargetBlockAddress:
639   case ISD::BlockAddress: {
640     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
641     ID.AddPointer(BA->getBlockAddress());
642     ID.AddInteger(BA->getOffset());
643     ID.AddInteger(BA->getTargetFlags());
644     break;
645   }
646   } // end switch (N->getOpcode())
647 
648   // Target specific memory nodes could also have address spaces to check.
649   if (N->isTargetMemoryOpcode())
650     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
651 }
652 
653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
654 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
656   AddNodeIDOpcode(ID, N->getOpcode());
657   // Add the return value info.
658   AddNodeIDValueTypes(ID, N->getVTList());
659   // Add the operand info.
660   AddNodeIDOperands(ID, N->ops());
661 
662   // Handle SDNode leafs with special info.
663   AddNodeIDCustom(ID, N);
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                              SelectionDAG Class
668 //===----------------------------------------------------------------------===//
669 
670 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)671 static bool doNotCSE(SDNode *N) {
672   if (N->getValueType(0) == MVT::Glue)
673     return true; // Never CSE anything that produces a flag.
674 
675   switch (N->getOpcode()) {
676   default: break;
677   case ISD::HANDLENODE:
678   case ISD::EH_LABEL:
679     return true;   // Never CSE these nodes.
680   }
681 
682   // Check that remaining values produced are not flags.
683   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
684     if (N->getValueType(i) == MVT::Glue)
685       return true; // Never CSE anything that produces a flag.
686 
687   return false;
688 }
689 
690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
691 /// SelectionDAG.
RemoveDeadNodes()692 void SelectionDAG::RemoveDeadNodes() {
693   // Create a dummy node (which is not added to allnodes), that adds a reference
694   // to the root node, preventing it from being deleted.
695   HandleSDNode Dummy(getRoot());
696 
697   SmallVector<SDNode*, 128> DeadNodes;
698 
699   // Add all obviously-dead nodes to the DeadNodes worklist.
700   for (SDNode &Node : allnodes())
701     if (Node.use_empty())
702       DeadNodes.push_back(&Node);
703 
704   RemoveDeadNodes(DeadNodes);
705 
706   // If the root changed (e.g. it was a dead load, update the root).
707   setRoot(Dummy.getValue());
708 }
709 
710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
711 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
713 
714   // Process the worklist, deleting the nodes and adding their uses to the
715   // worklist.
716   while (!DeadNodes.empty()) {
717     SDNode *N = DeadNodes.pop_back_val();
718     // Skip to next node if we've already managed to delete the node. This could
719     // happen if replacing a node causes a node previously added to the node to
720     // be deleted.
721     if (N->getOpcode() == ISD::DELETED_NODE)
722       continue;
723 
724     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
725       DUL->NodeDeleted(N, nullptr);
726 
727     // Take the node out of the appropriate CSE map.
728     RemoveNodeFromCSEMaps(N);
729 
730     // Next, brutally remove the operand list.  This is safe to do, as there are
731     // no cycles in the graph.
732     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
733       SDUse &Use = *I++;
734       SDNode *Operand = Use.getNode();
735       Use.set(SDValue());
736 
737       // Now that we removed this operand, see if there are no uses of it left.
738       if (Operand->use_empty())
739         DeadNodes.push_back(Operand);
740     }
741 
742     DeallocateNode(N);
743   }
744 }
745 
RemoveDeadNode(SDNode * N)746 void SelectionDAG::RemoveDeadNode(SDNode *N){
747   SmallVector<SDNode*, 16> DeadNodes(1, N);
748 
749   // Create a dummy node that adds a reference to the root node, preventing
750   // it from being deleted.  (This matters if the root is an operand of the
751   // dead node.)
752   HandleSDNode Dummy(getRoot());
753 
754   RemoveDeadNodes(DeadNodes);
755 }
756 
DeleteNode(SDNode * N)757 void SelectionDAG::DeleteNode(SDNode *N) {
758   // First take this out of the appropriate CSE map.
759   RemoveNodeFromCSEMaps(N);
760 
761   // Finally, remove uses due to operands of this node, remove from the
762   // AllNodes list, and delete the node.
763   DeleteNodeNotInCSEMaps(N);
764 }
765 
DeleteNodeNotInCSEMaps(SDNode * N)766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
767   assert(N->getIterator() != AllNodes.begin() &&
768          "Cannot delete the entry node!");
769   assert(N->use_empty() && "Cannot delete a node that is not dead!");
770 
771   // Drop all of the operands and decrement used node's use counts.
772   N->DropOperands();
773 
774   DeallocateNode(N);
775 }
776 
erase(const SDNode * Node)777 void SDDbgInfo::erase(const SDNode *Node) {
778   DbgValMapType::iterator I = DbgValMap.find(Node);
779   if (I == DbgValMap.end())
780     return;
781   for (auto &Val: I->second)
782     Val->setIsInvalidated();
783   DbgValMap.erase(I);
784 }
785 
DeallocateNode(SDNode * N)786 void SelectionDAG::DeallocateNode(SDNode *N) {
787   // If we have operands, deallocate them.
788   removeOperands(N);
789 
790   NodeAllocator.Deallocate(AllNodes.remove(N));
791 
792   // Set the opcode to DELETED_NODE to help catch bugs when node
793   // memory is reallocated.
794   // FIXME: There are places in SDag that have grown a dependency on the opcode
795   // value in the released node.
796   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
797   N->NodeType = ISD::DELETED_NODE;
798 
799   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
800   // them and forget about that node.
801   DbgInfo->erase(N);
802 }
803 
804 #ifndef NDEBUG
805 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
VerifySDNode(SDNode * N)806 static void VerifySDNode(SDNode *N) {
807   switch (N->getOpcode()) {
808   default:
809     break;
810   case ISD::BUILD_PAIR: {
811     EVT VT = N->getValueType(0);
812     assert(N->getNumValues() == 1 && "Too many results!");
813     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
814            "Wrong return type!");
815     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
816     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
817            "Mismatched operand types!");
818     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
819            "Wrong operand type!");
820     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
821            "Wrong return type size");
822     break;
823   }
824   case ISD::BUILD_VECTOR: {
825     assert(N->getNumValues() == 1 && "Too many results!");
826     assert(N->getValueType(0).isVector() && "Wrong return type!");
827     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
828            "Wrong number of operands!");
829     EVT EltVT = N->getValueType(0).getVectorElementType();
830     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
831       assert((I->getValueType() == EltVT ||
832              (EltVT.isInteger() && I->getValueType().isInteger() &&
833               EltVT.bitsLE(I->getValueType()))) &&
834             "Wrong operand type!");
835       assert(I->getValueType() == N->getOperand(0).getValueType() &&
836              "Operands must all have the same type");
837     }
838     break;
839   }
840   }
841 }
842 #endif // NDEBUG
843 
844 /// Insert a newly allocated node into the DAG.
845 ///
846 /// Handles insertion into the all nodes list and CSE map, as well as
847 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)848 void SelectionDAG::InsertNode(SDNode *N) {
849   AllNodes.push_back(N);
850 #ifndef NDEBUG
851   N->PersistentId = NextPersistentId++;
852   VerifySDNode(N);
853 #endif
854   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
855     DUL->NodeInserted(N);
856 }
857 
858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
859 /// correspond to it.  This is useful when we're about to delete or repurpose
860 /// the node.  We don't want future request for structurally identical nodes
861 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
863   bool Erased = false;
864   switch (N->getOpcode()) {
865   case ISD::HANDLENODE: return false;  // noop.
866   case ISD::CONDCODE:
867     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
868            "Cond code doesn't exist!");
869     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
870     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
871     break;
872   case ISD::ExternalSymbol:
873     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
874     break;
875   case ISD::TargetExternalSymbol: {
876     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
877     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
878         ESN->getSymbol(), ESN->getTargetFlags()));
879     break;
880   }
881   case ISD::MCSymbol: {
882     auto *MCSN = cast<MCSymbolSDNode>(N);
883     Erased = MCSymbols.erase(MCSN->getMCSymbol());
884     break;
885   }
886   case ISD::VALUETYPE: {
887     EVT VT = cast<VTSDNode>(N)->getVT();
888     if (VT.isExtended()) {
889       Erased = ExtendedValueTypeNodes.erase(VT);
890     } else {
891       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
892       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
893     }
894     break;
895   }
896   default:
897     // Remove it from the CSE Map.
898     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
899     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
900     Erased = CSEMap.RemoveNode(N);
901     break;
902   }
903 #ifndef NDEBUG
904   // Verify that the node was actually in one of the CSE maps, unless it has a
905   // flag result (which cannot be CSE'd) or is one of the special cases that are
906   // not subject to CSE.
907   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
908       !N->isMachineOpcode() && !doNotCSE(N)) {
909     N->dump(this);
910     dbgs() << "\n";
911     llvm_unreachable("Node is not in map!");
912   }
913 #endif
914   return Erased;
915 }
916 
917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
918 /// maps and modified in place. Add it back to the CSE maps, unless an identical
919 /// node already exists, in which case transfer all its users to the existing
920 /// node. This transfer can potentially trigger recursive merging.
921 void
AddModifiedNodeToCSEMaps(SDNode * N)922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
923   // For node types that aren't CSE'd, just act as if no identical node
924   // already exists.
925   if (!doNotCSE(N)) {
926     SDNode *Existing = CSEMap.GetOrInsertNode(N);
927     if (Existing != N) {
928       // If there was already an existing matching node, use ReplaceAllUsesWith
929       // to replace the dead one with the existing one.  This can cause
930       // recursive merging of other unrelated nodes down the line.
931       ReplaceAllUsesWith(N, Existing);
932 
933       // N is now dead. Inform the listeners and delete it.
934       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
935         DUL->NodeDeleted(N, Existing);
936       DeleteNodeNotInCSEMaps(N);
937       return;
938     }
939   }
940 
941   // If the node doesn't already exist, we updated it.  Inform listeners.
942   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
943     DUL->NodeUpdated(N);
944 }
945 
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified.  If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take.  If a
949 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
951                                            void *&InsertPos) {
952   if (doNotCSE(N))
953     return nullptr;
954 
955   SDValue Ops[] = { Op };
956   FoldingSetNodeID ID;
957   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
958   AddNodeIDCustom(ID, N);
959   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
960   if (Node)
961     Node->intersectFlagsWith(N->getFlags());
962   return Node;
963 }
964 
965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
966 /// were replaced with those specified.  If this node is never memoized,
967 /// return null, otherwise return a pointer to the slot it would take.  If a
968 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
970                                            SDValue Op1, SDValue Op2,
971                                            void *&InsertPos) {
972   if (doNotCSE(N))
973     return nullptr;
974 
975   SDValue Ops[] = { Op1, Op2 };
976   FoldingSetNodeID ID;
977   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
978   AddNodeIDCustom(ID, N);
979   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
980   if (Node)
981     Node->intersectFlagsWith(N->getFlags());
982   return Node;
983 }
984 
985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
986 /// were replaced with those specified.  If this node is never memoized,
987 /// return null, otherwise return a pointer to the slot it would take.  If a
988 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
990                                            void *&InsertPos) {
991   if (doNotCSE(N))
992     return nullptr;
993 
994   FoldingSetNodeID ID;
995   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
996   AddNodeIDCustom(ID, N);
997   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
998   if (Node)
999     Node->intersectFlagsWith(N->getFlags());
1000   return Node;
1001 }
1002 
getEVTAlignment(EVT VT) const1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
1004   Type *Ty = VT == MVT::iPTR ?
1005                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1006                    VT.getTypeForEVT(*getContext());
1007 
1008   return getDataLayout().getABITypeAlignment(Ty);
1009 }
1010 
1011 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1013     : TM(tm), OptLevel(OL),
1014       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1015       Root(getEntryNode()) {
1016   InsertNode(&EntryNode);
1017   DbgInfo = new SDDbgInfo();
1018 }
1019 
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,LegacyDivergenceAnalysis * Divergence,ProfileSummaryInfo * PSIin,BlockFrequencyInfo * BFIin)1020 void SelectionDAG::init(MachineFunction &NewMF,
1021                         OptimizationRemarkEmitter &NewORE,
1022                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1023                         LegacyDivergenceAnalysis * Divergence,
1024                         ProfileSummaryInfo *PSIin,
1025                         BlockFrequencyInfo *BFIin) {
1026   MF = &NewMF;
1027   SDAGISelPass = PassPtr;
1028   ORE = &NewORE;
1029   TLI = getSubtarget().getTargetLowering();
1030   TSI = getSubtarget().getSelectionDAGInfo();
1031   LibInfo = LibraryInfo;
1032   Context = &MF->getFunction().getContext();
1033   DA = Divergence;
1034   PSI = PSIin;
1035   BFI = BFIin;
1036 }
1037 
~SelectionDAG()1038 SelectionDAG::~SelectionDAG() {
1039   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1040   allnodes_clear();
1041   OperandRecycler.clear(OperandAllocator);
1042   delete DbgInfo;
1043 }
1044 
shouldOptForSize() const1045 bool SelectionDAG::shouldOptForSize() const {
1046   return MF->getFunction().hasOptSize() ||
1047       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1048 }
1049 
allnodes_clear()1050 void SelectionDAG::allnodes_clear() {
1051   assert(&*AllNodes.begin() == &EntryNode);
1052   AllNodes.remove(AllNodes.begin());
1053   while (!AllNodes.empty())
1054     DeallocateNode(&AllNodes.front());
1055 #ifndef NDEBUG
1056   NextPersistentId = 0;
1057 #endif
1058 }
1059 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1061                                           void *&InsertPos) {
1062   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1063   if (N) {
1064     switch (N->getOpcode()) {
1065     default: break;
1066     case ISD::Constant:
1067     case ISD::ConstantFP:
1068       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1069                        "debug location.  Use another overload.");
1070     }
1071   }
1072   return N;
1073 }
1074 
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1076                                           const SDLoc &DL, void *&InsertPos) {
1077   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1078   if (N) {
1079     switch (N->getOpcode()) {
1080     case ISD::Constant:
1081     case ISD::ConstantFP:
1082       // Erase debug location from the node if the node is used at several
1083       // different places. Do not propagate one location to all uses as it
1084       // will cause a worse single stepping debugging experience.
1085       if (N->getDebugLoc() != DL.getDebugLoc())
1086         N->setDebugLoc(DebugLoc());
1087       break;
1088     default:
1089       // When the node's point of use is located earlier in the instruction
1090       // sequence than its prior point of use, update its debug info to the
1091       // earlier location.
1092       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1093         N->setDebugLoc(DL.getDebugLoc());
1094       break;
1095     }
1096   }
1097   return N;
1098 }
1099 
clear()1100 void SelectionDAG::clear() {
1101   allnodes_clear();
1102   OperandRecycler.clear(OperandAllocator);
1103   OperandAllocator.Reset();
1104   CSEMap.clear();
1105 
1106   ExtendedValueTypeNodes.clear();
1107   ExternalSymbols.clear();
1108   TargetExternalSymbols.clear();
1109   MCSymbols.clear();
1110   SDCallSiteDbgInfo.clear();
1111   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1112             static_cast<CondCodeSDNode*>(nullptr));
1113   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1114             static_cast<SDNode*>(nullptr));
1115 
1116   EntryNode.UseList = nullptr;
1117   InsertNode(&EntryNode);
1118   Root = getEntryNode();
1119   DbgInfo->clear();
1120 }
1121 
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1123   return VT.bitsGT(Op.getValueType())
1124              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1125              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1126 }
1127 
1128 std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op,SDValue Chain,const SDLoc & DL,EVT VT)1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1130                                        const SDLoc &DL, EVT VT) {
1131   assert(!VT.bitsEq(Op.getValueType()) &&
1132          "Strict no-op FP extend/round not allowed.");
1133   SDValue Res =
1134       VT.bitsGT(Op.getValueType())
1135           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1136           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1137                     {Chain, Op, getIntPtrConstant(0, DL)});
1138 
1139   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1140 }
1141 
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1143   return VT.bitsGT(Op.getValueType()) ?
1144     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1145     getNode(ISD::TRUNCATE, DL, VT, Op);
1146 }
1147 
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1149   return VT.bitsGT(Op.getValueType()) ?
1150     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1151     getNode(ISD::TRUNCATE, DL, VT, Op);
1152 }
1153 
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1155   return VT.bitsGT(Op.getValueType()) ?
1156     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1157     getNode(ISD::TRUNCATE, DL, VT, Op);
1158 }
1159 
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1161                                         EVT OpVT) {
1162   if (VT.bitsLE(Op.getValueType()))
1163     return getNode(ISD::TRUNCATE, SL, VT, Op);
1164 
1165   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1166   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1167 }
1168 
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1170   assert(!VT.isVector() &&
1171          "getZeroExtendInReg should use the vector element type instead of "
1172          "the vector type!");
1173   if (Op.getValueType().getScalarType() == VT) return Op;
1174   unsigned BitWidth = Op.getScalarValueSizeInBits();
1175   APInt Imm = APInt::getLowBitsSet(BitWidth,
1176                                    VT.getSizeInBits());
1177   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1178                  getConstant(Imm, DL, Op.getValueType()));
1179 }
1180 
getPtrExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1182   // Only unsigned pointer semantics are supported right now. In the future this
1183   // might delegate to TLI to check pointer signedness.
1184   return getZExtOrTrunc(Op, DL, VT);
1185 }
1186 
getPtrExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1188   // Only unsigned pointer semantics are supported right now. In the future this
1189   // might delegate to TLI to check pointer signedness.
1190   return getZeroExtendInReg(Op, DL, VT);
1191 }
1192 
1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1195   EVT EltVT = VT.getScalarType();
1196   SDValue NegOne =
1197     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1198   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1199 }
1200 
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1203   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1204 }
1205 
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1207                                       EVT OpVT) {
1208   if (!V)
1209     return getConstant(0, DL, VT);
1210 
1211   switch (TLI->getBooleanContents(OpVT)) {
1212   case TargetLowering::ZeroOrOneBooleanContent:
1213   case TargetLowering::UndefinedBooleanContent:
1214     return getConstant(1, DL, VT);
1215   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1216     return getAllOnesConstant(DL, VT);
1217   }
1218   llvm_unreachable("Unexpected boolean content enum!");
1219 }
1220 
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1222                                   bool isT, bool isO) {
1223   EVT EltVT = VT.getScalarType();
1224   assert((EltVT.getSizeInBits() >= 64 ||
1225          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1226          "getConstant with a uint64_t value that doesn't fit in the type!");
1227   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1228 }
1229 
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1231                                   bool isT, bool isO) {
1232   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1233 }
1234 
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1236                                   EVT VT, bool isT, bool isO) {
1237   assert(VT.isInteger() && "Cannot create FP integer constant!");
1238 
1239   EVT EltVT = VT.getScalarType();
1240   const ConstantInt *Elt = &Val;
1241 
1242   // In some cases the vector type is legal but the element type is illegal and
1243   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1244   // inserted value (the type does not need to match the vector element type).
1245   // Any extra bits introduced will be truncated away.
1246   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1247       TargetLowering::TypePromoteInteger) {
1248    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1249    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1250    Elt = ConstantInt::get(*getContext(), NewVal);
1251   }
1252   // In other cases the element type is illegal and needs to be expanded, for
1253   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1254   // the value into n parts and use a vector type with n-times the elements.
1255   // Then bitcast to the type requested.
1256   // Legalizing constants too early makes the DAGCombiner's job harder so we
1257   // only legalize if the DAG tells us we must produce legal types.
1258   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1259            TLI->getTypeAction(*getContext(), EltVT) ==
1260            TargetLowering::TypeExpandInteger) {
1261     const APInt &NewVal = Elt->getValue();
1262     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1263     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1264     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1265     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1266 
1267     // Check the temporary vector is the correct size. If this fails then
1268     // getTypeToTransformTo() probably returned a type whose size (in bits)
1269     // isn't a power-of-2 factor of the requested type size.
1270     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1271 
1272     SmallVector<SDValue, 2> EltParts;
1273     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1274       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1275                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1276                                      ViaEltVT, isT, isO));
1277     }
1278 
1279     // EltParts is currently in little endian order. If we actually want
1280     // big-endian order then reverse it now.
1281     if (getDataLayout().isBigEndian())
1282       std::reverse(EltParts.begin(), EltParts.end());
1283 
1284     // The elements must be reversed when the element order is different
1285     // to the endianness of the elements (because the BITCAST is itself a
1286     // vector shuffle in this situation). However, we do not need any code to
1287     // perform this reversal because getConstant() is producing a vector
1288     // splat.
1289     // This situation occurs in MIPS MSA.
1290 
1291     SmallVector<SDValue, 8> Ops;
1292     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1293       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1294 
1295     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1296     return V;
1297   }
1298 
1299   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1300          "APInt size does not match type size!");
1301   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1302   FoldingSetNodeID ID;
1303   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1304   ID.AddPointer(Elt);
1305   ID.AddBoolean(isO);
1306   void *IP = nullptr;
1307   SDNode *N = nullptr;
1308   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1309     if (!VT.isVector())
1310       return SDValue(N, 0);
1311 
1312   if (!N) {
1313     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1314     CSEMap.InsertNode(N, IP);
1315     InsertNode(N);
1316     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1317   }
1318 
1319   SDValue Result(N, 0);
1320   if (VT.isScalableVector())
1321     Result = getSplatVector(VT, DL, Result);
1322   else if (VT.isVector())
1323     Result = getSplatBuildVector(VT, DL, Result);
1324 
1325   return Result;
1326 }
1327 
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1329                                         bool isTarget) {
1330   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1331 }
1332 
getShiftAmountConstant(uint64_t Val,EVT VT,const SDLoc & DL,bool LegalTypes)1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1334                                              const SDLoc &DL, bool LegalTypes) {
1335   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1336   return getConstant(Val, DL, ShiftVT);
1337 }
1338 
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1339 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1340                                     bool isTarget) {
1341   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1342 }
1343 
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1344 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1345                                     EVT VT, bool isTarget) {
1346   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1347 
1348   EVT EltVT = VT.getScalarType();
1349 
1350   // Do the map lookup using the actual bit pattern for the floating point
1351   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1352   // we don't have issues with SNANs.
1353   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1354   FoldingSetNodeID ID;
1355   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1356   ID.AddPointer(&V);
1357   void *IP = nullptr;
1358   SDNode *N = nullptr;
1359   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1360     if (!VT.isVector())
1361       return SDValue(N, 0);
1362 
1363   if (!N) {
1364     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1365     CSEMap.InsertNode(N, IP);
1366     InsertNode(N);
1367   }
1368 
1369   SDValue Result(N, 0);
1370   if (VT.isVector())
1371     Result = getSplatBuildVector(VT, DL, Result);
1372   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1373   return Result;
1374 }
1375 
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1376 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1377                                     bool isTarget) {
1378   EVT EltVT = VT.getScalarType();
1379   if (EltVT == MVT::f32)
1380     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1381   else if (EltVT == MVT::f64)
1382     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1383   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1384            EltVT == MVT::f16) {
1385     bool Ignored;
1386     APFloat APF = APFloat(Val);
1387     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1388                 &Ignored);
1389     return getConstantFP(APF, DL, VT, isTarget);
1390   } else
1391     llvm_unreachable("Unsupported type in getConstantFP");
1392 }
1393 
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned TargetFlags)1394 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1395                                        EVT VT, int64_t Offset, bool isTargetGA,
1396                                        unsigned TargetFlags) {
1397   assert((TargetFlags == 0 || isTargetGA) &&
1398          "Cannot set target flags on target-independent globals");
1399 
1400   // Truncate (with sign-extension) the offset value to the pointer size.
1401   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1402   if (BitWidth < 64)
1403     Offset = SignExtend64(Offset, BitWidth);
1404 
1405   unsigned Opc;
1406   if (GV->isThreadLocal())
1407     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1408   else
1409     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1410 
1411   FoldingSetNodeID ID;
1412   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1413   ID.AddPointer(GV);
1414   ID.AddInteger(Offset);
1415   ID.AddInteger(TargetFlags);
1416   void *IP = nullptr;
1417   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1418     return SDValue(E, 0);
1419 
1420   auto *N = newSDNode<GlobalAddressSDNode>(
1421       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1422   CSEMap.InsertNode(N, IP);
1423     InsertNode(N);
1424   return SDValue(N, 0);
1425 }
1426 
getFrameIndex(int FI,EVT VT,bool isTarget)1427 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1428   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1429   FoldingSetNodeID ID;
1430   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1431   ID.AddInteger(FI);
1432   void *IP = nullptr;
1433   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1434     return SDValue(E, 0);
1435 
1436   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1437   CSEMap.InsertNode(N, IP);
1438   InsertNode(N);
1439   return SDValue(N, 0);
1440 }
1441 
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned TargetFlags)1442 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1443                                    unsigned TargetFlags) {
1444   assert((TargetFlags == 0 || isTarget) &&
1445          "Cannot set target flags on target-independent jump tables");
1446   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1447   FoldingSetNodeID ID;
1448   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1449   ID.AddInteger(JTI);
1450   ID.AddInteger(TargetFlags);
1451   void *IP = nullptr;
1452   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1453     return SDValue(E, 0);
1454 
1455   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1456   CSEMap.InsertNode(N, IP);
1457   InsertNode(N);
1458   return SDValue(N, 0);
1459 }
1460 
getConstantPool(const Constant * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned TargetFlags)1461 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1462                                       unsigned Alignment, int Offset,
1463                                       bool isTarget,
1464                                       unsigned TargetFlags) {
1465   assert((TargetFlags == 0 || isTarget) &&
1466          "Cannot set target flags on target-independent globals");
1467   if (Alignment == 0)
1468     Alignment = shouldOptForSize()
1469                     ? getDataLayout().getABITypeAlignment(C->getType())
1470                     : getDataLayout().getPrefTypeAlignment(C->getType());
1471   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1472   FoldingSetNodeID ID;
1473   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1474   ID.AddInteger(Alignment);
1475   ID.AddInteger(Offset);
1476   ID.AddPointer(C);
1477   ID.AddInteger(TargetFlags);
1478   void *IP = nullptr;
1479   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1480     return SDValue(E, 0);
1481 
1482   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1483                                           TargetFlags);
1484   CSEMap.InsertNode(N, IP);
1485   InsertNode(N);
1486   return SDValue(N, 0);
1487 }
1488 
getConstantPool(MachineConstantPoolValue * C,EVT VT,unsigned Alignment,int Offset,bool isTarget,unsigned TargetFlags)1489 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1490                                       unsigned Alignment, int Offset,
1491                                       bool isTarget,
1492                                       unsigned TargetFlags) {
1493   assert((TargetFlags == 0 || isTarget) &&
1494          "Cannot set target flags on target-independent globals");
1495   if (Alignment == 0)
1496     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1497   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1498   FoldingSetNodeID ID;
1499   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1500   ID.AddInteger(Alignment);
1501   ID.AddInteger(Offset);
1502   C->addSelectionDAGCSEId(ID);
1503   ID.AddInteger(TargetFlags);
1504   void *IP = nullptr;
1505   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1506     return SDValue(E, 0);
1507 
1508   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1509                                           TargetFlags);
1510   CSEMap.InsertNode(N, IP);
1511   InsertNode(N);
1512   return SDValue(N, 0);
1513 }
1514 
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned TargetFlags)1515 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1516                                      unsigned TargetFlags) {
1517   FoldingSetNodeID ID;
1518   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1519   ID.AddInteger(Index);
1520   ID.AddInteger(Offset);
1521   ID.AddInteger(TargetFlags);
1522   void *IP = nullptr;
1523   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1524     return SDValue(E, 0);
1525 
1526   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1527   CSEMap.InsertNode(N, IP);
1528   InsertNode(N);
1529   return SDValue(N, 0);
1530 }
1531 
getBasicBlock(MachineBasicBlock * MBB)1532 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1533   FoldingSetNodeID ID;
1534   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1535   ID.AddPointer(MBB);
1536   void *IP = nullptr;
1537   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1538     return SDValue(E, 0);
1539 
1540   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1541   CSEMap.InsertNode(N, IP);
1542   InsertNode(N);
1543   return SDValue(N, 0);
1544 }
1545 
getValueType(EVT VT)1546 SDValue SelectionDAG::getValueType(EVT VT) {
1547   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1548       ValueTypeNodes.size())
1549     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1550 
1551   SDNode *&N = VT.isExtended() ?
1552     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1553 
1554   if (N) return SDValue(N, 0);
1555   N = newSDNode<VTSDNode>(VT);
1556   InsertNode(N);
1557   return SDValue(N, 0);
1558 }
1559 
getExternalSymbol(const char * Sym,EVT VT)1560 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1561   SDNode *&N = ExternalSymbols[Sym];
1562   if (N) return SDValue(N, 0);
1563   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1564   InsertNode(N);
1565   return SDValue(N, 0);
1566 }
1567 
getMCSymbol(MCSymbol * Sym,EVT VT)1568 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1569   SDNode *&N = MCSymbols[Sym];
1570   if (N)
1571     return SDValue(N, 0);
1572   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1573   InsertNode(N);
1574   return SDValue(N, 0);
1575 }
1576 
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned TargetFlags)1577 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1578                                               unsigned TargetFlags) {
1579   SDNode *&N =
1580       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1581   if (N) return SDValue(N, 0);
1582   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1583   InsertNode(N);
1584   return SDValue(N, 0);
1585 }
1586 
getCondCode(ISD::CondCode Cond)1587 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1588   if ((unsigned)Cond >= CondCodeNodes.size())
1589     CondCodeNodes.resize(Cond+1);
1590 
1591   if (!CondCodeNodes[Cond]) {
1592     auto *N = newSDNode<CondCodeSDNode>(Cond);
1593     CondCodeNodes[Cond] = N;
1594     InsertNode(N);
1595   }
1596 
1597   return SDValue(CondCodeNodes[Cond], 0);
1598 }
1599 
1600 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1601 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1602 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1603   std::swap(N1, N2);
1604   ShuffleVectorSDNode::commuteMask(M);
1605 }
1606 
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1607 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1608                                        SDValue N2, ArrayRef<int> Mask) {
1609   assert(VT.getVectorNumElements() == Mask.size() &&
1610            "Must have the same number of vector elements as mask elements!");
1611   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1612          "Invalid VECTOR_SHUFFLE");
1613 
1614   // Canonicalize shuffle undef, undef -> undef
1615   if (N1.isUndef() && N2.isUndef())
1616     return getUNDEF(VT);
1617 
1618   // Validate that all indices in Mask are within the range of the elements
1619   // input to the shuffle.
1620   int NElts = Mask.size();
1621   assert(llvm::all_of(Mask,
1622                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1623          "Index out of range");
1624 
1625   // Copy the mask so we can do any needed cleanup.
1626   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1627 
1628   // Canonicalize shuffle v, v -> v, undef
1629   if (N1 == N2) {
1630     N2 = getUNDEF(VT);
1631     for (int i = 0; i != NElts; ++i)
1632       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1633   }
1634 
1635   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1636   if (N1.isUndef())
1637     commuteShuffle(N1, N2, MaskVec);
1638 
1639   if (TLI->hasVectorBlend()) {
1640     // If shuffling a splat, try to blend the splat instead. We do this here so
1641     // that even when this arises during lowering we don't have to re-handle it.
1642     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1643       BitVector UndefElements;
1644       SDValue Splat = BV->getSplatValue(&UndefElements);
1645       if (!Splat)
1646         return;
1647 
1648       for (int i = 0; i < NElts; ++i) {
1649         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1650           continue;
1651 
1652         // If this input comes from undef, mark it as such.
1653         if (UndefElements[MaskVec[i] - Offset]) {
1654           MaskVec[i] = -1;
1655           continue;
1656         }
1657 
1658         // If we can blend a non-undef lane, use that instead.
1659         if (!UndefElements[i])
1660           MaskVec[i] = i + Offset;
1661       }
1662     };
1663     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1664       BlendSplat(N1BV, 0);
1665     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1666       BlendSplat(N2BV, NElts);
1667   }
1668 
1669   // Canonicalize all index into lhs, -> shuffle lhs, undef
1670   // Canonicalize all index into rhs, -> shuffle rhs, undef
1671   bool AllLHS = true, AllRHS = true;
1672   bool N2Undef = N2.isUndef();
1673   for (int i = 0; i != NElts; ++i) {
1674     if (MaskVec[i] >= NElts) {
1675       if (N2Undef)
1676         MaskVec[i] = -1;
1677       else
1678         AllLHS = false;
1679     } else if (MaskVec[i] >= 0) {
1680       AllRHS = false;
1681     }
1682   }
1683   if (AllLHS && AllRHS)
1684     return getUNDEF(VT);
1685   if (AllLHS && !N2Undef)
1686     N2 = getUNDEF(VT);
1687   if (AllRHS) {
1688     N1 = getUNDEF(VT);
1689     commuteShuffle(N1, N2, MaskVec);
1690   }
1691   // Reset our undef status after accounting for the mask.
1692   N2Undef = N2.isUndef();
1693   // Re-check whether both sides ended up undef.
1694   if (N1.isUndef() && N2Undef)
1695     return getUNDEF(VT);
1696 
1697   // If Identity shuffle return that node.
1698   bool Identity = true, AllSame = true;
1699   for (int i = 0; i != NElts; ++i) {
1700     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1701     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1702   }
1703   if (Identity && NElts)
1704     return N1;
1705 
1706   // Shuffling a constant splat doesn't change the result.
1707   if (N2Undef) {
1708     SDValue V = N1;
1709 
1710     // Look through any bitcasts. We check that these don't change the number
1711     // (and size) of elements and just changes their types.
1712     while (V.getOpcode() == ISD::BITCAST)
1713       V = V->getOperand(0);
1714 
1715     // A splat should always show up as a build vector node.
1716     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1717       BitVector UndefElements;
1718       SDValue Splat = BV->getSplatValue(&UndefElements);
1719       // If this is a splat of an undef, shuffling it is also undef.
1720       if (Splat && Splat.isUndef())
1721         return getUNDEF(VT);
1722 
1723       bool SameNumElts =
1724           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1725 
1726       // We only have a splat which can skip shuffles if there is a splatted
1727       // value and no undef lanes rearranged by the shuffle.
1728       if (Splat && UndefElements.none()) {
1729         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1730         // number of elements match or the value splatted is a zero constant.
1731         if (SameNumElts)
1732           return N1;
1733         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1734           if (C->isNullValue())
1735             return N1;
1736       }
1737 
1738       // If the shuffle itself creates a splat, build the vector directly.
1739       if (AllSame && SameNumElts) {
1740         EVT BuildVT = BV->getValueType(0);
1741         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1742         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1743 
1744         // We may have jumped through bitcasts, so the type of the
1745         // BUILD_VECTOR may not match the type of the shuffle.
1746         if (BuildVT != VT)
1747           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1748         return NewBV;
1749       }
1750     }
1751   }
1752 
1753   FoldingSetNodeID ID;
1754   SDValue Ops[2] = { N1, N2 };
1755   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1756   for (int i = 0; i != NElts; ++i)
1757     ID.AddInteger(MaskVec[i]);
1758 
1759   void* IP = nullptr;
1760   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1761     return SDValue(E, 0);
1762 
1763   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1764   // SDNode doesn't have access to it.  This memory will be "leaked" when
1765   // the node is deallocated, but recovered when the NodeAllocator is released.
