• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		fscrypt_destroy_keyring(s);
297 		put_user_ns(s->s_user_ns);
298 		kfree(s->s_subtype);
299 		call_rcu(&s->rcu, destroy_super_rcu);
300 	}
301 }
302 
303 /**
304  *	put_super	-	drop a temporary reference to superblock
305  *	@sb: superblock in question
306  *
307  *	Drops a temporary reference, frees superblock if there's no
308  *	references left.
309  */
put_super(struct super_block * sb)310 static void put_super(struct super_block *sb)
311 {
312 	spin_lock(&sb_lock);
313 	__put_super(sb);
314 	spin_unlock(&sb_lock);
315 }
316 
317 
318 /**
319  *	deactivate_locked_super	-	drop an active reference to superblock
320  *	@s: superblock to deactivate
321  *
322  *	Drops an active reference to superblock, converting it into a temporary
323  *	one if there is no other active references left.  In that case we
324  *	tell fs driver to shut it down and drop the temporary reference we
325  *	had just acquired.
326  *
327  *	Caller holds exclusive lock on superblock; that lock is released.
328  */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 	struct file_system_type *fs = s->s_type;
332 	if (atomic_dec_and_test(&s->s_active)) {
333 		cleancache_invalidate_fs(s);
334 		unregister_shrinker(&s->s_shrink);
335 		fs->kill_sb(s);
336 
337 		/*
338 		 * Since list_lru_destroy() may sleep, we cannot call it from
339 		 * put_super(), where we hold the sb_lock. Therefore we destroy
340 		 * the lru lists right now.
341 		 */
342 		list_lru_destroy(&s->s_dentry_lru);
343 		list_lru_destroy(&s->s_inode_lru);
344 
345 		put_filesystem(fs);
346 		put_super(s);
347 	} else {
348 		up_write(&s->s_umount);
349 	}
350 }
351 
352 EXPORT_SYMBOL(deactivate_locked_super);
353 
354 /**
355  *	deactivate_super	-	drop an active reference to superblock
356  *	@s: superblock to deactivate
357  *
358  *	Variant of deactivate_locked_super(), except that superblock is *not*
359  *	locked by caller.  If we are going to drop the final active reference,
360  *	lock will be acquired prior to that.
361  */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 		down_write(&s->s_umount);
366 		deactivate_locked_super(s);
367 	}
368 }
369 
370 EXPORT_SYMBOL(deactivate_super);
371 
372 /**
373  *	grab_super - acquire an active reference
374  *	@s: reference we are trying to make active
375  *
376  *	Tries to acquire an active reference.  grab_super() is used when we
377  * 	had just found a superblock in super_blocks or fs_type->fs_supers
378  *	and want to turn it into a full-blown active reference.  grab_super()
379  *	is called with sb_lock held and drops it.  Returns 1 in case of
380  *	success, 0 if we had failed (superblock contents was already dead or
381  *	dying when grab_super() had been called).  Note that this is only
382  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
383  *	of their type), so increment of ->s_count is OK here.
384  */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 	s->s_count++;
388 	spin_unlock(&sb_lock);
389 	down_write(&s->s_umount);
390 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 		put_super(s);
392 		return 1;
393 	}
394 	up_write(&s->s_umount);
395 	put_super(s);
396 	return 0;
397 }
398 
399 /*
400  *	trylock_super - try to grab ->s_umount shared
401  *	@sb: reference we are trying to grab
402  *
403  *	Try to prevent fs shutdown.  This is used in places where we
404  *	cannot take an active reference but we need to ensure that the
405  *	filesystem is not shut down while we are working on it. It returns
406  *	false if we cannot acquire s_umount or if we lose the race and
407  *	filesystem already got into shutdown, and returns true with the s_umount
408  *	lock held in read mode in case of success. On successful return,
409  *	the caller must drop the s_umount lock when done.
410  *
411  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412  *	The reason why it's safe is that we are OK with doing trylock instead
413  *	of down_read().  There's a couple of places that are OK with that, but
414  *	it's very much not a general-purpose interface.
415  */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 	if (down_read_trylock(&sb->s_umount)) {
419 		if (!hlist_unhashed(&sb->s_instances) &&
420 		    sb->s_root && (sb->s_flags & SB_BORN))
421 			return true;
422 		up_read(&sb->s_umount);
423 	}
424 
425 	return false;
426 }
427 
428 /**
429  *	generic_shutdown_super	-	common helper for ->kill_sb()
430  *	@sb: superblock to kill
431  *
432  *	generic_shutdown_super() does all fs-independent work on superblock
433  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
434  *	that need destruction out of superblock, call generic_shutdown_super()
435  *	and release aforementioned objects.  Note: dentries and inodes _are_
436  *	taken care of and do not need specific handling.
437  *
438  *	Upon calling this function, the filesystem may no longer alter or
439  *	rearrange the set of dentries belonging to this super_block, nor may it
440  *	change the attachments of dentries to inodes.
441  */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 	const struct super_operations *sop = sb->s_op;
445 
446 	if (sb->s_root) {
447 		shrink_dcache_for_umount(sb);
448 		sync_filesystem(sb);
449 		sb->s_flags &= ~SB_ACTIVE;
450 
451 		cgroup_writeback_umount();
452 
453 		/* evict all inodes with zero refcount */
454 		evict_inodes(sb);
455 		/* only nonzero refcount inodes can have marks */
456 		fsnotify_sb_delete(sb);
457 		fscrypt_destroy_keyring(sb);
458 
459 		if (sb->s_dio_done_wq) {
460 			destroy_workqueue(sb->s_dio_done_wq);
461 			sb->s_dio_done_wq = NULL;
462 		}
463 
464 		if (sop->put_super)
465 			sop->put_super(sb);
466 
467 		if (!list_empty(&sb->s_inodes)) {
468 			printk("VFS: Busy inodes after unmount of %s. "
469 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
470 			   sb->s_id);
471 		}
472 	}
473 	spin_lock(&sb_lock);
474 	/* should be initialized for __put_super_and_need_restart() */
475 	hlist_del_init(&sb->s_instances);
476 	spin_unlock(&sb_lock);
477 	up_write(&sb->s_umount);
478 	if (sb->s_bdi != &noop_backing_dev_info) {
479 		bdi_put(sb->s_bdi);
480 		sb->s_bdi = &noop_backing_dev_info;
481 	}
482 }
483 
484 EXPORT_SYMBOL(generic_shutdown_super);
485 
mount_capable(struct fs_context * fc)486 bool mount_capable(struct fs_context *fc)
487 {
488 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
489 		return capable(CAP_SYS_ADMIN);
490 	else
491 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
492 }
493 
494 /**
495  * sget_fc - Find or create a superblock
496  * @fc:	Filesystem context.
