• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Christoph Bumiller
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "nv50_ir.h"
24 #include "nv50_ir_build_util.h"
25 
26 #include "nv50_ir_target_nvc0.h"
27 #include "nv50_ir_lowering_nvc0.h"
28 
29 #include <limits>
30 
31 namespace nv50_ir {
32 
33 #define QOP_ADD  0
34 #define QOP_SUBR 1
35 #define QOP_SUB  2
36 #define QOP_MOV2 3
37 
38 //             UL UR LL LR
39 #define QUADOP(q, r, s, t)                      \
40    ((QOP_##q << 6) | (QOP_##r << 4) |           \
41     (QOP_##s << 2) | (QOP_##t << 0))
42 
43 void
handleDIV(Instruction * i)44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46    FlowInstruction *call;
47    int builtin;
48 
49    bld.setPosition(i, false);
50 
51    // Generate movs to the input regs for the call we want to generate
52    for (int s = 0; i->srcExists(s); ++s) {
53       Instruction *ld = i->getSrc(s)->getInsn();
54       // check if we are moving an immediate, propagate it in that case
55       if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
56             !(ld->src(0).getFile() == FILE_IMMEDIATE))
57          bld.mkMovToReg(s, i->getSrc(s));
58       else {
59          assert(ld->getSrc(0) != NULL);
60          bld.mkMovToReg(s, ld->getSrc(0));
61          // Clear the src, to make code elimination possible here before we
62          // delete the instruction i later
63          i->setSrc(s, NULL);
64          if (ld->isDead())
65             delete_Instruction(prog, ld);
66       }
67    }
68 
69    switch (i->dType) {
70    case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71    case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72    default:
73       return;
74    }
75    call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76    bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77    bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78    bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79 
80    call->fixed = 1;
81    call->absolute = call->builtin = 1;
82    call->target.builtin = builtin;
83    delete_Instruction(prog, i);
84 }
85 
86 void
handleRCPRSQLib(Instruction * i,Value * src[])87 NVC0LegalizeSSA::handleRCPRSQLib(Instruction *i, Value *src[])
88 {
89    FlowInstruction *call;
90    Value *def[2];
91    int builtin;
92 
93    def[0] = bld.mkMovToReg(0, src[0])->getDef(0);
94    def[1] = bld.mkMovToReg(1, src[1])->getDef(0);
95 
96    if (i->op == OP_RCP)
97       builtin = NVC0_BUILTIN_RCP_F64;
98    else
99       builtin = NVC0_BUILTIN_RSQ_F64;
100 
101    call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
102    def[0] = bld.getSSA();
103    def[1] = bld.getSSA();
104    bld.mkMovFromReg(def[0], 0);
105    bld.mkMovFromReg(def[1], 1);
106    bld.mkClobber(FILE_GPR, 0x3fc, 2);
107    bld.mkClobber(FILE_PREDICATE, i->op == OP_RSQ ? 0x3 : 0x1, 0);
108    bld.mkOp2(OP_MERGE, TYPE_U64, i->getDef(0), def[0], def[1]);
109 
110    call->fixed = 1;
111    call->absolute = call->builtin = 1;
112    call->target.builtin = builtin;
113    delete_Instruction(prog, i);
114 
115    prog->fp64 = true;
116 }
117 
118 void
handleRCPRSQ(Instruction * i)119 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
120 {
121    assert(i->dType == TYPE_F64);
122    // There are instructions that will compute the high 32 bits of the 64-bit
123    // float. We will just stick 0 in the bottom 32 bits.
124 
125    bld.setPosition(i, false);
126 
127    // 1. Take the source and it up.
128    Value *src[2], *dst[2], *def = i->getDef(0);
129    bld.mkSplit(src, 4, i->getSrc(0));
130 
131    int chip = prog->getTarget()->getChipset();
132    if (chip >= NVISA_GK104_CHIPSET) {
133       handleRCPRSQLib(i, src);
134       return;
135    }
136 
137    // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
138    dst[0] = bld.loadImm(NULL, 0);
139    dst[1] = bld.getSSA();
140 
141    // 3. The new version of the instruction takes the high 32 bits of the
142    // source and outputs the high 32 bits of the destination.
143    i->setSrc(0, src[1]);
144    i->setDef(0, dst[1]);
145    i->setType(TYPE_F32);
146    i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
147 
148    // 4. Recombine the two dst pieces back into the original destination.
149    bld.setPosition(i, true);
150    bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
151 }
152 
153 void
handleFTZ(Instruction * i)154 NVC0LegalizeSSA::handleFTZ(Instruction *i)
155 {
156    // Only want to flush float inputs
157    assert(i->sType == TYPE_F32);
158 
159    // If we're already flushing denorms (and NaN's) to zero, no need for this.
160    if (i->dnz)
161       return;
162 
163    // Only certain classes of operations can flush
164    OpClass cls = prog->getTarget()->getOpClass(i->op);
165    if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
166        cls != OPCLASS_CONVERT)
167       return;
168 
169    i->ftz = true;
170 }
171 
172 void
handleTEXLOD(TexInstruction * i)173 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
174 {
175    if (i->tex.levelZero)
176       return;
177 
178    ImmediateValue lod;
179 
180    // The LOD argument comes right after the coordinates (before depth bias,
181    // offsets, etc).
182    int arg = i->tex.target.getArgCount();
183 
184    // SM30+ stores the indirect handle as a separate arg, which comes before
185    // the LOD.
186    if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
187        i->tex.rIndirectSrc >= 0)
188       arg++;
189    // SM20 stores indirect handle combined with array coordinate
190    if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
191        !i->tex.target.isArray() &&
192        i->tex.rIndirectSrc >= 0)
193       arg++;
194 
195    if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
196       return;
197 
198    if (i->op == OP_TXL)
199       i->op = OP_TEX;
200    i->tex.levelZero = true;
201    i->moveSources(arg + 1, -1);
202 }
203 
204 void
handleShift(Instruction * lo)205 NVC0LegalizeSSA::handleShift(Instruction *lo)
206 {
207    Value *shift = lo->getSrc(1);
208    Value *dst64 = lo->getDef(0);
209    Value *src[2], *dst[2];
210    operation op = lo->op;
211 
212    bld.setPosition(lo, false);
213 
214    bld.mkSplit(src, 4, lo->getSrc(0));
215 
216    // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
217    // be completely emulated. For SM35+, we can use the more directed SHF
218    // operations.
219    if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
220       // The strategy here is to handle shifts >= 32 and less than 32 as
221       // separate parts.
222       //
223       // For SHL:
224       // If the shift is <= 32, then
225       //   (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
226       // If the shift is > 32, then
227       //   (HI,LO) << x = (LO << (x - 32), 0)
228       //
229       // For SHR:
230       // If the shift is <= 32, then
231       //   (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
232       // If the shift is > 32, then
233       //   (HI,LO) >> x = (0, HI >> (x - 32))
234       //
235       // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
236       // can use to our advantage. Also note the structural similarities
237       // between the right/left cases. The main difference is swapping hi/lo
238       // on input and output.
239 
240       Value *x32_minus_shift, *pred, *hi1, *hi2;
241       DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
242       operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
243       if (op == OP_SHR)
244          std::swap(src[0], src[1]);
245       bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
246          ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
247       bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
248                 TYPE_U32, shift, bld.mkImm(32));
249       // Compute HI (shift <= 32)
250       bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
251                 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
252                 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
253          ->setPredicate(CC_P, pred);
254       // Compute LO (all shift values)
255       bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
256       // Compute HI (shift > 32)
257       bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
258                 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
259          ->setPredicate(CC_NOT_P, pred);
260       bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
261       if (op == OP_SHR)
262          std::swap(dst[0], dst[1]);
263       bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
264       delete_Instruction(prog, lo);
265       return;
266    }
267 
268    Instruction *hi = new_Instruction(func, op, TYPE_U32);
269    lo->bb->insertAfter(lo, hi);
270 
271    hi->sType = lo->sType;
272    lo->dType = TYPE_U32;
273 
274    hi->setDef(0, (dst[1] = bld.getSSA()));
275    if (lo->op == OP_SHR)
276       hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
277    lo->setDef(0, (dst[0] = bld.getSSA()));
278 
279    bld.setPosition(hi, true);
280 
281    if (lo->op == OP_SHL)
282       std::swap(hi, lo);
283 
284    hi->setSrc(0, new_ImmediateValue(prog, 0u));
285    hi->setSrc(1, shift);
286    hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
287 
288    lo->setSrc(0, src[0]);
289    lo->setSrc(1, shift);
290    lo->setSrc(2, src[1]);
291 
292    bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
293 }
294 
295 void
handleSET(CmpInstruction * cmp)296 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
297 {
298    DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
299    Value *carry;
300    Value *src0[2], *src1[2];
301    bld.setPosition(cmp, false);
302 
303    bld.mkSplit(src0, 4, cmp->getSrc(0));
304    bld.mkSplit(src1, 4, cmp->getSrc(1));
305    bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
306       ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
307    cmp->setFlagsSrc(cmp->srcCount(), carry);
308    cmp->setSrc(0, src0[1]);
309    cmp->setSrc(1, src1[1]);
310    cmp->sType = hTy;
311 }
312 
313 void
handleBREV(Instruction * i)314 NVC0LegalizeSSA::handleBREV(Instruction *i)
315 {
316    i->op = OP_EXTBF;
317    i->subOp = NV50_IR_SUBOP_EXTBF_REV;
318    i->setSrc(1, bld.mkImm(0x2000));
319 }
320 
321 bool
visit(Function * fn)322 NVC0LegalizeSSA::visit(Function *fn)
323 {
324    bld.setProgram(fn->getProgram());
325    return true;
326 }
327 
328 bool
visit(BasicBlock * bb)329 NVC0LegalizeSSA::visit(BasicBlock *bb)
330 {
331    Instruction *next;
332    for (Instruction *i = bb->getEntry(); i; i = next) {
333       next = i->next;
334 
335       if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
336          handleFTZ(i);
337 
338       switch (i->op) {
339       case OP_DIV:
340       case OP_MOD:
341          if (i->sType != TYPE_F32)
342             handleDIV(i);
343          break;
344       case OP_RCP:
345       case OP_RSQ:
346          if (i->dType == TYPE_F64)
347             handleRCPRSQ(i);
348          break;
349       case OP_TXL:
350       case OP_TXF:
351          handleTEXLOD(i->asTex());
352          break;
353       case OP_SHR:
354       case OP_SHL:
355          if (typeSizeof(i->sType) == 8)
356             handleShift(i);
357          break;
358       case OP_SET:
359       case OP_SET_AND:
360       case OP_SET_OR:
361       case OP_SET_XOR:
362          if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
363             handleSET(i->asCmp());
364          break;
365       case OP_BREV:
366          handleBREV(i);
367          break;
368       default:
369          break;
370       }
371    }
372    return true;
373 }
374 
NVC0LegalizePostRA(const Program * prog)375 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
376    : rZero(NULL),
377      carry(NULL),
378      pOne(NULL),
379      needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
380                 prog->getTarget()->getChipset() < 0x110)
381 {
382 }
383 
384 bool
insnDominatedBy(const Instruction * later,const Instruction * early) const385 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
386                                     const Instruction *early) const
387 {
388    if (early->bb == later->bb)
389       return early->serial < later->serial;
390    return later->bb->dominatedBy(early->bb);
391 }
392 
393 void
addTexUse(std::list<TexUse> & uses,Instruction * usei,const Instruction * texi)394 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
395                               Instruction *usei, const Instruction *texi)
396 {
397    bool add = true;
398    bool dominated = insnDominatedBy(usei, texi);
399    // Uses before the tex have to all be included. Just because an earlier
400    // instruction dominates another instruction doesn't mean that there's no
401    // way to get from the tex to the later instruction. For example you could
402    // have nested loops, with the tex in the inner loop, and uses before it in
403    // both loops - even though the outer loop's instruction would dominate the
404    // inner's, we still want a texbar before the inner loop's instruction.
405    //
406    // However we can still use the eliding logic between uses dominated by the
407    // tex instruction, as that is unambiguously correct.
