1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gfx4.h"
32 #include "isl_gfx6.h"
33 #include "isl_gfx7.h"
34 #include "isl_gfx8.h"
35 #include "isl_gfx9.h"
36 #include "isl_gfx12.h"
37 #include "isl_priv.h"
38
39 void
isl_memcpy_linear_to_tiled(uint32_t xt1,uint32_t xt2,uint32_t yt1,uint32_t yt2,char * dst,const char * src,uint32_t dst_pitch,int32_t src_pitch,bool has_swizzling,enum isl_tiling tiling,isl_memcpy_type copy_type)40 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
41 uint32_t yt1, uint32_t yt2,
42 char *dst, const char *src,
43 uint32_t dst_pitch, int32_t src_pitch,
44 bool has_swizzling,
45 enum isl_tiling tiling,
46 isl_memcpy_type copy_type)
47 {
48 #ifdef USE_SSE41
49 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
50 _isl_memcpy_linear_to_tiled_sse41(
51 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
52 tiling, copy_type);
53 return;
54 }
55 #endif
56
57 _isl_memcpy_linear_to_tiled(
58 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
59 tiling, copy_type);
60 }
61
62 void
isl_memcpy_tiled_to_linear(uint32_t xt1,uint32_t xt2,uint32_t yt1,uint32_t yt2,char * dst,const char * src,int32_t dst_pitch,uint32_t src_pitch,bool has_swizzling,enum isl_tiling tiling,isl_memcpy_type copy_type)63 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
64 uint32_t yt1, uint32_t yt2,
65 char *dst, const char *src,
66 int32_t dst_pitch, uint32_t src_pitch,
67 bool has_swizzling,
68 enum isl_tiling tiling,
69 isl_memcpy_type copy_type)
70 {
71 #ifdef USE_SSE41
72 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
73 _isl_memcpy_tiled_to_linear_sse41(
74 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
75 tiling, copy_type);
76 return;
77 }
78 #endif
79
80 _isl_memcpy_tiled_to_linear(
81 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
82 tiling, copy_type);
83 }
84
85 void PRINTFLIKE(3, 4) UNUSED
__isl_finishme(const char * file,int line,const char * fmt,...)86 __isl_finishme(const char *file, int line, const char *fmt, ...)
87 {
88 va_list ap;
89 char buf[512];
90
91 va_start(ap, fmt);
92 vsnprintf(buf, sizeof(buf), fmt, ap);
93 va_end(ap);
94
95 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
96 }
97
98 static void
isl_device_setup_mocs(struct isl_device * dev)99 isl_device_setup_mocs(struct isl_device *dev)
100 {
101 if (dev->info->ver >= 12) {
102 if (intel_device_info_is_dg2(dev->info)) {
103 /* L3CC=WB; BSpec: 45101 */
104 dev->mocs.internal = 3 << 1;
105 dev->mocs.external = 3 << 1;
106
107 /* XY_BLOCK_COPY_BLT MOCS fields have programming notes which say:
108 *
109 * "Destination MOCS value, which is used to program MOCS index
110 * for writing to memory, should select a MOCS register having
111 * "L3 Cacheability Control" programmed as uncacheable(UC) and
112 * "Global GO" parameter set as GOMemory (pushes GO point to
113 * memory). The MOCS Register may have L3 Lookup programmed as
114 * UCL3LKDIS for better efficiency."
115 *
116 * The GO:Memory setting requires us to use MOCS 1 or 2. MOCS 2
117 * has LKUP set to 0 and is marked "Non-Coherent", which we assume
118 * is probably the "better efficiency" they mention...
119 *
120 * "Source MOCS value, which is used to program MOCS index for
121 * reading from memory, should select a MOCS register having
122 * "L3 Cacheability Control" programmed as uncacheable(UC).
123 * The MOCS Register may have L3 Lookup programmed as UCL3LKDIS
124 * for better efficiency."
125 *
126 * Any MOCS except 3 should work. We use MOCS 2...
127 */
128 dev->mocs.blitter_dst = 2 << 1;
129 dev->mocs.blitter_src = 2 << 1;
130 } else if (dev->info->platform == INTEL_PLATFORM_DG1) {
131 /* L3CC=WB */
132 dev->mocs.internal = 5 << 1;
133 /* Displayables on DG1 are free to cache in L3 since L3 is transient
134 * and flushed at bottom of each submission.
135 */
136 dev->mocs.external = 5 << 1;
137 } else {
138 /* TC=1/LLC Only, LeCC=1/UC, LRUM=0, L3CC=3/WB */
139 dev->mocs.external = 61 << 1;
140 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
141 dev->mocs.internal = 2 << 1;
142
143 /* L1 - HDC:L1 + L3 + LLC */
144 dev->mocs.l1_hdc_l3_llc = 48 << 1;
145 }
146 } else if (dev->info->ver >= 9) {
147 /* TC=LLC/eLLC, LeCC=PTE, LRUM=3, L3CC=WB */
148 dev->mocs.external = 1 << 1;
149 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
150 dev->mocs.internal = 2 << 1;
151 } else if (dev->info->ver >= 8) {
152 /* MEMORY_OBJECT_CONTROL_STATE:
153 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
154 * .TargetCache = L3DefertoPATforLLCeLLCselection,
155 * .AgeforQUADLRU = 0
156 */
157 dev->mocs.external = 0x18;
158 /* MEMORY_OBJECT_CONTROL_STATE:
159 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
160 * .TargetCache = L3DefertoPATforLLCeLLCselection,
161 * .AgeforQUADLRU = 0
162 */
163 dev->mocs.internal = 0x78;
164 } else if (dev->info->ver >= 7) {
165 if (dev->info->platform == INTEL_PLATFORM_HSW) {
166 /* MEMORY_OBJECT_CONTROL_STATE:
167 * .LLCeLLCCacheabilityControlLLCCC = 0,
168 * .L3CacheabilityControlL3CC = 1,
169 */
170 dev->mocs.internal = 1;
171 dev->mocs.external = 1;
172 } else {
173 /* MEMORY_OBJECT_CONTROL_STATE:
174 * .GraphicsDataTypeGFDT = 0,
175 * .LLCCacheabilityControlLLCCC = 0,
176 * .L3CacheabilityControlL3CC = 1,
177 */
178 dev->mocs.internal = 1;
179 dev->mocs.external = 1;
180 }
181 } else {
182 dev->mocs.internal = 0;
183 dev->mocs.external = 0;
184 }
185 }
186
187 /**
188 * Return an appropriate MOCS entry for the given usage flags.
189 */
190 uint32_t
isl_mocs(const struct isl_device * dev,isl_surf_usage_flags_t usage,bool external)191 isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage,
192 bool external)
193 {
194 if (external)
195 return dev->mocs.external;
196
197 if (dev->info->verx10 == 120 && dev->info->platform != INTEL_PLATFORM_DG1) {
198 if (usage & ISL_SURF_USAGE_STAGING_BIT)
199 return dev->mocs.internal;
200
201 if (usage & ISL_SURF_USAGE_CPB_BIT)
202 return dev->mocs.internal;
203
204 /* Using L1:HDC for storage buffers breaks Vulkan memory model
205 * tests that use shader atomics. This isn't likely to work out,
206 * and we can't know a priori whether they'll be used. So just
207 * continue with ordinary internal MOCS for now.
208 */
209 if (usage & ISL_SURF_USAGE_STORAGE_BIT)
210 return dev->mocs.internal;
211
212 if (usage & (ISL_SURF_USAGE_CONSTANT_BUFFER_BIT |
213 ISL_SURF_USAGE_RENDER_TARGET_BIT |
214 ISL_SURF_USAGE_TEXTURE_BIT))
215 return dev->mocs.l1_hdc_l3_llc;
216 }
217
218 return dev->mocs.internal;
219 }
220
221 void
isl_device_init(struct isl_device * dev,const struct intel_device_info * info)222 isl_device_init(struct isl_device *dev,
223 const struct intel_device_info *info)
224 {
225 /* Gfx8+ don't have bit6 swizzling, ensure callsite is not confused. */
226 assert(!(info->has_bit6_swizzle && info->ver >= 8));
227
228 dev->info = info;
229 dev->use_separate_stencil = ISL_GFX_VER(dev) >= 6;
230 dev->has_bit6_swizzling = info->has_bit6_swizzle;
231
232 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
233 * device properties at buildtime. Verify that the macros with the device
234 * properties chosen during runtime.
235 */
236 ISL_GFX_VER_SANITIZE(dev);
237 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
238
239 /* Did we break hiz or stencil? */
240 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
241 assert(info->has_hiz_and_separate_stencil);
242 if (info->must_use_separate_stencil)
243 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
244
245 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
246 dev->ss.align = isl_align(dev->ss.size, 32);
247
248 dev->ss.clear_color_state_size =
249 isl_align(CLEAR_COLOR_length(info) * 4, 64);
250 dev->ss.clear_color_state_offset =
251 RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
252
253 dev->ss.clear_value_size =
254 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
255 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
256 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
257 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
258
259 dev->ss.clear_value_offset =
260 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
261
262 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
263 dev->ss.addr_offset =
264 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
265
266 /* The "Auxiliary Surface Base Address" field starts a bit higher up
267 * because the bottom 12 bits are used for other things. Round down to
268 * the nearest dword before.
269 */
270 dev->ss.aux_addr_offset =
271 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
272
273 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
274 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
275 dev->ds.depth_offset =
276 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
277
278 if (dev->use_separate_stencil) {
279 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
280 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
281 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
282
283 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
284 dev->ds.stencil_offset =
285 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
286 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
287
288 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
289 dev->ds.hiz_offset =
290 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
291 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
292 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
293 } else {
294 dev->ds.stencil_offset = 0;
295 dev->ds.hiz_offset = 0;
296 }
297
298 if (ISL_GFX_VER(dev) >= 7) {
299 /* From the IVB PRM, SURFACE_STATE::Height,
300 *
301 * For typed buffer and structured buffer surfaces, the number
302 * of entries in the buffer ranges from 1 to 2^27. For raw buffer
303 * surfaces, the number of entries in the buffer is the number of bytes
304 * which can range from 1 to 2^30.
305 *
306 * This limit is only concerned with raw buffers.
307 */
308 dev->max_buffer_size = 1ull << 30;
309 } else {
310 dev->max_buffer_size = 1ull << 27;
311 }
312
313 dev->cpb.size = _3DSTATE_CPSIZE_CONTROL_BUFFER_length(info) * 4;
314 dev->cpb.offset =
315 _3DSTATE_CPSIZE_CONTROL_BUFFER_SurfaceBaseAddress_start(info) / 8;
316
317 isl_device_setup_mocs(dev);
318 }
319
320 /**
321 * @brief Query the set of multisamples supported by the device.
322 *
323 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
324 * supported.
325 */
326 isl_sample_count_mask_t ATTRIBUTE_CONST
isl_device_get_sample_counts(struct isl_device * dev)327 isl_device_get_sample_counts(struct isl_device *dev)
328 {
329 if (ISL_GFX_VER(dev) >= 9) {
330 return ISL_SAMPLE_COUNT_1_BIT |
331 ISL_SAMPLE_COUNT_2_BIT |
332 ISL_SAMPLE_COUNT_4_BIT |
333 ISL_SAMPLE_COUNT_8_BIT |
334 ISL_SAMPLE_COUNT_16_BIT;
335 } else if (ISL_GFX_VER(dev) >= 8) {
336 return ISL_SAMPLE_COUNT_1_BIT |
337 ISL_SAMPLE_COUNT_2_BIT |
338 ISL_SAMPLE_COUNT_4_BIT |
339 ISL_SAMPLE_COUNT_8_BIT;
340 } else if (ISL_GFX_VER(dev) >= 7) {
341 return ISL_SAMPLE_COUNT_1_BIT |
342 ISL_SAMPLE_COUNT_4_BIT |
343 ISL_SAMPLE_COUNT_8_BIT;
344 } else if (ISL_GFX_VER(dev) >= 6) {
345 return ISL_SAMPLE_COUNT_1_BIT |
346 ISL_SAMPLE_COUNT_4_BIT;
347 } else {
348 return ISL_SAMPLE_COUNT_1_BIT;
349 }
350 }
351
352 /**
353 * Returns an isl_tile_info representation of the given isl_tiling when
354 * combined when used in the given configuration.
355 *
356 * @param[in] tiling The tiling format to introspect
357 * @param[in] dim The dimensionality of the surface being tiled
358 * @param[in] msaa_layout The layout of samples in the surface being tiled
359 * @param[in] format_bpb The number of bits per surface element (block) for
360 * the surface being tiled
361 * @param[in] samples The samples in the surface being tiled
362 * @param[out] tile_info Return parameter for the tiling information
363 */
364 void
isl_tiling_get_info(enum isl_tiling tiling,enum isl_surf_dim dim,enum isl_msaa_layout msaa_layout,uint32_t format_bpb,uint32_t samples,struct isl_tile_info * tile_info)365 isl_tiling_get_info(enum isl_tiling tiling,
366 enum isl_surf_dim dim,
367 enum isl_msaa_layout msaa_layout,
368 uint32_t format_bpb,
369 uint32_t samples,
370 struct isl_tile_info *tile_info)
371 {
372 const uint32_t bs = format_bpb / 8;
373 struct isl_extent4d logical_el;
374 struct isl_extent2d phys_B;
375
376 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
377 /* It is possible to have non-power-of-two formats in a tiled buffer.
378 * The easiest way to handle this is to treat the tile as if it is three
379 * times as wide. This way no pixel will ever cross a tile boundary.
380 * This really only works on a subset of tiling formats.
381 */
382 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0 ||
383 tiling == ISL_TILING_4);
384 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
385 isl_tiling_get_info(tiling, dim, msaa_layout, format_bpb / 3, samples,
386 tile_info);
387 return;
388 }
389
390 switch (tiling) {
391 case ISL_TILING_LINEAR:
392 assert(bs > 0);
393 logical_el = isl_extent4d(1, 1, 1, 1);
394 phys_B = isl_extent2d(bs, 1);
395 break;
396
397 case ISL_TILING_X:
398 assert(bs > 0);
399 logical_el = isl_extent4d(512 / bs, 8, 1, 1);
400 phys_B = isl_extent2d(512, 8);
401 break;
402
403 case ISL_TILING_Y0:
404 case ISL_TILING_4:
405 assert(bs > 0);
406 logical_el = isl_extent4d(128 / bs, 32, 1, 1);
407 phys_B = isl_extent2d(128, 32);
408 break;
409
410 case ISL_TILING_W:
411 assert(bs == 1);
412 logical_el = isl_extent4d(64, 64, 1, 1);
413 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
414 *
415 * "If the surface is a stencil buffer (and thus has Tile Mode set
416 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
417 * computed based on width, as the stencil buffer is stored with two
418 * rows interleaved."
419 *
420 * This, together with the fact that stencil buffers are referred to as
421 * being Y-tiled in the PRMs for older hardware implies that the
422 * physical size of a W-tile is actually the same as for a Y-tile.
423 */
424 phys_B = isl_extent2d(128, 32);
425 break;
426
427 case ISL_TILING_Yf:
428 case ISL_TILING_Ys: {
429 bool is_Ys = tiling == ISL_TILING_Ys;
430
431 assert(bs > 0);
432 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
433 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
434
435 logical_el = isl_extent4d(width / bs, height, 1, 1);
436 phys_B = isl_extent2d(width, height);
437 break;
438 }
439 case ISL_TILING_64:
440 /* The tables below are taken from the "2D Surfaces" page in the Bspec
441 * which are formulated in terms of the Cv and Cu constants. This is
442 * different from the tables in the "Tile64 Format" page which should be
443 * equivalent but are usually in terms of pixels. Also note that Cv and
444 * Cu are HxW order to match the Bspec table, not WxH order like you
445 * might expect.
446 *
447 * From the Bspec's "Tile64 Format" page:
448 *
449 * MSAA Depth/Stencil surface use IMS (Interleaved Multi Samples)
450 * which means:
451 *
452 * - Use the 1X MSAA (non-MSRT) version of the Tile64 equations and
453 * let the client unit do the swizzling internally
454 *
455 * Surfaces using the IMS layout will use the mapping for 1x MSAA.
456 */
457 #define tile_extent(bs, cv, cu, a) \
458 isl_extent4d((1 << cu) / bs, 1 << cv, 1, a)
459
460 /* Only 2D surfaces are handled. */
461 assert(dim == ISL_SURF_DIM_2D);
462
463 if (samples == 1 || msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
464 switch (format_bpb) {
465 case 128: logical_el = tile_extent(bs, 6, 10, 1); break;
466 case 64: logical_el = tile_extent(bs, 6, 10, 1); break;
467 case 32: logical_el = tile_extent(bs, 7, 9, 1); break;
468 case 16: logical_el = tile_extent(bs, 7, 9, 1); break;
469 case 8: logical_el = tile_extent(bs, 8, 8, 1); break;
470 default: unreachable("Unsupported format size.");
471 }
472 } else if (samples == 2) {
473 switch (format_bpb) {
474 case 128: logical_el = tile_extent(bs, 6, 9, 2); break;
475 case 64: logical_el = tile_extent(bs, 6, 9, 2); break;
476 case 32: logical_el = tile_extent(bs, 7, 8, 2); break;
477 case 16: logical_el = tile_extent(bs, 7, 8, 2); break;
478 case 8: logical_el = tile_extent(bs, 8, 7, 2); break;
479 default: unreachable("Unsupported format size.");
480 }
481 } else {
482 switch (format_bpb) {
483 case 128: logical_el = tile_extent(bs, 5, 9, 4); break;
484 case 64: logical_el = tile_extent(bs, 5, 9, 4); break;
485 case 32: logical_el = tile_extent(bs, 6, 8, 4); break;
486 case 16: logical_el = tile_extent(bs, 6, 8, 4); break;
487 case 8: logical_el = tile_extent(bs, 7, 7, 4); break;
488 default: unreachable("Unsupported format size.");
489 }
490 }
491
492 #undef tile_extent
493
494 phys_B.w = logical_el.w * bs;
495 phys_B.h = 64 * 1024 / phys_B.w;
496 break;
497
498 case ISL_TILING_HIZ:
499 /* HiZ buffers are required to have a 128bpb HiZ format. The tiling has
500 * the same physical dimensions as Y-tiling but actually has two HiZ
501 * columns per Y-tiled column.