497  * @test: Comparison callback
498  * @set: Setup callback
499  *
500  * Find or create a superblock using the parameters stored in the filesystem
501  * context and the two callback functions.
502  *
503  * If an extant superblock is matched, then that will be returned with an
504  * elevated reference count that the caller must transfer or discard.
505  *
506  * If no match is made, a new superblock will be allocated and basic
507  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
508  * the set() callback will be invoked), the superblock will be published and it
509  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
510  * as yet unset.
511  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))512 struct super_block *sget_fc(struct fs_context *fc,
513 			    int (*test)(struct super_block *, struct fs_context *),
514 			    int (*set)(struct super_block *, struct fs_context *))
515 {
516 	struct super_block *s = NULL;
517 	struct super_block *old;
518 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
519 	int err;
520 
521 retry:
522 	spin_lock(&sb_lock);
523 	if (test) {
524 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
525 			if (test(old, fc))
526 				goto share_extant_sb;
527 		}
528 	}
529 	if (!s) {
530 		spin_unlock(&sb_lock);
531 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
532 		if (!s)
533 			return ERR_PTR(-ENOMEM);
534 		goto retry;
535 	}
536 
537 	s->s_fs_info = fc->s_fs_info;
538 	err = set(s, fc);
539 	if (err) {
540 		s->s_fs_info = NULL;
541 		spin_unlock(&sb_lock);
542 		destroy_unused_super(s);
543 		return ERR_PTR(err);
544 	}
545 	fc->s_fs_info = NULL;
546 	s->s_type = fc->fs_type;
547 	s->s_iflags |= fc->s_iflags;
548 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
549 	list_add_tail(&s->s_list, &super_blocks);
550 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
551 	spin_unlock(&sb_lock);
552 	get_filesystem(s->s_type);
553 	register_shrinker_prepared(&s->s_shrink);
554 	return s;
555 
556 share_extant_sb:
557 	if (user_ns != old->s_user_ns) {
558 		spin_unlock(&sb_lock);
559 		destroy_unused_super(s);
560 		return ERR_PTR(-EBUSY);
561 	}
562 	if (!grab_super(old))
563 		goto retry;
564 	destroy_unused_super(s);
565 	return old;
566 }
567 EXPORT_SYMBOL(sget_fc);
568 
569 /**
570  *	sget	-	find or create a superblock
571  *	@type:	  filesystem type superblock should belong to
572  *	@test:	  comparison callback
573  *	@set:	  setup callback
574  *	@flags:	  mount flags
575  *	@data:	  argument to each of them
576  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)577 struct super_block *sget(struct file_system_type *type,
578 			int (*test)(struct super_block *,void *),
579 			int (*set)(struct super_block *,void *),
580 			int flags,
581 			void *data)
582 {
583 	struct user_namespace *user_ns = current_user_ns();
584 	struct super_block *s = NULL;
585 	struct super_block *old;
586 	int err;
587 
588 	/* We don't yet pass the user namespace of the parent
589 	 * mount through to here so always use &init_user_ns
590 	 * until that changes.
591 	 */
592 	if (flags & SB_SUBMOUNT)
593 		user_ns = &init_user_ns;
594 
595 retry:
596 	spin_lock(&sb_lock);
597 	if (test) {
598 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
599 			if (!test(old, data))
600 				continue;
601 			if (user_ns != old->s_user_ns) {
602 				spin_unlock(&sb_lock);
603 				destroy_unused_super(s);
604 				return ERR_PTR(-EBUSY);
605 			}
606 			if (!grab_super(old))
607 				goto retry;
608 			destroy_unused_super(s);
609 			return old;
610 		}
611 	}
612 	if (!s) {
613 		spin_unlock(&sb_lock);
614 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
615 		if (!s)
616 			return ERR_PTR(-ENOMEM);
617 		goto retry;
618 	}
619 
620 	err = set(s, data);
621 	if (err) {
622 		spin_unlock(&sb_lock);
623 		destroy_unused_super(s);
624 		return ERR_PTR(err);
625 	}
626 	s->s_type = type;
627 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
628 	list_add_tail(&s->s_list, &super_blocks);
629 	hlist_add_head(&s->s_instances, &type->fs_supers);
630 	spin_unlock(&sb_lock);
631 	get_filesystem(type);
632 	register_shrinker_prepared(&s->s_shrink);
633 	return s;
634 }
635 EXPORT_SYMBOL(sget);
636 
drop_super(struct super_block * sb)637 void drop_super(struct super_block *sb)
638 {
639 	up_read(&sb->s_umount);
640 	put_super(sb);
641 }
642 
643 EXPORT_SYMBOL(drop_super);
644 
drop_super_exclusive(struct super_block * sb)645 void drop_super_exclusive(struct super_block *sb)
646 {
647 	up_write(&sb->s_umount);
648 	put_super(sb);
649 }
650 EXPORT_SYMBOL(drop_super_exclusive);
651 
__iterate_supers(void (* f)(struct super_block *))652 static void __iterate_supers(void (*f)(struct super_block *))
653 {
654 	struct super_block *sb, *p = NULL;
655 
656 	spin_lock(&sb_lock);
657 	list_for_each_entry(sb, &super_blocks, s_list) {
658 		if (hlist_unhashed(&sb->s_instances))
659 			continue;
660 		sb->s_count++;
661 		spin_unlock(&sb_lock);
662 
663 		f(sb);
664 
665 		spin_lock(&sb_lock);
666 		if (p)
667 			__put_super(p);
668 		p = sb;
669 	}
670 	if (p)
671 		__put_super(p);
672 	spin_unlock(&sb_lock);
673 }
674 /**
675  *	iterate_supers - call function for all active superblocks
676  *	@f: function to call
677  *	@arg: argument to pass to it
678  *
679  *	Scans the superblock list and calls given function, passing it
680  *	locked superblock and given argument.