1766   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1767   llvm::copy(MaskVec, MaskAlloc);
1768 
1769   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1770                                            dl.getDebugLoc(), MaskAlloc);
1771   createOperands(N, Ops);
1772 
1773   CSEMap.InsertNode(N, IP);
1774   InsertNode(N);
1775   SDValue V = SDValue(N, 0);
1776   NewSDValueDbgMsg(V, "Creating new node: ", this);
1777   return V;
1778 }
1779 
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1780 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1781   EVT VT = SV.getValueType(0);
1782   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1783   ShuffleVectorSDNode::commuteMask(MaskVec);
1784 
1785   SDValue Op0 = SV.getOperand(0);
1786   SDValue Op1 = SV.getOperand(1);
1787   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1788 }
1789 
getRegister(unsigned RegNo,EVT VT)1790 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1791   FoldingSetNodeID ID;
1792   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1793   ID.AddInteger(RegNo);
1794   void *IP = nullptr;
1795   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1796     return SDValue(E, 0);
1797 
1798   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1799   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1800   CSEMap.InsertNode(N, IP);
1801   InsertNode(N);
1802   return SDValue(N, 0);
1803 }
1804 
getRegisterMask(const uint32_t * RegMask)1805 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1806   FoldingSetNodeID ID;
1807   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1808   ID.AddPointer(RegMask);
1809   void *IP = nullptr;
1810   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1811     return SDValue(E, 0);
1812 
1813   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1814   CSEMap.InsertNode(N, IP);
1815   InsertNode(N);
1816   return SDValue(N, 0);
1817 }
1818 
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1819 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1820                                  MCSymbol *Label) {
1821   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1822 }
1823 
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)1824 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1825                                    SDValue Root, MCSymbol *Label) {
1826   FoldingSetNodeID ID;
1827   SDValue Ops[] = { Root };
1828   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1829   ID.AddPointer(Label);
1830   void *IP = nullptr;
1831   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1832     return SDValue(E, 0);
1833 
1834   auto *N =
1835       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1836   createOperands(N, Ops);
1837 
1838   CSEMap.InsertNode(N, IP);
1839   InsertNode(N);
1840   return SDValue(N, 0);
1841 }
1842 
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned TargetFlags)1843 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1844                                       int64_t Offset, bool isTarget,
1845                                       unsigned TargetFlags) {
1846   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1847 
1848   FoldingSetNodeID ID;
1849   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1850   ID.AddPointer(BA);
1851   ID.AddInteger(Offset);
1852   ID.AddInteger(TargetFlags);
1853   void *IP = nullptr;
1854   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1855     return SDValue(E, 0);
1856 
1857   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1858   CSEMap.InsertNode(N, IP);
1859   InsertNode(N);
1860   return SDValue(N, 0);
1861 }
1862 
getSrcValue(const Value * V)1863 SDValue SelectionDAG::getSrcValue(const Value *V) {
1864   assert((!V || V->getType()->isPointerTy()) &&
1865          "SrcValue is not a pointer?");
1866 
1867   FoldingSetNodeID ID;
1868   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1869   ID.AddPointer(V);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<SrcValueSDNode>(V);
1876   CSEMap.InsertNode(N, IP);
1877   InsertNode(N);
1878   return SDValue(N, 0);
1879 }
1880 
getMDNode(const MDNode * MD)1881 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1882   FoldingSetNodeID ID;
1883   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1884   ID.AddPointer(MD);
1885 
1886   void *IP = nullptr;
1887   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1888     return SDValue(E, 0);
1889 
1890   auto *N = newSDNode<MDNodeSDNode>(MD);
1891   CSEMap.InsertNode(N, IP);
1892   InsertNode(N);
1893   return SDValue(N, 0);
1894 }
1895 
getBitcast(EVT VT,SDValue V)1896 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1897   if (VT == V.getValueType())
1898     return V;
1899 
1900   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1901 }
1902 
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)1903 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1904                                        unsigned SrcAS, unsigned DestAS) {
1905   SDValue Ops[] = {Ptr};
1906   FoldingSetNodeID ID;
1907   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1908   ID.AddInteger(SrcAS);
1909   ID.AddInteger(DestAS);
1910 
1911   void *IP = nullptr;
1912   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1913     return SDValue(E, 0);
1914 
1915   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1916                                            VT, SrcAS, DestAS);
1917   createOperands(N, Ops);
1918 
1919   CSEMap.InsertNode(N, IP);
1920   InsertNode(N);
1921   return SDValue(N, 0);
1922 }
1923 
1924 /// getShiftAmountOperand - Return the specified value casted to
1925 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1926 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1927   EVT OpTy = Op.getValueType();
1928   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1929   if (OpTy == ShTy || OpTy.isVector()) return Op;
1930 
1931   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1932 }
1933 
expandVAArg(SDNode * Node)1934 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1935   SDLoc dl(Node);
1936   const TargetLowering &TLI = getTargetLoweringInfo();
1937   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1938   EVT VT = Node->getValueType(0);
1939   SDValue Tmp1 = Node->getOperand(0);
1940   SDValue Tmp2 = Node->getOperand(1);
1941   const MaybeAlign MA(Node->getConstantOperandVal(3));
1942 
1943   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1944                                Tmp2, MachinePointerInfo(V));
1945   SDValue VAList = VAListLoad;
1946 
1947   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1948     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1949                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1950 
1951     VAList =
1952         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1953                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1954   }
1955 
1956   // Increment the pointer, VAList, to the next vaarg
1957   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1958                  getConstant(getDataLayout().getTypeAllocSize(
1959                                                VT.getTypeForEVT(*getContext())),
1960                              dl, VAList.getValueType()));
1961   // Store the incremented VAList to the legalized pointer
1962   Tmp1 =
1963       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1964   // Load the actual argument out of the pointer VAList
1965   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1966 }
1967 
expandVACopy(SDNode * Node)1968 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1969   SDLoc dl(Node);
1970   const TargetLowering &TLI = getTargetLoweringInfo();
1971   // This defaults to loading a pointer from the input and storing it to the
1972   // output, returning the chain.
1973   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1974   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1975   SDValue Tmp1 =
1976       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1977               Node->getOperand(2), MachinePointerInfo(VS));
1978   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1979                   MachinePointerInfo(VD));
1980 }
1981 
CreateStackTemporary(EVT VT,unsigned minAlign)1982 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1983   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1984   unsigned ByteSize = VT.getStoreSize();
1985   Type *Ty = VT.getTypeForEVT(*getContext());
1986   unsigned StackAlign =
1987       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1988 
1989   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1990   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1991 }
1992 
CreateStackTemporary(EVT VT1,EVT VT2)1993 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1994   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1995   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1996   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1997   const DataLayout &DL = getDataLayout();
1998   unsigned Align =
1999       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
2000 
2001   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
2002   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
2003   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2004 }
2005 
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)2006 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2007                                 ISD::CondCode Cond, const SDLoc &dl) {
2008   EVT OpVT = N1.getValueType();
2009 
2010   // These setcc operations always fold.
2011   switch (Cond) {
2012   default: break;
2013   case ISD::SETFALSE:
2014   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2015   case ISD::SETTRUE:
2016   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2017 
2018   case ISD::SETOEQ:
2019   case ISD::SETOGT:
2020   case ISD::SETOGE:
2021   case ISD::SETOLT:
2022   case ISD::SETOLE:
2023   case ISD::SETONE:
2024   case ISD::SETO:
2025   case ISD::SETUO:
2026   case ISD::SETUEQ:
2027   case ISD::SETUNE:
2028     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2029     break;
2030   }
2031 
2032   if (OpVT.isInteger()) {
2033     // For EQ and NE, we can always pick a value for the undef to make the
2034     // predicate pass or fail, so we can return undef.
2035     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2036     // icmp eq/ne X, undef -> undef.
2037     if ((N1.isUndef() || N2.isUndef()) &&
2038         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2039       return getUNDEF(VT);
2040 
2041     // If both operands are undef, we can return undef for int comparison.
2042     // icmp undef, undef -> undef.
2043     if (N1.isUndef() && N2.isUndef())
2044       return getUNDEF(VT);
2045 
2046     // icmp X, X -> true/false
2047     // icmp X, undef -> true/false because undef could be X.
2048     if (N1 == N2)
2049       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2050   }
2051 
2052   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2053     const APInt &C2 = N2C->getAPIntValue();
2054     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2055       const APInt &C1 = N1C->getAPIntValue();
2056 
2057       switch (Cond) {
2058       default: llvm_unreachable("Unknown integer setcc!");
2059       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2060       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2061       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2062       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2063       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2064       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2065       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2066       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2067       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2068       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2069       }
2070     }
2071   }
2072 
2073   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2074   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2075 
2076   if (N1CFP && N2CFP) {
2077     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2078     switch (Cond) {
2079     default: break;
2080     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2081                         return getUNDEF(VT);
2082                       LLVM_FALLTHROUGH;
2083     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2084                                              OpVT);
2085     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2086                         return getUNDEF(VT);
2087                       LLVM_FALLTHROUGH;
2088     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2089                                              R==APFloat::cmpLessThan, dl, VT,
2090                                              OpVT);
2091     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2092                         return getUNDEF(VT);
2093                       LLVM_FALLTHROUGH;
2094     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2095                                              OpVT);
2096     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2097                         return getUNDEF(VT);
2098                       LLVM_FALLTHROUGH;
2099     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2100                                              VT, OpVT);
2101     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2102                         return getUNDEF(VT);
2103                       LLVM_FALLTHROUGH;
2104     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2105                                              R==APFloat::cmpEqual, dl, VT,
2106                                              OpVT);
2107     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2108                         return getUNDEF(VT);
2109                       LLVM_FALLTHROUGH;
2110     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2111                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2112     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2113                                              OpVT);
2114     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2115                                              OpVT);
2116     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2117                                              R==APFloat::cmpEqual, dl, VT,
2118                                              OpVT);
2119     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2120                                              OpVT);
2121     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2122                                              R==APFloat::cmpLessThan, dl, VT,
2123                                              OpVT);
2124     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2125                                              R==APFloat::cmpUnordered, dl, VT,
2126                                              OpVT);
2127     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2128                                              VT, OpVT);
2129     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     }
2132   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2133     // Ensure that the constant occurs on the RHS.
2134     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2135     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2136       return SDValue();
2137     return getSetCC(dl, VT, N2, N1, SwappedCond);
2138   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2139              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2140     // If an operand is known to be a nan (or undef that could be a nan), we can
2141     // fold it.
2142     // Choosing NaN for the undef will always make unordered comparison succeed
2143     // and ordered comparison fails.
2144     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2145     switch (ISD::getUnorderedFlavor(Cond)) {
2146     default:
2147       llvm_unreachable("Unknown flavor!");
2148     case 0: // Known false.
2149       return getBoolConstant(false, dl, VT, OpVT);
2150     case 1: // Known true.
2151       return getBoolConstant(true, dl, VT, OpVT);
2152     case 2: // Undefined.
2153       return getUNDEF(VT);
2154     }
2155   }
2156 
2157   // Could not fold it.
2158   return SDValue();
2159 }
2160 
2161 /// See if the specified operand can be simplified with the knowledge that only
2162 /// the bits specified by DemandedBits are used.
2163 /// TODO: really we should be making this into the DAG equivalent of
2164 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits)2165 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2166   EVT VT = V.getValueType();
2167   APInt DemandedElts = VT.isVector()
2168                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2169                            : APInt(1, 1);
2170   return GetDemandedBits(V, DemandedBits, DemandedElts);
2171 }
2172 
2173 /// See if the specified operand can be simplified with the knowledge that only
2174 /// the bits specified by DemandedBits are used in the elements specified by
2175 /// DemandedElts.
2176 /// TODO: really we should be making this into the DAG equivalent of
2177 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits,const APInt & DemandedElts)2178 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2179                                       const APInt &DemandedElts) {
2180   switch (V.getOpcode()) {
2181   default:
2182     break;
2183   case ISD::Constant: {
2184     auto *CV = cast<ConstantSDNode>(V.getNode());
2185     assert(CV && "Const value should be ConstSDNode.");
2186     const APInt &CVal = CV->getAPIntValue();
2187     APInt NewVal = CVal & DemandedBits;
2188     if (NewVal != CVal)
2189       return getConstant(NewVal, SDLoc(V), V.getValueType());
2190     break;
2191   }
2192   case ISD::OR:
2193   case ISD::XOR:
2194   case ISD::SIGN_EXTEND_INREG:
2195     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2196                                                 *this, 0);
2197   case ISD::SRL:
2198     // Only look at single-use SRLs.
2199     if (!V.getNode()->hasOneUse())
2200       break;
2201     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2202       // See if we can recursively simplify the LHS.
2203       unsigned Amt = RHSC->getZExtValue();
2204 
2205       // Watch out for shift count overflow though.
2206       if (Amt >= DemandedBits.getBitWidth())
2207         break;
2208       APInt SrcDemandedBits = DemandedBits << Amt;
2209       if (SDValue SimplifyLHS =
2210               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2211         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2212                        V.getOperand(1));
2213     }
2214     break;
2215   case ISD::AND: {
2216     // X & -1 -> X (ignoring bits which aren't demanded).
2217     // Also handle the case where masked out bits in X are known to be zero.
2218     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2219       const APInt &AndVal = RHSC->getAPIntValue();
2220       if (DemandedBits.isSubsetOf(AndVal) ||
2221           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2222                                   AndVal))
2223         return V.getOperand(0);
2224     }
2225     break;
2226   }
2227   case ISD::ANY_EXTEND: {
2228     SDValue Src = V.getOperand(0);
2229     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2230     // Being conservative here - only peek through if we only demand bits in the
2231     // non-extended source (even though the extended bits are technically
2232     // undef).
2233     if (DemandedBits.getActiveBits() > SrcBitWidth)
2234       break;
2235     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2236     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2237       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2238     break;
2239   }
2240   }
2241   return SDValue();
2242 }
2243 
2244 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2245 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2246 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2247   unsigned BitWidth = Op.getScalarValueSizeInBits();
2248   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2249 }
2250 
2251 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2252 /// this predicate to simplify operations downstream.  Mask is known to be zero
2253 /// for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,unsigned Depth) const2254 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2255                                      unsigned Depth) const {
2256   EVT VT = V.getValueType();
2257   APInt DemandedElts = VT.isVector()
2258                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2259                            : APInt(1, 1);
2260   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2261 }
2262 
2263 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2264 /// DemandedElts.  We use this predicate to simplify operations downstream.
2265 /// Mask is known to be zero for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,const APInt & DemandedElts,unsigned Depth) const2266 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2267                                      const APInt &DemandedElts,
2268                                      unsigned Depth) const {
2269   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2270 }
2271 
2272 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
MaskedValueIsAllOnes(SDValue V,const APInt & Mask,unsigned Depth) const2273 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2274                                         unsigned Depth) const {
2275   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2276 }
2277 
2278 /// isSplatValue - Return true if the vector V has the same value
2279 /// across all DemandedElts.
isSplatValue(SDValue V,const APInt & DemandedElts,APInt & UndefElts,unsigned Depth)2280 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2281                                 APInt &UndefElts, unsigned Depth) {
2282   if (!DemandedElts)
2283     return false; // No demanded elts, better to assume we don't know anything.
2284 
2285   if (Depth >= MaxRecursionDepth)
2286       return false;  // Limit search depth.
2287 
2288   EVT VT = V.getValueType();
2289   assert(VT.isVector() && "Vector type expected");
2290 
2291   unsigned NumElts = VT.getVectorNumElements();
2292   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2293   UndefElts = APInt::getNullValue(NumElts);
2294 
2295   switch (V.getOpcode()) {
2296   case ISD::BUILD_VECTOR: {
2297     SDValue Scl;
2298     for (unsigned i = 0; i != NumElts; ++i) {
2299       SDValue Op = V.getOperand(i);
2300       if (Op.isUndef()) {
2301         UndefElts.setBit(i);
2302         continue;
2303       }
2304       if (!DemandedElts[i])
2305         continue;
2306       if (Scl && Scl != Op)
2307         return false;
2308       Scl = Op;
2309     }
2310     return true;
2311   }
2312   case ISD::VECTOR_SHUFFLE: {
2313     // Check if this is a shuffle node doing a splat.
2314     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2315     int SplatIndex = -1;
2316     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2317     for (int i = 0; i != (int)NumElts; ++i) {
2318       int M = Mask[i];
2319       if (M < 0) {
2320         UndefElts.setBit(i);
2321         continue;
2322       }
2323       if (!DemandedElts[i])
2324         continue;
2325       if (0 <= SplatIndex && SplatIndex != M)
2326         return false;
2327       SplatIndex = M;
2328     }
2329     return true;
2330   }
2331   case ISD::EXTRACT_SUBVECTOR: {
2332     SDValue Src = V.getOperand(0);
2333     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2334     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2335     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2336       // Offset the demanded elts by the subvector index.
2337       uint64_t Idx = SubIdx->getZExtValue();
2338       APInt UndefSrcElts;
2339       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2340       if (isSplatValue(Src, DemandedSrc, UndefSrcElts, Depth + 1)) {
2341         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2342         return true;
2343       }
2344     }
2345     break;
2346   }
2347   case ISD::ADD:
2348   case ISD::SUB:
2349   case ISD::AND: {
2350     APInt UndefLHS, UndefRHS;
2351     SDValue LHS = V.getOperand(0);
2352     SDValue RHS = V.getOperand(1);
2353     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2354         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2355       UndefElts = UndefLHS | UndefRHS;
2356       return true;
2357     }
2358     break;
2359   }
2360   }
2361 
2362   return false;
2363 }
2364 
2365 /// Helper wrapper to main isSplatValue function.
isSplatValue(SDValue V,bool AllowUndefs)2366 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2367   EVT VT = V.getValueType();
2368   assert(VT.isVector() && "Vector type expected");
2369   unsigned NumElts = VT.getVectorNumElements();
2370 
2371   APInt UndefElts;
2372   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2373   return isSplatValue(V, DemandedElts, UndefElts) &&
2374          (AllowUndefs || !UndefElts);
2375 }
2376 
getSplatSourceVector(SDValue V,int & SplatIdx)2377 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2378   V = peekThroughExtractSubvectors(V);
2379 
2380   EVT VT = V.getValueType();
2381   unsigned Opcode = V.getOpcode();
2382   switch (Opcode) {
2383   default: {
2384     APInt UndefElts;
2385     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2386     if (isSplatValue(V, DemandedElts, UndefElts)) {
2387       // Handle case where all demanded elements are UNDEF.
2388       if (DemandedElts.isSubsetOf(UndefElts)) {
2389         SplatIdx = 0;
2390         return getUNDEF(VT);
2391       }
2392       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2393       return V;
2394     }
2395     break;
2396   }
2397   case ISD::VECTOR_SHUFFLE: {
2398     // Check if this is a shuffle node doing a splat.
2399     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2400     // getTargetVShiftNode currently struggles without the splat source.
2401     auto *SVN = cast<ShuffleVectorSDNode>(V);
2402     if (!SVN->isSplat())
2403       break;
2404     int Idx = SVN->getSplatIndex();
2405     int NumElts = V.getValueType().getVectorNumElements();
2406     SplatIdx = Idx % NumElts;
2407     return V.getOperand(Idx / NumElts);
2408   }
2409   }
2410 
2411   return SDValue();
2412 }
2413 
getSplatValue(SDValue V)2414 SDValue SelectionDAG::getSplatValue(SDValue V) {
2415   int SplatIdx;
2416   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2417     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2418                    SrcVector.getValueType().getScalarType(), SrcVector,
2419                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2420   return SDValue();
2421 }
2422 
2423 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2424 /// is less than the element bit-width of the shift node, return it.
getValidShiftAmountConstant(SDValue V,const APInt & DemandedElts)2425 static const APInt *getValidShiftAmountConstant(SDValue V,
2426                                                 const APInt &DemandedElts) {
2427   unsigned BitWidth = V.getScalarValueSizeInBits();
2428   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2429     // Shifting more than the bitwidth is not valid.
2430     const APInt &ShAmt = SA->getAPIntValue();
2431     if (ShAmt.ult(BitWidth))
2432       return &ShAmt;
2433   }
2434   return nullptr;
2435 }
2436 
2437 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2438 /// than the element bit-width of the shift node, return the minimum value.
2439 static const APInt *
getValidMinimumShiftAmountConstant(SDValue V,const APInt & DemandedElts)2440 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2441   unsigned BitWidth = V.getScalarValueSizeInBits();
2442   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2443   if (!BV)
2444     return nullptr;
2445   const APInt *MinShAmt = nullptr;
2446   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2447     if (!DemandedElts[i])
2448       continue;
2449     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2450     if (!SA)
2451       return nullptr;
2452     // Shifting more than the bitwidth is not valid.
2453     const APInt &ShAmt = SA->getAPIntValue();
2454     if (ShAmt.uge(BitWidth))
2455       return nullptr;
2456     if (MinShAmt && MinShAmt->ule(ShAmt))
2457       continue;
2458     MinShAmt = &ShAmt;
2459   }
2460   return MinShAmt;
2461 }
2462 
2463 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2464 /// than the element bit-width of the shift node, return the maximum value.
2465 static const APInt *
getValidMaximumShiftAmountConstant(SDValue V,const APInt & DemandedElts)2466 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) {
2467   unsigned BitWidth = V.getScalarValueSizeInBits();
2468   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2469   if (!BV)
2470     return nullptr;
2471   const APInt *MaxShAmt = nullptr;
2472   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2473     if (!DemandedElts[i])
2474       continue;
2475     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2476     if (!SA)
2477       return nullptr;
2478     // Shifting more than the bitwidth is not valid.
2479     const APInt &ShAmt = SA->getAPIntValue();
2480     if (ShAmt.uge(BitWidth))
2481       return nullptr;
2482     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2483       continue;
2484     MaxShAmt = &ShAmt;
2485   }
2486   return MaxShAmt;
2487 }
2488 
2489 /// Determine which bits of Op are known to be either zero or one and return
2490 /// them in Known. For vectors, the known bits are those that are shared by
2491 /// every vector element.
computeKnownBits(SDValue Op,unsigned Depth) const2492 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2493   EVT VT = Op.getValueType();
2494   APInt DemandedElts = VT.isVector()
2495                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2496                            : APInt(1, 1);
2497   return computeKnownBits(Op, DemandedElts, Depth);
2498 }
2499 
2500 /// Determine which bits of Op are known to be either zero or one and return
2501 /// them in Known. The DemandedElts argument allows us to only collect the known
2502 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2503 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2504                                          unsigned Depth) const {
2505   unsigned BitWidth = Op.getScalarValueSizeInBits();
2506 
2507   KnownBits Known(BitWidth);   // Don't know anything.
2508 
2509   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2510     // We know all of the bits for a constant!
2511     Known.One = C->getAPIntValue();
2512     Known.Zero = ~Known.One;
2513     return Known;
2514   }
2515   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2516     // We know all of the bits for a constant fp!
2517     Known.One = C->getValueAPF().bitcastToAPInt();
2518     Known.Zero = ~Known.One;
2519     return Known;
2520   }
2521 
2522   if (Depth >= MaxRecursionDepth)
2523     return Known;  // Limit search depth.
2524 
2525   KnownBits Known2;
2526   unsigned NumElts = DemandedElts.getBitWidth();
2527   assert((!Op.getValueType().isVector() ||
2528           NumElts == Op.getValueType().getVectorNumElements()) &&
2529          "Unexpected vector size");
2530 
2531   if (!DemandedElts)
2532     return Known;  // No demanded elts, better to assume we don't know anything.
2533 
2534   unsigned Opcode = Op.getOpcode();
2535   switch (Opcode) {
2536   case ISD::BUILD_VECTOR:
2537     // Collect the known bits that are shared by every demanded vector element.
2538     Known.Zero.setAllBits(); Known.One.setAllBits();
2539     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2540       if (!DemandedElts[i])
2541         continue;
2542 
2543       SDValue SrcOp = Op.getOperand(i);
2544       Known2 = computeKnownBits(SrcOp, Depth + 1);
2545 
2546       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2547       if (SrcOp.getValueSizeInBits() != BitWidth) {
2548         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2549                "Expected BUILD_VECTOR implicit truncation");
2550         Known2 = Known2.trunc(BitWidth);
2551       }
2552 
2553       // Known bits are the values that are shared by every demanded element.
2554       Known.One &= Known2.One;
2555       Known.Zero &= Known2.Zero;
2556 
2557       // If we don't know any bits, early out.
2558       if (Known.isUnknown())
2559         break;
2560     }
2561     break;
2562   case ISD::VECTOR_SHUFFLE: {
2563     // Collect the known bits that are shared by every vector element referenced
2564     // by the shuffle.
2565     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2566     Known.Zero.setAllBits(); Known.One.setAllBits();
2567     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2568     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2569     for (unsigned i = 0; i != NumElts; ++i) {
2570       if (!DemandedElts[i])
2571         continue;
2572 
2573       int M = SVN->getMaskElt(i);
2574       if (M < 0) {
2575         // For UNDEF elements, we don't know anything about the common state of
2576         // the shuffle result.
2577         Known.resetAll();
2578         DemandedLHS.clearAllBits();
2579         DemandedRHS.clearAllBits();
2580         break;
2581       }
2582 
2583       if ((unsigned)M < NumElts)
2584         DemandedLHS.setBit((unsigned)M % NumElts);
2585       else
2586         DemandedRHS.setBit((unsigned)M % NumElts);
2587     }
2588     // Known bits are the values that are shared by every demanded element.
2589     if (!!DemandedLHS) {
2590       SDValue LHS = Op.getOperand(0);
2591       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2592       Known.One &= Known2.One;
2593       Known.Zero &= Known2.Zero;
2594     }
2595     // If we don't know any bits, early out.
2596     if (Known.isUnknown())
2597       break;
2598     if (!!DemandedRHS) {
2599       SDValue RHS = Op.getOperand(1);
2600       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2601       Known.One &= Known2.One;
2602       Known.Zero &= Known2.Zero;
2603     }
2604     break;
2605   }
2606   case ISD::CONCAT_VECTORS: {
2607     // Split DemandedElts and test each of the demanded subvectors.
2608     Known.Zero.setAllBits(); Known.One.setAllBits();
2609     EVT SubVectorVT = Op.getOperand(0).getValueType();
2610     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2611     unsigned NumSubVectors = Op.getNumOperands();
2612     for (unsigned i = 0; i != NumSubVectors; ++i) {
2613       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2614       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2615       if (!!DemandedSub) {
2616         SDValue Sub = Op.getOperand(i);
2617         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2618         Known.One &= Known2.One;
2619         Known.Zero &= Known2.Zero;
2620       }
2621       // If we don't know any bits, early out.
2622       if (Known.isUnknown())
2623         break;
2624     }
2625     break;
2626   }
2627   case ISD::INSERT_SUBVECTOR: {
2628     // If we know the element index, demand any elements from the subvector and
2629     // the remainder from the src its inserted into, otherwise demand them all.
2630     SDValue Src = Op.getOperand(0);
2631     SDValue Sub = Op.getOperand(1);
2632     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2633     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2634     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2635       Known.One.setAllBits();
2636       Known.Zero.setAllBits();
2637       uint64_t Idx = SubIdx->getZExtValue();
2638       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2639       if (!!DemandedSubElts) {
2640         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2641         if (Known.isUnknown())
2642           break; // early-out.
2643       }
2644       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2645       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2646       if (!!DemandedSrcElts) {
2647         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2648         Known.One &= Known2.One;
2649         Known.Zero &= Known2.Zero;
2650       }
2651     } else {
2652       Known = computeKnownBits(Sub, Depth + 1);
2653       if (Known.isUnknown())
2654         break; // early-out.
2655       Known2 = computeKnownBits(Src, Depth + 1);
2656       Known.One &= Known2.One;
2657       Known.Zero &= Known2.Zero;
2658     }
2659     break;
2660   }
2661   case ISD::EXTRACT_SUBVECTOR: {
2662     // If we know the element index, just demand that subvector elements,
2663     // otherwise demand them all.
2664     SDValue Src = Op.getOperand(0);
2665     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2666     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2667     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2668     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2669       // Offset the demanded elts by the subvector index.
2670       uint64_t Idx = SubIdx->getZExtValue();
2671       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2672     }
2673     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2674     break;
2675   }
2676   case ISD::SCALAR_TO_VECTOR: {
2677     // We know about scalar_to_vector as much as we know about it source,
2678     // which becomes the first element of otherwise unknown vector.
2679     if (DemandedElts != 1)
2680       break;
2681 
2682     SDValue N0 = Op.getOperand(0);
2683     Known = computeKnownBits(N0, Depth + 1);
2684     if (N0.getValueSizeInBits() != BitWidth)
2685       Known = Known.trunc(BitWidth);
2686 
2687     break;
2688   }
2689   case ISD::BITCAST: {
2690     SDValue N0 = Op.getOperand(0);
2691     EVT SubVT = N0.getValueType();
2692     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2693 
2694     // Ignore bitcasts from unsupported types.
2695     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2696       break;
2697 
2698     // Fast handling of 'identity' bitcasts.
2699     if (BitWidth == SubBitWidth) {
2700       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2701       break;
2702     }
2703 
2704     bool IsLE = getDataLayout().isLittleEndian();
2705 
2706     // Bitcast 'small element' vector to 'large element' scalar/vector.
2707     if ((BitWidth % SubBitWidth) == 0) {
2708       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2709 
2710       // Collect known bits for the (larger) output by collecting the known
2711       // bits from each set of sub elements and shift these into place.
2712       // We need to separately call computeKnownBits for each set of
2713       // sub elements as the knownbits for each is likely to be different.
2714       unsigned SubScale = BitWidth / SubBitWidth;
2715       APInt SubDemandedElts(NumElts * SubScale, 0);
2716       for (unsigned i = 0; i != NumElts; ++i)
2717         if (DemandedElts[i])
2718           SubDemandedElts.setBit(i * SubScale);
2719 
2720       for (unsigned i = 0; i != SubScale; ++i) {
2721         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2722                          Depth + 1);
2723         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2724         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2725         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2726       }
2727     }
2728 
2729     // Bitcast 'large element' scalar/vector to 'small element' vector.
2730     if ((SubBitWidth % BitWidth) == 0) {
2731       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2732 
2733       // Collect known bits for the (smaller) output by collecting the known
2734       // bits from the overlapping larger input elements and extracting the
2735       // sub sections we actually care about.
2736       unsigned SubScale = SubBitWidth / BitWidth;
2737       APInt SubDemandedElts(NumElts / SubScale, 0);
2738       for (unsigned i = 0; i != NumElts; ++i)
2739         if (DemandedElts[i])
2740           SubDemandedElts.setBit(i / SubScale);
2741 
2742       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2743 
2744       Known.Zero.setAllBits(); Known.One.setAllBits();
2745       for (unsigned i = 0; i != NumElts; ++i)
2746         if (DemandedElts[i]) {
2747           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2748           unsigned Offset = (Shifts % SubScale) * BitWidth;
2749           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2750           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2751           // If we don't know any bits, early out.
2752           if (Known.isUnknown())
2753             break;
2754         }
2755     }
2756     break;
2757   }
2758   case ISD::AND:
2759     // If either the LHS or the RHS are Zero, the result is zero.
2760     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2761     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2762 
2763     // Output known-1 bits are only known if set in both the LHS & RHS.
2764     Known.One &= Known2.One;
2765     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2766     Known.Zero |= Known2.Zero;
2767     break;
2768   case ISD::OR:
2769     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2770     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2771 
2772     // Output known-0 bits are only known if clear in both the LHS & RHS.
2773     Known.Zero &= Known2.Zero;
2774     // Output known-1 are known to be set if set in either the LHS | RHS.
2775     Known.One |= Known2.One;
2776     break;
2777   case ISD::XOR: {
2778     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2779     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2780 
2781     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2782     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2783     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2784     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2785     Known.Zero = KnownZeroOut;
2786     break;
2787   }
2788   case ISD::MUL: {
2789     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2790     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2791 
2792     // If low bits are zero in either operand, output low known-0 bits.
2793     // Also compute a conservative estimate for high known-0 bits.
2794     // More trickiness is possible, but this is sufficient for the
2795     // interesting case of alignment computation.
2796     unsigned TrailZ = Known.countMinTrailingZeros() +
2797                       Known2.countMinTrailingZeros();
2798     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2799                                Known2.countMinLeadingZeros(),
2800                                BitWidth) - BitWidth;
2801 
2802     Known.resetAll();
2803     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2804     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2805     break;
2806   }
2807   case ISD::UDIV: {
2808     // For the purposes of computing leading zeros we can conservatively
2809     // treat a udiv as a logical right shift by the power of 2 known to
2810     // be less than the denominator.
2811     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2812     unsigned LeadZ = Known2.countMinLeadingZeros();
2813 
2814     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2815     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2816     if (RHSMaxLeadingZeros != BitWidth)
2817       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2818 
2819     Known.Zero.setHighBits(LeadZ);
2820     break;
2821   }
2822   case ISD::SELECT:
2823   case ISD::VSELECT:
2824     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2825     // If we don't know any bits, early out.
2826     if (Known.isUnknown())
2827       break;
2828     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2829 
2830     // Only known if known in both the LHS and RHS.
2831     Known.One &= Known2.One;
2832     Known.Zero &= Known2.Zero;
2833     break;
2834   case ISD::SELECT_CC:
2835     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2836     // If we don't know any bits, early out.
2837     if (Known.isUnknown())
2838       break;
2839     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2840 
2841     // Only known if known in both the LHS and RHS.
2842     Known.One &= Known2.One;
2843     Known.Zero &= Known2.Zero;
2844     break;
2845   case ISD::SMULO:
2846   case ISD::UMULO:
2847   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2848     if (Op.getResNo() != 1)
2849       break;
2850     // The boolean result conforms to getBooleanContents.
2851     // If we know the result of a setcc has the top bits zero, use this info.
2852     // We know that we have an integer-based boolean since these operations
2853     // are only available for integer.
2854     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2855             TargetLowering::ZeroOrOneBooleanContent &&
2856         BitWidth > 1)
2857       Known.Zero.setBitsFrom(1);
2858     break;
2859   case ISD::SETCC:
2860   case ISD::STRICT_FSETCC:
2861   case ISD::STRICT_FSETCCS: {
2862     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2863     // If we know the result of a setcc has the top bits zero, use this info.
2864     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2865             TargetLowering::ZeroOrOneBooleanContent &&
2866         BitWidth > 1)
2867       Known.Zero.setBitsFrom(1);
2868     break;
2869   }
2870   case ISD::SHL:
2871     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2872 
2873     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2874       unsigned Shift = ShAmt->getZExtValue();
2875       Known.Zero <<= Shift;
2876       Known.One <<= Shift;
2877       // Low bits are known zero.
2878       Known.Zero.setLowBits(Shift);
2879       break;
2880     }
2881 
2882     // No matter the shift amount, the trailing zeros will stay zero.
2883     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2884     Known.One.clearAllBits();
2885 
2886     // Minimum shift low bits are known zero.
2887     if (const APInt *ShMinAmt =
2888             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2889       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2890     break;
2891   case ISD::SRL:
2892     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2893 
2894     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2895       unsigned Shift = ShAmt->getZExtValue();
2896       Known.Zero.lshrInPlace(Shift);
2897       Known.One.lshrInPlace(Shift);
2898       // High bits are known zero.
2899       Known.Zero.setHighBits(Shift);
2900       break;
2901     }
2902 
2903     // No matter the shift amount, the leading zeros will stay zero.
2904     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2905     Known.One.clearAllBits();
2906 
2907     // Minimum shift high bits are known zero.
2908     if (const APInt *ShMinAmt =
2909             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2910       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2911     break;
2912   case ISD::SRA:
2913     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2914       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2915       unsigned Shift = ShAmt->getZExtValue();
2916       // Sign extend known zero/one bit (else is unknown).
2917       Known.Zero.ashrInPlace(Shift);
2918       Known.One.ashrInPlace(Shift);
2919     }
2920     break;
2921   case ISD::FSHL:
2922   case ISD::FSHR:
2923     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2924       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2925 
2926       // For fshl, 0-shift returns the 1st arg.
2927       // For fshr, 0-shift returns the 2nd arg.
2928       if (Amt == 0) {
2929         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2930                                  DemandedElts, Depth + 1);
2931         break;
2932       }
2933 
2934       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2935       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2936       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2937       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2938       if (Opcode == ISD::FSHL) {
2939         Known.One <<= Amt;
2940         Known.Zero <<= Amt;
2941         Known2.One.lshrInPlace(BitWidth - Amt);
2942         Known2.Zero.lshrInPlace(BitWidth - Amt);
2943       } else {
2944         Known.One <<= BitWidth - Amt;
2945         Known.Zero <<= BitWidth - Amt;
2946         Known2.One.lshrInPlace(Amt);
2947         Known2.Zero.lshrInPlace(Amt);
2948       }
2949       Known.One |= Known2.One;
2950       Known.Zero |= Known2.Zero;
2951     }
2952     break;
2953   case ISD::SIGN_EXTEND_INREG: {
2954     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2955     unsigned EBits = EVT.getScalarSizeInBits();
2956 
2957     // Sign extension.  Compute the demanded bits in the result that are not
2958     // present in the input.
2959     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2960 
2961     APInt InSignMask = APInt::getSignMask(EBits);
2962     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2963 
2964     // If the sign extended bits are demanded, we know that the sign
2965     // bit is demanded.
2966     InSignMask = InSignMask.zext(BitWidth);
2967     if (NewBits.getBoolValue())
2968       InputDemandedBits |= InSignMask;
2969 
2970     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2971     Known.One &= InputDemandedBits;
2972     Known.Zero &= InputDemandedBits;
2973 
2974     // If the sign bit of the input is known set or clear, then we know the
2975     // top bits of the result.
2976     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2977       Known.Zero |= NewBits;
2978       Known.One  &= ~NewBits;
2979     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2980       Known.One  |= NewBits;
2981       Known.Zero &= ~NewBits;
2982     } else {                              // Input sign bit unknown
2983       Known.Zero &= ~NewBits;
2984       Known.One  &= ~NewBits;
2985     }
2986     break;
2987   }
2988   case ISD::CTTZ:
2989   case ISD::CTTZ_ZERO_UNDEF: {
2990     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2991     // If we have a known 1, its position is our upper bound.