502 */
503 assert(bs == 16);
504 logical_el = isl_extent4d(16, 16, 1, 1);
505 phys_B = isl_extent2d(128, 32);
506 break;
507
508 case ISL_TILING_CCS:
509 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
510 * have a block size of 1 or 2 bits per block and each CCS element
511 * corresponds to one cache-line pair in the main surface. From the Sky
512 * Lake PRM Vol. 12 in the section on planes:
513 *
514 * "The Color Control Surface (CCS) contains the compression status
515 * of the cache-line pairs. The compression state of the cache-line
516 * pair is specified by 2 bits in the CCS. Each CCS cache-line
517 * represents an area on the main surface of 16x16 sets of 128 byte
518 * Y-tiled cache-line-pairs. CCS is always Y tiled."
519 *
520 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
521 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
522 * that yields total tile area of 128x128 cache-line pairs or CCS
523 * elements. On older hardware, each CCS element is 1 bit and the tile
524 * is 128x256 elements.
525 */
526 assert(format_bpb == 1 || format_bpb == 2);
527 logical_el = isl_extent4d(128, 256 / format_bpb, 1, 1);
528 phys_B = isl_extent2d(128, 32);
529 break;
530
531 case ISL_TILING_GFX12_CCS:
532 /* From the Bspec, Gen Graphics > Gfx12 > Memory Data Formats > Memory
533 * Compression > Memory Compression - Gfx12:
534 *
535 * 4 bits of auxiliary plane data are required for 2 cachelines of
536 * main surface data. This results in a single cacheline of auxiliary
537 * plane data mapping to 4 4K pages of main surface data for the 4K
538 * pages (tile Y ) and 1 64K Tile Ys page.
539 *
540 * The Y-tiled pairing bit of 9 shown in the table below that Bspec
541 * section expresses that the 2 cachelines of main surface data are
542 * horizontally adjacent.
543 *
544 * TODO: Handle Ys, Yf and their pairing bits.
545 *
546 * Therefore, each CCS cacheline represents a 512Bx32 row area and each
547 * element represents a 32Bx4 row area.
548 */
549 assert(format_bpb == 4);
550 logical_el = isl_extent4d(16, 8, 1, 1);
551 phys_B = isl_extent2d(64, 1);
552 break;
553
554 default:
555 unreachable("not reached");
556 } /* end switch */
557
558 *tile_info = (struct isl_tile_info) {
559 .tiling = tiling,
560 .format_bpb = format_bpb,
561 .logical_extent_el = logical_el,
562 .phys_extent_B = phys_B,
563 };
564 }
565
566 bool
isl_color_value_is_zero(union isl_color_value value,enum isl_format format)567 isl_color_value_is_zero(union isl_color_value value,
568 enum isl_format format)
569 {
570 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
571
572 #define RETURN_FALSE_IF_NOT_0(c, i) \
573 if (fmtl->channels.c.bits && value.u32[i] != 0) \
574 return false
575
576 RETURN_FALSE_IF_NOT_0(r, 0);
577 RETURN_FALSE_IF_NOT_0(g, 1);
578 RETURN_FALSE_IF_NOT_0(b, 2);
579 RETURN_FALSE_IF_NOT_0(a, 3);
580
581 #undef RETURN_FALSE_IF_NOT_0
582
583 return true;
584 }
585
586 bool
isl_color_value_is_zero_one(union isl_color_value value,enum isl_format format)587 isl_color_value_is_zero_one(union isl_color_value value,
588 enum isl_format format)
589 {
590 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
591
592 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
593 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
594 return false
595
596 if (isl_format_has_int_channel(format)) {
597 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
598 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
599 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
600 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
601 } else {
602 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
603 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
604 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
605 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
606 }
607
608 #undef RETURN_FALSE_IF_NOT_0_1
609
610 return true;
611 }
612
613 /**
614 * @param[out] tiling is set only on success
615 */
616 static bool
isl_surf_choose_tiling(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,enum isl_tiling * tiling)617 isl_surf_choose_tiling(const struct isl_device *dev,
618 const struct isl_surf_init_info *restrict info,
619 enum isl_tiling *tiling)
620 {
621 isl_tiling_flags_t tiling_flags = info->tiling_flags;
622
623 /* HiZ surfaces always use the HiZ tiling */
624 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
625 assert(isl_format_is_hiz(info->format));
626 assert(tiling_flags == ISL_TILING_HIZ_BIT);
627 *tiling = isl_tiling_flag_to_enum(tiling_flags);
628 return true;
629 }
630
631 /* CCS surfaces always use the CCS tiling */
632 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
633 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
634 UNUSED bool ivb_ccs = ISL_GFX_VER(dev) < 12 &&
635 tiling_flags == ISL_TILING_CCS_BIT;
636 UNUSED bool tgl_ccs = ISL_GFX_VER(dev) >= 12 &&
637 tiling_flags == ISL_TILING_GFX12_CCS_BIT;
638 assert(ivb_ccs != tgl_ccs);
639 *tiling = isl_tiling_flag_to_enum(tiling_flags);
640 return true;
641 }
642
643 if (ISL_GFX_VERX10(dev) >= 125) {
644 isl_gfx125_filter_tiling(dev, info, &tiling_flags);
645 } else if (ISL_GFX_VER(dev) >= 6) {
646 isl_gfx6_filter_tiling(dev, info, &tiling_flags);
647 } else {
648 isl_gfx4_filter_tiling(dev, info, &tiling_flags);
649 }
650
651 #define CHOOSE(__tiling) \
652 do { \
653 if (tiling_flags & (1u << (__tiling))) { \
654 *tiling = (__tiling); \
655 return true; \
656 } \
657 } while (0)
658
659 /* Of the tiling modes remaining, choose the one that offers the best
660 * performance.
661 */
662
663 if (info->dim == ISL_SURF_DIM_1D) {
664 /* Prefer linear for 1D surfaces because they do not benefit from
665 * tiling. To the contrary, tiling leads to wasted memory and poor
666 * memory locality due to the swizzling and alignment restrictions
667 * required in tiled surfaces.
668 */
669 CHOOSE(ISL_TILING_LINEAR);
670 }
671
672 CHOOSE(ISL_TILING_4);
673 CHOOSE(ISL_TILING_64);
674 CHOOSE(ISL_TILING_Ys);
675 CHOOSE(ISL_TILING_Yf);
676 CHOOSE(ISL_TILING_Y0);
677 CHOOSE(ISL_TILING_X);
678 CHOOSE(ISL_TILING_W);
679 CHOOSE(ISL_TILING_LINEAR);
680
681 #undef CHOOSE
682
683 /* No tiling mode accommodates the inputs. */
684 return false;
685 }
686
687 static bool
isl_choose_msaa_layout(const struct isl_device * dev,const struct isl_surf_init_info * info,enum isl_tiling tiling,enum isl_msaa_layout * msaa_layout)688 isl_choose_msaa_layout(const struct isl_device *dev,
689 const struct isl_surf_init_info *info,
690 enum isl_tiling tiling,
691 enum isl_msaa_layout *msaa_layout)
692 {
693 if (ISL_GFX_VER(dev) >= 8) {
694 return isl_gfx8_choose_msaa_layout(dev, info, tiling, msaa_layout);
695 } else if (ISL_GFX_VER(dev) >= 7) {
696 return isl_gfx7_choose_msaa_layout(dev, info, tiling, msaa_layout);
697 } else if (ISL_GFX_VER(dev) >= 6) {
698 return isl_gfx6_choose_msaa_layout(dev, info, tiling, msaa_layout);
699 } else {
700 return isl_gfx4_choose_msaa_layout(dev, info, tiling, msaa_layout);
701 }
702 }
703
704 struct isl_extent2d
isl_get_interleaved_msaa_px_size_sa(uint32_t samples)705 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
706 {
707 assert(isl_is_pow2(samples));
708
709 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
710 * Sizes (p133):
711 *
712 * If the surface is multisampled and it is a depth or stencil surface
713 * or Multisampled Surface StorageFormat in SURFACE_STATE is
714 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
715 * proceeding: [...]
716 */
717 return (struct isl_extent2d) {
718 .width = 1 << ((ffs(samples) - 0) / 2),
719 .height = 1 << ((ffs(samples) - 1) / 2),
720 };
721 }
722
723 static void
isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,uint32_t * width,uint32_t * height)724 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
725 uint32_t *width, uint32_t *height)
726 {
727 const struct isl_extent2d px_size_sa =
728 isl_get_interleaved_msaa_px_size_sa(samples);
729
730 if (width)
731 *width = isl_align(*width, 2) * px_size_sa.width;
732 if (height)
733 *height = isl_align(*height, 2) * px_size_sa.height;
734 }
735
736 static enum isl_array_pitch_span
isl_choose_array_pitch_span(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,enum isl_dim_layout dim_layout,const struct isl_extent4d * phys_level0_sa)737 isl_choose_array_pitch_span(const struct isl_device *dev,
738 const struct isl_surf_init_info *restrict info,
739 enum isl_dim_layout dim_layout,
740 const struct isl_extent4d *phys_level0_sa)
741 {
742 switch (dim_layout) {
743 case ISL_DIM_LAYOUT_GFX9_1D:
744 case ISL_DIM_LAYOUT_GFX4_2D:
745 if (ISL_GFX_VER(dev) >= 8) {
746 /* QPitch becomes programmable in Broadwell. So choose the
747 * most compact QPitch possible in order to conserve memory.
748 *
749 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
750 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
751 *
752 * - Software must ensure that this field is set to a value
753 * sufficiently large such that the array slices in the surface
754 * do not overlap. Refer to the Memory Data Formats section for
755 * information on how surfaces are stored in memory.
756 *
757 * - This field specifies the distance in rows between array
758 * slices. It is used only in the following cases:
759 *
760 * - Surface Array is enabled OR
761 * - Number of Mulitsamples is not NUMSAMPLES_1 and
762 * Multisampled Surface Storage Format set to MSFMT_MSS OR
763 * - Surface Type is SURFTYPE_CUBE
764 */
765 return ISL_ARRAY_PITCH_SPAN_COMPACT;
766 } else if (ISL_GFX_VER(dev) >= 7) {
767 /* Note that Ivybridge introduces
768 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
769 * driver more control over the QPitch.
770 */
771
772 if (phys_level0_sa->array_len == 1) {
773 /* The hardware will never use the QPitch. So choose the most
774 * compact QPitch possible in order to conserve memory.
775 */
776 return ISL_ARRAY_PITCH_SPAN_COMPACT;
777 }
778
779 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
780 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
781 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
782 * Section 6.18.4.7: Surface Arrays (p112):
783 *
784 * If Surface Array Spacing is set to ARYSPC_FULL (note that
785 * the depth buffer and stencil buffer have an implied value of
786 * ARYSPC_FULL):
787 */
788 return ISL_ARRAY_PITCH_SPAN_FULL;
789 }
790
791 if (info->levels == 1) {
792 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
793 * to ARYSPC_LOD0.
794 */
795 return ISL_ARRAY_PITCH_SPAN_COMPACT;
796 }
797
798 return ISL_ARRAY_PITCH_SPAN_FULL;
799 } else if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) &&
800 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
801 isl_surf_usage_is_stencil(info->usage)) {
802 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
803 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
804 *
805 * The separate stencil buffer does not support mip mapping, thus
806 * the storage for LODs other than LOD 0 is not needed.
807 */
808 assert(info->levels == 1);
809 return ISL_ARRAY_PITCH_SPAN_COMPACT;
810 } else {
811 if ((ISL_GFX_VER(dev) == 5 || ISL_GFX_VER(dev) == 6) &&
812 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
813 isl_surf_usage_is_stencil(info->usage)) {
814 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
815 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
816 *
817 * The separate stencil buffer does not support mip mapping,
818 * thus the storage for LODs other than LOD 0 is not needed.
819 */
820 assert(info->levels == 1);
821 assert(phys_level0_sa->array_len == 1);
822 return ISL_ARRAY_PITCH_SPAN_COMPACT;
823 }
824
825 if (phys_level0_sa->array_len == 1) {
826 /* The hardware will never use the QPitch. So choose the most
827 * compact QPitch possible in order to conserve memory.
828 */
829 return ISL_ARRAY_PITCH_SPAN_COMPACT;
830 }
831
832 return ISL_ARRAY_PITCH_SPAN_FULL;
833 }
834
835 case ISL_DIM_LAYOUT_GFX4_3D:
836 /* The hardware will never use the QPitch. So choose the most
837 * compact QPitch possible in order to conserve memory.
838 */
839 return ISL_ARRAY_PITCH_SPAN_COMPACT;
840
841 case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
842 /* Each array image in the gfx6 stencil of HiZ surface is compact in the
843 * sense that every LOD is a compact array of the same size as LOD0.
844 */
845 return ISL_ARRAY_PITCH_SPAN_COMPACT;
846 }
847
848 unreachable("bad isl_dim_layout");
849 return ISL_ARRAY_PITCH_SPAN_FULL;
850 }
851
852 static void
isl_choose_image_alignment_el(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,enum isl_tiling tiling,enum isl_dim_layout dim_layout,enum isl_msaa_layout msaa_layout,struct isl_extent3d * image_align_el)853 isl_choose_image_alignment_el(const struct isl_device *dev,
854 const struct isl_surf_init_info *restrict info,
855 enum isl_tiling tiling,
856 enum isl_dim_layout dim_layout,
857 enum isl_msaa_layout msaa_layout,
858 struct isl_extent3d *image_align_el)
859 {
860 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
861 if (fmtl->txc == ISL_TXC_MCS) {
862 /*
863 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
864 *
865 * Height, width, and layout of MCS buffer in this case must match with
866 * Render Target height, width, and layout. MCS buffer is tiledY.
867 *
868 * To avoid wasting memory, choose the smallest alignment possible:
869 * HALIGN_4 and VALIGN_4.
870 */
871 *image_align_el = isl_extent3d(4, 4, 1);
872 return;
873 } else if (fmtl->txc == ISL_TXC_HIZ) {
874 assert(ISL_GFX_VER(dev) >= 6);
875 if (ISL_GFX_VER(dev) == 6) {
876 /* HiZ surfaces on Sandy Bridge are packed tightly. */
877 *image_align_el = isl_extent3d(1, 1, 1);
878 } else if (ISL_GFX_VER(dev) < 12) {
879 /* On gfx7+, HiZ surfaces are always aligned to 16x8 pixels in the
880 * primary surface which works out to 2x2 HiZ elements.
881 */
882 *image_align_el = isl_extent3d(2, 2, 1);
883 } else {
884 /* We choose the alignments based on the docs and what we've seen on
885 * prior platforms. From the TGL PRM Vol. 9, "Hierarchical Depth
886 * Buffer":
887 *
888 * The height and width of the hierarchical depth buffer that must
889 * be allocated are computed by the following formulas, where HZ
890 * is the hierarchical depth buffer and Z is the depth buffer. The
891 * Z_Height, Z_Width, and Z_Depth values given in these formulas
892 * are those present in 3DSTATE_DEPTH_BUFFER incremented by one.
893 *
894 * The note about 3DSTATE_DEPTH_BUFFER tells us that the dimensions
895 * in the following formula refers to the base level. The key formula
896 * for the horizontal alignment is:
897 *
898 * HZ_Width (bytes) [=]
899 * ceiling(Z_Width / 16) * 16
900 *
901 * This type of formula is used when sizing compression blocks. So,
902 * the docs seem to say that the HiZ format has a block width of 16,
903 * and thus, the surface has a minimum horizontal alignment of 16
904 * pixels. This formula hasn't changed from prior platforms (where
905 * we've chosen a horizontal alignment of 16), so we should be on the
906 * right track. As for the vertical alignment, we're told:
907 *
908 * To compute the minimum QPitch for the HZ surface, the height of
909 * each LOD in pixels is determined using the equations for hL in
910 * the GPU Overview volume, using a vertical alignment j=16.
911 *
912 * We're not calculating the QPitch right now, but the vertical
913 * alignment is plainly given as 16 rows in the depth buffer.
914 *
915 * As a result, we believe that HiZ surfaces are aligned to 16x16
916 * pixels in the primary surface. We divide this area by the HiZ
917 * block dimensions to get the alignment in terms of HiZ blocks.
918 */
919 *image_align_el = isl_extent3d(16 / fmtl->bw, 16 / fmtl->bh, 1);
920 }
921 return;
922 }
923
924 if (ISL_GFX_VERX10(dev) >= 125) {
925 isl_gfx125_choose_image_alignment_el(dev, info, tiling, dim_layout,
926 msaa_layout, image_align_el);
927 } else if (ISL_GFX_VER(dev) >= 12) {
928 isl_gfx12_choose_image_alignment_el(dev, info, tiling, dim_layout,
929 msaa_layout, image_align_el);
930 } else if (ISL_GFX_VER(dev) >= 9) {
931 isl_gfx9_choose_image_alignment_el(dev, info, tiling, dim_layout,
932 msaa_layout, image_align_el);
933 } else if (ISL_GFX_VER(dev) >= 8) {
934 isl_gfx8_choose_image_alignment_el(dev, info, tiling, dim_layout,
935 msaa_layout, image_align_el);
936 } else if (ISL_GFX_VER(dev) >= 7) {
937 isl_gfx7_choose_image_alignment_el(dev, info, tiling, dim_layout,
938 msaa_layout, image_align_el);
939 } else if (ISL_GFX_VER(dev) >= 6) {
940 isl_gfx6_choose_image_alignment_el(dev, info, tiling, dim_layout,
941 msaa_layout, image_align_el);
942 } else {
943 isl_gfx4_choose_image_alignment_el(dev, info, tiling, dim_layout,
944 msaa_layout, image_align_el);
945 }
946 }
947
948 static enum isl_dim_layout
isl_surf_choose_dim_layout(const struct isl_device * dev,enum isl_surf_dim logical_dim,enum isl_tiling tiling,isl_surf_usage_flags_t usage)949 isl_surf_choose_dim_layout(const struct isl_device *dev,
950 enum isl_surf_dim logical_dim,
951 enum isl_tiling tiling,
952 isl_surf_usage_flags_t usage)
953 {
954 /* Sandy bridge needs a special layout for HiZ and stencil. */
955 if (ISL_GFX_VER(dev) == 6 &&
956 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
957 return ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ;
958
959 if (ISL_GFX_VER(dev) >= 9) {
960 switch (logical_dim) {
961 case ISL_SURF_DIM_1D:
962 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
963 *
964 * One-dimensional surfaces use a tiling mode of linear.