681  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)682 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
683 {
684 	struct super_block *sb, *p = NULL;
685 
686 	spin_lock(&sb_lock);
687 	list_for_each_entry(sb, &super_blocks, s_list) {
688 		if (hlist_unhashed(&sb->s_instances))
689 			continue;
690 		sb->s_count++;
691 		spin_unlock(&sb_lock);
692 
693 		down_read(&sb->s_umount);
694 		if (sb->s_root && (sb->s_flags & SB_BORN))
695 			f(sb, arg);
696 		up_read(&sb->s_umount);
697 
698 		spin_lock(&sb_lock);
699 		if (p)
700 			__put_super(p);
701 		p = sb;
702 	}
703 	if (p)
704 		__put_super(p);
705 	spin_unlock(&sb_lock);
706 }
707 
708 /**
709  *	iterate_supers_type - call function for superblocks of given type
710  *	@type: fs type
711  *	@f: function to call
712  *	@arg: argument to pass to it
713  *
714  *	Scans the superblock list and calls given function, passing it
715  *	locked superblock and given argument.
716  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)717 void iterate_supers_type(struct file_system_type *type,
718 	void (*f)(struct super_block *, void *), void *arg)
719 {
720 	struct super_block *sb, *p = NULL;
721 
722 	spin_lock(&sb_lock);
723 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
724 		sb->s_count++;
725 		spin_unlock(&sb_lock);
726 
727 		down_read(&sb->s_umount);
728 		if (sb->s_root && (sb->s_flags & SB_BORN))
729 			f(sb, arg);
730 		up_read(&sb->s_umount);
731 
732 		spin_lock(&sb_lock);
733 		if (p)
734 			__put_super(p);
735 		p = sb;
736 	}
737 	if (p)
738 		__put_super(p);
739 	spin_unlock(&sb_lock);
740 }
741 
742 EXPORT_SYMBOL(iterate_supers_type);
743 
__get_super(struct block_device * bdev,bool excl)744 static struct super_block *__get_super(struct block_device *bdev, bool excl)
745 {
746 	struct super_block *sb;
747 
748 	if (!bdev)
749 		return NULL;
750 
751 	spin_lock(&sb_lock);
752 rescan:
753 	list_for_each_entry(sb, &super_blocks, s_list) {
754 		if (hlist_unhashed(&sb->s_instances))
755 			continue;
756 		if (sb->s_bdev == bdev) {
757 			sb->s_count++;
758 			spin_unlock(&sb_lock);
759 			if (!excl)
760 				down_read(&sb->s_umount);
761 			else
762 				down_write(&sb->s_umount);
763 			/* still alive? */
764 			if (sb->s_root && (sb->s_flags & SB_BORN))
765 				return sb;
766 			if (!excl)
767 				up_read(&sb->s_umount);
768 			else
769 				up_write(&sb->s_umount);
770 			/* nope, got unmounted */
771 			spin_lock(&sb_lock);
772 			__put_super(sb);
773 			goto rescan;
774 		}
775 	}
776 	spin_unlock(&sb_lock);
777 	return NULL;
778 }
779 
780 /**
781  *	get_super - get the superblock of a device
782  *	@bdev: device to get the superblock for
783  *
784  *	Scans the superblock list and finds the superblock of the file system
785  *	mounted on the device given. %NULL is returned if no match is found.
786  */
get_super(struct block_device * bdev)787 struct super_block *get_super(struct block_device *bdev)
788 {
789 	return __get_super(bdev, false);
790 }
791 EXPORT_SYMBOL(get_super);
792 
__get_super_thawed(struct block_device * bdev,bool excl)793 static struct super_block *__get_super_thawed(struct block_device *bdev,
794 					      bool excl)
795 {
796 	while (1) {
797 		struct super_block *s = __get_super(bdev, excl);
798 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
799 			return s;
800 		if (!excl)
801 			up_read(&s->s_umount);
802 		else
803 			up_write(&s->s_umount);
804 		wait_event(s->s_writers.wait_unfrozen,
805 			   s->s_writers.frozen == SB_UNFROZEN);
806 		put_super(s);
807 	}
808 }
809 
810 /**
811  *	get_super_thawed - get thawed superblock of a device
812  *	@bdev: device to get the superblock for
813  *
814  *	Scans the superblock list and finds the superblock of the file system
815  *	mounted on the device. The superblock is returned once it is thawed
816  *	(or immediately if it was not frozen). %NULL is returned if no match
817  *	is found.
818  */
get_super_thawed(struct block_device * bdev)819 struct super_block *get_super_thawed(struct block_device *bdev)
820 {
821 	return __get_super_thawed(bdev, false);
822 }
823 EXPORT_SYMBOL(get_super_thawed);
824 
825 /**
826  *	get_super_exclusive_thawed - get thawed superblock of a device
827  *	@bdev: device to get the superblock for
828  *
829  *	Scans the superblock list and finds the superblock of the file system
830  *	mounted on the device. The superblock is returned once it is thawed
831  *	(or immediately if it was not frozen) and s_umount semaphore is held
832  *	in exclusive mode. %NULL is returned if no match is found.
833  */
get_super_exclusive_thawed(struct block_device * bdev)834 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
835 {
836 	return __get_super_thawed(bdev, true);
837 }
838 EXPORT_SYMBOL(get_super_exclusive_thawed);
839 
840 /**
841  * get_active_super - get an active reference to the superblock of a device
842  * @bdev: device to get the superblock for
843  *
844  * Scans the superblock list and finds the superblock of the file system
845  * mounted on the device given.  Returns the superblock with an active
846  * reference or %NULL if none was found.