2992     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2993     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2994     Known.Zero.setBitsFrom(LowBits);
2995     break;
2996   }
2997   case ISD::CTLZ:
2998   case ISD::CTLZ_ZERO_UNDEF: {
2999     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3000     // If we have a known 1, its position is our upper bound.
3001     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3002     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3003     Known.Zero.setBitsFrom(LowBits);
3004     break;
3005   }
3006   case ISD::CTPOP: {
3007     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3008     // If we know some of the bits are zero, they can't be one.
3009     unsigned PossibleOnes = Known2.countMaxPopulation();
3010     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3011     break;
3012   }
3013   case ISD::LOAD: {
3014     LoadSDNode *LD = cast<LoadSDNode>(Op);
3015     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3016     if (ISD::isNON_EXTLoad(LD) && Cst) {
3017       // Determine any common known bits from the loaded constant pool value.
3018       Type *CstTy = Cst->getType();
3019       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3020         // If its a vector splat, then we can (quickly) reuse the scalar path.
3021         // NOTE: We assume all elements match and none are UNDEF.
3022         if (CstTy->isVectorTy()) {
3023           if (const Constant *Splat = Cst->getSplatValue()) {
3024             Cst = Splat;
3025             CstTy = Cst->getType();
3026           }
3027         }
3028         // TODO - do we need to handle different bitwidths?
3029         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3030           // Iterate across all vector elements finding common known bits.
3031           Known.One.setAllBits();
3032           Known.Zero.setAllBits();
3033           for (unsigned i = 0; i != NumElts; ++i) {
3034             if (!DemandedElts[i])
3035               continue;
3036             if (Constant *Elt = Cst->getAggregateElement(i)) {
3037               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3038                 const APInt &Value = CInt->getValue();
3039                 Known.One &= Value;
3040                 Known.Zero &= ~Value;
3041                 continue;
3042               }
3043               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3044                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3045                 Known.One &= Value;
3046                 Known.Zero &= ~Value;
3047                 continue;
3048               }
3049             }
3050             Known.One.clearAllBits();
3051             Known.Zero.clearAllBits();
3052             break;
3053           }
3054         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3055           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3056             const APInt &Value = CInt->getValue();
3057             Known.One = Value;
3058             Known.Zero = ~Value;
3059           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3060             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3061             Known.One = Value;
3062             Known.Zero = ~Value;
3063           }
3064         }
3065       }
3066     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3067       // If this is a ZEXTLoad and we are looking at the loaded value.
3068       EVT VT = LD->getMemoryVT();
3069       unsigned MemBits = VT.getScalarSizeInBits();
3070       Known.Zero.setBitsFrom(MemBits);
3071     } else if (const MDNode *Ranges = LD->getRanges()) {
3072       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3073         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3074     }
3075     break;
3076   }
3077   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3078     EVT InVT = Op.getOperand(0).getValueType();
3079     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3080     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3081     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3082     break;
3083   }
3084   case ISD::ZERO_EXTEND: {
3085     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3086     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
3087     break;
3088   }
3089   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3090     EVT InVT = Op.getOperand(0).getValueType();
3091     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3092     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3093     // If the sign bit is known to be zero or one, then sext will extend
3094     // it to the top bits, else it will just zext.
3095     Known = Known.sext(BitWidth);
3096     break;
3097   }
3098   case ISD::SIGN_EXTEND: {
3099     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3100     // If the sign bit is known to be zero or one, then sext will extend
3101     // it to the top bits, else it will just zext.
3102     Known = Known.sext(BitWidth);
3103     break;
3104   }
3105   case ISD::ANY_EXTEND: {
3106     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3107     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3108     break;
3109   }
3110   case ISD::TRUNCATE: {
3111     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3112     Known = Known.trunc(BitWidth);
3113     break;
3114   }
3115   case ISD::AssertZext: {
3116     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3117     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3118     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3119     Known.Zero |= (~InMask);
3120     Known.One  &= (~Known.Zero);
3121     break;
3122   }
3123   case ISD::FGETSIGN:
3124     // All bits are zero except the low bit.
3125     Known.Zero.setBitsFrom(1);
3126     break;
3127   case ISD::USUBO:
3128   case ISD::SSUBO:
3129     if (Op.getResNo() == 1) {
3130       // If we know the result of a setcc has the top bits zero, use this info.
3131       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3132               TargetLowering::ZeroOrOneBooleanContent &&
3133           BitWidth > 1)
3134         Known.Zero.setBitsFrom(1);
3135       break;
3136     }
3137     LLVM_FALLTHROUGH;
3138   case ISD::SUB:
3139   case ISD::SUBC: {
3140     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3141     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3142     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3143                                         Known, Known2);
3144     break;
3145   }
3146   case ISD::UADDO:
3147   case ISD::SADDO:
3148   case ISD::ADDCARRY:
3149     if (Op.getResNo() == 1) {
3150       // If we know the result of a setcc has the top bits zero, use this info.
3151       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3152               TargetLowering::ZeroOrOneBooleanContent &&
3153           BitWidth > 1)
3154         Known.Zero.setBitsFrom(1);
3155       break;
3156     }
3157     LLVM_FALLTHROUGH;
3158   case ISD::ADD:
3159   case ISD::ADDC:
3160   case ISD::ADDE: {
3161     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3162 
3163     // With ADDE and ADDCARRY, a carry bit may be added in.
3164     KnownBits Carry(1);
3165     if (Opcode == ISD::ADDE)
3166       // Can't track carry from glue, set carry to unknown.
3167       Carry.resetAll();
3168     else if (Opcode == ISD::ADDCARRY)
3169       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3170       // the trouble (how often will we find a known carry bit). And I haven't
3171       // tested this very much yet, but something like this might work:
3172       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3173       //   Carry = Carry.zextOrTrunc(1, false);
3174       Carry.resetAll();
3175     else
3176       Carry.setAllZero();
3177 
3178     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3179     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3180     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3181     break;
3182   }
3183   case ISD::SREM:
3184     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3185       const APInt &RA = Rem->getAPIntValue().abs();
3186       if (RA.isPowerOf2()) {
3187         APInt LowBits = RA - 1;
3188         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3189 
3190         // The low bits of the first operand are unchanged by the srem.
3191         Known.Zero = Known2.Zero & LowBits;
3192         Known.One = Known2.One & LowBits;
3193 
3194         // If the first operand is non-negative or has all low bits zero, then
3195         // the upper bits are all zero.
3196         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3197           Known.Zero |= ~LowBits;
3198 
3199         // If the first operand is negative and not all low bits are zero, then
3200         // the upper bits are all one.
3201         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3202           Known.One |= ~LowBits;
3203         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3204       }
3205     }
3206     break;
3207   case ISD::UREM: {
3208     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3209       const APInt &RA = Rem->getAPIntValue();
3210       if (RA.isPowerOf2()) {
3211         APInt LowBits = (RA - 1);
3212         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3213 
3214         // The upper bits are all zero, the lower ones are unchanged.
3215         Known.Zero = Known2.Zero | ~LowBits;
3216         Known.One = Known2.One & LowBits;
3217         break;
3218       }
3219     }
3220 
3221     // Since the result is less than or equal to either operand, any leading
3222     // zero bits in either operand must also exist in the result.
3223     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3224     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3225 
3226     uint32_t Leaders =
3227         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3228     Known.resetAll();
3229     Known.Zero.setHighBits(Leaders);
3230     break;
3231   }
3232   case ISD::EXTRACT_ELEMENT: {
3233     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3234     const unsigned Index = Op.getConstantOperandVal(1);
3235     const unsigned EltBitWidth = Op.getValueSizeInBits();
3236 
3237     // Remove low part of known bits mask
3238     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3239     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3240 
3241     // Remove high part of known bit mask
3242     Known = Known.trunc(EltBitWidth);
3243     break;
3244   }
3245   case ISD::EXTRACT_VECTOR_ELT: {
3246     SDValue InVec = Op.getOperand(0);
3247     SDValue EltNo = Op.getOperand(1);
3248     EVT VecVT = InVec.getValueType();
3249     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3250     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3251     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3252     // anything about the extended bits.
3253     if (BitWidth > EltBitWidth)
3254       Known = Known.trunc(EltBitWidth);
3255     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3256     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3257       // If we know the element index, just demand that vector element.
3258       unsigned Idx = ConstEltNo->getZExtValue();
3259       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3260       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3261     } else {
3262       // Unknown element index, so ignore DemandedElts and demand them all.
3263       Known = computeKnownBits(InVec, Depth + 1);
3264     }
3265     if (BitWidth > EltBitWidth)
3266       Known = Known.zext(BitWidth, false /* => any extend */);
3267     break;
3268   }
3269   case ISD::INSERT_VECTOR_ELT: {
3270     SDValue InVec = Op.getOperand(0);
3271     SDValue InVal = Op.getOperand(1);
3272     SDValue EltNo = Op.getOperand(2);
3273 
3274     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3275     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3276       // If we know the element index, split the demand between the
3277       // source vector and the inserted element.
3278       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3279       unsigned EltIdx = CEltNo->getZExtValue();
3280 
3281       // If we demand the inserted element then add its common known bits.
3282       if (DemandedElts[EltIdx]) {
3283         Known2 = computeKnownBits(InVal, Depth + 1);
3284         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3285         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3286       }
3287 
3288       // If we demand the source vector then add its common known bits, ensuring
3289       // that we don't demand the inserted element.
3290       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3291       if (!!VectorElts) {
3292         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3293         Known.One &= Known2.One;
3294         Known.Zero &= Known2.Zero;
3295       }
3296     } else {
3297       // Unknown element index, so ignore DemandedElts and demand them all.
3298       Known = computeKnownBits(InVec, Depth + 1);
3299       Known2 = computeKnownBits(InVal, Depth + 1);
3300       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3301       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3302     }
3303     break;
3304   }
3305   case ISD::BITREVERSE: {
3306     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3307     Known.Zero = Known2.Zero.reverseBits();
3308     Known.One = Known2.One.reverseBits();
3309     break;
3310   }
3311   case ISD::BSWAP: {
3312     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3313     Known.Zero = Known2.Zero.byteSwap();
3314     Known.One = Known2.One.byteSwap();
3315     break;
3316   }
3317   case ISD::ABS: {
3318     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3319 
3320     // If the source's MSB is zero then we know the rest of the bits already.
3321     if (Known2.isNonNegative()) {
3322       Known.Zero = Known2.Zero;
3323       Known.One = Known2.One;
3324       break;
3325     }
3326 
3327     // We only know that the absolute values's MSB will be zero iff there is
3328     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3329     Known2.One.clearSignBit();
3330     if (Known2.One.getBoolValue()) {
3331       Known.Zero = APInt::getSignMask(BitWidth);
3332       break;
3333     }
3334     break;
3335   }
3336   case ISD::UMIN: {
3337     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3338     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3339 
3340     // UMIN - we know that the result will have the maximum of the
3341     // known zero leading bits of the inputs.
3342     unsigned LeadZero = Known.countMinLeadingZeros();
3343     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3344 
3345     Known.Zero &= Known2.Zero;
3346     Known.One &= Known2.One;
3347     Known.Zero.setHighBits(LeadZero);
3348     break;
3349   }
3350   case ISD::UMAX: {
3351     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3352     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3353 
3354     // UMAX - we know that the result will have the maximum of the
3355     // known one leading bits of the inputs.
3356     unsigned LeadOne = Known.countMinLeadingOnes();
3357     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3358 
3359     Known.Zero &= Known2.Zero;
3360     Known.One &= Known2.One;
3361     Known.One.setHighBits(LeadOne);
3362     break;
3363   }
3364   case ISD::SMIN:
3365   case ISD::SMAX: {
3366     // If we have a clamp pattern, we know that the number of sign bits will be
3367     // the minimum of the clamp min/max range.
3368     bool IsMax = (Opcode == ISD::SMAX);
3369     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3370     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3371       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3372         CstHigh =
3373             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3374     if (CstLow && CstHigh) {
3375       if (!IsMax)
3376         std::swap(CstLow, CstHigh);
3377 
3378       const APInt &ValueLow = CstLow->getAPIntValue();
3379       const APInt &ValueHigh = CstHigh->getAPIntValue();
3380       if (ValueLow.sle(ValueHigh)) {
3381         unsigned LowSignBits = ValueLow.getNumSignBits();
3382         unsigned HighSignBits = ValueHigh.getNumSignBits();
3383         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3384         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3385           Known.One.setHighBits(MinSignBits);
3386           break;
3387         }
3388         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3389           Known.Zero.setHighBits(MinSignBits);
3390           break;
3391         }
3392       }
3393     }
3394 
3395     // Fallback - just get the shared known bits of the operands.
3396     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3397     if (Known.isUnknown()) break; // Early-out
3398     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3399     Known.Zero &= Known2.Zero;
3400     Known.One &= Known2.One;
3401     break;
3402   }
3403   case ISD::FrameIndex:
3404   case ISD::TargetFrameIndex:
3405     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3406     break;
3407 
3408   default:
3409     if (Opcode < ISD::BUILTIN_OP_END)
3410       break;
3411     LLVM_FALLTHROUGH;
3412   case ISD::INTRINSIC_WO_CHAIN:
3413   case ISD::INTRINSIC_W_CHAIN:
3414   case ISD::INTRINSIC_VOID:
3415     // Allow the target to implement this method for its nodes.
3416     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3417     break;
3418   }
3419 
3420   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3421   return Known;
3422 }
3423 
computeOverflowKind(SDValue N0,SDValue N1) const3424 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3425                                                              SDValue N1) const {
3426   // X + 0 never overflow
3427   if (isNullConstant(N1))
3428     return OFK_Never;
3429 
3430   KnownBits N1Known = computeKnownBits(N1);
3431   if (N1Known.Zero.getBoolValue()) {
3432     KnownBits N0Known = computeKnownBits(N0);
3433 
3434     bool overflow;
3435     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3436     if (!overflow)
3437       return OFK_Never;
3438   }
3439 
3440   // mulhi + 1 never overflow
3441   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3442       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3443     return OFK_Never;
3444 
3445   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3446     KnownBits N0Known = computeKnownBits(N0);
3447 
3448     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3449       return OFK_Never;
3450   }
3451 
3452   return OFK_Sometime;
3453 }
3454 
isKnownToBeAPowerOfTwo(SDValue Val) const3455 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3456   EVT OpVT = Val.getValueType();
3457   unsigned BitWidth = OpVT.getScalarSizeInBits();
3458 
3459   // Is the constant a known power of 2?
3460   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3461     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3462 
3463   // A left-shift of a constant one will have exactly one bit set because
3464   // shifting the bit off the end is undefined.
3465   if (Val.getOpcode() == ISD::SHL) {
3466     auto *C = isConstOrConstSplat(Val.getOperand(0));
3467     if (C && C->getAPIntValue() == 1)
3468       return true;
3469   }
3470 
3471   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3472   // one bit set.
3473   if (Val.getOpcode() == ISD::SRL) {
3474     auto *C = isConstOrConstSplat(Val.getOperand(0));
3475     if (C && C->getAPIntValue().isSignMask())
3476       return true;
3477   }
3478 
3479   // Are all operands of a build vector constant powers of two?
3480   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3481     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3482           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3483             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3484           return false;
3485         }))
3486       return true;
3487 
3488   // More could be done here, though the above checks are enough
3489   // to handle some common cases.
3490 
3491   // Fall back to computeKnownBits to catch other known cases.
3492   KnownBits Known = computeKnownBits(Val);
3493   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3494 }
3495 
ComputeNumSignBits(SDValue Op,unsigned Depth) const3496 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3497   EVT VT = Op.getValueType();
3498   APInt DemandedElts = VT.isVector()
3499                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3500                            : APInt(1, 1);
3501   return ComputeNumSignBits(Op, DemandedElts, Depth);
3502 }
3503 
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3504 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3505                                           unsigned Depth) const {
3506   EVT VT = Op.getValueType();
3507   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3508   unsigned VTBits = VT.getScalarSizeInBits();
3509   unsigned NumElts = DemandedElts.getBitWidth();
3510   unsigned Tmp, Tmp2;
3511   unsigned FirstAnswer = 1;
3512 
3513   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3514     const APInt &Val = C->getAPIntValue();
3515     return Val.getNumSignBits();
3516   }
3517 
3518   if (Depth >= MaxRecursionDepth)
3519     return 1;  // Limit search depth.
3520 
3521   if (!DemandedElts)
3522     return 1;  // No demanded elts, better to assume we don't know anything.
3523 
3524   unsigned Opcode = Op.getOpcode();
3525   switch (Opcode) {
3526   default: break;
3527   case ISD::AssertSext:
3528     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3529     return VTBits-Tmp+1;
3530   case ISD::AssertZext:
3531     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3532     return VTBits-Tmp;
3533 
3534   case ISD::BUILD_VECTOR:
3535     Tmp = VTBits;
3536     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3537       if (!DemandedElts[i])
3538         continue;
3539 
3540       SDValue SrcOp = Op.getOperand(i);
3541       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3542 
3543       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3544       if (SrcOp.getValueSizeInBits() != VTBits) {
3545         assert(SrcOp.getValueSizeInBits() > VTBits &&
3546                "Expected BUILD_VECTOR implicit truncation");
3547         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3548         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3549       }
3550       Tmp = std::min(Tmp, Tmp2);
3551     }
3552     return Tmp;
3553 
3554   case ISD::VECTOR_SHUFFLE: {
3555     // Collect the minimum number of sign bits that are shared by every vector
3556     // element referenced by the shuffle.
3557     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3558     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3559     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3560     for (unsigned i = 0; i != NumElts; ++i) {
3561       int M = SVN->getMaskElt(i);
3562       if (!DemandedElts[i])
3563         continue;
3564       // For UNDEF elements, we don't know anything about the common state of
3565       // the shuffle result.
3566       if (M < 0)
3567         return 1;
3568       if ((unsigned)M < NumElts)
3569         DemandedLHS.setBit((unsigned)M % NumElts);
3570       else
3571         DemandedRHS.setBit((unsigned)M % NumElts);
3572     }
3573     Tmp = std::numeric_limits<unsigned>::max();
3574     if (!!DemandedLHS)
3575       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3576     if (!!DemandedRHS) {
3577       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3578       Tmp = std::min(Tmp, Tmp2);
3579     }
3580     // If we don't know anything, early out and try computeKnownBits fall-back.
3581     if (Tmp == 1)
3582       break;
3583     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3584     return Tmp;
3585   }
3586 
3587   case ISD::BITCAST: {
3588     SDValue N0 = Op.getOperand(0);
3589     EVT SrcVT = N0.getValueType();
3590     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3591 
3592     // Ignore bitcasts from unsupported types..
3593     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3594       break;
3595 
3596     // Fast handling of 'identity' bitcasts.
3597     if (VTBits == SrcBits)
3598       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3599 
3600     bool IsLE = getDataLayout().isLittleEndian();
3601 
3602     // Bitcast 'large element' scalar/vector to 'small element' vector.
3603     if ((SrcBits % VTBits) == 0) {
3604       assert(VT.isVector() && "Expected bitcast to vector");
3605 
3606       unsigned Scale = SrcBits / VTBits;
3607       APInt SrcDemandedElts(NumElts / Scale, 0);
3608       for (unsigned i = 0; i != NumElts; ++i)
3609         if (DemandedElts[i])
3610           SrcDemandedElts.setBit(i / Scale);
3611 
3612       // Fast case - sign splat can be simply split across the small elements.
3613       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3614       if (Tmp == SrcBits)
3615         return VTBits;
3616 
3617       // Slow case - determine how far the sign extends into each sub-element.
3618       Tmp2 = VTBits;
3619       for (unsigned i = 0; i != NumElts; ++i)
3620         if (DemandedElts[i]) {
3621           unsigned SubOffset = i % Scale;
3622           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3623           SubOffset = SubOffset * VTBits;
3624           if (Tmp <= SubOffset)
3625             return 1;
3626           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3627         }
3628       return Tmp2;
3629     }
3630     break;
3631   }
3632 
3633   case ISD::SIGN_EXTEND:
3634     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3635     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3636   case ISD::SIGN_EXTEND_INREG:
3637     // Max of the input and what this extends.
3638     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3639     Tmp = VTBits-Tmp+1;
3640     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3641     return std::max(Tmp, Tmp2);
3642   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3643     SDValue Src = Op.getOperand(0);
3644     EVT SrcVT = Src.getValueType();
3645     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3646     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3647     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3648   }
3649   case ISD::SRA:
3650     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3651     // SRA X, C -> adds C sign bits.
3652     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts))
3653       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3654     else if (const APInt *ShAmt =
3655                  getValidMinimumShiftAmountConstant(Op, DemandedElts))
3656       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3657     return Tmp;
3658   case ISD::SHL:
3659     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
3660       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3661       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662       if (ShAmt->ult(Tmp))
3663         return Tmp - ShAmt->getZExtValue();
3664     } else if (const APInt *ShAmt =
3665                    getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3666       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3667       if (ShAmt->ult(Tmp))
3668         return Tmp - ShAmt->getZExtValue();
3669     }
3670     break;
3671   case ISD::AND:
3672   case ISD::OR:
3673   case ISD::XOR:    // NOT is handled here.
3674     // Logical binary ops preserve the number of sign bits at the worst.
3675     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3676     if (Tmp != 1) {
3677       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3678       FirstAnswer = std::min(Tmp, Tmp2);
3679       // We computed what we know about the sign bits as our first
3680       // answer. Now proceed to the generic code that uses
3681       // computeKnownBits, and pick whichever answer is better.
3682     }
3683     break;
3684 
3685   case ISD::SELECT:
3686   case ISD::VSELECT:
3687     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3688     if (Tmp == 1) return 1;  // Early out.
3689     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3690     return std::min(Tmp, Tmp2);
3691   case ISD::SELECT_CC:
3692     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3693     if (Tmp == 1) return 1;  // Early out.
3694     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3695     return std::min(Tmp, Tmp2);
3696 
3697   case ISD::SMIN:
3698   case ISD::SMAX: {
3699     // If we have a clamp pattern, we know that the number of sign bits will be
3700     // the minimum of the clamp min/max range.
3701     bool IsMax = (Opcode == ISD::SMAX);
3702     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3703     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3704       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3705         CstHigh =
3706             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3707     if (CstLow && CstHigh) {
3708       if (!IsMax)
3709         std::swap(CstLow, CstHigh);
3710       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3711         Tmp = CstLow->getAPIntValue().getNumSignBits();
3712         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3713         return std::min(Tmp, Tmp2);
3714       }
3715     }
3716 
3717     // Fallback - just get the minimum number of sign bits of the operands.
3718     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3719     if (Tmp == 1)
3720       return 1;  // Early out.
3721     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3722     return std::min(Tmp, Tmp2);
3723   }
3724   case ISD::UMIN:
3725   case ISD::UMAX:
3726     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3727     if (Tmp == 1)
3728       return 1;  // Early out.
3729     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3730     return std::min(Tmp, Tmp2);
3731   case ISD::SADDO:
3732   case ISD::UADDO:
3733   case ISD::SSUBO:
3734   case ISD::USUBO:
3735   case ISD::SMULO:
3736   case ISD::UMULO:
3737     if (Op.getResNo() != 1)
3738       break;
3739     // The boolean result conforms to getBooleanContents.  Fall through.
3740     // If setcc returns 0/-1, all bits are sign bits.
3741     // We know that we have an integer-based boolean since these operations
3742     // are only available for integer.
3743     if (TLI->getBooleanContents(VT.isVector(), false) ==
3744         TargetLowering::ZeroOrNegativeOneBooleanContent)
3745       return VTBits;
3746     break;
3747   case ISD::SETCC:
3748   case ISD::STRICT_FSETCC:
3749   case ISD::STRICT_FSETCCS: {
3750     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3751     // If setcc returns 0/-1, all bits are sign bits.
3752     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3753         TargetLowering::ZeroOrNegativeOneBooleanContent)
3754       return VTBits;
3755     break;
3756   }
3757   case ISD::ROTL:
3758   case ISD::ROTR:
3759     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3760       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3761 
3762       // Handle rotate right by N like a rotate left by 32-N.
3763       if (Opcode == ISD::ROTR)
3764         RotAmt = (VTBits - RotAmt) % VTBits;
3765 
3766       // If we aren't rotating out all of the known-in sign bits, return the
3767       // number that are left.  This handles rotl(sext(x), 1) for example.
3768       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3769       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3770     }
3771     break;
3772   case ISD::ADD:
3773   case ISD::ADDC:
3774     // Add can have at most one carry bit.  Thus we know that the output
3775     // is, at worst, one more bit than the inputs.
3776     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3777     if (Tmp == 1) return 1;  // Early out.
3778 
3779     // Special case decrementing a value (ADD X, -1):
3780     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3781       if (CRHS->isAllOnesValue()) {
3782         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3783 
3784         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3785         // sign bits set.
3786         if ((Known.Zero | 1).isAllOnesValue())
3787           return VTBits;
3788 
3789         // If we are subtracting one from a positive number, there is no carry
3790         // out of the result.
3791         if (Known.isNonNegative())
3792           return Tmp;
3793       }
3794 
3795     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3796     if (Tmp2 == 1) return 1;
3797     return std::min(Tmp, Tmp2)-1;
3798 
3799   case ISD::SUB:
3800     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3801     if (Tmp2 == 1) return 1;
3802 
3803     // Handle NEG.
3804     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3805       if (CLHS->isNullValue()) {
3806         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3807         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3808         // sign bits set.
3809         if ((Known.Zero | 1).isAllOnesValue())
3810           return VTBits;
3811 
3812         // If the input is known to be positive (the sign bit is known clear),
3813         // the output of the NEG has the same number of sign bits as the input.
3814         if (Known.isNonNegative())
3815           return Tmp2;
3816 
3817         // Otherwise, we treat this like a SUB.
3818       }
3819 
3820     // Sub can have at most one carry bit.  Thus we know that the output
3821     // is, at worst, one more bit than the inputs.
3822     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3823     if (Tmp == 1) return 1;  // Early out.
3824     return std::min(Tmp, Tmp2)-1;
3825   case ISD::MUL: {
3826     // The output of the Mul can be at most twice the valid bits in the inputs.
3827     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3828     if (SignBitsOp0 == 1)
3829       break;
3830     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3831     if (SignBitsOp1 == 1)
3832       break;
3833     unsigned OutValidBits =
3834         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3835     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3836   }
3837   case ISD::TRUNCATE: {
3838     // Check if the sign bits of source go down as far as the truncated value.
3839     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3840     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3841     if (NumSrcSignBits > (NumSrcBits - VTBits))
3842       return NumSrcSignBits - (NumSrcBits - VTBits);
3843     break;
3844   }
3845   case ISD::EXTRACT_ELEMENT: {
3846     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3847     const int BitWidth = Op.getValueSizeInBits();
3848     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3849 
3850     // Get reverse index (starting from 1), Op1 value indexes elements from
3851     // little end. Sign starts at big end.
3852     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3853 
3854     // If the sign portion ends in our element the subtraction gives correct
3855     // result. Otherwise it gives either negative or > bitwidth result
3856     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3857   }
3858   case ISD::INSERT_VECTOR_ELT: {
3859     SDValue InVec = Op.getOperand(0);
3860     SDValue InVal = Op.getOperand(1);
3861     SDValue EltNo = Op.getOperand(2);
3862 
3863     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3864     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3865       // If we know the element index, split the demand between the
3866       // source vector and the inserted element.
3867       unsigned EltIdx = CEltNo->getZExtValue();
3868 
3869       // If we demand the inserted element then get its sign bits.
3870       Tmp = std::numeric_limits<unsigned>::max();
3871       if (DemandedElts[EltIdx]) {
3872         // TODO - handle implicit truncation of inserted elements.
3873         if (InVal.getScalarValueSizeInBits() != VTBits)
3874           break;
3875         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3876       }
3877 
3878       // If we demand the source vector then get its sign bits, and determine
3879       // the minimum.
3880       APInt VectorElts = DemandedElts;
3881       VectorElts.clearBit(EltIdx);
3882       if (!!VectorElts) {
3883         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3884         Tmp = std::min(Tmp, Tmp2);
3885       }
3886     } else {
3887       // Unknown element index, so ignore DemandedElts and demand them all.
3888       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3889       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3890       Tmp = std::min(Tmp, Tmp2);
3891     }
3892     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3893     return Tmp;
3894   }
3895   case ISD::EXTRACT_VECTOR_ELT: {
3896     SDValue InVec = Op.getOperand(0);
3897     SDValue EltNo = Op.getOperand(1);
3898     EVT VecVT = InVec.getValueType();
3899     const unsigned BitWidth = Op.getValueSizeInBits();
3900     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3901     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3902 
3903     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3904     // anything about sign bits. But if the sizes match we can derive knowledge
3905     // about sign bits from the vector operand.
3906     if (BitWidth != EltBitWidth)
3907       break;
3908 
3909     // If we know the element index, just demand that vector element, else for
3910     // an unknown element index, ignore DemandedElts and demand them all.
3911     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3912     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3913     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3914       DemandedSrcElts =
3915           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3916 
3917     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3918   }
3919   case ISD::EXTRACT_SUBVECTOR: {
3920     // If we know the element index, just demand that subvector elements,
3921     // otherwise demand them all.
3922     SDValue Src = Op.getOperand(0);
3923     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3924     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3925     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3926     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3927       // Offset the demanded elts by the subvector index.
3928       uint64_t Idx = SubIdx->getZExtValue();
3929       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3930     }
3931     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3932   }
3933   case ISD::CONCAT_VECTORS: {
3934     // Determine the minimum number of sign bits across all demanded
3935     // elts of the input vectors. Early out if the result is already 1.
3936     Tmp = std::numeric_limits<unsigned>::max();
3937     EVT SubVectorVT = Op.getOperand(0).getValueType();
3938     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3939     unsigned NumSubVectors = Op.getNumOperands();
3940     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3941       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3942       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3943       if (!DemandedSub)
3944         continue;
3945       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3946       Tmp = std::min(Tmp, Tmp2);
3947     }
3948     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3949     return Tmp;
3950   }
3951   case ISD::INSERT_SUBVECTOR: {
3952     // If we know the element index, demand any elements from the subvector and
3953     // the remainder from the src its inserted into, otherwise demand them all.
3954     SDValue Src = Op.getOperand(0);
3955     SDValue Sub = Op.getOperand(1);
3956     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3957     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3958     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3959       Tmp = std::numeric_limits<unsigned>::max();
3960       uint64_t Idx = SubIdx->getZExtValue();
3961       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3962       if (!!DemandedSubElts) {
3963         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3964         if (Tmp == 1) return 1; // early-out
3965       }
3966       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3967       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3968       if (!!DemandedSrcElts) {
3969         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3970         Tmp = std::min(Tmp, Tmp2);
3971       }
3972       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3973       return Tmp;
3974     }
3975 
3976     // Not able to determine the index so just assume worst case.
3977     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3978     if (Tmp == 1) return 1; // early-out
3979     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3980     Tmp = std::min(Tmp, Tmp2);
3981     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3982     return Tmp;
3983   }
3984   }
3985 
3986   // If we are looking at the loaded value of the SDNode.
3987   if (Op.getResNo() == 0) {
3988     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3989     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3990       unsigned ExtType = LD->getExtensionType();
3991       switch (ExtType) {
3992       default: break;
3993       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3994         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3995         return VTBits - Tmp + 1;
3996       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3997         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3998         return VTBits - Tmp;
3999       case ISD::NON_EXTLOAD:
4000         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4001           // We only need to handle vectors - computeKnownBits should handle
4002           // scalar cases.
4003           Type *CstTy = Cst->getType();
4004           if (CstTy->isVectorTy() &&
4005               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4006             Tmp = VTBits;
4007             for (unsigned i = 0; i != NumElts; ++i) {
4008               if (!DemandedElts[i])
4009                 continue;
4010               if (Constant *Elt = Cst->getAggregateElement(i)) {
4011                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4012                   const APInt &Value = CInt->getValue();
4013                   Tmp = std::min(Tmp, Value.getNumSignBits());
4014                   continue;
4015                 }
4016                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4017                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4018                   Tmp = std::min(Tmp, Value.getNumSignBits());
4019                   continue;
4020                 }
4021               }
4022               // Unknown type. Conservatively assume no bits match sign bit.
4023               return 1;
4024             }
4025             return Tmp;
4026           }
4027         }
4028         break;
4029       }
4030     }
4031   }
4032 
4033   // Allow the target to implement this method for its nodes.
4034   if (Opcode >= ISD::BUILTIN_OP_END ||
4035       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4036       Opcode == ISD::INTRINSIC_W_CHAIN ||
4037       Opcode == ISD::INTRINSIC_VOID) {
4038     unsigned NumBits =
4039         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4040     if (NumBits > 1)
4041       FirstAnswer = std::max(FirstAnswer, NumBits);
4042   }
4043 
4044   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4045   // use this information.
4046   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4047 
4048   APInt Mask;
4049   if (Known.isNonNegative()) {        // sign bit is 0
4050     Mask = Known.Zero;
4051   } else if (Known.isNegative()) {  // sign bit is 1;
4052     Mask = Known.One;
4053   } else {
4054     // Nothing known.
4055     return FirstAnswer;
4056   }
4057 
4058   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
4059   // the number of identical bits in the top of the input value.
4060   Mask = ~Mask;
4061   Mask <<= Mask.getBitWidth()-VTBits;
4062   // Return # leading zeros.  We use 'min' here in case Val was zero before
4063   // shifting.  We don't want to return '64' as for an i32 "0".
4064   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
4065 }
4066 
isBaseWithConstantOffset(SDValue Op) const4067 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4068   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4069       !isa<ConstantSDNode>(Op.getOperand(1)))
4070     return false;
4071 
4072   if (Op.getOpcode() == ISD::OR &&
4073       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4074     return false;
4075 
4076   return true;
4077 }
4078 
isKnownNeverNaN(SDValue Op,bool SNaN,unsigned Depth) const4079 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4080   // If we're told that NaNs won't happen, assume they won't.
4081   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4082     return true;
4083 
4084   if (Depth >= MaxRecursionDepth)
4085     return false; // Limit search depth.
4086 
4087   // TODO: Handle vectors.
4088   // If the value is a constant, we can obviously see if it is a NaN or not.
4089   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4090     return !C->getValueAPF().isNaN() ||
4091            (SNaN && !C->getValueAPF().isSignaling());
4092   }
4093 
4094   unsigned Opcode = Op.getOpcode();
4095   switch (Opcode) {
4096   case ISD::FADD:
4097   case ISD::FSUB:
4098   case ISD::FMUL:
4099   case ISD::FDIV:
4100   case ISD::FREM:
4101   case ISD::FSIN:
4102   case ISD::FCOS: {
4103     if (SNaN)
4104       return true;
4105     // TODO: Need isKnownNeverInfinity
4106     return false;
4107   }
4108   case ISD::FCANONICALIZE:
4109   case ISD::FEXP:
4110   case ISD::FEXP2:
4111   case ISD::FTRUNC:
4112   case ISD::FFLOOR:
4113   case ISD::FCEIL:
4114   case ISD::FROUND:
4115   case ISD::FRINT:
4116   case ISD::FNEARBYINT: {
4117     if (SNaN)
4118       return true;
4119     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4120   }
4121   case ISD::FABS:
4122   case ISD::FNEG:
4123   case ISD::FCOPYSIGN: {
4124     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4125   }
4126   case ISD::SELECT:
4127     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4128            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4129   case ISD::FP_EXTEND:
4130   case ISD::FP_ROUND: {
4131     if (SNaN)
4132       return true;
4133     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4134   }
4135   case ISD::SINT_TO_FP:
4136   case ISD::UINT_TO_FP:
4137     return true;
4138   case ISD::FMA:
4139   case ISD::FMAD: {
4140     if (SNaN)
4141       return true;
4142     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4143            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4144            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4145   }
4146   case ISD::FSQRT: // Need is known positive
4147   case ISD::FLOG:
4148   case ISD::FLOG2:
4149   case ISD::FLOG10:
4150   case ISD::FPOWI:
4151   case ISD::FPOW: {
4152     if (SNaN)
4153       return true;
4154     // TODO: Refine on operand
4155     return false;
4156   }
4157   case ISD::FMINNUM:
4158   case ISD::FMAXNUM: {
4159     // Only one needs to be known not-nan, since it will be returned if the
4160     // other ends up being one.
4161     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4162            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4163   }
4164   case ISD::FMINNUM_IEEE:
4165   case ISD::FMAXNUM_IEEE: {
4166     if (SNaN)
4167       return true;
4168     // This can return a NaN if either operand is an sNaN, or if both operands
4169     // are NaN.