965 * Technically, they are not tiled resources, but the Tiled
966 * Resource Mode field in RENDER_SURFACE_STATE is still used to
967 * indicate the alignment requirements for this linear surface
968 * (See 1D Alignment requirements for how 4K and 64KB Tiled
969 * Resource Modes impact alignment). Alternatively, a 1D surface
970 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
971 * a height of 0.
972 *
973 * In other words, ISL_DIM_LAYOUT_GFX9_1D is only used for linear
974 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GFX4_2D is used.
975 */
976 if (tiling == ISL_TILING_LINEAR)
977 return ISL_DIM_LAYOUT_GFX9_1D;
978 else
979 return ISL_DIM_LAYOUT_GFX4_2D;
980 case ISL_SURF_DIM_2D:
981 case ISL_SURF_DIM_3D:
982 return ISL_DIM_LAYOUT_GFX4_2D;
983 }
984 } else {
985 switch (logical_dim) {
986 case ISL_SURF_DIM_1D:
987 case ISL_SURF_DIM_2D:
988 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
989 *
990 * The cube face textures are stored in the same way as 3D surfaces
991 * are stored (see section 6.17.5 for details). For cube surfaces,
992 * however, the depth is equal to the number of faces (always 6) and
993 * is not reduced for each MIP.
994 */
995 if (ISL_GFX_VER(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
996 return ISL_DIM_LAYOUT_GFX4_3D;
997
998 return ISL_DIM_LAYOUT_GFX4_2D;
999 case ISL_SURF_DIM_3D:
1000 return ISL_DIM_LAYOUT_GFX4_3D;
1001 }
1002 }
1003
1004 unreachable("bad isl_surf_dim");
1005 return ISL_DIM_LAYOUT_GFX4_2D;
1006 }
1007
1008 /**
1009 * Calculate the physical extent of the surface's first level, in units of
1010 * surface samples.
1011 */
1012 static void
isl_calc_phys_level0_extent_sa(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,enum isl_dim_layout dim_layout,enum isl_tiling tiling,enum isl_msaa_layout msaa_layout,struct isl_extent4d * phys_level0_sa)1013 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
1014 const struct isl_surf_init_info *restrict info,
1015 enum isl_dim_layout dim_layout,
1016 enum isl_tiling tiling,
1017 enum isl_msaa_layout msaa_layout,
1018 struct isl_extent4d *phys_level0_sa)
1019 {
1020 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1021
1022 if (isl_format_is_planar(info->format))
1023 unreachable("Planar formats unsupported");
1024
1025 switch (info->dim) {
1026 case ISL_SURF_DIM_1D:
1027 assert(info->height == 1);
1028 assert(info->depth == 1);
1029 assert(info->samples == 1);
1030
1031 switch (dim_layout) {
1032 case ISL_DIM_LAYOUT_GFX4_3D:
1033 unreachable("bad isl_dim_layout");
1034
1035 case ISL_DIM_LAYOUT_GFX9_1D:
1036 case ISL_DIM_LAYOUT_GFX4_2D:
1037 case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
1038 *phys_level0_sa = (struct isl_extent4d) {
1039 .w = info->width,
1040 .h = 1,
1041 .d = 1,
1042 .a = info->array_len,
1043 };
1044 break;
1045 }
1046 break;
1047
1048 case ISL_SURF_DIM_2D:
1049 if (ISL_GFX_VER(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
1050 assert(dim_layout == ISL_DIM_LAYOUT_GFX4_3D);
1051 else
1052 assert(dim_layout == ISL_DIM_LAYOUT_GFX4_2D ||
1053 dim_layout == ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ);
1054
1055 if (tiling == ISL_TILING_Ys && info->samples > 1)
1056 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
1057
1058 switch (msaa_layout) {
1059 case ISL_MSAA_LAYOUT_NONE:
1060 assert(info->depth == 1);
1061 assert(info->samples == 1);
1062
1063 *phys_level0_sa = (struct isl_extent4d) {
1064 .w = info->width,
1065 .h = info->height,
1066 .d = 1,
1067 .a = info->array_len,
1068 };
1069 break;
1070
1071 case ISL_MSAA_LAYOUT_ARRAY:
1072 assert(info->depth == 1);
1073 assert(info->levels == 1);
1074 assert(isl_format_supports_multisampling(dev->info, info->format));
1075 assert(fmtl->bw == 1 && fmtl->bh == 1);
1076
1077 *phys_level0_sa = (struct isl_extent4d) {
1078 .w = info->width,
1079 .h = info->height,
1080 .d = 1,
1081 .a = info->array_len * info->samples,
1082 };
1083 break;
1084
1085 case ISL_MSAA_LAYOUT_INTERLEAVED:
1086 assert(info->depth == 1);
1087 assert(info->levels == 1);
1088 assert(isl_format_supports_multisampling(dev->info, info->format));
1089
1090 *phys_level0_sa = (struct isl_extent4d) {
1091 .w = info->width,
1092 .h = info->height,
1093 .d = 1,
1094 .a = info->array_len,
1095 };
1096
1097 isl_msaa_interleaved_scale_px_to_sa(info->samples,
1098 &phys_level0_sa->w,
1099 &phys_level0_sa->h);
1100 break;
1101 }
1102 break;
1103
1104 case ISL_SURF_DIM_3D:
1105 assert(info->array_len == 1);
1106 assert(info->samples == 1);
1107
1108 if (fmtl->bd > 1) {
1109 isl_finishme("%s:%s: compression block with depth > 1",
1110 __FILE__, __func__);
1111 }
1112
1113 switch (dim_layout) {
1114 case ISL_DIM_LAYOUT_GFX9_1D:
1115 case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
1116 unreachable("bad isl_dim_layout");
1117
1118 case ISL_DIM_LAYOUT_GFX4_2D:
1119 assert(ISL_GFX_VER(dev) >= 9);
1120
1121 *phys_level0_sa = (struct isl_extent4d) {
1122 .w = info->width,
1123 .h = info->height,
1124 .d = 1,
1125 .a = info->depth,
1126 };
1127 break;
1128
1129 case ISL_DIM_LAYOUT_GFX4_3D:
1130 assert(ISL_GFX_VER(dev) < 9);
1131 *phys_level0_sa = (struct isl_extent4d) {
1132 .w = info->width,
1133 .h = info->height,
1134 .d = info->depth,
1135 .a = 1,
1136 };
1137 break;
1138 }
1139 break;
1140 }
1141 }
1142
1143 /**
1144 * Calculate the pitch between physical array slices, in units of rows of
1145 * surface elements.
1146 */
1147 static uint32_t
isl_calc_array_pitch_el_rows_gfx4_2d(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_tile_info * tile_info,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,enum isl_array_pitch_span array_pitch_span,const struct isl_extent2d * phys_slice0_sa)1148 isl_calc_array_pitch_el_rows_gfx4_2d(
1149 const struct isl_device *dev,
1150 const struct isl_surf_init_info *restrict info,
1151 const struct isl_tile_info *tile_info,
1152 const struct isl_extent3d *image_align_sa,
1153 const struct isl_extent4d *phys_level0_sa,
1154 enum isl_array_pitch_span array_pitch_span,
1155 const struct isl_extent2d *phys_slice0_sa)
1156 {
1157 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1158 uint32_t pitch_sa_rows = 0;
1159
1160 switch (array_pitch_span) {
1161 case ISL_ARRAY_PITCH_SPAN_COMPACT:
1162 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
1163 break;
1164 case ISL_ARRAY_PITCH_SPAN_FULL: {
1165 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
1166 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
1167 * Surfaces >> Surface Arrays.
1168 */
1169 uint32_t H0_sa = phys_level0_sa->h;
1170 uint32_t H1_sa = isl_minify(H0_sa, 1);
1171
1172 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
1173 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
1174
1175 uint32_t m;
1176 if (ISL_GFX_VER(dev) >= 7) {
1177 /* The QPitch equation changed slightly in Ivybridge. */
1178 m = 12;
1179 } else {
1180 m = 11;
1181 }
1182
1183 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
1184
1185 if (ISL_GFX_VER(dev) == 6 && info->samples > 1 &&
1186 (info->height % 4 == 1)) {
1187 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
1188 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
1189 *
1190 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
1191 * the value calculated in the equation above , for every
1192 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
1193 *
1194 * XXX(chadv): Is the errata natural corollary of the physical
1195 * layout of interleaved samples?
1196 */
1197 pitch_sa_rows += 4;
1198 }
1199
1200 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
1201 } /* end case */
1202 break;
1203 }
1204
1205 assert(pitch_sa_rows % fmtl->bh == 0);
1206 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
1207
1208 if (ISL_GFX_VER(dev) >= 9 && ISL_GFX_VER(dev) <= 11 &&
1209 fmtl->txc == ISL_TXC_CCS) {
1210 /*
1211 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
1212 *
1213 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
1214 * layout with these alignments in the RT space: Horizontal
1215 * Alignment = 128 and Vertical Alignment = 64."
1216 *
1217 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
1218 *
1219 * "For non-multisampled render target's CCS auxiliary surface,
1220 * QPitch must be computed with Horizontal Alignment = 128 and
1221 * Surface Vertical Alignment = 256. These alignments are only for
1222 * CCS buffer and not for associated render target."
1223 *
1224 * The first restriction is already handled by isl_choose_image_alignment_el
1225 * but the second restriction, which is an extension of the first, only
1226 * applies to qpitch and must be applied here.
1227 *
1228 * The second restriction disappears on Gfx12.
1229 */
1230 assert(fmtl->bh == 4);
1231 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
1232 }
1233
1234 if (ISL_GFX_VER(dev) >= 9 &&
1235 info->dim == ISL_SURF_DIM_3D &&
1236 tile_info->tiling != ISL_TILING_LINEAR) {
1237 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
1238 *
1239 * Tile Mode != Linear: This field must be set to an integer multiple
1240 * of the tile height
1241 */
1242 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
1243 }
1244
1245 return pitch_el_rows;
1246 }
1247
1248 /**
1249 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1250 * ISL_DIM_LAYOUT_GFX4_2D.
1251 */
1252 static void
isl_calc_phys_slice0_extent_sa_gfx4_2d(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,enum isl_msaa_layout msaa_layout,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,struct isl_extent2d * phys_slice0_sa)1253 isl_calc_phys_slice0_extent_sa_gfx4_2d(
1254 const struct isl_device *dev,
1255 const struct isl_surf_init_info *restrict info,
1256 enum isl_msaa_layout msaa_layout,
1257 const struct isl_extent3d *image_align_sa,
1258 const struct isl_extent4d *phys_level0_sa,
1259 struct isl_extent2d *phys_slice0_sa)
1260 {
1261 assert(phys_level0_sa->depth == 1);
1262
1263 if (info->levels == 1) {
1264 /* Do not pad the surface to the image alignment.
1265 *
1266 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
1267 * cycles on the below mipmap layout caluclations. Reducing the
1268 * alignment here is safe because we later align the row pitch and array
1269 * pitch to the tile boundary. It is safe even for
1270 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
1271 * to accommodate the interleaved samples.
1272 *
1273 * For linear surfaces, reducing the alignment here permits us to later
1274 * choose an arbitrary, non-aligned row pitch. If the surface backs
1275 * a VkBuffer, then an arbitrary pitch may be needed to accommodate
1276 * VkBufferImageCopy::bufferRowLength.
1277 */
1278 *phys_slice0_sa = (struct isl_extent2d) {
1279 .w = phys_level0_sa->w,
1280 .h = phys_level0_sa->h,
1281 };
1282 return;
1283 }
1284
1285 uint32_t slice_top_w = 0;
1286 uint32_t slice_bottom_w = 0;
1287 uint32_t slice_left_h = 0;
1288 uint32_t slice_right_h = 0;
1289
1290 uint32_t W0 = phys_level0_sa->w;
1291 uint32_t H0 = phys_level0_sa->h;
1292
1293 for (uint32_t l = 0; l < info->levels; ++l) {
1294 uint32_t W = isl_minify(W0, l);
1295 uint32_t H = isl_minify(H0, l);
1296
1297 uint32_t w = isl_align_npot(W, image_align_sa->w);
1298 uint32_t h = isl_align_npot(H, image_align_sa->h);
1299
1300 if (l == 0) {
1301 slice_top_w = w;
1302 slice_left_h = h;
1303 slice_right_h = h;
1304 } else if (l == 1) {
1305 slice_bottom_w = w;
1306 slice_left_h += h;
1307 } else if (l == 2) {
1308 slice_bottom_w += w;
1309 slice_right_h += h;
1310 } else {
1311 slice_right_h += h;
1312 }
1313 }
1314
1315 *phys_slice0_sa = (struct isl_extent2d) {
1316 .w = MAX(slice_top_w, slice_bottom_w),
1317 .h = MAX(slice_left_h, slice_right_h),
1318 };
1319 }
1320
1321 static void
isl_calc_phys_total_extent_el_gfx4_2d(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_tile_info * tile_info,enum isl_msaa_layout msaa_layout,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,enum isl_array_pitch_span array_pitch_span,uint32_t * array_pitch_el_rows,struct isl_extent4d * phys_total_el)1322 isl_calc_phys_total_extent_el_gfx4_2d(
1323 const struct isl_device *dev,
1324 const struct isl_surf_init_info *restrict info,
1325 const struct isl_tile_info *tile_info,
1326 enum isl_msaa_layout msaa_layout,
1327 const struct isl_extent3d *image_align_sa,
1328 const struct isl_extent4d *phys_level0_sa,
1329 enum isl_array_pitch_span array_pitch_span,
1330 uint32_t *array_pitch_el_rows,
1331 struct isl_extent4d *phys_total_el)
1332 {
1333 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1334
1335 struct isl_extent2d phys_slice0_sa;
1336 isl_calc_phys_slice0_extent_sa_gfx4_2d(dev, info, msaa_layout,
1337 image_align_sa, phys_level0_sa,
1338 &phys_slice0_sa);
1339 *array_pitch_el_rows =
1340 isl_calc_array_pitch_el_rows_gfx4_2d(dev, info, tile_info,
1341 image_align_sa, phys_level0_sa,
1342 array_pitch_span,
1343 &phys_slice0_sa);
1344
1345 if (tile_info->tiling == ISL_TILING_64) {
1346 *phys_total_el = (struct isl_extent4d) {
1347 .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
1348 .h = isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
1349 .d = isl_align_div_npot(phys_level0_sa->d, fmtl->bd),
1350 .a = phys_level0_sa->array_len,
1351 };
1352 } else {
1353 *phys_total_el = (struct isl_extent4d) {
1354 .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
1355 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
1356 isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
1357 .d = 1,
1358 .a = 1,
1359 };
1360 }
1361 }
1362
1363 /**
1364 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1365 * ISL_DIM_LAYOUT_GFX4_3D.
1366 */
1367 static void
isl_calc_phys_total_extent_el_gfx4_3d(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,uint32_t * array_pitch_el_rows,struct isl_extent4d * phys_total_el)1368 isl_calc_phys_total_extent_el_gfx4_3d(
1369 const struct isl_device *dev,
1370 const struct isl_surf_init_info *restrict info,
1371 const struct isl_extent3d *image_align_sa,
1372 const struct isl_extent4d *phys_level0_sa,
1373 uint32_t *array_pitch_el_rows,
1374 struct isl_extent4d *phys_total_el)
1375 {
1376 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1377
1378 assert(info->samples == 1);
1379
1380 if (info->dim != ISL_SURF_DIM_3D) {
1381 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1382 *
1383 * The cube face textures are stored in the same way as 3D surfaces
1384 * are stored (see section 6.17.5 for details). For cube surfaces,
1385 * however, the depth is equal to the number of faces (always 6) and
1386 * is not reduced for each MIP.
1387 */
1388 assert(ISL_GFX_VER(dev) == 4);
1389 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1390 assert(phys_level0_sa->array_len == 6);
1391 } else {
1392 assert(phys_level0_sa->array_len == 1);
1393 }
1394
1395 uint32_t total_w = 0;
1396 uint32_t total_h = 0;
1397
1398 uint32_t W0 = phys_level0_sa->w;
1399 uint32_t H0 = phys_level0_sa->h;
1400 uint32_t D0 = phys_level0_sa->d;
1401 uint32_t A0 = phys_level0_sa->a;
1402
1403 for (uint32_t l = 0; l < info->levels; ++l) {
1404 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1405 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1406 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1407
1408 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1409 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1410
1411 total_w = MAX(total_w, level_w * max_layers_horiz);
1412 total_h += level_h * max_layers_vert;
1413 }
1414
1415 /* GFX4_3D layouts don't really have an array pitch since each LOD has a
1416 * different number of horizontal and vertical layers. We have to set it
1417 * to something, so at least make it true for LOD0.
1418 */
1419 *array_pitch_el_rows =
1420 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1421 *phys_total_el = (struct isl_extent4d) {
1422 .w = isl_assert_div(total_w, fmtl->bw),
1423 .h = isl_assert_div(total_h, fmtl->bh),
1424 .d = 1,
1425 .a = 1,
1426 };
1427 }
1428
1429 /**
1430 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1431 * ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ.