847  */
get_active_super(struct block_device * bdev)848 struct super_block *get_active_super(struct block_device *bdev)
849 {
850 	struct super_block *sb;
851 
852 	if (!bdev)
853 		return NULL;
854 
855 restart:
856 	spin_lock(&sb_lock);
857 	list_for_each_entry(sb, &super_blocks, s_list) {
858 		if (hlist_unhashed(&sb->s_instances))
859 			continue;
860 		if (sb->s_bdev == bdev) {
861 			if (!grab_super(sb))
862 				goto restart;
863 			up_write(&sb->s_umount);
864 			return sb;
865 		}
866 	}
867 	spin_unlock(&sb_lock);
868 	return NULL;
869 }
870 
user_get_super(dev_t dev)871 struct super_block *user_get_super(dev_t dev)
872 {
873 	struct super_block *sb;
874 
875 	spin_lock(&sb_lock);
876 rescan:
877 	list_for_each_entry(sb, &super_blocks, s_list) {
878 		if (hlist_unhashed(&sb->s_instances))
879 			continue;
880 		if (sb->s_dev ==  dev) {
881 			sb->s_count++;
882 			spin_unlock(&sb_lock);
883 			down_read(&sb->s_umount);
884 			/* still alive? */
885 			if (sb->s_root && (sb->s_flags & SB_BORN))
886 				return sb;
887 			up_read(&sb->s_umount);
888 			/* nope, got unmounted */
889 			spin_lock(&sb_lock);
890 			__put_super(sb);
891 			goto rescan;
892 		}
893 	}
894 	spin_unlock(&sb_lock);
895 	return NULL;
896 }
897 
898 /**
899  * reconfigure_super - asks filesystem to change superblock parameters
900  * @fc: The superblock and configuration
901  *
902  * Alters the configuration parameters of a live superblock.
903  */
reconfigure_super(struct fs_context * fc)904 int reconfigure_super(struct fs_context *fc)
905 {
906 	struct super_block *sb = fc->root->d_sb;
907 	int retval;
908 	bool remount_ro = false;
909 	bool force = fc->sb_flags & SB_FORCE;
910 
911 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
912 		return -EINVAL;
913 	if (sb->s_writers.frozen != SB_UNFROZEN)
914 		return -EBUSY;
915 
916 	retval = security_sb_remount(sb, fc->security);
917 	if (retval)
918 		return retval;
919 
920 	if (fc->sb_flags_mask & SB_RDONLY) {
921 #ifdef CONFIG_BLOCK
922 		if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
923 			return -EACCES;
924 #endif
925 
926 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
927 	}
928 
929 	if (remount_ro) {
930 		if (!hlist_empty(&sb->s_pins)) {
931 			up_write(&sb->s_umount);
932 			group_pin_kill(&sb->s_pins);
933 			down_write(&sb->s_umount);
934 			if (!sb->s_root)
935 				return 0;
936 			if (sb->s_writers.frozen != SB_UNFROZEN)
937 				return -EBUSY;
938 			remount_ro = !sb_rdonly(sb);
939 		}
940 	}
941 	shrink_dcache_sb(sb);
942 
943 	/* If we are reconfiguring to RDONLY and current sb is read/write,
944 	 * make sure there are no files open for writing.
945 	 */
946 	if (remount_ro) {
947 		if (force) {
948 			sb->s_readonly_remount = 1;
949 			smp_wmb();
950 		} else {
951 			retval = sb_prepare_remount_readonly(sb);
952 			if (retval)
953 				return retval;
954 		}
955 	}
956 
957 	if (fc->ops->reconfigure) {
958 		retval = fc->ops->reconfigure(fc);
959 		if (retval) {
960 			if (!force)
961 				goto cancel_readonly;
962 			/* If forced remount, go ahead despite any errors */
963 			WARN(1, "forced remount of a %s fs returned %i\n",
964 			     sb->s_type->name, retval);
965 		}
966 	}
967 
968 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
969 				 (fc->sb_flags & fc->sb_flags_mask)));
970 	/* Needs to be ordered wrt mnt_is_readonly() */
971 	smp_wmb();
972 	sb->s_readonly_remount = 0;
973 
974 	/*
975 	 * Some filesystems modify their metadata via some other path than the
976 	 * bdev buffer cache (eg. use a private mapping, or directories in
977 	 * pagecache, etc). Also file data modifications go via their own
978 	 * mappings. So If we try to mount readonly then copy the filesystem
979 	 * from bdev, we could get stale data, so invalidate it to give a best
980 	 * effort at coherency.
981 	 */
982 	if (remount_ro && sb->s_bdev)
983 		invalidate_bdev(sb->s_bdev);
984 	return 0;
985 
986 cancel_readonly:
987 	sb->s_readonly_remount = 0;
988 	return retval;
989 }
990 
do_emergency_remount_callback(struct super_block * sb)991 static void do_emergency_remount_callback(struct super_block *sb)
992 {
993 	down_write(&sb->s_umount);
994 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
995 	    !sb_rdonly(sb)) {
996 		struct fs_context *fc;
997 
998 		fc = fs_context_for_reconfigure(sb->s_root,
999 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1000 		if (!IS_ERR(fc)) {
1001 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1002 				(void)reconfigure_super(fc);
1003 			put_fs_context(fc);
1004 		}
1005 	}
1006 	up_write(&sb->s_umount);
1007 }
1008 
do_emergency_remount(struct work_struct * work)1009 static void do_emergency_remount(struct work_struct *work)
1010 {
1011 	__iterate_supers(do_emergency_remount_callback);
1012 	kfree(work);
1013 	printk("Emergency Remount complete\n");
1014 }
1015 
emergency_remount(void)1016 void emergency_remount(void)
1017 {
1018 	struct work_struct *work;
1019 
1020 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1021 	if (work) {
1022 		INIT_WORK(work, do_emergency_remount);
1023 		schedule_work(work);
1024 	}
1025 }
1026 
do_thaw_all_callback(struct super_block * sb)1027 static void do_thaw_all_callback(struct super_block *sb)
1028 {
1029 	down_write(&sb->s_umount);
1030 	if (sb->s_root && sb->s_flags & SB_BORN) {
1031 		emergency_thaw_bdev(sb);
1032 		thaw_super_locked(sb);
1033 	} else {
1034 		up_write(&sb->s_umount);
1035 	}
1036 }
1037 
do_thaw_all(struct work_struct * work)1038 static void do_thaw_all(struct work_struct *work)
1039 {
1040 	__iterate_supers(do_thaw_all_callback);
1041 	kfree(work);
1042 	printk(KERN_WARNING "Emergency Thaw complete\n");
1043 }
1044 
1045 /**
1046  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1047  *
1048  * Used for emergency unfreeze of all filesystems via SysRq
1049  */
emergency_thaw_all(void)1050 void emergency_thaw_all(void)
1051 {
1052 	struct work_struct *work;
1053 
1054 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1055 	if (work) {
1056 		INIT_WORK(work, do_thaw_all);
1057 		schedule_work(work);
1058 	}
1059 }
1060 
1061 static DEFINE_IDA(unnamed_dev_ida);
1062 
1063 /**
1064  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1065  * @p: Pointer to a dev_t.
