• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2015 The Khronos Group Inc.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Copyright (c) 2016 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Vulkan ShaderRenderCase
24  *//*--------------------------------------------------------------------*/
25 
26 #include "vktShaderRender.hpp"
27 
28 #include "tcuImageCompare.hpp"
29 #include "tcuImageIO.hpp"
30 #include "tcuTestLog.hpp"
31 #include "tcuTextureUtil.hpp"
32 #include "tcuSurface.hpp"
33 #include "tcuVector.hpp"
34 
35 #include "deFilePath.hpp"
36 #include "deMath.h"
37 #include "deUniquePtr.hpp"
38 
39 #include "vkDeviceUtil.hpp"
40 #include "vkImageUtil.hpp"
41 #include "vkPlatform.hpp"
42 #include "vkQueryUtil.hpp"
43 #include "vkRef.hpp"
44 #include "vkRefUtil.hpp"
45 #include "vkStrUtil.hpp"
46 #include "vkTypeUtil.hpp"
47 #include "vkCmdUtil.hpp"
48 #include "vkObjUtil.hpp"
49 
50 #include <vector>
51 #include <string>
52 
53 namespace vkt
54 {
55 namespace sr
56 {
57 
58 using namespace vk;
59 
textureTypeToImageViewType(TextureBinding::Type type)60 VkImageViewType textureTypeToImageViewType (TextureBinding::Type type)
61 {
62 	switch (type)
63 	{
64 		case TextureBinding::TYPE_1D:			return VK_IMAGE_VIEW_TYPE_1D;
65 		case TextureBinding::TYPE_2D:			return VK_IMAGE_VIEW_TYPE_2D;
66 		case TextureBinding::TYPE_3D:			return VK_IMAGE_VIEW_TYPE_3D;
67 		case TextureBinding::TYPE_CUBE_MAP:		return VK_IMAGE_VIEW_TYPE_CUBE;
68 		case TextureBinding::TYPE_1D_ARRAY:		return VK_IMAGE_VIEW_TYPE_1D_ARRAY;
69 		case TextureBinding::TYPE_2D_ARRAY:		return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
70 		case TextureBinding::TYPE_CUBE_ARRAY:	return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
71 
72 		default:
73 			DE_FATAL("Impossible");
74 			return (VkImageViewType)0;
75 	}
76 }
77 
viewTypeToImageType(VkImageViewType type)78 VkImageType viewTypeToImageType (VkImageViewType type)
79 {
80 	switch (type)
81 	{
82 		case VK_IMAGE_VIEW_TYPE_1D:
83 		case VK_IMAGE_VIEW_TYPE_1D_ARRAY:		return VK_IMAGE_TYPE_1D;
84 		case VK_IMAGE_VIEW_TYPE_2D:
85 		case VK_IMAGE_VIEW_TYPE_2D_ARRAY:		return VK_IMAGE_TYPE_2D;
86 		case VK_IMAGE_VIEW_TYPE_3D:				return VK_IMAGE_TYPE_3D;
87 		case VK_IMAGE_VIEW_TYPE_CUBE:
88 		case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY:		return VK_IMAGE_TYPE_2D;
89 
90 		default:
91 			DE_FATAL("Impossible");
92 			return (VkImageType)0;
93 	}
94 }
95 
textureUsageFlags(void)96 vk::VkImageUsageFlags textureUsageFlags (void)
97 {
98 	return (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT);
99 }
100 
textureCreateFlags(vk::VkImageViewType viewType,ShaderRenderCaseInstance::ImageBackingMode backingMode)101 vk::VkImageCreateFlags textureCreateFlags (vk::VkImageViewType viewType, ShaderRenderCaseInstance::ImageBackingMode backingMode)
102 {
103 	const bool			isCube				= (viewType == VK_IMAGE_VIEW_TYPE_CUBE || viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY);
104 	VkImageCreateFlags	imageCreateFlags	= (isCube ? static_cast<VkImageCreateFlags>(VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) : 0u);
105 
106 	if (backingMode == ShaderRenderCaseInstance::IMAGE_BACKING_MODE_SPARSE)
107 		imageCreateFlags |= (VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT);
108 
109 	return imageCreateFlags;
110 }
111 
112 namespace
113 {
114 
115 static const deUint32	MAX_RENDER_WIDTH	= 128;
116 static const deUint32	MAX_RENDER_HEIGHT	= 128;
117 static const tcu::Vec4	DEFAULT_CLEAR_COLOR	= tcu::Vec4(0.125f, 0.25f, 0.5f, 1.0f);
118 
119 /*! Gets the next multiple of a given divisor */
getNextMultiple(deUint32 divisor,deUint32 value)120 static deUint32 getNextMultiple (deUint32 divisor, deUint32 value)
121 {
122 	if (value % divisor == 0)
123 	{
124 		return value;
125 	}
126 	return value + divisor - (value % divisor);
127 }
128 
129 /*! Gets the next value that is multiple of all given divisors */
getNextMultiple(const std::vector<deUint32> & divisors,deUint32 value)130 static deUint32 getNextMultiple (const std::vector<deUint32>& divisors, deUint32 value)
131 {
132 	deUint32	nextMultiple		= value;
133 	bool		nextMultipleFound	= false;
134 
135 	while (true)
136 	{
137 		nextMultipleFound = true;
138 
139 		for (size_t divNdx = 0; divNdx < divisors.size(); divNdx++)
140 			nextMultipleFound = nextMultipleFound && (nextMultiple % divisors[divNdx] == 0);
141 
142 		if (nextMultipleFound)
143 			break;
144 
145 		DE_ASSERT(nextMultiple < ~((deUint32)0u));
146 		nextMultiple = getNextMultiple(divisors[0], nextMultiple + 1);
147 	}
148 
149 	return nextMultiple;
150 }
151 
152 } // anonymous
153 
154 // QuadGrid.
155 
156 class QuadGrid
157 {
158 public:
159 											QuadGrid				(int									gridSize,
160 																	 int									screenWidth,
161 																	 int									screenHeight,
162 																	 const tcu::Vec4&						constCoords,
163 																	 const std::vector<tcu::Mat4>&			userAttribTransforms,
164 																	 const std::vector<TextureBindingSp>&	textures);
165 											~QuadGrid				(void);
166 
getGridSize(void) const167 	int										getGridSize				(void) const { return m_gridSize; }
getNumVertices(void) const168 	int										getNumVertices			(void) const { return m_numVertices; }
getNumTriangles(void) const169 	int										getNumTriangles			(void) const { return m_numTriangles; }
getConstCoords(void) const170 	const tcu::Vec4&						getConstCoords			(void) const { return m_constCoords; }
getUserAttribTransforms(void) const171 	const std::vector<tcu::Mat4>			getUserAttribTransforms	(void) const { return m_userAttribTransforms; }
getTextures(void) const172 	const std::vector<TextureBindingSp>&	getTextures				(void) const { return m_textures; }
173 
getPositions(void) const174 	const tcu::Vec4*						getPositions			(void) const { return &m_positions[0]; }
getAttribOne(void) const175 	const float*							getAttribOne			(void) const { return &m_attribOne[0]; }
getCoords(void) const176 	const tcu::Vec4*						getCoords				(void) const { return &m_coords[0]; }
getUnitCoords(void) const177 	const tcu::Vec4*						getUnitCoords			(void) const { return &m_unitCoords[0]; }
178 
getUserAttrib(int attribNdx) const179 	const tcu::Vec4*						getUserAttrib			(int attribNdx) const { return &m_userAttribs[attribNdx][0]; }
getIndices(void) const180 	const deUint16*							getIndices				(void) const { return &m_indices[0]; }
181 
182 	tcu::Vec4								getCoords				(float sx, float sy) const;
183 	tcu::Vec4								getUnitCoords			(float sx, float sy) const;
184 
getNumUserAttribs(void) const185 	int										getNumUserAttribs		(void) const { return (int)m_userAttribTransforms.size(); }
186 	tcu::Vec4								getUserAttrib			(int attribNdx, float sx, float sy) const;
187 
188 private:
189 	const int								m_gridSize;
190 	const int								m_numVertices;
191 	const int								m_numTriangles;
192 	const tcu::Vec4							m_constCoords;
193 	const std::vector<tcu::Mat4>			m_userAttribTransforms;
194 
195 	const std::vector<TextureBindingSp>&	m_textures;
196 
197 	std::vector<tcu::Vec4>					m_screenPos;
198 	std::vector<tcu::Vec4>					m_positions;
199 	std::vector<tcu::Vec4>					m_coords;		//!< Near-unit coordinates, roughly [-2.0 .. 2.0].
200 	std::vector<tcu::Vec4>					m_unitCoords;	//!< Positive-only coordinates [0.0 .. 1.5].
201 	std::vector<float>						m_attribOne;
202 	std::vector<tcu::Vec4>					m_userAttribs[ShaderEvalContext::MAX_TEXTURES];
203 	std::vector<deUint16>					m_indices;
204 };
205 
QuadGrid(int gridSize,int width,int height,const tcu::Vec4 & constCoords,const std::vector<tcu::Mat4> & userAttribTransforms,const std::vector<TextureBindingSp> & textures)206 QuadGrid::QuadGrid (int										gridSize,
207 					int										width,
208 					int										height,
209 					const tcu::Vec4&						constCoords,
210 					const std::vector<tcu::Mat4>&			userAttribTransforms,
211 					const std::vector<TextureBindingSp>&	textures)
212 	: m_gridSize				(gridSize)
213 	, m_numVertices				((gridSize + 1) * (gridSize + 1))
214 	, m_numTriangles			(gridSize * gridSize * 2)
215 	, m_constCoords				(constCoords)
216 	, m_userAttribTransforms	(userAttribTransforms)
217 	, m_textures				(textures)
218 {
219 	const tcu::Vec4 viewportScale	((float)width, (float)height, 0.0f, 0.0f);
220 
221 	// Compute vertices.
222 	m_screenPos.resize(m_numVertices);
223 	m_positions.resize(m_numVertices);
224 	m_coords.resize(m_numVertices);
225 	m_unitCoords.resize(m_numVertices);
226 	m_attribOne.resize(m_numVertices);
227 
228 	// User attributes.
229 	for (int attrNdx = 0; attrNdx < DE_LENGTH_OF_ARRAY(m_userAttribs); attrNdx++)
230 		m_userAttribs[attrNdx].resize(m_numVertices);
231 
232 	for (int y = 0; y < gridSize+1; y++)
233 	for (int x = 0; x < gridSize+1; x++)
234 	{
235 		float		sx			= (float)x / (float)gridSize;
236 		float		sy			= (float)y / (float)gridSize;
237 		float		fx			= 2.0f * sx - 1.0f;
238 		float		fy			= 2.0f * sy - 1.0f;
239 		int			vtxNdx		= ((y * (gridSize+1)) + x);
240 
241 		m_positions[vtxNdx]		= tcu::Vec4(fx, fy, 0.0f, 1.0f);
242 		m_coords[vtxNdx]		= getCoords(sx, sy);
243 		m_unitCoords[vtxNdx]	= getUnitCoords(sx, sy);
244 		m_attribOne[vtxNdx]		= 1.0f;
245 
246 		m_screenPos[vtxNdx]		= tcu::Vec4(sx, sy, 0.0f, 1.0f) * viewportScale;
247 
248 		for (int attribNdx = 0; attribNdx < getNumUserAttribs(); attribNdx++)
249 			m_userAttribs[attribNdx][vtxNdx] = getUserAttrib(attribNdx, sx, sy);
250 	}
251 
252 	// Compute indices.
253 	m_indices.resize(3 * m_numTriangles);
254 	for (int y = 0; y < gridSize; y++)
255 	for (int x = 0; x < gridSize; x++)
256 	{
257 		int stride				= gridSize + 1;
258 		int v00					= (y * stride) + x;
259 		int v01					= (y * stride) + x + 1;
260 		int v10					= ((y+1) * stride) + x;
261 		int v11					= ((y+1) * stride) + x + 1;
262 
263 		int baseNdx				= ((y * gridSize) + x) * 6;
264 		m_indices[baseNdx + 0]	= (deUint16)v10;
265 		m_indices[baseNdx + 1]	= (deUint16)v00;
266 		m_indices[baseNdx + 2]	= (deUint16)v01;
267 
268 		m_indices[baseNdx + 3]	= (deUint16)v10;
269 		m_indices[baseNdx + 4]	= (deUint16)v01;
270 		m_indices[baseNdx + 5]	= (deUint16)v11;
271 	}
272 }
273 
~QuadGrid(void)274 QuadGrid::~QuadGrid (void)
275 {
276 }
277 
getCoords(float sx,float sy) const278 inline tcu::Vec4 QuadGrid::getCoords (float sx, float sy) const
279 {
280 	const float fx = 2.0f * sx - 1.0f;
281 	const float fy = 2.0f * sy - 1.0f;
282 	return tcu::Vec4(fx, fy, -fx + 0.33f*fy, -0.275f*fx - fy);
283 }
284 
getUnitCoords(float sx,float sy) const285 inline tcu::Vec4 QuadGrid::getUnitCoords (float sx, float sy) const
286 {
287 	return tcu::Vec4(sx, sy, 0.33f*sx + 0.5f*sy, 0.5f*sx + 0.25f*sy);
288 }
289 
getUserAttrib(int attribNdx,float sx,float sy) const290 inline tcu::Vec4 QuadGrid::getUserAttrib (int attribNdx, float sx, float sy) const
291 {
292 	// homogeneous normalized screen-space coordinates
293 	return m_userAttribTransforms[attribNdx] * tcu::Vec4(sx, sy, 0.0f, 1.0f);
294 }
295 
296 // TextureBinding
297 
TextureBinding(const tcu::Archive & archive,const char * filename,const Type type,const tcu::Sampler & sampler)298 TextureBinding::TextureBinding (const tcu::Archive&	archive,
299 								const char*			filename,
300 								const Type			type,
301 								const tcu::Sampler&	sampler)
302 	: m_type	(type)
303 	, m_sampler	(sampler)
304 {
305 	switch(m_type)
306 	{
307 		case TYPE_2D: m_binding.tex2D = loadTexture2D(archive, filename).release(); break;
308 		default:
309 			DE_FATAL("Unsupported texture type");
310 	}
311 }
312 
TextureBinding(const tcu::Texture1D * tex1D,const tcu::Sampler & sampler)313 TextureBinding::TextureBinding (const tcu::Texture1D* tex1D, const tcu::Sampler& sampler)
314 	: m_type	(TYPE_1D)
315 	, m_sampler	(sampler)
316 {
317 	m_binding.tex1D = tex1D;
318 }
319 
TextureBinding(const tcu::Texture2D * tex2D,const tcu::Sampler & sampler)320 TextureBinding::TextureBinding (const tcu::Texture2D* tex2D, const tcu::Sampler& sampler)
321 	: m_type	(TYPE_2D)
322 	, m_sampler	(sampler)
323 {
324 	m_binding.tex2D = tex2D;
325 }
326 
TextureBinding(const tcu::Texture3D * tex3D,const tcu::Sampler & sampler)327 TextureBinding::TextureBinding (const tcu::Texture3D* tex3D, const tcu::Sampler& sampler)
328 	: m_type	(TYPE_3D)
329 	, m_sampler	(sampler)
330 {
331 	m_binding.tex3D = tex3D;
332 }
333 
TextureBinding(const tcu::TextureCube * texCube,const tcu::Sampler & sampler)334 TextureBinding::TextureBinding (const tcu::TextureCube* texCube, const tcu::Sampler& sampler)
335 	: m_type	(TYPE_CUBE_MAP)
336 	, m_sampler	(sampler)
337 {
338 	m_binding.texCube = texCube;
339 }
340 
TextureBinding(const tcu::Texture1DArray * tex1DArray,const tcu::Sampler & sampler)341 TextureBinding::TextureBinding (const tcu::Texture1DArray* tex1DArray, const tcu::Sampler& sampler)
342 	: m_type	(TYPE_1D_ARRAY)
343 	, m_sampler	(sampler)
344 {
345 	m_binding.tex1DArray = tex1DArray;
346 }
347 
TextureBinding(const tcu::Texture2DArray * tex2DArray,const tcu::Sampler & sampler)348 TextureBinding::TextureBinding (const tcu::Texture2DArray* tex2DArray, const tcu::Sampler& sampler)
349 	: m_type	(TYPE_2D_ARRAY)
350 	, m_sampler	(sampler)
351 {
352 	m_binding.tex2DArray = tex2DArray;
353 }
354 
TextureBinding(const tcu::TextureCubeArray * texCubeArray,const tcu::Sampler & sampler)355 TextureBinding::TextureBinding (const tcu::TextureCubeArray* texCubeArray, const tcu::Sampler& sampler)
356 	: m_type	(TYPE_CUBE_ARRAY)
357 	, m_sampler	(sampler)
358 {
359 	m_binding.texCubeArray = texCubeArray;
360 }
361 
~TextureBinding(void)362 TextureBinding::~TextureBinding (void)
363 {
364 	switch(m_type)
365 	{
366 		case TYPE_1D:			delete m_binding.tex1D;			break;
367 		case TYPE_2D:			delete m_binding.tex2D;			break;
368 		case TYPE_3D:			delete m_binding.tex3D;			break;
369 		case TYPE_CUBE_MAP:		delete m_binding.texCube;		break;
370 		case TYPE_1D_ARRAY:		delete m_binding.tex1DArray;	break;
371 		case TYPE_2D_ARRAY:		delete m_binding.tex2DArray;	break;
372 		case TYPE_CUBE_ARRAY:	delete m_binding.texCubeArray;	break;
373 		default:												break;
374 	}
375 }
376 
loadTexture2D(const tcu::Archive & archive,const char * filename)377 de::MovePtr<tcu::Texture2D> TextureBinding::loadTexture2D (const tcu::Archive& archive, const char* filename)
378 {
379 	tcu::TextureLevel level;
380 	tcu::ImageIO::loadImage(level, archive, filename);
381 
382 	TCU_CHECK_INTERNAL(level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8) ||
383 					   level.getFormat() == tcu::TextureFormat(tcu::TextureFormat::RGB, tcu::TextureFormat::UNORM_INT8));
384 
385 	// \todo [2015-10-08 elecro] for some reason we get better when using RGBA texture even in RGB case, this needs to be investigated
386 	de::MovePtr<tcu::Texture2D> texture(new tcu::Texture2D(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), level.getWidth(), level.getHeight()));
387 
388 	// Fill level 0.