1432 */
1433 static void
isl_calc_phys_total_extent_el_gfx6_stencil_hiz(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_tile_info * tile_info,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,uint32_t * array_pitch_el_rows,struct isl_extent4d * phys_total_el)1434 isl_calc_phys_total_extent_el_gfx6_stencil_hiz(
1435 const struct isl_device *dev,
1436 const struct isl_surf_init_info *restrict info,
1437 const struct isl_tile_info *tile_info,
1438 const struct isl_extent3d *image_align_sa,
1439 const struct isl_extent4d *phys_level0_sa,
1440 uint32_t *array_pitch_el_rows,
1441 struct isl_extent4d *phys_total_el)
1442 {
1443 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1444
1445 const struct isl_extent2d tile_extent_sa = {
1446 .w = tile_info->logical_extent_el.w * fmtl->bw,
1447 .h = tile_info->logical_extent_el.h * fmtl->bh,
1448 };
1449 /* Tile size is a multiple of image alignment */
1450 assert(tile_extent_sa.w % image_align_sa->w == 0);
1451 assert(tile_extent_sa.h % image_align_sa->h == 0);
1452
1453 const uint32_t W0 = phys_level0_sa->w;
1454 const uint32_t H0 = phys_level0_sa->h;
1455
1456 /* Each image has the same height as LOD0 because the hardware thinks
1457 * everything is LOD0
1458 */
1459 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1460
1461 uint32_t total_top_w = 0;
1462 uint32_t total_bottom_w = 0;
1463 uint32_t total_h = 0;
1464
1465 for (uint32_t l = 0; l < info->levels; ++l) {
1466 const uint32_t W = isl_minify(W0, l);
1467
1468 const uint32_t w = isl_align(W, tile_extent_sa.w);
1469 const uint32_t h = isl_align(H, tile_extent_sa.h);
1470
1471 if (l == 0) {
1472 total_top_w = w;
1473 total_h = h;
1474 } else if (l == 1) {
1475 total_bottom_w = w;
1476 total_h += h;
1477 } else {
1478 total_bottom_w += w;
1479 }
1480 }
1481
1482 *array_pitch_el_rows =
1483 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1484 *phys_total_el = (struct isl_extent4d) {
1485 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1486 .h = isl_assert_div(total_h, fmtl->bh),
1487 .d = 1,
1488 .a = 1,
1489 };
1490 }
1491
1492 /**
1493 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1494 * ISL_DIM_LAYOUT_GFX9_1D.
1495 */
1496 static void
isl_calc_phys_total_extent_el_gfx9_1d(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,uint32_t * array_pitch_el_rows,struct isl_extent4d * phys_total_el)1497 isl_calc_phys_total_extent_el_gfx9_1d(
1498 const struct isl_device *dev,
1499 const struct isl_surf_init_info *restrict info,
1500 const struct isl_extent3d *image_align_sa,
1501 const struct isl_extent4d *phys_level0_sa,
1502 uint32_t *array_pitch_el_rows,
1503 struct isl_extent4d *phys_total_el)
1504 {
1505 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1506
1507 assert(phys_level0_sa->height == 1);
1508 assert(phys_level0_sa->depth == 1);
1509 assert(info->samples == 1);
1510 assert(image_align_sa->w >= fmtl->bw);
1511
1512 uint32_t slice_w = 0;
1513 const uint32_t W0 = phys_level0_sa->w;
1514
1515 for (uint32_t l = 0; l < info->levels; ++l) {
1516 uint32_t W = isl_minify(W0, l);
1517 uint32_t w = isl_align_npot(W, image_align_sa->w);
1518
1519 slice_w += w;
1520 }
1521
1522 *array_pitch_el_rows = 1;
1523 *phys_total_el = (struct isl_extent4d) {
1524 .w = isl_assert_div(slice_w, fmtl->bw),
1525 .h = phys_level0_sa->array_len,
1526 .d = 1,
1527 .a = 1,
1528 };
1529 }
1530
1531 /**
1532 * Calculate the two-dimensional total physical extent of the surface, in
1533 * units of surface elements.
1534 */
1535 static void
isl_calc_phys_total_extent_el(const struct isl_device * dev,const struct isl_surf_init_info * restrict info,const struct isl_tile_info * tile_info,enum isl_dim_layout dim_layout,enum isl_msaa_layout msaa_layout,const struct isl_extent3d * image_align_sa,const struct isl_extent4d * phys_level0_sa,enum isl_array_pitch_span array_pitch_span,uint32_t * array_pitch_el_rows,struct isl_extent4d * phys_total_el)1536 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1537 const struct isl_surf_init_info *restrict info,
1538 const struct isl_tile_info *tile_info,
1539 enum isl_dim_layout dim_layout,
1540 enum isl_msaa_layout msaa_layout,
1541 const struct isl_extent3d *image_align_sa,
1542 const struct isl_extent4d *phys_level0_sa,
1543 enum isl_array_pitch_span array_pitch_span,
1544 uint32_t *array_pitch_el_rows,
1545 struct isl_extent4d *phys_total_el)
1546 {
1547 switch (dim_layout) {
1548 case ISL_DIM_LAYOUT_GFX9_1D:
1549 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1550 isl_calc_phys_total_extent_el_gfx9_1d(dev, info,
1551 image_align_sa, phys_level0_sa,
1552 array_pitch_el_rows,
1553 phys_total_el);
1554 return;
1555 case ISL_DIM_LAYOUT_GFX4_2D:
1556 isl_calc_phys_total_extent_el_gfx4_2d(dev, info, tile_info, msaa_layout,
1557 image_align_sa, phys_level0_sa,
1558 array_pitch_span,
1559 array_pitch_el_rows,
1560 phys_total_el);
1561 return;
1562 case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
1563 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1564 isl_calc_phys_total_extent_el_gfx6_stencil_hiz(dev, info, tile_info,
1565 image_align_sa,
1566 phys_level0_sa,
1567 array_pitch_el_rows,
1568 phys_total_el);
1569 return;
1570 case ISL_DIM_LAYOUT_GFX4_3D:
1571 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1572 isl_calc_phys_total_extent_el_gfx4_3d(dev, info,
1573 image_align_sa, phys_level0_sa,
1574 array_pitch_el_rows,
1575 phys_total_el);
1576 return;
1577 }
1578
1579 unreachable("invalid value for dim_layout");
1580 }
1581
1582 static uint32_t
isl_calc_row_pitch_alignment(const struct isl_device * dev,const struct isl_surf_init_info * surf_info,const struct isl_tile_info * tile_info)1583 isl_calc_row_pitch_alignment(const struct isl_device *dev,
1584 const struct isl_surf_init_info *surf_info,
1585 const struct isl_tile_info *tile_info)
1586 {
1587 if (tile_info->tiling != ISL_TILING_LINEAR) {
1588 /* According to BSpec: 44930, Gfx12's CCS-compressed surface pitches must
1589 * be 512B-aligned. CCS is only support on Y tilings.
1590 *
1591 * Only consider 512B alignment when :
1592 * - AUX is not explicitly disabled
1593 * - the caller has specified no pitch
1594 *
1595 * isl_surf_get_ccs_surf() will check that the main surface alignment
1596 * matches CCS expectations.
1597 */
1598 if (ISL_GFX_VER(dev) >= 12 &&
1599 isl_format_supports_ccs_e(dev->info, surf_info->format) &&
1600 tile_info->tiling != ISL_TILING_X &&
1601 !(surf_info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT) &&
1602 surf_info->row_pitch_B == 0) {
1603 return isl_align(tile_info->phys_extent_B.width, 512);
1604 }
1605
1606 return tile_info->phys_extent_B.width;
1607 }
1608
1609 /* We only support tiled fragment shading rate buffers. */
1610 assert((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) == 0);
1611
1612 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1613 * RENDER_SURFACE_STATE Surface Pitch (p349):
1614 *
1615 * - For linear render target surfaces and surfaces accessed with the
1616 * typed data port messages, the pitch must be a multiple of the
1617 * element size for non-YUV surface formats. Pitch must be
1618 * a multiple of 2 * element size for YUV surface formats.
1619 *
1620 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1621 * ignore because isl doesn't do buffers.]
1622 *
1623 * - For other linear surfaces, the pitch can be any multiple of
1624 * bytes.
1625 */
1626 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1627 const uint32_t bs = fmtl->bpb / 8;
1628 uint32_t alignment;
1629
1630 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1631 if (isl_format_is_yuv(surf_info->format)) {
1632 alignment = 2 * bs;
1633 } else {
1634 alignment = bs;
1635 }
1636 } else {
1637 alignment = 1;
1638 }
1639
1640 /* From the Broadwell PRM >> Volume 2c: Command Reference: Registers >>
1641 * PRI_STRIDE Stride (p1254):
1642 *
1643 * "When using linear memory, this must be at least 64 byte aligned."
1644 *
1645 * However, when displaying on NVIDIA and recent AMD GPUs via PRIME,
1646 * we need a larger pitch of 256 bytes.
1647 *
1648 * If the ISL caller didn't specify a row_pitch_B, then we should assume
1649 * the NVIDIA/AMD requirements. Otherwise, if we have a specified
1650 * row_pitch_B, this is probably because the caller is trying to import a
1651 * buffer. In that case we limit the minimum row pitch to the Intel HW
1652 * requirement.
1653 */
1654 if (surf_info->usage & ISL_SURF_USAGE_DISPLAY_BIT) {
1655 if (surf_info->row_pitch_B == 0)
1656 alignment = isl_align(alignment, 256);
1657 else
1658 alignment = isl_align(alignment, 64);
1659 }
1660
1661 return alignment;
1662 }
1663
1664 static uint32_t
isl_calc_linear_min_row_pitch(const struct isl_device * dev,const struct isl_surf_init_info * info,const struct isl_extent4d * phys_total_el,uint32_t alignment_B)1665 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1666 const struct isl_surf_init_info *info,
1667 const struct isl_extent4d *phys_total_el,
1668 uint32_t alignment_B)
1669 {
1670 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1671 const uint32_t bs = fmtl->bpb / 8;
1672
1673 return isl_align_npot(bs * phys_total_el->w, alignment_B);
1674 }
1675
1676 static uint32_t
isl_calc_tiled_min_row_pitch(const struct isl_device * dev,const struct isl_surf_init_info * surf_info,const struct isl_tile_info * tile_info,const struct isl_extent4d * phys_total_el,uint32_t alignment_B)1677 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1678 const struct isl_surf_init_info *surf_info,
1679 const struct isl_tile_info *tile_info,
1680 const struct isl_extent4d *phys_total_el,
1681 uint32_t alignment_B)
1682 {
1683 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1684
1685 assert(fmtl->bpb % tile_info->format_bpb == 0);
1686
1687 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1688 const uint32_t total_w_tl =
1689 isl_align_div(phys_total_el->w * tile_el_scale,
1690 tile_info->logical_extent_el.width);
1691
1692 /* In some cases the alignment of the pitch might be > to the tile size
1693 * (for example Gfx12 CCS requires 512B alignment while the tile's width
1694 * can be 128B), so align the row pitch to the alignment.
1695 */
1696 assert(alignment_B >= tile_info->phys_extent_B.width);
1697 return isl_align(total_w_tl * tile_info->phys_extent_B.width, alignment_B);
1698 }
1699
1700 static uint32_t
isl_calc_min_row_pitch(const struct isl_device * dev,const struct isl_surf_init_info * surf_info,const struct isl_tile_info * tile_info,const struct isl_extent4d * phys_total_el,uint32_t alignment_B)1701 isl_calc_min_row_pitch(const struct isl_device *dev,
1702 const struct isl_surf_init_info *surf_info,
1703 const struct isl_tile_info *tile_info,
1704 const struct isl_extent4d *phys_total_el,
1705 uint32_t alignment_B)
1706 {
1707 if (tile_info->tiling == ISL_TILING_LINEAR) {
1708 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1709 alignment_B);
1710 } else {
1711 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1712 phys_total_el, alignment_B);
1713 }
1714 }
1715
1716 /**
1717 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1718 * size is `bits` bits?
1719 *
1720 * Hardware pitch fields are offset by 1. For example, if the size of
1721 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1722 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1723 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1724 */
1725 static bool
pitch_in_range(uint32_t n,uint32_t bits)1726 pitch_in_range(uint32_t n, uint32_t bits)
1727 {
1728 assert(n != 0);
1729 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1730 }
1731
1732 static bool
isl_calc_row_pitch(const struct isl_device * dev,const struct isl_surf_init_info * surf_info,const struct isl_tile_info * tile_info,enum isl_dim_layout dim_layout,const struct isl_extent4d * phys_total_el,uint32_t * out_row_pitch_B)1733 isl_calc_row_pitch(const struct isl_device *dev,
1734 const struct isl_surf_init_info *surf_info,
1735 const struct isl_tile_info *tile_info,
1736 enum isl_dim_layout dim_layout,
1737 const struct isl_extent4d *phys_total_el,
1738 uint32_t *out_row_pitch_B)
1739 {
1740 uint32_t alignment_B =
1741 isl_calc_row_pitch_alignment(dev, surf_info, tile_info);
1742
1743 const uint32_t min_row_pitch_B =
1744 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1745 alignment_B);
1746
1747 if (surf_info->row_pitch_B != 0) {
1748 if (surf_info->row_pitch_B < min_row_pitch_B)
1749 return false;
1750
1751 if (surf_info->row_pitch_B % alignment_B != 0)
1752 return false;
1753 }
1754
1755 const uint32_t row_pitch_B =
1756 surf_info->row_pitch_B != 0 ? surf_info->row_pitch_B : min_row_pitch_B;
1757
1758 const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width;
1759
1760 if (row_pitch_B == 0)
1761 return false;
1762
1763 if (dim_layout == ISL_DIM_LAYOUT_GFX9_1D) {
1764 /* SurfacePitch is ignored for this layout. */
1765 goto done;
1766 }
1767
1768 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1769 ISL_SURF_USAGE_TEXTURE_BIT |
1770 ISL_SURF_USAGE_STORAGE_BIT)) &&
1771 !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1772 return false;
1773
1774 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1775 ISL_SURF_USAGE_MCS_BIT)) &&
1776 !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1777 return false;
1778
1779 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1780 !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1781 return false;
1782
1783 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1784 !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1785 return false;
1786
1787 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1788 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1789 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1790
1791 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1792 !pitch_in_range(row_pitch_B, stencil_pitch_bits))
1793 return false;
1794
1795 if ((surf_info->usage & ISL_SURF_USAGE_CPB_BIT) &&
1796 !pitch_in_range(row_pitch_B, _3DSTATE_CPSIZE_CONTROL_BUFFER_SurfacePitch_bits(dev->info)))
1797 return false;
1798
1799 done:
1800 *out_row_pitch_B = row_pitch_B;
1801 return true;
1802 }
1803
1804 bool
isl_surf_init_s(const struct isl_device * dev,struct isl_surf * surf,const struct isl_surf_init_info * restrict info)1805 isl_surf_init_s(const struct isl_device *dev,
1806 struct isl_surf *surf,
1807 const struct isl_surf_init_info *restrict info)
1808 {
1809 /* Some sanity checks */
1810 assert(!(info->usage & ISL_SURF_USAGE_CPB_BIT) ||
1811 dev->info->has_coarse_pixel_primitive_and_cb);
1812
1813 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1814
1815 const struct isl_extent4d logical_level0_px = {
1816 .w = info->width,
1817 .h = info->height,
1818 .d = info->depth,
1819 .a = info->array_len,
1820 };
1821
1822 enum isl_tiling tiling;
1823 if (!isl_surf_choose_tiling(dev, info, &tiling))
1824 return false;
1825
1826 const enum isl_dim_layout dim_layout =
1827 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1828
1829 enum isl_msaa_layout msaa_layout;
1830 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1831 return false;
1832
1833 struct isl_tile_info tile_info;
1834 isl_tiling_get_info(tiling, info->dim, msaa_layout, fmtl->bpb,
1835 info->samples, &tile_info);
1836
1837 struct isl_extent3d image_align_el;
1838 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1839 &image_align_el);
1840
1841 struct isl_extent3d image_align_sa =
1842 isl_extent3d_el_to_sa(info->format, image_align_el);
1843
1844 struct isl_extent4d phys_level0_sa;
1845 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1846 &phys_level0_sa);
1847
1848 enum isl_array_pitch_span array_pitch_span =
1849 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1850
1851 uint32_t array_pitch_el_rows;
1852 struct isl_extent4d phys_total_el;
1853 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1854 dim_layout, msaa_layout,
1855 &image_align_sa, &phys_level0_sa,
1856 array_pitch_span, &array_pitch_el_rows,
1857 &phys_total_el);
1858
1859 uint32_t row_pitch_B;
1860 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1861 &phys_total_el, &row_pitch_B))
1862 return false;
1863
1864 uint32_t base_alignment_B;
1865 uint64_t size_B;
1866 if (tiling == ISL_TILING_LINEAR) {
1867 /* LINEAR tiling has no concept of intra-tile arrays */
1868 assert(phys_total_el.d == 1 && phys_total_el.a == 1);
1869
1870 size_B = (uint64_t) row_pitch_B * phys_total_el.h;
1871
1872 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1873 *
1874 * "The Base Address for linear render target surfaces and surfaces
1875 * accessed with the typed surface read/write data port messages must
1876 * be element-size aligned, for non-YUV surface formats, or a
1877 * multiple of 2 element-sizes for YUV surface formats. Other linear
1878 * surfaces have no alignment requirements (byte alignment is
1879 * sufficient.)"
1880 */
1881 base_alignment_B = MAX(1, info->min_alignment_B);
1882 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1883 if (isl_format_is_yuv(info->format)) {
1884 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 4);
1885 } else {
1886 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 8);
1887 }
1888 }
1889 base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B);
1890
1891 /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride:
1892 *
1893 * "For Linear memory, this field specifies the stride in chunks of
1894 * 64 bytes (1 cache line)."