4170     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4171             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4172            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4173             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4174   }
4175   case ISD::FMINIMUM:
4176   case ISD::FMAXIMUM: {
4177     // TODO: Does this quiet or return the origina NaN as-is?
4178     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4179            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4180   }
4181   case ISD::EXTRACT_VECTOR_ELT: {
4182     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4183   }
4184   default:
4185     if (Opcode >= ISD::BUILTIN_OP_END ||
4186         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4187         Opcode == ISD::INTRINSIC_W_CHAIN ||
4188         Opcode == ISD::INTRINSIC_VOID) {
4189       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4190     }
4191 
4192     return false;
4193   }
4194 }
4195 
isKnownNeverZeroFloat(SDValue Op) const4196 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4197   assert(Op.getValueType().isFloatingPoint() &&
4198          "Floating point type expected");
4199 
4200   // If the value is a constant, we can obviously see if it is a zero or not.
4201   // TODO: Add BuildVector support.
4202   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4203     return !C->isZero();
4204   return false;
4205 }
4206 
isKnownNeverZero(SDValue Op) const4207 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4208   assert(!Op.getValueType().isFloatingPoint() &&
4209          "Floating point types unsupported - use isKnownNeverZeroFloat");
4210 
4211   // If the value is a constant, we can obviously see if it is a zero or not.
4212   if (ISD::matchUnaryPredicate(
4213           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4214     return true;
4215 
4216   // TODO: Recognize more cases here.
4217   switch (Op.getOpcode()) {
4218   default: break;
4219   case ISD::OR:
4220     if (isKnownNeverZero(Op.getOperand(1)) ||
4221         isKnownNeverZero(Op.getOperand(0)))
4222       return true;
4223     break;
4224   }
4225 
4226   return false;
4227 }
4228 
isEqualTo(SDValue A,SDValue B) const4229 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4230   // Check the obvious case.
4231   if (A == B) return true;
4232 
4233   // For for negative and positive zero.
4234   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4235     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4236       if (CA->isZero() && CB->isZero()) return true;
4237 
4238   // Otherwise they may not be equal.
4239   return false;
4240 }
4241 
4242 // FIXME: unify with llvm::haveNoCommonBitsSet.
4243 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
haveNoCommonBitsSet(SDValue A,SDValue B) const4244 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4245   assert(A.getValueType() == B.getValueType() &&
4246          "Values must have the same type");
4247   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4248 }
4249 
FoldBUILD_VECTOR(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4250 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4251                                 ArrayRef<SDValue> Ops,
4252                                 SelectionDAG &DAG) {
4253   int NumOps = Ops.size();
4254   assert(NumOps != 0 && "Can't build an empty vector!");
4255   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4256          "Incorrect element count in BUILD_VECTOR!");
4257 
4258   // BUILD_VECTOR of UNDEFs is UNDEF.
4259   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4260     return DAG.getUNDEF(VT);
4261 
4262   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4263   SDValue IdentitySrc;
4264   bool IsIdentity = true;
4265   for (int i = 0; i != NumOps; ++i) {
4266     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4267         Ops[i].getOperand(0).getValueType() != VT ||
4268         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4269         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4270         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4271       IsIdentity = false;
4272       break;
4273     }
4274     IdentitySrc = Ops[i].getOperand(0);
4275   }
4276   if (IsIdentity)
4277     return IdentitySrc;
4278 
4279   return SDValue();
4280 }
4281 
4282 /// Try to simplify vector concatenation to an input value, undef, or build
4283 /// vector.
foldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4284 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4285                                   ArrayRef<SDValue> Ops,
4286                                   SelectionDAG &DAG) {
4287   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4288   assert(llvm::all_of(Ops,
4289                       [Ops](SDValue Op) {
4290                         return Ops[0].getValueType() == Op.getValueType();
4291                       }) &&
4292          "Concatenation of vectors with inconsistent value types!");
4293   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4294              VT.getVectorNumElements() &&
4295          "Incorrect element count in vector concatenation!");
4296 
4297   if (Ops.size() == 1)
4298     return Ops[0];
4299 
4300   // Concat of UNDEFs is UNDEF.
4301   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4302     return DAG.getUNDEF(VT);
4303 
4304   // Scan the operands and look for extract operations from a single source
4305   // that correspond to insertion at the same location via this concatenation:
4306   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4307   SDValue IdentitySrc;
4308   bool IsIdentity = true;
4309   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4310     SDValue Op = Ops[i];
4311     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4312     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4313         Op.getOperand(0).getValueType() != VT ||
4314         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4315         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4316         Op.getConstantOperandVal(1) != IdentityIndex) {
4317       IsIdentity = false;
4318       break;
4319     }
4320     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4321            "Unexpected identity source vector for concat of extracts");
4322     IdentitySrc = Op.getOperand(0);
4323   }
4324   if (IsIdentity) {
4325     assert(IdentitySrc && "Failed to set source vector of extracts");
4326     return IdentitySrc;
4327   }
4328 
4329   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4330   // simplified to one big BUILD_VECTOR.
4331   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4332   EVT SVT = VT.getScalarType();
4333   SmallVector<SDValue, 16> Elts;
4334   for (SDValue Op : Ops) {
4335     EVT OpVT = Op.getValueType();
4336     if (Op.isUndef())
4337       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4338     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4339       Elts.append(Op->op_begin(), Op->op_end());
4340     else
4341       return SDValue();
4342   }
4343 
4344   // BUILD_VECTOR requires all inputs to be of the same type, find the
4345   // maximum type and extend them all.
4346   for (SDValue Op : Elts)
4347     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4348 
4349   if (SVT.bitsGT(VT.getScalarType()))
4350     for (SDValue &Op : Elts)
4351       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4352                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4353                : DAG.getSExtOrTrunc(Op, DL, SVT);
4354 
4355   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4356   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4357   return V;
4358 }
4359 
4360 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)4361 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4362   FoldingSetNodeID ID;
4363   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4364   void *IP = nullptr;
4365   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4366     return SDValue(E, 0);
4367 
4368   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4369                               getVTList(VT));
4370   CSEMap.InsertNode(N, IP);
4371 
4372   InsertNode(N);
4373   SDValue V = SDValue(N, 0);
4374   NewSDValueDbgMsg(V, "Creating new node: ", this);
4375   return V;
4376 }
4377 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)4378 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4379                               SDValue Operand, const SDNodeFlags Flags) {
4380   // Constant fold unary operations with an integer constant operand. Even
4381   // opaque constant will be folded, because the folding of unary operations
4382   // doesn't create new constants with different values. Nevertheless, the
4383   // opaque flag is preserved during folding to prevent future folding with
4384   // other constants.
4385   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4386     const APInt &Val = C->getAPIntValue();
4387     switch (Opcode) {
4388     default: break;
4389     case ISD::SIGN_EXTEND:
4390       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4391                          C->isTargetOpcode(), C->isOpaque());
4392     case ISD::TRUNCATE:
4393       if (C->isOpaque())
4394         break;
4395       LLVM_FALLTHROUGH;
4396     case ISD::ANY_EXTEND:
4397     case ISD::ZERO_EXTEND:
4398       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4399                          C->isTargetOpcode(), C->isOpaque());
4400     case ISD::UINT_TO_FP:
4401     case ISD::SINT_TO_FP: {
4402       APFloat apf(EVTToAPFloatSemantics(VT),
4403                   APInt::getNullValue(VT.getSizeInBits()));
4404       (void)apf.convertFromAPInt(Val,
4405                                  Opcode==ISD::SINT_TO_FP,
4406                                  APFloat::rmNearestTiesToEven);
4407       return getConstantFP(apf, DL, VT);
4408     }
4409     case ISD::BITCAST:
4410       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4411         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4412       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4413         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4414       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4415         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4416       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4417         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4418       break;
4419     case ISD::ABS:
4420       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4421                          C->isOpaque());
4422     case ISD::BITREVERSE:
4423       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4424                          C->isOpaque());
4425     case ISD::BSWAP:
4426       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4427                          C->isOpaque());
4428     case ISD::CTPOP:
4429       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4430                          C->isOpaque());
4431     case ISD::CTLZ:
4432     case ISD::CTLZ_ZERO_UNDEF:
4433       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4434                          C->isOpaque());
4435     case ISD::CTTZ:
4436     case ISD::CTTZ_ZERO_UNDEF:
4437       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4438                          C->isOpaque());
4439     case ISD::FP16_TO_FP: {
4440       bool Ignored;
4441       APFloat FPV(APFloat::IEEEhalf(),
4442                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4443 
4444       // This can return overflow, underflow, or inexact; we don't care.
4445       // FIXME need to be more flexible about rounding mode.
4446       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4447                         APFloat::rmNearestTiesToEven, &Ignored);
4448       return getConstantFP(FPV, DL, VT);
4449     }
4450     }
4451   }
4452 
4453   // Constant fold unary operations with a floating point constant operand.
4454   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4455     APFloat V = C->getValueAPF();    // make copy
4456     switch (Opcode) {
4457     case ISD::FNEG:
4458       V.changeSign();
4459       return getConstantFP(V, DL, VT);
4460     case ISD::FABS:
4461       V.clearSign();
4462       return getConstantFP(V, DL, VT);
4463     case ISD::FCEIL: {
4464       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4465       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4466         return getConstantFP(V, DL, VT);
4467       break;
4468     }
4469     case ISD::FTRUNC: {
4470       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4471       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4472         return getConstantFP(V, DL, VT);
4473       break;
4474     }
4475     case ISD::FFLOOR: {
4476       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4477       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4478         return getConstantFP(V, DL, VT);
4479       break;
4480     }
4481     case ISD::FP_EXTEND: {
4482       bool ignored;
4483       // This can return overflow, underflow, or inexact; we don't care.
4484       // FIXME need to be more flexible about rounding mode.
4485       (void)V.convert(EVTToAPFloatSemantics(VT),
4486                       APFloat::rmNearestTiesToEven, &ignored);
4487       return getConstantFP(V, DL, VT);
4488     }
4489     case ISD::FP_TO_SINT:
4490     case ISD::FP_TO_UINT: {
4491       bool ignored;
4492       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4493       // FIXME need to be more flexible about rounding mode.
4494       APFloat::opStatus s =
4495           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4496       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4497         break;
4498       return getConstant(IntVal, DL, VT);
4499     }
4500     case ISD::BITCAST:
4501       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4502         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4503       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4504         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4505       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4506         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4507       break;
4508     case ISD::FP_TO_FP16: {
4509       bool Ignored;
4510       // This can return overflow, underflow, or inexact; we don't care.
4511       // FIXME need to be more flexible about rounding mode.
4512       (void)V.convert(APFloat::IEEEhalf(),
4513                       APFloat::rmNearestTiesToEven, &Ignored);
4514       return getConstant(V.bitcastToAPInt(), DL, VT);
4515     }
4516     }
4517   }
4518 
4519   // Constant fold unary operations with a vector integer or float operand.
4520   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4521     if (BV->isConstant()) {
4522       switch (Opcode) {
4523       default:
4524         // FIXME: Entirely reasonable to perform folding of other unary
4525         // operations here as the need arises.
4526         break;
4527       case ISD::FNEG:
4528       case ISD::FABS:
4529       case ISD::FCEIL:
4530       case ISD::FTRUNC:
4531       case ISD::FFLOOR:
4532       case ISD::FP_EXTEND:
4533       case ISD::FP_TO_SINT:
4534       case ISD::FP_TO_UINT:
4535       case ISD::TRUNCATE:
4536       case ISD::ANY_EXTEND:
4537       case ISD::ZERO_EXTEND:
4538       case ISD::SIGN_EXTEND:
4539       case ISD::UINT_TO_FP:
4540       case ISD::SINT_TO_FP:
4541       case ISD::ABS:
4542       case ISD::BITREVERSE:
4543       case ISD::BSWAP:
4544       case ISD::CTLZ:
4545       case ISD::CTLZ_ZERO_UNDEF:
4546       case ISD::CTTZ:
4547       case ISD::CTTZ_ZERO_UNDEF:
4548       case ISD::CTPOP: {
4549         SDValue Ops = { Operand };
4550         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4551           return Fold;
4552       }
4553       }
4554     }
4555   }
4556 
4557   unsigned OpOpcode = Operand.getNode()->getOpcode();
4558   switch (Opcode) {
4559   case ISD::TokenFactor:
4560   case ISD::MERGE_VALUES:
4561   case ISD::CONCAT_VECTORS:
4562     return Operand;         // Factor, merge or concat of one node?  No need.
4563   case ISD::BUILD_VECTOR: {
4564     // Attempt to simplify BUILD_VECTOR.
4565     SDValue Ops[] = {Operand};
4566     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4567       return V;
4568     break;
4569   }
4570   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4571   case ISD::FP_EXTEND:
4572     assert(VT.isFloatingPoint() &&
4573            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4574     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4575     assert((!VT.isVector() ||
4576             VT.getVectorNumElements() ==
4577             Operand.getValueType().getVectorNumElements()) &&
4578            "Vector element count mismatch!");
4579     assert(Operand.getValueType().bitsLT(VT) &&
4580            "Invalid fpext node, dst < src!");
4581     if (Operand.isUndef())
4582       return getUNDEF(VT);
4583     break;
4584   case ISD::FP_TO_SINT:
4585   case ISD::FP_TO_UINT:
4586     if (Operand.isUndef())
4587       return getUNDEF(VT);
4588     break;
4589   case ISD::SINT_TO_FP:
4590   case ISD::UINT_TO_FP:
4591     // [us]itofp(undef) = 0, because the result value is bounded.
4592     if (Operand.isUndef())
4593       return getConstantFP(0.0, DL, VT);
4594     break;
4595   case ISD::SIGN_EXTEND:
4596     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4597            "Invalid SIGN_EXTEND!");
4598     assert(VT.isVector() == Operand.getValueType().isVector() &&
4599            "SIGN_EXTEND result type type should be vector iff the operand "
4600            "type is vector!");
4601     if (Operand.getValueType() == VT) return Operand;   // noop extension
4602     assert((!VT.isVector() ||
4603             VT.getVectorNumElements() ==
4604             Operand.getValueType().getVectorNumElements()) &&
4605            "Vector element count mismatch!");
4606     assert(Operand.getValueType().bitsLT(VT) &&
4607            "Invalid sext node, dst < src!");
4608     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4609       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4610     else if (OpOpcode == ISD::UNDEF)
4611       // sext(undef) = 0, because the top bits will all be the same.
4612       return getConstant(0, DL, VT);
4613     break;
4614   case ISD::ZERO_EXTEND:
4615     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4616            "Invalid ZERO_EXTEND!");
4617     assert(VT.isVector() == Operand.getValueType().isVector() &&
4618            "ZERO_EXTEND result type type should be vector iff the operand "
4619            "type is vector!");
4620     if (Operand.getValueType() == VT) return Operand;   // noop extension
4621     assert((!VT.isVector() ||
4622             VT.getVectorNumElements() ==
4623             Operand.getValueType().getVectorNumElements()) &&
4624            "Vector element count mismatch!");
4625     assert(Operand.getValueType().bitsLT(VT) &&
4626            "Invalid zext node, dst < src!");
4627     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4628       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4629     else if (OpOpcode == ISD::UNDEF)
4630       // zext(undef) = 0, because the top bits will be zero.
4631       return getConstant(0, DL, VT);
4632     break;
4633   case ISD::ANY_EXTEND:
4634     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4635            "Invalid ANY_EXTEND!");
4636     assert(VT.isVector() == Operand.getValueType().isVector() &&
4637            "ANY_EXTEND result type type should be vector iff the operand "
4638            "type is vector!");
4639     if (Operand.getValueType() == VT) return Operand;   // noop extension
4640     assert((!VT.isVector() ||
4641             VT.getVectorNumElements() ==
4642             Operand.getValueType().getVectorNumElements()) &&
4643            "Vector element count mismatch!");
4644     assert(Operand.getValueType().bitsLT(VT) &&
4645            "Invalid anyext node, dst < src!");
4646 
4647     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4648         OpOpcode == ISD::ANY_EXTEND)
4649       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4650       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4651     else if (OpOpcode == ISD::UNDEF)
4652       return getUNDEF(VT);
4653 
4654     // (ext (trunc x)) -> x
4655     if (OpOpcode == ISD::TRUNCATE) {
4656       SDValue OpOp = Operand.getOperand(0);
4657       if (OpOp.getValueType() == VT) {
4658         transferDbgValues(Operand, OpOp);
4659         return OpOp;
4660       }
4661     }
4662     break;
4663   case ISD::TRUNCATE:
4664     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4665            "Invalid TRUNCATE!");
4666     assert(VT.isVector() == Operand.getValueType().isVector() &&
4667            "TRUNCATE result type type should be vector iff the operand "
4668            "type is vector!");
4669     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4670     assert((!VT.isVector() ||
4671             VT.getVectorNumElements() ==
4672             Operand.getValueType().getVectorNumElements()) &&
4673            "Vector element count mismatch!");
4674     assert(Operand.getValueType().bitsGT(VT) &&
4675            "Invalid truncate node, src < dst!");
4676     if (OpOpcode == ISD::TRUNCATE)
4677       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4678     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4679         OpOpcode == ISD::ANY_EXTEND) {
4680       // If the source is smaller than the dest, we still need an extend.
4681       if (Operand.getOperand(0).getValueType().getScalarType()
4682             .bitsLT(VT.getScalarType()))
4683         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4684       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4685         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4686       return Operand.getOperand(0);
4687     }
4688     if (OpOpcode == ISD::UNDEF)
4689       return getUNDEF(VT);
4690     break;
4691   case ISD::ANY_EXTEND_VECTOR_INREG:
4692   case ISD::ZERO_EXTEND_VECTOR_INREG:
4693   case ISD::SIGN_EXTEND_VECTOR_INREG:
4694     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4695     assert(Operand.getValueType().bitsLE(VT) &&
4696            "The input must be the same size or smaller than the result.");
4697     assert(VT.getVectorNumElements() <
4698              Operand.getValueType().getVectorNumElements() &&
4699            "The destination vector type must have fewer lanes than the input.");
4700     break;
4701   case ISD::ABS:
4702     assert(VT.isInteger() && VT == Operand.getValueType() &&
4703            "Invalid ABS!");
4704     if (OpOpcode == ISD::UNDEF)
4705       return getUNDEF(VT);
4706     break;
4707   case ISD::BSWAP:
4708     assert(VT.isInteger() && VT == Operand.getValueType() &&
4709            "Invalid BSWAP!");
4710     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4711            "BSWAP types must be a multiple of 16 bits!");
4712     if (OpOpcode == ISD::UNDEF)
4713       return getUNDEF(VT);
4714     break;
4715   case ISD::BITREVERSE:
4716     assert(VT.isInteger() && VT == Operand.getValueType() &&
4717            "Invalid BITREVERSE!");
4718     if (OpOpcode == ISD::UNDEF)
4719       return getUNDEF(VT);
4720     break;
4721   case ISD::BITCAST:
4722     // Basic sanity checking.
4723     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4724            "Cannot BITCAST between types of different sizes!");
4725     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4726     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4727       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4728     if (OpOpcode == ISD::UNDEF)
4729       return getUNDEF(VT);
4730     break;
4731   case ISD::SCALAR_TO_VECTOR:
4732     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4733            (VT.getVectorElementType() == Operand.getValueType() ||
4734             (VT.getVectorElementType().isInteger() &&
4735              Operand.getValueType().isInteger() &&
4736              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4737            "Illegal SCALAR_TO_VECTOR node!");
4738     if (OpOpcode == ISD::UNDEF)
4739       return getUNDEF(VT);
4740     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4741     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4742         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4743         Operand.getConstantOperandVal(1) == 0 &&
4744         Operand.getOperand(0).getValueType() == VT)
4745       return Operand.getOperand(0);
4746     break;
4747   case ISD::FNEG:
4748     // Negation of an unknown bag of bits is still completely undefined.
4749     if (OpOpcode == ISD::UNDEF)
4750       return getUNDEF(VT);
4751 
4752     if (OpOpcode == ISD::FNEG)  // --X -> X
4753       return Operand.getOperand(0);
4754     break;
4755   case ISD::FABS:
4756     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4757       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4758     break;
4759   }
4760 
4761   SDNode *N;
4762   SDVTList VTs = getVTList(VT);
4763   SDValue Ops[] = {Operand};
4764   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4765     FoldingSetNodeID ID;
4766     AddNodeIDNode(ID, Opcode, VTs, Ops);
4767     void *IP = nullptr;
4768     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4769       E->intersectFlagsWith(Flags);
4770       return SDValue(E, 0);
4771     }
4772 
4773     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4774     N->setFlags(Flags);
4775     createOperands(N, Ops);
4776     CSEMap.InsertNode(N, IP);
4777   } else {
4778     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4779     createOperands(N, Ops);
4780   }
4781 
4782   InsertNode(N);
4783   SDValue V = SDValue(N, 0);
4784   NewSDValueDbgMsg(V, "Creating new node: ", this);
4785   return V;
4786 }
4787 
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)4788 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4789                                        const APInt &C2) {
4790   switch (Opcode) {
4791   case ISD::ADD:  return C1 + C2;
4792   case ISD::SUB:  return C1 - C2;
4793   case ISD::MUL:  return C1 * C2;
4794   case ISD::AND:  return C1 & C2;
4795   case ISD::OR:   return C1 | C2;
4796   case ISD::XOR:  return C1 ^ C2;
4797   case ISD::SHL:  return C1 << C2;
4798   case ISD::SRL:  return C1.lshr(C2);
4799   case ISD::SRA:  return C1.ashr(C2);
4800   case ISD::ROTL: return C1.rotl(C2);
4801   case ISD::ROTR: return C1.rotr(C2);
4802   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4803   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4804   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4805   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4806   case ISD::SADDSAT: return C1.sadd_sat(C2);
4807   case ISD::UADDSAT: return C1.uadd_sat(C2);
4808   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4809   case ISD::USUBSAT: return C1.usub_sat(C2);
4810   case ISD::UDIV:
4811     if (!C2.getBoolValue())
4812       break;
4813     return C1.udiv(C2);
4814   case ISD::UREM:
4815     if (!C2.getBoolValue())
4816       break;
4817     return C1.urem(C2);
4818   case ISD::SDIV:
4819     if (!C2.getBoolValue())
4820       break;
4821     return C1.sdiv(C2);
4822   case ISD::SREM:
4823     if (!C2.getBoolValue())
4824       break;
4825     return C1.srem(C2);
4826   }
4827   return llvm::None;
4828 }
4829 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,const ConstantSDNode * C1,const ConstantSDNode * C2)4830 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4831                                              EVT VT, const ConstantSDNode *C1,
4832                                              const ConstantSDNode *C2) {
4833   if (C1->isOpaque() || C2->isOpaque())
4834     return SDValue();
4835   if (Optional<APInt> Folded =
4836           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()))
4837     return getConstant(Folded.getValue(), DL, VT);
4838   return SDValue();
4839 }
4840 
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)4841 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4842                                        const GlobalAddressSDNode *GA,
4843                                        const SDNode *N2) {
4844   if (GA->getOpcode() != ISD::GlobalAddress)
4845     return SDValue();
4846   if (!TLI->isOffsetFoldingLegal(GA))
4847     return SDValue();
4848   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4849   if (!C2)
4850     return SDValue();
4851   int64_t Offset = C2->getSExtValue();
4852   switch (Opcode) {
4853   case ISD::ADD: break;
4854   case ISD::SUB: Offset = -uint64_t(Offset); break;
4855   default: return SDValue();
4856   }
4857   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4858                           GA->getOffset() + uint64_t(Offset));
4859 }
4860 
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)4861 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4862   switch (Opcode) {
4863   case ISD::SDIV:
4864   case ISD::UDIV:
4865   case ISD::SREM:
4866   case ISD::UREM: {
4867     // If a divisor is zero/undef or any element of a divisor vector is
4868     // zero/undef, the whole op is undef.
4869     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4870     SDValue Divisor = Ops[1];
4871     if (Divisor.isUndef() || isNullConstant(Divisor))
4872       return true;
4873 
4874     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4875            llvm::any_of(Divisor->op_values(),
4876                         [](SDValue V) { return V.isUndef() ||
4877                                         isNullConstant(V); });
4878     // TODO: Handle signed overflow.
4879   }
4880   // TODO: Handle oversized shifts.
4881   default:
4882     return false;
4883   }
4884 }
4885 
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,SDNode * N1,SDNode * N2)4886 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4887                                              EVT VT, SDNode *N1, SDNode *N2) {
4888   // If the opcode is a target-specific ISD node, there's nothing we can
4889   // do here and the operand rules may not line up with the below, so
4890   // bail early.
4891   if (Opcode >= ISD::BUILTIN_OP_END)
4892     return SDValue();
4893 
4894   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4895     return getUNDEF(VT);
4896 
4897   // Handle the case of two scalars.
4898   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4899     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4900       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4901       assert((!Folded || !VT.isVector()) &&
4902              "Can't fold vectors ops with scalar operands");
4903       return Folded;
4904     }
4905   }
4906 
4907   // fold (add Sym, c) -> Sym+c
4908   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4909     return FoldSymbolOffset(Opcode, VT, GA, N2);
4910   if (TLI->isCommutativeBinOp(Opcode))
4911     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4912       return FoldSymbolOffset(Opcode, VT, GA, N1);
4913 
4914   // For vectors, extract each constant element and fold them individually.
4915   // Either input may be an undef value.
4916   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4917   if (!BV1 && !N1->isUndef())
4918     return SDValue();
4919   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4920   if (!BV2 && !N2->isUndef())
4921     return SDValue();
4922   // If both operands are undef, that's handled the same way as scalars.
4923   if (!BV1 && !BV2)
4924     return SDValue();
4925 
4926   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4927          "Vector binop with different number of elements in operands?");
4928 
4929   EVT SVT = VT.getScalarType();
4930   EVT LegalSVT = SVT;
4931   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4932     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4933     if (LegalSVT.bitsLT(SVT))
4934       return SDValue();
4935   }
4936   SmallVector<SDValue, 4> Outputs;
4937   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4938   for (unsigned I = 0; I != NumOps; ++I) {
4939     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4940     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4941     if (SVT.isInteger()) {
4942       if (V1->getValueType(0).bitsGT(SVT))
4943         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4944       if (V2->getValueType(0).bitsGT(SVT))
4945         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4946     }
4947 
4948     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4949       return SDValue();
4950 
4951     // Fold one vector element.
4952     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4953     if (LegalSVT != SVT)
4954       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4955 
4956     // Scalar folding only succeeded if the result is a constant or UNDEF.
4957     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4958         ScalarResult.getOpcode() != ISD::ConstantFP)
4959       return SDValue();
4960     Outputs.push_back(ScalarResult);
4961   }
4962 
4963   assert(VT.getVectorNumElements() == Outputs.size() &&
4964          "Vector size mismatch!");
4965 
4966   // We may have a vector type but a scalar result. Create a splat.
4967   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4968 
4969   // Build a big vector out of the scalar elements we generated.
4970   return getBuildVector(VT, SDLoc(), Outputs);
4971 }
4972 
4973 // TODO: Merge with FoldConstantArithmetic
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)4974 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4975                                                    const SDLoc &DL, EVT VT,
4976                                                    ArrayRef<SDValue> Ops,
4977                                                    const SDNodeFlags Flags) {
4978   // If the opcode is a target-specific ISD node, there's nothing we can
4979   // do here and the operand rules may not line up with the below, so
4980   // bail early.
4981   if (Opcode >= ISD::BUILTIN_OP_END)
4982     return SDValue();
4983 
4984   if (isUndef(Opcode, Ops))
4985     return getUNDEF(VT);
4986 
4987   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4988   if (!VT.isVector())
4989     return SDValue();
4990 
4991   unsigned NumElts = VT.getVectorNumElements();
4992 
4993   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4994     return !Op.getValueType().isVector() ||
4995            Op.getValueType().getVectorNumElements() == NumElts;
4996   };
4997 
4998   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4999     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5000     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5001            (BV && BV->isConstant());
5002   };
5003 
5004   // All operands must be vector types with the same number of elements as
5005   // the result type and must be either UNDEF or a build vector of constant
5006   // or UNDEF scalars.
5007   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5008       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5009     return SDValue();
5010 
5011   // If we are comparing vectors, then the result needs to be a i1 boolean
5012   // that is then sign-extended back to the legal result type.
5013   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5014 
5015   // Find legal integer scalar type for constant promotion and
5016   // ensure that its scalar size is at least as large as source.
5017   EVT LegalSVT = VT.getScalarType();
5018   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5019     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5020     if (LegalSVT.bitsLT(VT.getScalarType()))
5021       return SDValue();
5022   }
5023 
5024   // Constant fold each scalar lane separately.
5025   SmallVector<SDValue, 4> ScalarResults;
5026   for (unsigned i = 0; i != NumElts; i++) {
5027     SmallVector<SDValue, 4> ScalarOps;
5028     for (SDValue Op : Ops) {
5029       EVT InSVT = Op.getValueType().getScalarType();
5030       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5031       if (!InBV) {
5032         // We've checked that this is UNDEF or a constant of some kind.
5033         if (Op.isUndef())
5034           ScalarOps.push_back(getUNDEF(InSVT));
5035         else
5036           ScalarOps.push_back(Op);
5037         continue;
5038       }
5039 
5040       SDValue ScalarOp = InBV->getOperand(i);
5041       EVT ScalarVT = ScalarOp.getValueType();
5042 
5043       // Build vector (integer) scalar operands may need implicit
5044       // truncation - do this before constant folding.
5045       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5046         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5047 
5048       ScalarOps.push_back(ScalarOp);
5049     }
5050 
5051     // Constant fold the scalar operands.
5052     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5053 
5054     // Legalize the (integer) scalar constant if necessary.
5055     if (LegalSVT != SVT)
5056       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5057 
5058     // Scalar folding only succeeded if the result is a constant or UNDEF.
5059     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5060         ScalarResult.getOpcode() != ISD::ConstantFP)
5061       return SDValue();
5062     ScalarResults.push_back(ScalarResult);
5063   }
5064 
5065   SDValue V = getBuildVector(VT, DL, ScalarResults);
5066   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5067   return V;
5068 }
5069 
foldConstantFPMath(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5070 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5071                                          EVT VT, SDValue N1, SDValue N2) {
5072   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5073   //       should. That will require dealing with a potentially non-default
5074   //       rounding mode, checking the "opStatus" return value from the APFloat
5075   //       math calculations, and possibly other variations.
5076   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5077   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5078   if (N1CFP && N2CFP) {
5079     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5080     switch (Opcode) {
5081     case ISD::FADD:
5082       C1.add(C2, APFloat::rmNearestTiesToEven);
5083       return getConstantFP(C1, DL, VT);
5084     case ISD::FSUB:
5085       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5086       return getConstantFP(C1, DL, VT);
5087     case ISD::FMUL:
5088       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5089       return getConstantFP(C1, DL, VT);
5090     case ISD::FDIV:
5091       C1.divide(C2, APFloat::rmNearestTiesToEven);
5092       return getConstantFP(C1, DL, VT);
5093     case ISD::FREM:
5094       C1.mod(C2);
5095       return getConstantFP(C1, DL, VT);
5096     case ISD::FCOPYSIGN:
5097       C1.copySign(C2);
5098       return getConstantFP(C1, DL, VT);
5099     default: break;
5100     }
5101   }
5102   if (N1CFP && Opcode == ISD::FP_ROUND) {
5103     APFloat C1 = N1CFP->getValueAPF();    // make copy
5104     bool Unused;
5105     // This can return overflow, underflow, or inexact; we don't care.
5106     // FIXME need to be more flexible about rounding mode.
5107     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5108                       &Unused);
5109     return getConstantFP(C1, DL, VT);
5110   }
5111 
5112   switch (Opcode) {
5113   case ISD::FADD:
5114   case ISD::FSUB:
5115   case ISD::FMUL:
5116   case ISD::FDIV:
5117   case ISD::FREM:
5118     // If both operands are undef, the result is undef. If 1 operand is undef,
5119     // the result is NaN. This should match the behavior of the IR optimizer.
5120     if (N1.isUndef() && N2.isUndef())
5121       return getUNDEF(VT);
5122     if (N1.isUndef() || N2.isUndef())
5123       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5124   }
5125   return SDValue();
5126 }
5127 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)5128 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5129                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5130   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5131   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5132   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5133   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5134 
5135   // Canonicalize constant to RHS if commutative.
5136   if (TLI->isCommutativeBinOp(Opcode)) {
5137     if (N1C && !N2C) {
5138       std::swap(N1C, N2C);
5139       std::swap(N1, N2);
5140     } else if (N1CFP && !N2CFP) {
5141       std::swap(N1CFP, N2CFP);
5142       std::swap(N1, N2);
5143     }
5144   }
5145 
5146   switch (Opcode) {
5147   default: break;
5148   case ISD::TokenFactor:
5149     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5150            N2.getValueType() == MVT::Other && "Invalid token factor!");
5151     // Fold trivial token factors.
5152     if (N1.getOpcode() == ISD::EntryToken) return N2;
5153     if (N2.getOpcode() == ISD::EntryToken) return N1;
5154     if (N1 == N2) return N1;
5155     break;
5156   case ISD::BUILD_VECTOR: {
5157     // Attempt to simplify BUILD_VECTOR.
5158     SDValue Ops[] = {N1, N2};
5159     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5160       return V;
5161     break;
5162   }
5163   case ISD::CONCAT_VECTORS: {
5164     SDValue Ops[] = {N1, N2};
5165     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5166       return V;
5167     break;
5168   }
5169   case ISD::AND:
5170     assert(VT.isInteger() && "This operator does not apply to FP types!");
5171     assert(N1.getValueType() == N2.getValueType() &&
5172            N1.getValueType() == VT && "Binary operator types must match!");
5173     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5174     // worth handling here.
5175     if (N2C && N2C->isNullValue())
5176       return N2;
5177     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5178       return N1;
5179     break;
5180   case ISD::OR:
5181   case ISD::XOR:
5182   case ISD::ADD:
5183   case ISD::SUB:
5184     assert(VT.isInteger() && "This operator does not apply to FP types!");
5185     assert(N1.getValueType() == N2.getValueType() &&
5186            N1.getValueType() == VT && "Binary operator types must match!");
5187     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5188     // it's worth handling here.
5189     if (N2C && N2C->isNullValue())
5190       return N1;
5191     break;
5192   case ISD::UDIV:
5193   case ISD::UREM:
5194   case ISD::MULHU:
5195   case ISD::MULHS:
5196   case ISD::MUL:
5197   case ISD::SDIV:
5198   case ISD::SREM:
5199   case ISD::SMIN:
5200   case ISD::SMAX:
5201   case ISD::UMIN:
5202   case ISD::UMAX:
5203   case ISD::SADDSAT:
5204   case ISD::SSUBSAT:
5205   case ISD::UADDSAT:
5206   case ISD::USUBSAT:
5207     assert(VT.isInteger() && "This operator does not apply to FP types!");
5208     assert(N1.getValueType() == N2.getValueType() &&
5209            N1.getValueType() == VT && "Binary operator types must match!");
5210     break;
5211   case ISD::FADD:
5212   case ISD::FSUB:
5213   case ISD::FMUL:
5214   case ISD::FDIV:
5215   case ISD::FREM:
5216     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5217     assert(N1.getValueType() == N2.getValueType() &&
5218            N1.getValueType() == VT && "Binary operator types must match!");
5219     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5220       return V;
5221     break;
5222   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5223     assert(N1.getValueType() == VT &&
5224            N1.getValueType().isFloatingPoint() &&
5225            N2.getValueType().isFloatingPoint() &&
5226            "Invalid FCOPYSIGN!");
5227     break;
5228   case ISD::SHL:
5229   case ISD::SRA:
5230   case ISD::SRL:
5231     if (SDValue V = simplifyShift(N1, N2))
5232       return V;
5233     LLVM_FALLTHROUGH;
5234   case ISD::ROTL:
5235   case ISD::ROTR:
5236     assert(VT == N1.getValueType() &&
5237            "Shift operators return type must be the same as their first arg");
5238     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5239            "Shifts only work on integers");
5240     assert((!VT.isVector() || VT == N2.getValueType()) &&
5241            "Vector shift amounts must be in the same as their first arg");
5242     // Verify that the shift amount VT is big enough to hold valid shift
5243     // amounts.  This catches things like trying to shift an i1024 value by an
5244     // i8, which is easy to fall into in generic code that uses
5245     // TLI.getShiftAmount().
5246     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5247            "Invalid use of small shift amount with oversized value!");
5248 
5249     // Always fold shifts of i1 values so the code generator doesn't need to
5250     // handle them.  Since we know the size of the shift has to be less than the
5251     // size of the value, the shift/rotate count is guaranteed to be zero.