389 	texture->allocLevel(0);
390 	tcu::copy(texture->getLevel(0), level.getAccess());
391 
392 	return texture;
393 }
394 
395 // ShaderEvalContext.
396 
ShaderEvalContext(const QuadGrid & quadGrid)397 ShaderEvalContext::ShaderEvalContext (const QuadGrid& quadGrid)
398 	: constCoords	(quadGrid.getConstCoords())
399 	, isDiscarded	(false)
400 	, m_quadGrid	(quadGrid)
401 {
402 	const std::vector<TextureBindingSp>& bindings = m_quadGrid.getTextures();
403 	DE_ASSERT((int)bindings.size() <= MAX_TEXTURES);
404 
405 	// Fill in texture array.
406 	for (int ndx = 0; ndx < (int)bindings.size(); ndx++)
407 	{
408 		const TextureBinding& binding = *bindings[ndx];
409 
410 		if (binding.getType() == TextureBinding::TYPE_NONE)
411 			continue;
412 
413 		textures[ndx].sampler = binding.getSampler();
414 
415 		switch (binding.getType())
416 		{
417 			case TextureBinding::TYPE_1D:			textures[ndx].tex1D			= &binding.get1D();			break;
418 			case TextureBinding::TYPE_2D:			textures[ndx].tex2D			= &binding.get2D();			break;
419 			case TextureBinding::TYPE_3D:			textures[ndx].tex3D			= &binding.get3D();			break;
420 			case TextureBinding::TYPE_CUBE_MAP:		textures[ndx].texCube		= &binding.getCube();		break;
421 			case TextureBinding::TYPE_1D_ARRAY:		textures[ndx].tex1DArray	= &binding.get1DArray();	break;
422 			case TextureBinding::TYPE_2D_ARRAY:		textures[ndx].tex2DArray	= &binding.get2DArray();	break;
423 			case TextureBinding::TYPE_CUBE_ARRAY:	textures[ndx].texCubeArray	= &binding.getCubeArray();	break;
424 			default:
425 				TCU_THROW(InternalError, "Handling of texture binding type not implemented");
426 		}
427 	}
428 }
429 
~ShaderEvalContext(void)430 ShaderEvalContext::~ShaderEvalContext (void)
431 {
432 }
433 
reset(float sx,float sy)434 void ShaderEvalContext::reset (float sx, float sy)
435 {
436 	// Clear old values
437 	color		= tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
438 	isDiscarded	= false;
439 
440 	// Compute coords
441 	coords		= m_quadGrid.getCoords(sx, sy);
442 	unitCoords	= m_quadGrid.getUnitCoords(sx, sy);
443 
444 	// Compute user attributes.
445 	const int numAttribs = m_quadGrid.getNumUserAttribs();
446 	DE_ASSERT(numAttribs <= MAX_USER_ATTRIBS);
447 	for (int attribNdx = 0; attribNdx < numAttribs; attribNdx++)
448 		in[attribNdx] = m_quadGrid.getUserAttrib(attribNdx, sx, sy);
449 }
450 
texture2D(int unitNdx,const tcu::Vec2 & texCoords)451 tcu::Vec4 ShaderEvalContext::texture2D (int unitNdx, const tcu::Vec2& texCoords)
452 {
453 	if (textures[unitNdx].tex2D)
454 		return textures[unitNdx].tex2D->sample(textures[unitNdx].sampler, texCoords.x(), texCoords.y(), 0.0f);
455 	else
456 		return tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
457 }
458 
459 // ShaderEvaluator.
460 
ShaderEvaluator(void)461 ShaderEvaluator::ShaderEvaluator (void)
462 	: m_evalFunc(DE_NULL)
463 {
464 }
465 
ShaderEvaluator(ShaderEvalFunc evalFunc)466 ShaderEvaluator::ShaderEvaluator (ShaderEvalFunc evalFunc)
467 	: m_evalFunc(evalFunc)
468 {
469 }
470 
~ShaderEvaluator(void)471 ShaderEvaluator::~ShaderEvaluator (void)
472 {
473 }
474 
evaluate(ShaderEvalContext & ctx) const475 void ShaderEvaluator::evaluate (ShaderEvalContext& ctx) const
476 {
477 	DE_ASSERT(m_evalFunc);
478 	m_evalFunc(ctx);
479 }
480 
481 // UniformSetup.
482 
UniformSetup(void)483 UniformSetup::UniformSetup (void)
484 	: m_setupFunc(DE_NULL)
485 {
486 }
487 
UniformSetup(UniformSetupFunc setupFunc)488 UniformSetup::UniformSetup (UniformSetupFunc setupFunc)
489 	: m_setupFunc(setupFunc)
490 {
491 }
492 
~UniformSetup(void)493 UniformSetup::~UniformSetup (void)
494 {
495 }
496 
setup(ShaderRenderCaseInstance & instance,const tcu::Vec4 & constCoords) const497 void UniformSetup::setup (ShaderRenderCaseInstance& instance, const tcu::Vec4& constCoords) const
498 {
499 	if (m_setupFunc)
500 		m_setupFunc(instance, constCoords);
501 }
502 
503 // ShaderRenderCase.
504 
ShaderRenderCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const bool isVertexCase,const ShaderEvalFunc evalFunc,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc)505 ShaderRenderCase::ShaderRenderCase (tcu::TestContext&			testCtx,
506 									const std::string&			name,
507 									const std::string&			description,
508 									const bool					isVertexCase,
509 									const ShaderEvalFunc		evalFunc,
510 									const UniformSetup*			uniformSetup,
511 									const AttributeSetupFunc	attribFunc)
512 	: vkt::TestCase		(testCtx, name, description)
513 	, m_isVertexCase	(isVertexCase)
514 	, m_evaluator		(new ShaderEvaluator(evalFunc))
515 	, m_uniformSetup	(uniformSetup ? uniformSetup : new UniformSetup())
516 	, m_attribFunc		(attribFunc)
517 {}
518 
ShaderRenderCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const bool isVertexCase,const ShaderEvaluator * evaluator,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc)519 ShaderRenderCase::ShaderRenderCase (tcu::TestContext&			testCtx,
520 									const std::string&			name,
521 									const std::string&			description,
522 									const bool					isVertexCase,
523 									const ShaderEvaluator*		evaluator,
524 									const UniformSetup*			uniformSetup,
525 									const AttributeSetupFunc	attribFunc)
526 	: vkt::TestCase		(testCtx, name, description)
527 	, m_isVertexCase	(isVertexCase)
528 	, m_evaluator		(evaluator)
529 	, m_uniformSetup	(uniformSetup ? uniformSetup : new UniformSetup())
530 	, m_attribFunc		(attribFunc)
531 {}
532 
~ShaderRenderCase(void)533 ShaderRenderCase::~ShaderRenderCase (void)
534 {
535 }
536 
initPrograms(vk::SourceCollections & programCollection) const537 void ShaderRenderCase::initPrograms (vk::SourceCollections& programCollection) const
538 {
539 	programCollection.glslSources.add("vert") << glu::VertexSource(m_vertShaderSource);
540 	programCollection.glslSources.add("frag") << glu::FragmentSource(m_fragShaderSource);
541 }
542 
createInstance(Context & context) const543 TestInstance* ShaderRenderCase::createInstance (Context& context) const
544 {
545 	DE_ASSERT(m_evaluator != DE_NULL);
546 	DE_ASSERT(m_uniformSetup != DE_NULL);
547 	return new ShaderRenderCaseInstance(context, m_isVertexCase, *m_evaluator, *m_uniformSetup, m_attribFunc);
548 }
549 
550 // ShaderRenderCaseInstance.
551 
ShaderRenderCaseInstance(Context & context)552 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context& context)
553 	: vkt::TestInstance		(context)
554 	, m_imageBackingMode	(IMAGE_BACKING_MODE_REGULAR)
555 	, m_quadGridSize		(static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
556 	, m_memAlloc			(getAllocator())
557 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
558 	, m_isVertexCase		(false)
559 	, m_vertexShaderName	("vert")
560 	, m_fragmentShaderName	("frag")
561 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
562 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
563 	, m_evaluator			(DE_NULL)
564 	, m_uniformSetup		(DE_NULL)
565 	, m_attribFunc			(DE_NULL)
566 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
567 	, m_fuzzyCompare		(true)
568 {
569 }
570 
571 
ShaderRenderCaseInstance(Context & context,const bool isVertexCase,const ShaderEvaluator & evaluator,const UniformSetup & uniformSetup,const AttributeSetupFunc attribFunc,const ImageBackingMode imageBackingMode,const deUint32 gridSize,const bool fuzzyCompare)572 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context&					context,
573 													const bool					isVertexCase,
574 													const ShaderEvaluator&		evaluator,
575 													const UniformSetup&			uniformSetup,
576 													const AttributeSetupFunc	attribFunc,
577 													const ImageBackingMode		imageBackingMode,
578 													const deUint32				gridSize,
579 													const bool					fuzzyCompare)
580 	: vkt::TestInstance		(context)
581 	, m_imageBackingMode	(imageBackingMode)
582 	, m_quadGridSize		(gridSize == static_cast<deUint32>(GRID_SIZE_DEFAULTS)
583 							 ? (isVertexCase
584 								? static_cast<deUint32>(GRID_SIZE_DEFAULT_VERTEX)
585 								: static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
586 							 : gridSize)
587 	, m_memAlloc			(getAllocator())
588 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
589 	, m_isVertexCase		(isVertexCase)
590 	, m_vertexShaderName	("vert")
591 	, m_fragmentShaderName	("frag")
592 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
593 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
594 	, m_evaluator			(&evaluator)
595 	, m_uniformSetup		(&uniformSetup)
596 	, m_attribFunc			(attribFunc)
597 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
598 	, m_fuzzyCompare		(fuzzyCompare)
599 {
600 }
601 
ShaderRenderCaseInstance(Context & context,const bool isVertexCase,const ShaderEvaluator * evaluator,const UniformSetup * uniformSetup,const AttributeSetupFunc attribFunc,const ImageBackingMode imageBackingMode,const deUint32 gridSize)602 ShaderRenderCaseInstance::ShaderRenderCaseInstance (Context&					context,
603 													const bool					isVertexCase,
604 													const ShaderEvaluator*		evaluator,
605 													const UniformSetup*			uniformSetup,
606 													const AttributeSetupFunc	attribFunc,
607 													const ImageBackingMode		imageBackingMode,
608 													const deUint32				gridSize)
609 	: vkt::TestInstance		(context)
610 	, m_imageBackingMode	(imageBackingMode)
611 	, m_quadGridSize		(gridSize == static_cast<deUint32>(GRID_SIZE_DEFAULTS)
612 							 ? (isVertexCase
613 								? static_cast<deUint32>(GRID_SIZE_DEFAULT_VERTEX)
614 								: static_cast<deUint32>(GRID_SIZE_DEFAULT_FRAGMENT))
615 							 : gridSize)
616 	, m_memAlloc			(getAllocator())
617 	, m_clearColor			(DEFAULT_CLEAR_COLOR)
618 	, m_isVertexCase		(isVertexCase)
619 	, m_vertexShaderName	("vert")
620 	, m_fragmentShaderName	("frag")
621 	, m_renderSize			(MAX_RENDER_WIDTH, MAX_RENDER_HEIGHT)
622 	, m_colorFormat			(VK_FORMAT_R8G8B8A8_UNORM)
623 	, m_evaluator			(evaluator)
624 	, m_uniformSetup		(uniformSetup)
625 	, m_attribFunc			(attribFunc)
626 	, m_sampleCount			(VK_SAMPLE_COUNT_1_BIT)
627 	, m_fuzzyCompare		(false)
628 {
629 }
630 
getAllocator(void) const631 vk::Allocator& ShaderRenderCaseInstance::getAllocator (void) const
632 {
633 	return m_context.getDefaultAllocator();
634 }
635 
~ShaderRenderCaseInstance(void)636 ShaderRenderCaseInstance::~ShaderRenderCaseInstance (void)
637 {
638 }
639 
getDevice(void) const640 VkDevice ShaderRenderCaseInstance::getDevice (void) const
641 {
642 	return m_context.getDevice();
643 }
644 
getUniversalQueueFamilyIndex(void) const645 deUint32 ShaderRenderCaseInstance::getUniversalQueueFamilyIndex	(void) const
646 {
647 	return m_context.getUniversalQueueFamilyIndex();
648 }
649 
getSparseQueueFamilyIndex(void) const650 deUint32 ShaderRenderCaseInstance::getSparseQueueFamilyIndex (void) const
651 {
652 	return m_context.getSparseQueueFamilyIndex();
653 }
654 
getDeviceInterface(void) const655 const DeviceInterface& ShaderRenderCaseInstance::getDeviceInterface (void) const
656 {
657 	return m_context.getDeviceInterface();
658 }
659 
getUniversalQueue(void) const660 VkQueue ShaderRenderCaseInstance::getUniversalQueue (void) const
661 {
662 	return m_context.getUniversalQueue();
663 }
664 
getSparseQueue(void) const665 VkQueue ShaderRenderCaseInstance::getSparseQueue (void) const
666 {
667 	return m_context.getSparseQueue();
668 }
669 
getPhysicalDevice(void) const670 VkPhysicalDevice ShaderRenderCaseInstance::getPhysicalDevice (void) const
671 {
672 	return m_context.getPhysicalDevice();
673 }
674 
getInstanceInterface(void) const675 const InstanceInterface& ShaderRenderCaseInstance::getInstanceInterface (void) const
676 {
677 	return m_context.getInstanceInterface();
678 }
679 
iterate(void)680 tcu::TestStatus ShaderRenderCaseInstance::iterate (void)
681 {
682 	setup();
683 
684 	// Create quad grid.