1895 */
1896 if (isl_surf_usage_is_display(info->usage))
1897 base_alignment_B = MAX(base_alignment_B, 64);
1898 } else {
1899 /* Pitches must make sense with the tiling */
1900 assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
1901
1902 uint32_t array_slices, array_pitch_tl_rows;
1903 if (phys_total_el.d > 1) {
1904 assert(phys_total_el.a == 1);
1905 array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows,
1906 tile_info.logical_extent_el.h);
1907 array_slices = isl_align_div(phys_total_el.d,
1908 tile_info.logical_extent_el.d);
1909 } else if (phys_total_el.a > 1) {
1910 assert(phys_total_el.d == 1);
1911 array_pitch_tl_rows = isl_assert_div(array_pitch_el_rows,
1912 tile_info.logical_extent_el.h);
1913 array_slices = isl_align_div(phys_total_el.a,
1914 tile_info.logical_extent_el.a);
1915 } else {
1916 assert(phys_total_el.d == 1 && phys_total_el.a == 1);
1917 array_pitch_tl_rows = 0;
1918 array_slices = 1;
1919 }
1920
1921 const uint32_t total_h_tl =
1922 (array_slices - 1) * array_pitch_tl_rows +
1923 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1924
1925 size_B = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch_B;
1926
1927 const uint32_t tile_size_B = tile_info.phys_extent_B.width *
1928 tile_info.phys_extent_B.height;
1929 assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B));
1930 base_alignment_B = MAX(info->min_alignment_B, tile_size_B);
1931
1932 /* The diagram in the Bspec section Memory Compression - Gfx12, shows
1933 * that the CCS is indexed in 256B chunks. However, the
1934 * PLANE_AUX_DIST::Auxiliary Surface Distance field is in units of 4K
1935 * pages. We currently don't assign the usage field like we do for main
1936 * surfaces, so just use 4K for now.
1937 */
1938 if (tiling == ISL_TILING_GFX12_CCS)
1939 base_alignment_B = MAX(base_alignment_B, 4096);
1940
1941 /* Platforms using an aux map require that images be 64K-aligned if
1942 * they're going to used with CCS. This is because the Aux translation
1943 * table maps main surface addresses to aux addresses at a 64K (in the
1944 * main surface) granularity. Because we don't know for sure in ISL if
1945 * a surface will use CCS, we have to guess based on the DISABLE_AUX
1946 * usage bit. The one thing we do know is that we haven't enable CCS on
1947 * linear images yet so we can avoid the extra alignment there.
1948 */
1949 if (dev->info->has_aux_map &&
1950 !(info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)) {
1951 base_alignment_B = MAX(base_alignment_B, 64 * 1024);
1952 }
1953 }
1954
1955 if (ISL_GFX_VER(dev) < 9) {
1956 /* From the Broadwell PRM Vol 5, Surface Layout:
1957 *
1958 * "In addition to restrictions on maximum height, width, and depth,
1959 * surfaces are also restricted to a maximum size in bytes. This
1960 * maximum is 2 GB for all products and all surface types."
1961 *
1962 * This comment is applicable to all Pre-gfx9 platforms.
1963 */
1964 if (size_B > (uint64_t) 1 << 31)
1965 return false;
1966 } else if (ISL_GFX_VER(dev) < 11) {
1967 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1968 * "In addition to restrictions on maximum height, width, and depth,
1969 * surfaces are also restricted to a maximum size of 2^38 bytes.
1970 * All pixels within the surface must be contained within 2^38 bytes
1971 * of the base address."
1972 */
1973 if (size_B > (uint64_t) 1 << 38)
1974 return false;
1975 } else {
1976 /* gfx11+ platforms raised this limit to 2^44 bytes. */
1977 if (size_B > (uint64_t) 1 << 44)
1978 return false;
1979 }
1980
1981 *surf = (struct isl_surf) {
1982 .dim = info->dim,
1983 .dim_layout = dim_layout,
1984 .msaa_layout = msaa_layout,
1985 .tiling = tiling,
1986 .format = info->format,
1987
1988 .levels = info->levels,
1989 .samples = info->samples,
1990
1991 .image_alignment_el = image_align_el,
1992 .logical_level0_px = logical_level0_px,
1993 .phys_level0_sa = phys_level0_sa,
1994
1995 .size_B = size_B,
1996 .alignment_B = base_alignment_B,
1997 .row_pitch_B = row_pitch_B,
1998 .array_pitch_el_rows = array_pitch_el_rows,
1999 .array_pitch_span = array_pitch_span,
2000
2001 .usage = info->usage,
2002 };
2003
2004 return true;
2005 }
2006
2007 void
isl_surf_get_tile_info(const struct isl_surf * surf,struct isl_tile_info * tile_info)2008 isl_surf_get_tile_info(const struct isl_surf *surf,
2009 struct isl_tile_info *tile_info)
2010 {
2011 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2012 isl_tiling_get_info(surf->tiling, surf->dim, surf->msaa_layout, fmtl->bpb,
2013 surf->samples, tile_info);
2014 }
2015
2016 bool
isl_surf_get_hiz_surf(const struct isl_device * dev,const struct isl_surf * surf,struct isl_surf * hiz_surf)2017 isl_surf_get_hiz_surf(const struct isl_device *dev,
2018 const struct isl_surf *surf,
2019 struct isl_surf *hiz_surf)
2020 {
2021 /* HiZ support does not exist prior to Gfx5 */
2022 if (ISL_GFX_VER(dev) < 5)
2023 return false;
2024
2025 if (!isl_surf_usage_is_depth(surf->usage))
2026 return false;
2027
2028 /* From the Sandy Bridge PRM, Vol 2 Part 1,
2029 * 3DSTATE_DEPTH_BUFFER::Hierarchical Depth Buffer Enable,
2030 *
2031 * If this field is enabled, the Surface Format of the depth buffer
2032 * cannot be D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT. Use of stencil
2033 * requires the separate stencil buffer.
2034 *
2035 * On SNB+, HiZ can't be used with combined depth-stencil buffers.
2036 */
2037 if (isl_surf_usage_is_stencil(surf->usage))
2038 return false;
2039
2040 /* Multisampled depth is always interleaved */
2041 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2042 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
2043
2044 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
2045 *
2046 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
2047 * Target View Extent, and Depth Coordinate Offset X/Y of the
2048 * hierarchical depth buffer are inherited from the depth buffer. The
2049 * height and width of the hierarchical depth buffer that must be
2050 * allocated are computed by the following formulas, where HZ is the
2051 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
2052 * Z_Width, and Z_Depth values given in these formulas are those present
2053 * in 3DSTATE_DEPTH_BUFFER incremented by one.
2054 *
2055 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
2056 * being applied to the table below if Number of Multisamples is set to
2057 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
2058 * Z_Width must be multiplied by 4 before being applied to the table
2059 * below if Number of Multisamples is set to NUMSAMPLES_8."
2060 *
2061 * In the Sky Lake PRM, the second paragraph is gone. This means that,
2062 * from Sandy Bridge through Broadwell, HiZ compresses samples in the
2063 * primary depth surface. On Sky Lake and onward, HiZ compresses pixels.
2064 *
2065 * There are a number of different ways that this discrepancy could be
2066 * handled. The way we have chosen is to simply make MSAA HiZ have the
2067 * same number of samples as the parent surface pre-Sky Lake and always be
2068 * single-sampled on Sky Lake and above. Since the block sizes of
2069 * compressed formats are given in samples, this neatly handles everything
2070 * without the need for additional HiZ formats with different block sizes
2071 * on SKL+.
2072 */
2073 const unsigned samples = ISL_GFX_VER(dev) >= 9 ? 1 : surf->samples;
2074
2075 const enum isl_format format =
2076 ISL_GFX_VERX10(dev) >= 125 ? ISL_FORMAT_GFX125_HIZ : ISL_FORMAT_HIZ;
2077
2078 return isl_surf_init(dev, hiz_surf,
2079 .dim = surf->dim,
2080 .format = format,
2081 .width = surf->logical_level0_px.width,
2082 .height = surf->logical_level0_px.height,
2083 .depth = surf->logical_level0_px.depth,
2084 .levels = surf->levels,
2085 .array_len = surf->logical_level0_px.array_len,
2086 .samples = samples,
2087 .usage = ISL_SURF_USAGE_HIZ_BIT,
2088 .tiling_flags = ISL_TILING_HIZ_BIT);
2089 }
2090
2091 bool
isl_surf_get_mcs_surf(const struct isl_device * dev,const struct isl_surf * surf,struct isl_surf * mcs_surf)2092 isl_surf_get_mcs_surf(const struct isl_device *dev,
2093 const struct isl_surf *surf,
2094 struct isl_surf *mcs_surf)
2095 {
2096 /* It must be multisampled with an array layout */
2097 if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY)
2098 return false;
2099
2100 /* We are seeing failures with mcs on dg2, so disable it for now. */
2101 if (intel_device_info_is_dg2(dev->info))
2102 return false;
2103
2104 /* The following are true of all multisampled surfaces */
2105 assert(surf->samples > 1);
2106 assert(surf->dim == ISL_SURF_DIM_2D);
2107 assert(surf->levels == 1);
2108 assert(surf->logical_level0_px.depth == 1);
2109 assert(isl_format_supports_multisampling(dev->info, surf->format));
2110
2111 enum isl_format mcs_format;
2112 switch (surf->samples) {
2113 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
2114 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
2115 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
2116 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
2117 default:
2118 unreachable("Invalid sample count");
2119 }
2120
2121 return isl_surf_init(dev, mcs_surf,
2122 .dim = ISL_SURF_DIM_2D,
2123 .format = mcs_format,
2124 .width = surf->logical_level0_px.width,
2125 .height = surf->logical_level0_px.height,
2126 .depth = 1,
2127 .levels = 1,
2128 .array_len = surf->logical_level0_px.array_len,
2129 .samples = 1, /* MCS surfaces are really single-sampled */
2130 .usage = ISL_SURF_USAGE_MCS_BIT,
2131 .tiling_flags = ISL_TILING_ANY_MASK);
2132 }
2133
2134 bool
isl_surf_supports_ccs(const struct isl_device * dev,const struct isl_surf * surf,const struct isl_surf * hiz_or_mcs_surf)2135 isl_surf_supports_ccs(const struct isl_device *dev,
2136 const struct isl_surf *surf,
2137 const struct isl_surf *hiz_or_mcs_surf)
2138 {
2139 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
2140 return false;
2141
2142 if (!isl_format_supports_ccs_d(dev->info, surf->format) &&
2143 !isl_format_supports_ccs_e(dev->info, surf->format))
2144 return false;
2145
2146 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
2147 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
2148 *
2149 * - Support is limited to tiled render targets.
2150 *
2151 * From the Skylake documentation, it is made clear that X-tiling is no
2152 * longer supported:
2153 *
2154 * - MCS and Lossless compression is supported for
2155 * TiledY/TileYs/TileYf non-MSRTs only.
2156 *
2157 * From the BSpec (44930) for Gfx12:
2158 *
2159 * Linear CCS is only allowed for Untyped Buffers but only via HDC
2160 * Data-Port messages.
2161 *
2162 * We never use untyped messages on surfaces created by ISL on Gfx9+ so
2163 * this means linear is out on Gfx12+ as well.
2164 */
2165 if (surf->tiling == ISL_TILING_LINEAR)
2166 return false;
2167
2168 /* TODO: Disable for now, as we're not sure about the meaning of
2169 * 3DSTATE_CPSIZE_CONTROL_BUFFER::CPCBCompressionEnable
2170 */
2171 if (isl_surf_usage_is_cpb(surf->usage))
2172 return false;
2173
2174 if (ISL_GFX_VER(dev) >= 12) {
2175 if (isl_surf_usage_is_stencil(surf->usage)) {
2176 /* HiZ and MCS aren't allowed with stencil */
2177 assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
2178
2179 /* Multi-sampled stencil cannot have CCS */
2180 if (surf->samples > 1)
2181 return false;
2182 } else if (isl_surf_usage_is_depth(surf->usage)) {
2183 const struct isl_surf *hiz_surf = hiz_or_mcs_surf;
2184
2185 /* With depth surfaces, HIZ is required for CCS. */
2186 if (hiz_surf == NULL || hiz_surf->size_B == 0)
2187 return false;
2188
2189 assert(hiz_surf->usage & ISL_SURF_USAGE_HIZ_BIT);
2190 assert(hiz_surf->tiling == ISL_TILING_HIZ);
2191 assert(isl_format_is_hiz(hiz_surf->format));
2192 } else if (surf->samples > 1) {
2193 const struct isl_surf *mcs_surf = hiz_or_mcs_surf;
2194
2195 /* With multisampled color, CCS requires MCS */
2196 if (mcs_surf == NULL || mcs_surf->size_B == 0)
2197 return false;
2198
2199 assert(mcs_surf->usage & ISL_SURF_USAGE_MCS_BIT);
2200 assert(isl_format_is_mcs(mcs_surf->format));
2201 } else {
2202 /* Single-sampled color can't have MCS or HiZ */
2203 assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
2204 }
2205
2206 /* On Gfx12, all CCS-compressed surface pitches must be multiples of
2207 * 512B.
2208 */
2209 if (surf->row_pitch_B % 512 != 0)
2210 return false;
2211
2212 /* According to Wa_1406738321, 3D textures need a blit to a new
2213 * surface in order to perform a resolve. For now, just disable CCS.
2214 */
2215 if (surf->dim == ISL_SURF_DIM_3D) {
2216 isl_finishme("%s:%s: CCS for 3D textures is disabled, but a workaround"
2217 " is available.", __FILE__, __func__);
2218 return false;
2219 }
2220
2221 /* Wa_1207137018
2222 *
2223 * TODO: implement following workaround currently covered by the
2224 * restriction above. If following conditions are met:
2225 *
2226 * - RENDER_SURFACE_STATE.Surface Type == 3D
2227 * - RENDER_SURFACE_STATE.Auxiliary Surface Mode != AUX_NONE
2228 * - RENDER_SURFACE_STATE.Tiled ResourceMode is TYF or TYS
2229 *
2230 * Set the value of RENDER_SURFACE_STATE.Mip Tail Start LOD to a mip
2231 * that larger than those present in the surface (i.e. 15)
2232 */
2233
2234 /* TODO: Handle the other tiling formats */
2235 if (surf->tiling != ISL_TILING_Y0 && surf->tiling != ISL_TILING_4 &&
2236 surf->tiling != ISL_TILING_64)
2237 return false;
2238
2239 /* TODO: Handle single-sampled Tile64. */
2240 if (surf->samples == 1 && surf->tiling == ISL_TILING_64)
2241 return false;
2242 } else {
2243 /* ISL_GFX_VER(dev) < 12 */
2244 if (surf->samples > 1)
2245 return false;
2246
2247 /* CCS is only for color images on Gfx7-11 */
2248 if (isl_surf_usage_is_depth_or_stencil(surf->usage))
2249 return false;
2250
2251 /* We're single-sampled color so having HiZ or MCS makes no sense */
2252 assert(hiz_or_mcs_surf == NULL || hiz_or_mcs_surf->size_B == 0);
2253
2254 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
2255 * work for 3D textures until gfx9 where the layout of 3D textures
2256 * changes to match 2D array textures.
2257 */
2258 if (ISL_GFX_VER(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
2259 return false;
2260
2261 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
2262 * Non-MultiSampler Render Target Restrictions):
2263 *
2264 * "Support is for non-mip-mapped and non-array surface types only."
2265 *
2266 * This restriction is lifted on gfx8+. Technically, it may be possible
2267 * to create a CCS for an arrayed or mipmapped image and only enable
2268 * CCS_D when rendering to the base slice. However, there is no
2269 * documentation tell us what the hardware would do in that case or what
2270 * it does if you walk off the bases slice. (Does it ignore CCS or does
2271 * it start scribbling over random memory?) We play it safe and just
2272 * follow the docs and don't allow CCS_D for arrayed or mip-mapped
2273 * surfaces.
2274 */
2275 if (ISL_GFX_VER(dev) <= 7 &&
2276 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
2277 return false;
2278
2279 /* From the Skylake documentation, it is made clear that X-tiling is no
2280 * longer supported:
2281 *
2282 * - MCS and Lossless compression is supported for
2283 * TiledY/TileYs/TileYf non-MSRTs only.
2284 */
2285 if (ISL_GFX_VER(dev) >= 9 && !isl_tiling_is_any_y(surf->tiling))
2286 return false;
2287 }
2288
2289 return true;
2290 }
2291
2292 bool
isl_surf_get_ccs_surf(const struct isl_device * dev,const struct isl_surf * surf,const struct isl_surf * hiz_or_mcs_surf,struct isl_surf * ccs_surf,uint32_t row_pitch_B)2293 isl_surf_get_ccs_surf(const struct isl_device *dev,
2294 const struct isl_surf *surf,
2295 const struct isl_surf *hiz_or_mcs_surf,
2296 struct isl_surf *ccs_surf,
2297 uint32_t row_pitch_B)
2298 {
2299 if (!isl_surf_supports_ccs(dev, surf, hiz_or_mcs_surf))
2300 return false;
2301
2302 if (ISL_GFX_VER(dev) >= 12) {
2303 enum isl_format ccs_format;
2304 switch (isl_format_get_layout(surf->format)->bpb) {
2305 case 8: ccs_format = ISL_FORMAT_GFX12_CCS_8BPP_Y0; break;
2306 case 16: ccs_format = ISL_FORMAT_GFX12_CCS_16BPP_Y0; break;
2307 case 32: ccs_format = ISL_FORMAT_GFX12_CCS_32BPP_Y0; break;
2308 case 64: ccs_format = ISL_FORMAT_GFX12_CCS_64BPP_Y0; break;
2309 case 128: ccs_format = ISL_FORMAT_GFX12_CCS_128BPP_Y0; break;
2310 default:
2311 return false;
2312 }
2313
2314 /* On Gfx12, the CCS is a scaled-down version of the main surface. We
2315 * model this as the CCS compressing a 2D-view of the entire surface.