408    if (dominated) {
409       for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
410          if (it->after) {
411             if (insnDominatedBy(usei, it->insn)) {
412                add = false;
413                break;
414             }
415             if (insnDominatedBy(it->insn, usei)) {
416                it = uses.erase(it);
417                continue;
418             }
419          }
420          ++it;
421       }
422    }
423    if (add)
424       uses.push_back(TexUse(usei, texi, dominated));
425 }
426 
427 // While it might be tempting to use the an algorithm that just looks at tex
428 // uses, not all texture results are guaranteed to be used on all paths. In
429 // the case where along some control flow path a texture result is never used,
430 // we might reuse that register for something else, creating a
431 // write-after-write hazard. So we have to manually look through all
432 // instructions looking for ones that reference the registers in question.
433 void
findFirstUses(Instruction * texi,std::list<TexUse> & uses)434 NVC0LegalizePostRA::findFirstUses(
435    Instruction *texi, std::list<TexUse> &uses)
436 {
437    int minGPR = texi->def(0).rep()->reg.data.id;
438    int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
439 
440    std::unordered_set<const BasicBlock *> visited;
441    findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
442 }
443 
444 void
findFirstUsesBB(int minGPR,int maxGPR,Instruction * start,const Instruction * texi,std::list<TexUse> & uses,std::unordered_set<const BasicBlock * > & visited)445 NVC0LegalizePostRA::findFirstUsesBB(
446    int minGPR, int maxGPR, Instruction *start,
447    const Instruction *texi, std::list<TexUse> &uses,
448    std::unordered_set<const BasicBlock *> &visited)
449 {
450    const BasicBlock *bb = start->bb;
451 
452    // We don't process the whole bb the first time around. This is correct,
453    // however we might be in a loop and hit this BB again, and need to process
454    // the full thing. So only mark a bb as visited if we processed it from the
455    // beginning.
456    if (start == bb->getEntry()) {
457       if (visited.find(bb) != visited.end())
458          return;
459       visited.insert(bb);
460    }
461 
462    for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
463       if (insn->isNop())
464          continue;
465 
466       for (int d = 0; insn->defExists(d); ++d) {
467          const Value *def = insn->def(d).rep();
468          if (insn->def(d).getFile() != FILE_GPR ||
469              def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
470              def->reg.data.id > maxGPR)
471             continue;
472          addTexUse(uses, insn, texi);
473          return;
474       }
475 
476       for (int s = 0; insn->srcExists(s); ++s) {
477          const Value *src = insn->src(s).rep();
478          if (insn->src(s).getFile() != FILE_GPR ||
479              src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
480              src->reg.data.id > maxGPR)
481             continue;
482          addTexUse(uses, insn, texi);
483          return;
484       }
485    }
486 
487    for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
488       findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
489                       texi, uses, visited);
490    }
491 }
492 
493 // Texture barriers:
494 // This pass is a bit long and ugly and can probably be optimized.
495 //
496 // 1. obtain a list of TEXes and their outputs' first use(s)
497 // 2. calculate the barrier level of each first use (minimal number of TEXes,
498 //    over all paths, between the TEX and the use in question)
499 // 3. for each barrier, if all paths from the source TEX to that barrier
500 //    contain a barrier of lesser level, it can be culled
501 bool
insertTextureBarriers(Function * fn)502 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
503 {
504    std::list<TexUse> *uses;
505    std::vector<Instruction *> texes;
506    std::vector<int> bbFirstTex;
507    std::vector<int> bbFirstUse;
508    std::vector<int> texCounts;
509    std::vector<TexUse> useVec;
510    ArrayList insns;
511 
512    fn->orderInstructions(insns);
513 
514    texCounts.resize(fn->allBBlocks.getSize(), 0);
515    bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
516    bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
517 
518    // tag BB CFG nodes by their id for later
519    for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
520       BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
521       if (bb)
522          bb->cfg.tag = bb->getId();
523    }
524 
525    // gather the first uses for each TEX
526    for (int i = 0; i < insns.getSize(); ++i) {
527       Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
528       if (isTextureOp(tex->op)) {
529          texes.push_back(tex);
530          if (!texCounts.at(tex->bb->getId()))
531             bbFirstTex[tex->bb->getId()] = texes.size() - 1;
532          texCounts[tex->bb->getId()]++;
533       }
534    }
535    insns.clear();
536    if (texes.empty())
537       return false;
538    uses = new std::list<TexUse>[texes.size()];
539    if (!uses)
540       return false;
541    for (size_t i = 0; i < texes.size(); ++i) {
542       findFirstUses(texes[i], uses[i]);
543    }
544 
545    // determine the barrier level at each use
546    for (size_t i = 0; i < texes.size(); ++i) {
547       for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
548            ++u) {
549          BasicBlock *tb = texes[i]->bb;
550          BasicBlock *ub = u->insn->bb;
551          if (tb == ub) {
552             u->level = 0;
553             for (size_t j = i + 1; j < texes.size() &&
554                     texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
555                  ++j)
556                u->level++;
557          } else {
558             u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
559                                                       &ub->cfg, texCounts);
560             if (u->level < 0) {
561                WARN("Failed to find path TEX -> TEXBAR\n");
562                u->level = 0;
563                continue;
564             }
565             // this counted all TEXes in the origin block, correct that
566             u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
567             // and did not count the TEXes in the destination block, add those
568             for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
569                     texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
570                  ++j)
571                u->level++;
572          }
573          assert(u->level >= 0);
574          useVec.push_back(*u);
575       }
576    }
577    delete[] uses;
578 
579    // insert the barriers
580    for (size_t i = 0; i < useVec.size(); ++i) {
581       Instruction *prev = useVec[i].insn->prev;
582       if (useVec[i].level < 0)
583          continue;
584       if (prev && prev->op == OP_TEXBAR) {
585          if (prev->subOp > useVec[i].level)
586             prev->subOp = useVec[i].level;
587          prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
588       } else {
589          Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
590          bar->fixed = 1;
591          bar->subOp = useVec[i].level;
592          // make use explicit to ease latency calculation
593          bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
594          useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
595       }
596    }
597 
598    if (fn->getProgram()->optLevel < 3)
599       return true;
600 
601    std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
602 
603    limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
604    limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
605    limitS.resize(fn->allBBlocks.getSize());
606 
607    // cull unneeded barriers (should do that earlier, but for simplicity)
608    IteratorRef bi = fn->cfg.iteratorCFG();
609    // first calculate min/max outstanding TEXes for each BB
610    for (bi->reset(); !bi->end(); bi->next()) {
611       Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
612       BasicBlock *bb = BasicBlock::get(n);
613       int min = 0;
614       int max = std::numeric_limits<int>::max();
615       for (Instruction *i = bb->getFirst(); i; i = i->next) {
616          if (isTextureOp(i->op)) {
617             min++;
618             if (max < std::numeric_limits<int>::max())
619                max++;
620          } else
621          if (i->op == OP_TEXBAR) {
622             min = MIN2(min, i->subOp);
623             max = MIN2(max, i->subOp);
624          }
625       }
626       // limits when looking at an isolated block
627       limitS[bb->getId()].min = min;
628       limitS[bb->getId()].max = max;
629    }
630    // propagate the min/max values
631    for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
632       for (bi->reset(); !bi->end(); bi->next()) {
633          Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
634          BasicBlock *bb = BasicBlock::get(n);
635          const int bbId = bb->getId();
636          for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
637             BasicBlock *in = BasicBlock::get(ei.getNode());
638             const int inId = in->getId();
639             limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
640             limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
641          }
642          // I just hope this is correct ...
643          if (limitS[bbId].max == std::numeric_limits<int>::max()) {
644             // no barrier
645             limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
646             limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
647          } else {
648             // block contained a barrier
649             limitB[bbId].min = MIN2(limitS[bbId].max,
650                                     limitT[bbId].min + limitS[bbId].min);
651             limitB[bbId].max = MIN2(limitS[bbId].max,
652                                     limitT[bbId].max + limitS[bbId].min);
653          }
654       }
655    }
656    // finally delete unnecessary barriers
657    for (bi->reset(); !bi->end(); bi->next()) {
658       Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
659       BasicBlock *bb = BasicBlock::get(n);
660       Instruction *prev = NULL;
661       Instruction *next;
662       int max = limitT[bb->getId()].max;
663       for (Instruction *i = bb->getFirst(); i; i = next) {
664          next = i->next;
665          if (i->op == OP_TEXBAR) {
666             if (i->subOp >= max) {
667                delete_Instruction(prog, i);
668                i = NULL;
669             } else {
670                max = i->subOp;
671                if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
672                   delete_Instruction(prog, prev);
673                   prev = NULL;
674                }
675             }
676          } else
677          if (isTextureOp(i->op)) {
678             max++;
679          }
680          if (i && !i->isNop())
681             prev = i;
682       }
683    }
684    return true;
685 }
686 
687 bool
visit(Function * fn)688 NVC0LegalizePostRA::visit(Function *fn)
689 {
690    if (needTexBar)
691       insertTextureBarriers(fn);
692 
693    rZero = new_LValue(fn, FILE_GPR);
694    pOne = new_LValue(fn, FILE_PREDICATE);
695    carry = new_LValue(fn, FILE_FLAGS);
696 
697    rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
698    carry->reg.data.id = 0;
699    pOne->reg.data.id = 7;
700 
701    return true;
702 }
703 
704 void
replaceZero(Instruction * i)705 NVC0LegalizePostRA::replaceZero(Instruction *i)
706 {
707    for (int s = 0; i->srcExists(s); ++s) {
708       if (s == 2 && i->op == OP_SUCLAMP)
709          continue;
710       if (s == 1 && i->op == OP_SHLADD)
711          continue;
712       ImmediateValue *imm = i->getSrc(s)->asImm();
713       if (imm) {
714          if (i->op == OP_SELP && s == 2) {
715             i->setSrc(s, pOne);
716             if (imm->reg.data.u64 == 0)
717                i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
718          } else if (imm->reg.data.u64 == 0) {
719             i->setSrc(s, rZero);
720          }
721       }
722    }
723 }
724 
725 // replace CONT with BRA for single unconditional continue
726 bool
tryReplaceContWithBra(BasicBlock * bb)727 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
728 {
729    if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
730       return false;
731    Graph::EdgeIterator ei = bb->cfg.incident();
732    if (ei.getType() != Graph::Edge::BACK)
733       ei.next();
734    if (ei.getType() != Graph::Edge::BACK)
735       return false;
736    BasicBlock *contBB = BasicBlock::get(ei.getNode());
737 
738    if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
739        contBB->getExit()->getPredicate())
740       return false;
741    contBB->getExit()->op = OP_BRA;
742    bb->remove(bb->getEntry()); // delete PRECONT
743 
744    ei.next();
745    assert(ei.end() || ei.getType() != Graph::Edge::BACK);
746    return true;
747 }
748 
749 // replace branches to join blocks with join ops
750 void
propagateJoin(BasicBlock * bb)751 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
752 {
753    if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
754       return;
755    for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
756       BasicBlock *in = BasicBlock::get(ei.getNode());
757       Instruction *exit = in->getExit();
758       if (!exit) {
759          in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
760          // there should always be a terminator instruction
761          WARN("inserted missing terminator in BB:%i\n", in->getId());
762       } else
763       if (exit->op == OP_BRA) {
764          exit->op = OP_JOIN;
765          exit->asFlow()->limit = 1; // must-not-propagate marker
766       }
767    }
768    bb->remove(bb->getEntry());
769 }
770 
771 // replaces instructions which would end up as f2f or i2i with faster
772 // alternatives:
773 //  - fabs(a)     -> fadd(0, abs a)
774 //  - fneg(a)     -> fadd(neg 0, neg a)
775 //  - ineg(a)     -> iadd(0, neg a)
776 //  - fneg(abs a) -> fadd(neg 0, neg abs a)
777 //  - sat(a)      -> sat add(0, a)
778 void
replaceCvt(Instruction * cvt)779 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
780 {
781    if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
782       return;
783    if (cvt->sType != cvt->dType)
784       return;
785    // we could make it work, but in this case we have optimizations disabled
786    // and we don't really care either way.