685 	const tcu::UVec2	viewportSize	= getViewportSize();
686 	const int			width			= viewportSize.x();
687 	const int			height			= viewportSize.y();
688 
689 	m_quadGrid							= de::MovePtr<QuadGrid>(new QuadGrid(m_quadGridSize, width, height, getDefaultConstCoords(), m_userAttribTransforms, m_textures));
690 
691 	// Render result.
692 	tcu::Surface		resImage		(width, height);
693 
694 	render(m_quadGrid->getNumVertices(), m_quadGrid->getNumTriangles(), m_quadGrid->getIndices(), m_quadGrid->getConstCoords());
695 	tcu::copy(resImage.getAccess(), m_resultImage.getAccess());
696 
697 	// Compute reference.
698 	tcu::Surface		refImage		(width, height);
699 	if (m_isVertexCase)
700 		computeVertexReference(refImage, *m_quadGrid);
701 	else
702 		computeFragmentReference(refImage, *m_quadGrid);
703 
704 	// Compare.
705 	const bool			compareOk		= compareImages(resImage, refImage, 0.2f);
706 
707 	if (compareOk)
708 		return tcu::TestStatus::pass("Result image matches reference");
709 	else
710 		return tcu::TestStatus::fail("Image mismatch");
711 }
712 
setup(void)713 void ShaderRenderCaseInstance::setup (void)
714 {
715 	m_resultImage					= tcu::TextureLevel();
716 	m_descriptorSetLayoutBuilder	= de::MovePtr<DescriptorSetLayoutBuilder>	(new DescriptorSetLayoutBuilder());
717 	m_descriptorPoolBuilder			= de::MovePtr<DescriptorPoolBuilder>		(new DescriptorPoolBuilder());
718 	m_descriptorSetUpdateBuilder	= de::MovePtr<DescriptorSetUpdateBuilder>	(new DescriptorSetUpdateBuilder());
719 
720 	m_uniformInfos.clear();
721 	m_vertexBindingDescription.clear();
722 	m_vertexAttributeDescription.clear();
723 	m_vertexBuffers.clear();
724 	m_vertexBufferAllocs.clear();
725 	m_pushConstantRanges.clear();
726 }
727 
setupUniformData(deUint32 bindingLocation,size_t size,const void * dataPtr)728 void ShaderRenderCaseInstance::setupUniformData (deUint32 bindingLocation, size_t size, const void* dataPtr)
729 {
730 	const VkDevice					vkDevice			= getDevice();
731 	const DeviceInterface&			vk					= getDeviceInterface();
732 	const deUint32					queueFamilyIndex	= getUniversalQueueFamilyIndex();
733 
734 	const VkBufferCreateInfo		uniformBufferParams	=
735 	{
736 		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
737 		DE_NULL,									// const void*			pNext;
738 		0u,											// VkBufferCreateFlags	flags;
739 		size,										// VkDeviceSize			size;
740 		VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,			// VkBufferUsageFlags	usage;
741 		VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
742 		1u,											// deUint32				queueFamilyCount;
743 		&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
744 	};
745 
746 	Move<VkBuffer>					buffer				= createBuffer(vk, vkDevice, &uniformBufferParams);
747 	de::MovePtr<Allocation>			alloc				= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
748 	VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, alloc->getMemory(), alloc->getOffset()));
749 
750 	deMemcpy(alloc->getHostPtr(), dataPtr, size);
751 	flushAlloc(vk, vkDevice, *alloc);
752 
753 	de::MovePtr<BufferUniform> uniformInfo(new BufferUniform());
754 	uniformInfo->type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
755 	uniformInfo->descriptor = makeDescriptorBufferInfo(*buffer, 0u, size);
756 	uniformInfo->location = bindingLocation;
757 	uniformInfo->buffer = VkBufferSp(new vk::Unique<VkBuffer>(buffer));
758 	uniformInfo->alloc = AllocationSp(alloc.release());
759 
760 	m_uniformInfos.push_back(UniformInfoSp(new de::UniquePtr<UniformInfo>(uniformInfo)));
761 }
762 
addUniform(deUint32 bindingLocation,vk::VkDescriptorType descriptorType,size_t dataSize,const void * data)763 void ShaderRenderCaseInstance::addUniform (deUint32 bindingLocation, vk::VkDescriptorType descriptorType, size_t dataSize, const void* data)
764 {
765 	m_descriptorSetLayoutBuilder->addSingleBinding(descriptorType, vk::VK_SHADER_STAGE_ALL);
766 	m_descriptorPoolBuilder->addType(descriptorType);
767 
768 	setupUniformData(bindingLocation, dataSize, data);
769 }
770 
addAttribute(deUint32 bindingLocation,vk::VkFormat format,deUint32 sizePerElement,deUint32 count,const void * dataPtr)771 void ShaderRenderCaseInstance::addAttribute (deUint32		bindingLocation,
772 											 vk::VkFormat	format,
773 											 deUint32		sizePerElement,
774 											 deUint32		count,
775 											 const void*	dataPtr)
776 {
777 	// Portability requires stride to be multiply of minVertexInputBindingStrideAlignment
778 	// this value is usually 4 and current tests meet this requirement but
779 	// if this changes in future then this limit should be verified in checkSupport
780 	if (m_context.isDeviceFunctionalitySupported("VK_KHR_portability_subset") &&
781 		((sizePerElement % m_context.getPortabilitySubsetProperties().minVertexInputBindingStrideAlignment) != 0))
782 	{
783 		DE_FATAL("stride is not multiply of minVertexInputBindingStrideAlignment");
784 	}
785 
786 	// Add binding specification
787 	const deUint32							binding					= (deUint32)m_vertexBindingDescription.size();
788 	const VkVertexInputBindingDescription	bindingDescription		=
789 	{
790 		binding,							// deUint32				binding;
791 		sizePerElement,						// deUint32				stride;
792 		VK_VERTEX_INPUT_RATE_VERTEX			// VkVertexInputRate	stepRate;
793 	};
794 
795 	m_vertexBindingDescription.push_back(bindingDescription);
796 
797 	// Add location and format specification
798 	const VkVertexInputAttributeDescription	attributeDescription	=
799 	{
800 		bindingLocation,			// deUint32	location;
801 		binding,					// deUint32	binding;
802 		format,						// VkFormat	format;
803 		0u,							// deUint32	offset;
804 	};
805 
806 	m_vertexAttributeDescription.push_back(attributeDescription);
807 
808 	// Upload data to buffer
809 	const VkDevice							vkDevice				= getDevice();
810 	const DeviceInterface&					vk						= getDeviceInterface();
811 	const deUint32							queueFamilyIndex		= getUniversalQueueFamilyIndex();
812 
813 	const VkDeviceSize						inputSize				= sizePerElement * count;
814 	const VkBufferCreateInfo				vertexBufferParams		=
815 	{
816 		VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
817 		DE_NULL,									// const void*			pNext;
818 		0u,											// VkBufferCreateFlags	flags;
819 		inputSize,									// VkDeviceSize			size;
820 		VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
821 		VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
822 		1u,											// deUint32				queueFamilyCount;
823 		&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
824 	};
825 
826 	Move<VkBuffer>							buffer					= createBuffer(vk, vkDevice, &vertexBufferParams);
827 	de::MovePtr<vk::Allocation>				alloc					= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
828 	VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, alloc->getMemory(), alloc->getOffset()));
829 
830 	deMemcpy(alloc->getHostPtr(), dataPtr, (size_t)inputSize);
831 	flushAlloc(vk, vkDevice, *alloc);
832 
833 	m_vertexBuffers.push_back(VkBufferSp(new vk::Unique<VkBuffer>(buffer)));
834 	m_vertexBufferAllocs.push_back(AllocationSp(alloc.release()));
835 }
836 
useAttribute(deUint32 bindingLocation,BaseAttributeType type)837 void ShaderRenderCaseInstance::useAttribute (deUint32 bindingLocation, BaseAttributeType type)
838 {
839 	const EnabledBaseAttribute attribute =
840 	{
841 		bindingLocation,	// deUint32				location;
842 		type				// BaseAttributeType	type;
843 	};
844 	m_enabledBaseAttributes.push_back(attribute);
845 }
846 
setupUniforms(const tcu::Vec4 & constCoords)847 void ShaderRenderCaseInstance::setupUniforms (const tcu::Vec4& constCoords)
848 {
849 	if (m_uniformSetup)
850 		m_uniformSetup->setup(*this, constCoords);
851 }
852 
useUniform(deUint32 bindingLocation,BaseUniformType type)853 void ShaderRenderCaseInstance::useUniform (deUint32 bindingLocation, BaseUniformType type)
854 {
855 	#define UNIFORM_CASE(type, value) case type: addUniform(bindingLocation, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, value); break
856 
857 	switch(type)
858 	{
859 		// Bool
860 		UNIFORM_CASE(UB_FALSE,	0);
861 		UNIFORM_CASE(UB_TRUE,	1);
862 
863 		// BVec4
864 		UNIFORM_CASE(UB4_FALSE,	tcu::Vec4(0));
865 		UNIFORM_CASE(UB4_TRUE,	tcu::Vec4(1));
866 
867 		// Integer
868 		UNIFORM_CASE(UI_ZERO,	0);
869 		UNIFORM_CASE(UI_ONE,	1);
870 		UNIFORM_CASE(UI_TWO,	2);
871 		UNIFORM_CASE(UI_THREE,	3);
872 		UNIFORM_CASE(UI_FOUR,	4);
873 		UNIFORM_CASE(UI_FIVE,	5);
874 		UNIFORM_CASE(UI_SIX,	6);
875 		UNIFORM_CASE(UI_SEVEN,	7);
876 		UNIFORM_CASE(UI_EIGHT,	8);
877 		UNIFORM_CASE(UI_ONEHUNDREDONE, 101);
878 
879 		// IVec2
880 		UNIFORM_CASE(UI2_MINUS_ONE,	tcu::IVec2(-1));
881 		UNIFORM_CASE(UI2_ZERO,		tcu::IVec2(0));
882 		UNIFORM_CASE(UI2_ONE,		tcu::IVec2(1));
883 		UNIFORM_CASE(UI2_TWO,		tcu::IVec2(2));
884 		UNIFORM_CASE(UI2_THREE,		tcu::IVec2(3));
885 		UNIFORM_CASE(UI2_FOUR,		tcu::IVec2(4));
886 		UNIFORM_CASE(UI2_FIVE,		tcu::IVec2(5));
887 
888 		// IVec3
889 		UNIFORM_CASE(UI3_MINUS_ONE,	tcu::IVec3(-1));
890 		UNIFORM_CASE(UI3_ZERO,		tcu::IVec3(0));
891 		UNIFORM_CASE(UI3_ONE,		tcu::IVec3(1));
892 		UNIFORM_CASE(UI3_TWO,		tcu::IVec3(2));
893 		UNIFORM_CASE(UI3_THREE,		tcu::IVec3(3));
894 		UNIFORM_CASE(UI3_FOUR,		tcu::IVec3(4));
895 		UNIFORM_CASE(UI3_FIVE,		tcu::IVec3(5));
896 
897 		// IVec4
898 		UNIFORM_CASE(UI4_MINUS_ONE, tcu::IVec4(-1));
899 		UNIFORM_CASE(UI4_ZERO,		tcu::IVec4(0));
900 		UNIFORM_CASE(UI4_ONE,		tcu::IVec4(1));
901 		UNIFORM_CASE(UI4_TWO,		tcu::IVec4(2));
902 		UNIFORM_CASE(UI4_THREE,		tcu::IVec4(3));
903 		UNIFORM_CASE(UI4_FOUR,		tcu::IVec4(4));
904 		UNIFORM_CASE(UI4_FIVE,		tcu::IVec4(5));
905 
906 		// Float
907 		UNIFORM_CASE(UF_ZERO,		0.0f);
908 		UNIFORM_CASE(UF_ONE,		1.0f);
909 		UNIFORM_CASE(UF_TWO,		2.0f);
910 		UNIFORM_CASE(UF_THREE,		3.0f);
911 		UNIFORM_CASE(UF_FOUR,		4.0f);
912 		UNIFORM_CASE(UF_FIVE,		5.0f);
913 		UNIFORM_CASE(UF_SIX,		6.0f);
914 		UNIFORM_CASE(UF_SEVEN,		7.0f);
915 		UNIFORM_CASE(UF_EIGHT,		8.0f);
916 
917 		UNIFORM_CASE(UF_HALF,		1.0f / 2.0f);
918 		UNIFORM_CASE(UF_THIRD,		1.0f / 3.0f);
919 		UNIFORM_CASE(UF_FOURTH,		1.0f / 4.0f);
920 		UNIFORM_CASE(UF_FIFTH,		1.0f / 5.0f);
921 		UNIFORM_CASE(UF_SIXTH,		1.0f / 6.0f);
922 		UNIFORM_CASE(UF_SEVENTH,	1.0f / 7.0f);
923 		UNIFORM_CASE(UF_EIGHTH,		1.0f / 8.0f);
924 
925 		// Vec2
926 		UNIFORM_CASE(UV2_MINUS_ONE,	tcu::Vec2(-1.0f));
927 		UNIFORM_CASE(UV2_ZERO,		tcu::Vec2(0.0f));
928 		UNIFORM_CASE(UV2_ONE,		tcu::Vec2(1.0f));
929 		UNIFORM_CASE(UV2_TWO,		tcu::Vec2(2.0f));
930 		UNIFORM_CASE(UV2_THREE,		tcu::Vec2(3.0f));
931 
932 		UNIFORM_CASE(UV2_HALF,		tcu::Vec2(1.0f / 2.0f));
933 
934 		// Vec3
935 		UNIFORM_CASE(UV3_MINUS_ONE,	tcu::Vec3(-1.0f));
936 		UNIFORM_CASE(UV3_ZERO,		tcu::Vec3(0.0f));
937 		UNIFORM_CASE(UV3_ONE,		tcu::Vec3(1.0f));
938 		UNIFORM_CASE(UV3_TWO,		tcu::Vec3(2.0f));
939 		UNIFORM_CASE(UV3_THREE,		tcu::Vec3(3.0f));
940 
941 		UNIFORM_CASE(UV3_HALF,		tcu::Vec3(1.0f / 2.0f));
942 
943 		// Vec4
944 		UNIFORM_CASE(UV4_MINUS_ONE,	tcu::Vec4(-1.0f));
945 		UNIFORM_CASE(UV4_ZERO,		tcu::Vec4(0.0f));
946 		UNIFORM_CASE(UV4_ONE,		tcu::Vec4(1.0f));
947 		UNIFORM_CASE(UV4_TWO,		tcu::Vec4(2.0f));
948 		UNIFORM_CASE(UV4_THREE,		tcu::Vec4(3.0f));
949 
950 		UNIFORM_CASE(UV4_HALF,		tcu::Vec4(1.0f / 2.0f));
951 
952 		UNIFORM_CASE(UV4_BLACK,		tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
953 		UNIFORM_CASE(UV4_GRAY,		tcu::Vec4(0.5f, 0.5f, 0.5f, 1.0f));
954 		UNIFORM_CASE(UV4_WHITE,		tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
955 
956 		default:
957 			m_context.getTestContext().getLog() << tcu::TestLog::Message << "Unknown Uniform type: " << type << tcu::TestLog::EndMessage;
958 			break;
959 	}
960 
961 	#undef UNIFORM_CASE
962 }
963 
getViewportSize(void) const964 const tcu::UVec2 ShaderRenderCaseInstance::getViewportSize (void) const
965 {
966 	return tcu::UVec2(de::min(m_renderSize.x(), MAX_RENDER_WIDTH),
967 					  de::min(m_renderSize.y(), MAX_RENDER_HEIGHT));
968 }
969 
setSampleCount(VkSampleCountFlagBits sampleCount)970 void ShaderRenderCaseInstance::setSampleCount (VkSampleCountFlagBits sampleCount)
971 {
972 	m_sampleCount	= sampleCount;
973 }
974 
isMultiSampling(void) const975 bool ShaderRenderCaseInstance::isMultiSampling (void) const
976 {
977 	return m_sampleCount != VK_SAMPLE_COUNT_1_BIT;
978 }
979 
uploadImage(const tcu::TextureFormat & texFormat,const TextureData & textureData,const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,VkImage destImage)980 void ShaderRenderCaseInstance::uploadImage (const tcu::TextureFormat&			texFormat,
981 											const TextureData&					textureData,
982 											const tcu::Sampler&					refSampler,
983 											deUint32							mipLevels,
984 											deUint32							arrayLayers,
985 											VkImage								destImage)
986 {
987 	const VkDevice					vkDevice				= getDevice();
988 	const DeviceInterface&			vk						= getDeviceInterface();
989 	const VkQueue					queue					= getUniversalQueue();
990 	const deUint32					queueFamilyIndex		= getUniversalQueueFamilyIndex();
991 
992 	const bool						isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
993 	const VkImageAspectFlags		aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
994 	deUint32						bufferSize				= 0u;
995 	Move<VkBuffer>					buffer;
996 	de::MovePtr<Allocation>			bufferAlloc;
997 	Move<VkCommandPool>				cmdPool;
998 	Move<VkCommandBuffer>			cmdBuffer;
999 	std::vector<VkBufferImageCopy>	copyRegions;
1000 	std::vector<deUint32>			offsetMultiples;
1001 
1002 	offsetMultiples.push_back(4u);
1003 	offsetMultiples.push_back(texFormat.getPixelSize());
1004 
1005 	// Calculate buffer size