2316 */
2317 const bool ok =
2318 isl_surf_init(dev, ccs_surf,
2319 .dim = ISL_SURF_DIM_2D,
2320 .format = ccs_format,
2321 .width = isl_surf_get_row_pitch_el(surf),
2322 .height = surf->size_B / surf->row_pitch_B,
2323 .depth = 1,
2324 .levels = 1,
2325 .array_len = 1,
2326 .samples = 1,
2327 .row_pitch_B = row_pitch_B,
2328 .usage = ISL_SURF_USAGE_CCS_BIT,
2329 .tiling_flags = ISL_TILING_GFX12_CCS_BIT);
2330 assert(!ok || ccs_surf->size_B == surf->size_B / 256);
2331 return ok;
2332 } else {
2333 enum isl_format ccs_format;
2334 if (ISL_GFX_VER(dev) >= 9) {
2335 switch (isl_format_get_layout(surf->format)->bpb) {
2336 case 32: ccs_format = ISL_FORMAT_GFX9_CCS_32BPP; break;
2337 case 64: ccs_format = ISL_FORMAT_GFX9_CCS_64BPP; break;
2338 case 128: ccs_format = ISL_FORMAT_GFX9_CCS_128BPP; break;
2339 default: unreachable("Unsupported CCS format");
2340 return false;
2341 }
2342 } else if (surf->tiling == ISL_TILING_Y0) {
2343 switch (isl_format_get_layout(surf->format)->bpb) {
2344 case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_Y; break;
2345 case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_Y; break;
2346 case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_Y; break;
2347 default: unreachable("Unsupported CCS format");
2348 }
2349 } else if (surf->tiling == ISL_TILING_X) {
2350 switch (isl_format_get_layout(surf->format)->bpb) {
2351 case 32: ccs_format = ISL_FORMAT_GFX7_CCS_32BPP_X; break;
2352 case 64: ccs_format = ISL_FORMAT_GFX7_CCS_64BPP_X; break;
2353 case 128: ccs_format = ISL_FORMAT_GFX7_CCS_128BPP_X; break;
2354 default: unreachable("Unsupported CCS format");
2355 }
2356 } else {
2357 unreachable("Invalid tiling format");
2358 }
2359
2360 return isl_surf_init(dev, ccs_surf,
2361 .dim = surf->dim,
2362 .format = ccs_format,
2363 .width = surf->logical_level0_px.width,
2364 .height = surf->logical_level0_px.height,
2365 .depth = surf->logical_level0_px.depth,
2366 .levels = surf->levels,
2367 .array_len = surf->logical_level0_px.array_len,
2368 .samples = 1,
2369 .row_pitch_B = row_pitch_B,
2370 .usage = ISL_SURF_USAGE_CCS_BIT,
2371 .tiling_flags = ISL_TILING_CCS_BIT);
2372 }
2373 }
2374
2375 #define isl_genX_call(dev, func, ...) \
2376 switch (ISL_GFX_VERX10(dev)) { \
2377 case 40: \
2378 isl_gfx4_##func(__VA_ARGS__); \
2379 break; \
2380 case 45: \
2381 /* G45 surface state is the same as gfx5 */ \
2382 case 50: \
2383 isl_gfx5_##func(__VA_ARGS__); \
2384 break; \
2385 case 60: \
2386 isl_gfx6_##func(__VA_ARGS__); \
2387 break; \
2388 case 70: \
2389 isl_gfx7_##func(__VA_ARGS__); \
2390 break; \
2391 case 75: \
2392 isl_gfx75_##func(__VA_ARGS__); \
2393 break; \
2394 case 80: \
2395 isl_gfx8_##func(__VA_ARGS__); \
2396 break; \
2397 case 90: \
2398 isl_gfx9_##func(__VA_ARGS__); \
2399 break; \
2400 case 110: \
2401 isl_gfx11_##func(__VA_ARGS__); \
2402 break; \
2403 case 120: \
2404 isl_gfx12_##func(__VA_ARGS__); \
2405 break; \
2406 case 125: \
2407 isl_gfx125_##func(__VA_ARGS__); \
2408 break; \
2409 default: \
2410 assert(!"Unknown hardware generation"); \
2411 }
2412
2413 void
isl_surf_fill_state_s(const struct isl_device * dev,void * state,const struct isl_surf_fill_state_info * restrict info)2414 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
2415 const struct isl_surf_fill_state_info *restrict info)
2416 {
2417 #ifndef NDEBUG
2418 isl_surf_usage_flags_t _base_usage =
2419 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
2420 ISL_SURF_USAGE_TEXTURE_BIT |
2421 ISL_SURF_USAGE_STORAGE_BIT);
2422 /* They may only specify one of the above bits at a time */
2423 assert(__builtin_popcount(_base_usage) == 1);
2424 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
2425 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
2426 #endif
2427
2428 if (info->surf->dim == ISL_SURF_DIM_3D) {
2429 assert(info->view->base_array_layer + info->view->array_len <=
2430 info->surf->logical_level0_px.depth);
2431 } else {
2432 assert(info->view->base_array_layer + info->view->array_len <=
2433 info->surf->logical_level0_px.array_len);
2434 }
2435
2436 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
2437 }
2438
2439 void
isl_buffer_fill_state_s(const struct isl_device * dev,void * state,const struct isl_buffer_fill_state_info * restrict info)2440 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
2441 const struct isl_buffer_fill_state_info *restrict info)
2442 {
2443 isl_genX_call(dev, buffer_fill_state_s, dev, state, info);
2444 }
2445
2446 void
isl_null_fill_state_s(const struct isl_device * dev,void * state,const struct isl_null_fill_state_info * restrict info)2447 isl_null_fill_state_s(const struct isl_device *dev, void *state,
2448 const struct isl_null_fill_state_info *restrict info)
2449 {
2450 isl_genX_call(dev, null_fill_state, dev, state, info);
2451 }
2452
2453 void
isl_emit_depth_stencil_hiz_s(const struct isl_device * dev,void * batch,const struct isl_depth_stencil_hiz_emit_info * restrict info)2454 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
2455 const struct isl_depth_stencil_hiz_emit_info *restrict info)
2456 {
2457 if (info->depth_surf && info->stencil_surf) {
2458 if (!dev->info->has_hiz_and_separate_stencil) {
2459 assert(info->depth_surf == info->stencil_surf);
2460 assert(info->depth_address == info->stencil_address);
2461 }
2462 assert(info->depth_surf->dim == info->stencil_surf->dim);
2463 }
2464
2465 if (info->depth_surf) {
2466 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
2467 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
2468 assert(info->view->base_array_layer + info->view->array_len <=
2469 info->depth_surf->logical_level0_px.depth);
2470 } else {
2471 assert(info->view->base_array_layer + info->view->array_len <=
2472 info->depth_surf->logical_level0_px.array_len);
2473 }
2474 }
2475
2476 if (info->stencil_surf) {
2477 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
2478 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
2479 assert(info->view->base_array_layer + info->view->array_len <=
2480 info->stencil_surf->logical_level0_px.depth);
2481 } else {
2482 assert(info->view->base_array_layer + info->view->array_len <=
2483 info->stencil_surf->logical_level0_px.array_len);
2484 }
2485 }
2486
2487 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
2488 }
2489
2490 void
isl_emit_cpb_control_s(const struct isl_device * dev,void * batch,const struct isl_cpb_emit_info * restrict info)2491 isl_emit_cpb_control_s(const struct isl_device *dev, void *batch,
2492 const struct isl_cpb_emit_info *restrict info)
2493 {
2494 if (info->surf) {
2495 assert((info->surf->usage & ISL_SURF_USAGE_CPB_BIT));
2496 assert(info->surf->dim != ISL_SURF_DIM_3D);
2497 assert(info->surf->tiling == ISL_TILING_4 ||
2498 info->surf->tiling == ISL_TILING_64);
2499 assert(info->surf->format == ISL_FORMAT_R8_UINT);
2500 }
2501
2502 isl_genX_call(dev, emit_cpb_control_s, dev, batch, info);
2503 }
2504
2505 /**
2506 * A variant of isl_surf_get_image_offset_sa() specific to
2507 * ISL_DIM_LAYOUT_GFX4_2D.
2508 */
2509 static void
get_image_offset_sa_gfx4_2d(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2510 get_image_offset_sa_gfx4_2d(const struct isl_surf *surf,
2511 uint32_t level, uint32_t logical_array_layer,
2512 uint32_t *x_offset_sa,
2513 uint32_t *y_offset_sa)
2514 {
2515 assert(level < surf->levels);
2516 if (surf->dim == ISL_SURF_DIM_3D)
2517 assert(logical_array_layer < surf->logical_level0_px.depth);
2518 else
2519 assert(logical_array_layer < surf->logical_level0_px.array_len);
2520
2521 const struct isl_extent3d image_align_sa =
2522 isl_surf_get_image_alignment_sa(surf);
2523
2524 const uint32_t W0 = surf->phys_level0_sa.width;
2525 const uint32_t H0 = surf->phys_level0_sa.height;
2526
2527 const uint32_t phys_layer = logical_array_layer *
2528 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
2529
2530 uint32_t x = 0;
2531 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
2532
2533 for (uint32_t l = 0; l < level; ++l) {
2534 if (l == 1) {
2535 uint32_t W = isl_minify(W0, l);
2536 x += isl_align_npot(W, image_align_sa.w);
2537 } else {
2538 uint32_t H = isl_minify(H0, l);
2539 y += isl_align_npot(H, image_align_sa.h);
2540 }
2541 }
2542
2543 *x_offset_sa = x;
2544 *y_offset_sa = y;
2545 }
2546
2547 /**
2548 * A variant of isl_surf_get_image_offset_sa() specific to
2549 * ISL_DIM_LAYOUT_GFX4_3D.
2550 */
2551 static void
get_image_offset_sa_gfx4_3d(const struct isl_surf * surf,uint32_t level,uint32_t logical_z_offset_px,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2552 get_image_offset_sa_gfx4_3d(const struct isl_surf *surf,
2553 uint32_t level, uint32_t logical_z_offset_px,
2554 uint32_t *x_offset_sa,
2555 uint32_t *y_offset_sa)
2556 {
2557 assert(level < surf->levels);
2558 if (surf->dim == ISL_SURF_DIM_3D) {
2559 assert(surf->phys_level0_sa.array_len == 1);
2560 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
2561 } else {
2562 assert(surf->dim == ISL_SURF_DIM_2D);
2563 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
2564 assert(surf->phys_level0_sa.array_len == 6);
2565 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
2566 }
2567
2568 const struct isl_extent3d image_align_sa =
2569 isl_surf_get_image_alignment_sa(surf);
2570
2571 const uint32_t W0 = surf->phys_level0_sa.width;
2572 const uint32_t H0 = surf->phys_level0_sa.height;
2573 const uint32_t D0 = surf->phys_level0_sa.depth;
2574 const uint32_t AL = surf->phys_level0_sa.array_len;
2575
2576 uint32_t x = 0;
2577 uint32_t y = 0;
2578
2579 for (uint32_t l = 0; l < level; ++l) {
2580 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
2581 const uint32_t level_d =
2582 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
2583 image_align_sa.d);
2584 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
2585
2586 y += level_h * max_layers_vert;
2587 }
2588
2589 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
2590 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
2591 const uint32_t level_d =
2592 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
2593 image_align_sa.d);
2594
2595 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
2596
2597 x += level_w * (logical_z_offset_px % max_layers_horiz);
2598 y += level_h * (logical_z_offset_px / max_layers_horiz);
2599
2600 *x_offset_sa = x;
2601 *y_offset_sa = y;
2602 }
2603
2604 static void
get_image_offset_sa_gfx6_stencil_hiz(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2605 get_image_offset_sa_gfx6_stencil_hiz(const struct isl_surf *surf,
2606 uint32_t level,
2607 uint32_t logical_array_layer,
2608 uint32_t *x_offset_sa,
2609 uint32_t *y_offset_sa)
2610 {
2611 assert(level < surf->levels);
2612 assert(surf->logical_level0_px.depth == 1);
2613 assert(logical_array_layer < surf->logical_level0_px.array_len);
2614
2615 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2616
2617 const struct isl_extent3d image_align_sa =
2618 isl_surf_get_image_alignment_sa(surf);
2619
2620 struct isl_tile_info tile_info;
2621 isl_surf_get_tile_info(surf, &tile_info);
2622 const struct isl_extent2d tile_extent_sa = {
2623 .w = tile_info.logical_extent_el.w * fmtl->bw,
2624 .h = tile_info.logical_extent_el.h * fmtl->bh,
2625 };
2626 /* Tile size is a multiple of image alignment */
2627 assert(tile_extent_sa.w % image_align_sa.w == 0);
2628 assert(tile_extent_sa.h % image_align_sa.h == 0);
2629
2630 const uint32_t W0 = surf->phys_level0_sa.w;
2631 const uint32_t H0 = surf->phys_level0_sa.h;
2632
2633 /* Each image has the same height as LOD0 because the hardware thinks
2634 * everything is LOD0
2635 */
2636 const uint32_t H = isl_align(H0, image_align_sa.h);
2637
2638 /* Quick sanity check for consistency */
2639 if (surf->phys_level0_sa.array_len > 1)
2640 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2641
2642 uint32_t x = 0, y = 0;
2643 for (uint32_t l = 0; l < level; ++l) {
2644 const uint32_t W = isl_minify(W0, l);
2645
2646 const uint32_t w = isl_align(W, tile_extent_sa.w);
2647 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2648 tile_extent_sa.h);
2649
2650 if (l == 0) {
2651 y += h;
2652 } else {
2653 x += w;
2654 }
2655 }
2656
2657 y += H * logical_array_layer;
2658
2659 *x_offset_sa = x;
2660 *y_offset_sa = y;
2661 }
2662
2663 /**
2664 * A variant of isl_surf_get_image_offset_sa() specific to
2665 * ISL_DIM_LAYOUT_GFX9_1D.
2666 */
2667 static void
get_image_offset_sa_gfx9_1d(const struct isl_surf * surf,uint32_t level,uint32_t layer,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2668 get_image_offset_sa_gfx9_1d(const struct isl_surf *surf,
2669 uint32_t level, uint32_t layer,
2670 uint32_t *x_offset_sa,
2671 uint32_t *y_offset_sa)
2672 {
2673 assert(level < surf->levels);
2674 assert(layer < surf->phys_level0_sa.array_len);
2675 assert(surf->phys_level0_sa.height == 1);
2676 assert(surf->phys_level0_sa.depth == 1);
2677 assert(surf->samples == 1);
2678
2679 const uint32_t W0 = surf->phys_level0_sa.width;
2680 const struct isl_extent3d image_align_sa =
2681 isl_surf_get_image_alignment_sa(surf);
2682
2683 uint32_t x = 0;
2684
2685 for (uint32_t l = 0; l < level; ++l) {
2686 uint32_t W = isl_minify(W0, l);
2687 uint32_t w = isl_align_npot(W, image_align_sa.w);
2688
2689 x += w;
2690 }
2691
2692 *x_offset_sa = x;
2693 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2694 }
2695
2696 /**
2697 * Calculate the offset, in units of surface samples, to a subimage in the
2698 * surface.