5252     if (VT == MVT::i1)
5253       return N1;
5254     if (N2C && N2C->isNullValue())
5255       return N1;
5256     break;
5257   case ISD::FP_ROUND:
5258     assert(VT.isFloatingPoint() &&
5259            N1.getValueType().isFloatingPoint() &&
5260            VT.bitsLE(N1.getValueType()) &&
5261            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5262            "Invalid FP_ROUND!");
5263     if (N1.getValueType() == VT) return N1;  // noop conversion.
5264     break;
5265   case ISD::AssertSext:
5266   case ISD::AssertZext: {
5267     EVT EVT = cast<VTSDNode>(N2)->getVT();
5268     assert(VT == N1.getValueType() && "Not an inreg extend!");
5269     assert(VT.isInteger() && EVT.isInteger() &&
5270            "Cannot *_EXTEND_INREG FP types");
5271     assert(!EVT.isVector() &&
5272            "AssertSExt/AssertZExt type should be the vector element type "
5273            "rather than the vector type!");
5274     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5275     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5276     break;
5277   }
5278   case ISD::SIGN_EXTEND_INREG: {
5279     EVT EVT = cast<VTSDNode>(N2)->getVT();
5280     assert(VT == N1.getValueType() && "Not an inreg extend!");
5281     assert(VT.isInteger() && EVT.isInteger() &&
5282            "Cannot *_EXTEND_INREG FP types");
5283     assert(EVT.isVector() == VT.isVector() &&
5284            "SIGN_EXTEND_INREG type should be vector iff the operand "
5285            "type is vector!");
5286     assert((!EVT.isVector() ||
5287             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5288            "Vector element counts must match in SIGN_EXTEND_INREG");
5289     assert(EVT.bitsLE(VT) && "Not extending!");
5290     if (EVT == VT) return N1;  // Not actually extending
5291 
5292     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5293       unsigned FromBits = EVT.getScalarSizeInBits();
5294       Val <<= Val.getBitWidth() - FromBits;
5295       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5296       return getConstant(Val, DL, ConstantVT);
5297     };
5298 
5299     if (N1C) {
5300       const APInt &Val = N1C->getAPIntValue();
5301       return SignExtendInReg(Val, VT);
5302     }
5303     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5304       SmallVector<SDValue, 8> Ops;
5305       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5306       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5307         SDValue Op = N1.getOperand(i);
5308         if (Op.isUndef()) {
5309           Ops.push_back(getUNDEF(OpVT));
5310           continue;
5311         }
5312         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5313         APInt Val = C->getAPIntValue();
5314         Ops.push_back(SignExtendInReg(Val, OpVT));
5315       }
5316       return getBuildVector(VT, DL, Ops);
5317     }
5318     break;
5319   }
5320   case ISD::EXTRACT_VECTOR_ELT:
5321     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5322            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5323              element type of the vector.");
5324 
5325     // Extract from an undefined value or using an undefined index is undefined.
5326     if (N1.isUndef() || N2.isUndef())
5327       return getUNDEF(VT);
5328 
5329     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5330     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5331       return getUNDEF(VT);
5332 
5333     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5334     // expanding copies of large vectors from registers.
5335     if (N2C &&
5336         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5337         N1.getNumOperands() > 0) {
5338       unsigned Factor =
5339         N1.getOperand(0).getValueType().getVectorNumElements();
5340       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5341                      N1.getOperand(N2C->getZExtValue() / Factor),
5342                      getConstant(N2C->getZExtValue() % Factor, DL,
5343                                  N2.getValueType()));
5344     }
5345 
5346     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5347     // expanding large vector constants.
5348     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5349       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5350 
5351       if (VT != Elt.getValueType())
5352         // If the vector element type is not legal, the BUILD_VECTOR operands
5353         // are promoted and implicitly truncated, and the result implicitly
5354         // extended. Make that explicit here.
5355         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5356 
5357       return Elt;
5358     }
5359 
5360     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5361     // operations are lowered to scalars.
5362     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5363       // If the indices are the same, return the inserted element else
5364       // if the indices are known different, extract the element from
5365       // the original vector.
5366       SDValue N1Op2 = N1.getOperand(2);
5367       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5368 
5369       if (N1Op2C && N2C) {
5370         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5371           if (VT == N1.getOperand(1).getValueType())
5372             return N1.getOperand(1);
5373           else
5374             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5375         }
5376 
5377         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5378       }
5379     }
5380 
5381     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5382     // when vector types are scalarized and v1iX is legal.
5383     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5384     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5385         N1.getValueType().getVectorNumElements() == 1) {
5386       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5387                      N1.getOperand(1));
5388     }
5389     break;
5390   case ISD::EXTRACT_ELEMENT:
5391     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5392     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5393            (N1.getValueType().isInteger() == VT.isInteger()) &&
5394            N1.getValueType() != VT &&
5395            "Wrong types for EXTRACT_ELEMENT!");
5396 
5397     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5398     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5399     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5400     if (N1.getOpcode() == ISD::BUILD_PAIR)
5401       return N1.getOperand(N2C->getZExtValue());
5402 
5403     // EXTRACT_ELEMENT of a constant int is also very common.
5404     if (N1C) {
5405       unsigned ElementSize = VT.getSizeInBits();
5406       unsigned Shift = ElementSize * N2C->getZExtValue();
5407       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5408       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5409     }
5410     break;
5411   case ISD::EXTRACT_SUBVECTOR:
5412     if (VT.isSimple() && N1.getValueType().isSimple()) {
5413       assert(VT.isVector() && N1.getValueType().isVector() &&
5414              "Extract subvector VTs must be a vectors!");
5415       assert(VT.getVectorElementType() ==
5416              N1.getValueType().getVectorElementType() &&
5417              "Extract subvector VTs must have the same element type!");
5418       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5419              "Extract subvector must be from larger vector to smaller vector!");
5420 
5421       if (N2C) {
5422         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5423                 <= N1.getValueType().getVectorNumElements())
5424                && "Extract subvector overflow!");
5425       }
5426 
5427       // Trivial extraction.
5428       if (VT.getSimpleVT() == N1.getSimpleValueType())
5429         return N1;
5430 
5431       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5432       if (N1.isUndef())
5433         return getUNDEF(VT);
5434 
5435       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5436       // the concat have the same type as the extract.
5437       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5438           N1.getNumOperands() > 0 &&
5439           VT == N1.getOperand(0).getValueType()) {
5440         unsigned Factor = VT.getVectorNumElements();
5441         return N1.getOperand(N2C->getZExtValue() / Factor);
5442       }
5443 
5444       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5445       // during shuffle legalization.
5446       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5447           VT == N1.getOperand(1).getValueType())
5448         return N1.getOperand(1);
5449     }
5450     break;
5451   }
5452 
5453   // Perform trivial constant folding.
5454   if (SDValue SV =
5455           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5456     return SV;
5457 
5458   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5459     return V;
5460 
5461   // Canonicalize an UNDEF to the RHS, even over a constant.
5462   if (N1.isUndef()) {
5463     if (TLI->isCommutativeBinOp(Opcode)) {
5464       std::swap(N1, N2);
5465     } else {
5466       switch (Opcode) {
5467       case ISD::SIGN_EXTEND_INREG:
5468       case ISD::SUB:
5469         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5470       case ISD::UDIV:
5471       case ISD::SDIV:
5472       case ISD::UREM:
5473       case ISD::SREM:
5474       case ISD::SSUBSAT:
5475       case ISD::USUBSAT:
5476         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5477       }
5478     }
5479   }
5480 
5481   // Fold a bunch of operators when the RHS is undef.
5482   if (N2.isUndef()) {
5483     switch (Opcode) {
5484     case ISD::XOR:
5485       if (N1.isUndef())
5486         // Handle undef ^ undef -> 0 special case. This is a common
5487         // idiom (misuse).
5488         return getConstant(0, DL, VT);
5489       LLVM_FALLTHROUGH;
5490     case ISD::ADD:
5491     case ISD::SUB:
5492     case ISD::UDIV:
5493     case ISD::SDIV:
5494     case ISD::UREM:
5495     case ISD::SREM:
5496       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5497     case ISD::MUL:
5498     case ISD::AND:
5499     case ISD::SSUBSAT:
5500     case ISD::USUBSAT:
5501       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5502     case ISD::OR:
5503     case ISD::SADDSAT:
5504     case ISD::UADDSAT:
5505       return getAllOnesConstant(DL, VT);
5506     }
5507   }
5508 
5509   // Memoize this node if possible.
5510   SDNode *N;
5511   SDVTList VTs = getVTList(VT);
5512   SDValue Ops[] = {N1, N2};
5513   if (VT != MVT::Glue) {
5514     FoldingSetNodeID ID;
5515     AddNodeIDNode(ID, Opcode, VTs, Ops);
5516     void *IP = nullptr;
5517     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5518       E->intersectFlagsWith(Flags);
5519       return SDValue(E, 0);
5520     }
5521 
5522     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5523     N->setFlags(Flags);
5524     createOperands(N, Ops);
5525     CSEMap.InsertNode(N, IP);
5526   } else {
5527     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5528     createOperands(N, Ops);
5529   }
5530 
5531   InsertNode(N);
5532   SDValue V = SDValue(N, 0);
5533   NewSDValueDbgMsg(V, "Creating new node: ", this);
5534   return V;
5535 }
5536 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)5537 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5538                               SDValue N1, SDValue N2, SDValue N3,
5539                               const SDNodeFlags Flags) {
5540   // Perform various simplifications.
5541   switch (Opcode) {
5542   case ISD::FMA: {
5543     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5544     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5545            N3.getValueType() == VT && "FMA types must match!");
5546     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5547     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5548     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5549     if (N1CFP && N2CFP && N3CFP) {
5550       APFloat  V1 = N1CFP->getValueAPF();
5551       const APFloat &V2 = N2CFP->getValueAPF();
5552       const APFloat &V3 = N3CFP->getValueAPF();
5553       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5554       return getConstantFP(V1, DL, VT);
5555     }
5556     break;
5557   }
5558   case ISD::BUILD_VECTOR: {
5559     // Attempt to simplify BUILD_VECTOR.
5560     SDValue Ops[] = {N1, N2, N3};
5561     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5562       return V;
5563     break;
5564   }
5565   case ISD::CONCAT_VECTORS: {
5566     SDValue Ops[] = {N1, N2, N3};
5567     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5568       return V;
5569     break;
5570   }
5571   case ISD::SETCC: {
5572     assert(VT.isInteger() && "SETCC result type must be an integer!");
5573     assert(N1.getValueType() == N2.getValueType() &&
5574            "SETCC operands must have the same type!");
5575     assert(VT.isVector() == N1.getValueType().isVector() &&
5576            "SETCC type should be vector iff the operand type is vector!");
5577     assert((!VT.isVector() ||
5578             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5579            "SETCC vector element counts must match!");
5580     // Use FoldSetCC to simplify SETCC's.
5581     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5582       return V;
5583     // Vector constant folding.
5584     SDValue Ops[] = {N1, N2, N3};
5585     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5586       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5587       return V;
5588     }
5589     break;
5590   }
5591   case ISD::SELECT:
5592   case ISD::VSELECT:
5593     if (SDValue V = simplifySelect(N1, N2, N3))
5594       return V;
5595     break;
5596   case ISD::VECTOR_SHUFFLE:
5597     llvm_unreachable("should use getVectorShuffle constructor!");
5598   case ISD::INSERT_VECTOR_ELT: {
5599     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5600     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5601     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5602       return getUNDEF(VT);
5603 
5604     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5605     if (N3.isUndef())
5606       return getUNDEF(VT);
5607 
5608     // If the inserted element is an UNDEF, just use the input vector.
5609     if (N2.isUndef())
5610       return N1;
5611 
5612     break;
5613   }
5614   case ISD::INSERT_SUBVECTOR: {
5615     // Inserting undef into undef is still undef.
5616     if (N1.isUndef() && N2.isUndef())
5617       return getUNDEF(VT);
5618     SDValue Index = N3;
5619     if (VT.isSimple() && N1.getValueType().isSimple()
5620         && N2.getValueType().isSimple()) {
5621       assert(VT.isVector() && N1.getValueType().isVector() &&
5622              N2.getValueType().isVector() &&
5623              "Insert subvector VTs must be a vectors");
5624       assert(VT == N1.getValueType() &&
5625              "Dest and insert subvector source types must match!");
5626       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5627              "Insert subvector must be from smaller vector to larger vector!");
5628       if (isa<ConstantSDNode>(Index)) {
5629         assert((N2.getValueType().getVectorNumElements() +
5630                 cast<ConstantSDNode>(Index)->getZExtValue()
5631                 <= VT.getVectorNumElements())
5632                && "Insert subvector overflow!");
5633       }
5634 
5635       // Trivial insertion.
5636       if (VT.getSimpleVT() == N2.getSimpleValueType())
5637         return N2;
5638 
5639       // If this is an insert of an extracted vector into an undef vector, we
5640       // can just use the input to the extract.
5641       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5642           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5643         return N2.getOperand(0);
5644     }
5645     break;
5646   }
5647   case ISD::BITCAST:
5648     // Fold bit_convert nodes from a type to themselves.
5649     if (N1.getValueType() == VT)
5650       return N1;
5651     break;
5652   }
5653 
5654   // Memoize node if it doesn't produce a flag.
5655   SDNode *N;
5656   SDVTList VTs = getVTList(VT);
5657   SDValue Ops[] = {N1, N2, N3};
5658   if (VT != MVT::Glue) {
5659     FoldingSetNodeID ID;
5660     AddNodeIDNode(ID, Opcode, VTs, Ops);
5661     void *IP = nullptr;
5662     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5663       E->intersectFlagsWith(Flags);
5664       return SDValue(E, 0);
5665     }
5666 
5667     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5668     N->setFlags(Flags);
5669     createOperands(N, Ops);
5670     CSEMap.InsertNode(N, IP);
5671   } else {
5672     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5673     createOperands(N, Ops);
5674   }
5675 
5676   InsertNode(N);
5677   SDValue V = SDValue(N, 0);
5678   NewSDValueDbgMsg(V, "Creating new node: ", this);
5679   return V;
5680 }
5681 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)5682 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5683                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5684   SDValue Ops[] = { N1, N2, N3, N4 };
5685   return getNode(Opcode, DL, VT, Ops);
5686 }
5687 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)5688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5689                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5690                               SDValue N5) {
5691   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5692   return getNode(Opcode, DL, VT, Ops);
5693 }
5694 
5695 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5696 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)5697 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5698   SmallVector<SDValue, 8> ArgChains;
5699 
5700   // Include the original chain at the beginning of the list. When this is
5701   // used by target LowerCall hooks, this helps legalize find the
5702   // CALLSEQ_BEGIN node.
5703   ArgChains.push_back(Chain);
5704 
5705   // Add a chain value for each stack argument.
5706   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5707        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5708     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5709       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5710         if (FI->getIndex() < 0)
5711           ArgChains.push_back(SDValue(L, 1));
5712 
5713   // Build a tokenfactor for all the chains.
5714   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5715 }
5716 
5717 /// getMemsetValue - Vectorized representation of the memset value
5718 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)5719 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5720                               const SDLoc &dl) {
5721   assert(!Value.isUndef());
5722 
5723   unsigned NumBits = VT.getScalarSizeInBits();
5724   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5725     assert(C->getAPIntValue().getBitWidth() == 8);
5726     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5727     if (VT.isInteger()) {
5728       bool IsOpaque = VT.getSizeInBits() > 64 ||
5729           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5730       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5731     }
5732     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5733                              VT);
5734   }
5735 
5736   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5737   EVT IntVT = VT.getScalarType();
5738   if (!IntVT.isInteger())
5739     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5740 
5741   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5742   if (NumBits > 8) {
5743     // Use a multiplication with 0x010101... to extend the input to the
5744     // required length.
5745     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5746     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5747                         DAG.getConstant(Magic, dl, IntVT));
5748   }
5749 
5750   if (VT != Value.getValueType() && !VT.isInteger())
5751     Value = DAG.getBitcast(VT.getScalarType(), Value);
5752   if (VT != Value.getValueType())
5753     Value = DAG.getSplatBuildVector(VT, dl, Value);
5754 
5755   return Value;
5756 }
5757 
5758 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5759 /// used when a memcpy is turned into a memset when the source is a constant
5760 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)5761 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5762                                   const TargetLowering &TLI,
5763                                   const ConstantDataArraySlice &Slice) {
5764   // Handle vector with all elements zero.
5765   if (Slice.Array == nullptr) {
5766     if (VT.isInteger())
5767       return DAG.getConstant(0, dl, VT);
5768     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5769       return DAG.getConstantFP(0.0, dl, VT);
5770     else if (VT.isVector()) {
5771       unsigned NumElts = VT.getVectorNumElements();
5772       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5773       return DAG.getNode(ISD::BITCAST, dl, VT,
5774                          DAG.getConstant(0, dl,
5775                                          EVT::getVectorVT(*DAG.getContext(),
5776                                                           EltVT, NumElts)));
5777     } else
5778       llvm_unreachable("Expected type!");
5779   }
5780 
5781   assert(!VT.isVector() && "Can't handle vector type here!");
5782   unsigned NumVTBits = VT.getSizeInBits();
5783   unsigned NumVTBytes = NumVTBits / 8;
5784   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5785 
5786   APInt Val(NumVTBits, 0);
5787   if (DAG.getDataLayout().isLittleEndian()) {
5788     for (unsigned i = 0; i != NumBytes; ++i)
5789       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5790   } else {
5791     for (unsigned i = 0; i != NumBytes; ++i)
5792       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5793   }
5794 
5795   // If the "cost" of materializing the integer immediate is less than the cost
5796   // of a load, then it is cost effective to turn the load into the immediate.
5797   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5798   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5799     return DAG.getConstant(Val, dl, VT);
5800   return SDValue(nullptr, 0);
5801 }
5802 
getMemBasePlusOffset(SDValue Base,int64_t Offset,const SDLoc & DL,const SDNodeFlags Flags)5803 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5804                                            const SDLoc &DL,
5805                                            const SDNodeFlags Flags) {
5806   EVT VT = Base.getValueType();
5807   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5808 }
5809 
getMemBasePlusOffset(SDValue Ptr,SDValue Offset,const SDLoc & DL,const SDNodeFlags Flags)5810 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5811                                            const SDLoc &DL,
5812                                            const SDNodeFlags Flags) {
5813   assert(Offset.getValueType().isInteger());
5814   EVT BasePtrVT = Ptr.getValueType();
5815   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5816 }
5817 
5818 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)5819 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5820   uint64_t SrcDelta = 0;
5821   GlobalAddressSDNode *G = nullptr;
5822   if (Src.getOpcode() == ISD::GlobalAddress)
5823     G = cast<GlobalAddressSDNode>(Src);
5824   else if (Src.getOpcode() == ISD::ADD &&
5825            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5826            Src.getOperand(1).getOpcode() == ISD::Constant) {
5827     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5828     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5829   }
5830   if (!G)
5831     return false;
5832 
5833   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5834                                   SrcDelta + G->getOffset());
5835 }
5836 
shouldLowerMemFuncForSize(const MachineFunction & MF,SelectionDAG & DAG)5837 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5838                                       SelectionDAG &DAG) {
5839   // On Darwin, -Os means optimize for size without hurting performance, so
5840   // only really optimize for size when -Oz (MinSize) is used.
5841   if (MF.getTarget().getTargetTriple().isOSDarwin())
5842     return MF.getFunction().hasMinSize();
5843   return DAG.shouldOptForSize();
5844 }
5845 
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)5846 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5847                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5848                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5849                           SmallVector<SDValue, 16> &OutStoreChains) {
5850   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5851   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5852   SmallVector<SDValue, 16> GluedLoadChains;
5853   for (unsigned i = From; i < To; ++i) {
5854     OutChains.push_back(OutLoadChains[i]);
5855     GluedLoadChains.push_back(OutLoadChains[i]);
5856   }
5857 
5858   // Chain for all loads.
5859   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5860                                   GluedLoadChains);
5861 
5862   for (unsigned i = From; i < To; ++i) {
5863     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5864     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5865                                   ST->getBasePtr(), ST->getMemoryVT(),
5866                                   ST->getMemOperand());
5867     OutChains.push_back(NewStore);
5868   }
5869 }
5870 
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Alignment,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)5871 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5872                                        SDValue Chain, SDValue Dst, SDValue Src,
5873                                        uint64_t Size, unsigned Alignment,
5874                                        bool isVol, bool AlwaysInline,
5875                                        MachinePointerInfo DstPtrInfo,
5876                                        MachinePointerInfo SrcPtrInfo) {
5877   // Turn a memcpy of undef to nop.
5878   // FIXME: We need to honor volatile even is Src is undef.
5879   if (Src.isUndef())
5880     return Chain;
5881 
5882   // Expand memcpy to a series of load and store ops if the size operand falls
5883   // below a certain threshold.
5884   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5885   // rather than maybe a humongous number of loads and stores.
5886   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5887   const DataLayout &DL = DAG.getDataLayout();
5888   LLVMContext &C = *DAG.getContext();
5889   std::vector<EVT> MemOps;
5890   bool DstAlignCanChange = false;
5891   MachineFunction &MF = DAG.getMachineFunction();
5892   MachineFrameInfo &MFI = MF.getFrameInfo();
5893   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
5894   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5895   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5896     DstAlignCanChange = true;
5897   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5898   if (Alignment > SrcAlign)
5899     SrcAlign = Alignment;
5900   ConstantDataArraySlice Slice;
5901   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5902   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5903   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5904 
5905   if (!TLI.findOptimalMemOpLowering(
5906           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5907           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5908           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5909           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5910           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5911     return SDValue();
5912 
5913   if (DstAlignCanChange) {
5914     Type *Ty = MemOps[0].getTypeForEVT(C);
5915     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5916 
5917     // Don't promote to an alignment that would require dynamic stack
5918     // realignment.
5919     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5920     if (!TRI->needsStackRealignment(MF))
5921       while (NewAlign > Alignment &&
5922              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5923         NewAlign /= 2;
5924 
5925     if (NewAlign > Alignment) {
5926       // Give the stack frame object a larger alignment if needed.
5927       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5928         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5929       Alignment = NewAlign;
5930     }
5931   }
5932 
5933   MachineMemOperand::Flags MMOFlags =
5934       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5935   SmallVector<SDValue, 16> OutLoadChains;
5936   SmallVector<SDValue, 16> OutStoreChains;
5937   SmallVector<SDValue, 32> OutChains;
5938   unsigned NumMemOps = MemOps.size();
5939   uint64_t SrcOff = 0, DstOff = 0;
5940   for (unsigned i = 0; i != NumMemOps; ++i) {
5941     EVT VT = MemOps[i];
5942     unsigned VTSize = VT.getSizeInBits() / 8;
5943     SDValue Value, Store;
5944 
5945     if (VTSize > Size) {
5946       // Issuing an unaligned load / store pair  that overlaps with the previous
5947       // pair. Adjust the offset accordingly.
5948       assert(i == NumMemOps-1 && i != 0);
5949       SrcOff -= VTSize - Size;
5950       DstOff -= VTSize - Size;
5951     }
5952 
5953     if (CopyFromConstant &&
5954         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5955       // It's unlikely a store of a vector immediate can be done in a single
5956       // instruction. It would require a load from a constantpool first.
5957       // We only handle zero vectors here.
5958       // FIXME: Handle other cases where store of vector immediate is done in
5959       // a single instruction.
5960       ConstantDataArraySlice SubSlice;
5961       if (SrcOff < Slice.Length) {
5962         SubSlice = Slice;
5963         SubSlice.move(SrcOff);
5964       } else {
5965         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5966         SubSlice.Array = nullptr;
5967         SubSlice.Offset = 0;
5968         SubSlice.Length = VTSize;
5969       }
5970       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5971       if (Value.getNode()) {
5972         Store = DAG.getStore(
5973             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5974             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5975         OutChains.push_back(Store);
5976       }
5977     }
5978 
5979     if (!Store.getNode()) {
5980       // The type might not be legal for the target.  This should only happen
5981       // if the type is smaller than a legal type, as on PPC, so the right
5982       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5983       // to Load/Store if NVT==VT.
5984       // FIXME does the case above also need this?
5985       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5986       assert(NVT.bitsGE(VT));
5987 
5988       bool isDereferenceable =
5989         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5990       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5991       if (isDereferenceable)
5992         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5993 
5994       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5995                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5996                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5997                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5998       OutLoadChains.push_back(Value.getValue(1));
5999 
6000       Store = DAG.getTruncStore(
6001           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6002           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
6003       OutStoreChains.push_back(Store);
6004     }
6005     SrcOff += VTSize;
6006     DstOff += VTSize;
6007     Size -= VTSize;
6008   }
6009 
6010   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6011                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6012   unsigned NumLdStInMemcpy = OutStoreChains.size();
6013 
6014   if (NumLdStInMemcpy) {
6015     // It may be that memcpy might be converted to memset if it's memcpy
6016     // of constants. In such a case, we won't have loads and stores, but
6017     // just stores. In the absence of loads, there is nothing to gang up.
6018     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6019       // If target does not care, just leave as it.
6020       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6021         OutChains.push_back(OutLoadChains[i]);
6022         OutChains.push_back(OutStoreChains[i]);
6023       }
6024     } else {
6025       // Ld/St less than/equal limit set by target.
6026       if (NumLdStInMemcpy <= GluedLdStLimit) {
6027           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6028                                         NumLdStInMemcpy, OutLoadChains,
6029                                         OutStoreChains);
6030       } else {
6031         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6032         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6033         unsigned GlueIter = 0;
6034 
6035         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6036           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6037           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6038 
6039           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6040                                        OutLoadChains, OutStoreChains);
6041           GlueIter += GluedLdStLimit;
6042         }
6043 
6044         // Residual ld/st.
6045         if (RemainingLdStInMemcpy) {
6046           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6047                                         RemainingLdStInMemcpy, OutLoadChains,
6048                                         OutStoreChains);
6049         }
6050       }
6051     }
6052   }
6053   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6054 }
6055 
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6056 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6057                                         SDValue Chain, SDValue Dst, SDValue Src,
6058                                         uint64_t Size, unsigned Align,
6059                                         bool isVol, bool AlwaysInline,
6060                                         MachinePointerInfo DstPtrInfo,
6061                                         MachinePointerInfo SrcPtrInfo) {
6062   // Turn a memmove of undef to nop.
6063   // FIXME: We need to honor volatile even is Src is undef.
6064   if (Src.isUndef())
6065     return Chain;
6066 
6067   // Expand memmove to a series of load and store ops if the size operand falls
6068   // below a certain threshold.
6069   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6070   const DataLayout &DL = DAG.getDataLayout();
6071   LLVMContext &C = *DAG.getContext();
6072   std::vector<EVT> MemOps;
6073   bool DstAlignCanChange = false;
6074   MachineFunction &MF = DAG.getMachineFunction();
6075   MachineFrameInfo &MFI = MF.getFrameInfo();
6076   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6077   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6078   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6079     DstAlignCanChange = true;
6080   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6081   if (Align > SrcAlign)
6082     SrcAlign = Align;
6083   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6084   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
6085   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
6086   // correct code.
6087   bool AllowOverlap = false;
6088   if (!TLI.findOptimalMemOpLowering(
6089           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
6090           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
6091           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6092           MF.getFunction().getAttributes()))
6093     return SDValue();
6094 
6095   if (DstAlignCanChange) {
6096     Type *Ty = MemOps[0].getTypeForEVT(C);
6097     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
6098     if (NewAlign > Align) {
6099       // Give the stack frame object a larger alignment if needed.
6100       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6101         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6102       Align = NewAlign;
6103     }
6104   }
6105 
6106   MachineMemOperand::Flags MMOFlags =
6107       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6108   uint64_t SrcOff = 0, DstOff = 0;
6109   SmallVector<SDValue, 8> LoadValues;
6110   SmallVector<SDValue, 8> LoadChains;
6111   SmallVector<SDValue, 8> OutChains;
6112   unsigned NumMemOps = MemOps.size();
6113   for (unsigned i = 0; i < NumMemOps; i++) {
6114     EVT VT = MemOps[i];
6115     unsigned VTSize = VT.getSizeInBits() / 8;
6116     SDValue Value;
6117 
6118     bool isDereferenceable =
6119       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6120     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6121     if (isDereferenceable)
6122       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6123 
6124     Value =
6125         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6126                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6127     LoadValues.push_back(Value);
6128     LoadChains.push_back(Value.getValue(1));
6129     SrcOff += VTSize;
6130   }
6131   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6132   OutChains.clear();
6133   for (unsigned i = 0; i < NumMemOps; i++) {
6134     EVT VT = MemOps[i];
6135     unsigned VTSize = VT.getSizeInBits() / 8;
6136     SDValue Store;
6137 
6138     Store = DAG.getStore(Chain, dl, LoadValues[i],
6139                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6140                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6141     OutChains.push_back(Store);
6142     DstOff += VTSize;
6143   }
6144 
6145   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6146 }
6147 
6148 /// Lower the call to 'memset' intrinsic function into a series of store
6149 /// operations.
6150 ///
6151 /// \param DAG Selection DAG where lowered code is placed.
6152 /// \param dl Link to corresponding IR location.
6153 /// \param Chain Control flow dependency.
6154 /// \param Dst Pointer to destination memory location.
6155 /// \param Src Value of byte to write into the memory.
6156 /// \param Size Number of bytes to write.
6157 /// \param Align Alignment of the destination in bytes.
6158 /// \param isVol True if destination is volatile.
6159 /// \param DstPtrInfo IR information on the memory pointer.
6160 /// \returns New head in the control flow, if lowering was successful, empty
6161 /// SDValue otherwise.
6162 ///
6163 /// The function tries to replace 'llvm.memset' intrinsic with several store
6164 /// operations and value calculation code. This is usually profitable for small
6165 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,unsigned Align,bool isVol,MachinePointerInfo DstPtrInfo)6166 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6167                                SDValue Chain, SDValue Dst, SDValue Src,
6168                                uint64_t Size, unsigned Align, bool isVol,
6169                                MachinePointerInfo DstPtrInfo) {
6170   // Turn a memset of undef to nop.
6171   // FIXME: We need to honor volatile even is Src is undef.
6172   if (Src.isUndef())
6173     return Chain;
6174 
6175   // Expand memset to a series of load/store ops if the size operand
6176   // falls below a certain threshold.
6177   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6178   std::vector<EVT> MemOps;
6179   bool DstAlignCanChange = false;
6180   MachineFunction &MF = DAG.getMachineFunction();
6181   MachineFrameInfo &MFI = MF.getFrameInfo();
6182   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6183   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6184   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6185     DstAlignCanChange = true;
6186   bool IsZeroVal =
6187     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6188   if (!TLI.findOptimalMemOpLowering(
6189           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6190           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6191           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6192           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6193           MF.getFunction().getAttributes()))
6194     return SDValue();
6195 
6196   if (DstAlignCanChange) {
6197     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6198     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6199     if (NewAlign > Align) {
6200       // Give the stack frame object a larger alignment if needed.
6201       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6202         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6203       Align = NewAlign;
6204     }
6205   }
6206 
6207   SmallVector<SDValue, 8> OutChains;
6208   uint64_t DstOff = 0;
6209   unsigned NumMemOps = MemOps.size();
6210 
6211   // Find the largest store and generate the bit pattern for it.
6212   EVT LargestVT = MemOps[0];
6213   for (unsigned i = 1; i < NumMemOps; i++)
6214     if (MemOps[i].bitsGT(LargestVT))
6215       LargestVT = MemOps[i];
6216   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6217 
6218   for (unsigned i = 0; i < NumMemOps; i++) {
6219     EVT VT = MemOps[i];
6220     unsigned VTSize = VT.getSizeInBits() / 8;
6221     if (VTSize > Size) {
6222       // Issuing an unaligned load / store pair  that overlaps with the previous
6223       // pair. Adjust the offset accordingly.
6224       assert(i == NumMemOps-1 && i != 0);
6225       DstOff -= VTSize - Size;
6226     }
6227 
6228     // If this store is smaller than the largest store see whether we can get
6229     // the smaller value for free with a truncate.
6230     SDValue Value = MemSetValue;
6231     if (VT.bitsLT(LargestVT)) {
6232       if (!LargestVT.isVector() && !VT.isVector() &&
6233           TLI.isTruncateFree(LargestVT, VT))
6234         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6235       else
6236         Value = getMemsetValue(Src, VT, DAG, dl);
6237     }
6238     assert(Value.getValueType() == VT && "Value with wrong type.");
6239     SDValue Store = DAG.getStore(
6240         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6241         DstPtrInfo.getWithOffset(DstOff), Align,
6242         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6243     OutChains.push_back(Store);
6244     DstOff += VT.getSizeInBits() / 8;
6245     Size -= VTSize;
6246   }
6247 
6248   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6249 }
6250 
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)6251 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6252                                             unsigned AS) {
6253   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6254   // pointer operands can be losslessly bitcasted to pointers of address space 0
6255   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6256     report_fatal_error("cannot lower memory intrinsic in address space " +
6257                        Twine(AS));
6258   }
6259 }
6260 
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool AlwaysInline,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6261 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6262                                 SDValue Src, SDValue Size, unsigned Align,
6263                                 bool isVol, bool AlwaysInline, bool isTailCall,
6264                                 MachinePointerInfo DstPtrInfo,
6265                                 MachinePointerInfo SrcPtrInfo) {
6266   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6267 
6268   // Check to see if we should lower the memcpy to loads and stores first.
6269   // For cases within the target-specified limits, this is the best choice.
6270   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6271   if (ConstantSize) {
6272     // Memcpy with size zero? Just return the original chain.
6273     if (ConstantSize->isNullValue())
6274       return Chain;
6275 
6276     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6277                                              ConstantSize->getZExtValue(),Align,
6278                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6279     if (Result.getNode())
6280       return Result;
6281   }
6282 
6283   // Then check to see if we should lower the memcpy with target-specific
6284   // code. If the target chooses to do this, this is the next best.
6285   if (TSI) {
6286     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6287         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6288         DstPtrInfo, SrcPtrInfo);
6289     if (Result.getNode())
6290       return Result;
6291   }
6292 
6293   // If we really need inline code and the target declined to provide it,
6294   // use a (potentially long) sequence of loads and stores.
6295   if (AlwaysInline) {
6296     assert(ConstantSize && "AlwaysInline requires a constant size!");
6297     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6298                                    ConstantSize->getZExtValue(), Align, isVol,
6299                                    true, DstPtrInfo, SrcPtrInfo);
6300   }
6301 
6302   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6303   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6304 
6305   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6306   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6307   // respect volatile, so they may do things like read or write memory
6308   // beyond the given memory regions. But fixing this isn't easy, and most
6309   // people don't care.
6310 
6311   // Emit a library call.
6312   TargetLowering::ArgListTy Args;
6313   TargetLowering::ArgListEntry Entry;
6314   Entry.Ty = Type::getInt8PtrTy(*getContext());
6315   Entry.Node = Dst; Args.push_back(Entry);
6316   Entry.Node = Src; Args.push_back(Entry);
6317 
6318   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6319   Entry.Node = Size; Args.push_back(Entry);
6320   // FIXME: pass in SDLoc
6321   TargetLowering::CallLoweringInfo CLI(*this);
6322   CLI.setDebugLoc(dl)
6323       .setChain(Chain)
6324       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6325                     Dst.getValueType().getTypeForEVT(*getContext()),
6326                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6327                                       TLI->getPointerTy(getDataLayout())),
6328                     std::move(Args))
6329       .setDiscardResult()
6330       .setTailCall(isTailCall);
6331 
6332   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6333   return CallResult.second;
6334 }
6335 
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6336 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6337                                       SDValue Dst, unsigned DstAlign,
6338                                       SDValue Src, unsigned SrcAlign,
6339                                       SDValue Size, Type *SizeTy,
6340                                       unsigned ElemSz, bool isTailCall,
6341                                       MachinePointerInfo DstPtrInfo,
6342                                       MachinePointerInfo SrcPtrInfo) {
6343   // Emit a library call.