787    if (cvt->src(0).getFile() != FILE_GPR &&
788        cvt->src(0).getFile() != FILE_MEMORY_CONST)
789       return;
790 
791    Modifier mod0, mod1;
792 
793    switch (cvt->op) {
794    case OP_ABS:
795       if (cvt->src(0).mod)
796          return;
797       if (!isFloatType(cvt->sType))
798          return;
799       mod0 = 0;
800       mod1 = NV50_IR_MOD_ABS;
801       break;
802    case OP_NEG:
803       if (!isFloatType(cvt->sType) && cvt->src(0).mod)
804          return;
805       if (isFloatType(cvt->sType) &&
806           (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
807          return;
808 
809       mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
810       mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
811          NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
812       break;
813    case OP_SAT:
814       if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
815          return;
816       mod0 = 0;
817       mod1 = cvt->src(0).mod;
818       cvt->saturate = true;
819       break;
820    default:
821       return;
822    }
823 
824    cvt->op = OP_ADD;
825    cvt->moveSources(0, 1);
826    cvt->setSrc(0, rZero);
827    cvt->src(0).mod = mod0;
828    cvt->src(1).mod = mod1;
829 }
830 
831 bool
visit(BasicBlock * bb)832 NVC0LegalizePostRA::visit(BasicBlock *bb)
833 {
834    Instruction *i, *next;
835 
836    // remove pseudo operations and non-fixed no-ops, split 64 bit operations
837    for (i = bb->getFirst(); i; i = next) {
838       next = i->next;
839       if (i->op == OP_EMIT || i->op == OP_RESTART) {
840          if (!i->getDef(0)->refCount())
841             i->setDef(0, NULL);
842          if (i->src(0).getFile() == FILE_IMMEDIATE)
843             i->setSrc(0, rZero); // initial value must be 0
844          replaceZero(i);
845       } else
846       if (i->isNop()) {
847          bb->remove(i);
848       } else
849       if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
850           prog->getType() != Program::TYPE_COMPUTE) {
851          // It seems like barriers are never required for tessellation since
852          // the warp size is 32, and there are always at most 32 tcs threads.
853          bb->remove(i);
854       } else
855       if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
856          int offset = i->src(0).get()->reg.data.offset;
857          if (abs(offset) >= 0x10000)
858             i->src(0).get()->reg.fileIndex += offset >> 16;
859          i->src(0).get()->reg.data.offset = (int)(short)offset;
860       } else {
861          // TODO: Move this to before register allocation for operations that
862          // need the $c register !
863          if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
864             Instruction *hi;
865             hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
866             if (hi)
867                next = hi;
868          }
869 
870          if (i->op != OP_MOV && i->op != OP_PFETCH)
871             replaceZero(i);
872 
873          if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
874             replaceCvt(i);
875       }
876    }
877    if (!bb->getEntry())
878       return true;
879 
880    if (!tryReplaceContWithBra(bb))
881       propagateJoin(bb);
882 
883    return true;
884 }
885 
NVC0LoweringPass(Program * prog)886 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget()),
887    gpEmitAddress(NULL)
888 {
889    bld.setProgram(prog);
890 }
891 
892 bool
visit(Function * fn)893 NVC0LoweringPass::visit(Function *fn)
894 {
895    if (prog->getType() == Program::TYPE_GEOMETRY) {
896       assert(!strncmp(fn->getName(), "MAIN", 4));
897       // TODO: when we generate actual functions pass this value along somehow
898       bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
899       gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
900       if (fn->cfgExit) {
901          bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
902          if (prog->getTarget()->getChipset() >= NVISA_GV100_CHIPSET)
903             bld.mkOp1(OP_FINAL, TYPE_NONE, NULL, gpEmitAddress)->fixed = 1;
904          bld.mkMovToReg(0, gpEmitAddress);
905       }
906    }
907    return true;
908 }
909 
910 bool
visit(BasicBlock * bb)911 NVC0LoweringPass::visit(BasicBlock *bb)
912 {
913    return true;
914 }
915 
916 inline Value *
loadTexHandle(Value * ptr,unsigned int slot)917 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
918 {
919    uint8_t b = prog->driver->io.auxCBSlot;
920    uint32_t off = prog->driver->io.texBindBase + slot * 4;
921 
922    if (ptr)
923       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
924 
925    return bld.
926       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
927 }
928 
929 // move array source to first slot, convert to u16, add indirections
930 bool
handleTEX(TexInstruction * i)931 NVC0LoweringPass::handleTEX(TexInstruction *i)
932 {
933    const int dim = i->tex.target.getDim() + i->tex.target.isCube();
934    const int arg = i->tex.target.getArgCount();
935    const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
936    const int chipset = prog->getTarget()->getChipset();
937 
938    /* Only normalize in the non-explicit derivatives case. For explicit
939     * derivatives, this is handled in handleManualTXD.
940     */
941    if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
942       Value *src[3], *val;
943       int c;
944       for (c = 0; c < 3; ++c)
945          src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
946       val = bld.getScratch();
947       bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
948       bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
949       bld.mkOp1(OP_RCP, TYPE_F32, val, val);
950       for (c = 0; c < 3; ++c) {
951          i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
952                                  i->getSrc(c), val));
953       }
954    }
955 
956    // Arguments to the TEX instruction are a little insane. Even though the
957    // encoding is identical between SM20 and SM30, the arguments mean
958    // different things between Fermi and Kepler+. A lot of arguments are
959    // optional based on flags passed to the instruction. This summarizes the
960    // order of things.
961    //
962    // Fermi:
963    //  array/indirect
964    //  coords
965    //  sample
966    //  lod bias
967    //  depth compare
968    //  offsets:
969    //    - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
970    //    - other: 4 bits each, single reg
971    //
972    // Kepler+:
973    //  indirect handle
974    //  array (+ offsets for txd in upper 16 bits)
975    //  coords
976    //  sample
977    //  lod bias
978    //  depth compare
979    //  offsets (same as fermi, except txd which takes it with array)
980    //
981    // Maxwell (tex):
982    //  array
983    //  coords
984    //  indirect handle
985    //  sample
986    //  lod bias
987    //  depth compare
988    //  offsets
989    //
990    // Maxwell (txd):
991    //  indirect handle
992    //  coords
993    //  array + offsets
994    //  derivatives
995 
996    if (chipset >= NVISA_GK104_CHIPSET) {
997       if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
998          // XXX this ignores tsc, and assumes a 1:1 mapping
999          assert(i->tex.rIndirectSrc >= 0);
1000          if (!i->tex.bindless) {
1001             Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
1002             i->tex.r = 0xff;
1003             i->tex.s = 0x1f;
1004             i->setIndirectR(hnd);
1005          }
1006          i->setIndirectS(NULL);
1007       } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
1008          if (i->tex.r == 0xffff)
1009             i->tex.r = prog->driver->io.fbtexBindBase / 4;
1010          else
1011             i->tex.r += prog->driver->io.texBindBase / 4;
1012          i->tex.s  = 0; // only a single cX[] value possible here
1013       } else {
1014          Value *hnd = bld.getScratch();
1015          Value *rHnd = loadTexHandle(NULL, i->tex.r);
1016          Value *sHnd = loadTexHandle(NULL, i->tex.s);
1017 
1018          bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
1019 
1020          i->tex.r = 0; // not used for indirect tex
1021          i->tex.s = 0;
1022          i->setIndirectR(hnd);
1023       }
1024       if (i->tex.target.isArray()) {
1025          LValue *layer = new_LValue(func, FILE_GPR);
1026          Value *src = i->getSrc(lyr);
1027          const int sat = (i->op == OP_TXF) ? 1 : 0;
1028          DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1029          bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
1030          if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
1031             for (int s = dim; s >= 1; --s)
1032                i->setSrc(s, i->getSrc(s - 1));
1033             i->setSrc(0, layer);
1034          } else {
1035             i->setSrc(dim, layer);
1036          }
1037       }
1038       // Move the indirect reference to the first place
1039       if (i->tex.rIndirectSrc >= 0 && (
1040                 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
1041          Value *hnd = i->getIndirectR();
1042 
1043          i->setIndirectR(NULL);
1044          i->moveSources(0, 1);
1045          i->setSrc(0, hnd);
1046          i->tex.rIndirectSrc = 0;
1047          i->tex.sIndirectSrc = -1;
1048       }
1049       // Move the indirect reference to right after the coords
1050       else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
1051          Value *hnd = i->getIndirectR();
1052 
1053          i->setIndirectR(NULL);
1054          i->moveSources(arg, 1);
1055          i->setSrc(arg, hnd);
1056          i->tex.rIndirectSrc = 0;
1057          i->tex.sIndirectSrc = -1;
1058       }
1059    } else
1060    // (nvc0) generate and move the tsc/tic/array source to the front
1061    if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1062       LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1063 
1064       Value *ticRel = i->getIndirectR();
1065       Value *tscRel = i->getIndirectS();
1066 
1067       if (i->tex.r == 0xffff) {
1068          i->tex.r = 0x20;
1069          i->tex.s = 0x10;
1070       }
1071 
1072       if (ticRel) {
1073          i->setSrc(i->tex.rIndirectSrc, NULL);
1074          if (i->tex.r)
1075             ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1076                                 ticRel, bld.mkImm(i->tex.r));
1077       }
1078       if (tscRel) {
1079          i->setSrc(i->tex.sIndirectSrc, NULL);
1080          if (i->tex.s)
1081             tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1082                                 tscRel, bld.mkImm(i->tex.s));
1083       }
1084 
1085       Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1086       if (arrayIndex) {
1087          for (int s = dim; s >= 1; --s)
1088             i->setSrc(s, i->getSrc(s - 1));
1089          i->setSrc(0, arrayIndex);
1090       } else {
1091          i->moveSources(0, 1);
1092       }
1093 
1094       if (arrayIndex) {
1095          int sat = (i->op == OP_TXF) ? 1 : 0;
1096          DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1097          bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
1098       } else {
1099          bld.loadImm(src, 0);
1100       }
1101 
1102       if (ticRel)
1103          bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1104       if (tscRel)
1105          bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1106 
1107       i->setSrc(0, src);
1108    }
1109 
1110    // For nvc0, the sample id has to be in the second operand, as the offset
1111    // does. Right now we don't know how to pass both in, and this case can't
1112    // happen with OpenGL. On nve0, the sample id is part of the texture
1113    // coordinate argument.
1114    assert(chipset >= NVISA_GK104_CHIPSET ||
1115           !i->tex.useOffsets || !i->tex.target.isMS());
1116 
1117    // offset is between lod and dc
1118    if (i->tex.useOffsets) {
1119       int n, c;
1120       int s = i->srcCount(0xff, true);
1121       if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1122          if (i->tex.target.isShadow())
1123             s--;
1124          if (i->srcExists(s)) // move potential predicate out of the way
1125             i->moveSources(s, 1);
1126          if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1127             i->moveSources(s + 1, 1);
1128       }
1129       if (i->op == OP_TXG) {
1130          // Either there is 1 offset, which goes into the 2 low bytes of the
1131          // first source, or there are 4 offsets, which go into 2 sources (8
1132          // values, 1 byte each).
1133          Value *offs[2] = {NULL, NULL};
1134          for (n = 0; n < i->tex.useOffsets; n++) {
1135             for (c = 0; c < 2; ++c) {
1136                if ((n % 2) == 0 && c == 0)
1137                   bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1138                else
1139                   bld.mkOp3(OP_INSBF, TYPE_U32,
1140                             offs[n / 2],
1141                             i->offset[n][c].get(),
1142                             bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1143                             offs[n / 2]);
1144             }
1145          }
1146          i->setSrc(s, offs[0]);
1147          if (offs[1])
1148             i->setSrc(s + 1, offs[1]);
1149       } else {
1150          unsigned imm = 0;
1151          assert(i->tex.useOffsets == 1);
1152          for (c = 0; c < 3; ++c) {
1153             ImmediateValue val;
1154             if (!i->offset[0][c].getImmediate(val))
1155                assert(!"non-immediate offset passed to non-TXG");
1156             imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1157          }
1158          if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1159             // The offset goes into the upper 16 bits of the array index. So
1160             // create it if it's not already there, and INSBF it if it already
1161             // is.