2699 *
2700 * @invariant level < surface levels
2701 * @invariant logical_array_layer < logical array length of surface
2702 * @invariant logical_z_offset_px < logical depth of surface at level
2703 */
2704 void
isl_surf_get_image_offset_sa(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,uint32_t * x_offset_sa,uint32_t * y_offset_sa,uint32_t * z_offset_sa,uint32_t * array_offset)2705 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2706 uint32_t level,
2707 uint32_t logical_array_layer,
2708 uint32_t logical_z_offset_px,
2709 uint32_t *x_offset_sa,
2710 uint32_t *y_offset_sa,
2711 uint32_t *z_offset_sa,
2712 uint32_t *array_offset)
2713 {
2714 assert(level < surf->levels);
2715 assert(logical_array_layer < surf->logical_level0_px.array_len);
2716 assert(logical_z_offset_px
2717 < isl_minify(surf->logical_level0_px.depth, level));
2718
2719 switch (surf->dim_layout) {
2720 case ISL_DIM_LAYOUT_GFX9_1D:
2721 get_image_offset_sa_gfx9_1d(surf, level, logical_array_layer,
2722 x_offset_sa, y_offset_sa);
2723 *z_offset_sa = 0;
2724 *array_offset = 0;
2725 break;
2726 case ISL_DIM_LAYOUT_GFX4_2D:
2727 get_image_offset_sa_gfx4_2d(surf, level, logical_array_layer
2728 + logical_z_offset_px,
2729 x_offset_sa, y_offset_sa);
2730 *z_offset_sa = 0;
2731 *array_offset = 0;
2732 break;
2733 case ISL_DIM_LAYOUT_GFX4_3D:
2734 get_image_offset_sa_gfx4_3d(surf, level, logical_array_layer +
2735 logical_z_offset_px,
2736 x_offset_sa, y_offset_sa);
2737 *z_offset_sa = 0;
2738 *array_offset = 0;
2739 break;
2740 case ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ:
2741 get_image_offset_sa_gfx6_stencil_hiz(surf, level, logical_array_layer +
2742 logical_z_offset_px,
2743 x_offset_sa, y_offset_sa);
2744 *z_offset_sa = 0;
2745 *array_offset = 0;
2746 break;
2747
2748 default:
2749 unreachable("not reached");
2750 }
2751 }
2752
2753 void
isl_surf_get_image_offset_el(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,uint32_t * x_offset_el,uint32_t * y_offset_el,uint32_t * z_offset_el,uint32_t * array_offset)2754 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2755 uint32_t level,
2756 uint32_t logical_array_layer,
2757 uint32_t logical_z_offset_px,
2758 uint32_t *x_offset_el,
2759 uint32_t *y_offset_el,
2760 uint32_t *z_offset_el,
2761 uint32_t *array_offset)
2762 {
2763 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2764
2765 assert(level < surf->levels);
2766 assert(logical_array_layer < surf->logical_level0_px.array_len);
2767 assert(logical_z_offset_px
2768 < isl_minify(surf->logical_level0_px.depth, level));
2769
2770 uint32_t x_offset_sa, y_offset_sa, z_offset_sa;
2771 isl_surf_get_image_offset_sa(surf, level,
2772 logical_array_layer,
2773 logical_z_offset_px,
2774 &x_offset_sa,
2775 &y_offset_sa,
2776 &z_offset_sa,
2777 array_offset);
2778
2779 *x_offset_el = x_offset_sa / fmtl->bw;
2780 *y_offset_el = y_offset_sa / fmtl->bh;
2781 *z_offset_el = z_offset_sa / fmtl->bd;
2782 }
2783
2784 void
isl_surf_get_image_offset_B_tile_sa(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,uint64_t * offset_B,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2785 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2786 uint32_t level,
2787 uint32_t logical_array_layer,
2788 uint32_t logical_z_offset_px,
2789 uint64_t *offset_B,
2790 uint32_t *x_offset_sa,
2791 uint32_t *y_offset_sa)
2792 {
2793 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2794
2795 uint32_t x_offset_el, y_offset_el;
2796 isl_surf_get_image_offset_B_tile_el(surf, level,
2797 logical_array_layer,
2798 logical_z_offset_px,
2799 offset_B,
2800 &x_offset_el,
2801 &y_offset_el);
2802
2803 if (x_offset_sa) {
2804 *x_offset_sa = x_offset_el * fmtl->bw;
2805 } else {
2806 assert(x_offset_el == 0);
2807 }
2808
2809 if (y_offset_sa) {
2810 *y_offset_sa = y_offset_el * fmtl->bh;
2811 } else {
2812 assert(y_offset_el == 0);
2813 }
2814 }
2815
2816 void
isl_surf_get_image_offset_B_tile_el(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,uint64_t * offset_B,uint32_t * x_offset_el,uint32_t * y_offset_el)2817 isl_surf_get_image_offset_B_tile_el(const struct isl_surf *surf,
2818 uint32_t level,
2819 uint32_t logical_array_layer,
2820 uint32_t logical_z_offset_px,
2821 uint64_t *offset_B,
2822 uint32_t *x_offset_el,
2823 uint32_t *y_offset_el)
2824 {
2825 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2826
2827 uint32_t total_x_offset_el, total_y_offset_el;
2828 uint32_t total_z_offset_el, total_array_offset;
2829 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2830 logical_z_offset_px,
2831 &total_x_offset_el,
2832 &total_y_offset_el,
2833 &total_z_offset_el,
2834 &total_array_offset);
2835
2836 uint32_t z_offset_el, array_offset;
2837 isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
2838 surf->msaa_layout, fmtl->bpb,
2839 surf->samples,
2840 surf->row_pitch_B,
2841 surf->array_pitch_el_rows,
2842 total_x_offset_el,
2843 total_y_offset_el,
2844 total_z_offset_el,
2845 total_array_offset,
2846 offset_B,
2847 x_offset_el,
2848 y_offset_el,
2849 &z_offset_el,
2850 &array_offset);
2851 assert(z_offset_el == 0);
2852 assert(array_offset == 0);
2853 }
2854
2855 void
isl_surf_get_image_range_B_tile(const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,uint64_t * start_tile_B,uint64_t * end_tile_B)2856 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2857 uint32_t level,
2858 uint32_t logical_array_layer,
2859 uint32_t logical_z_offset_px,
2860 uint64_t *start_tile_B,
2861 uint64_t *end_tile_B)
2862 {
2863 uint32_t start_x_offset_el, start_y_offset_el;
2864 uint32_t start_z_offset_el, start_array_slice;
2865 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2866 logical_z_offset_px,
2867 &start_x_offset_el,
2868 &start_y_offset_el,
2869 &start_z_offset_el,
2870 &start_array_slice);
2871
2872 /* Compute the size of the subimage in surface elements */
2873 const uint32_t subimage_w_sa = isl_minify(surf->phys_level0_sa.w, level);
2874 const uint32_t subimage_h_sa = isl_minify(surf->phys_level0_sa.h, level);
2875 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2876 const uint32_t subimage_w_el = isl_align_div_npot(subimage_w_sa, fmtl->bw);
2877 const uint32_t subimage_h_el = isl_align_div_npot(subimage_h_sa, fmtl->bh);
2878
2879 /* Find the last pixel */
2880 uint32_t end_x_offset_el = start_x_offset_el + subimage_w_el - 1;
2881 uint32_t end_y_offset_el = start_y_offset_el + subimage_h_el - 1;
2882
2883 /* We only consider one Z or array slice */
2884 const uint32_t end_z_offset_el = start_z_offset_el;
2885 const uint32_t end_array_slice = start_array_slice;
2886
2887 UNUSED uint32_t x_offset_el, y_offset_el, z_offset_el, array_slice;
2888 isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
2889 surf->msaa_layout, fmtl->bpb,
2890 surf->samples,
2891 surf->row_pitch_B,
2892 surf->array_pitch_el_rows,
2893 start_x_offset_el,
2894 start_y_offset_el,
2895 start_z_offset_el,
2896 start_array_slice,
2897 start_tile_B,
2898 &x_offset_el,
2899 &y_offset_el,
2900 &z_offset_el,
2901 &array_slice);
2902
2903 isl_tiling_get_intratile_offset_el(surf->tiling, surf->dim,
2904 surf->msaa_layout, fmtl->bpb,
2905 surf->samples,
2906 surf->row_pitch_B,
2907 surf->array_pitch_el_rows,
2908 end_x_offset_el,
2909 end_y_offset_el,
2910 end_z_offset_el,
2911 end_array_slice,
2912 end_tile_B,
2913 &x_offset_el,
2914 &y_offset_el,
2915 &z_offset_el,
2916 &array_slice);
2917
2918 /* We want the range we return to be exclusive but the tile containing the
2919 * last pixel (what we just calculated) is inclusive. Add one.
2920 */
2921 (*end_tile_B)++;
2922
2923 assert(*end_tile_B <= surf->size_B);
2924 }
2925
2926 void
isl_surf_get_image_surf(const struct isl_device * dev,const struct isl_surf * surf,uint32_t level,uint32_t logical_array_layer,uint32_t logical_z_offset_px,struct isl_surf * image_surf,uint64_t * offset_B,uint32_t * x_offset_sa,uint32_t * y_offset_sa)2927 isl_surf_get_image_surf(const struct isl_device *dev,
2928 const struct isl_surf *surf,
2929 uint32_t level,
2930 uint32_t logical_array_layer,
2931 uint32_t logical_z_offset_px,
2932 struct isl_surf *image_surf,
2933 uint64_t *offset_B,
2934 uint32_t *x_offset_sa,
2935 uint32_t *y_offset_sa)
2936 {
2937 isl_surf_get_image_offset_B_tile_sa(surf,
2938 level,
2939 logical_array_layer,
2940 logical_z_offset_px,
2941 offset_B,
2942 x_offset_sa,
2943 y_offset_sa);
2944
2945 /* Even for cube maps there will be only single face, therefore drop the
2946 * corresponding flag if present.
2947 */
2948 const isl_surf_usage_flags_t usage =
2949 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2950
2951 bool ok UNUSED;
2952 ok = isl_surf_init(dev, image_surf,
2953 .dim = ISL_SURF_DIM_2D,
2954 .format = surf->format,
2955 .width = isl_minify(surf->logical_level0_px.w, level),
2956 .height = isl_minify(surf->logical_level0_px.h, level),
2957 .depth = 1,
2958 .levels = 1,
2959 .array_len = 1,
2960 .samples = surf->samples,
2961 .row_pitch_B = surf->row_pitch_B,
2962 .usage = usage,
2963 .tiling_flags = (1 << surf->tiling));
2964 assert(ok);
2965 }
2966
2967 bool
isl_surf_get_uncompressed_surf(const struct isl_device * dev,const struct isl_surf * surf,const struct isl_view * view,struct isl_surf * ucompr_surf,struct isl_view * ucompr_view,uint64_t * offset_B,uint32_t * x_offset_el,uint32_t * y_offset_el)2968 isl_surf_get_uncompressed_surf(const struct isl_device *dev,
2969 const struct isl_surf *surf,
2970 const struct isl_view *view,
2971 struct isl_surf *ucompr_surf,
2972 struct isl_view *ucompr_view,
2973 uint64_t *offset_B,
2974 uint32_t *x_offset_el,
2975 uint32_t *y_offset_el)
2976 {
2977 const struct isl_format_layout *fmtl =
2978 isl_format_get_layout(surf->format);
2979 const enum isl_format view_format = view->format;
2980
2981 assert(fmtl->bw > 1 || fmtl->bh > 1 || fmtl->bd > 1);
2982 assert(isl_format_is_compressed(surf->format));
2983 assert(!isl_format_is_compressed(view->format));
2984 assert(isl_format_get_layout(view->format)->bpb == fmtl->bpb);
2985 assert(view->levels == 1);
2986
2987 const uint32_t view_width_px =
2988 isl_minify(surf->logical_level0_px.width, view->base_level);
2989 const uint32_t view_height_px =
2990 isl_minify(surf->logical_level0_px.height, view->base_level);
2991
2992 assert(surf->samples == 1);
2993 const uint32_t view_width_el = isl_align_div_npot(view_width_px, fmtl->bw);
2994 const uint32_t view_height_el = isl_align_div_npot(view_height_px, fmtl->bh);
2995
2996 /* If we ever enable 3D block formats, we'll need to re-think this */
2997 assert(fmtl->bd == 1);
2998
2999 if (view->array_len > 1) {
3000 /* The Skylake PRM Vol. 2d, "RENDER_SURFACE_STATE::X Offset" says:
3001 *
3002 * "If Surface Array is enabled, this field must be zero."
3003 *
3004 * The PRMs for other hardware have similar text. This is also tricky
3005 * to handle with things like BLORP's SW offsetting because the
3006 * increased surface size required for the offset may result in an image
3007 * height greater than qpitch.
3008 */
3009 if (view->base_level > 0)
3010 return false;
3011
3012 /* On Haswell and earlier, RENDER_SURFACE_STATE doesn't have a QPitch
3013 * field; it only has "array pitch span" which means the QPitch is
3014 * automatically calculated. Since we're smashing the surface format
3015 * (block formats are subtly different) and the number of miplevels,
3016 * that calculation will get thrown off. This means we can't do arrays
3017 * even at LOD0
3018 *
3019 * On Broadwell, we do have a QPitch field which we can control.
3020 * However, HALIGN and VALIGN are specified in pixels and are
3021 * hard-coded to align to exactly the block size of the compressed
3022 * texture. This means that, when reinterpreted as a non-compressed
3023 * the QPitch may be anything but the HW requires it to be properly
3024 * aligned.
3025 */
3026 if (ISL_GFX_VER(dev) < 9)
3027 return false;
3028
3029 *ucompr_surf = *surf;
3030 ucompr_surf->levels = 1;
3031 ucompr_surf->format = view_format;
3032
3033 /* We're making an uncompressed view here. The image dimensions
3034 * need to be scaled down by the block size.
3035 */
3036 assert(ucompr_surf->logical_level0_px.width == view_width_px);
3037 assert(ucompr_surf->logical_level0_px.height == view_height_px);
3038 ucompr_surf->logical_level0_px.width = view_width_el;
3039 ucompr_surf->logical_level0_px.height = view_height_el;
3040 ucompr_surf->phys_level0_sa = isl_surf_get_phys_level0_el(surf);
3041
3042 /* The surface mostly stays as-is; there is no offset */
3043 *offset_B = 0;
3044 *x_offset_el = 0;
3045 *y_offset_el = 0;
3046
3047 /* The view remains the same */
3048 *ucompr_view = *view;
3049 } else {
3050 /* If only one array slice is requested, directly offset to that slice.
3051 * We could, in theory, still use arrays in some cases but BLORP isn't
3052 * prepared for this and everyone who calls this function should be
3053 * prepared to handle an X/Y offset.
3054 */
3055 isl_surf_get_image_offset_B_tile_el(surf,
3056 view->base_level,
3057 surf->dim == ISL_SURF_DIM_3D ?
3058 0 : view->base_array_layer,
3059 surf->dim == ISL_SURF_DIM_3D ?
3060 view->base_array_layer : 0,
3061 offset_B,
3062 x_offset_el,
3063 y_offset_el);
3064
3065 /* Even for cube maps there will be only single face, therefore drop the
3066 * corresponding flag if present.
3067 */
3068 const isl_surf_usage_flags_t usage =
3069 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
3070
3071 bool ok UNUSED;
3072 ok = isl_surf_init(dev, ucompr_surf,
3073 .dim = ISL_SURF_DIM_2D,
3074 .format = view_format,
3075 .width = view_width_el,
3076 .height = view_height_el,
3077 .depth = 1,
3078 .levels = 1,
3079 .array_len = 1,
3080 .samples = 1,
3081 .row_pitch_B = surf->row_pitch_B,
3082 .usage = usage,
3083 .tiling_flags = (1 << surf->tiling));
3084 assert(ok);
3085
3086 /* The newly created image represents the one subimage we're
3087 * referencing with this view so it only has one array slice and
3088 * miplevel.
3089 */
3090 *ucompr_view = *view;
3091 ucompr_view->base_array_layer = 0;
3092 ucompr_view->base_level = 0;
3093 }
3094
3095 return true;
3096 }
3097
3098 void
isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,enum isl_surf_dim dim,enum isl_msaa_layout msaa_layout,uint32_t bpb,uint32_t samples,uint32_t row_pitch_B,uint32_t array_pitch_el_rows,uint32_t total_x_offset_el,uint32_t total_y_offset_el,uint32_t total_z_offset_el,uint32_t total_array_offset,uint64_t * tile_offset_B,uint32_t * x_offset_el,uint32_t * y_offset_el,uint32_t * z_offset_el,uint32_t * array_offset)3099 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
3100 enum isl_surf_dim dim,
3101 enum isl_msaa_layout msaa_layout,
3102 uint32_t bpb,
3103 uint32_t samples,
3104 uint32_t row_pitch_B,
3105 uint32_t array_pitch_el_rows,
3106 uint32_t total_x_offset_el,
3107 uint32_t total_y_offset_el,
3108 uint32_t total_z_offset_el,
3109 uint32_t total_array_offset,
3110 uint64_t *tile_offset_B,
3111 uint32_t *x_offset_el,
3112 uint32_t *y_offset_el,
3113 uint32_t *z_offset_el,
3114 uint32_t *array_offset)
3115 {
3116 if (tiling == ISL_TILING_LINEAR) {
3117 assert(bpb % 8 == 0);
3118 assert(samples == 1);
3119 assert(total_z_offset_el == 0 && total_array_offset == 0);
3120 *tile_offset_B = (uint64_t)total_y_offset_el * row_pitch_B +
3121 (uint64_t)total_x_offset_el * (bpb / 8);
3122 *x_offset_el = 0;
3123 *y_offset_el = 0;
3124 *z_offset_el = 0;
3125 *array_offset = 0;
3126 return;
3127 }
3128
3129 struct isl_tile_info tile_info;
3130 isl_tiling_get_info(tiling, dim, msaa_layout, bpb, samples, &tile_info);
3131
3132 /* Pitches must make sense with the tiling */
3133 assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
3134 if (tile_info.logical_extent_el.d > 1 || tile_info.logical_extent_el.a > 1)
3135 assert(array_pitch_el_rows % tile_info.logical_extent_el.h == 0);
3136
3137 /* For non-power-of-two formats, we need the address to be both tile and
3138 * element-aligned. The easiest way to achieve this is to work with a tile
3139 * that is three times as wide as the regular tile.
3140 *
3141 * The tile info returned by get_tile_info has a logical size that is an
3142 * integer number of tile_info.format_bpb size elements. To scale the
3143 * tile, we scale up the physical width and then treat the logical tile
3144 * size as if it has bpb size elements.
3145 */
3146 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
3147 tile_info.phys_extent_B.width *= tile_el_scale;
3148
3149 /* Compute the offset into the tile */
3150 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
3151 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
3152 *z_offset_el = total_z_offset_el % tile_info.logical_extent_el.d;
3153 *array_offset = total_array_offset % tile_info.logical_extent_el.a;
3154
3155 /* Compute the offset of the tile in units of whole tiles */
3156 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
3157 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
3158 uint32_t z_offset_tl = total_z_offset_el / tile_info.logical_extent_el.d;
3159 uint32_t a_offset_tl = total_array_offset / tile_info.logical_extent_el.a;
3160
3161 /* Compute an array pitch in number of tiles */
3162 uint32_t array_pitch_tl_rows =
3163 array_pitch_el_rows / tile_info.logical_extent_el.h;
3164
3165 /* Add the Z and array offset to the Y offset to get a 2D offset */
3166 y_offset_tl += (z_offset_tl + a_offset_tl) * array_pitch_tl_rows;
3167
3168 *tile_offset_B =
3169 (uint64_t)y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B +
3170 (uint64_t)x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
3171 }
3172
3173 uint32_t
isl_surf_get_depth_format(const struct isl_device * dev,const struct isl_surf * surf)3174 isl_surf_get_depth_format(const struct isl_device *dev,
3175 const struct isl_surf *surf)
3176 {
3177 /* Support for separate stencil buffers began in gfx5. Support for
3178 * interleaved depthstencil buffers ceased in gfx7. The intermediate gens,
3179 * those that supported separate and interleaved stencil, were gfx5 and
3180 * gfx6.
3181 *
3182 * For a list of all available formats, see the Sandybridge PRM >> Volume
3183 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
3184 * Format (p321).