1006 	for (TextureData::const_iterator mit = textureData.begin(); mit != textureData.end(); ++mit)
1007 	{
1008 		for (TextureLayerData::const_iterator lit = mit->begin(); lit != mit->end(); ++lit)
1009 		{
1010 			const tcu::ConstPixelBufferAccess&	access	= *lit;
1011 
1012 			bufferSize = getNextMultiple(offsetMultiples, bufferSize);
1013 			bufferSize += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1014 		}
1015 	}
1016 
1017 	// Create source buffer
1018 	{
1019 		const VkBufferCreateInfo bufferParams =
1020 		{
1021 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
1022 			DE_NULL,									// const void*			pNext;
1023 			0u,											// VkBufferCreateFlags	flags;
1024 			bufferSize,									// VkDeviceSize			size;
1025 			VK_BUFFER_USAGE_TRANSFER_SRC_BIT,			// VkBufferUsageFlags	usage;
1026 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
1027 			0u,											// deUint32				queueFamilyIndexCount;
1028 			DE_NULL,									// const deUint32*		pQueueFamilyIndices;
1029 		};
1030 
1031 		buffer		= createBuffer(vk, vkDevice, &bufferParams);
1032 		bufferAlloc = m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
1033 		VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, bufferAlloc->getMemory(), bufferAlloc->getOffset()));
1034 	}
1035 
1036 	// Get copy regions and write buffer data
1037 	{
1038 		deUint32	layerDataOffset		= 0;
1039 		deUint8*	destPtr				= (deUint8*)bufferAlloc->getHostPtr();
1040 
1041 		for (size_t levelNdx = 0; levelNdx < textureData.size(); levelNdx++)
1042 		{
1043 			const TextureLayerData&		layerData	= textureData[levelNdx];
1044 
1045 			for (size_t layerNdx = 0; layerNdx < layerData.size(); layerNdx++)
1046 			{
1047 				layerDataOffset = getNextMultiple(offsetMultiples, layerDataOffset);
1048 
1049 				const tcu::ConstPixelBufferAccess&	access		= layerData[layerNdx];
1050 				const tcu::PixelBufferAccess		destAccess	(access.getFormat(), access.getSize(), destPtr + layerDataOffset);
1051 
1052 				const VkBufferImageCopy				layerRegion =
1053 				{
1054 					layerDataOffset,						// VkDeviceSize				bufferOffset;
1055 					(deUint32)access.getWidth(),			// deUint32					bufferRowLength;
1056 					(deUint32)access.getHeight(),			// deUint32					bufferImageHeight;
1057 					{										// VkImageSubresourceLayers	imageSubresource;
1058 						aspectMask,								// VkImageAspectFlags		aspectMask;
1059 						(deUint32)levelNdx,						// uint32_t					mipLevel;
1060 						(deUint32)layerNdx,						// uint32_t					baseArrayLayer;
1061 						1u										// uint32_t					layerCount;
1062 					},
1063 					{ 0u, 0u, 0u },							// VkOffset3D			imageOffset;
1064 					{										// VkExtent3D			imageExtent;
1065 						(deUint32)access.getWidth(),
1066 						(deUint32)access.getHeight(),
1067 						(deUint32)access.getDepth()
1068 					}
1069 				};
1070 
1071 				copyRegions.push_back(layerRegion);
1072 				tcu::copy(destAccess, access);
1073 
1074 				layerDataOffset += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1075 			}
1076 		}
1077 	}
1078 
1079 	flushAlloc(vk, vkDevice, *bufferAlloc);
1080 
1081 	copyBufferToImage(vk, vkDevice, queue, queueFamilyIndex, *buffer, bufferSize, copyRegions, DE_NULL, aspectMask, mipLevels, arrayLayers, destImage);
1082 }
1083 
clearImage(const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,VkImage destImage)1084 void ShaderRenderCaseInstance::clearImage (const tcu::Sampler&					refSampler,
1085 										   deUint32								mipLevels,
1086 										   deUint32								arrayLayers,
1087 										   VkImage								destImage)
1088 {
1089 	const VkDevice					vkDevice				= m_context.getDevice();
1090 	const DeviceInterface&			vk						= m_context.getDeviceInterface();
1091 	const VkQueue					queue					= m_context.getUniversalQueue();
1092 	const deUint32					queueFamilyIndex		= m_context.getUniversalQueueFamilyIndex();
1093 
1094 	const bool						isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1095 	const VkImageAspectFlags		aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1096 	Move<VkCommandPool>				cmdPool;
1097 	Move<VkCommandBuffer>			cmdBuffer;
1098 
1099 	VkClearValue					clearValue;
1100 	deMemset(&clearValue, 0, sizeof(clearValue));
1101 
1102 
1103 	// Create command pool and buffer
1104 	cmdPool		= createCommandPool(vk, vkDevice, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex);
1105 	cmdBuffer	= allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1106 
1107 	const VkImageMemoryBarrier preImageBarrier =
1108 	{
1109 		VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,			// VkStructureType			sType;
1110 		DE_NULL,										// const void*				pNext;
1111 		0u,												// VkAccessFlags			srcAccessMask;
1112 		VK_ACCESS_TRANSFER_WRITE_BIT,					// VkAccessFlags			dstAccessMask;
1113 		VK_IMAGE_LAYOUT_UNDEFINED,						// VkImageLayout			oldLayout;
1114 		VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,			// VkImageLayout			newLayout;
1115 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					srcQueueFamilyIndex;
1116 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					dstQueueFamilyIndex;
1117 		destImage,										// VkImage					image;
1118 		{												// VkImageSubresourceRange	subresourceRange;
1119 			aspectMask,								// VkImageAspect	aspect;
1120 			0u,										// deUint32			baseMipLevel;
1121 			mipLevels,								// deUint32			mipLevels;
1122 			0u,										// deUint32			baseArraySlice;
1123 			arrayLayers								// deUint32			arraySize;
1124 		}
1125 	};
1126 
1127 	const VkImageMemoryBarrier postImageBarrier =
1128 	{
1129 		VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,			// VkStructureType			sType;
1130 		DE_NULL,										// const void*				pNext;
1131 		VK_ACCESS_TRANSFER_WRITE_BIT,					// VkAccessFlags			srcAccessMask;
1132 		VK_ACCESS_SHADER_READ_BIT,						// VkAccessFlags			dstAccessMask;
1133 		VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,			// VkImageLayout			oldLayout;
1134 		VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,		// VkImageLayout			newLayout;
1135 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					srcQueueFamilyIndex;
1136 		VK_QUEUE_FAMILY_IGNORED,						// deUint32					dstQueueFamilyIndex;
1137 		destImage,										// VkImage					image;
1138 		{												// VkImageSubresourceRange	subresourceRange;
1139 			aspectMask,								// VkImageAspect	aspect;
1140 			0u,										// deUint32			baseMipLevel;
1141 			mipLevels,								// deUint32			mipLevels;
1142 			0u,										// deUint32			baseArraySlice;
1143 			arrayLayers								// deUint32			arraySize;
1144 		}
1145 	};
1146 
1147 	const VkImageSubresourceRange clearRange		=
1148 	{
1149 		aspectMask,										// VkImageAspectFlags	aspectMask;
1150 		0u,												// deUint32				baseMipLevel;
1151 		mipLevels,										// deUint32				levelCount;
1152 		0u,												// deUint32				baseArrayLayer;
1153 		arrayLayers										// deUint32				layerCount;
1154 	};
1155 
1156 	// Copy buffer to image
1157 	beginCommandBuffer(vk, *cmdBuffer);
1158 	vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &preImageBarrier);
1159 	if (aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
1160 	{
1161 		vk.cmdClearColorImage(*cmdBuffer, destImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.color, 1, &clearRange);
1162 	}
1163 	else
1164 	{
1165 		vk.cmdClearDepthStencilImage(*cmdBuffer, destImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearValue.depthStencil, 1, &clearRange);
1166 	}
1167 	vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &postImageBarrier);
1168 	endCommandBuffer(vk, *cmdBuffer);
1169 
1170 	submitCommandsAndWait(vk, vkDevice, queue, cmdBuffer.get());
1171 }
1172 
mipLevelExtents(const VkExtent3D & baseExtents,const deUint32 mipLevel)1173 VkExtent3D mipLevelExtents (const VkExtent3D& baseExtents, const deUint32 mipLevel)
1174 {
1175 	VkExtent3D result;
1176 
1177 	result.width	= std::max(baseExtents.width  >> mipLevel, 1u);
1178 	result.height	= std::max(baseExtents.height >> mipLevel, 1u);
1179 	result.depth	= std::max(baseExtents.depth  >> mipLevel, 1u);
1180 
1181 	return result;
1182 }
1183 
alignedDivide(const VkExtent3D & extent,const VkExtent3D & divisor)1184 tcu::UVec3 alignedDivide (const VkExtent3D& extent, const VkExtent3D& divisor)
1185 {
1186 	tcu::UVec3 result;
1187 
1188 	result.x() = extent.width  / divisor.width  + ((extent.width  % divisor.width != 0)  ? 1u : 0u);
1189 	result.y() = extent.height / divisor.height + ((extent.height % divisor.height != 0) ? 1u : 0u);
1190 	result.z() = extent.depth  / divisor.depth  + ((extent.depth  % divisor.depth != 0)  ? 1u : 0u);
1191 
1192 	return result;
1193 }
1194 
isImageSizeSupported(const VkImageType imageType,const tcu::UVec3 & imageSize,const vk::VkPhysicalDeviceLimits & limits)1195 bool isImageSizeSupported (const VkImageType imageType, const tcu::UVec3& imageSize, const vk::VkPhysicalDeviceLimits& limits)
1196 {
1197 	switch (imageType)
1198 	{
1199 		case VK_IMAGE_TYPE_1D:
1200 			return (imageSize.x() <= limits.maxImageDimension1D
1201 				 && imageSize.y() == 1
1202 				 && imageSize.z() == 1);
1203 		case VK_IMAGE_TYPE_2D:
1204 			return (imageSize.x() <= limits.maxImageDimension2D
1205 				 && imageSize.y() <= limits.maxImageDimension2D
1206 				 && imageSize.z() == 1);
1207 		case VK_IMAGE_TYPE_3D:
1208 			return (imageSize.x() <= limits.maxImageDimension3D
1209 				 && imageSize.y() <= limits.maxImageDimension3D
1210 				 && imageSize.z() <= limits.maxImageDimension3D);
1211 		default:
1212 			DE_FATAL("Unknown image type");
1213 			return false;
1214 	}
1215 }
1216 
checkSparseSupport(const VkImageCreateInfo & imageInfo) const1217 void ShaderRenderCaseInstance::checkSparseSupport (const VkImageCreateInfo& imageInfo) const
1218 {
1219 	const InstanceInterface&		instance		= getInstanceInterface();
1220 	const VkPhysicalDevice			physicalDevice	= getPhysicalDevice();
1221 	const VkPhysicalDeviceFeatures	deviceFeatures	= getPhysicalDeviceFeatures(instance, physicalDevice);
1222 
1223 	const std::vector<VkSparseImageFormatProperties> sparseImageFormatPropVec = getPhysicalDeviceSparseImageFormatProperties(
1224 		instance, physicalDevice, imageInfo.format, imageInfo.imageType, imageInfo.samples, imageInfo.usage, imageInfo.tiling);
1225 
1226 	if (!deviceFeatures.shaderResourceResidency)
1227 		TCU_THROW(NotSupportedError, "Required feature: shaderResourceResidency.");
1228 
1229 	if (!deviceFeatures.sparseBinding)
1230 		TCU_THROW(NotSupportedError, "Required feature: sparseBinding.");
1231 
1232 	if (imageInfo.imageType == VK_IMAGE_TYPE_2D && !deviceFeatures.sparseResidencyImage2D)
1233 		TCU_THROW(NotSupportedError, "Required feature: sparseResidencyImage2D.");
1234 
1235 	if (imageInfo.imageType == VK_IMAGE_TYPE_3D && !deviceFeatures.sparseResidencyImage3D)
1236 		TCU_THROW(NotSupportedError, "Required feature: sparseResidencyImage3D.");
1237 
1238 	if (sparseImageFormatPropVec.size() == 0)
1239 		TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
1240 }
1241 
uploadSparseImage(const tcu::TextureFormat & texFormat,const TextureData & textureData,const tcu::Sampler & refSampler,const deUint32 mipLevels,const deUint32 arrayLayers,const VkImage sparseImage,const VkImageCreateInfo & imageCreateInfo,const tcu::UVec3 texSize)1242 void ShaderRenderCaseInstance::uploadSparseImage (const tcu::TextureFormat&		texFormat,
1243 												  const TextureData&			textureData,
1244 												  const tcu::Sampler&			refSampler,
1245 												  const deUint32				mipLevels,
1246 												  const deUint32				arrayLayers,
1247 												  const VkImage					sparseImage,
1248 												  const VkImageCreateInfo&		imageCreateInfo,
1249 												  const tcu::UVec3				texSize)
1250 {
1251 	const VkDevice							vkDevice				= getDevice();
1252 	const DeviceInterface&					vk						= getDeviceInterface();
1253 	const VkPhysicalDevice					physicalDevice			= getPhysicalDevice();
1254 	const VkQueue							queue					= getUniversalQueue();
1255 	const VkQueue							sparseQueue				= getSparseQueue();
1256 	const deUint32							queueFamilyIndex		= getUniversalQueueFamilyIndex();
1257 	const InstanceInterface&				instance				= getInstanceInterface();
1258 	const VkPhysicalDeviceProperties		deviceProperties		= getPhysicalDeviceProperties(instance, physicalDevice);
1259 	const bool								isShadowSampler			= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1260 	const VkImageAspectFlags				aspectMask				= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1261 	const Unique<VkSemaphore>				imageMemoryBindSemaphore(createSemaphore(vk, vkDevice));
1262 	Move<VkBuffer>							buffer;
1263 	deUint32								bufferSize				= 0u;
1264 	de::MovePtr<Allocation>					bufferAlloc;
1265 	std::vector<VkBufferImageCopy>			copyRegions;
1266 	std::vector<deUint32>					offsetMultiples;
1267 
1268 	offsetMultiples.push_back(4u);
1269 	offsetMultiples.push_back(texFormat.getPixelSize());
1270 
1271 	if (isImageSizeSupported(imageCreateInfo.imageType, texSize, deviceProperties.limits) == false)
1272 		TCU_THROW(NotSupportedError, "Image size not supported for device.");
1273 
1274 	allocateAndBindSparseImage(vk, vkDevice, physicalDevice, instance, imageCreateInfo, *imageMemoryBindSemaphore, sparseQueue, m_memAlloc, m_allocations, texFormat, sparseImage);
1275 
1276 	// Calculate buffer size
1277 	for (TextureData::const_iterator mit = textureData.begin(); mit != textureData.end(); ++mit)
1278 	{
1279 		for (TextureLayerData::const_iterator lit = mit->begin(); lit != mit->end(); ++lit)
1280 		{
1281 			const tcu::ConstPixelBufferAccess&	access	= *lit;
1282 
1283 			bufferSize = getNextMultiple(offsetMultiples, bufferSize);