1162             s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1163             if (chipset >= NVISA_GM107_CHIPSET)
1164                s += dim;
1165             if (i->tex.target.isArray()) {
1166                Value *offset = bld.getScratch();
1167                bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1168                          bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1169                          i->getSrc(s));
1170                i->setSrc(s, offset);
1171             } else {
1172                i->moveSources(s, 1);
1173                i->setSrc(s, bld.loadImm(NULL, imm << 16));
1174             }
1175          } else {
1176             i->setSrc(s, bld.loadImm(NULL, imm));
1177          }
1178       }
1179    }
1180 
1181    return true;
1182 }
1183 
1184 bool
handleManualTXD(TexInstruction * i)1185 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1186 {
1187    // Always done from the l0 perspective. This is the way that NVIDIA's
1188    // driver does it, and doing it from the "current" lane's perspective
1189    // doesn't seem to always work for reasons that aren't altogether clear,
1190    // even in frag shaders.
1191    //
1192    // Note that we must move not only the coordinates into lane0, but also all
1193    // ancillary arguments, like array indices and depth compare as they may
1194    // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1195    // leave them alone.
1196    static const uint8_t qOps[2] =
1197       { QUADOP(MOV2, ADD,  MOV2, ADD),  QUADOP(MOV2, MOV2, ADD,  ADD) };
1198 
1199    Value *def[4][4];
1200    Value *crd[3], *arr[2], *shadow;
1201    Instruction *tex;
1202    Value *zero = bld.loadImm(bld.getSSA(), 0);
1203    int l, c;
1204    const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1205 
1206    // This function is invoked after handleTEX lowering, so we have to expect
1207    // the arguments in the order that the hw wants them. For Fermi, array and
1208    // indirect are both in the leading arg, while for Kepler, array and
1209    // indirect are separate (and both precede the coordinates). Maxwell is
1210    // handled in a separate function.
1211    int array;
1212    if (targ->getChipset() < NVISA_GK104_CHIPSET)
1213       array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1214    else
1215       array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1216 
1217    i->op = OP_TEX; // no need to clone dPdx/dPdy later
1218 
1219    for (c = 0; c < dim; ++c)
1220       crd[c] = bld.getScratch();
1221    for (c = 0; c < array; ++c)
1222       arr[c] = bld.getScratch();
1223    shadow = bld.getScratch();
1224 
1225    for (l = 0; l < 4; ++l) {
1226       Value *src[3], *val;
1227 
1228       bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1229       // we're using the texture result from lane 0 in all cases, so make sure
1230       // that lane 0 is pointing at the proper array index, indirect value,
1231       // and depth compare.
1232       if (l != 0) {
1233          for (c = 0; c < array; ++c)
1234             bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1235          if (i->tex.target.isShadow()) {
1236             // The next argument after coords is the depth compare
1237             bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1238          }
1239       }
1240       // mov position coordinates from lane l to all lanes
1241       for (c = 0; c < dim; ++c)
1242          bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1243       // add dPdx from lane l to lanes dx
1244       for (c = 0; c < dim; ++c)
1245          bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1246       // add dPdy from lane l to lanes dy
1247       for (c = 0; c < dim; ++c)
1248          bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1249       // normalize cube coordinates
1250       if (i->tex.target.isCube()) {
1251          for (c = 0; c < 3; ++c)
1252             src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1253          val = bld.getScratch();
1254          bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1255          bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1256          bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1257          for (c = 0; c < 3; ++c)
1258             src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1259       } else {
1260          for (c = 0; c < dim; ++c)
1261             src[c] = crd[c];
1262       }
1263       // texture
1264       bld.insert(tex = cloneForward(func, i));
1265       if (l != 0) {
1266          for (c = 0; c < array; ++c)
1267             tex->setSrc(c, arr[c]);
1268          if (i->tex.target.isShadow())
1269             tex->setSrc(array + dim, shadow);
1270       }
1271       for (c = 0; c < dim; ++c)
1272          tex->setSrc(c + array, src[c]);
1273       // broadcast results from lane 0 to all lanes so that the moves *into*
1274       // the target lane pick up the proper value.
1275       if (l != 0)
1276          for (c = 0; i->defExists(c); ++c)
1277             bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1278       bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1279 
1280       // save results
1281       for (c = 0; i->defExists(c); ++c) {
1282          Instruction *mov;
1283          def[c][l] = bld.getSSA();
1284          mov = bld.mkMov(def[c][l], tex->getDef(c));
1285          mov->fixed = 1;
1286          mov->lanes = 1 << l;
1287       }
1288    }
1289 
1290    for (c = 0; i->defExists(c); ++c) {
1291       Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1292       for (l = 0; l < 4; ++l)
1293          u->setSrc(l, def[c][l]);
1294    }
1295 
1296    i->bb->remove(i);
1297    return true;
1298 }
1299 
1300 bool
handleTXD(TexInstruction * txd)1301 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1302 {
1303    int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1304    unsigned arg = txd->tex.target.getArgCount();
1305    unsigned expected_args = arg;
1306    const int chipset = prog->getTarget()->getChipset();
1307 
1308    if (chipset >= NVISA_GK104_CHIPSET) {
1309       if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1310          expected_args++;
1311       if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1312          expected_args++;
1313    } else {
1314       if (txd->tex.useOffsets)
1315          expected_args++;
1316       if (!txd->tex.target.isArray() && (
1317                 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1318          expected_args++;
1319    }
1320 
1321    if (expected_args > 4 ||
1322        dim > 2 ||
1323        txd->tex.target.isShadow())
1324       txd->op = OP_TEX;
1325 
1326    handleTEX(txd);
1327    while (txd->srcExists(arg))
1328       ++arg;
1329 
1330    txd->tex.derivAll = true;
1331    if (txd->op == OP_TEX)
1332       return handleManualTXD(txd);
1333 
1334    assert(arg == expected_args);
1335    for (int c = 0; c < dim; ++c) {
1336       txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1337       txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1338       txd->dPdx[c].set(NULL);
1339       txd->dPdy[c].set(NULL);
1340    }
1341 
1342    // In this case we have fewer than 4 "real" arguments, which means that
1343    // handleTEX didn't apply any padding. However we have to make sure that
1344    // the second "group" of arguments still gets padded up to 4.
1345    if (chipset >= NVISA_GK104_CHIPSET) {
1346       int s = arg + 2 * dim;
1347       if (s >= 4 && s < 7) {
1348          if (txd->srcExists(s)) // move potential predicate out of the way
1349             txd->moveSources(s, 7 - s);
1350          while (s < 7)
1351             txd->setSrc(s++, bld.loadImm(NULL, 0));
1352       }
1353    }
1354 
1355    return true;
1356 }
1357 
1358 bool
handleTXQ(TexInstruction * txq)1359 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1360 {
1361    const int chipset = prog->getTarget()->getChipset();
1362    if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1363       txq->tex.r += prog->driver->io.texBindBase / 4;
1364 
1365    if (txq->tex.rIndirectSrc < 0)
1366       return true;
1367 
1368    Value *ticRel = txq->getIndirectR();
1369 
1370    txq->setIndirectS(NULL);
1371    txq->tex.sIndirectSrc = -1;
1372 
1373    assert(ticRel);
1374 
1375    if (chipset < NVISA_GK104_CHIPSET) {
1376       LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1377 
1378       txq->setSrc(txq->tex.rIndirectSrc, NULL);
1379       if (txq->tex.r)
1380          ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1381                              ticRel, bld.mkImm(txq->tex.r));
1382 
1383       bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1384 
1385       txq->moveSources(0, 1);
1386       txq->setSrc(0, src);
1387    } else {
1388       Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1389       txq->tex.r = 0xff;
1390       txq->tex.s = 0x1f;
1391 
1392       txq->setIndirectR(NULL);
1393       txq->moveSources(0, 1);
1394       txq->setSrc(0, hnd);
1395       txq->tex.rIndirectSrc = 0;
1396    }
1397 
1398    return true;
1399 }
1400 
1401 bool
handleTXLQ(TexInstruction * i)1402 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1403 {
1404    /* The outputs are inverted compared to what the TGSI instruction
1405     * expects. Take that into account in the mask.
1406     */
1407    assert((i->tex.mask & ~3) == 0);
1408    if (i->tex.mask == 1)
1409       i->tex.mask = 2;
1410    else if (i->tex.mask == 2)
1411       i->tex.mask = 1;
1412    handleTEX(i);
1413    bld.setPosition(i, true);
1414 
1415    /* The returned values are not quite what we want:
1416     * (a) convert from s16/u16 to f32
1417     * (b) multiply by 1/256
1418     */
1419    for (int def = 0; def < 2; ++def) {
1420       if (!i->defExists(def))
1421          continue;
1422       enum DataType type = TYPE_S16;
1423       if (i->tex.mask == 2 || def > 0)
1424          type = TYPE_U16;
1425       bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1426       bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1427                 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1428    }
1429    if (i->tex.mask == 3) {
1430       LValue *t = new_LValue(func, FILE_GPR);
1431       bld.mkMov(t, i->getDef(0));
1432       bld.mkMov(i->getDef(0), i->getDef(1));
1433       bld.mkMov(i->getDef(1), t);
1434    }
1435    return true;
1436 }
1437 
1438 bool
handleBUFQ(Instruction * bufq)1439 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1440 {
1441    bufq->op = OP_MOV;
1442    bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1443                                    bufq->getSrc(0)->reg.fileIndex * 16));
1444    bufq->setIndirect(0, 0, NULL);
1445    bufq->setIndirect(0, 1, NULL);
1446    return true;
1447 }
1448 
1449 void
handleSharedATOMNVE4(Instruction * atom)1450 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1451 {
1452    assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1453 
1454    BasicBlock *currBB = atom->bb;
1455    BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1456    BasicBlock *joinBB = atom->bb->splitAfter(atom);
1457    BasicBlock *setAndUnlockBB = new BasicBlock(func);
1458    BasicBlock *failLockBB = new BasicBlock(func);
1459 
1460    bld.setPosition(currBB, true);
1461    assert(!currBB->joinAt);
1462    currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1463 
1464    CmpInstruction *pred =
1465       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1466                 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1467 
1468    bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1469    currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1470 
1471    bld.setPosition(tryLockBB, true);
1472 
1473    Instruction *ld =
1474       bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1475                  atom->getIndirect(0, 0));
1476    ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1477    ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1478 
1479    bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1480    bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1481    tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1482    tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1483 
1484    tryLockBB->cfg.detach(&joinBB->cfg);
1485    bld.remove(atom);
1486 
1487    bld.setPosition(setAndUnlockBB, true);
1488    Value *stVal;
1489    if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1490       // Read the old value, and write the new one.
1491       stVal = atom->getSrc(1);
1492    } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1493       CmpInstruction *set =
1494          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1495                    TYPE_U32, ld->getDef(0), atom->getSrc(1));
1496 
1497       bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1498                 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1499    } else {
1500       operation op;
1501 
1502       switch (atom->subOp) {
1503       case NV50_IR_SUBOP_ATOM_ADD:
1504          op = OP_ADD;
1505          break;
1506       case NV50_IR_SUBOP_ATOM_AND:
1507          op = OP_AND;
1508          break;
1509       case NV50_IR_SUBOP_ATOM_OR:
1510          op = OP_OR;
1511          break;
1512       case NV50_IR_SUBOP_ATOM_XOR:
1513          op = OP_XOR;
1514          break;
1515       case NV50_IR_SUBOP_ATOM_MIN:
1516          op = OP_MIN;
1517          break;
1518       case NV50_IR_SUBOP_ATOM_MAX:
1519          op = OP_MAX;
1520          break;
1521       default:
1522          assert(0);
1523          return;
1524       }
1525 
1526       stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1527                          atom->getSrc(1));
1528    }
1529 
1530    Instruction *st =
1531       bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1532                   atom->getIndirect(0, 0), stVal);
1533    st->setDef(0, pred->getDef(0));
1534    st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1535 
1536    bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1537    setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1538 
1539    // Lock until the store has not been performed.
1540    bld.setPosition(failLockBB, true);
1541    bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1542    bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1543    failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1544    failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1545 
1546    bld.setPosition(joinBB, false);
1547    bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1548 }
1549 
1550 void
handleSharedATOM(Instruction * atom)1551 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1552 {
1553    assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1554 
1555    BasicBlock *currBB = atom->bb;
1556    BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1557    BasicBlock *joinBB = atom->bb->splitAfter(atom);
1558 
1559    bld.setPosition(currBB, true);
1560    assert(!currBB->joinAt);
1561    currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1562 
1563    bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1564    currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1565 
1566    bld.setPosition(tryLockAndSetBB, true);
1567 
1568    Instruction *ld =
1569       bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1570                  atom->getIndirect(0, 0));
1571    ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1572    ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1573 
1574    Value *stVal;
1575    if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1576       // Read the old value, and write the new one.