3185 */
3186
3187 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
3188
3189 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
3190
3191 if (has_stencil)
3192 assert(ISL_GFX_VER(dev) < 7);
3193
3194 switch (surf->format) {
3195 default:
3196 unreachable("bad isl depth format");
3197 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
3198 assert(ISL_GFX_VER(dev) < 7);
3199 return 0; /* D32_FLOAT_S8X24_UINT */
3200 case ISL_FORMAT_R32_FLOAT:
3201 assert(!has_stencil);
3202 return 1; /* D32_FLOAT */
3203 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
3204 if (has_stencil) {
3205 assert(ISL_GFX_VER(dev) < 7);
3206 return 2; /* D24_UNORM_S8_UINT */
3207 } else {
3208 assert(ISL_GFX_VER(dev) >= 5);
3209 return 3; /* D24_UNORM_X8_UINT */
3210 }
3211 case ISL_FORMAT_R16_UNORM:
3212 assert(!has_stencil);
3213 return 5; /* D16_UNORM */
3214 }
3215 }
3216
3217 bool
isl_swizzle_supports_rendering(const struct intel_device_info * devinfo,struct isl_swizzle swizzle)3218 isl_swizzle_supports_rendering(const struct intel_device_info *devinfo,
3219 struct isl_swizzle swizzle)
3220 {
3221 if (devinfo->platform == INTEL_PLATFORM_HSW) {
3222 /* From the Haswell PRM,
3223 * RENDER_SURFACE_STATE::Shader Channel Select Red
3224 *
3225 * "The Shader channel selects also define which shader channels are
3226 * written to which surface channel. If the Shader channel select is
3227 * SCS_ZERO or SCS_ONE then it is not written to the surface. If the
3228 * shader channel select is SCS_RED it is written to the surface red
3229 * channel and so on. If more than one shader channel select is set
3230 * to the same surface channel only the first shader channel in RGBA
3231 * order will be written."
3232 */
3233 return true;
3234 } else if (devinfo->ver <= 7) {
3235 /* Ivy Bridge and early doesn't have any swizzling */
3236 return isl_swizzle_is_identity(swizzle);
3237 } else {
3238 /* From the Sky Lake PRM Vol. 2d,
3239 * RENDER_SURFACE_STATE::Shader Channel Select Red
3240 *
3241 * "For Render Target, Red, Green and Blue Shader Channel Selects
3242 * MUST be such that only valid components can be swapped i.e. only
3243 * change the order of components in the pixel. Any other values for
3244 * these Shader Channel Select fields are not valid for Render
3245 * Targets. This also means that there MUST not be multiple shader
3246 * channels mapped to the same RT channel."
3247 *
3248 * From the Sky Lake PRM Vol. 2d,
3249 * RENDER_SURFACE_STATE::Shader Channel Select Alpha
3250 *
3251 * "For Render Target, this field MUST be programmed to
3252 * value = SCS_ALPHA."
3253 */
3254 return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
3255 swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
3256 swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
3257 (swizzle.g == ISL_CHANNEL_SELECT_RED ||
3258 swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
3259 swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
3260 (swizzle.b == ISL_CHANNEL_SELECT_RED ||
3261 swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
3262 swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
3263 swizzle.r != swizzle.g &&
3264 swizzle.r != swizzle.b &&
3265 swizzle.g != swizzle.b &&
3266 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
3267 }
3268 }
3269
3270 static enum isl_channel_select
swizzle_select(enum isl_channel_select chan,struct isl_swizzle swizzle)3271 swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
3272 {
3273 switch (chan) {
3274 case ISL_CHANNEL_SELECT_ZERO:
3275 case ISL_CHANNEL_SELECT_ONE:
3276 return chan;
3277 case ISL_CHANNEL_SELECT_RED:
3278 return swizzle.r;
3279 case ISL_CHANNEL_SELECT_GREEN:
3280 return swizzle.g;
3281 case ISL_CHANNEL_SELECT_BLUE:
3282 return swizzle.b;
3283 case ISL_CHANNEL_SELECT_ALPHA:
3284 return swizzle.a;
3285 default:
3286 unreachable("Invalid swizzle component");
3287 }
3288 }
3289
3290 /**
3291 * Returns the single swizzle that is equivalent to applying the two given
3292 * swizzles in sequence.
3293 */
3294 struct isl_swizzle
isl_swizzle_compose(struct isl_swizzle first,struct isl_swizzle second)3295 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
3296 {
3297 return (struct isl_swizzle) {
3298 .r = swizzle_select(first.r, second),
3299 .g = swizzle_select(first.g, second),
3300 .b = swizzle_select(first.b, second),
3301 .a = swizzle_select(first.a, second),
3302 };
3303 }
3304
3305 /**
3306 * Returns a swizzle that is the pseudo-inverse of this swizzle.
3307 */
3308 struct isl_swizzle
isl_swizzle_invert(struct isl_swizzle swizzle)3309 isl_swizzle_invert(struct isl_swizzle swizzle)
3310 {
3311 /* Default to zero for channels which do not show up in the swizzle */
3312 enum isl_channel_select chans[4] = {
3313 ISL_CHANNEL_SELECT_ZERO,
3314 ISL_CHANNEL_SELECT_ZERO,
3315 ISL_CHANNEL_SELECT_ZERO,
3316 ISL_CHANNEL_SELECT_ZERO,
3317 };
3318
3319 /* We go in ABGR order so that, if there are any duplicates, the first one
3320 * is taken if you look at it in RGBA order. This is what Haswell hardware
3321 * does for render target swizzles.
3322 */
3323 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
3324 chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
3325 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
3326 chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
3327 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
3328 chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
3329 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
3330 chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
3331
3332 return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
3333 }
3334
3335 static uint32_t
isl_color_value_channel(union isl_color_value src,enum isl_channel_select chan,uint32_t one)3336 isl_color_value_channel(union isl_color_value src,
3337 enum isl_channel_select chan,
3338 uint32_t one)
3339 {
3340 if (chan == ISL_CHANNEL_SELECT_ZERO)
3341 return 0;
3342 if (chan == ISL_CHANNEL_SELECT_ONE)
3343 return one;
3344
3345 assert(chan >= ISL_CHANNEL_SELECT_RED);
3346 assert(chan < ISL_CHANNEL_SELECT_RED + 4);
3347
3348 return src.u32[chan - ISL_CHANNEL_SELECT_RED];
3349 }
3350
3351 /** Applies an inverse swizzle to a color value */
3352 union isl_color_value
isl_color_value_swizzle(union isl_color_value src,struct isl_swizzle swizzle,bool is_float)3353 isl_color_value_swizzle(union isl_color_value src,
3354 struct isl_swizzle swizzle,
3355 bool is_float)
3356 {
3357 uint32_t one = is_float ? 0x3f800000 : 1;
3358
3359 return (union isl_color_value) { .u32 = {
3360 isl_color_value_channel(src, swizzle.r, one),
3361 isl_color_value_channel(src, swizzle.g, one),
3362 isl_color_value_channel(src, swizzle.b, one),
3363 isl_color_value_channel(src, swizzle.a, one),
3364 } };
3365 }
3366
3367 /** Applies an inverse swizzle to a color value */
3368 union isl_color_value
isl_color_value_swizzle_inv(union isl_color_value src,struct isl_swizzle swizzle)3369 isl_color_value_swizzle_inv(union isl_color_value src,
3370 struct isl_swizzle swizzle)
3371 {
3372 union isl_color_value dst = { .u32 = { 0, } };
3373
3374 /* We assign colors in ABGR order so that the first one will be taken in
3375 * RGBA precedence order. According to the PRM docs for shader channel
3376 * select, this matches Haswell hardware behavior.
3377 */
3378 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
3379 dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
3380 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
3381 dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
3382 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
3383 dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
3384 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
3385 dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
3386
3387 return dst;
3388 }
3389
3390 uint8_t
isl_format_get_aux_map_encoding(enum isl_format format)3391 isl_format_get_aux_map_encoding(enum isl_format format)
3392 {
3393 switch(format) {
3394 case ISL_FORMAT_R32G32B32A32_FLOAT: return 0x11;
3395 case ISL_FORMAT_R32G32B32X32_FLOAT: return 0x11;
3396 case ISL_FORMAT_R32G32B32A32_SINT: return 0x12;
3397 case ISL_FORMAT_R32G32B32A32_UINT: return 0x13;
3398 case ISL_FORMAT_R16G16B16A16_UNORM: return 0x14;
3399 case ISL_FORMAT_R16G16B16A16_SNORM: return 0x15;
3400 case ISL_FORMAT_R16G16B16A16_SINT: return 0x16;
3401 case ISL_FORMAT_R16G16B16A16_UINT: return 0x17;
3402 case ISL_FORMAT_R16G16B16A16_FLOAT: return 0x10;
3403 case ISL_FORMAT_R16G16B16X16_FLOAT: return 0x10;
3404 case ISL_FORMAT_R32G32_FLOAT: return 0x11;
3405 case ISL_FORMAT_R32G32_SINT: return 0x12;
3406 case ISL_FORMAT_R32G32_UINT: return 0x13;
3407 case ISL_FORMAT_B8G8R8A8_UNORM: return 0xA;
3408 case ISL_FORMAT_B8G8R8X8_UNORM: return 0xA;
3409 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: return 0xA;
3410 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: return 0xA;
3411 case ISL_FORMAT_R10G10B10A2_UNORM: return 0x18;
3412 case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: return 0x18;
3413 case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: return 0x19;
3414 case ISL_FORMAT_R10G10B10A2_UINT: return 0x1A;
3415 case ISL_FORMAT_R8G8B8A8_UNORM: return 0xA;
3416 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: return 0xA;
3417 case ISL_FORMAT_R8G8B8A8_SNORM: return 0x1B;
3418 case ISL_FORMAT_R8G8B8A8_SINT: return 0x1C;
3419 case ISL_FORMAT_R8G8B8A8_UINT: return 0x1D;
3420 case ISL_FORMAT_R16G16_UNORM: return 0x14;
3421 case ISL_FORMAT_R16G16_SNORM: return 0x15;
3422 case ISL_FORMAT_R16G16_SINT: return 0x16;
3423 case ISL_FORMAT_R16G16_UINT: return 0x17;
3424 case ISL_FORMAT_R16G16_FLOAT: return 0x10;
3425 case ISL_FORMAT_B10G10R10A2_UNORM: return 0x18;
3426 case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: return 0x18;
3427 case ISL_FORMAT_R11G11B10_FLOAT: return 0x1E;
3428 case ISL_FORMAT_R32_SINT: return 0x12;
3429 case ISL_FORMAT_R32_UINT: return 0x13;
3430 case ISL_FORMAT_R32_FLOAT: return 0x11;
3431 case ISL_FORMAT_R24_UNORM_X8_TYPELESS: return 0x13;
3432 case ISL_FORMAT_B5G6R5_UNORM: return 0xA;
3433 case ISL_FORMAT_B5G6R5_UNORM_SRGB: return 0xA;
3434 case ISL_FORMAT_B5G5R5A1_UNORM: return 0xA;
3435 case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: return 0xA;
3436 case ISL_FORMAT_B4G4R4A4_UNORM: return 0xA;
3437 case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: return 0xA;
3438 case ISL_FORMAT_R8G8_UNORM: return 0xA;
3439 case ISL_FORMAT_R8G8_SNORM: return 0x1B;
3440 case ISL_FORMAT_R8G8_SINT: return 0x1C;
3441 case ISL_FORMAT_R8G8_UINT: return 0x1D;
3442 case ISL_FORMAT_R16_UNORM: return 0x14;
3443 case ISL_FORMAT_R16_SNORM: return 0x15;
3444 case ISL_FORMAT_R16_SINT: return 0x16;
3445 case ISL_FORMAT_R16_UINT: return 0x17;
3446 case ISL_FORMAT_R16_FLOAT: return 0x10;
3447 case ISL_FORMAT_B5G5R5X1_UNORM: return 0xA;
3448 case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: return 0xA;
3449 case ISL_FORMAT_A1B5G5R5_UNORM: return 0xA;
3450 case ISL_FORMAT_A4B4G4R4_UNORM: return 0xA;
3451 case ISL_FORMAT_R8_UNORM: return 0xA;
3452 case ISL_FORMAT_R8_SNORM: return 0x1B;
3453 case ISL_FORMAT_R8_SINT: return 0x1C;
3454 case ISL_FORMAT_R8_UINT: return 0x1D;
3455 case ISL_FORMAT_A8_UNORM: return 0xA;
3456 case ISL_FORMAT_PLANAR_420_8: return 0xF;
3457 case ISL_FORMAT_PLANAR_420_10: return 0x7;
3458 case ISL_FORMAT_PLANAR_420_12: return 0x8;
3459 case ISL_FORMAT_PLANAR_420_16: return 0x8;
3460 case ISL_FORMAT_YCRCB_NORMAL: return 0x3;
3461 case ISL_FORMAT_YCRCB_SWAPY: return 0xB;
3462 default:
3463 unreachable("Unsupported aux-map format!");
3464 return 0;
3465 }
3466 }
3467
3468 /*
3469 * Returns compression format encoding for Unified Lossless Compression
3470 */
3471 uint8_t
isl_get_render_compression_format(enum isl_format format)3472 isl_get_render_compression_format(enum isl_format format)
3473 {
3474 /* From the Bspec, Enumeration_RenderCompressionFormat section (53726): */
3475 switch(format) {
3476 case ISL_FORMAT_R32G32B32A32_FLOAT:
3477 case ISL_FORMAT_R32G32B32X32_FLOAT:
3478 case ISL_FORMAT_R32G32B32A32_SINT:
3479 return 0x0;
3480 case ISL_FORMAT_R32G32B32A32_UINT:
3481 return 0x1;
3482 case ISL_FORMAT_R32G32_FLOAT:
3483 case ISL_FORMAT_R32G32_SINT:
3484 return 0x2;
3485 case ISL_FORMAT_R32G32_UINT:
3486 return 0x3;
3487 case ISL_FORMAT_R16G16B16A16_UNORM:
3488 case ISL_FORMAT_R16G16B16X16_UNORM:
3489 case ISL_FORMAT_R16G16B16A16_UINT:
3490 return 0x4;
3491 case ISL_FORMAT_R16G16B16A16_SNORM:
3492 case ISL_FORMAT_R16G16B16A16_SINT:
3493 case ISL_FORMAT_R16G16B16A16_FLOAT:
3494 case ISL_FORMAT_R16G16B16X16_FLOAT:
3495 return 0x5;
3496 case ISL_FORMAT_R16G16_UNORM:
3497 case ISL_FORMAT_R16G16_UINT:
3498 return 0x6;
3499 case ISL_FORMAT_R16G16_SNORM:
3500 case ISL_FORMAT_R16G16_SINT:
3501 case ISL_FORMAT_R16G16_FLOAT:
3502 return 0x7;
3503 case ISL_FORMAT_B8G8R8A8_UNORM:
3504 case ISL_FORMAT_B8G8R8X8_UNORM:
3505 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB:
3506 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB:
3507 case ISL_FORMAT_R8G8B8A8_UNORM:
3508 case ISL_FORMAT_R8G8B8X8_UNORM:
3509 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB:
3510 case ISL_FORMAT_R8G8B8X8_UNORM_SRGB:
3511 case ISL_FORMAT_R8G8B8A8_UINT:
3512 return 0x8;
3513 case ISL_FORMAT_R8G8B8A8_SNORM:
3514 case ISL_FORMAT_R8G8B8A8_SINT:
3515 return 0x9;
3516 case ISL_FORMAT_B5G6R5_UNORM:
3517 case ISL_FORMAT_B5G6R5_UNORM_SRGB:
3518 case ISL_FORMAT_B5G5R5A1_UNORM:
3519 case ISL_FORMAT_B5G5R5A1_UNORM_SRGB:
3520 case ISL_FORMAT_B4G4R4A4_UNORM:
3521 case ISL_FORMAT_B4G4R4A4_UNORM_SRGB:
3522 case ISL_FORMAT_B5G5R5X1_UNORM:
3523 case ISL_FORMAT_B5G5R5X1_UNORM_SRGB:
3524 case ISL_FORMAT_A1B5G5R5_UNORM:
3525 case ISL_FORMAT_A4B4G4R4_UNORM:
3526 case ISL_FORMAT_R8G8_UNORM:
3527 case ISL_FORMAT_R8G8_UINT:
3528 return 0xA;
3529 case ISL_FORMAT_R8G8_SNORM:
3530 case ISL_FORMAT_R8G8_SINT:
3531 return 0xB;
3532 case ISL_FORMAT_R10G10B10A2_UNORM:
3533 case ISL_FORMAT_R10G10B10A2_UNORM_SRGB:
3534 case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM:
3535 case ISL_FORMAT_R10G10B10A2_UINT:
3536 case ISL_FORMAT_B10G10R10A2_UNORM:
3537 case ISL_FORMAT_B10G10R10X2_UNORM:
3538 case ISL_FORMAT_B10G10R10A2_UNORM_SRGB:
3539 return 0xC;
3540 case ISL_FORMAT_R11G11B10_FLOAT:
3541 return 0xD;
3542 case ISL_FORMAT_R32_SINT:
3543 case ISL_FORMAT_R32_FLOAT:
3544 return 0x10;
3545 case ISL_FORMAT_R32_UINT:
3546 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
3547 return 0x11;
3548 case ISL_FORMAT_R16_UNORM:
3549 case ISL_FORMAT_R16_UINT:
3550 return 0x14;
3551 case ISL_FORMAT_R16_SNORM:
3552 case ISL_FORMAT_R16_SINT:
3553 case ISL_FORMAT_R16_FLOAT:
3554 return 0x15;
3555 case ISL_FORMAT_R8_UNORM:
3556 case ISL_FORMAT_R8_UINT:
3557 case ISL_FORMAT_A8_UNORM:
3558 return 0x18;
3559 case ISL_FORMAT_R8_SNORM:
3560 case ISL_FORMAT_R8_SINT:
3561 return 0x19;
3562 default:
3563 unreachable("Unsupported render compression format!");
3564 return 0;
3565 }
3566 }
3567
3568 const char *
isl_aux_op_to_name(enum isl_aux_op op)3569 isl_aux_op_to_name(enum isl_aux_op op)
3570 {
3571 static const char *names[] = {
3572 [ISL_AUX_OP_NONE] = "none",
3573 [ISL_AUX_OP_FAST_CLEAR] = "fast-clear",
3574 [ISL_AUX_OP_FULL_RESOLVE] = "full-resolve",
3575 [ISL_AUX_OP_PARTIAL_RESOLVE] = "partial-resolve",
3576 [ISL_AUX_OP_AMBIGUATE] = "ambiguate",
3577 };
3578 assert(op < ARRAY_SIZE(names));
3579 return names[op];
3580 }
3581