1284 			bufferSize += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1285 		}
1286 	}
1287 
1288 	{
1289 		// Create source buffer
1290 		const VkBufferCreateInfo bufferParams =
1291 		{
1292 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	// VkStructureType		sType;
1293 			DE_NULL,								// const void*			pNext;
1294 			0u,										// VkBufferCreateFlags	flags;
1295 			bufferSize,								// VkDeviceSize			size;
1296 			VK_BUFFER_USAGE_TRANSFER_SRC_BIT,		// VkBufferUsageFlags	usage;
1297 			VK_SHARING_MODE_EXCLUSIVE,				// VkSharingMode		sharingMode;
1298 			0u,										// deUint32				queueFamilyIndexCount;
1299 			DE_NULL,								// const deUint32*		pQueueFamilyIndices;
1300 		};
1301 
1302 		buffer		= createBuffer(vk, vkDevice, &bufferParams);
1303 		bufferAlloc = m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *buffer), MemoryRequirement::HostVisible);
1304 
1305 		VK_CHECK(vk.bindBufferMemory(vkDevice, *buffer, bufferAlloc->getMemory(), bufferAlloc->getOffset()));
1306 	}
1307 
1308 	// Get copy regions and write buffer data
1309 	{
1310 		deUint32	layerDataOffset		= 0;
1311 		deUint8*	destPtr				= (deUint8*)bufferAlloc->getHostPtr();
1312 
1313 		for (size_t levelNdx = 0; levelNdx < textureData.size(); levelNdx++)
1314 		{
1315 			const TextureLayerData&		layerData	= textureData[levelNdx];
1316 
1317 			for (size_t layerNdx = 0; layerNdx < layerData.size(); layerNdx++)
1318 			{
1319 				layerDataOffset = getNextMultiple(offsetMultiples, layerDataOffset);
1320 
1321 				const tcu::ConstPixelBufferAccess&	access		= layerData[layerNdx];
1322 				const tcu::PixelBufferAccess		destAccess	(access.getFormat(), access.getSize(), destPtr + layerDataOffset);
1323 
1324 				const VkBufferImageCopy				layerRegion =
1325 				{
1326 					layerDataOffset,						// VkDeviceSize				bufferOffset;
1327 					(deUint32)access.getWidth(),			// deUint32					bufferRowLength;
1328 					(deUint32)access.getHeight(),			// deUint32					bufferImageHeight;
1329 					{										// VkImageSubresourceLayers	imageSubresource;
1330 						aspectMask,								// VkImageAspectFlags		aspectMask;
1331 						(deUint32)levelNdx,						// uint32_t					mipLevel;
1332 						(deUint32)layerNdx,						// uint32_t					baseArrayLayer;
1333 						1u										// uint32_t					layerCount;
1334 					},
1335 					{ 0u, 0u, 0u },							// VkOffset3D			imageOffset;
1336 					{										// VkExtent3D			imageExtent;
1337 						(deUint32)access.getWidth(),
1338 						(deUint32)access.getHeight(),
1339 						(deUint32)access.getDepth()
1340 					}
1341 				};
1342 
1343 				copyRegions.push_back(layerRegion);
1344 				tcu::copy(destAccess, access);
1345 
1346 				layerDataOffset += access.getWidth() * access.getHeight() * access.getDepth() * access.getFormat().getPixelSize();
1347 			}
1348 		}
1349 	}
1350 	copyBufferToImage(vk, vkDevice, queue, queueFamilyIndex, *buffer, bufferSize, copyRegions, &(*imageMemoryBindSemaphore), aspectMask, mipLevels, arrayLayers, sparseImage);
1351 }
1352 
useSampler(deUint32 bindingLocation,deUint32 textureId)1353 void ShaderRenderCaseInstance::useSampler (deUint32 bindingLocation, deUint32 textureId)
1354 {
1355 	DE_ASSERT(textureId < m_textures.size());
1356 
1357 	const TextureBinding&				textureBinding		= *m_textures[textureId];
1358 	const TextureBinding::Type			textureType			= textureBinding.getType();
1359 	const tcu::Sampler&					refSampler			= textureBinding.getSampler();
1360 	const TextureBinding::Parameters&	textureParams		= textureBinding.getParameters();
1361 	const bool							isMSTexture			= textureParams.samples != vk::VK_SAMPLE_COUNT_1_BIT;
1362 	deUint32							mipLevels			= 1u;
1363 	deUint32							arrayLayers			= 1u;
1364 	tcu::TextureFormat					texFormat;
1365 	tcu::UVec3							texSize;
1366 	TextureData							textureData;
1367 
1368 	if (textureType == TextureBinding::TYPE_2D)
1369 	{
1370 		const tcu::Texture2D&			texture		= textureBinding.get2D();
1371 
1372 		texFormat									= texture.getFormat();
1373 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), 1u);
1374 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1375 		arrayLayers									= 1u;
1376 
1377 		textureData.resize(mipLevels);
1378 
1379 		for (deUint32 level = 0; level < mipLevels; ++level)
1380 		{
1381 			if (texture.isLevelEmpty(level))
1382 				continue;
1383 
1384 			textureData[level].push_back(texture.getLevel(level));
1385 		}
1386 	}
1387 	else if (textureType == TextureBinding::TYPE_CUBE_MAP)
1388 	{
1389 		const tcu::TextureCube&			texture		= textureBinding.getCube();
1390 
1391 		texFormat									= texture.getFormat();
1392 		texSize										= tcu::UVec3(texture.getSize(), texture.getSize(), 1u);
1393 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1394 		arrayLayers									= 6u;
1395 
1396 		static const tcu::CubeFace		cubeFaceMapping[tcu::CUBEFACE_LAST] =
1397 		{
1398 			tcu::CUBEFACE_POSITIVE_X,
1399 			tcu::CUBEFACE_NEGATIVE_X,
1400 			tcu::CUBEFACE_POSITIVE_Y,
1401 			tcu::CUBEFACE_NEGATIVE_Y,
1402 			tcu::CUBEFACE_POSITIVE_Z,
1403 			tcu::CUBEFACE_NEGATIVE_Z
1404 		};
1405 
1406 		textureData.resize(mipLevels);
1407 
1408 		for (deUint32 level = 0; level < mipLevels; ++level)
1409 		{
1410 			for (int faceNdx = 0; faceNdx < tcu::CUBEFACE_LAST; ++faceNdx)
1411 			{
1412 				tcu::CubeFace face = cubeFaceMapping[faceNdx];
1413 
1414 				if (texture.isLevelEmpty(face, level))
1415 					continue;
1416 
1417 				textureData[level].push_back(texture.getLevelFace(level, face));
1418 			}
1419 		}
1420 	}
1421 	else if (textureType == TextureBinding::TYPE_2D_ARRAY)
1422 	{
1423 		const tcu::Texture2DArray&		texture		= textureBinding.get2DArray();
1424 
1425 		texFormat									= texture.getFormat();
1426 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), 1u);
1427 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1428 		arrayLayers									= (deUint32)texture.getNumLayers();
1429 
1430 		textureData.resize(mipLevels);
1431 
1432 		for (deUint32 level = 0; level < mipLevels; ++level)
1433 		{
1434 			if (texture.isLevelEmpty(level))
1435 				continue;
1436 
1437 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1438 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getHeight() * levelLayers.getFormat().getPixelSize();
1439 
1440 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1441 			{
1442 				const deUint32					layerOffset		= layerSize * layer;
1443 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), levelLayers.getHeight(), 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1444 				textureData[level].push_back(layerData);
1445 			}
1446 		}
1447 	}
1448 	else if (textureType == TextureBinding::TYPE_3D)
1449 	{
1450 		const tcu::Texture3D&			texture		= textureBinding.get3D();
1451 
1452 		texFormat									= texture.getFormat();
1453 		texSize										= tcu::UVec3(texture.getWidth(), texture.getHeight(), texture.getDepth());
1454 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1455 		arrayLayers									= 1u;
1456 
1457 		textureData.resize(mipLevels);
1458 
1459 		for (deUint32 level = 0; level < mipLevels; ++level)
1460 		{
1461 			if (texture.isLevelEmpty(level))
1462 				continue;
1463 
1464 			textureData[level].push_back(texture.getLevel(level));
1465 		}
1466 	}
1467 	else if (textureType == TextureBinding::TYPE_1D)
1468 	{
1469 		const tcu::Texture1D&			texture		= textureBinding.get1D();
1470 
1471 		texFormat									= texture.getFormat();
1472 		texSize										= tcu::UVec3(texture.getWidth(), 1, 1);
1473 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1474 		arrayLayers									= 1u;
1475 
1476 		textureData.resize(mipLevels);
1477 
1478 		for (deUint32 level = 0; level < mipLevels; ++level)
1479 		{
1480 			if (texture.isLevelEmpty(level))
1481 				continue;
1482 
1483 			textureData[level].push_back(texture.getLevel(level));
1484 		}
1485 	}
1486 	else if (textureType == TextureBinding::TYPE_1D_ARRAY)
1487 	{
1488 		const tcu::Texture1DArray&		texture		= textureBinding.get1DArray();
1489 
1490 		texFormat									= texture.getFormat();
1491 		texSize										= tcu::UVec3(texture.getWidth(), 1, 1);
1492 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1493 		arrayLayers									= (deUint32)texture.getNumLayers();
1494 
1495 		textureData.resize(mipLevels);
1496 
1497 		for (deUint32 level = 0; level < mipLevels; ++level)
1498 		{
1499 			if (texture.isLevelEmpty(level))
1500 				continue;
1501 
1502 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1503 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getFormat().getPixelSize();
1504 
1505 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1506 			{
1507 				const deUint32					layerOffset		= layerSize * layer;
1508 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), 1, 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1509 				textureData[level].push_back(layerData);
1510 			}
1511 		}
1512 	}
1513 	else if (textureType == TextureBinding::TYPE_CUBE_ARRAY)
1514 	{
1515 		const tcu::TextureCubeArray&	texture		= textureBinding.getCubeArray();
1516 		texFormat									= texture.getFormat();
1517 		texSize										= tcu::UVec3(texture.getSize(), texture.getSize(), 1);
1518 		mipLevels									= isMSTexture ? 1u : (deUint32)texture.getNumLevels();
1519 		arrayLayers									= texture.getDepth();
1520 
1521 		textureData.resize(mipLevels);
1522 
1523 		for (deUint32 level = 0; level < mipLevels; ++level)
1524 		{
1525 			if (texture.isLevelEmpty(level))
1526 				continue;
1527 
1528 			const tcu::ConstPixelBufferAccess&	levelLayers		= texture.getLevel(level);
1529 			const deUint32						layerSize		= levelLayers.getWidth() * levelLayers.getHeight() * levelLayers.getFormat().getPixelSize();
1530 
1531 			for (deUint32 layer = 0; layer < arrayLayers; ++layer)
1532 			{
1533 				const deUint32					layerOffset		= layerSize * layer;
1534 				tcu::ConstPixelBufferAccess		layerData		(levelLayers.getFormat(), levelLayers.getWidth(), levelLayers.getHeight(), 1, (deUint8*)levelLayers.getDataPtr() + layerOffset);
1535 				textureData[level].push_back(layerData);
1536 			}
1537 		}
1538 	}
1539 	else
1540 	{
1541 		TCU_THROW(InternalError, "Invalid texture type");
1542 	}
1543 
1544 	createSamplerUniform(bindingLocation, textureType, textureBinding.getParameters().initialization, texFormat, texSize, textureData, refSampler, mipLevels, arrayLayers, textureParams);
1545 }
1546 
setPushConstantRanges(const deUint32 rangeCount,const vk::VkPushConstantRange * const pcRanges)1547 void ShaderRenderCaseInstance::setPushConstantRanges (const deUint32 rangeCount, const vk::VkPushConstantRange* const pcRanges)
1548 {
1549 	m_pushConstantRanges.clear();
1550 	for (deUint32 i = 0; i < rangeCount; ++i)
1551 	{
1552 		m_pushConstantRanges.push_back(pcRanges[i]);
1553 	}
1554 }
1555 
updatePushConstants(vk::VkCommandBuffer,vk::VkPipelineLayout)1556 void ShaderRenderCaseInstance::updatePushConstants (vk::VkCommandBuffer, vk::VkPipelineLayout)
1557 {
1558 }
1559 
createSamplerUniform(deUint32 bindingLocation,TextureBinding::Type textureType,TextureBinding::Init textureInit,const tcu::TextureFormat & texFormat,const tcu::UVec3 texSize,const TextureData & textureData,const tcu::Sampler & refSampler,deUint32 mipLevels,deUint32 arrayLayers,TextureBinding::Parameters textureParams)1560 void ShaderRenderCaseInstance::createSamplerUniform (deUint32						bindingLocation,
1561 													 TextureBinding::Type			textureType,
1562 													 TextureBinding::Init			textureInit,
1563 													 const tcu::TextureFormat&		texFormat,
1564 													 const tcu::UVec3				texSize,
1565 													 const TextureData&				textureData,
1566 													 const tcu::Sampler&			refSampler,
1567 													 deUint32						mipLevels,
1568 													 deUint32						arrayLayers,
1569 													 TextureBinding::Parameters		textureParams)
1570 {
1571 	const VkDevice					vkDevice			= getDevice();
1572 	const DeviceInterface&			vk					= getDeviceInterface();
1573 	const deUint32					queueFamilyIndex	= getUniversalQueueFamilyIndex();
1574 	const deUint32					sparseFamilyIndex	= (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE) ? getSparseQueueFamilyIndex() : queueFamilyIndex;
1575 
1576 	const bool						isShadowSampler		= refSampler.compare != tcu::Sampler::COMPAREMODE_NONE;
1577 
1578 	// when isShadowSampler is true mapSampler utill will set compareEnabled in
1579 	// VkSamplerCreateInfo to true and in portability this functionality is under
1580 	// feature flag - note that this is safety check as this is known at the
1581 	// TestCase level and NotSupportedError should be thrown from checkSupport
1582 	if (isShadowSampler &&
1583 		m_context.isDeviceFunctionalitySupported("VK_KHR_portability_subset") &&
1584 		!m_context.getPortabilitySubsetFeatures().mutableComparisonSamplers)
1585 	{
1586 		DE_FATAL("mutableComparisonSamplers support should be checked in checkSupport");
1587 	}
1588 
1589 	const VkImageAspectFlags		aspectMask			= isShadowSampler ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
1590 	const VkImageViewType			imageViewType		= textureTypeToImageViewType(textureType);
1591 	const VkImageType				imageType			= viewTypeToImageType(imageViewType);
1592 	const VkSharingMode				sharingMode			= (queueFamilyIndex != sparseFamilyIndex) ? VK_SHARING_MODE_CONCURRENT : VK_SHARING_MODE_EXCLUSIVE;
1593 	const VkFormat					format				= mapTextureFormat(texFormat);
1594 	const VkImageUsageFlags			imageUsageFlags		= textureUsageFlags();
1595 	const VkImageCreateFlags		imageCreateFlags	= textureCreateFlags(imageViewType, m_imageBackingMode);
1596 