1577       stVal = atom->getSrc(1);
1578    } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1579       CmpInstruction *set =
1580          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1581                    TYPE_U32, ld->getDef(0), atom->getSrc(1));
1582       set->setPredicate(CC_P, ld->getDef(1));
1583 
1584       Instruction *selp =
1585          bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1586                    atom->getSrc(2), set->getDef(0));
1587       selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1588       selp->setPredicate(CC_P, ld->getDef(1));
1589 
1590       stVal = selp->getDef(0);
1591    } else {
1592       operation op;
1593 
1594       switch (atom->subOp) {
1595       case NV50_IR_SUBOP_ATOM_ADD:
1596          op = OP_ADD;
1597          break;
1598       case NV50_IR_SUBOP_ATOM_AND:
1599          op = OP_AND;
1600          break;
1601       case NV50_IR_SUBOP_ATOM_OR:
1602          op = OP_OR;
1603          break;
1604       case NV50_IR_SUBOP_ATOM_XOR:
1605          op = OP_XOR;
1606          break;
1607       case NV50_IR_SUBOP_ATOM_MIN:
1608          op = OP_MIN;
1609          break;
1610       case NV50_IR_SUBOP_ATOM_MAX:
1611          op = OP_MAX;
1612          break;
1613       default:
1614          assert(0);
1615          return;
1616       }
1617 
1618       Instruction *i =
1619          bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1620                    atom->getSrc(1));
1621       i->setPredicate(CC_P, ld->getDef(1));
1622 
1623       stVal = i->getDef(0);
1624    }
1625 
1626    Instruction *st =
1627       bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1628                   atom->getIndirect(0, 0), stVal);
1629    st->setPredicate(CC_P, ld->getDef(1));
1630    st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1631 
1632    // Loop until the lock is acquired.
1633    bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1634    tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1635    tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1636    bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1637 
1638    bld.remove(atom);
1639 
1640    bld.setPosition(joinBB, false);
1641    bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1642 }
1643 
1644 bool
handleATOM(Instruction * atom)1645 NVC0LoweringPass::handleATOM(Instruction *atom)
1646 {
1647    SVSemantic sv;
1648    Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1649 
1650    switch (atom->src(0).getFile()) {
1651    case FILE_MEMORY_LOCAL:
1652       sv = SV_LBASE;
1653       break;
1654    case FILE_MEMORY_SHARED:
1655       // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1656       // operations on shared memory. For Maxwell, ATOMS is enough.
1657       if (targ->getChipset() < NVISA_GK104_CHIPSET)
1658          handleSharedATOM(atom);
1659       else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1660          handleSharedATOMNVE4(atom);
1661       return true;
1662    case FILE_MEMORY_GLOBAL:
1663       return true;
1664    default:
1665       assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1666       base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1667       assert(base->reg.size == 8);
1668       if (ptr)
1669          base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1670       assert(base->reg.size == 8);
1671       atom->setIndirect(0, 0, base);
1672       atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1673 
1674       // Harden against out-of-bounds accesses
1675       Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1676       Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1677       Value *pred = new_LValue(func, FILE_PREDICATE);
1678       if (ptr)
1679          bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1680       bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1681       atom->setPredicate(CC_NOT_P, pred);
1682       if (atom->defExists(0)) {
1683          Value *zero, *dst = atom->getDef(0);
1684          atom->setDef(0, bld.getSSA());
1685 
1686          bld.setPosition(atom, true);
1687          bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1688             ->setPredicate(CC_P, pred);
1689          bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1690       }
1691 
1692       return true;
1693    }
1694    base =
1695       bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1696 
1697    atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1698    atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1699    if (ptr)
1700       base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1701    atom->setIndirect(0, 1, NULL);
1702    atom->setIndirect(0, 0, base);
1703 
1704    return true;
1705 }
1706 
1707 bool
handleATOMCctl(Instruction * atom)1708 NVC0LoweringPass::handleATOMCctl(Instruction *atom) {
1709    // Flush L1 cache manually since atomics go directly to L2. This ensures
1710    // that any later CA reads retrieve the updated data.
1711 
1712    if (atom->cache != nv50_ir::CACHE_CA)
1713       return false;
1714 
1715    bld.setPosition(atom, true);
1716 
1717    Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, atom->getSrc(0));
1718    cctl->setIndirect(0, 0, atom->getIndirect(0, 0));
1719    cctl->fixed = 1;
1720    cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1721    if (atom->isPredicated())
1722       cctl->setPredicate(atom->cc, atom->getPredicate());
1723 
1724    return true;
1725 }
1726 
1727 bool
handleCasExch(Instruction * cas)1728 NVC0LoweringPass::handleCasExch(Instruction *cas)
1729 {
1730    if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1731       if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1732          // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1733          return false;
1734       }
1735    }
1736 
1737    if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1738        cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1739       return false;
1740 
1741    if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS &&
1742        targ->getChipset() < NVISA_GV100_CHIPSET) {
1743       // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1744       // should be set to the high part of the double reg or bad things will
1745       // happen elsewhere in the universe.
1746       // Also, it sometimes returns the new value instead of the old one
1747       // under mysterious circumstances.
1748       DataType ty = typeOfSize(typeSizeof(cas->dType) * 2);
1749       Value *dreg = bld.getSSA(typeSizeof(ty));
1750       bld.setPosition(cas, false);
1751       bld.mkOp2(OP_MERGE, ty, dreg, cas->getSrc(1), cas->getSrc(2));
1752       cas->setSrc(1, dreg);
1753       cas->setSrc(2, dreg);
1754    }
1755 
1756    return true;
1757 }
1758 
1759 inline Value *
loadResInfo32(Value * ptr,uint32_t off,uint16_t base)1760 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1761 {
1762    uint8_t b = prog->driver->io.auxCBSlot;
1763    off += base;
1764 
1765    return bld.
1766       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1767 }
1768 
1769 inline Value *
loadResInfo64(Value * ptr,uint32_t off,uint16_t base)1770 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1771 {
1772    uint8_t b = prog->driver->io.auxCBSlot;
1773    off += base;
1774 
1775    if (ptr)
1776       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1777 
1778    return bld.
1779       mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1780 }
1781 
1782 inline Value *
loadResLength32(Value * ptr,uint32_t off,uint16_t base)1783 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1784 {
1785    uint8_t b = prog->driver->io.auxCBSlot;
1786    off += base;
1787 
1788    if (ptr)
1789       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1790 
1791    return bld.
1792       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1793 }
1794 
1795 inline Value *
loadBufInfo64(Value * ptr,uint32_t off)1796 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1797 {
1798    return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1799 }
1800 
1801 inline Value *
loadBufLength32(Value * ptr,uint32_t off)1802 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1803 {
1804    return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1805 }
1806 
1807 inline Value *
loadUboInfo64(Value * ptr,uint32_t off)1808 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1809 {
1810    return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1811 }
1812 
1813 inline Value *
loadUboLength32(Value * ptr,uint32_t off)1814 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1815 {
1816    return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1817 }
1818 
1819 inline Value *
loadMsInfo32(Value * ptr,uint32_t off)1820 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1821 {
1822    uint8_t b = prog->driver->io.msInfoCBSlot;
1823    off += prog->driver->io.msInfoBase;
1824    return bld.
1825       mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1826 }
1827 
1828 inline Value *
loadSuInfo32(Value * ptr,int slot,uint32_t off,bool bindless)1829 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1830 {
1831    uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1832 
1833    // We don't upload surface info for bindless for GM107+
1834    assert(!bindless || targ->getChipset() < NVISA_GM107_CHIPSET);
1835 
1836    if (ptr) {
1837       ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1838       if (bindless)
1839          ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1840       else
1841          ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1842       ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1843       base = 0;
1844    }
1845    off += base;
1846 
1847    return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1848                         prog->driver->io.suInfoBase);
1849 }
1850 
1851 Value *
loadMsAdjInfo32(TexInstruction::Target target,uint32_t index,int slot,Value * ind,bool bindless)1852 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1853 {
1854    if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1855       return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1856 
1857    assert(bindless);
1858 
1859    Value *samples = bld.getSSA();
1860    // this shouldn't be lowered because it's being inserted before the current instruction
1861    TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1862    tex->tex.target = target;
1863    tex->tex.query = TXQ_TYPE;
1864    tex->tex.mask = 0x4;
1865    tex->tex.r = 0xff;
1866    tex->tex.s = 0x1f;
1867    tex->tex.rIndirectSrc = 0;
1868    tex->setDef(0, samples);
1869    tex->setSrc(0, ind);
1870    tex->setSrc(1, bld.loadImm(NULL, 0));
1871    bld.insert(tex);
1872 
1873    // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1874    switch (index) {
1875    case 0: {
1876       Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1877       return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1878    }
1879    case 1: {
1880       Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1881       return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1882    }
1883    default: {
1884       assert(false);
1885       return NULL;
1886    }
1887    }
1888 }
1889 
getSuClampSubOp(const TexInstruction * su,int c)1890 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1891 {
1892    switch (su->tex.target.getEnum()) {
1893    case TEX_TARGET_BUFFER:      return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1894    case TEX_TARGET_RECT:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1895    case TEX_TARGET_1D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1896    case TEX_TARGET_1D_ARRAY:    return (c == 1) ?
1897                                    NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1898                                    NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1899    case TEX_TARGET_2D:          return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1900    case TEX_TARGET_2D_MS:       return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1901    case TEX_TARGET_2D_ARRAY:    return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1902    case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1903    case TEX_TARGET_3D:          return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1904    case TEX_TARGET_CUBE:        return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1905    case TEX_TARGET_CUBE_ARRAY:  return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1906    default:
1907       assert(0);
1908       return 0;
1909    }
1910 }
1911 
1912 bool
handleSUQ(TexInstruction * suq)1913 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1914 {
1915    int mask = suq->tex.mask;
1916    int dim = suq->tex.target.getDim();
1917    int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1918    Value *ind = suq->getIndirectR();
1919    int slot = suq->tex.r;
1920    int c, d;
1921 
1922    for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1923       if (c >= arg || !(mask & 1))
1924          continue;
1925 
1926       int offset;
1927 
1928       if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1929          offset = NVC0_SU_INFO_SIZE(2);
1930       } else {
1931          offset = NVC0_SU_INFO_SIZE(c);
1932       }
1933       bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1934       if (c == 2 && suq->tex.target.isCube())
1935          bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1936                    bld.loadImm(NULL, 6));
1937    }
1938 
1939    if (mask & 1) {
1940       if (suq->tex.target.isMS()) {
1941          Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1942          Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1943          Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1944          bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1945       } else {
1946          bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1947       }
1948    }
1949 
1950    bld.remove(suq);
1951    return true;
1952 }
1953 
1954 void
adjustCoordinatesMS(TexInstruction * tex)1955 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1956 {
1957    const int arg = tex->tex.target.getArgCount();
1958    int slot = tex->tex.r;
1959 
1960    if (tex->tex.target == TEX_TARGET_2D_MS)
1961       tex->tex.target = TEX_TARGET_2D;
1962    else
1963    if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1964       tex->tex.target = TEX_TARGET_2D_ARRAY;
1965    else
1966       return;
1967 
1968    Value *x = tex->getSrc(0);
1969    Value *y = tex->getSrc(1);
1970    Value *s = tex->getSrc(arg - 1);
1971 
1972    Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1973    Value *ind = tex->getIndirectR();
1974 
1975    Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1976    Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1977 
1978    bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1979    bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1980 
1981    s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1982    s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1983 
1984    Value *dx = loadMsInfo32(ts, 0x0);
1985    Value *dy = loadMsInfo32(ts, 0x4);
1986 
1987    bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1988    bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1989 
1990    tex->setSrc(0, tx);
1991    tex->setSrc(1, ty);
1992    tex->moveSources(arg, -1);
1993 }
1994 
1995 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1996 // They're computed from the coordinates using the surface info in c[] space.