1066  *
1067  * Filesystems which don't use real block devices can call this function
1068  * to allocate a virtual block device.
1069  *
1070  * Context: Any context.  Frequently called while holding sb_lock.
1071  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1072  * or -ENOMEM if memory allocation failed.
1073  */
get_anon_bdev(dev_t * p)1074 int get_anon_bdev(dev_t *p)
1075 {
1076 	int dev;
1077 
1078 	/*
1079 	 * Many userspace utilities consider an FSID of 0 invalid.
1080 	 * Always return at least 1 from get_anon_bdev.
1081 	 */
1082 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1083 			GFP_ATOMIC);
1084 	if (dev == -ENOSPC)
1085 		dev = -EMFILE;
1086 	if (dev < 0)
1087 		return dev;
1088 
1089 	*p = MKDEV(0, dev);
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(get_anon_bdev);
1093 
free_anon_bdev(dev_t dev)1094 void free_anon_bdev(dev_t dev)
1095 {
1096 	ida_free(&unnamed_dev_ida, MINOR(dev));
1097 }
1098 EXPORT_SYMBOL(free_anon_bdev);
1099 
set_anon_super(struct super_block * s,void * data)1100 int set_anon_super(struct super_block *s, void *data)
1101 {
1102 	return get_anon_bdev(&s->s_dev);
1103 }
1104 EXPORT_SYMBOL(set_anon_super);
1105 
kill_anon_super(struct super_block * sb)1106 void kill_anon_super(struct super_block *sb)
1107 {
1108 	dev_t dev = sb->s_dev;
1109 	generic_shutdown_super(sb);
1110 	free_anon_bdev(dev);
1111 }
1112 EXPORT_SYMBOL(kill_anon_super);
1113 
kill_litter_super(struct super_block * sb)1114 void kill_litter_super(struct super_block *sb)
1115 {
1116 	if (sb->s_root)
1117 		d_genocide(sb->s_root);
1118 	kill_anon_super(sb);
1119 }
1120 EXPORT_SYMBOL(kill_litter_super);
1121 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1122 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1123 {
1124 	return set_anon_super(sb, NULL);
1125 }
1126 EXPORT_SYMBOL(set_anon_super_fc);
1127 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1128 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1129 {
1130 	return sb->s_fs_info == fc->s_fs_info;
1131 }
1132 
test_single_super(struct super_block * s,struct fs_context * fc)1133 static int test_single_super(struct super_block *s, struct fs_context *fc)
1134 {
1135 	return 1;
1136 }
1137 
1138 /**
1139  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1140  * @fc: The filesystem context holding the parameters
1141  * @keying: How to distinguish superblocks
1142  * @fill_super: Helper to initialise a new superblock
1143  *
1144  * Search for a superblock and create a new one if not found.  The search
1145  * criterion is controlled by @keying.  If the search fails, a new superblock
1146  * is created and @fill_super() is called to initialise it.
1147  *
1148  * @keying can take one of a number of values:
1149  *
1150  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1151  *     system.  This is typically used for special system filesystems.
1152  *
1153  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1154  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1155  *     key again will turn up the superblock for that key.
1156  *
1157  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1158  *     unkeyed.  Each call will get a new superblock.
1159  *
1160  * A permissions check is made by sget_fc() unless we're getting a superblock
1161  * for a kernel-internal mount or a submount.
1162  */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1163 int vfs_get_super(struct fs_context *fc,
1164 		  enum vfs_get_super_keying keying,
1165 		  int (*fill_super)(struct super_block *sb,
1166 				    struct fs_context *fc))
1167 {
1168 	int (*test)(struct super_block *, struct fs_context *);
1169 	struct super_block *sb;
1170 	int err;
1171 
1172 	switch (keying) {
1173 	case vfs_get_single_super:
1174 	case vfs_get_single_reconf_super:
1175 		test = test_single_super;
1176 		break;
1177 	case vfs_get_keyed_super:
1178 		test = test_keyed_super;
1179 		break;
1180 	case vfs_get_independent_super:
1181 		test = NULL;
1182 		break;
1183 	default:
1184 		BUG();
1185 	}
1186 
1187 	sb = sget_fc(fc, test, set_anon_super_fc);
1188 	if (IS_ERR(sb))
1189 		return PTR_ERR(sb);
1190 
1191 	if (!sb->s_root) {
1192 		err = fill_super(sb, fc);
1193 		if (err)
1194 			goto error;
1195 
1196 		sb->s_flags |= SB_ACTIVE;
1197 		fc->root = dget(sb->s_root);
1198 	} else {
1199 		fc->root = dget(sb->s_root);
1200 		if (keying == vfs_get_single_reconf_super) {
1201 			err = reconfigure_super(fc);
1202 			if (err < 0) {
1203 				dput(fc->root);
1204 				fc->root = NULL;
1205 				goto error;
1206 			}
1207 		}
1208 	}
1209 
1210 	return 0;
1211 
1212 error:
1213 	deactivate_locked_super(sb);
1214 	return err;
1215 }
1216 EXPORT_SYMBOL(vfs_get_super);
1217 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1218 int get_tree_nodev(struct fs_context *fc,
1219 		  int (*fill_super)(struct super_block *sb,
1220 				    struct fs_context *fc))
1221 {
1222 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1223 }
1224 EXPORT_SYMBOL(get_tree_nodev);
1225 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1226 int get_tree_single(struct fs_context *fc,
1227 		  int (*fill_super)(struct super_block *sb,
1228 				    struct fs_context *fc))
1229 {
1230 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1231 }
1232 EXPORT_SYMBOL(get_tree_single);
1233 
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1234 int get_tree_single_reconf(struct fs_context *fc,
1235 		  int (*fill_super)(struct super_block *sb,
1236 				    struct fs_context *fc))
1237 {
1238 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1239 }
1240 EXPORT_SYMBOL(get_tree_single_reconf);