6344   TargetLowering::ArgListTy Args;
6345   TargetLowering::ArgListEntry Entry;
6346   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6347   Entry.Node = Dst;
6348   Args.push_back(Entry);
6349 
6350   Entry.Node = Src;
6351   Args.push_back(Entry);
6352 
6353   Entry.Ty = SizeTy;
6354   Entry.Node = Size;
6355   Args.push_back(Entry);
6356 
6357   RTLIB::Libcall LibraryCall =
6358       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6359   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6360     report_fatal_error("Unsupported element size");
6361 
6362   TargetLowering::CallLoweringInfo CLI(*this);
6363   CLI.setDebugLoc(dl)
6364       .setChain(Chain)
6365       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6366                     Type::getVoidTy(*getContext()),
6367                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6368                                       TLI->getPointerTy(getDataLayout())),
6369                     std::move(Args))
6370       .setDiscardResult()
6371       .setTailCall(isTailCall);
6372 
6373   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6374   return CallResult.second;
6375 }
6376 
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6377 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6378                                  SDValue Src, SDValue Size, unsigned Align,
6379                                  bool isVol, bool isTailCall,
6380                                  MachinePointerInfo DstPtrInfo,
6381                                  MachinePointerInfo SrcPtrInfo) {
6382   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6383 
6384   // Check to see if we should lower the memmove to loads and stores first.
6385   // For cases within the target-specified limits, this is the best choice.
6386   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6387   if (ConstantSize) {
6388     // Memmove with size zero? Just return the original chain.
6389     if (ConstantSize->isNullValue())
6390       return Chain;
6391 
6392     SDValue Result =
6393       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6394                                ConstantSize->getZExtValue(), Align, isVol,
6395                                false, DstPtrInfo, SrcPtrInfo);
6396     if (Result.getNode())
6397       return Result;
6398   }
6399 
6400   // Then check to see if we should lower the memmove with target-specific
6401   // code. If the target chooses to do this, this is the next best.
6402   if (TSI) {
6403     SDValue Result = TSI->EmitTargetCodeForMemmove(
6404         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6405     if (Result.getNode())
6406       return Result;
6407   }
6408 
6409   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6410   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6411 
6412   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6413   // not be safe.  See memcpy above for more details.
6414 
6415   // Emit a library call.
6416   TargetLowering::ArgListTy Args;
6417   TargetLowering::ArgListEntry Entry;
6418   Entry.Ty = Type::getInt8PtrTy(*getContext());
6419   Entry.Node = Dst; Args.push_back(Entry);
6420   Entry.Node = Src; Args.push_back(Entry);
6421 
6422   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6423   Entry.Node = Size; Args.push_back(Entry);
6424   // FIXME:  pass in SDLoc
6425   TargetLowering::CallLoweringInfo CLI(*this);
6426   CLI.setDebugLoc(dl)
6427       .setChain(Chain)
6428       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6429                     Dst.getValueType().getTypeForEVT(*getContext()),
6430                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6431                                       TLI->getPointerTy(getDataLayout())),
6432                     std::move(Args))
6433       .setDiscardResult()
6434       .setTailCall(isTailCall);
6435 
6436   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6437   return CallResult.second;
6438 }
6439 
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6440 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6441                                        SDValue Dst, unsigned DstAlign,
6442                                        SDValue Src, unsigned SrcAlign,
6443                                        SDValue Size, Type *SizeTy,
6444                                        unsigned ElemSz, bool isTailCall,
6445                                        MachinePointerInfo DstPtrInfo,
6446                                        MachinePointerInfo SrcPtrInfo) {
6447   // Emit a library call.
6448   TargetLowering::ArgListTy Args;
6449   TargetLowering::ArgListEntry Entry;
6450   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6451   Entry.Node = Dst;
6452   Args.push_back(Entry);
6453 
6454   Entry.Node = Src;
6455   Args.push_back(Entry);
6456 
6457   Entry.Ty = SizeTy;
6458   Entry.Node = Size;
6459   Args.push_back(Entry);
6460 
6461   RTLIB::Libcall LibraryCall =
6462       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6463   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6464     report_fatal_error("Unsupported element size");
6465 
6466   TargetLowering::CallLoweringInfo CLI(*this);
6467   CLI.setDebugLoc(dl)
6468       .setChain(Chain)
6469       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6470                     Type::getVoidTy(*getContext()),
6471                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6472                                       TLI->getPointerTy(getDataLayout())),
6473                     std::move(Args))
6474       .setDiscardResult()
6475       .setTailCall(isTailCall);
6476 
6477   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6478   return CallResult.second;
6479 }
6480 
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,unsigned Align,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)6481 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6482                                 SDValue Src, SDValue Size, unsigned Align,
6483                                 bool isVol, bool isTailCall,
6484                                 MachinePointerInfo DstPtrInfo) {
6485   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6486 
6487   // Check to see if we should lower the memset to stores first.
6488   // For cases within the target-specified limits, this is the best choice.
6489   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6490   if (ConstantSize) {
6491     // Memset with size zero? Just return the original chain.
6492     if (ConstantSize->isNullValue())
6493       return Chain;
6494 
6495     SDValue Result =
6496       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6497                       Align, isVol, DstPtrInfo);
6498 
6499     if (Result.getNode())
6500       return Result;
6501   }
6502 
6503   // Then check to see if we should lower the memset with target-specific
6504   // code. If the target chooses to do this, this is the next best.
6505   if (TSI) {
6506     SDValue Result = TSI->EmitTargetCodeForMemset(
6507         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6508     if (Result.getNode())
6509       return Result;
6510   }
6511 
6512   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6513 
6514   // Emit a library call.
6515   TargetLowering::ArgListTy Args;
6516   TargetLowering::ArgListEntry Entry;
6517   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6518   Args.push_back(Entry);
6519   Entry.Node = Src;
6520   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6521   Args.push_back(Entry);
6522   Entry.Node = Size;
6523   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6524   Args.push_back(Entry);
6525 
6526   // FIXME: pass in SDLoc
6527   TargetLowering::CallLoweringInfo CLI(*this);
6528   CLI.setDebugLoc(dl)
6529       .setChain(Chain)
6530       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6531                     Dst.getValueType().getTypeForEVT(*getContext()),
6532                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6533                                       TLI->getPointerTy(getDataLayout())),
6534                     std::move(Args))
6535       .setDiscardResult()
6536       .setTailCall(isTailCall);
6537 
6538   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6539   return CallResult.second;
6540 }
6541 
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)6542 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6543                                       SDValue Dst, unsigned DstAlign,
6544                                       SDValue Value, SDValue Size, Type *SizeTy,
6545                                       unsigned ElemSz, bool isTailCall,
6546                                       MachinePointerInfo DstPtrInfo) {
6547   // Emit a library call.
6548   TargetLowering::ArgListTy Args;
6549   TargetLowering::ArgListEntry Entry;
6550   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6551   Entry.Node = Dst;
6552   Args.push_back(Entry);
6553 
6554   Entry.Ty = Type::getInt8Ty(*getContext());
6555   Entry.Node = Value;
6556   Args.push_back(Entry);
6557 
6558   Entry.Ty = SizeTy;
6559   Entry.Node = Size;
6560   Args.push_back(Entry);
6561 
6562   RTLIB::Libcall LibraryCall =
6563       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6564   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6565     report_fatal_error("Unsupported element size");
6566 
6567   TargetLowering::CallLoweringInfo CLI(*this);
6568   CLI.setDebugLoc(dl)
6569       .setChain(Chain)
6570       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6571                     Type::getVoidTy(*getContext()),
6572                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6573                                       TLI->getPointerTy(getDataLayout())),
6574                     std::move(Args))
6575       .setDiscardResult()
6576       .setTailCall(isTailCall);
6577 
6578   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6579   return CallResult.second;
6580 }
6581 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)6582 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6583                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6584                                 MachineMemOperand *MMO) {
6585   FoldingSetNodeID ID;
6586   ID.AddInteger(MemVT.getRawBits());
6587   AddNodeIDNode(ID, Opcode, VTList, Ops);
6588   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6589   void* IP = nullptr;
6590   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6591     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6592     return SDValue(E, 0);
6593   }
6594 
6595   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6596                                     VTList, MemVT, MMO);
6597   createOperands(N, Ops);
6598 
6599   CSEMap.InsertNode(N, IP);
6600   InsertNode(N);
6601   return SDValue(N, 0);
6602 }
6603 
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)6604 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6605                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6606                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6607                                        MachineMemOperand *MMO) {
6608   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6609          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6610   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6611 
6612   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6613   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6614 }
6615 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)6616 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6617                                 SDValue Chain, SDValue Ptr, SDValue Val,
6618                                 MachineMemOperand *MMO) {
6619   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6620           Opcode == ISD::ATOMIC_LOAD_SUB ||
6621           Opcode == ISD::ATOMIC_LOAD_AND ||
6622           Opcode == ISD::ATOMIC_LOAD_CLR ||
6623           Opcode == ISD::ATOMIC_LOAD_OR ||
6624           Opcode == ISD::ATOMIC_LOAD_XOR ||
6625           Opcode == ISD::ATOMIC_LOAD_NAND ||
6626           Opcode == ISD::ATOMIC_LOAD_MIN ||
6627           Opcode == ISD::ATOMIC_LOAD_MAX ||
6628           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6629           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6630           Opcode == ISD::ATOMIC_LOAD_FADD ||
6631           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6632           Opcode == ISD::ATOMIC_SWAP ||
6633           Opcode == ISD::ATOMIC_STORE) &&
6634          "Invalid Atomic Op");
6635 
6636   EVT VT = Val.getValueType();
6637 
6638   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6639                                                getVTList(VT, MVT::Other);
6640   SDValue Ops[] = {Chain, Ptr, Val};
6641   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6642 }
6643 
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6644 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6645                                 EVT VT, SDValue Chain, SDValue Ptr,
6646                                 MachineMemOperand *MMO) {
6647   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6648 
6649   SDVTList VTs = getVTList(VT, MVT::Other);
6650   SDValue Ops[] = {Chain, Ptr};
6651   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6652 }
6653 
6654 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)6655 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6656   if (Ops.size() == 1)
6657     return Ops[0];
6658 
6659   SmallVector<EVT, 4> VTs;
6660   VTs.reserve(Ops.size());
6661   for (unsigned i = 0; i < Ops.size(); ++i)
6662     VTs.push_back(Ops[i].getValueType());
6663   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6664 }
6665 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,unsigned Align,MachineMemOperand::Flags Flags,uint64_t Size,const AAMDNodes & AAInfo)6666 SDValue SelectionDAG::getMemIntrinsicNode(
6667     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6668     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6669     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6670   if (Align == 0)  // Ensure that codegen never sees alignment 0
6671     Align = getEVTAlignment(MemVT);
6672 
6673   if (!Size && MemVT.isScalableVector())
6674     Size = MemoryLocation::UnknownSize;
6675   else if (!Size)
6676     Size = MemVT.getStoreSize();
6677 
6678   MachineFunction &MF = getMachineFunction();
6679   MachineMemOperand *MMO =
6680       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6681 
6682   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6683 }
6684 
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)6685 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6686                                           SDVTList VTList,
6687                                           ArrayRef<SDValue> Ops, EVT MemVT,
6688                                           MachineMemOperand *MMO) {
6689   assert((Opcode == ISD::INTRINSIC_VOID ||
6690           Opcode == ISD::INTRINSIC_W_CHAIN ||
6691           Opcode == ISD::PREFETCH ||
6692           Opcode == ISD::LIFETIME_START ||
6693           Opcode == ISD::LIFETIME_END ||
6694           ((int)Opcode <= std::numeric_limits<int>::max() &&
6695            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6696          "Opcode is not a memory-accessing opcode!");
6697 
6698   // Memoize the node unless it returns a flag.
6699   MemIntrinsicSDNode *N;
6700   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6701     FoldingSetNodeID ID;
6702     AddNodeIDNode(ID, Opcode, VTList, Ops);
6703     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6704         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6705     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6706     void *IP = nullptr;
6707     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6708       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6709       return SDValue(E, 0);
6710     }
6711 
6712     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6713                                       VTList, MemVT, MMO);
6714     createOperands(N, Ops);
6715 
6716   CSEMap.InsertNode(N, IP);
6717   } else {
6718     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6719                                       VTList, MemVT, MMO);
6720     createOperands(N, Ops);
6721   }
6722   InsertNode(N);
6723   SDValue V(N, 0);
6724   NewSDValueDbgMsg(V, "Creating new node: ", this);
6725   return V;
6726 }
6727 
getLifetimeNode(bool IsStart,const SDLoc & dl,SDValue Chain,int FrameIndex,int64_t Size,int64_t Offset)6728 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6729                                       SDValue Chain, int FrameIndex,
6730                                       int64_t Size, int64_t Offset) {
6731   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6732   const auto VTs = getVTList(MVT::Other);
6733   SDValue Ops[2] = {
6734       Chain,
6735       getFrameIndex(FrameIndex,
6736                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6737                     true)};
6738 
6739   FoldingSetNodeID ID;
6740   AddNodeIDNode(ID, Opcode, VTs, Ops);
6741   ID.AddInteger(FrameIndex);
6742   ID.AddInteger(Size);
6743   ID.AddInteger(Offset);
6744   void *IP = nullptr;
6745   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6746     return SDValue(E, 0);
6747 
6748   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6749       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6750   createOperands(N, Ops);
6751   CSEMap.InsertNode(N, IP);
6752   InsertNode(N);
6753   SDValue V(N, 0);
6754   NewSDValueDbgMsg(V, "Creating new node: ", this);
6755   return V;
6756 }
6757 
6758 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6759 /// MachinePointerInfo record from it.  This is particularly useful because the
6760 /// code generator has many cases where it doesn't bother passing in a
6761 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)6762 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6763                                            SelectionDAG &DAG, SDValue Ptr,
6764                                            int64_t Offset = 0) {
6765   // If this is FI+Offset, we can model it.
6766   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6767     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6768                                              FI->getIndex(), Offset);
6769 
6770   // If this is (FI+Offset1)+Offset2, we can model it.
6771   if (Ptr.getOpcode() != ISD::ADD ||
6772       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6773       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6774     return Info;
6775 
6776   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6777   return MachinePointerInfo::getFixedStack(
6778       DAG.getMachineFunction(), FI,
6779       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6780 }
6781 
6782 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6783 /// MachinePointerInfo record from it.  This is particularly useful because the
6784 /// code generator has many cases where it doesn't bother passing in a
6785 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)6786 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6787                                            SelectionDAG &DAG, SDValue Ptr,
6788                                            SDValue OffsetOp) {
6789   // If the 'Offset' value isn't a constant, we can't handle this.
6790   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6791     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6792   if (OffsetOp.isUndef())
6793     return InferPointerInfo(Info, DAG, Ptr);
6794   return Info;
6795 }
6796 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6797 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6798                               EVT VT, const SDLoc &dl, SDValue Chain,
6799                               SDValue Ptr, SDValue Offset,
6800                               MachinePointerInfo PtrInfo, EVT MemVT,
6801                               unsigned Alignment,
6802                               MachineMemOperand::Flags MMOFlags,
6803                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6804   assert(Chain.getValueType() == MVT::Other &&
6805         "Invalid chain type");
6806   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6807     Alignment = getEVTAlignment(MemVT);
6808 
6809   MMOFlags |= MachineMemOperand::MOLoad;
6810   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6811   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6812   // clients.
6813   if (PtrInfo.V.isNull())
6814     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6815 
6816   MachineFunction &MF = getMachineFunction();
6817   MachineMemOperand *MMO = MF.getMachineMemOperand(
6818       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6819   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6820 }
6821 
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)6822 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6823                               EVT VT, const SDLoc &dl, SDValue Chain,
6824                               SDValue Ptr, SDValue Offset, EVT MemVT,
6825                               MachineMemOperand *MMO) {
6826   if (VT == MemVT) {
6827     ExtType = ISD::NON_EXTLOAD;
6828   } else if (ExtType == ISD::NON_EXTLOAD) {
6829     assert(VT == MemVT && "Non-extending load from different memory type!");
6830   } else {
6831     // Extending load.
6832     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6833            "Should only be an extending load, not truncating!");
6834     assert(VT.isInteger() == MemVT.isInteger() &&
6835            "Cannot convert from FP to Int or Int -> FP!");
6836     assert(VT.isVector() == MemVT.isVector() &&
6837            "Cannot use an ext load to convert to or from a vector!");
6838     assert((!VT.isVector() ||
6839             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6840            "Cannot use an ext load to change the number of vector elements!");
6841   }
6842 
6843   bool Indexed = AM != ISD::UNINDEXED;
6844   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6845 
6846   SDVTList VTs = Indexed ?
6847     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6848   SDValue Ops[] = { Chain, Ptr, Offset };
6849   FoldingSetNodeID ID;
6850   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6851   ID.AddInteger(MemVT.getRawBits());
6852   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6853       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6854   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6855   void *IP = nullptr;
6856   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6857     cast<LoadSDNode>(E)->refineAlignment(MMO);
6858     return SDValue(E, 0);
6859   }
6860   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6861                                   ExtType, MemVT, MMO);
6862   createOperands(N, Ops);
6863 
6864   CSEMap.InsertNode(N, IP);
6865   InsertNode(N);
6866   SDValue V(N, 0);
6867   NewSDValueDbgMsg(V, "Creating new node: ", this);
6868   return V;
6869 }
6870 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)6871 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6872                               SDValue Ptr, MachinePointerInfo PtrInfo,
6873                               unsigned Alignment,
6874                               MachineMemOperand::Flags MMOFlags,
6875                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6876   SDValue Undef = getUNDEF(Ptr.getValueType());
6877   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6878                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6879 }
6880 
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6881 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6882                               SDValue Ptr, MachineMemOperand *MMO) {
6883   SDValue Undef = getUNDEF(Ptr.getValueType());
6884   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6885                  VT, MMO);
6886 }
6887 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6888 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6889                                  EVT VT, SDValue Chain, SDValue Ptr,
6890                                  MachinePointerInfo PtrInfo, EVT MemVT,
6891                                  unsigned Alignment,
6892                                  MachineMemOperand::Flags MMOFlags,
6893                                  const AAMDNodes &AAInfo) {
6894   SDValue Undef = getUNDEF(Ptr.getValueType());
6895   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6896                  MemVT, Alignment, MMOFlags, AAInfo);
6897 }
6898 
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)6899 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6900                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6901                                  MachineMemOperand *MMO) {
6902   SDValue Undef = getUNDEF(Ptr.getValueType());
6903   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6904                  MemVT, MMO);
6905 }
6906 
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)6907 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6908                                      SDValue Base, SDValue Offset,
6909                                      ISD::MemIndexedMode AM) {
6910   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6911   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6912   // Don't propagate the invariant or dereferenceable flags.
6913   auto MMOFlags =
6914       LD->getMemOperand()->getFlags() &
6915       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6916   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6917                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6918                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6919                  LD->getAAInfo());
6920 }
6921 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6922 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6923                                SDValue Ptr, MachinePointerInfo PtrInfo,
6924                                unsigned Alignment,
6925                                MachineMemOperand::Flags MMOFlags,
6926                                const AAMDNodes &AAInfo) {
6927   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6928   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6929     Alignment = getEVTAlignment(Val.getValueType());
6930 
6931   MMOFlags |= MachineMemOperand::MOStore;
6932   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6933 
6934   if (PtrInfo.V.isNull())
6935     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6936 
6937   MachineFunction &MF = getMachineFunction();
6938   MachineMemOperand *MMO = MF.getMachineMemOperand(
6939       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6940   return getStore(Chain, dl, Val, Ptr, MMO);
6941 }
6942 
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)6943 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6944                                SDValue Ptr, MachineMemOperand *MMO) {
6945   assert(Chain.getValueType() == MVT::Other &&
6946         "Invalid chain type");
6947   EVT VT = Val.getValueType();
6948   SDVTList VTs = getVTList(MVT::Other);
6949   SDValue Undef = getUNDEF(Ptr.getValueType());
6950   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6951   FoldingSetNodeID ID;
6952   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6953   ID.AddInteger(VT.getRawBits());
6954   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6955       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6956   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6957   void *IP = nullptr;
6958   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6959     cast<StoreSDNode>(E)->refineAlignment(MMO);
6960     return SDValue(E, 0);
6961   }
6962   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6963                                    ISD::UNINDEXED, false, VT, MMO);
6964   createOperands(N, Ops);
6965 
6966   CSEMap.InsertNode(N, IP);
6967   InsertNode(N);
6968   SDValue V(N, 0);
6969   NewSDValueDbgMsg(V, "Creating new node: ", this);
6970   return V;
6971 }
6972 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,unsigned Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)6973 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6974                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6975                                     EVT SVT, unsigned Alignment,
6976                                     MachineMemOperand::Flags MMOFlags,
6977                                     const AAMDNodes &AAInfo) {
6978   assert(Chain.getValueType() == MVT::Other &&
6979         "Invalid chain type");
6980   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6981     Alignment = getEVTAlignment(SVT);
6982 
6983   MMOFlags |= MachineMemOperand::MOStore;
6984   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6985 
6986   if (PtrInfo.V.isNull())
6987     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6988 
6989   MachineFunction &MF = getMachineFunction();
6990   MachineMemOperand *MMO = MF.getMachineMemOperand(
6991       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6992   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6993 }
6994 
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)6995 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6996                                     SDValue Ptr, EVT SVT,
6997                                     MachineMemOperand *MMO) {
6998   EVT VT = Val.getValueType();
6999 
7000   assert(Chain.getValueType() == MVT::Other &&
7001         "Invalid chain type");
7002   if (VT == SVT)
7003     return getStore(Chain, dl, Val, Ptr, MMO);
7004 
7005   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7006          "Should only be a truncating store, not extending!");
7007   assert(VT.isInteger() == SVT.isInteger() &&
7008          "Can't do FP-INT conversion!");
7009   assert(VT.isVector() == SVT.isVector() &&
7010          "Cannot use trunc store to convert to or from a vector!");
7011   assert((!VT.isVector() ||
7012           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7013          "Cannot use trunc store to change the number of vector elements!");
7014 
7015   SDVTList VTs = getVTList(MVT::Other);
7016   SDValue Undef = getUNDEF(Ptr.getValueType());
7017   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7018   FoldingSetNodeID ID;
7019   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7020   ID.AddInteger(SVT.getRawBits());
7021   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7022       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7023   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7024   void *IP = nullptr;
7025   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7026     cast<StoreSDNode>(E)->refineAlignment(MMO);
7027     return SDValue(E, 0);
7028   }
7029   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7030                                    ISD::UNINDEXED, true, SVT, MMO);
7031   createOperands(N, Ops);
7032 
7033   CSEMap.InsertNode(N, IP);
7034   InsertNode(N);
7035   SDValue V(N, 0);
7036   NewSDValueDbgMsg(V, "Creating new node: ", this);
7037   return V;
7038 }
7039 
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7040 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7041                                       SDValue Base, SDValue Offset,
7042                                       ISD::MemIndexedMode AM) {
7043   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7044   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7045   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7046   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7047   FoldingSetNodeID ID;
7048   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7049   ID.AddInteger(ST->getMemoryVT().getRawBits());
7050   ID.AddInteger(ST->getRawSubclassData());
7051   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7052   void *IP = nullptr;
7053   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7054     return SDValue(E, 0);
7055 
7056   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7057                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7058                                    ST->getMemOperand());
7059   createOperands(N, Ops);
7060 
7061   CSEMap.InsertNode(N, IP);
7062   InsertNode(N);
7063   SDValue V(N, 0);
7064   NewSDValueDbgMsg(V, "Creating new node: ", this);
7065   return V;
7066 }
7067 
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Base,SDValue Offset,SDValue Mask,SDValue PassThru,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,ISD::LoadExtType ExtTy,bool isExpanding)7068 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7069                                     SDValue Base, SDValue Offset, SDValue Mask,
7070                                     SDValue PassThru, EVT MemVT,
7071                                     MachineMemOperand *MMO,
7072                                     ISD::MemIndexedMode AM,
7073                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7074   bool Indexed = AM != ISD::UNINDEXED;
7075   assert((Indexed || Offset.isUndef()) &&
7076          "Unindexed masked load with an offset!");
7077   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7078                          : getVTList(VT, MVT::Other);
7079   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7080   FoldingSetNodeID ID;
7081   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7082   ID.AddInteger(MemVT.getRawBits());
7083   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7084       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7085   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7086   void *IP = nullptr;
7087   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7088     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7089     return SDValue(E, 0);
7090   }
7091   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7092                                         AM, ExtTy, isExpanding, MemVT, MMO);
7093   createOperands(N, Ops);
7094 
7095   CSEMap.InsertNode(N, IP);
7096   InsertNode(N);
7097   SDValue V(N, 0);
7098   NewSDValueDbgMsg(V, "Creating new node: ", this);
7099   return V;
7100 }
7101 
getIndexedMaskedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7102 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7103                                            SDValue Base, SDValue Offset,
7104                                            ISD::MemIndexedMode AM) {
7105   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7106   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7107   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7108                        Offset, LD->getMask(), LD->getPassThru(),
7109                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7110                        LD->getExtensionType(), LD->isExpandingLoad());
7111 }
7112 
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Base,SDValue Offset,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)7113 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7114                                      SDValue Val, SDValue Base, SDValue Offset,
7115                                      SDValue Mask, EVT MemVT,
7116                                      MachineMemOperand *MMO,
7117                                      ISD::MemIndexedMode AM, bool IsTruncating,
7118                                      bool IsCompressing) {
7119   assert(Chain.getValueType() == MVT::Other &&
7120         "Invalid chain type");
7121   bool Indexed = AM != ISD::UNINDEXED;
7122   assert((Indexed || Offset.isUndef()) &&
7123          "Unindexed masked store with an offset!");
7124   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7125                          : getVTList(MVT::Other);
7126   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7127   FoldingSetNodeID ID;
7128   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7129   ID.AddInteger(MemVT.getRawBits());
7130   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7131       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7132   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7133   void *IP = nullptr;
7134   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7135     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7136     return SDValue(E, 0);
7137   }
7138   auto *N =
7139       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7140                                    IsTruncating, IsCompressing, MemVT, MMO);
7141   createOperands(N, Ops);
7142 
7143   CSEMap.InsertNode(N, IP);
7144   InsertNode(N);
7145   SDValue V(N, 0);
7146   NewSDValueDbgMsg(V, "Creating new node: ", this);
7147   return V;
7148 }
7149 
getIndexedMaskedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7150 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7151                                             SDValue Base, SDValue Offset,
7152                                             ISD::MemIndexedMode AM) {
7153   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7154   assert(ST->getOffset().isUndef() &&
7155          "Masked store is already a indexed store!");
7156   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7157                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7158                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7159 }
7160 
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7161 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7162                                       ArrayRef<SDValue> Ops,
7163                                       MachineMemOperand *MMO,
7164                                       ISD::MemIndexType IndexType) {
7165   assert(Ops.size() == 6 && "Incompatible number of operands");
7166 
7167   FoldingSetNodeID ID;
7168   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7169   ID.AddInteger(VT.getRawBits());
7170   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7171       dl.getIROrder(), VTs, VT, MMO, IndexType));
7172   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7173   void *IP = nullptr;
7174   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7175     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7176     return SDValue(E, 0);
7177   }
7178 
7179   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7180                                           VTs, VT, MMO, IndexType);
7181   createOperands(N, Ops);
7182 
7183   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7184          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7185   assert(N->getMask().getValueType().getVectorNumElements() ==
7186              N->getValueType(0).getVectorNumElements() &&
7187          "Vector width mismatch between mask and data");
7188   assert(N->getIndex().getValueType().getVectorNumElements() >=
7189              N->getValueType(0).getVectorNumElements() &&
7190          "Vector width mismatch between index and data");
7191   assert(isa<ConstantSDNode>(N->getScale()) &&
7192          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7193          "Scale should be a constant power of 2");
7194 
7195   CSEMap.InsertNode(N, IP);
7196   InsertNode(N);
7197   SDValue V(N, 0);
7198   NewSDValueDbgMsg(V, "Creating new node: ", this);
7199   return V;
7200 }
7201 
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7202 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7203                                        ArrayRef<SDValue> Ops,
7204                                        MachineMemOperand *MMO,
7205                                        ISD::MemIndexType IndexType) {
7206   assert(Ops.size() == 6 && "Incompatible number of operands");
7207 
7208   FoldingSetNodeID ID;
7209   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7210   ID.AddInteger(VT.getRawBits());
7211   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7212       dl.getIROrder(), VTs, VT, MMO, IndexType));
7213   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7214   void *IP = nullptr;
7215   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7216     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7217     return SDValue(E, 0);
7218   }
7219   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7220                                            VTs, VT, MMO, IndexType);
7221   createOperands(N, Ops);
7222 
7223   assert(N->getMask().getValueType().getVectorNumElements() ==
7224              N->getValue().getValueType().getVectorNumElements() &&
7225          "Vector width mismatch between mask and data");
7226   assert(N->getIndex().getValueType().getVectorNumElements() >=
7227              N->getValue().getValueType().getVectorNumElements() &&
7228          "Vector width mismatch between index and data");
7229   assert(isa<ConstantSDNode>(N->getScale()) &&
7230          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7231          "Scale should be a constant power of 2");
7232 
7233   CSEMap.InsertNode(N, IP);
7234   InsertNode(N);
7235   SDValue V(N, 0);
7236   NewSDValueDbgMsg(V, "Creating new node: ", this);
7237   return V;
7238 }
7239 
simplifySelect(SDValue Cond,SDValue T,SDValue F)7240 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7241   // select undef, T, F --> T (if T is a constant), otherwise F
7242   // select, ?, undef, F --> F
7243   // select, ?, T, undef --> T
7244   if (Cond.isUndef())
7245     return isConstantValueOfAnyType(T) ? T : F;
7246   if (T.isUndef())
7247     return F;
7248   if (F.isUndef())
7249     return T;
7250 
7251   // select true, T, F --> T
7252   // select false, T, F --> F
7253   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7254     return CondC->isNullValue() ? F : T;
7255 
7256   // TODO: This should simplify VSELECT with constant condition using something
7257   // like this (but check boolean contents to be complete?):
7258   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7259   //    return T;
7260   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7261   //    return F;
7262 
7263   // select ?, T, T --> T
7264   if (T == F)
7265     return T;
7266 
7267   return SDValue();
7268 }
7269 
simplifyShift(SDValue X,SDValue Y)7270 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7271   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7272   if (X.isUndef())
7273     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7274   // shift X, undef --> undef (because it may shift by the bitwidth)
7275   if (Y.isUndef())
7276     return getUNDEF(X.getValueType());
7277 
7278   // shift 0, Y --> 0
7279   // shift X, 0 --> X
7280   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7281     return X;
7282 
7283   // shift X, C >= bitwidth(X) --> undef
7284   // All vector elements must be too big (or undef) to avoid partial undefs.
7285   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7286     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7287   };
7288   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7289     return getUNDEF(X.getValueType());
7290 
7291   return SDValue();
7292 }
7293 
7294 // TODO: Use fast-math-flags to enable more simplifications.
simplifyFPBinop(unsigned Opcode,SDValue X,SDValue Y)7295 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7296   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7297   if (!YC)
7298     return SDValue();
7299 
7300   // X + -0.0 --> X
7301   if (Opcode == ISD::FADD)
7302     if (YC->getValueAPF().isNegZero())
7303       return X;
7304 
7305   // X - +0.0 --> X
7306   if (Opcode == ISD::FSUB)
7307     if (YC->getValueAPF().isPosZero())
7308       return X;
7309 
7310   // X * 1.0 --> X
7311   // X / 1.0 --> X
7312   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7313     if (YC->getValueAPF().isExactlyValue(1.0))
7314       return X;
7315 
7316   return SDValue();
7317 }
7318 
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)7319 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7320                                SDValue Ptr, SDValue SV, unsigned Align) {
7321   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7322   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7323 }
7324 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)7325 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7326                               ArrayRef<SDUse> Ops) {
7327   switch (Ops.size()) {
7328   case 0: return getNode(Opcode, DL, VT);
7329   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7330   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7331   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7332   default: break;
7333   }
7334 
7335   // Copy from an SDUse array into an SDValue array for use with
7336   // the regular getNode logic.
7337   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7338   return getNode(Opcode, DL, VT, NewOps);
7339 }
7340 
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7341 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7342                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7343   unsigned NumOps = Ops.size();
7344   switch (NumOps) {
7345   case 0: return getNode(Opcode, DL, VT);
7346   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7347   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7348   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7349   default: break;
7350   }
7351 
7352   switch (Opcode) {
7353   default: break;
7354   case ISD::BUILD_VECTOR:
7355     // Attempt to simplify BUILD_VECTOR.
7356     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7357       return V;
7358     break;
7359   case ISD::CONCAT_VECTORS:
7360     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7361       return V;
7362     break;
7363   case ISD::SELECT_CC:
7364     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7365     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7366            "LHS and RHS of condition must have same type!");
7367     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7368            "True and False arms of SelectCC must have same type!");
7369     assert(Ops[2].getValueType() == VT &&
7370            "select_cc node must be of same type as true and false value!");
7371     break;
7372   case ISD::BR_CC:
7373     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7374     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7375            "LHS/RHS of comparison should match types!");
7376     break;
7377   }
7378 
7379   // Memoize nodes.
7380   SDNode *N;
7381   SDVTList VTs = getVTList(VT);
7382 
7383   if (VT != MVT::Glue) {
7384     FoldingSetNodeID ID;
7385     AddNodeIDNode(ID, Opcode, VTs, Ops);
7386     void *IP = nullptr;
7387 
7388     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7389       return SDValue(E, 0);
7390 
7391     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7392     createOperands(N, Ops);
7393 
7394     CSEMap.InsertNode(N, IP);
7395   } else {
7396     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7397     createOperands(N, Ops);
7398   }
7399 
7400   InsertNode(N);
7401   SDValue V(N, 0);
7402   NewSDValueDbgMsg(V, "Creating new node: ", this);
7403   return V;
7404 }
7405 
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)7406 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7407                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7408   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7409 }
7410 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops)7411 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7412                               ArrayRef<SDValue> Ops) {
7413   if (VTList.NumVTs == 1)
7414     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7415 
7416   switch (Opcode) {
7417   case ISD::STRICT_FP_EXTEND:
7418     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7419            "Invalid STRICT_FP_EXTEND!");
7420     assert(VTList.VTs[0].isFloatingPoint() &&
7421            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7422     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7423            "STRICT_FP_EXTEND result type should be vector iff the operand "
7424            "type is vector!");
7425     assert((!VTList.VTs[0].isVector() ||
7426             VTList.VTs[0].getVectorNumElements() ==
7427             Ops[1].getValueType().getVectorNumElements()) &&
7428            "Vector element count mismatch!");
7429     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7430            "Invalid fpext node, dst <= src!");
7431     break;
7432   case ISD::STRICT_FP_ROUND:
7433     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7434     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7435            "STRICT_FP_ROUND result type should be vector iff the operand "
7436            "type is vector!");
7437     assert((!VTList.VTs[0].isVector() ||
7438             VTList.VTs[0].getVectorNumElements() ==
7439             Ops[1].getValueType().getVectorNumElements()) &&
7440            "Vector element count mismatch!");
7441     assert(VTList.VTs[0].isFloatingPoint() &&
7442            Ops[1].getValueType().isFloatingPoint() &&
7443            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7444            isa<ConstantSDNode>(Ops[2]) &&
7445            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7446             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7447            "Invalid STRICT_FP_ROUND!");
7448     break;
7449 #if 0
7450   // FIXME: figure out how to safely handle things like
7451   // int foo(int x) { return 1 << (x & 255); }
7452   // int bar() { return foo(256); }
7453   case ISD::SRA_PARTS:
7454   case ISD::SRL_PARTS:
7455   case ISD::SHL_PARTS:
7456     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7457         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7458       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7459     else if (N3.getOpcode() == ISD::AND)
7460       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7461         // If the and is only masking out bits that cannot effect the shift,
7462         // eliminate the and.
7463         unsigned NumBits = VT.getScalarSizeInBits()*2;
7464         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7465           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7466       }
7467     break;
7468 #endif
7469   }
7470 
7471   // Memoize the node unless it returns a flag.