1997 void
processSurfaceCoordsNVE4(TexInstruction * su)1998 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1999 {
2000    Instruction *insn;
2001    const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
2002    const bool raw =
2003       su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
2004    const int slot = su->tex.r;
2005    const int dim = su->tex.target.getDim();
2006    const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2007    const int arg = dim + array;
2008    int c;
2009    Value *zero = bld.mkImm(0);
2010    Value *p1 = NULL;
2011    Value *v;
2012    Value *src[3];
2013    Value *bf, *eau, *off;
2014    Value *addr, *pred;
2015    Value *ind = su->getIndirectR();
2016    Value *y, *z;
2017 
2018    off = bld.getScratch(4);
2019    bf = bld.getScratch(4);
2020    addr = bld.getSSA(8);
2021    pred = bld.getScratch(1, FILE_PREDICATE);
2022 
2023    bld.setPosition(su, false);
2024 
2025    adjustCoordinatesMS(su);
2026 
2027    // calculate clamped coordinates
2028    for (c = 0; c < arg; ++c) {
2029       int dimc = c;
2030 
2031       if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
2032          // The array index is stored in the Z component for 1D arrays.
2033          dimc = 2;
2034       }
2035 
2036       src[c] = bld.getScratch();
2037       if (c == 0 && raw)
2038          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
2039       else
2040          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
2041       bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
2042          ->subOp = getSuClampSubOp(su, dimc);
2043    }
2044    for (; c < 3; ++c)
2045       src[c] = zero;
2046 
2047    if (dim == 2 && !array) {
2048       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2049       src[2] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2050                           v, bld.loadImm(NULL, 16));
2051 
2052       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(2), su->tex.bindless);
2053       bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[2], src[2], v, zero)
2054          ->subOp = NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
2055    }
2056 
2057    // set predicate output
2058    if (su->tex.target == TEX_TARGET_BUFFER) {
2059       src[0]->getInsn()->setFlagsDef(1, pred);
2060    } else
2061    if (array) {
2062       p1 = bld.getSSA(1, FILE_PREDICATE);
2063       src[dim]->getInsn()->setFlagsDef(1, p1);
2064    }
2065 
2066    // calculate pixel offset
2067    if (dim == 1) {
2068       y = z = zero;
2069       if (su->tex.target != TEX_TARGET_BUFFER)
2070          bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
2071    } else {
2072       y = src[1];
2073       z = src[2];
2074 
2075       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2076       bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
2077          ->subOp = NV50_IR_SUBOP_MADSP(4,4,8); // u16l u16l u16l
2078 
2079       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2080       bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
2081          ->subOp = array ?
2082          NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
2083    }
2084 
2085    // calculate effective address part 1
2086    if (su->tex.target == TEX_TARGET_BUFFER) {
2087       if (raw) {
2088          bf = src[0];
2089       } else {
2090          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2091          bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2092             ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2093       }
2094    } else {
2095       uint16_t subOp = 0;
2096 
2097       switch (dim) {
2098       case 1:
2099          break;
2100       case 2:
2101          if (array) {
2102             z = off;
2103          } else {
2104             subOp = NV50_IR_SUBOP_SUBFM_3D;
2105          }
2106          break;
2107       default:
2108          subOp = NV50_IR_SUBOP_SUBFM_3D;
2109          assert(dim == 3);
2110          break;
2111       }
2112       insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2113       insn->subOp = subOp;
2114       insn->setFlagsDef(1, pred);
2115    }
2116 
2117    // part 2
2118    v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2119 
2120    if (su->tex.target == TEX_TARGET_BUFFER) {
2121       eau = v;
2122    } else {
2123       eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2124    }
2125    // add array layer offset
2126    if (array) {
2127       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2128       if (dim == 1)
2129          bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2130             ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2131       else
2132          bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2133             ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2134       // combine predicates
2135       assert(p1);
2136       bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2137    }
2138 
2139    if (atom) {
2140       Value *lo = bf;
2141       if (su->tex.target == TEX_TARGET_BUFFER) {
2142          lo = zero;
2143          bld.mkMov(off, bf);
2144       }
2145       //  bf == g[] address & 0xff
2146       // eau == g[] address >> 8
2147       bld.mkOp3(OP_PERMT, TYPE_U32,  bf,   lo, bld.loadImm(NULL, 0x6540), eau);
2148       bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2149    } else
2150    if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2151       // Convert from u32 to u8 address format, which is what the library code
2152       // doing SULDP currently uses.
2153       // XXX: can SUEAU do this ?
2154       // XXX: does it matter that we don't mask high bytes in bf ?
2155       // Grrr.
2156       bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2157       bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2158    }
2159 
2160    bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2161 
2162    if (atom && su->tex.target == TEX_TARGET_BUFFER)
2163       bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2164 
2165    // let's just set it 0 for raw access and hope it works
2166    v = raw ?
2167       bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2168 
2169    // get rid of old coordinate sources, make space for fmt info and predicate
2170    su->moveSources(arg, 3 - arg);
2171    // set 64 bit address and 32-bit format sources
2172    su->setSrc(0, addr);
2173    su->setSrc(1, v);
2174    su->setSrc(2, pred);
2175    su->setIndirectR(NULL);
2176 
2177    // prevent read fault when the image is not actually bound
2178    CmpInstruction *pred1 =
2179       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2180                 TYPE_U32, bld.mkImm(0),
2181                 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2182 
2183    if (su->op != OP_SUSTP && su->tex.format) {
2184       const TexInstruction::ImgFormatDesc *format = su->tex.format;
2185       int blockwidth = format->bits[0] + format->bits[1] +
2186                        format->bits[2] + format->bits[3];
2187 
2188       // make sure that the format doesn't mismatch
2189       assert(format->components != 0);
2190       bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2191                 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2192                 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2193                 pred1->getDef(0));
2194    }
2195    su->setPredicate(CC_NOT_P, pred1->getDef(0));
2196 
2197    // TODO: initialize def values to 0 when the surface operation is not
2198    // performed (not needed for stores). Also, fix the "address bounds test"
2199    // subtests from arb_shader_image_load_store-invalid for buffers, because it
2200    // seems like that the predicate is not correctly set by suclamp.
2201 }
2202 
2203 static DataType
getSrcType(const TexInstruction::ImgFormatDesc * t,int c)2204 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2205 {
2206    switch (t->type) {
2207    case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2208    case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2209    case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2210    case UINT:
2211       return (t->bits[c] == 8 ? TYPE_U8 :
2212               (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2213    case SINT:
2214       return (t->bits[c] == 8 ? TYPE_S8 :
2215               (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2216    }
2217    return TYPE_NONE;
2218 }
2219 
2220 static DataType
getDestType(const ImgType type)2221 getDestType(const ImgType type) {
2222    switch (type) {
2223    case FLOAT:
2224    case UNORM:
2225    case SNORM:
2226       return TYPE_F32;
2227    case UINT:
2228       return TYPE_U32;
2229    case SINT:
2230       return TYPE_S32;
2231    default:
2232       assert(!"Impossible type");
2233       return TYPE_NONE;
2234    }
2235 }
2236 
2237 void
convertSurfaceFormat(TexInstruction * su,Instruction ** loaded)2238 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su, Instruction **loaded)
2239 {
2240    const TexInstruction::ImgFormatDesc *format = su->tex.format;
2241    int width = format->bits[0] + format->bits[1] +
2242       format->bits[2] + format->bits[3];
2243    Value *untypedDst[4] = {};
2244    Value *typedDst[4] = {};
2245 
2246    // We must convert this to a generic load.
2247    su->op = OP_SULDB;
2248 
2249    su->dType = typeOfSize(width / 8);
2250    su->sType = TYPE_U8;
2251 
2252    for (int i = 0; i < width / 32; i++)
2253       untypedDst[i] = bld.getSSA();
2254    if (width < 32)
2255       untypedDst[0] = bld.getSSA();
2256 
2257    if (loaded && loaded[0]) {
2258       for (int i = 0; i < 4; i++) {
2259          if (loaded[i])
2260             typedDst[i] = loaded[i]->getDef(0);
2261       }
2262    } else {
2263       for (int i = 0; i < 4; i++) {
2264          typedDst[i] = su->getDef(i);
2265       }
2266    }
2267 
2268    // Set the untyped dsts as the su's destinations
2269    if (loaded && loaded[0]) {
2270       for (int i = 0; i < 4; i++)
2271          if (loaded[i])
2272             loaded[i]->setDef(0, untypedDst[i]);
2273    } else {
2274       for (int i = 0; i < 4; i++)
2275          su->setDef(i, untypedDst[i]);
2276 
2277       bld.setPosition(su, true);
2278    }
2279 
2280    // Unpack each component into the typed dsts
2281    int bits = 0;
2282    for (int i = 0; i < 4; bits += format->bits[i], i++) {
2283       if (!typedDst[i])
2284          continue;
2285 
2286       if (loaded && loaded[0])
2287          bld.setPosition(loaded[i], true);
2288 
2289       if (i >= format->components) {
2290          if (format->type == FLOAT ||
2291              format->type == UNORM ||
2292              format->type == SNORM)
2293             bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2294          else
2295             bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2296          continue;
2297       }
2298 
2299       // Get just that component's data into the relevant place
2300       if (format->bits[i] == 32)
2301          bld.mkMov(typedDst[i], untypedDst[i]);
2302       else if (format->bits[i] == 16)
2303          bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2304                    getSrcType(format, i), untypedDst[i / 2])
2305          ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2306       else if (format->bits[i] == 8)
2307          bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2308                    getSrcType(format, i), untypedDst[0])->subOp = i;
2309       else {
2310          bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2311                    bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2312          if (format->type == UNORM || format->type == SNORM)
2313             bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2314       }
2315 
2316       // Normalize / convert as necessary
2317       if (format->type == UNORM)
2318          bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2319       else if (format->type == SNORM)
2320          bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2321       else if (format->type == FLOAT && format->bits[i] < 16) {
2322          bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2323          bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2324       }
2325    }
2326 
2327    if (format->bgra) {
2328       std::swap(typedDst[0], typedDst[2]);
2329    }
2330 }
2331 
2332 void
insertOOBSurfaceOpResult(TexInstruction * su)2333 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2334 {
2335    if (!su->getPredicate())
2336       return;
2337 
2338    bld.setPosition(su, true);
2339 
2340    for (unsigned i = 0; su->defExists(i); ++i) {
2341       Value *def = su->getDef(i);
2342       Value *newDef = bld.getSSA();
2343       su->setDef(i, newDef);
2344 
2345       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2346       assert(su->cc == CC_NOT_P);
2347       mov->setPredicate(CC_P, su->getPredicate());
2348       Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), newDef, mov->getDef(0));
2349       bld.mkMov(def, uni->getDef(0));
2350    }
2351 }
2352 
2353 void
handleSurfaceOpNVE4(TexInstruction * su)2354 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2355 {
2356    processSurfaceCoordsNVE4(su);
2357 
2358    if (su->op == OP_SULDP) {
2359       convertSurfaceFormat(su, NULL);
2360       insertOOBSurfaceOpResult(su);
2361    }
2362 
2363    if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2364       assert(su->getPredicate());
2365       Value *pred =
2366          bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2367                     su->getPredicate(), su->getSrc(2));
2368 
2369       Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2370       red->subOp = su->subOp;
2371       red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2372       red->setSrc(1, su->getSrc(3));
2373       if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2374          red->setSrc(2, su->getSrc(4));
2375       red->setIndirect(0, 0, su->getSrc(0));
2376 
2377       // make sure to initialize dst value when the atomic operation is not
2378       // performed
2379       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2380 
2381       assert(su->cc == CC_NOT_P);
2382       red->setPredicate(su->cc, pred);
2383       mov->setPredicate(CC_P, pred);
2384 
2385       bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2386                 red->getDef(0), mov->getDef(0));
2387 
2388       delete_Instruction(bld.getProgram(), su);
2389 
2390       handleATOMCctl(red);
2391       handleCasExch(red);
2392    }
2393 
2394    if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2395       su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2396 }
2397 
2398 void
processSurfaceCoordsNVC0(TexInstruction * su)2399 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2400 {
2401    const int slot = su->tex.r;
2402    const int dim = su->tex.target.getDim();
2403    const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2404    int c;
2405    Value *zero = bld.mkImm(0);
2406    Value *src[3];
2407    Value *v;
2408    Value *ind = su->getIndirectR();
2409 
2410    bld.setPosition(su, false);
2411 
2412    adjustCoordinatesMS(su);
2413 
2414    if (ind) {
2415       Value *ptr;
2416       ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2417       ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2418       su->setIndirectR(ptr);
2419    }
2420 
2421    // get surface coordinates
2422    for (c = 0; c < arg; ++c)
2423       src[c] = su->getSrc(c);
2424    for (; c < 3; ++c)
2425       src[c] = zero;
2426 
2427    // calculate pixel offset
2428    if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2429       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2430       su->setSrc(0, (src[0] = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), src[0], v)));
2431    }
2432 
2433    // add array layer offset
2434    if (su->tex.target.isArray() || su->tex.target.isCube()) {
2435       v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2436       assert(dim > 1);
2437       su->setSrc(2, (src[2] = bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v)));
2438    }
2439 
2440    // 3d is special-cased. Note that a single "slice" of a 3d image may
2441    // also be attached as 2d, so we have to do the same 3d processing for
2442    // 2d as well, just in case. In order to remap a 3d image onto a 2d
2443    // image, we have to retile it "by hand".