1241 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1242 int get_tree_keyed(struct fs_context *fc,
1243 		  int (*fill_super)(struct super_block *sb,
1244 				    struct fs_context *fc),
1245 		void *key)
1246 {
1247 	fc->s_fs_info = key;
1248 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1249 }
1250 EXPORT_SYMBOL(get_tree_keyed);
1251 
1252 #ifdef CONFIG_BLOCK
1253 
set_bdev_super(struct super_block * s,void * data)1254 static int set_bdev_super(struct super_block *s, void *data)
1255 {
1256 	s->s_bdev = data;
1257 	s->s_dev = s->s_bdev->bd_dev;
1258 	s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1259 
1260 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1261 		s->s_iflags |= SB_I_STABLE_WRITES;
1262 	return 0;
1263 }
1264 
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1265 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1266 {
1267 	return set_bdev_super(s, fc->sget_key);
1268 }
1269 
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1270 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1271 {
1272 	return s->s_bdev == fc->sget_key;
1273 }
1274 
1275 /**
1276  * get_tree_bdev - Get a superblock based on a single block device
1277  * @fc: The filesystem context holding the parameters
1278  * @fill_super: Helper to initialise a new superblock
1279  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1280 int get_tree_bdev(struct fs_context *fc,
1281 		int (*fill_super)(struct super_block *,
1282 				  struct fs_context *))
1283 {
1284 	struct block_device *bdev;
1285 	struct super_block *s;
1286 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1287 	int error = 0;
1288 
1289 	if (!(fc->sb_flags & SB_RDONLY))
1290 		mode |= FMODE_WRITE;
1291 
1292 	if (!fc->source)
1293 		return invalf(fc, "No source specified");
1294 
1295 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1296 	if (IS_ERR(bdev)) {
1297 		errorf(fc, "%s: Can't open blockdev", fc->source);
1298 		return PTR_ERR(bdev);
1299 	}
1300 
1301 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1302 	 * will protect the lockfs code from trying to start a snapshot while
1303 	 * we are mounting
1304 	 */
1305 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1306 	if (bdev->bd_fsfreeze_count > 0) {
1307 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1308 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1309 		blkdev_put(bdev, mode);
1310 		return -EBUSY;
1311 	}
1312 
1313 	fc->sb_flags |= SB_NOSEC;
1314 	fc->sget_key = bdev;
1315 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1316 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1317 	if (IS_ERR(s)) {
1318 		blkdev_put(bdev, mode);
1319 		return PTR_ERR(s);
1320 	}
1321 
1322 	if (s->s_root) {
1323 		/* Don't summarily change the RO/RW state. */
1324 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1325 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1326 			deactivate_locked_super(s);
1327 			blkdev_put(bdev, mode);
1328 			return -EBUSY;
1329 		}
1330 
1331 		/*
1332 		 * s_umount nests inside bd_mutex during
1333 		 * __invalidate_device().  blkdev_put() acquires
1334 		 * bd_mutex and can't be called under s_umount.  Drop
1335 		 * s_umount temporarily.  This is safe as we're
1336 		 * holding an active reference.
1337 		 */
1338 		up_write(&s->s_umount);
1339 		blkdev_put(bdev, mode);
1340 		down_write(&s->s_umount);
1341 	} else {
1342 		s->s_mode = mode;
1343 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1344 		sb_set_blocksize(s, block_size(bdev));
1345 		error = fill_super(s, fc);
1346 		if (error) {
1347 			deactivate_locked_super(s);
1348 			return error;
1349 		}
1350 
1351 		s->s_flags |= SB_ACTIVE;
1352 		bdev->bd_super = s;
1353 	}
1354 
1355 	BUG_ON(fc->root);
1356 	fc->root = dget(s->s_root);
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL(get_tree_bdev);
1360 
test_bdev_super(struct super_block * s,void * data)1361 static int test_bdev_super(struct super_block *s, void *data)
1362 {
1363 	return (void *)s->s_bdev == data;
1364 }
1365 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1366 struct dentry *mount_bdev(struct file_system_type *fs_type,
1367 	int flags, const char *dev_name, void *data,
1368 	int (*fill_super)(struct super_block *, void *, int))
1369 {
1370 	struct block_device *bdev;
1371 	struct super_block *s;
1372 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1373 	int error = 0;
1374 
1375 	if (!(flags & SB_RDONLY))
1376 		mode |= FMODE_WRITE;
1377 
1378 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1379 	if (IS_ERR(bdev))
1380 		return ERR_CAST(bdev);
1381 
1382 	/*
1383 	 * once the super is inserted into the list by sget, s_umount
1384 	 * will protect the lockfs code from trying to start a snapshot
1385 	 * while we are mounting
1386 	 */
1387 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1388 	if (bdev->bd_fsfreeze_count > 0) {
1389 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1390 		error = -EBUSY;
1391 		goto error_bdev;
1392 	}
1393 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1394 		 bdev);
1395 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1396 	if (IS_ERR(s))
1397 		goto error_s;
1398 
1399 	if (s->s_root) {
1400 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1401 			deactivate_locked_super(s);
1402 			error = -EBUSY;
1403 			goto error_bdev;
1404 		}
1405 
1406 		/*
1407 		 * s_umount nests inside bd_mutex during
1408 		 * __invalidate_device().  blkdev_put() acquires
1409 		 * bd_mutex and can't be called under s_umount.  Drop
1410 		 * s_umount temporarily.  This is safe as we're
1411 		 * holding an active reference.