1597 	const deUint32					queueIndexCount		= (queueFamilyIndex != sparseFamilyIndex) ? 2 : 1;
1598 	const deUint32					queueIndices[]		=
1599 	{
1600 		queueFamilyIndex,
1601 		sparseFamilyIndex
1602 	};
1603 
1604 	Move<VkImage>					vkTexture;
1605 	de::MovePtr<Allocation>			allocation;
1606 
1607 	// Create image
1608 	const VkImageCreateInfo			imageParams =
1609 	{
1610 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,							// VkStructureType			sType;
1611 		DE_NULL,														// const void*				pNext;
1612 		imageCreateFlags,												// VkImageCreateFlags		flags;
1613 		imageType,														// VkImageType				imageType;
1614 		format,															// VkFormat					format;
1615 		{																// VkExtent3D				extent;
1616 			texSize.x(),
1617 			texSize.y(),
1618 			texSize.z()
1619 		},
1620 		mipLevels,														// deUint32					mipLevels;
1621 		arrayLayers,													// deUint32					arrayLayers;
1622 		textureParams.samples,											// VkSampleCountFlagBits	samples;
1623 		VK_IMAGE_TILING_OPTIMAL,										// VkImageTiling			tiling;
1624 		imageUsageFlags,												// VkImageUsageFlags		usage;
1625 		sharingMode,													// VkSharingMode			sharingMode;
1626 		queueIndexCount,												// deUint32					queueFamilyIndexCount;
1627 		queueIndices,													// const deUint32*			pQueueFamilyIndices;
1628 		VK_IMAGE_LAYOUT_UNDEFINED										// VkImageLayout			initialLayout;
1629 	};
1630 
1631 	if (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE)
1632 	{
1633 		checkSparseSupport(imageParams);
1634 	}
1635 
1636 	vkTexture		= createImage(vk, vkDevice, &imageParams);
1637 	allocation		= m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *vkTexture), MemoryRequirement::Any);
1638 
1639 	if (m_imageBackingMode != IMAGE_BACKING_MODE_SPARSE)
1640 	{
1641 		VK_CHECK(vk.bindImageMemory(vkDevice, *vkTexture, allocation->getMemory(), allocation->getOffset()));
1642 	}
1643 
1644 	switch (textureInit)
1645 	{
1646 		case TextureBinding::INIT_UPLOAD_DATA:
1647 		{
1648 			// upload*Image functions use cmdCopyBufferToImage, which is invalid for multisample images
1649 			DE_ASSERT(textureParams.samples == VK_SAMPLE_COUNT_1_BIT);
1650 
1651 			if (m_imageBackingMode == IMAGE_BACKING_MODE_SPARSE)
1652 			{
1653 				uploadSparseImage(texFormat, textureData, refSampler, mipLevels, arrayLayers, *vkTexture, imageParams, texSize);
1654 			}
1655 			else
1656 			{
1657 				// Upload texture data
1658 				uploadImage(texFormat, textureData, refSampler, mipLevels, arrayLayers, *vkTexture);
1659 			}
1660 			break;
1661 		}
1662 		case TextureBinding::INIT_CLEAR:
1663 			clearImage(refSampler, mipLevels, arrayLayers, *vkTexture);
1664 			break;
1665 		default:
1666 			DE_FATAL("Impossible");
1667 	}
1668 
1669 	// Create sampler
1670 	const auto&						minMaxLod		= textureParams.minMaxLod;
1671 	const VkSamplerCreateInfo		samplerParams	= (minMaxLod
1672 														? mapSampler(refSampler, texFormat, minMaxLod.get().minLod, minMaxLod.get().maxLod)
1673 														: mapSampler(refSampler, texFormat));
1674 	Move<VkSampler>					sampler			= createSampler(vk, vkDevice, &samplerParams);
1675 	const deUint32					baseMipLevel	= textureParams.baseMipLevel;
1676 	const vk::VkComponentMapping	components		= textureParams.componentMapping;
1677 	const VkImageViewCreateInfo		viewParams		=
1678 	{
1679 		VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType			sType;
1680 		NULL,										// const voide*				pNext;
1681 		0u,											// VkImageViewCreateFlags	flags;
1682 		*vkTexture,									// VkImage					image;
1683 		imageViewType,								// VkImageViewType			viewType;
1684 		format,										// VkFormat					format;
1685 		components,									// VkChannelMapping			channels;
1686 		{
1687 			aspectMask,						// VkImageAspectFlags	aspectMask;
1688 			baseMipLevel,					// deUint32				baseMipLevel;
1689 			mipLevels - baseMipLevel,		// deUint32				mipLevels;
1690 			0,								// deUint32				baseArraySlice;
1691 			arrayLayers						// deUint32				arraySize;
1692 		},											// VkImageSubresourceRange	subresourceRange;
1693 	};
1694 
1695 	Move<VkImageView>				imageView		= createImageView(vk, vkDevice, &viewParams);
1696 
1697 	const vk::VkDescriptorImageInfo	descriptor		=
1698 	{
1699 		sampler.get(),								// VkSampler				sampler;
1700 		imageView.get(),							// VkImageView				imageView;
1701 		VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,	// VkImageLayout			imageLayout;
1702 	};
1703 
1704 	de::MovePtr<SamplerUniform> uniform(new SamplerUniform());
1705 	uniform->type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
1706 	uniform->descriptor = descriptor;
1707 	uniform->location = bindingLocation;
1708 	uniform->image = VkImageSp(new vk::Unique<VkImage>(vkTexture));
1709 	uniform->imageView = VkImageViewSp(new vk::Unique<VkImageView>(imageView));
1710 	uniform->sampler = VkSamplerSp(new vk::Unique<VkSampler>(sampler));
1711 	uniform->alloc = AllocationSp(allocation.release());
1712 
1713 	m_descriptorSetLayoutBuilder->addSingleSamplerBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, vk::VK_SHADER_STAGE_ALL, DE_NULL);
1714 	m_descriptorPoolBuilder->addType(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
1715 
1716 	m_uniformInfos.push_back(UniformInfoSp(new de::UniquePtr<UniformInfo>(uniform)));
1717 }
1718 
setupDefaultInputs(void)1719 void ShaderRenderCaseInstance::setupDefaultInputs (void)
1720 {
1721 	/* Configuration of the vertex input attributes:
1722 		a_position   is at location 0
1723 		a_coords     is at location 1
1724 		a_unitCoords is at location 2
1725 		a_one        is at location 3
1726 
1727 	  User attributes starts from at the location 4.
1728 	*/
1729 
1730 	DE_ASSERT(m_quadGrid);
1731 	const QuadGrid&		quadGrid	= *m_quadGrid;
1732 
1733 	addAttribute(0u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getPositions());
1734 	addAttribute(1u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getCoords());
1735 	addAttribute(2u, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getUnitCoords());
1736 	addAttribute(3u, VK_FORMAT_R32_SFLOAT, sizeof(float), quadGrid.getNumVertices(), quadGrid.getAttribOne());
1737 
1738 	static const struct
1739 	{
1740 		BaseAttributeType	type;
1741 		int					userNdx;
1742 	} userAttributes[] =
1743 	{
1744 		{ A_IN0, 0 },
1745 		{ A_IN1, 1 },
1746 		{ A_IN2, 2 },
1747 		{ A_IN3, 3 }
1748 	};
1749 
1750 	static const struct
1751 	{
1752 		BaseAttributeType	matrixType;
1753 		int					numCols;
1754 		int					numRows;
1755 	} matrices[] =
1756 	{
1757 		{ MAT2,		2, 2 },
1758 		{ MAT2x3,	2, 3 },
1759 		{ MAT2x4,	2, 4 },
1760 		{ MAT3x2,	3, 2 },
1761 		{ MAT3,		3, 3 },
1762 		{ MAT3x4,	3, 4 },
1763 		{ MAT4x2,	4, 2 },
1764 		{ MAT4x3,	4, 3 },
1765 		{ MAT4,		4, 4 }
1766 	};
1767 
1768 	for (size_t attrNdx = 0; attrNdx < m_enabledBaseAttributes.size(); attrNdx++)
1769 	{
1770 		for (int userNdx = 0; userNdx < DE_LENGTH_OF_ARRAY(userAttributes); userNdx++)
1771 		{
1772 			if (userAttributes[userNdx].type != m_enabledBaseAttributes[attrNdx].type)
1773 				continue;
1774 
1775 			addAttribute(m_enabledBaseAttributes[attrNdx].location, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(tcu::Vec4), quadGrid.getNumVertices(), quadGrid.getUserAttrib(userNdx));
1776 		}
1777 
1778 		for (int matNdx = 0; matNdx < DE_LENGTH_OF_ARRAY(matrices); matNdx++)
1779 		{
1780 
1781 			if (matrices[matNdx].matrixType != m_enabledBaseAttributes[attrNdx].type)
1782 				continue;
1783 
1784 			const int numCols = matrices[matNdx].numCols;
1785 
1786 			for (int colNdx = 0; colNdx < numCols; colNdx++)
1787 			{
1788 				addAttribute(m_enabledBaseAttributes[attrNdx].location + colNdx, VK_FORMAT_R32G32B32A32_SFLOAT, (deUint32)(4 * sizeof(float)), quadGrid.getNumVertices(), quadGrid.getUserAttrib(colNdx));
1789 			}
1790 		}
1791 	}
1792 }
1793 
render(deUint32 numVertices,deUint32 numTriangles,const deUint16 * indices,const tcu::Vec4 & constCoords)1794 void ShaderRenderCaseInstance::render (deUint32				numVertices,
1795 									   deUint32				numTriangles,
1796 									   const deUint16*		indices,
1797 									   const tcu::Vec4&		constCoords)
1798 {
1799 	render(numVertices, numTriangles * 3, indices, VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, constCoords);
1800 }
1801 
render(deUint32 numVertices,deUint32 numIndices,const deUint16 * indices,VkPrimitiveTopology topology,const tcu::Vec4 & constCoords)1802 void ShaderRenderCaseInstance::render (deUint32				numVertices,
1803 									   deUint32				numIndices,
1804 									   const deUint16*		indices,
1805 									   VkPrimitiveTopology	topology,
1806 									   const tcu::Vec4&		constCoords)
1807 {
1808 	const VkDevice										vkDevice					= getDevice();
1809 	const DeviceInterface&								vk							= getDeviceInterface();
1810 	const VkQueue										queue						= getUniversalQueue();
1811 	const deUint32										queueFamilyIndex			= getUniversalQueueFamilyIndex();
1812 
1813 	vk::Move<vk::VkImage>								colorImage;
1814 	de::MovePtr<vk::Allocation>							colorImageAlloc;
1815 	vk::Move<vk::VkImageView>							colorImageView;
1816 	vk::Move<vk::VkImage>								resolvedImage;
1817 	de::MovePtr<vk::Allocation>							resolvedImageAlloc;
1818 	vk::Move<vk::VkImageView>							resolvedImageView;
1819 	vk::Move<vk::VkRenderPass>							renderPass;
1820 	vk::Move<vk::VkFramebuffer>							framebuffer;
1821 	vk::Move<vk::VkPipelineLayout>						pipelineLayout;
1822 	vk::Move<vk::VkPipeline>							graphicsPipeline;
1823 	vk::Move<vk::VkShaderModule>						vertexShaderModule;
1824 	vk::Move<vk::VkShaderModule>						fragmentShaderModule;
1825 	vk::Move<vk::VkBuffer>								indexBuffer;
1826 	de::MovePtr<vk::Allocation>							indexBufferAlloc;
1827 	vk::Move<vk::VkDescriptorSetLayout>					descriptorSetLayout;
1828 	vk::Move<vk::VkDescriptorPool>						descriptorPool;
1829 	vk::Move<vk::VkDescriptorSet>						descriptorSet;
1830 	vk::Move<vk::VkCommandPool>							cmdPool;
1831 	vk::Move<vk::VkCommandBuffer>						cmdBuffer;
1832 
1833 	// Create color image
1834 	{
1835 		const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
1836 		VkImageFormatProperties	properties;
1837 
1838 		if ((getInstanceInterface().getPhysicalDeviceImageFormatProperties(getPhysicalDevice(),
1839 																		   m_colorFormat,
1840 																		   VK_IMAGE_TYPE_2D,
1841 																		   VK_IMAGE_TILING_OPTIMAL,
1842 																		   imageUsage,
1843 																		   0u,
1844 																		   &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
1845 		{
1846 			TCU_THROW(NotSupportedError, "Format not supported");
1847 		}
1848 
1849 		if ((properties.sampleCounts & m_sampleCount) != m_sampleCount)
1850 		{
1851 			TCU_THROW(NotSupportedError, "Format not supported");
1852 		}
1853 
1854 		const VkImageCreateInfo							colorImageParams			=
1855 		{
1856 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,										// VkStructureType		sType;
1857 			DE_NULL,																	// const void*			pNext;
1858 			0u,																			// VkImageCreateFlags	flags;
1859 			VK_IMAGE_TYPE_2D,															// VkImageType			imageType;
1860 			m_colorFormat,																// VkFormat				format;
1861 			{ m_renderSize.x(), m_renderSize.y(), 1u },									// VkExtent3D			extent;
1862 			1u,																			// deUint32				mipLevels;
1863 			1u,																			// deUint32				arraySize;
1864 			m_sampleCount,																// deUint32				samples;
1865 			VK_IMAGE_TILING_OPTIMAL,													// VkImageTiling		tiling;
1866 			imageUsage,																	// VkImageUsageFlags	usage;
1867 			VK_SHARING_MODE_EXCLUSIVE,													// VkSharingMode		sharingMode;
1868 			1u,																			// deUint32				queueFamilyCount;
1869 			&queueFamilyIndex,															// const deUint32*		pQueueFamilyIndices;
1870 			VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout		initialLayout;
1871 		};
1872 
1873 		colorImage = createImage(vk, vkDevice, &colorImageParams);
1874 
1875 		// Allocate and bind color image memory
1876 		colorImageAlloc = m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *colorImage), MemoryRequirement::Any);
1877 		VK_CHECK(vk.bindImageMemory(vkDevice, *colorImage, colorImageAlloc->getMemory(), colorImageAlloc->getOffset()));
1878 	}
1879 
1880 	// Create color attachment view
1881 	{
1882 		const VkImageViewCreateInfo						colorImageViewParams		=
1883 		{
1884 			VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,			// VkStructureType			sType;
1885 			DE_NULL,											// const void*				pNext;
1886 			0u,													// VkImageViewCreateFlags	flags;
1887 			*colorImage,										// VkImage					image;
1888 			VK_IMAGE_VIEW_TYPE_2D,								// VkImageViewType			viewType;
1889 			m_colorFormat,										// VkFormat					format;
1890 			{
1891 				VK_COMPONENT_SWIZZLE_R,			// VkChannelSwizzle		r;
1892 				VK_COMPONENT_SWIZZLE_G,			// VkChannelSwizzle		g;
1893 				VK_COMPONENT_SWIZZLE_B,			// VkChannelSwizzle		b;
1894 				VK_COMPONENT_SWIZZLE_A			// VkChannelSwizzle		a;
1895 			},													// VkChannelMapping			channels;
1896 			{
1897 				VK_IMAGE_ASPECT_COLOR_BIT,		// VkImageAspectFlags	aspectMask;
1898 				0,								// deUint32				baseMipLevel;
1899 				1,								// deUint32				mipLevels;
1900 				0,								// deUint32				baseArraySlice;
1901 				1								// deUint32				arraySize;
1902 			},													// VkImageSubresourceRange	subresourceRange;
1903 		};
1904 
1905 		colorImageView = createImageView(vk, vkDevice, &colorImageViewParams);
1906 	}
1907 
1908 	if (isMultiSampling())
1909 	{
1910 		// Resolved Image
1911 		{