2444    if (su->tex.target == TEX_TARGET_3D || su->tex.target == TEX_TARGET_2D) {
2445       Value *z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2446       Value *y_size_aligned =
2447          bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(),
2448                     loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM_Y, su->tex.bindless),
2449                     bld.loadImm(NULL, 0x0000ffff));
2450       // Add the z coordinate for actual 3d-images
2451       if (dim > 2)
2452          src[2] = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), z, src[2]);
2453       else
2454          src[2] = z;
2455 
2456       // Compute the surface parameters from tile shifts
2457       Value *tile_shift[3];
2458       Value *tile_extbf[3];
2459       // Fetch the "real" tiling parameters of the underlying surface
2460       for (int i = 0; i < 3; i++) {
2461          tile_extbf[i] =
2462             bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2463                        loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2464                        bld.loadImm(NULL, 16));
2465          tile_shift[i] =
2466             bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2467                        loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(i), su->tex.bindless),
2468                        bld.loadImm(NULL, 24));
2469       }
2470 
2471       // However for load/atomics, we use byte-indexing. And for byte
2472       // indexing, the X tile size is always the same. This leads to slightly
2473       // better code.
2474       if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2475          tile_extbf[0] = bld.loadImm(NULL, 0x600);
2476          tile_shift[0] = bld.loadImm(NULL, 6);
2477       }
2478 
2479       // Compute the location of given coordinate, both inside the tile as
2480       // well as which (linearly-laid out) tile it's in.
2481       Value *coord_in_tile[3];
2482       Value *tile[3];
2483       for (int i = 0; i < 3; i++) {
2484          coord_in_tile[i] = bld.mkOp2v(OP_EXTBF, TYPE_U32, bld.getSSA(), src[i], tile_extbf[i]);
2485          tile[i] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), src[i], tile_shift[i]);
2486       }
2487 
2488       // Based on the "real" tiling parameters, compute x/y coordinates in the
2489       // larger surface with 2d tiling that was supplied to the hardware. This
2490       // was determined and verified with the help of the tiling pseudocode in
2491       // the envytools docs.
2492       //
2493       // adj_x = x_coord_in_tile + x_tile * x_tile_size * z_tile_size +
2494       //         z_coord_in_tile * x_tile_size
2495       // adj_y = y_coord_in_tile + y_tile * y_tile_size +
2496       //         z_tile * y_tile_size * y_tiles
2497       //
2498       // Note: STRIDE_Y = y_tile_size * y_tiles
2499 
2500       su->setSrc(0, bld.mkOp2v(
2501             OP_ADD, TYPE_U32, bld.getSSA(),
2502             bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2503                        coord_in_tile[0],
2504                        bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2505                                   tile[0],
2506                                   bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2507                                              tile_shift[2], tile_shift[0]))),
2508             bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2509                        coord_in_tile[2], tile_shift[0])));
2510 
2511       su->setSrc(1, bld.mkOp2v(
2512             OP_ADD, TYPE_U32, bld.getSSA(),
2513             bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(),
2514                        tile[2], y_size_aligned),
2515             bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2516                        coord_in_tile[1],
2517                        bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2518                                   tile[1], tile_shift[1]))));
2519 
2520       if (su->tex.target == TEX_TARGET_3D) {
2521          su->moveSources(3, -1);
2522          su->tex.target = TEX_TARGET_2D;
2523       }
2524    }
2525 
2526    // prevent read fault when the image is not actually bound
2527    CmpInstruction *pred =
2528       bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2529                 TYPE_U32, bld.mkImm(0),
2530                 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2531    if (su->op != OP_SUSTP && su->tex.format) {
2532       const TexInstruction::ImgFormatDesc *format = su->tex.format;
2533       int blockwidth = format->bits[0] + format->bits[1] +
2534                        format->bits[2] + format->bits[3];
2535 
2536       assert(format->components != 0);
2537       // make sure that the format doesn't mismatch when it's not FMT_NONE
2538       bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2539                 TYPE_U32, bld.loadImm(NULL, ffs(blockwidth / 8) - 1),
2540                 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2541                 pred->getDef(0));
2542    }
2543    su->setPredicate(CC_NOT_P, pred->getDef(0));
2544 }
2545 
2546 void
handleSurfaceOpNVC0(TexInstruction * su)2547 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2548 {
2549    if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2550       /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2551        * will simplify the lowering pass and the texture constraints. */
2552       su->moveSources(1, 1);
2553       su->setSrc(1, bld.loadImm(NULL, 0));
2554       su->tex.target = TEX_TARGET_2D_ARRAY;
2555    }
2556 
2557    processSurfaceCoordsNVC0(su);
2558 
2559    if (su->op == OP_SULDP) {
2560       convertSurfaceFormat(su, NULL);
2561       insertOOBSurfaceOpResult(su);
2562    }
2563 
2564    if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2565       const int dim = su->tex.target.getDim();
2566       const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2567       LValue *addr = bld.getSSA(8);
2568       Value *def = su->getDef(0);
2569 
2570       su->op = OP_SULEA;
2571 
2572       // Set the destination to the address
2573       su->dType = TYPE_U64;
2574       su->setDef(0, addr);
2575       su->setDef(1, su->getPredicate());
2576 
2577       bld.setPosition(su, true);
2578 
2579       // Perform the atomic op
2580       Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2581       red->subOp = su->subOp;
2582       red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2583       red->setSrc(1, su->getSrc(arg));
2584       if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2585          red->setSrc(2, su->getSrc(arg + 1));
2586       red->setIndirect(0, 0, addr);
2587 
2588       // make sure to initialize dst value when the atomic operation is not
2589       // performed
2590       Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2591 
2592       assert(su->cc == CC_NOT_P);
2593       red->setPredicate(su->cc, su->getPredicate());
2594       mov->setPredicate(CC_P, su->getPredicate());
2595 
2596       bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2597 
2598       handleCasExch(red);
2599    }
2600 }
2601 
2602 TexInstruction *
processSurfaceCoordsGM107(TexInstruction * su,Instruction * ret[4])2603 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su, Instruction *ret[4])
2604 {
2605    const int slot = su->tex.r;
2606    const int dim = su->tex.target.getDim();
2607    const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2608    const int arg = dim + array;
2609    Value *ind = su->getIndirectR();
2610    Value *handle;
2611    Instruction *pred = NULL, *pred2d = NULL;
2612    int pos = 0;
2613 
2614    bld.setPosition(su, false);
2615 
2616    adjustCoordinatesMS(su);
2617 
2618    // add texture handle
2619    switch (su->op) {
2620    case OP_SUSTP:
2621       pos = 4;
2622       break;
2623    case OP_SUREDP:
2624       pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2625       break;
2626    default:
2627       assert(pos == 0);
2628       break;
2629    }
2630 
2631    if (dim == 2 && !array) {
2632       // This might be a 2d slice of a 3d texture, try to load the z
2633       // coordinate in.
2634       Value *v;
2635       if (!su->tex.bindless)
2636          v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2637       else
2638          v = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), ind, bld.mkImm(11));
2639       Value *is_3d = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), v, bld.mkImm(1));
2640       pred2d = bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2641                          TYPE_U32, bld.mkImm(0), is_3d);
2642 
2643       bld.mkOp2(OP_SHR, TYPE_U32, v, v, bld.loadImm(NULL, 16));
2644       su->moveSources(dim, 1);
2645       su->setSrc(dim, v);
2646       su->tex.target = nv50_ir::TEX_TARGET_3D;
2647       pos++;
2648    }
2649 
2650    if (su->tex.bindless)
2651       handle = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(2047));
2652    else
2653       handle = loadTexHandle(ind, slot + 32);
2654 
2655    su->setSrc(arg + pos, handle);
2656 
2657    // The address check doesn't make sense here. The format check could make
2658    // sense but it's a bit of a pain.
2659    if (!su->tex.bindless) {
2660       // prevent read fault when the image is not actually bound
2661       pred =
2662          bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2663                    TYPE_U32, bld.mkImm(0),
2664                    loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2665       if (su->op != OP_SUSTP && su->tex.format) {
2666          const TexInstruction::ImgFormatDesc *format = su->tex.format;
2667          int blockwidth = format->bits[0] + format->bits[1] +
2668             format->bits[2] + format->bits[3];
2669 
2670          assert(format->components != 0);
2671          // make sure that the format doesn't mismatch when it's not FMT_NONE
2672          bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2673                    TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2674                    loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2675                    pred->getDef(0));
2676       }
2677    }
2678 
2679    // Now we have "pred" which (optionally) contains whether to do the surface
2680    // op at all, and a "pred2d" which indicates that, in case of doing the
2681    // surface op, we have to create a 2d and 3d version, conditioned on pred2d.
2682    TexInstruction *su2d = NULL;
2683    if (pred2d) {
2684       su2d = cloneForward(func, su)->asTex();
2685       for (unsigned i = 0; su->defExists(i); ++i)
2686          su2d->setDef(i, bld.getSSA());
2687       su2d->moveSources(dim + 1, -1);
2688       su2d->tex.target = nv50_ir::TEX_TARGET_2D;
2689    }
2690    if (pred2d && pred) {
2691       Instruction *pred3d = bld.mkOp2(OP_AND, TYPE_U8,
2692                                       bld.getSSA(1, FILE_PREDICATE),
2693                                       pred->getDef(0), pred2d->getDef(0));
2694       pred3d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2695       pred3d->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2696       su->setPredicate(CC_P, pred3d->getDef(0));
2697       pred2d = bld.mkOp2(OP_AND, TYPE_U8, bld.getSSA(1, FILE_PREDICATE),
2698                          pred->getDef(0), pred2d->getDef(0));
2699       pred2d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2700    } else if (pred) {
2701       su->setPredicate(CC_NOT_P, pred->getDef(0));
2702    } else if (pred2d) {
2703       su->setPredicate(CC_NOT_P, pred2d->getDef(0));
2704    }
2705    if (su2d) {
2706       su2d->setPredicate(CC_P, pred2d->getDef(0));
2707       bld.insert(su2d);
2708 
2709       // Create a UNION so that RA assigns the same registers
2710       bld.setPosition(su, true);
2711       for (unsigned i = 0; su->defExists(i); ++i) {
2712          assert(i < 4);
2713 
2714          Value *def = su->getDef(i);
2715          Value *newDef = bld.getSSA();
2716          ValueDef &def2 = su2d->def(i);
2717          Instruction *mov = NULL;
2718 
2719          su->setDef(i, newDef);
2720          if (pred) {
2721             mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2722             mov->setPredicate(CC_P, pred->getDef(0));
2723          }
2724 
2725          Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2726                                       bld.getSSA(),
2727                                       newDef, def2.get());
2728          if (mov)
2729             uni->setSrc(2, mov->getDef(0));
2730          bld.mkMov(def, uni->getDef(0));
2731       }
2732    } else if (pred) {
2733       // Create a UNION so that RA assigns the same registers
2734       bld.setPosition(su, true);
2735       for (unsigned i = 0; su->defExists(i); ++i) {
2736          assert(i < 4);
2737 
2738          Value *def = su->getDef(i);
2739          Value *newDef = bld.getSSA();
2740          su->setDef(i, newDef);
2741 
2742          Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2743          mov->setPredicate(CC_P, pred->getDef(0));
2744 
2745          Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2746                                       bld.getSSA(),
2747                                       newDef, mov->getDef(0));
2748          bld.mkMov(def, uni->getDef(0));
2749       }
2750    }
2751 
2752    return su2d;
2753 }
2754 
2755 void
handleSurfaceOpGM107(TexInstruction * su)2756 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2757 {
2758    // processSurfaceCoords also takes care of fixing up the outputs and
2759    // union'ing them with 0 as necessary. Additionally it may create a second
2760    // surface which needs some of the similar fixups.