1412 		 */
1413 		up_write(&s->s_umount);
1414 		blkdev_put(bdev, mode);
1415 		down_write(&s->s_umount);
1416 	} else {
1417 		s->s_mode = mode;
1418 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1419 		sb_set_blocksize(s, block_size(bdev));
1420 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1421 		if (error) {
1422 			deactivate_locked_super(s);
1423 			goto error;
1424 		}
1425 
1426 		s->s_flags |= SB_ACTIVE;
1427 		bdev->bd_super = s;
1428 	}
1429 
1430 	return dget(s->s_root);
1431 
1432 error_s:
1433 	error = PTR_ERR(s);
1434 error_bdev:
1435 	blkdev_put(bdev, mode);
1436 error:
1437 	return ERR_PTR(error);
1438 }
1439 EXPORT_SYMBOL(mount_bdev);
1440 
kill_block_super(struct super_block * sb)1441 void kill_block_super(struct super_block *sb)
1442 {
1443 	struct block_device *bdev = sb->s_bdev;
1444 	fmode_t mode = sb->s_mode;
1445 
1446 	bdev->bd_super = NULL;
1447 	generic_shutdown_super(sb);
1448 	sync_blockdev(bdev);
1449 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1450 	blkdev_put(bdev, mode | FMODE_EXCL);
1451 }
1452 
1453 EXPORT_SYMBOL(kill_block_super);
1454 #endif
1455 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1456 struct dentry *mount_nodev(struct file_system_type *fs_type,
1457 	int flags, void *data,
1458 	int (*fill_super)(struct super_block *, void *, int))
1459 {
1460 	int error;
1461 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1462 
1463 	if (IS_ERR(s))
1464 		return ERR_CAST(s);
1465 
1466 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1467 	if (error) {
1468 		deactivate_locked_super(s);
1469 		return ERR_PTR(error);
1470 	}
1471 	s->s_flags |= SB_ACTIVE;
1472 	return dget(s->s_root);
1473 }
1474 EXPORT_SYMBOL(mount_nodev);
1475 
reconfigure_single(struct super_block * s,int flags,void * data)1476 int reconfigure_single(struct super_block *s,
1477 		       int flags, void *data)
1478 {
1479 	struct fs_context *fc;
1480 	int ret;
1481 
1482 	/* The caller really need to be passing fc down into mount_single(),
1483 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1484 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1485 	 * mount should be rejected if the parameters are not compatible.
1486 	 */
1487 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1488 	if (IS_ERR(fc))
1489 		return PTR_ERR(fc);
1490 
1491 	ret = parse_monolithic_mount_data(fc, data);
1492 	if (ret < 0)
1493 		goto out;
1494 
1495 	ret = reconfigure_super(fc);
1496 out:
1497 	put_fs_context(fc);
1498 	return ret;
1499 }
1500 
compare_single(struct super_block * s,void * p)1501 static int compare_single(struct super_block *s, void *p)
1502 {
1503 	return 1;
1504 }
1505 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1506 struct dentry *mount_single(struct file_system_type *fs_type,
1507 	int flags, void *data,
1508 	int (*fill_super)(struct super_block *, void *, int))
1509 {
1510 	struct super_block *s;
1511 	int error;
1512 
1513 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1514 	if (IS_ERR(s))
1515 		return ERR_CAST(s);
1516 	if (!s->s_root) {
1517 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1518 		if (!error)
1519 			s->s_flags |= SB_ACTIVE;
1520 	} else {
1521 		error = reconfigure_single(s, flags, data);
1522 	}
1523 	if (unlikely(error)) {
1524 		deactivate_locked_super(s);
1525 		return ERR_PTR(error);
1526 	}
1527 	return dget(s->s_root);
1528 }
1529 EXPORT_SYMBOL(mount_single);
1530 
1531 /**
1532  * vfs_get_tree - Get the mountable root
1533  * @fc: The superblock configuration context.
1534  *
1535  * The filesystem is invoked to get or create a superblock which can then later
1536  * be used for mounting.  The filesystem places a pointer to the root to be
1537  * used for mounting in @fc->root.
1538  */
vfs_get_tree(struct fs_context * fc)1539 int vfs_get_tree(struct fs_context *fc)
1540 {
1541 	struct super_block *sb;
1542 	int error;
1543 
1544 	if (fc->root)
1545 		return -EBUSY;
1546 
1547 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1548 	 * on the superblock.
1549 	 */
1550 	error = fc->ops->get_tree(fc);
1551 	if (error < 0)
1552 		return error;
1553 
1554 	if (!fc->root) {
1555 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1556 		       fc->fs_type->name);
1557 		/* We don't know what the locking state of the superblock is -
1558 		 * if there is a superblock.
1559 		 */
1560 		BUG();
1561 	}
1562 
1563 	sb = fc->root->d_sb;
1564 	WARN_ON(!sb->s_bdi);
1565 
1566 	/*
1567 	 * Write barrier is for super_cache_count(). We place it before setting
1568 	 * SB_BORN as the data dependency between the two functions is the
1569 	 * superblock structure contents that we just set up, not the SB_BORN
1570 	 * flag.
1571 	 */
1572 	smp_wmb();
1573 	sb->s_flags |= SB_BORN;
1574 
1575 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1576 	if (unlikely(error)) {
1577 		fc_drop_locked(fc);
1578 		return error;
1579 	}
1580 
1581 	/*
1582 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1583 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1584 	 * this warning for a little while to try and catch filesystems that
1585 	 * violate this rule.
1586 	 */
1587 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1588 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1589 
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL(vfs_get_tree);
1593 
1594 /*
1595  * Setup private BDI for given superblock. It gets automatically cleaned up
1596  * in generic_shutdown_super().
1597  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1598 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1599 {
1600 	struct backing_dev_info *bdi;
1601 	int err;
1602 	va_list args;
1603 
1604 	bdi = bdi_alloc(NUMA_NO_NODE);
1605 	if (!bdi)
1606 		return -ENOMEM;
1607 
1608 	va_start(args, fmt);
1609 	err = bdi_register_va(bdi, fmt, args);
1610 	va_end(args);
1611 	if (err) {
1612 		bdi_put(bdi);
1613 		return err;
1614 	}
1615 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1616 	sb->s_bdi = bdi;
1617 
1618 	return 0;
1619 }
1620 EXPORT_SYMBOL(super_setup_bdi_name);
1621 
1622 /*
1623  * Setup private BDI for given superblock. I gets automatically cleaned up
1624  * in generic_shutdown_super().
1625  */
super_setup_bdi(struct super_block * sb)1626 int super_setup_bdi(struct super_block *sb)
1627 {
1628 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1629 
1630 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1631 				    atomic_long_inc_return(&bdi_seq));
1632 }
1633 EXPORT_SYMBOL(super_setup_bdi);
1634 
1635 /**
1636  * sb_wait_write - wait until all writers to given file system finish
1637  * @sb: the super for which we wait
1638  * @level: type of writers we wait for (normal vs page fault)
1639  *
1640  * This function waits until there are no writers of given type to given file
1641  * system.