7472   SDNode *N;
7473   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7474     FoldingSetNodeID ID;
7475     AddNodeIDNode(ID, Opcode, VTList, Ops);
7476     void *IP = nullptr;
7477     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7478       return SDValue(E, 0);
7479 
7480     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7481     createOperands(N, Ops);
7482     CSEMap.InsertNode(N, IP);
7483   } else {
7484     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7485     createOperands(N, Ops);
7486   }
7487   InsertNode(N);
7488   SDValue V(N, 0);
7489   NewSDValueDbgMsg(V, "Creating new node: ", this);
7490   return V;
7491 }
7492 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)7493 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7494                               SDVTList VTList) {
7495   return getNode(Opcode, DL, VTList, None);
7496 }
7497 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)7498 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7499                               SDValue N1) {
7500   SDValue Ops[] = { N1 };
7501   return getNode(Opcode, DL, VTList, Ops);
7502 }
7503 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)7504 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7505                               SDValue N1, SDValue N2) {
7506   SDValue Ops[] = { N1, N2 };
7507   return getNode(Opcode, DL, VTList, Ops);
7508 }
7509 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)7510 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7511                               SDValue N1, SDValue N2, SDValue N3) {
7512   SDValue Ops[] = { N1, N2, N3 };
7513   return getNode(Opcode, DL, VTList, Ops);
7514 }
7515 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)7516 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7517                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7518   SDValue Ops[] = { N1, N2, N3, N4 };
7519   return getNode(Opcode, DL, VTList, Ops);
7520 }
7521 
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)7522 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7523                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7524                               SDValue N5) {
7525   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7526   return getNode(Opcode, DL, VTList, Ops);
7527 }
7528 
getVTList(EVT VT)7529 SDVTList SelectionDAG::getVTList(EVT VT) {
7530   return makeVTList(SDNode::getValueTypeList(VT), 1);
7531 }
7532 
getVTList(EVT VT1,EVT VT2)7533 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7534   FoldingSetNodeID ID;
7535   ID.AddInteger(2U);
7536   ID.AddInteger(VT1.getRawBits());
7537   ID.AddInteger(VT2.getRawBits());
7538 
7539   void *IP = nullptr;
7540   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7541   if (!Result) {
7542     EVT *Array = Allocator.Allocate<EVT>(2);
7543     Array[0] = VT1;
7544     Array[1] = VT2;
7545     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7546     VTListMap.InsertNode(Result, IP);
7547   }
7548   return Result->getSDVTList();
7549 }
7550 
getVTList(EVT VT1,EVT VT2,EVT VT3)7551 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7552   FoldingSetNodeID ID;
7553   ID.AddInteger(3U);
7554   ID.AddInteger(VT1.getRawBits());
7555   ID.AddInteger(VT2.getRawBits());
7556   ID.AddInteger(VT3.getRawBits());
7557 
7558   void *IP = nullptr;
7559   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7560   if (!Result) {
7561     EVT *Array = Allocator.Allocate<EVT>(3);
7562     Array[0] = VT1;
7563     Array[1] = VT2;
7564     Array[2] = VT3;
7565     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7566     VTListMap.InsertNode(Result, IP);
7567   }
7568   return Result->getSDVTList();
7569 }
7570 
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)7571 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7572   FoldingSetNodeID ID;
7573   ID.AddInteger(4U);
7574   ID.AddInteger(VT1.getRawBits());
7575   ID.AddInteger(VT2.getRawBits());
7576   ID.AddInteger(VT3.getRawBits());
7577   ID.AddInteger(VT4.getRawBits());
7578 
7579   void *IP = nullptr;
7580   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7581   if (!Result) {
7582     EVT *Array = Allocator.Allocate<EVT>(4);
7583     Array[0] = VT1;
7584     Array[1] = VT2;
7585     Array[2] = VT3;
7586     Array[3] = VT4;
7587     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7588     VTListMap.InsertNode(Result, IP);
7589   }
7590   return Result->getSDVTList();
7591 }
7592 
getVTList(ArrayRef<EVT> VTs)7593 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7594   unsigned NumVTs = VTs.size();
7595   FoldingSetNodeID ID;
7596   ID.AddInteger(NumVTs);
7597   for (unsigned index = 0; index < NumVTs; index++) {
7598     ID.AddInteger(VTs[index].getRawBits());
7599   }
7600 
7601   void *IP = nullptr;
7602   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7603   if (!Result) {
7604     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7605     llvm::copy(VTs, Array);
7606     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7607     VTListMap.InsertNode(Result, IP);
7608   }
7609   return Result->getSDVTList();
7610 }
7611 
7612 
7613 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7614 /// specified operands.  If the resultant node already exists in the DAG,
7615 /// this does not modify the specified node, instead it returns the node that
7616 /// already exists.  If the resultant node does not exist in the DAG, the
7617 /// input node is returned.  As a degenerate case, if you specify the same
7618 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)7619 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7620   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7621 
7622   // Check to see if there is no change.
7623   if (Op == N->getOperand(0)) return N;
7624 
7625   // See if the modified node already exists.
7626   void *InsertPos = nullptr;
7627   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7628     return Existing;
7629 
7630   // Nope it doesn't.  Remove the node from its current place in the maps.
7631   if (InsertPos)
7632     if (!RemoveNodeFromCSEMaps(N))
7633       InsertPos = nullptr;
7634 
7635   // Now we update the operands.
7636   N->OperandList[0].set(Op);
7637 
7638   updateDivergence(N);
7639   // If this gets put into a CSE map, add it.
7640   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7641   return N;
7642 }
7643 
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)7644 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7645   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7646 
7647   // Check to see if there is no change.
7648   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7649     return N;   // No operands changed, just return the input node.
7650 
7651   // See if the modified node already exists.
7652   void *InsertPos = nullptr;
7653   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7654     return Existing;
7655 
7656   // Nope it doesn't.  Remove the node from its current place in the maps.
7657   if (InsertPos)
7658     if (!RemoveNodeFromCSEMaps(N))
7659       InsertPos = nullptr;
7660 
7661   // Now we update the operands.
7662   if (N->OperandList[0] != Op1)
7663     N->OperandList[0].set(Op1);
7664   if (N->OperandList[1] != Op2)
7665     N->OperandList[1].set(Op2);
7666 
7667   updateDivergence(N);
7668   // If this gets put into a CSE map, add it.
7669   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7670   return N;
7671 }
7672 
7673 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)7674 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7675   SDValue Ops[] = { Op1, Op2, Op3 };
7676   return UpdateNodeOperands(N, Ops);
7677 }
7678 
7679 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)7680 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7681                    SDValue Op3, SDValue Op4) {
7682   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7683   return UpdateNodeOperands(N, Ops);
7684 }
7685 
7686 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)7687 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7688                    SDValue Op3, SDValue Op4, SDValue Op5) {
7689   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7690   return UpdateNodeOperands(N, Ops);
7691 }
7692 
7693 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)7694 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7695   unsigned NumOps = Ops.size();
7696   assert(N->getNumOperands() == NumOps &&
7697          "Update with wrong number of operands");
7698 
7699   // If no operands changed just return the input node.
7700   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7701     return N;
7702 
7703   // See if the modified node already exists.
7704   void *InsertPos = nullptr;
7705   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7706     return Existing;
7707 
7708   // Nope it doesn't.  Remove the node from its current place in the maps.
7709   if (InsertPos)
7710     if (!RemoveNodeFromCSEMaps(N))
7711       InsertPos = nullptr;
7712 
7713   // Now we update the operands.
7714   for (unsigned i = 0; i != NumOps; ++i)
7715     if (N->OperandList[i] != Ops[i])
7716       N->OperandList[i].set(Ops[i]);
7717 
7718   updateDivergence(N);
7719   // If this gets put into a CSE map, add it.
7720   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7721   return N;
7722 }
7723 
7724 /// DropOperands - Release the operands and set this node to have
7725 /// zero operands.
DropOperands()7726 void SDNode::DropOperands() {
7727   // Unlike the code in MorphNodeTo that does this, we don't need to
7728   // watch for dead nodes here.
7729   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7730     SDUse &Use = *I++;
7731     Use.set(SDValue());
7732   }
7733 }
7734 
setNodeMemRefs(MachineSDNode * N,ArrayRef<MachineMemOperand * > NewMemRefs)7735 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7736                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7737   if (NewMemRefs.empty()) {
7738     N->clearMemRefs();
7739     return;
7740   }
7741 
7742   // Check if we can avoid allocating by storing a single reference directly.
7743   if (NewMemRefs.size() == 1) {
7744     N->MemRefs = NewMemRefs[0];
7745     N->NumMemRefs = 1;
7746     return;
7747   }
7748 
7749   MachineMemOperand **MemRefsBuffer =
7750       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7751   llvm::copy(NewMemRefs, MemRefsBuffer);
7752   N->MemRefs = MemRefsBuffer;
7753   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7754 }
7755 
7756 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7757 /// machine opcode.
7758 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)7759 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7760                                    EVT VT) {
7761   SDVTList VTs = getVTList(VT);
7762   return SelectNodeTo(N, MachineOpc, VTs, None);
7763 }
7764 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)7765 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7766                                    EVT VT, SDValue Op1) {
7767   SDVTList VTs = getVTList(VT);
7768   SDValue Ops[] = { Op1 };
7769   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7770 }
7771 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)7772 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7773                                    EVT VT, SDValue Op1,
7774                                    SDValue Op2) {
7775   SDVTList VTs = getVTList(VT);
7776   SDValue Ops[] = { Op1, Op2 };
7777   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7778 }
7779 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7780 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7781                                    EVT VT, SDValue Op1,
7782                                    SDValue Op2, SDValue Op3) {
7783   SDVTList VTs = getVTList(VT);
7784   SDValue Ops[] = { Op1, Op2, Op3 };
7785   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7786 }
7787 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)7788 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7789                                    EVT VT, ArrayRef<SDValue> Ops) {
7790   SDVTList VTs = getVTList(VT);
7791   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7792 }
7793 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)7794 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7795                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7796   SDVTList VTs = getVTList(VT1, VT2);
7797   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7798 }
7799 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)7800 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7801                                    EVT VT1, EVT VT2) {
7802   SDVTList VTs = getVTList(VT1, VT2);
7803   return SelectNodeTo(N, MachineOpc, VTs, None);
7804 }
7805 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)7806 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7807                                    EVT VT1, EVT VT2, EVT VT3,
7808                                    ArrayRef<SDValue> Ops) {
7809   SDVTList VTs = getVTList(VT1, VT2, VT3);
7810   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7811 }
7812 
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)7813 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7814                                    EVT VT1, EVT VT2,
7815                                    SDValue Op1, SDValue Op2) {
7816   SDVTList VTs = getVTList(VT1, VT2);
7817   SDValue Ops[] = { Op1, Op2 };
7818   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7819 }
7820 
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)7821 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7822                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7823   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7824   // Reset the NodeID to -1.
7825   New->setNodeId(-1);
7826   if (New != N) {
7827     ReplaceAllUsesWith(N, New);
7828     RemoveDeadNode(N);
7829   }
7830   return New;
7831 }
7832 
7833 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7834 /// the line number information on the merged node since it is not possible to
7835 /// preserve the information that operation is associated with multiple lines.
7836 /// This will make the debugger working better at -O0, were there is a higher
7837 /// probability having other instructions associated with that line.
7838 ///
7839 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)7840 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7841   DebugLoc NLoc = N->getDebugLoc();
7842   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7843     N->setDebugLoc(DebugLoc());
7844   }
7845   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7846   N->setIROrder(Order);
7847   return N;
7848 }
7849 
7850 /// MorphNodeTo - This *mutates* the specified node to have the specified
7851 /// return type, opcode, and operands.
7852 ///
7853 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7854 /// node of the specified opcode and operands, it returns that node instead of
7855 /// the current one.  Note that the SDLoc need not be the same.
7856 ///
7857 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7858 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7859 /// node, and because it doesn't require CSE recalculation for any of
7860 /// the node's users.
7861 ///
7862 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7863 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7864 /// the legalizer which maintain worklists that would need to be updated when
7865 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)7866 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7867                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7868   // If an identical node already exists, use it.
7869   void *IP = nullptr;
7870   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7871     FoldingSetNodeID ID;
7872     AddNodeIDNode(ID, Opc, VTs, Ops);
7873     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7874       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7875   }
7876 
7877   if (!RemoveNodeFromCSEMaps(N))
7878     IP = nullptr;
7879 
7880   // Start the morphing.
7881   N->NodeType = Opc;
7882   N->ValueList = VTs.VTs;
7883   N->NumValues = VTs.NumVTs;
7884 
7885   // Clear the operands list, updating used nodes to remove this from their
7886   // use list.  Keep track of any operands that become dead as a result.
7887   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7888   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7889     SDUse &Use = *I++;
7890     SDNode *Used = Use.getNode();
7891     Use.set(SDValue());
7892     if (Used->use_empty())
7893       DeadNodeSet.insert(Used);
7894   }
7895 
7896   // For MachineNode, initialize the memory references information.
7897   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7898     MN->clearMemRefs();
7899 
7900   // Swap for an appropriately sized array from the recycler.
7901   removeOperands(N);
7902   createOperands(N, Ops);
7903 
7904   // Delete any nodes that are still dead after adding the uses for the
7905   // new operands.
7906   if (!DeadNodeSet.empty()) {
7907     SmallVector<SDNode *, 16> DeadNodes;
7908     for (SDNode *N : DeadNodeSet)
7909       if (N->use_empty())
7910         DeadNodes.push_back(N);
7911     RemoveDeadNodes(DeadNodes);
7912   }
7913 
7914   if (IP)
7915     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7916   return N;
7917 }
7918 
mutateStrictFPToFP(SDNode * Node)7919 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7920   unsigned OrigOpc = Node->getOpcode();
7921   unsigned NewOpc;
7922   switch (OrigOpc) {
7923   default:
7924     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7925 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
7926   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
7927 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7928   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
7929 #include "llvm/IR/ConstrainedOps.def"
7930   }
7931 
7932   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7933 
7934   // We're taking this node out of the chain, so we need to re-link things.
7935   SDValue InputChain = Node->getOperand(0);
7936   SDValue OutputChain = SDValue(Node, 1);
7937   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7938 
7939   SmallVector<SDValue, 3> Ops;
7940   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7941     Ops.push_back(Node->getOperand(i));
7942 
7943   SDVTList VTs = getVTList(Node->getValueType(0));
7944   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7945 
7946   // MorphNodeTo can operate in two ways: if an existing node with the
7947   // specified operands exists, it can just return it.  Otherwise, it
7948   // updates the node in place to have the requested operands.
7949   if (Res == Node) {
7950     // If we updated the node in place, reset the node ID.  To the isel,
7951     // this should be just like a newly allocated machine node.
7952     Res->setNodeId(-1);
7953   } else {
7954     ReplaceAllUsesWith(Node, Res);
7955     RemoveDeadNode(Node);
7956   }
7957 
7958   return Res;
7959 }
7960 
7961 /// getMachineNode - These are used for target selectors to create a new node
7962 /// with specified return type(s), MachineInstr opcode, and operands.
7963 ///
7964 /// Note that getMachineNode returns the resultant node.  If there is already a
7965 /// node of the specified opcode and operands, it returns that node instead of
7966 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)7967 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7968                                             EVT VT) {
7969   SDVTList VTs = getVTList(VT);
7970   return getMachineNode(Opcode, dl, VTs, None);
7971 }
7972 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)7973 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7974                                             EVT VT, SDValue Op1) {
7975   SDVTList VTs = getVTList(VT);
7976   SDValue Ops[] = { Op1 };
7977   return getMachineNode(Opcode, dl, VTs, Ops);
7978 }
7979 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)7980 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7981                                             EVT VT, SDValue Op1, SDValue Op2) {
7982   SDVTList VTs = getVTList(VT);
7983   SDValue Ops[] = { Op1, Op2 };
7984   return getMachineNode(Opcode, dl, VTs, Ops);
7985 }
7986 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)7987 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7988                                             EVT VT, SDValue Op1, SDValue Op2,
7989                                             SDValue Op3) {
7990   SDVTList VTs = getVTList(VT);
7991   SDValue Ops[] = { Op1, Op2, Op3 };
7992   return getMachineNode(Opcode, dl, VTs, Ops);
7993 }
7994 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)7995 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7996                                             EVT VT, ArrayRef<SDValue> Ops) {
7997   SDVTList VTs = getVTList(VT);
7998   return getMachineNode(Opcode, dl, VTs, Ops);
7999 }
8000 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)8001 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8002                                             EVT VT1, EVT VT2, SDValue Op1,
8003                                             SDValue Op2) {
8004   SDVTList VTs = getVTList(VT1, VT2);
8005   SDValue Ops[] = { Op1, Op2 };
8006   return getMachineNode(Opcode, dl, VTs, Ops);
8007 }
8008 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)8009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8010                                             EVT VT1, EVT VT2, SDValue Op1,
8011                                             SDValue Op2, SDValue Op3) {
8012   SDVTList VTs = getVTList(VT1, VT2);
8013   SDValue Ops[] = { Op1, Op2, Op3 };
8014   return getMachineNode(Opcode, dl, VTs, Ops);
8015 }
8016 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8017 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8018                                             EVT VT1, EVT VT2,
8019                                             ArrayRef<SDValue> Ops) {
8020   SDVTList VTs = getVTList(VT1, VT2);
8021   return getMachineNode(Opcode, dl, VTs, Ops);
8022 }
8023 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)8024 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8025                                             EVT VT1, EVT VT2, EVT VT3,
8026                                             SDValue Op1, SDValue Op2) {
8027   SDVTList VTs = getVTList(VT1, VT2, VT3);
8028   SDValue Ops[] = { Op1, Op2 };
8029   return getMachineNode(Opcode, dl, VTs, Ops);
8030 }
8031 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)8032 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8033                                             EVT VT1, EVT VT2, EVT VT3,
8034                                             SDValue Op1, SDValue Op2,
8035                                             SDValue Op3) {
8036   SDVTList VTs = getVTList(VT1, VT2, VT3);
8037   SDValue Ops[] = { Op1, Op2, Op3 };
8038   return getMachineNode(Opcode, dl, VTs, Ops);
8039 }
8040 
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8041 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8042                                             EVT VT1, EVT VT2, EVT VT3,
8043                                             ArrayRef<SDValue> Ops) {
8044   SDVTList VTs = getVTList(VT1, VT2, VT3);
8045   return getMachineNode(Opcode, dl, VTs, Ops);
8046 }
8047 
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)8048 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8049                                             ArrayRef<EVT> ResultTys,
8050                                             ArrayRef<SDValue> Ops) {
8051   SDVTList VTs = getVTList(ResultTys);
8052   return getMachineNode(Opcode, dl, VTs, Ops);
8053 }
8054 
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)8055 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8056                                             SDVTList VTs,
8057                                             ArrayRef<SDValue> Ops) {
8058   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8059   MachineSDNode *N;
8060   void *IP = nullptr;
8061 
8062   if (DoCSE) {
8063     FoldingSetNodeID ID;
8064     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8065     IP = nullptr;
8066     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8067       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8068     }
8069   }
8070 
8071   // Allocate a new MachineSDNode.
8072   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8073   createOperands(N, Ops);
8074 
8075   if (DoCSE)
8076     CSEMap.InsertNode(N, IP);
8077 
8078   InsertNode(N);
8079   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8080   return N;
8081 }
8082 
8083 /// getTargetExtractSubreg - A convenience function for creating
8084 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)8085 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8086                                              SDValue Operand) {
8087   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8088   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8089                                   VT, Operand, SRIdxVal);
8090   return SDValue(Subreg, 0);
8091 }
8092 
8093 /// getTargetInsertSubreg - A convenience function for creating
8094 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)8095 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8096                                             SDValue Operand, SDValue Subreg) {
8097   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8098   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8099                                   VT, Operand, Subreg, SRIdxVal);
8100   return SDValue(Result, 0);
8101 }
8102 
8103 /// getNodeIfExists - Get the specified node if it's already available, or
8104 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)8105 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8106                                       ArrayRef<SDValue> Ops,
8107                                       const SDNodeFlags Flags) {
8108   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8109     FoldingSetNodeID ID;
8110     AddNodeIDNode(ID, Opcode, VTList, Ops);
8111     void *IP = nullptr;
8112     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8113       E->intersectFlagsWith(Flags);
8114       return E;
8115     }
8116   }
8117   return nullptr;
8118 }
8119 
8120 /// getDbgValue - Creates a SDDbgValue node.
8121 ///
8122 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)8123 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8124                                       SDNode *N, unsigned R, bool IsIndirect,
8125                                       const DebugLoc &DL, unsigned O) {
8126   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8127          "Expected inlined-at fields to agree");
8128   return new (DbgInfo->getAlloc())
8129       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8130 }
8131 
8132 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)8133 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8134                                               DIExpression *Expr,
8135                                               const Value *C,
8136                                               const DebugLoc &DL, unsigned O) {
8137   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8138          "Expected inlined-at fields to agree");
8139   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8140 }
8141 
8142 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)8143 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8144                                                 DIExpression *Expr, unsigned FI,
8145                                                 bool IsIndirect,
8146                                                 const DebugLoc &DL,
8147                                                 unsigned O) {
8148   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8149          "Expected inlined-at fields to agree");
8150   return new (DbgInfo->getAlloc())
8151       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8152 }
8153 
8154 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)8155 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8156                                           DIExpression *Expr,
8157                                           unsigned VReg, bool IsIndirect,
8158                                           const DebugLoc &DL, unsigned O) {
8159   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8160          "Expected inlined-at fields to agree");
8161   return new (DbgInfo->getAlloc())
8162       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8163 }
8164 
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)8165 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8166                                      unsigned OffsetInBits, unsigned SizeInBits,
8167                                      bool InvalidateDbg) {
8168   SDNode *FromNode = From.getNode();
8169   SDNode *ToNode = To.getNode();
8170   assert(FromNode && ToNode && "Can't modify dbg values");
8171 
8172   // PR35338
8173   // TODO: assert(From != To && "Redundant dbg value transfer");
8174   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8175   if (From == To || FromNode == ToNode)
8176     return;
8177 
8178   if (!FromNode->getHasDebugValue())
8179     return;
8180 
8181   SmallVector<SDDbgValue *, 2> ClonedDVs;
8182   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8183     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8184       continue;
8185 
8186     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8187 
8188     // Just transfer the dbg value attached to From.
8189     if (Dbg->getResNo() != From.getResNo())
8190       continue;
8191 
8192     DIVariable *Var = Dbg->getVariable();
8193     auto *Expr = Dbg->getExpression();
8194     // If a fragment is requested, update the expression.
8195     if (SizeInBits) {
8196       // When splitting a larger (e.g., sign-extended) value whose
8197       // lower bits are described with an SDDbgValue, do not attempt
8198       // to transfer the SDDbgValue to the upper bits.
8199       if (auto FI = Expr->getFragmentInfo())
8200         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8201           continue;
8202       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8203                                                              SizeInBits);
8204       if (!Fragment)
8205         continue;
8206       Expr = *Fragment;
8207     }
8208     // Clone the SDDbgValue and move it to To.
8209     SDDbgValue *Clone = getDbgValue(
8210         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8211         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8212     ClonedDVs.push_back(Clone);
8213 
8214     if (InvalidateDbg) {
8215       // Invalidate value and indicate the SDDbgValue should not be emitted.
8216       Dbg->setIsInvalidated();
8217       Dbg->setIsEmitted();
8218     }
8219   }
8220 
8221   for (SDDbgValue *Dbg : ClonedDVs)
8222     AddDbgValue(Dbg, ToNode, false);
8223 }
8224 
salvageDebugInfo(SDNode & N)8225 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8226   if (!N.getHasDebugValue())
8227     return;
8228 
8229   SmallVector<SDDbgValue *, 2> ClonedDVs;
8230   for (auto DV : GetDbgValues(&N)) {
8231     if (DV->isInvalidated())
8232       continue;
8233     switch (N.getOpcode()) {
8234     default:
8235       break;
8236     case ISD::ADD:
8237       SDValue N0 = N.getOperand(0);
8238       SDValue N1 = N.getOperand(1);
8239       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8240           isConstantIntBuildVectorOrConstantInt(N1)) {
8241         uint64_t Offset = N.getConstantOperandVal(1);
8242         // Rewrite an ADD constant node into a DIExpression. Since we are
8243         // performing arithmetic to compute the variable's *value* in the
8244         // DIExpression, we need to mark the expression with a
8245         // DW_OP_stack_value.
8246         auto *DIExpr = DV->getExpression();
8247         DIExpr =
8248             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8249         SDDbgValue *Clone =
8250             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8251                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8252         ClonedDVs.push_back(Clone);
8253         DV->setIsInvalidated();
8254         DV->setIsEmitted();
8255         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8256                    N0.getNode()->dumprFull(this);
8257                    dbgs() << " into " << *DIExpr << '\n');
8258       }
8259     }
8260   }
8261 
8262   for (SDDbgValue *Dbg : ClonedDVs)
8263     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8264 }
8265 
8266 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)8267 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8268                                       const DebugLoc &DL, unsigned O) {
8269   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8270          "Expected inlined-at fields to agree");
8271   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8272 }
8273 
8274 namespace {
8275 
8276 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8277 /// pointed to by a use iterator is deleted, increment the use iterator
8278 /// so that it doesn't dangle.
8279 ///
8280 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8281   SDNode::use_iterator &UI;
8282   SDNode::use_iterator &UE;
8283 
NodeDeleted(SDNode * N,SDNode * E)8284   void NodeDeleted(SDNode *N, SDNode *E) override {
8285     // Increment the iterator as needed.
8286     while (UI != UE && N == *UI)
8287       ++UI;
8288   }
8289 
8290 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)8291   RAUWUpdateListener(SelectionDAG &d,
8292                      SDNode::use_iterator &ui,
8293                      SDNode::use_iterator &ue)
8294     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8295 };
8296 
8297 } // end anonymous namespace
8298 
8299 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8300 /// This can cause recursive merging of nodes in the DAG.
8301 ///
8302 /// This version assumes From has a single result value.
8303 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)8304 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8305   SDNode *From = FromN.getNode();
8306   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8307          "Cannot replace with this method!");
8308   assert(From != To.getNode() && "Cannot replace uses of with self");
8309 
8310   // Preserve Debug Values
8311   transferDbgValues(FromN, To);
8312 
8313   // Iterate over all the existing uses of From. New uses will be added
8314   // to the beginning of the use list, which we avoid visiting.
8315   // This specifically avoids visiting uses of From that arise while the
8316   // replacement is happening, because any such uses would be the result
8317   // of CSE: If an existing node looks like From after one of its operands
8318   // is replaced by To, we don't want to replace of all its users with To
8319   // too. See PR3018 for more info.
8320   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8321   RAUWUpdateListener Listener(*this, UI, UE);
8322   while (UI != UE) {
8323     SDNode *User = *UI;
8324 
8325     // This node is about to morph, remove its old self from the CSE maps.
8326     RemoveNodeFromCSEMaps(User);
8327 
8328     // A user can appear in a use list multiple times, and when this
8329     // happens the uses are usually next to each other in the list.
8330     // To help reduce the number of CSE recomputations, process all
8331     // the uses of this user that we can find this way.
8332     do {
8333       SDUse &Use = UI.getUse();
8334       ++UI;
8335       Use.set(To);
8336       if (To->isDivergent() != From->isDivergent())
8337         updateDivergence(User);
8338     } while (UI != UE && *UI == User);
8339     // Now that we have modified User, add it back to the CSE maps.  If it
8340     // already exists there, recursively merge the results together.
8341     AddModifiedNodeToCSEMaps(User);
8342   }
8343 
8344   // If we just RAUW'd the root, take note.
8345   if (FromN == getRoot())
8346     setRoot(To);
8347 }
8348 
8349 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8350 /// This can cause recursive merging of nodes in the DAG.
8351 ///
8352 /// This version assumes that for each value of From, there is a
8353 /// corresponding value in To in the same position with the same type.
8354 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)8355 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8356 #ifndef NDEBUG
8357   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8358     assert((!From->hasAnyUseOfValue(i) ||
8359             From->getValueType(i) == To->getValueType(i)) &&
8360            "Cannot use this version of ReplaceAllUsesWith!");
8361 #endif
8362 
8363   // Handle the trivial case.
8364   if (From == To)
8365     return;
8366 
8367   // Preserve Debug Info. Only do this if there's a use.
8368   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8369     if (From->hasAnyUseOfValue(i)) {
8370       assert((i < To->getNumValues()) && "Invalid To location");
8371       transferDbgValues(SDValue(From, i), SDValue(To, i));
8372     }
8373 
8374   // Iterate over just the existing users of From. See the comments in
8375   // the ReplaceAllUsesWith above.
8376   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8377   RAUWUpdateListener Listener(*this, UI, UE);
8378   while (UI != UE) {
8379     SDNode *User = *UI;
8380 
8381     // This node is about to morph, remove its old self from the CSE maps.
8382     RemoveNodeFromCSEMaps(User);
8383 
8384     // A user can appear in a use list multiple times, and when this
8385     // happens the uses are usually next to each other in the list.
8386     // To help reduce the number of CSE recomputations, process all
8387     // the uses of this user that we can find this way.
8388     do {
8389       SDUse &Use = UI.getUse();
8390       ++UI;
8391       Use.setNode(To);
8392       if (To->isDivergent() != From->isDivergent())
8393         updateDivergence(User);
8394     } while (UI != UE && *UI == User);
8395 
8396     // Now that we have modified User, add it back to the CSE maps.  If it
8397     // already exists there, recursively merge the results together.
8398     AddModifiedNodeToCSEMaps(User);
8399   }
8400 
8401   // If we just RAUW'd the root, take note.
8402   if (From == getRoot().getNode())
8403     setRoot(SDValue(To, getRoot().getResNo()));
8404 }
8405 
8406 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8407 /// This can cause recursive merging of nodes in the DAG.
8408 ///
8409 /// This version can replace From with any result values.  To must match the
8410 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)8411 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8412   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8413     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8414 
8415   // Preserve Debug Info.
8416   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8417     transferDbgValues(SDValue(From, i), To[i]);
8418 
8419   // Iterate over just the existing users of From. See the comments in
8420   // the ReplaceAllUsesWith above.
8421   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8422   RAUWUpdateListener Listener(*this, UI, UE);
8423   while (UI != UE) {
8424     SDNode *User = *UI;
8425 
8426     // This node is about to morph, remove its old self from the CSE maps.
8427     RemoveNodeFromCSEMaps(User);
8428 
8429     // A user can appear in a use list multiple times, and when this happens the
8430     // uses are usually next to each other in the list.  To help reduce the
8431     // number of CSE and divergence recomputations, process all the uses of this
8432     // user that we can find this way.
8433     bool To_IsDivergent = false;
8434     do {
8435       SDUse &Use = UI.getUse();
8436       const SDValue &ToOp = To[Use.getResNo()];
8437       ++UI;
8438       Use.set(ToOp);
8439       To_IsDivergent |= ToOp->isDivergent();
8440     } while (UI != UE && *UI == User);
8441 
8442     if (To_IsDivergent != From->isDivergent())
8443       updateDivergence(User);
8444 
8445     // Now that we have modified User, add it back to the CSE maps.  If it
8446     // already exists there, recursively merge the results together.
8447     AddModifiedNodeToCSEMaps(User);
8448   }
8449 
8450   // If we just RAUW'd the root, take note.
8451   if (From == getRoot().getNode())
8452     setRoot(SDValue(To[getRoot().getResNo()]));
8453 }
8454 
8455 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8456 /// uses of other values produced by From.getNode() alone.  The Deleted
8457 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)8458 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8459   // Handle the really simple, really trivial case efficiently.
8460   if (From == To) return;
8461 
8462   // Handle the simple, trivial, case efficiently.
8463   if (From.getNode()->getNumValues() == 1) {
8464     ReplaceAllUsesWith(From, To);
8465     return;
8466   }
8467 
8468   // Preserve Debug Info.
8469   transferDbgValues(From, To);
8470 
8471   // Iterate over just the existing users of From. See the comments in
8472   // the ReplaceAllUsesWith above.
8473   SDNode::use_iterator UI = From.getNode()->use_begin(),
8474                        UE = From.getNode()->use_end();
8475   RAUWUpdateListener Listener(*this, UI, UE);
8476   while (UI != UE) {
8477     SDNode *User = *UI;
8478     bool UserRemovedFromCSEMaps = false;
8479 
8480     // A user can appear in a use list multiple times, and when this
8481     // happens the uses are usually next to each other in the list.
8482     // To help reduce the number of CSE recomputations, process all
8483     // the uses of this user that we can find this way.
8484     do {
8485       SDUse &Use = UI.getUse();
8486 
8487       // Skip uses of different values from the same node.
8488       if (Use.getResNo() != From.getResNo()) {
8489         ++UI;
8490         continue;
8491       }
8492 
8493       // If this node hasn't been modified yet, it's still in the CSE maps,
8494       // so remove its old self from the CSE maps.
8495       if (!UserRemovedFromCSEMaps) {
8496         RemoveNodeFromCSEMaps(User);
8497         UserRemovedFromCSEMaps = true;
8498       }
8499 
8500       ++UI;
8501       Use.set(To);
8502       if (To->isDivergent() != From->isDivergent())
8503         updateDivergence(User);
8504     } while (UI != UE && *UI == User);
8505     // We are iterating over all uses of the From node, so if a use
8506     // doesn't use the specific value, no changes are made.
8507     if (!UserRemovedFromCSEMaps)
8508       continue;
8509 
8510     // Now that we have modified User, add it back to the CSE maps.  If it
8511     // already exists there, recursively merge the results together.
8512     AddModifiedNodeToCSEMaps(User);
8513   }
8514 
8515   // If we just RAUW'd the root, take note.
8516   if (From == getRoot())
8517     setRoot(To);
8518 }
8519 
8520 namespace {
8521 
8522   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8523   /// to record information about a use.
8524   struct UseMemo {
8525     SDNode *User;
8526     unsigned Index;
8527     SDUse *Use;
8528   };
8529 
8530   /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)8531   bool operator<(const UseMemo &L, const UseMemo &R) {
8532     return (intptr_t)L.User < (intptr_t)R.User;
8533   }
8534 
8535 } // end anonymous namespace
8536 
updateDivergence(SDNode * N)8537 void SelectionDAG::updateDivergence(SDNode * N)
8538 {
8539   if (TLI->isSDNodeAlwaysUniform(N))
8540     return;
8541   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8542   for (auto &Op : N->ops()) {
8543     if (Op.Val.getValueType() != MVT::Other)
8544       IsDivergent |= Op.getNode()->isDivergent();
8545   }
8546   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8547     N->SDNodeBits.IsDivergent = IsDivergent;
8548     for (auto U : N->uses()) {
8549       updateDivergence(U);
8550     }
8551   }
8552 }
8553 
CreateTopologicalOrder(std::vector<SDNode * > & Order)8554 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8555   DenseMap<SDNode *, unsigned> Degree;
8556   Order.reserve(AllNodes.size());
8557   for (auto &N : allnodes()) {
8558     unsigned NOps = N.getNumOperands();
8559     Degree[&N] = NOps;
8560     if (0 == NOps)
8561       Order.push_back(&N);
8562   }
8563   for (size_t I = 0; I != Order.size(); ++I) {
8564     SDNode *N = Order[I];
8565     for (auto U : N->uses()) {
8566       unsigned &UnsortedOps = Degree[U];
8567       if (0 == --UnsortedOps)
8568         Order.push_back(U);
8569     }
8570   }
8571 }
8572 
8573 #ifndef NDEBUG
VerifyDAGDiverence()8574 void SelectionDAG::VerifyDAGDiverence() {
8575   std::vector<SDNode *> TopoOrder;
8576   CreateTopologicalOrder(TopoOrder);
8577   const TargetLowering &TLI = getTargetLoweringInfo();
8578   DenseMap<const SDNode *, bool> DivergenceMap;
8579   for (auto &N : allnodes()) {
8580     DivergenceMap[&N] = false;
8581   }
8582   for (auto N : TopoOrder) {
8583     bool IsDivergent = DivergenceMap[N];
8584     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8585     for (auto &Op : N->ops()) {
8586       if (Op.Val.getValueType() != MVT::Other)
8587         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8588     }
8589     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8590       DivergenceMap[N] = true;
8591     }
8592   }
8593   for (auto &N : allnodes()) {
8594     (void)N;
8595     assert(DivergenceMap[&N] == N.isDivergent() &&
8596            "Divergence bit inconsistency detected\n");
8597   }
8598 }
8599 #endif
8600 
8601 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8602 /// uses of other values produced by From.getNode() alone.  The same value
8603 /// may appear in both the From and To list.  The Deleted vector is
8604 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)8605 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8606                                               const SDValue *To,
8607                                               unsigned Num){
8608   // Handle the simple, trivial case efficiently.
8609   if (Num == 1)
8610     return ReplaceAllUsesOfValueWith(*From, *To);
8611 
8612   transferDbgValues(*From, *To);
8613 
8614   // Read up all the uses and make records of them. This helps
8615   // processing new uses that are introduced during the
8616   // replacement process.
8617   SmallVector<UseMemo, 4> Uses;
8618   for (unsigned i = 0; i != Num; ++i) {
8619     unsigned FromResNo = From[i].getResNo();
8620     SDNode *FromNode = From[i].getNode();
8621     for (SDNode::use_iterator UI = FromNode->use_begin(),
8622          E = FromNode->use_end(); UI != E; ++UI) {
8623       SDUse &Use = UI.getUse();
8624       if (Use.getResNo() == FromResNo) {
8625         UseMemo Memo = { *UI, i, &Use };
8626         Uses.push_back(Memo);
8627       }
8628     }
8629   }
8630 
8631   // Sort the uses, so that all the uses from a given User are together.