1912 			const VkImageUsageFlags	imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
1913 			VkImageFormatProperties	properties;
1914 
1915 			if ((getInstanceInterface().getPhysicalDeviceImageFormatProperties(getPhysicalDevice(),
1916 																			   m_colorFormat,
1917 																			   VK_IMAGE_TYPE_2D,
1918 																			   VK_IMAGE_TILING_OPTIMAL,
1919 																			   imageUsage,
1920 																			   0,
1921 																			   &properties) == VK_ERROR_FORMAT_NOT_SUPPORTED))
1922 			{
1923 				TCU_THROW(NotSupportedError, "Format not supported");
1924 			}
1925 
1926 			const VkImageCreateInfo					imageCreateInfo			=
1927 			{
1928 				VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,		// VkStructureType			sType;
1929 				DE_NULL,									// const void*				pNext;
1930 				0u,											// VkImageCreateFlags		flags;
1931 				VK_IMAGE_TYPE_2D,							// VkImageType				imageType;
1932 				m_colorFormat,								// VkFormat					format;
1933 				{ m_renderSize.x(),	m_renderSize.y(), 1u },	// VkExtent3D				extent;
1934 				1u,											// deUint32					mipLevels;
1935 				1u,											// deUint32					arrayLayers;
1936 				VK_SAMPLE_COUNT_1_BIT,						// VkSampleCountFlagBits	samples;
1937 				VK_IMAGE_TILING_OPTIMAL,					// VkImageTiling			tiling;
1938 				imageUsage,									// VkImageUsageFlags		usage;
1939 				VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode			sharingMode;
1940 				1u,											// deUint32					queueFamilyIndexCount;
1941 				&queueFamilyIndex,							// const deUint32*			pQueueFamilyIndices;
1942 				VK_IMAGE_LAYOUT_UNDEFINED					// VkImageLayout			initialLayout;
1943 			};
1944 
1945 			resolvedImage		= vk::createImage(vk, vkDevice, &imageCreateInfo, DE_NULL);
1946 			resolvedImageAlloc	= m_memAlloc.allocate(getImageMemoryRequirements(vk, vkDevice, *resolvedImage), MemoryRequirement::Any);
1947 			VK_CHECK(vk.bindImageMemory(vkDevice, *resolvedImage, resolvedImageAlloc->getMemory(), resolvedImageAlloc->getOffset()));
1948 		}
1949 
1950 		// Resolved Image View
1951 		{
1952 			const VkImageViewCreateInfo				imageViewCreateInfo		=
1953 			{
1954 				VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,	// VkStructureType				sType;
1955 				DE_NULL,									// const void*					pNext;
1956 				0u,											// VkImageViewCreateFlags		flags;
1957 				*resolvedImage,								// VkImage						image;
1958 				VK_IMAGE_VIEW_TYPE_2D,						// VkImageViewType				viewType;
1959 				m_colorFormat,								// VkFormat						format;
1960 				{
1961 					VK_COMPONENT_SWIZZLE_R,					// VkChannelSwizzle		r;
1962 					VK_COMPONENT_SWIZZLE_G,					// VkChannelSwizzle		g;
1963 					VK_COMPONENT_SWIZZLE_B,					// VkChannelSwizzle		b;
1964 					VK_COMPONENT_SWIZZLE_A					// VkChannelSwizzle		a;
1965 				},
1966 				{
1967 					VK_IMAGE_ASPECT_COLOR_BIT,					// VkImageAspectFlags			aspectMask;
1968 					0u,											// deUint32						baseMipLevel;
1969 					1u,											// deUint32						mipLevels;
1970 					0u,											// deUint32						baseArrayLayer;
1971 					1u,											// deUint32						arraySize;
1972 				},											// VkImageSubresourceRange		subresourceRange;
1973 			};
1974 
1975 			resolvedImageView = vk::createImageView(vk, vkDevice, &imageViewCreateInfo, DE_NULL);
1976 		}
1977 	}
1978 
1979 	// Create render pass
1980 	{
1981 		const VkAttachmentDescription					attachmentDescription[]		=
1982 		{
1983 			{
1984 				(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
1985 				m_colorFormat,										// VkFormat							format;
1986 				m_sampleCount,										// deUint32							samples;
1987 				VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
1988 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
1989 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
1990 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
1991 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
1992 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					finalLayout;
1993 			},
1994 			{
1995 				(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
1996 				m_colorFormat,										// VkFormat							format;
1997 				VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
1998 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				loadOp;
1999 				VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
2000 				VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
2001 				VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
2002 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					initialLayout;
2003 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					finalLayout;
2004 			}
2005 		};
2006 
2007 		const VkAttachmentReference						attachmentReference			=
2008 		{
2009 			0u,													// deUint32			attachment;
2010 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
2011 		};
2012 
2013 		const VkAttachmentReference						resolveAttachmentRef		=
2014 		{
2015 			1u,													// deUint32			attachment;
2016 			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
2017 		};
2018 
2019 		const VkSubpassDescription						subpassDescription			=
2020 		{
2021 			0u,													// VkSubpassDescriptionFlags	flags;
2022 			VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint			pipelineBindPoint;
2023 			0u,													// deUint32						inputCount;
2024 			DE_NULL,											// constVkAttachmentReference*	pInputAttachments;
2025 			1u,													// deUint32						colorCount;
2026 			&attachmentReference,								// constVkAttachmentReference*	pColorAttachments;
2027 			isMultiSampling() ? &resolveAttachmentRef : DE_NULL,// constVkAttachmentReference*	pResolveAttachments;
2028 			DE_NULL,											// VkAttachmentReference		depthStencilAttachment;
2029 			0u,													// deUint32						preserveCount;
2030 			DE_NULL												// constVkAttachmentReference*	pPreserveAttachments;
2031 		};
2032 
2033 		const VkRenderPassCreateInfo					renderPassParams			=
2034 		{
2035 			VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
2036 			DE_NULL,											// const void*						pNext;
2037 			0u,													// VkRenderPassCreateFlags			flags;
2038 			isMultiSampling() ? 2u : 1u,						// deUint32							attachmentCount;
2039 			attachmentDescription,								// const VkAttachmentDescription*	pAttachments;
2040 			1u,													// deUint32							subpassCount;
2041 			&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
2042 			0u,													// deUint32							dependencyCount;
2043 			DE_NULL												// const VkSubpassDependency*		pDependencies;
2044 		};
2045 
2046 		renderPass = createRenderPass(vk, vkDevice, &renderPassParams);
2047 	}
2048 
2049 	// Create framebuffer
2050 	{
2051 		const VkImageView								attachments[]				=
2052 		{
2053 			*colorImageView,
2054 			*resolvedImageView
2055 		};
2056 
2057 		const VkFramebufferCreateInfo					framebufferParams			=
2058 		{
2059 			VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,			// VkStructureType				sType;
2060 			DE_NULL,											// const void*					pNext;
2061 			(VkFramebufferCreateFlags)0,
2062 			*renderPass,										// VkRenderPass					renderPass;
2063 			isMultiSampling() ? 2u : 1u,						// deUint32						attachmentCount;
2064 			attachments,										// const VkImageView*			pAttachments;
2065 			(deUint32)m_renderSize.x(),							// deUint32						width;
2066 			(deUint32)m_renderSize.y(),							// deUint32						height;
2067 			1u													// deUint32						layers;
2068 		};
2069 
2070 		framebuffer = createFramebuffer(vk, vkDevice, &framebufferParams);
2071 	}
2072 
2073 	// Create descriptors
2074 	{
2075 		setupUniforms(constCoords);
2076 
2077 		descriptorSetLayout = m_descriptorSetLayoutBuilder->build(vk, vkDevice);
2078 		if (!m_uniformInfos.empty())
2079 		{
2080 			descriptorPool									= m_descriptorPoolBuilder->build(vk, vkDevice, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
2081 			const VkDescriptorSetAllocateInfo	allocInfo	=
2082 			{
2083 				VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
2084 				DE_NULL,
2085 				*descriptorPool,
2086 				1u,
2087 				&descriptorSetLayout.get(),
2088 			};
2089 
2090 			descriptorSet = allocateDescriptorSet(vk, vkDevice, &allocInfo);
2091 		}
2092 
2093 		for (deUint32 i = 0; i < m_uniformInfos.size(); i++)
2094 		{
2095 			const UniformInfo* uniformInfo = m_uniformInfos[i].get()->get();
2096 			deUint32 location = uniformInfo->location;
2097 
2098 			if (uniformInfo->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
2099 			{
2100 				const BufferUniform*	bufferInfo	= dynamic_cast<const BufferUniform*>(uniformInfo);
2101 
2102 				m_descriptorSetUpdateBuilder->writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(location), uniformInfo->type, &bufferInfo->descriptor);
2103 			}
2104 			else if (uniformInfo->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2105 			{
2106 				const SamplerUniform*	samplerInfo	= dynamic_cast<const SamplerUniform*>(uniformInfo);
2107 
2108 				m_descriptorSetUpdateBuilder->writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(location), uniformInfo->type, &samplerInfo->descriptor);
2109 			}
2110 			else
2111 				DE_FATAL("Impossible");
2112 		}
2113 
2114 		m_descriptorSetUpdateBuilder->update(vk, vkDevice);
2115 	}
2116 
2117 	// Create pipeline layout
2118 	{
2119 		const VkPushConstantRange* const				pcRanges					= m_pushConstantRanges.empty() ? DE_NULL : &m_pushConstantRanges[0];
2120 		const VkPipelineLayoutCreateInfo				pipelineLayoutParams		=
2121 		{
2122 			VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,		// VkStructureType				sType;
2123 			DE_NULL,											// const void*					pNext;
2124 			(VkPipelineLayoutCreateFlags)0,
2125 			1u,													// deUint32						descriptorSetCount;
2126 			&*descriptorSetLayout,								// const VkDescriptorSetLayout*	pSetLayouts;
2127 			deUint32(m_pushConstantRanges.size()),				// deUint32						pushConstantRangeCount;
2128 			pcRanges											// const VkPushConstantRange*	pPushConstantRanges;
2129 		};
2130 
2131 		pipelineLayout = createPipelineLayout(vk, vkDevice, &pipelineLayoutParams);
2132 	}
2133 
2134 	// Create shaders
2135 	{
2136 		vertexShaderModule		= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get(m_vertexShaderName), 0);
2137 		fragmentShaderModule	= createShaderModule(vk, vkDevice, m_context.getBinaryCollection().get(m_fragmentShaderName), 0);
2138 	}
2139 
2140 	// Create pipeline
2141 	{
2142 		// Add test case specific attributes
2143 		if (m_attribFunc)
2144 			m_attribFunc(*this, numVertices);
2145 
2146 		// Add base attributes
2147 		setupDefaultInputs();
2148 
2149 		const VkPipelineVertexInputStateCreateInfo		vertexInputStateParams		=
2150 		{
2151 			VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType							sType;
2152 			DE_NULL,														// const void*								pNext;
2153 			(VkPipelineVertexInputStateCreateFlags)0,
2154 			(deUint32)m_vertexBindingDescription.size(),					// deUint32									bindingCount;
2155 			&m_vertexBindingDescription[0],									// const VkVertexInputBindingDescription*	pVertexBindingDescriptions;
2156 			(deUint32)m_vertexAttributeDescription.size(),					// deUint32									attributeCount;
2157 			&m_vertexAttributeDescription[0],								// const VkVertexInputAttributeDescription*	pVertexAttributeDescriptions;
2158 		};
2159 
2160 		const std::vector<VkViewport>					viewports					(1, makeViewport(m_renderSize));
2161 		const std::vector<VkRect2D>						scissors					(1, makeRect2D(m_renderSize));
2162 
2163 		const VkPipelineMultisampleStateCreateInfo		multisampleStateParams =
2164 		{
2165 			VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,		// VkStructureType							sType;
2166 			DE_NULL,														// const void*								pNext;
2167 			0u,																// VkPipelineMultisampleStateCreateFlags	flags;
2168 			m_sampleCount,													// VkSampleCountFlagBits					rasterizationSamples;
2169 			VK_FALSE,														// VkBool32									sampleShadingEnable;
2170 			0.0f,															// float									minSampleShading;
2171 			DE_NULL,														// const VkSampleMask*						pSampleMask;
2172 			VK_FALSE,														// VkBool32									alphaToCoverageEnable;
2173 			VK_FALSE														// VkBool32									alphaToOneEnable;
2174 		};
2175 
2176 		graphicsPipeline = makeGraphicsPipeline(vk,							// const DeviceInterface&                        vk
2177 												vkDevice,					// const VkDevice                                device
2178 												*pipelineLayout,			// const VkPipelineLayout                        pipelineLayout
2179 												*vertexShaderModule,		// const VkShaderModule                          vertexShaderModule
2180 												DE_NULL,					// const VkShaderModule                          tessellationControlShaderModule
2181 												DE_NULL,					// const VkShaderModule                          tessellationEvalShaderModule
2182 												DE_NULL,					// const VkShaderModule                          geometryShaderModule
2183 												*fragmentShaderModule,		// const VkShaderModule                          fragmentShaderModule
2184 												*renderPass,				// const VkRenderPass                            renderPass
2185 												viewports,					// const std::vector<VkViewport>&                viewports
2186 												scissors,					// const std::vector<VkRect2D>&                  scissors
2187 												topology,					// const VkPrimitiveTopology                     topology
2188 												0u,							// const deUint32                                subpass
2189 												0u,							// const deUint32                                patchControlPoints