1642  */
sb_wait_write(struct super_block * sb,int level)1643 static void sb_wait_write(struct super_block *sb, int level)
1644 {
1645 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1646 }
1647 
1648 /*
1649  * We are going to return to userspace and forget about these locks, the
1650  * ownership goes to the caller of thaw_super() which does unlock().
1651  */
lockdep_sb_freeze_release(struct super_block * sb)1652 static void lockdep_sb_freeze_release(struct super_block *sb)
1653 {
1654 	int level;
1655 
1656 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1657 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1658 }
1659 
1660 /*
1661  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1662  */
lockdep_sb_freeze_acquire(struct super_block * sb)1663 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1664 {
1665 	int level;
1666 
1667 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1668 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1669 }
1670 
sb_freeze_unlock(struct super_block * sb,int level)1671 static void sb_freeze_unlock(struct super_block *sb, int level)
1672 {
1673 	for (level--; level >= 0; level--)
1674 		percpu_up_write(sb->s_writers.rw_sem + level);
1675 }
1676 
1677 /**
1678  * freeze_super - lock the filesystem and force it into a consistent state
1679  * @sb: the super to lock
1680  *
1681  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1682  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1683  * -EBUSY.
1684  *
1685  * During this function, sb->s_writers.frozen goes through these values:
1686  *
1687  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1688  *
1689  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1690  * writes should be blocked, though page faults are still allowed. We wait for
1691  * all writes to complete and then proceed to the next stage.
1692  *
1693  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1694  * but internal fs threads can still modify the filesystem (although they
1695  * should not dirty new pages or inodes), writeback can run etc. After waiting
1696  * for all running page faults we sync the filesystem which will clean all
1697  * dirty pages and inodes (no new dirty pages or inodes can be created when
1698  * sync is running).
1699  *
1700  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1701  * modification are blocked (e.g. XFS preallocation truncation on inode
1702  * reclaim). This is usually implemented by blocking new transactions for
1703  * filesystems that have them and need this additional guard. After all
1704  * internal writers are finished we call ->freeze_fs() to finish filesystem
1705  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1706  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1707  *
1708  * sb->s_writers.frozen is protected by sb->s_umount.
1709  */
freeze_super(struct super_block * sb)1710 int freeze_super(struct super_block *sb)
1711 {
1712 	int ret;
1713 
1714 	atomic_inc(&sb->s_active);
1715 	down_write(&sb->s_umount);
1716 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1717 		deactivate_locked_super(sb);
1718 		return -EBUSY;
1719 	}
1720 
1721 	if (!(sb->s_flags & SB_BORN)) {
1722 		up_write(&sb->s_umount);
1723 		return 0;	/* sic - it's "nothing to do" */
1724 	}
1725 
1726 	if (sb_rdonly(sb)) {
1727 		/* Nothing to do really... */
1728 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1729 		up_write(&sb->s_umount);
1730 		return 0;
1731 	}
1732 
1733 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1734 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1735 	up_write(&sb->s_umount);
1736 	sb_wait_write(sb, SB_FREEZE_WRITE);
1737 	down_write(&sb->s_umount);
1738 
1739 	/* Now we go and block page faults... */
1740 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1741 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1742 
1743 	/* All writers are done so after syncing there won't be dirty data */
1744 	ret = sync_filesystem(sb);
1745 	if (ret) {
1746 		sb->s_writers.frozen = SB_UNFROZEN;
1747 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1748 		wake_up(&sb->s_writers.wait_unfrozen);
1749 		deactivate_locked_super(sb);
1750 		return ret;
1751 	}
1752 
1753 	/* Now wait for internal filesystem counter */
1754 	sb->s_writers.frozen = SB_FREEZE_FS;
1755 	sb_wait_write(sb, SB_FREEZE_FS);
1756 
1757 	if (sb->s_op->freeze_fs) {
1758 		ret = sb->s_op->freeze_fs(sb);
1759 		if (ret) {
1760 			printk(KERN_ERR
1761 				"VFS:Filesystem freeze failed\n");
1762 			sb->s_writers.frozen = SB_UNFROZEN;
1763 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1764 			wake_up(&sb->s_writers.wait_unfrozen);
1765 			deactivate_locked_super(sb);
1766 			return ret;
1767 		}
1768 	}
1769 	/*
1770 	 * For debugging purposes so that fs can warn if it sees write activity
1771 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1772 	 */
1773 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1774 	lockdep_sb_freeze_release(sb);
1775 	up_write(&sb->s_umount);
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL(freeze_super);
1779 
1780 /**
1781  * thaw_super -- unlock filesystem
1782  * @sb: the super to thaw
1783  *
1784  * Unlocks the filesystem and marks it writeable again after freeze_super().
1785  */
thaw_super_locked(struct super_block * sb)1786 static int thaw_super_locked(struct super_block *sb)
1787 {
1788 	int error;
1789 
1790 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1791 		up_write(&sb->s_umount);
1792 		return -EINVAL;
1793 	}
1794 
1795 	if (sb_rdonly(sb)) {
1796 		sb->s_writers.frozen = SB_UNFROZEN;
1797 		goto out;
1798 	}
1799 
1800 	lockdep_sb_freeze_acquire(sb);
1801 
1802 	if (sb->s_op->unfreeze_fs) {
1803 		error = sb->s_op->unfreeze_fs(sb);
1804 		if (error) {
1805 			printk(KERN_ERR
1806 				"VFS:Filesystem thaw failed\n");
1807 			lockdep_sb_freeze_release(sb);
1808 			up_write(&sb->s_umount);
1809 			return error;
1810 		}
1811 	}
1812 
1813 	sb->s_writers.frozen = SB_UNFROZEN;
1814 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1815 out:
1816 	wake_up(&sb->s_writers.wait_unfrozen);
1817 	deactivate_locked_super(sb);
1818 	return 0;
1819 }
1820 
thaw_super(struct super_block * sb)1821 int thaw_super(struct super_block *sb)
1822 {
1823 	down_write(&sb->s_umount);
1824 	return thaw_super_locked(sb);
1825 }
1826 EXPORT_SYMBOL(thaw_super);
1827