8632   llvm::sort(Uses);
8633 
8634   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8635        UseIndex != UseIndexEnd; ) {
8636     // We know that this user uses some value of From.  If it is the right
8637     // value, update it.
8638     SDNode *User = Uses[UseIndex].User;
8639 
8640     // This node is about to morph, remove its old self from the CSE maps.
8641     RemoveNodeFromCSEMaps(User);
8642 
8643     // The Uses array is sorted, so all the uses for a given User
8644     // are next to each other in the list.
8645     // To help reduce the number of CSE recomputations, process all
8646     // the uses of this user that we can find this way.
8647     do {
8648       unsigned i = Uses[UseIndex].Index;
8649       SDUse &Use = *Uses[UseIndex].Use;
8650       ++UseIndex;
8651 
8652       Use.set(To[i]);
8653     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8654 
8655     // Now that we have modified User, add it back to the CSE maps.  If it
8656     // already exists there, recursively merge the results together.
8657     AddModifiedNodeToCSEMaps(User);
8658   }
8659 }
8660 
8661 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8662 /// based on their topological order. It returns the maximum id and a vector
8663 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()8664 unsigned SelectionDAG::AssignTopologicalOrder() {
8665   unsigned DAGSize = 0;
8666 
8667   // SortedPos tracks the progress of the algorithm. Nodes before it are
8668   // sorted, nodes after it are unsorted. When the algorithm completes
8669   // it is at the end of the list.
8670   allnodes_iterator SortedPos = allnodes_begin();
8671 
8672   // Visit all the nodes. Move nodes with no operands to the front of
8673   // the list immediately. Annotate nodes that do have operands with their
8674   // operand count. Before we do this, the Node Id fields of the nodes
8675   // may contain arbitrary values. After, the Node Id fields for nodes
8676   // before SortedPos will contain the topological sort index, and the
8677   // Node Id fields for nodes At SortedPos and after will contain the
8678   // count of outstanding operands.
8679   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8680     SDNode *N = &*I++;
8681     checkForCycles(N, this);
8682     unsigned Degree = N->getNumOperands();
8683     if (Degree == 0) {
8684       // A node with no uses, add it to the result array immediately.
8685       N->setNodeId(DAGSize++);
8686       allnodes_iterator Q(N);
8687       if (Q != SortedPos)
8688         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8689       assert(SortedPos != AllNodes.end() && "Overran node list");
8690       ++SortedPos;
8691     } else {
8692       // Temporarily use the Node Id as scratch space for the degree count.
8693       N->setNodeId(Degree);
8694     }
8695   }
8696 
8697   // Visit all the nodes. As we iterate, move nodes into sorted order,
8698   // such that by the time the end is reached all nodes will be sorted.
8699   for (SDNode &Node : allnodes()) {
8700     SDNode *N = &Node;
8701     checkForCycles(N, this);
8702     // N is in sorted position, so all its uses have one less operand
8703     // that needs to be sorted.
8704     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8705          UI != UE; ++UI) {
8706       SDNode *P = *UI;
8707       unsigned Degree = P->getNodeId();
8708       assert(Degree != 0 && "Invalid node degree");
8709       --Degree;
8710       if (Degree == 0) {
8711         // All of P's operands are sorted, so P may sorted now.
8712         P->setNodeId(DAGSize++);
8713         if (P->getIterator() != SortedPos)
8714           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8715         assert(SortedPos != AllNodes.end() && "Overran node list");
8716         ++SortedPos;
8717       } else {
8718         // Update P's outstanding operand count.
8719         P->setNodeId(Degree);
8720       }
8721     }
8722     if (Node.getIterator() == SortedPos) {
8723 #ifndef NDEBUG
8724       allnodes_iterator I(N);
8725       SDNode *S = &*++I;
8726       dbgs() << "Overran sorted position:\n";
8727       S->dumprFull(this); dbgs() << "\n";
8728       dbgs() << "Checking if this is due to cycles\n";
8729       checkForCycles(this, true);
8730 #endif
8731       llvm_unreachable(nullptr);
8732     }
8733   }
8734 
8735   assert(SortedPos == AllNodes.end() &&
8736          "Topological sort incomplete!");
8737   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8738          "First node in topological sort is not the entry token!");
8739   assert(AllNodes.front().getNodeId() == 0 &&
8740          "First node in topological sort has non-zero id!");
8741   assert(AllNodes.front().getNumOperands() == 0 &&
8742          "First node in topological sort has operands!");
8743   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8744          "Last node in topologic sort has unexpected id!");
8745   assert(AllNodes.back().use_empty() &&
8746          "Last node in topologic sort has users!");
8747   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8748   return DAGSize;
8749 }
8750 
8751 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8752 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)8753 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8754   if (SD) {
8755     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8756     SD->setHasDebugValue(true);
8757   }
8758   DbgInfo->add(DB, SD, isParameter);
8759 }
8760 
AddDbgLabel(SDDbgLabel * DB)8761 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8762   DbgInfo->add(DB);
8763 }
8764 
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)8765 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8766                                                    SDValue NewMemOp) {
8767   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8768   // The new memory operation must have the same position as the old load in
8769   // terms of memory dependency. Create a TokenFactor for the old load and new
8770   // memory operation and update uses of the old load's output chain to use that
8771   // TokenFactor.
8772   SDValue OldChain = SDValue(OldLoad, 1);
8773   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8774   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8775     return NewChain;
8776 
8777   SDValue TokenFactor =
8778       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8779   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8780   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8781   return TokenFactor;
8782 }
8783 
getSymbolFunctionGlobalAddress(SDValue Op,Function ** OutFunction)8784 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8785                                                      Function **OutFunction) {
8786   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8787 
8788   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8789   auto *Module = MF->getFunction().getParent();
8790   auto *Function = Module->getFunction(Symbol);
8791 
8792   if (OutFunction != nullptr)
8793       *OutFunction = Function;
8794 
8795   if (Function != nullptr) {
8796     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8797     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8798   }
8799 
8800   std::string ErrorStr;
8801   raw_string_ostream ErrorFormatter(ErrorStr);
8802 
8803   ErrorFormatter << "Undefined external symbol ";
8804   ErrorFormatter << '"' << Symbol << '"';
8805   ErrorFormatter.flush();
8806 
8807   report_fatal_error(ErrorStr);
8808 }
8809 
8810 //===----------------------------------------------------------------------===//
8811 //                              SDNode Class
8812 //===----------------------------------------------------------------------===//
8813 
isNullConstant(SDValue V)8814 bool llvm::isNullConstant(SDValue V) {
8815   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8816   return Const != nullptr && Const->isNullValue();
8817 }
8818 
isNullFPConstant(SDValue V)8819 bool llvm::isNullFPConstant(SDValue V) {
8820   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8821   return Const != nullptr && Const->isZero() && !Const->isNegative();
8822 }
8823 
isAllOnesConstant(SDValue V)8824 bool llvm::isAllOnesConstant(SDValue V) {
8825   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8826   return Const != nullptr && Const->isAllOnesValue();
8827 }
8828 
isOneConstant(SDValue V)8829 bool llvm::isOneConstant(SDValue V) {
8830   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8831   return Const != nullptr && Const->isOne();
8832 }
8833 
peekThroughBitcasts(SDValue V)8834 SDValue llvm::peekThroughBitcasts(SDValue V) {
8835   while (V.getOpcode() == ISD::BITCAST)
8836     V = V.getOperand(0);
8837   return V;
8838 }
8839 
peekThroughOneUseBitcasts(SDValue V)8840 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8841   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8842     V = V.getOperand(0);
8843   return V;
8844 }
8845 
peekThroughExtractSubvectors(SDValue V)8846 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8847   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8848     V = V.getOperand(0);
8849   return V;
8850 }
8851 
isBitwiseNot(SDValue V,bool AllowUndefs)8852 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8853   if (V.getOpcode() != ISD::XOR)
8854     return false;
8855   V = peekThroughBitcasts(V.getOperand(1));
8856   unsigned NumBits = V.getScalarValueSizeInBits();
8857   ConstantSDNode *C =
8858       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8859   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8860 }
8861 
isConstOrConstSplat(SDValue N,bool AllowUndefs,bool AllowTruncation)8862 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8863                                           bool AllowTruncation) {
8864   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8865     return CN;
8866 
8867   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8868     BitVector UndefElements;
8869     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8870 
8871     // BuildVectors can truncate their operands. Ignore that case here unless
8872     // AllowTruncation is set.
8873     if (CN && (UndefElements.none() || AllowUndefs)) {
8874       EVT CVT = CN->getValueType(0);
8875       EVT NSVT = N.getValueType().getScalarType();
8876       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8877       if (AllowTruncation || (CVT == NSVT))
8878         return CN;
8879     }
8880   }
8881 
8882   return nullptr;
8883 }
8884 
isConstOrConstSplat(SDValue N,const APInt & DemandedElts,bool AllowUndefs,bool AllowTruncation)8885 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8886                                           bool AllowUndefs,
8887                                           bool AllowTruncation) {
8888   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8889     return CN;
8890 
8891   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8892     BitVector UndefElements;
8893     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8894 
8895     // BuildVectors can truncate their operands. Ignore that case here unless
8896     // AllowTruncation is set.
8897     if (CN && (UndefElements.none() || AllowUndefs)) {
8898       EVT CVT = CN->getValueType(0);
8899       EVT NSVT = N.getValueType().getScalarType();
8900       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8901       if (AllowTruncation || (CVT == NSVT))
8902         return CN;
8903     }
8904   }
8905 
8906   return nullptr;
8907 }
8908 
isConstOrConstSplatFP(SDValue N,bool AllowUndefs)8909 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8910   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8911     return CN;
8912 
8913   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8914     BitVector UndefElements;
8915     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8916     if (CN && (UndefElements.none() || AllowUndefs))
8917       return CN;
8918   }
8919 
8920   return nullptr;
8921 }
8922 
isConstOrConstSplatFP(SDValue N,const APInt & DemandedElts,bool AllowUndefs)8923 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8924                                               const APInt &DemandedElts,
8925                                               bool AllowUndefs) {
8926   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8927     return CN;
8928 
8929   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8930     BitVector UndefElements;
8931     ConstantFPSDNode *CN =
8932         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8933     if (CN && (UndefElements.none() || AllowUndefs))
8934       return CN;
8935   }
8936 
8937   return nullptr;
8938 }
8939 
isNullOrNullSplat(SDValue N,bool AllowUndefs)8940 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8941   // TODO: may want to use peekThroughBitcast() here.
8942   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8943   return C && C->isNullValue();
8944 }
8945 
isOneOrOneSplat(SDValue N)8946 bool llvm::isOneOrOneSplat(SDValue N) {
8947   // TODO: may want to use peekThroughBitcast() here.
8948   unsigned BitWidth = N.getScalarValueSizeInBits();
8949   ConstantSDNode *C = isConstOrConstSplat(N);
8950   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8951 }
8952 
isAllOnesOrAllOnesSplat(SDValue N)8953 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8954   N = peekThroughBitcasts(N);
8955   unsigned BitWidth = N.getScalarValueSizeInBits();
8956   ConstantSDNode *C = isConstOrConstSplat(N);
8957   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8958 }
8959 
~HandleSDNode()8960 HandleSDNode::~HandleSDNode() {
8961   DropOperands();
8962 }
8963 
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned TF)8964 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8965                                          const DebugLoc &DL,
8966                                          const GlobalValue *GA, EVT VT,
8967                                          int64_t o, unsigned TF)
8968     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8969   TheGlobal = GA;
8970 }
8971 
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)8972 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8973                                          EVT VT, unsigned SrcAS,
8974                                          unsigned DestAS)
8975     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8976       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8977 
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)8978 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8979                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8980     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8981   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8982   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8983   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8984   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8985 
8986   // We check here that the size of the memory operand fits within the size of
8987   // the MMO. This is because the MMO might indicate only a possible address
8988   // range instead of specifying the affected memory addresses precisely.
8989   // TODO: Make MachineMemOperands aware of scalable vectors.
8990   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
8991          "Size mismatch!");
8992 }
8993 
8994 /// Profile - Gather unique data for the node.
8995 ///
Profile(FoldingSetNodeID & ID) const8996 void SDNode::Profile(FoldingSetNodeID &ID) const {
8997   AddNodeIDNode(ID, this);
8998 }
8999 
9000 namespace {
9001 
9002   struct EVTArray {
9003     std::vector<EVT> VTs;
9004 
EVTArray__anona0610ed11011::EVTArray9005     EVTArray() {
9006       VTs.reserve(MVT::LAST_VALUETYPE);
9007       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9008         VTs.push_back(MVT((MVT::SimpleValueType)i));
9009     }
9010   };
9011 
9012 } // end anonymous namespace
9013 
9014 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9015 static ManagedStatic<EVTArray> SimpleVTArray;
9016 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9017 
9018 /// getValueTypeList - Return a pointer to the specified value type.
9019 ///
getValueTypeList(EVT VT)9020 const EVT *SDNode::getValueTypeList(EVT VT) {
9021   if (VT.isExtended()) {
9022     sys::SmartScopedLock<true> Lock(*VTMutex);
9023     return &(*EVTs->insert(VT).first);
9024   } else {
9025     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9026            "Value type out of range!");
9027     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9028   }
9029 }
9030 
9031 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9032 /// indicated value.  This method ignores uses of other values defined by this
9033 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const9034 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9035   assert(Value < getNumValues() && "Bad value!");
9036 
9037   // TODO: Only iterate over uses of a given value of the node
9038   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9039     if (UI.getUse().getResNo() == Value) {
9040       if (NUses == 0)
9041         return false;
9042       --NUses;
9043     }
9044   }
9045 
9046   // Found exactly the right number of uses?
9047   return NUses == 0;
9048 }
9049 
9050 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9051 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const9052 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9053   assert(Value < getNumValues() && "Bad value!");
9054 
9055   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9056     if (UI.getUse().getResNo() == Value)
9057       return true;
9058 
9059   return false;
9060 }
9061 
9062 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const9063 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9064   bool Seen = false;
9065   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9066     SDNode *User = *I;
9067     if (User == this)
9068       Seen = true;
9069     else
9070       return false;
9071   }
9072 
9073   return Seen;
9074 }
9075 
9076 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)9077 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9078   bool Seen = false;
9079   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9080     SDNode *User = *I;
9081     if (llvm::any_of(Nodes,
9082                      [&User](const SDNode *Node) { return User == Node; }))
9083       Seen = true;
9084     else
9085       return false;
9086   }
9087 
9088   return Seen;
9089 }
9090 
9091 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const9092 bool SDValue::isOperandOf(const SDNode *N) const {
9093   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9094 }
9095 
isOperandOf(const SDNode * N) const9096 bool SDNode::isOperandOf(const SDNode *N) const {
9097   return any_of(N->op_values(),
9098                 [this](SDValue Op) { return this == Op.getNode(); });
9099 }
9100 
9101 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9102 /// be a chain) reaches the specified operand without crossing any
9103 /// side-effecting instructions on any chain path.  In practice, this looks
9104 /// through token factors and non-volatile loads.  In order to remain efficient,
9105 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9106 ///
9107 /// Note that we only need to examine chains when we're searching for
9108 /// side-effects; SelectionDAG requires that all side-effects are represented
9109 /// by chains, even if another operand would force a specific ordering. This
9110 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const9111 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9112                                              unsigned Depth) const {
9113   if (*this == Dest) return true;
9114 
9115   // Don't search too deeply, we just want to be able to see through
9116   // TokenFactor's etc.
9117   if (Depth == 0) return false;
9118 
9119   // If this is a token factor, all inputs to the TF happen in parallel.
9120   if (getOpcode() == ISD::TokenFactor) {
9121     // First, try a shallow search.
9122     if (is_contained((*this)->ops(), Dest)) {
9123       // We found the chain we want as an operand of this TokenFactor.
9124       // Essentially, we reach the chain without side-effects if we could
9125       // serialize the TokenFactor into a simple chain of operations with
9126       // Dest as the last operation. This is automatically true if the
9127       // chain has one use: there are no other ordering constraints.
9128       // If the chain has more than one use, we give up: some other
9129       // use of Dest might force a side-effect between Dest and the current
9130       // node.
9131       if (Dest.hasOneUse())
9132         return true;
9133     }
9134     // Next, try a deep search: check whether every operand of the TokenFactor
9135     // reaches Dest.
9136     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9137       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9138     });
9139   }
9140 
9141   // Loads don't have side effects, look through them.
9142   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9143     if (Ld->isUnordered())
9144       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9145   }
9146   return false;
9147 }
9148 
hasPredecessor(const SDNode * N) const9149 bool SDNode::hasPredecessor(const SDNode *N) const {
9150   SmallPtrSet<const SDNode *, 32> Visited;
9151   SmallVector<const SDNode *, 16> Worklist;
9152   Worklist.push_back(this);
9153   return hasPredecessorHelper(N, Visited, Worklist);
9154 }
9155 
intersectFlagsWith(const SDNodeFlags Flags)9156 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9157   this->Flags.intersectWith(Flags);
9158 }
9159 
9160 SDValue
matchBinOpReduction(SDNode * Extract,ISD::NodeType & BinOp,ArrayRef<ISD::NodeType> CandidateBinOps,bool AllowPartials)9161 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9162                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9163                                   bool AllowPartials) {
9164   // The pattern must end in an extract from index 0.
9165   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9166       !isNullConstant(Extract->getOperand(1)))
9167     return SDValue();
9168 
9169   // Match against one of the candidate binary ops.
9170   SDValue Op = Extract->getOperand(0);
9171   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9172         return Op.getOpcode() == unsigned(BinOp);
9173       }))
9174     return SDValue();
9175 
9176   // Floating-point reductions may require relaxed constraints on the final step
9177   // of the reduction because they may reorder intermediate operations.
9178   unsigned CandidateBinOp = Op.getOpcode();
9179   if (Op.getValueType().isFloatingPoint()) {
9180     SDNodeFlags Flags = Op->getFlags();
9181     switch (CandidateBinOp) {
9182     case ISD::FADD:
9183       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9184         return SDValue();
9185       break;
9186     default:
9187       llvm_unreachable("Unhandled FP opcode for binop reduction");
9188     }
9189   }
9190 
9191   // Matching failed - attempt to see if we did enough stages that a partial
9192   // reduction from a subvector is possible.
9193   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9194     if (!AllowPartials || !Op)
9195       return SDValue();
9196     EVT OpVT = Op.getValueType();
9197     EVT OpSVT = OpVT.getScalarType();
9198     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9199     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9200       return SDValue();
9201     BinOp = (ISD::NodeType)CandidateBinOp;
9202     return getNode(
9203         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9204         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9205   };
9206 
9207   // At each stage, we're looking for something that looks like:
9208   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9209   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9210   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9211   // %a = binop <8 x i32> %op, %s
9212   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9213   // we expect something like:
9214   // <4,5,6,7,u,u,u,u>
9215   // <2,3,u,u,u,u,u,u>
9216   // <1,u,u,u,u,u,u,u>
9217   // While a partial reduction match would be:
9218   // <2,3,u,u,u,u,u,u>
9219   // <1,u,u,u,u,u,u,u>
9220   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9221   SDValue PrevOp;
9222   for (unsigned i = 0; i < Stages; ++i) {
9223     unsigned MaskEnd = (1 << i);
9224 
9225     if (Op.getOpcode() != CandidateBinOp)
9226       return PartialReduction(PrevOp, MaskEnd);
9227 
9228     SDValue Op0 = Op.getOperand(0);
9229     SDValue Op1 = Op.getOperand(1);
9230 
9231     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9232     if (Shuffle) {
9233       Op = Op1;
9234     } else {
9235       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9236       Op = Op0;
9237     }
9238 
9239     // The first operand of the shuffle should be the same as the other operand
9240     // of the binop.
9241     if (!Shuffle || Shuffle->getOperand(0) != Op)
9242       return PartialReduction(PrevOp, MaskEnd);
9243 
9244     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9245     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9246       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9247         return PartialReduction(PrevOp, MaskEnd);
9248 
9249     PrevOp = Op;
9250   }
9251 
9252   BinOp = (ISD::NodeType)CandidateBinOp;
9253   return Op;
9254 }
9255 
UnrollVectorOp(SDNode * N,unsigned ResNE)9256 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9257   assert(N->getNumValues() == 1 &&
9258          "Can't unroll a vector with multiple results!");
9259 
9260   EVT VT = N->getValueType(0);
9261   unsigned NE = VT.getVectorNumElements();
9262   EVT EltVT = VT.getVectorElementType();
9263   SDLoc dl(N);
9264 
9265   SmallVector<SDValue, 8> Scalars;
9266   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9267 
9268   // If ResNE is 0, fully unroll the vector op.
9269   if (ResNE == 0)
9270     ResNE = NE;
9271   else if (NE > ResNE)
9272     NE = ResNE;
9273 
9274   unsigned i;
9275   for (i= 0; i != NE; ++i) {
9276     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9277       SDValue Operand = N->getOperand(j);
9278       EVT OperandVT = Operand.getValueType();
9279       if (OperandVT.isVector()) {
9280         // A vector operand; extract a single element.
9281         EVT OperandEltVT = OperandVT.getVectorElementType();
9282         Operands[j] =
9283             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9284                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9285       } else {
9286         // A scalar operand; just use it as is.
9287         Operands[j] = Operand;
9288       }
9289     }
9290 
9291     switch (N->getOpcode()) {
9292     default: {
9293       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9294                                 N->getFlags()));
9295       break;
9296     }
9297     case ISD::VSELECT:
9298       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9299       break;
9300     case ISD::SHL:
9301     case ISD::SRA:
9302     case ISD::SRL:
9303     case ISD::ROTL:
9304     case ISD::ROTR:
9305       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9306                                getShiftAmountOperand(Operands[0].getValueType(),
9307                                                      Operands[1])));
9308       break;
9309     case ISD::SIGN_EXTEND_INREG: {
9310       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9311       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9312                                 Operands[0],
9313                                 getValueType(ExtVT)));
9314     }
9315     }
9316   }
9317 
9318   for (; i < ResNE; ++i)
9319     Scalars.push_back(getUNDEF(EltVT));
9320 
9321   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9322   return getBuildVector(VecVT, dl, Scalars);
9323 }
9324 
UnrollVectorOverflowOp(SDNode * N,unsigned ResNE)9325 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9326     SDNode *N, unsigned ResNE) {
9327   unsigned Opcode = N->getOpcode();
9328   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9329           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9330           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9331          "Expected an overflow opcode");
9332 
9333   EVT ResVT = N->getValueType(0);
9334   EVT OvVT = N->getValueType(1);
9335   EVT ResEltVT = ResVT.getVectorElementType();
9336   EVT OvEltVT = OvVT.getVectorElementType();
9337   SDLoc dl(N);
9338 
9339   // If ResNE is 0, fully unroll the vector op.
9340   unsigned NE = ResVT.getVectorNumElements();
9341   if (ResNE == 0)
9342     ResNE = NE;
9343   else if (NE > ResNE)
9344     NE = ResNE;
9345 
9346   SmallVector<SDValue, 8> LHSScalars;
9347   SmallVector<SDValue, 8> RHSScalars;
9348   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9349   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9350 
9351   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9352   SDVTList VTs = getVTList(ResEltVT, SVT);
9353   SmallVector<SDValue, 8> ResScalars;
9354   SmallVector<SDValue, 8> OvScalars;
9355   for (unsigned i = 0; i < NE; ++i) {
9356     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9357     SDValue Ov =
9358         getSelect(dl, OvEltVT, Res.getValue(1),
9359                   getBoolConstant(true, dl, OvEltVT, ResVT),
9360                   getConstant(0, dl, OvEltVT));
9361 
9362     ResScalars.push_back(Res);
9363     OvScalars.push_back(Ov);
9364   }
9365 
9366   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9367   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9368 
9369   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9370   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9371   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9372                         getBuildVector(NewOvVT, dl, OvScalars));
9373 }
9374 
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const9375 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9376                                                   LoadSDNode *Base,
9377                                                   unsigned Bytes,
9378                                                   int Dist) const {
9379   if (LD->isVolatile() || Base->isVolatile())
9380     return false;
9381   // TODO: probably too restrictive for atomics, revisit
9382   if (!LD->isSimple())
9383     return false;
9384   if (LD->isIndexed() || Base->isIndexed())
9385     return false;
9386   if (LD->getChain() != Base->getChain())
9387     return false;
9388   EVT VT = LD->getValueType(0);
9389   if (VT.getSizeInBits() / 8 != Bytes)
9390     return false;
9391 
9392   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9393   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9394 
9395   int64_t Offset = 0;
9396   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9397     return (Dist * Bytes == Offset);
9398   return false;
9399 }
9400 
9401 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9402 /// it cannot be inferred.
InferPtrAlignment(SDValue Ptr) const9403 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9404   // If this is a GlobalAddress + cst, return the alignment.
9405   const GlobalValue *GV = nullptr;
9406   int64_t GVOffset = 0;
9407   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9408     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9409     KnownBits Known(PtrWidth);
9410     llvm::computeKnownBits(GV, Known, getDataLayout());
9411     unsigned AlignBits = Known.countMinTrailingZeros();
9412     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9413     if (Align)
9414       return MinAlign(Align, GVOffset);
9415   }
9416 
9417   // If this is a direct reference to a stack slot, use information about the
9418   // stack slot's alignment.
9419   int FrameIdx = INT_MIN;
9420   int64_t FrameOffset = 0;
9421   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9422     FrameIdx = FI->getIndex();
9423   } else if (isBaseWithConstantOffset(Ptr) &&
9424              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9425     // Handle FI+Cst
9426     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9427     FrameOffset = Ptr.getConstantOperandVal(1);
9428   }
9429 
9430   if (FrameIdx != INT_MIN) {
9431     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9432     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9433                                     FrameOffset);
9434     return FIInfoAlign;
9435   }
9436 
9437   return 0;
9438 }
9439 
9440 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9441 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const9442 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9443   // Currently all types are split in half.
9444   EVT LoVT, HiVT;
9445   if (!VT.isVector())
9446     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9447   else
9448     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9449 
9450   return std::make_pair(LoVT, HiVT);
9451 }
9452 
9453 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9454 /// low/high part.
9455 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)9456 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9457                           const EVT &HiVT) {
9458   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9459          N.getValueType().getVectorNumElements() &&
9460          "More vector elements requested than available!");
9461   SDValue Lo, Hi;
9462   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9463                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9464   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9465                getConstant(LoVT.getVectorNumElements(), DL,
9466                            TLI->getVectorIdxTy(getDataLayout())));
9467   return std::make_pair(Lo, Hi);
9468 }
9469 
9470 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
WidenVector(const SDValue & N,const SDLoc & DL)9471 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9472   EVT VT = N.getValueType();
9473   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9474                                 NextPowerOf2(VT.getVectorNumElements()));
9475   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9476                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9477 }
9478 
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count)9479 void SelectionDAG::ExtractVectorElements(SDValue Op,
9480                                          SmallVectorImpl<SDValue> &Args,
9481                                          unsigned Start, unsigned Count) {
9482   EVT VT = Op.getValueType();
9483   if (Count == 0)
9484     Count = VT.getVectorNumElements();
9485 
9486   EVT EltVT = VT.getVectorElementType();
9487   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9488   SDLoc SL(Op);
9489   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9490     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9491                            Op, getConstant(i, SL, IdxTy)));
9492   }
9493 }
9494 
9495 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const9496 unsigned GlobalAddressSDNode::getAddressSpace() const {
9497   return getGlobal()->getType()->getAddressSpace();
9498 }
9499 
getType() const9500 Type *ConstantPoolSDNode::getType() const {
9501   if (isMachineConstantPoolEntry())
9502     return Val.MachineCPVal->getType();
9503   return Val.ConstVal->getType();
9504 }
9505 
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const9506 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9507                                         unsigned &SplatBitSize,
9508                                         bool &HasAnyUndefs,
9509                                         unsigned MinSplatBits,
9510                                         bool IsBigEndian) const {
9511   EVT VT = getValueType(0);
9512   assert(VT.isVector() && "Expected a vector type");
9513   unsigned VecWidth = VT.getSizeInBits();
9514   if (MinSplatBits > VecWidth)
9515     return false;
9516 
9517   // FIXME: The widths are based on this node's type, but build vectors can
9518   // truncate their operands.
9519   SplatValue = APInt(VecWidth, 0);
9520   SplatUndef = APInt(VecWidth, 0);
9521 
9522   // Get the bits. Bits with undefined values (when the corresponding element
9523   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9524   // in SplatValue. If any of the values are not constant, give up and return
9525   // false.
9526   unsigned int NumOps = getNumOperands();
9527   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9528   unsigned EltWidth = VT.getScalarSizeInBits();
9529 
9530   for (unsigned j = 0; j < NumOps; ++j) {
9531     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9532     SDValue OpVal = getOperand(i);
9533     unsigned BitPos = j * EltWidth;
9534 
9535     if (OpVal.isUndef())
9536       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9537     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9538       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9539     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9540       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9541     else
9542       return false;
9543   }
9544 
9545   // The build_vector is all constants or undefs. Find the smallest element
9546   // size that splats the vector.
9547   HasAnyUndefs = (SplatUndef != 0);
9548 
9549   // FIXME: This does not work for vectors with elements less than 8 bits.
9550   while (VecWidth > 8) {
9551     unsigned HalfSize = VecWidth / 2;
9552     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9553     APInt LowValue = SplatValue.trunc(HalfSize);
9554     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9555     APInt LowUndef = SplatUndef.trunc(HalfSize);
9556 
9557     // If the two halves do not match (ignoring undef bits), stop here.
9558     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9559         MinSplatBits > HalfSize)
9560       break;
9561 
9562     SplatValue = HighValue | LowValue;
9563     SplatUndef = HighUndef & LowUndef;
9564 
9565     VecWidth = HalfSize;
9566   }
9567 
9568   SplatBitSize = VecWidth;
9569   return true;
9570 }
9571 
getSplatValue(const APInt & DemandedElts,BitVector * UndefElements) const9572 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9573                                          BitVector *UndefElements) const {
9574   if (UndefElements) {
9575     UndefElements->clear();
9576     UndefElements->resize(getNumOperands());
9577   }
9578   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9579          "Unexpected vector size");
9580   if (!DemandedElts)
9581     return SDValue();
9582   SDValue Splatted;
9583   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9584     if (!DemandedElts[i])
9585       continue;
9586     SDValue Op = getOperand(i);
9587     if (Op.isUndef()) {
9588       if (UndefElements)
9589         (*UndefElements)[i] = true;
9590     } else if (!Splatted) {
9591       Splatted = Op;
9592     } else if (Splatted != Op) {
9593       return SDValue();
9594     }
9595   }
9596 
9597   if (!Splatted) {
9598     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9599     assert(getOperand(FirstDemandedIdx).isUndef() &&
9600            "Can only have a splat without a constant for all undefs.");
9601     return getOperand(FirstDemandedIdx);
9602   }
9603 
9604   return Splatted;
9605 }
9606 
getSplatValue(BitVector * UndefElements) const9607 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9608   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9609   return getSplatValue(DemandedElts, UndefElements);
9610 }
9611 
9612 ConstantSDNode *
getConstantSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const9613 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9614                                         BitVector *UndefElements) const {
9615   return dyn_cast_or_null<ConstantSDNode>(
9616       getSplatValue(DemandedElts, UndefElements));
9617 }
9618 
9619 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const9620 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9621   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9622 }
9623 
9624 ConstantFPSDNode *
getConstantFPSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const9625 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9626                                           BitVector *UndefElements) const {
9627   return dyn_cast_or_null<ConstantFPSDNode>(
9628       getSplatValue(DemandedElts, UndefElements));
9629 }
9630 
9631 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const9632 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9633   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9634 }
9635 
9636 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const9637 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9638                                                    uint32_t BitWidth) const {
9639   if (ConstantFPSDNode *CN =
9640           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9641     bool IsExact;
9642     APSInt IntVal(BitWidth);
9643     const APFloat &APF = CN->getValueAPF();
9644     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9645             APFloat::opOK ||
9646         !IsExact)
9647       return -1;
9648 
9649     return IntVal.exactLogBase2();
9650   }
9651   return -1;
9652 }
9653 
isConstant() const9654 bool BuildVectorSDNode::isConstant() const {
9655   for (const SDValue &Op : op_values()) {
9656     unsigned Opc = Op.getOpcode();
9657     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9658       return false;
9659   }
9660   return true;
9661 }
9662 
isSplatMask(const int * Mask,EVT VT)9663 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9664   // Find the first non-undef value in the shuffle mask.
9665   unsigned i, e;
9666   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9667     /* search */;
9668 
9669   // If all elements are undefined, this shuffle can be considered a splat
9670   // (although it should eventually get simplified away completely).
9671   if (i == e)
9672     return true;
9673 
9674   // Make sure all remaining elements are either undef or the same as the first
9675   // non-undef value.
9676   for (int Idx = Mask[i]; i != e; ++i)
9677     if (Mask[i] >= 0 && Mask[i] != Idx)
9678       return false;
9679   return true;
9680 }
9681 
9682 // Returns the SDNode if it is a constant integer BuildVector
9683 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N)9684 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9685   if (isa<ConstantSDNode>(N))
9686     return N.getNode();
9687   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9688     return N.getNode();
9689   // Treat a GlobalAddress supporting constant offset folding as a
9690   // constant integer.
9691   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9692     if (GA->getOpcode() == ISD::GlobalAddress &&
9693         TLI->isOffsetFoldingLegal(GA))
9694       return GA;
9695   return nullptr;
9696 }
9697 
isConstantFPBuildVectorOrConstantFP(SDValue N)9698 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9699   if (isa<ConstantFPSDNode>(N))
9700     return N.getNode();
9701 
9702   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9703     return N.getNode();
9704 
9705   return nullptr;
9706 }
9707 
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)9708 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9709   assert(!Node->OperandList && "Node already has operands");
9710   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9711          "too many operands to fit into SDNode");
9712   SDUse *Ops = OperandRecycler.allocate(
9713       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9714 
9715   bool IsDivergent = false;
9716   for (unsigned I = 0; I != Vals.size(); ++I) {
9717     Ops[I].setUser(Node);
9718     Ops[I].setInitial(Vals[I]);
9719     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9720       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9721   }
9722   Node->NumOperands = Vals.size();
9723   Node->OperandList = Ops;
9724   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9725   if (!TLI->isSDNodeAlwaysUniform(Node))
9726     Node->SDNodeBits.IsDivergent = IsDivergent;
9727   checkForCycles(Node);
9728 }
9729 
getTokenFactor(const SDLoc & DL,SmallVectorImpl<SDValue> & Vals)9730 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9731                                      SmallVectorImpl<SDValue> &Vals) {
9732   size_t Limit = SDNode::getMaxNumOperands();
9733   while (Vals.size() > Limit) {
9734     unsigned SliceIdx = Vals.size() - Limit;
9735     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9736     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9737     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9738     Vals.emplace_back(NewTF);
9739   }
9740   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9741 }
9742 
9743 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)9744 static void checkForCyclesHelper(const SDNode *N,
9745                                  SmallPtrSetImpl<const SDNode*> &Visited,
9746                                  SmallPtrSetImpl<const SDNode*> &Checked,
9747                                  const llvm::SelectionDAG *DAG) {
9748   // If this node has already been checked, don't check it again.
9749   if (Checked.count(N))
9750     return;
9751 
9752   // If a node has already been visited on this depth-first walk, reject it as
9753   // a cycle.
9754   if (!Visited.insert(N).second) {
9755     errs() << "Detected cycle in SelectionDAG\n";
9756     dbgs() << "Offending node:\n";
9757     N->dumprFull(DAG); dbgs() << "\n";
9758     abort();
9759   }
9760 
9761   for (const SDValue &Op : N->op_values())
9762     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9763 
9764   Checked.insert(N);
9765   Visited.erase(N);
9766 }
9767 #endif
9768 
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)9769 void llvm::checkForCycles(const llvm::SDNode *N,
9770                           const llvm::SelectionDAG *DAG,
9771                           bool force) {
9772 #ifndef NDEBUG
9773   bool check = force;
9774 #ifdef EXPENSIVE_CHECKS
9775   check = true;
9776 #endif  // EXPENSIVE_CHECKS
9777   if (check) {
9778     assert(N && "Checking nonexistent SDNode");
9779     SmallPtrSet<const SDNode*, 32> visited;
9780     SmallPtrSet<const SDNode*, 32> checked;
9781     checkForCyclesHelper(N, visited, checked, DAG);
9782   }
9783 #endif  // !NDEBUG
9784 }
9785 
checkForCycles(const llvm::SelectionDAG * DAG,bool force)9786 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9787   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9788 }
9789