2190 												&vertexInputStateParams,	// const VkPipelineVertexInputStateCreateInfo*   vertexInputStateCreateInfo
2191 												DE_NULL,					// const VkPipelineRasterizationStateCreateInfo* rasterizationStateCreateInfo
2192 												&multisampleStateParams);	// const VkPipelineMultisampleStateCreateInfo*   multisampleStateCreateInfo
2193 	}
2194 
2195 	// Create vertex indices buffer
2196 	if (numIndices != 0)
2197 	{
2198 		const VkDeviceSize								indexBufferSize			= numIndices * sizeof(deUint16);
2199 		const VkBufferCreateInfo						indexBufferParams		=
2200 		{
2201 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		// VkStructureType		sType;
2202 			DE_NULL,									// const void*			pNext;
2203 			0u,											// VkBufferCreateFlags	flags;
2204 			indexBufferSize,							// VkDeviceSize			size;
2205 			VK_BUFFER_USAGE_INDEX_BUFFER_BIT,			// VkBufferUsageFlags	usage;
2206 			VK_SHARING_MODE_EXCLUSIVE,					// VkSharingMode		sharingMode;
2207 			1u,											// deUint32				queueFamilyCount;
2208 			&queueFamilyIndex							// const deUint32*		pQueueFamilyIndices;
2209 		};
2210 
2211 		indexBuffer			= createBuffer(vk, vkDevice, &indexBufferParams);
2212 		indexBufferAlloc	= m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *indexBuffer), MemoryRequirement::HostVisible);
2213 
2214 		VK_CHECK(vk.bindBufferMemory(vkDevice, *indexBuffer, indexBufferAlloc->getMemory(), indexBufferAlloc->getOffset()));
2215 
2216 		// Load vertice indices into buffer
2217 		deMemcpy(indexBufferAlloc->getHostPtr(), indices, (size_t)indexBufferSize);
2218 		flushAlloc(vk, vkDevice, *indexBufferAlloc);
2219 	}
2220 
2221 	// Create command pool
2222 	cmdPool = createCommandPool(vk, vkDevice, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex);
2223 
2224 	// Create command buffer
2225 	{
2226 		cmdBuffer = allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2227 
2228 		beginCommandBuffer(vk, *cmdBuffer);
2229 
2230 		{
2231 			const VkImageMemoryBarrier					imageBarrier				=
2232 			{
2233 				VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,										// VkStructureType			sType;
2234 				DE_NULL,																	// const void*				pNext;
2235 				0u,																			// VkAccessFlags			srcAccessMask;
2236 				VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,										// VkAccessFlags			dstAccessMask;
2237 				VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout			oldLayout;
2238 				VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,									// VkImageLayout			newLayout;
2239 				VK_QUEUE_FAMILY_IGNORED,													// deUint32					srcQueueFamilyIndex;
2240 				VK_QUEUE_FAMILY_IGNORED,													// deUint32					dstQueueFamilyIndex;
2241 				*colorImage,																// VkImage					image;
2242 				{																			// VkImageSubresourceRange	subresourceRange;
2243 					VK_IMAGE_ASPECT_COLOR_BIT,												// VkImageAspectFlags		aspectMask;
2244 					0u,																		// deUint32					baseMipLevel;
2245 					1u,																		// deUint32					mipLevels;
2246 					0u,																		// deUint32					baseArrayLayer;
2247 					1u,																		// deUint32					arraySize;
2248 				}
2249 			};
2250 
2251 			vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, DE_NULL, 1, &imageBarrier);
2252 
2253 			if (isMultiSampling()) {
2254 				// add multisample barrier
2255 				const VkImageMemoryBarrier				multiSampleImageBarrier		=
2256 				{
2257 					VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,										// VkStructureType			sType;
2258 					DE_NULL,																	// const void*				pNext;
2259 					0u,																			// VkAccessFlags			srcAccessMask;
2260 					VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,										// VkAccessFlags			dstAccessMask;
2261 					VK_IMAGE_LAYOUT_UNDEFINED,													// VkImageLayout			oldLayout;
2262 					VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,									// VkImageLayout			newLayout;
2263 					VK_QUEUE_FAMILY_IGNORED,													// deUint32					srcQueueFamilyIndex;
2264 					VK_QUEUE_FAMILY_IGNORED,													// deUint32					dstQueueFamilyIndex;
2265 					*resolvedImage,																// VkImage					image;
2266 					{																			// VkImageSubresourceRange	subresourceRange;
2267 						VK_IMAGE_ASPECT_COLOR_BIT,												// VkImageAspectFlags		aspectMask;
2268 						0u,																		// deUint32					baseMipLevel;
2269 						1u,																		// deUint32					mipLevels;
2270 						0u,																		// deUint32					baseArrayLayer;
2271 						1u,																		// deUint32					arraySize;
2272 					}
2273 				};
2274 
2275 				vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, DE_NULL, 1, &multiSampleImageBarrier);
2276 			}
2277 		}
2278 
2279 		beginRenderPass(vk, *cmdBuffer, *renderPass, *framebuffer, makeRect2D(0, 0, m_renderSize.x(), m_renderSize.y()), m_clearColor);
2280 
2281 		updatePushConstants(*cmdBuffer, *pipelineLayout);
2282 		vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *graphicsPipeline);
2283 		if (!m_uniformInfos.empty())
2284 			vk.cmdBindDescriptorSets(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLayout, 0u, 1, &*descriptorSet, 0u, DE_NULL);
2285 
2286 		const deUint32 numberOfVertexAttributes = (deUint32)m_vertexBuffers.size();
2287 		const std::vector<VkDeviceSize> offsets(numberOfVertexAttributes, 0);
2288 
2289 		std::vector<VkBuffer> buffers(numberOfVertexAttributes);
2290 		for (size_t i = 0; i < numberOfVertexAttributes; i++)
2291 		{
2292 			buffers[i] = m_vertexBuffers[i].get()->get();
2293 		}
2294 
2295 		vk.cmdBindVertexBuffers(*cmdBuffer, 0, numberOfVertexAttributes, &buffers[0], &offsets[0]);
2296 		if (numIndices != 0)
2297 		{
2298 			vk.cmdBindIndexBuffer(*cmdBuffer, *indexBuffer, 0, VK_INDEX_TYPE_UINT16);
2299 			vk.cmdDrawIndexed(*cmdBuffer, numIndices, 1, 0, 0, 0);
2300 		}
2301 		else
2302 			vk.cmdDraw(*cmdBuffer, numVertices,  1, 0, 0);
2303 
2304 		endRenderPass(vk, *cmdBuffer);
2305 		endCommandBuffer(vk, *cmdBuffer);
2306 	}
2307 
2308 	// Execute Draw
2309 	submitCommandsAndWait(vk, vkDevice, queue, cmdBuffer.get());
2310 
2311 	// Read back the result
2312 	{
2313 		const tcu::TextureFormat						resultFormat				= mapVkFormat(m_colorFormat);
2314 		const VkDeviceSize								imageSizeBytes				= (VkDeviceSize)(resultFormat.getPixelSize() * m_renderSize.x() * m_renderSize.y());
2315 		const VkBufferCreateInfo						readImageBufferParams		=
2316 		{
2317 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,		//  VkStructureType		sType;
2318 			DE_NULL,									//  const void*			pNext;
2319 			0u,											//  VkBufferCreateFlags	flags;
2320 			imageSizeBytes,								//  VkDeviceSize		size;
2321 			VK_BUFFER_USAGE_TRANSFER_DST_BIT,			//  VkBufferUsageFlags	usage;
2322 			VK_SHARING_MODE_EXCLUSIVE,					//  VkSharingMode		sharingMode;
2323 			1u,											//  deUint32			queueFamilyCount;
2324 			&queueFamilyIndex,							//  const deUint32*		pQueueFamilyIndices;
2325 		};
2326 		const Unique<VkBuffer>							readImageBuffer				(createBuffer(vk, vkDevice, &readImageBufferParams));
2327 		const de::UniquePtr<Allocation>					readImageBufferMemory		(m_memAlloc.allocate(getBufferMemoryRequirements(vk, vkDevice, *readImageBuffer), MemoryRequirement::HostVisible));
2328 
2329 		VK_CHECK(vk.bindBufferMemory(vkDevice, *readImageBuffer, readImageBufferMemory->getMemory(), readImageBufferMemory->getOffset()));
2330 
2331 		// Copy image to buffer
2332 		const Move<VkCommandBuffer>						resultCmdBuffer				= allocateCommandBuffer(vk, vkDevice, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2333 
2334 		beginCommandBuffer(vk, *resultCmdBuffer);
2335 
2336 		copyImageToBuffer(vk, *resultCmdBuffer, isMultiSampling() ? *resolvedImage : *colorImage, *readImageBuffer, tcu::IVec2(m_renderSize.x(), m_renderSize.y()));
2337 
2338 		endCommandBuffer(vk, *resultCmdBuffer);
2339 
2340 		submitCommandsAndWait(vk, vkDevice, queue, resultCmdBuffer.get());
2341 
2342 		invalidateAlloc(vk, vkDevice, *readImageBufferMemory);
2343 
2344 		const tcu::ConstPixelBufferAccess				resultAccess				(resultFormat, m_renderSize.x(), m_renderSize.y(), 1, readImageBufferMemory->getHostPtr());
2345 
2346 		m_resultImage.setStorage(resultFormat, m_renderSize.x(), m_renderSize.y());
2347 		tcu::copy(m_resultImage.getAccess(), resultAccess);
2348 	}
2349 }
2350 
computeVertexReference(tcu::Surface & result,const QuadGrid & quadGrid)2351 void ShaderRenderCaseInstance::computeVertexReference (tcu::Surface& result, const QuadGrid& quadGrid)
2352 {
2353 	DE_ASSERT(m_evaluator);
2354 
2355 	// Buffer info.
2356 	const int				width		= result.getWidth();
2357 	const int				height		= result.getHeight();
2358 	const int				gridSize	= quadGrid.getGridSize();
2359 	const int				stride		= gridSize + 1;
2360 	const bool				hasAlpha	= true; // \todo [2015-09-07 elecro] add correct alpha check
2361 	ShaderEvalContext		evalCtx		(quadGrid);
2362 
2363 	// Evaluate color for each vertex.
2364 	std::vector<tcu::Vec4>	colors		((gridSize + 1) * (gridSize + 1));
2365 	for (int y = 0; y < gridSize+1; y++)
2366 	for (int x = 0; x < gridSize+1; x++)
2367 	{
2368 		const float	sx			= (float)x / (float)gridSize;
2369 		const float	sy			= (float)y / (float)gridSize;
2370 		const int	vtxNdx		= ((y * (gridSize+1)) + x);
2371 
2372 		evalCtx.reset(sx, sy);
2373 		m_evaluator->evaluate(evalCtx);
2374 		DE_ASSERT(!evalCtx.isDiscarded); // Discard is not available in vertex shader.
2375 		tcu::Vec4 color = evalCtx.color;
2376 
2377 		if (!hasAlpha)
2378 			color.w() = 1.0f;
2379 
2380 		colors[vtxNdx] = color;
2381 	}
2382 
2383 	// Render quads.
2384 	for (int y = 0; y < gridSize; y++)
2385 	for (int x = 0; x < gridSize; x++)
2386 	{
2387 		const float		x0		= (float)x       / (float)gridSize;
2388 		const float		x1		= (float)(x + 1) / (float)gridSize;
2389 		const float		y0		= (float)y       / (float)gridSize;
2390 		const float		y1		= (float)(y + 1) / (float)gridSize;
2391 
2392 		const float		sx0		= x0 * (float)width;
2393 		const float		sx1		= x1 * (float)width;
2394 		const float		sy0		= y0 * (float)height;
2395 		const float		sy1		= y1 * (float)height;
2396 		const float		oosx	= 1.0f / (sx1 - sx0);
2397 		const float		oosy	= 1.0f / (sy1 - sy0);
2398 
2399 		const int		ix0		= deCeilFloatToInt32(sx0 - 0.5f);
2400 		const int		ix1		= deCeilFloatToInt32(sx1 - 0.5f);
2401 		const int		iy0		= deCeilFloatToInt32(sy0 - 0.5f);
2402 		const int		iy1		= deCeilFloatToInt32(sy1 - 0.5f);
2403 
2404 		const int		v00		= (y * stride) + x;
2405 		const int		v01		= (y * stride) + x + 1;
2406 		const int		v10		= ((y + 1) * stride) + x;
2407 		const int		v11		= ((y + 1) * stride) + x + 1;
2408 		const tcu::Vec4	c00		= colors[v00];
2409 		const tcu::Vec4	c01		= colors[v01];
2410 		const tcu::Vec4	c10		= colors[v10];
2411 		const tcu::Vec4	c11		= colors[v11];
2412 
2413 		//printf("(%d,%d) -> (%f..%f, %f..%f) (%d..%d, %d..%d)\n", x, y, sx0, sx1, sy0, sy1, ix0, ix1, iy0, iy1);
2414 
2415 		for (int iy = iy0; iy < iy1; iy++)
2416 		for (int ix = ix0; ix < ix1; ix++)
2417 		{
2418 			DE_ASSERT(deInBounds32(ix, 0, width));
2419 			DE_ASSERT(deInBounds32(iy, 0, height));
2420 
2421 			const float			sfx		= (float)ix + 0.5f;
2422 			const float			sfy		= (float)iy + 0.5f;
2423 			const float			fx1		= deFloatClamp((sfx - sx0) * oosx, 0.0f, 1.0f);
2424 			const float			fy1		= deFloatClamp((sfy - sy0) * oosy, 0.0f, 1.0f);
2425 
2426 			// Triangle quad interpolation.
2427 			const bool			tri		= fx1 + fy1 <= 1.0f;
2428 			const float			tx		= tri ? fx1 : (1.0f-fx1);
2429 			const float			ty		= tri ? fy1 : (1.0f-fy1);
2430 			const tcu::Vec4&	t0		= tri ? c00 : c11;
2431 			const tcu::Vec4&	t1		= tri ? c01 : c10;
2432 			const tcu::Vec4&	t2		= tri ? c10 : c01;
2433 			const tcu::Vec4		color	= t0 + (t1-t0)*tx + (t2-t0)*ty;
2434 
2435 			result.setPixel(ix, iy, tcu::RGBA(color));
2436 		}
2437 	}
2438 }
2439 
computeFragmentReference(tcu::Surface & result,const QuadGrid & quadGrid)2440 void ShaderRenderCaseInstance::computeFragmentReference (tcu::Surface& result, const QuadGrid& quadGrid)
2441 {
2442 	DE_ASSERT(m_evaluator);
2443 
2444 	// Buffer info.
2445 	const int			width		= result.getWidth();
2446 	const int			height		= result.getHeight();
2447 	const bool			hasAlpha	= true;  // \todo [2015-09-07 elecro] add correct alpha check
2448 	ShaderEvalContext	evalCtx		(quadGrid);
2449 
2450 	// Render.
2451 	for (int y = 0; y < height; y++)
2452 	for (int x = 0; x < width; x++)
2453 	{
2454 		const float sx = ((float)x + 0.5f) / (float)width;
2455 		const float sy = ((float)y + 0.5f) / (float)height;
2456 
2457 		evalCtx.reset(sx, sy);
2458 		m_evaluator->evaluate(evalCtx);
2459 		// Select either clear color or computed color based on discarded bit.
2460 		tcu::Vec4 color = evalCtx.isDiscarded ? m_clearColor : evalCtx.color;
2461 
2462 		if (!hasAlpha)
2463 			color.w() = 1.0f;
2464 
2465 		result.setPixel(x, y, tcu::RGBA(color));
2466 	}
2467 }
2468 
compareImages(const tcu::Surface & resImage,const tcu::Surface & refImage,float errorThreshold)2469 bool ShaderRenderCaseInstance::compareImages (const tcu::Surface& resImage, const tcu::Surface& refImage, float errorThreshold)
2470 {
2471 	if (m_fuzzyCompare)
2472 		return tcu::fuzzyCompare(m_context.getTestContext().getLog(), "ComparisonResult", "Image comparison result", refImage, resImage, errorThreshold, tcu::COMPARE_LOG_EVERYTHING);
2473 	else
2474 		return tcu::pixelThresholdCompare(m_context.getTestContext().getLog(), "ComparisonResult", "Image comparison result", refImage, resImage, tcu::RGBA(1, 1, 1, 1), tcu::COMPARE_LOG_EVERYTHING);
2475 }
2476 
2477 } // sr
2478 } // vkt
2479