2761 
2762    Instruction *loaded[4] = {};
2763    TexInstruction *su2 = processSurfaceCoordsGM107(su, loaded);
2764 
2765    if (su->op == OP_SULDP) {
2766       convertSurfaceFormat(su, loaded);
2767    }
2768 
2769    if (su->op == OP_SUREDP) {
2770       su->op = OP_SUREDB;
2771    }
2772 
2773    // If we fixed up the type of the regular surface load instruction, we also
2774    // have to fix up the copy.
2775    if (su2) {
2776       su2->op = su->op;
2777       su2->dType = su->dType;
2778       su2->sType = su->sType;
2779    }
2780 }
2781 
2782 bool
handleWRSV(Instruction * i)2783 NVC0LoweringPass::handleWRSV(Instruction *i)
2784 {
2785    Instruction *st;
2786    Symbol *sym;
2787    uint32_t addr;
2788 
2789    // must replace, $sreg are not writeable
2790    addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2791    if (addr >= 0x400)
2792       return false;
2793    sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2794 
2795    st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2796                     i->getSrc(1));
2797    st->perPatch = i->perPatch;
2798 
2799    bld.getBB()->remove(i);
2800    return true;
2801 }
2802 
2803 void
handleLDST(Instruction * i)2804 NVC0LoweringPass::handleLDST(Instruction *i)
2805 {
2806    if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2807       if (prog->getType() == Program::TYPE_COMPUTE) {
2808          i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2809          i->getSrc(0)->reg.fileIndex = 0;
2810       } else
2811       if (prog->getType() == Program::TYPE_GEOMETRY &&
2812           i->src(0).isIndirect(0)) {
2813          // XXX: this assumes vec4 units
2814          Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2815                                  i->getIndirect(0, 0), bld.mkImm(4));
2816          i->setIndirect(0, 0, ptr);
2817          i->op = OP_VFETCH;
2818       } else {
2819          i->op = OP_VFETCH;
2820          assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2821       }
2822    } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2823       int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2824       Value *ind = i->getIndirect(0, 1);
2825 
2826       if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2827           prog->getType() == Program::TYPE_COMPUTE &&
2828           (fileIndex >= 6 || ind)) {
2829          // The launch descriptor only allows to set up 8 CBs, but OpenGL
2830          // requires at least 12 UBOs. To bypass this limitation, for constant
2831          // buffers 7+, we store the addrs into the driver constbuf and we
2832          // directly load from the global memory.
2833          if (ind) {
2834             // Clamp the UBO index when an indirect access is used to avoid
2835             // loading information from the wrong place in the driver cb.
2836             // TODO - synchronize the max with the driver.
2837             ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2838                              bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2839                                         ind, bld.loadImm(NULL, fileIndex)),
2840                              bld.loadImm(NULL, 13));
2841             fileIndex = 0;
2842          }
2843 
2844          Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2845          Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2846          Value *length = loadUboLength32(ind, fileIndex * 16);
2847          Value *pred = new_LValue(func, FILE_PREDICATE);
2848          if (i->src(0).isIndirect(0)) {
2849             bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2850             bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2851          }
2852          i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2853          i->setIndirect(0, 1, NULL);
2854          i->setIndirect(0, 0, ptr);
2855          bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2856          i->setPredicate(CC_NOT_P, pred);
2857          Value *zero, *dst = i->getDef(0);
2858          i->setDef(0, bld.getSSA());
2859 
2860          bld.setPosition(i, true);
2861          bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2862             ->setPredicate(CC_P, pred);
2863          bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2864       } else if (i->src(0).isIndirect(1)) {
2865          Value *ptr;
2866          if (i->src(0).isIndirect(0))
2867             ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2868                              i->getIndirect(0, 1), bld.mkImm(0x1010),
2869                              i->getIndirect(0, 0));
2870          else
2871             ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2872                              i->getIndirect(0, 1), bld.mkImm(16));
2873          i->setIndirect(0, 1, NULL);
2874          i->setIndirect(0, 0, ptr);
2875          i->subOp = NV50_IR_SUBOP_LDC_IS;
2876       }
2877    } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2878       assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2879       i->op = OP_VFETCH;
2880    } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2881       Value *ind = i->getIndirect(0, 1);
2882       Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2883       // XXX come up with a way not to do this for EVERY little access but
2884       // rather to batch these up somehow. Unfortunately we've lost the
2885       // information about the field width by the time we get here.
2886       Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2887       Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2888       Value *pred = new_LValue(func, FILE_PREDICATE);
2889       if (i->src(0).isIndirect(0)) {
2890          bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2891          bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2892       }
2893       i->setIndirect(0, 1, NULL);
2894       i->setIndirect(0, 0, ptr);
2895       i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2896       bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2897       i->setPredicate(CC_NOT_P, pred);
2898       if (i->defExists(0)) {
2899          Value *zero, *dst = i->getDef(0);
2900          uint8_t size = dst->reg.size;
2901          i->setDef(0, bld.getSSA(size));
2902 
2903          bld.setPosition(i, true);
2904          bld.mkMov((zero = bld.getSSA(size)), bld.mkImm(0), i->dType)
2905             ->setPredicate(CC_P, pred);
2906          bld.mkOp2(OP_UNION, i->dType, dst, i->getDef(0), zero);
2907       }
2908    }
2909 }
2910 
2911 void
readTessCoord(LValue * dst,int c)2912 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2913 {
2914    Value *laneid = bld.getSSA();
2915    Value *x, *y;
2916 
2917    bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2918 
2919    if (c == 0) {
2920       x = dst;
2921       y = NULL;
2922    } else
2923    if (c == 1) {
2924       x = NULL;
2925       y = dst;
2926    } else {
2927       assert(c == 2);
2928       if (prog->driver_out->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2929          bld.mkMov(dst, bld.loadImm(NULL, 0));
2930          return;
2931       }
2932       x = bld.getSSA();
2933       y = bld.getSSA();
2934    }
2935    if (x)
2936       bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2937    if (y)
2938       bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2939 
2940    if (c == 2) {
2941       bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2942       bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2943    }
2944 }
2945 
2946 bool
handleRDSV(Instruction * i)2947 NVC0LoweringPass::handleRDSV(Instruction *i)
2948 {
2949    Symbol *sym = i->getSrc(0)->asSym();
2950    const SVSemantic sv = sym->reg.data.sv.sv;
2951    Value *vtx = NULL;
2952    Instruction *ld;
2953    uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2954 
2955    if (addr >= 0x400) {
2956       // mov $sreg
2957       if (sym->reg.data.sv.index == 3) {
2958          // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2959          i->op = OP_MOV;
2960          i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2961       } else
2962       if (sv == SV_TID) {
2963          // Help CSE combine TID fetches
2964          Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2965                                  bld.mkSysVal(SV_COMBINED_TID, 0));
2966          i->op = OP_EXTBF;
2967          i->setSrc(0, tid);
2968          switch (sym->reg.data.sv.index) {
2969          case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2970          case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2971          case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2972          }
2973       }
2974       if (sv == SV_VERTEX_COUNT) {
2975          bld.setPosition(i, true);
2976          bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2977       }
2978       return true;
2979    }
2980 
2981    switch (sv) {
2982    case SV_POSITION:
2983       assert(prog->getType() == Program::TYPE_FRAGMENT);
2984       if (i->srcExists(1)) {
2985          // Pass offset through to the interpolation logic
2986          ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2987                            i->getDef(0), addr, NULL);
2988          ld->setSrc(1, i->getSrc(1));
2989       } else {
2990          bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2991       }
2992       break;
2993    case SV_FACE:
2994    {
2995       Value *face = i->getDef(0);
2996       bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2997       if (i->dType == TYPE_F32) {
2998          bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2999          bld.mkOp1(OP_NEG, TYPE_S32, face, face);
3000          bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
3001       }
3002    }
3003       break;
3004    case SV_TESS_COORD:
3005       assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
3006       readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
3007       break;
3008    case SV_NTID:
3009    case SV_NCTAID:
3010    case SV_GRIDID:
3011       assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
3012       if (sym->reg.data.sv.index == 3) {
3013          i->op = OP_MOV;
3014          i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
3015          return true;
3016       }
3017       FALLTHROUGH;
3018    case SV_WORK_DIM:
3019       addr += prog->driver->prop.cp.gridInfoBase;
3020       bld.mkLoad(TYPE_U32, i->getDef(0),
3021                  bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3022                               TYPE_U32, addr), NULL);
3023       break;
3024    case SV_SAMPLE_INDEX:
3025       // TODO: Properly pass source as an address in the PIX address space
3026       // (which can be of the form [r0+offset]). But this is currently
3027       // unnecessary.
3028       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3029       ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3030       break;
3031    case SV_SAMPLE_POS: {
3032       Value *sampleID = bld.getScratch();
3033       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
3034       ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3035       Value *offset = calculateSampleOffset(sampleID);
3036 
3037       assert(prog->driver_out->prop.fp.readsSampleLocations);
3038 
3039       if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3040          bld.mkLoad(TYPE_F32,
3041                     i->getDef(0),
3042                     bld.mkSymbol(
3043                           FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3044                           TYPE_U32, prog->driver->io.sampleInfoBase),
3045                     offset);
3046          bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
3047                    bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
3048          bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
3049          bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
3050       } else {
3051          bld.mkLoad(TYPE_F32,
3052                     i->getDef(0),
3053                     bld.mkSymbol(
3054                           FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3055                           TYPE_U32, prog->driver->io.sampleInfoBase +
3056                           4 * sym->reg.data.sv.index),
3057                     offset);
3058       }
3059       break;
3060    }
3061    case SV_SAMPLE_MASK: {
3062       ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
3063       ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
3064       Instruction *sampleid =
3065          bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3066       sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
3067       Value *masked =
3068          bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
3069                     bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
3070                                bld.loadImm(NULL, 1), sampleid->getDef(0)));
3071       if (prog->persampleInvocation) {
3072          bld.mkMov(i->getDef(0), masked);
3073       } else {
3074          bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
3075                    bld.mkImm(0))
3076             ->subOp = 1;
3077       }
3078       break;
3079    }
3080    case SV_BASEVERTEX:
3081    case SV_BASEINSTANCE:
3082    case SV_DRAWID:
3083       ld = bld.mkLoad(TYPE_U32, i->getDef(0),
3084                       bld.mkSymbol(FILE_MEMORY_CONST,
3085                                    prog->driver->io.auxCBSlot,
3086                                    TYPE_U32,
3087                                    prog->driver->io.drawInfoBase +
3088                                    4 * (sv - SV_BASEVERTEX)),
3089                       NULL);
3090       break;
3091    default:
3092       if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
3093          vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
3094       if (prog->getType() == Program::TYPE_FRAGMENT) {
3095          bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
3096       } else {
3097          ld = bld.mkFetch(i->getDef(0), i->dType,
3098                           FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
3099          ld->perPatch = i->perPatch;
3100       }
3101       break;
3102    }
3103    bld.getBB()->remove(i);
3104    return true;
3105 }
3106 
3107 bool
handleDIV(Instruction * i)3108 NVC0LoweringPass::handleDIV(Instruction *i)
3109 {
3110    if (!isFloatType(i->dType))
3111       return true;
3112    bld.setPosition(i, false);
3113    Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
3114    i->op = OP_MUL;
3115    i->setSrc(1, rcp->getDef(0));
3116    return true;
3117 }
3118 
3119 bool
handleMOD(Instruction * i)3120 NVC0LoweringPass::handleMOD(Instruction *i)
3121 {
3122    if (!isFloatType(i->dType))
3123       return true;
3124    LValue *value = bld.getScratch(typeSizeof(i->dType));
3125    bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
3126    bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
3127    bld.mkOp1(OP_TRUNC, i->dType, value, value);
3128    bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
3129    i->op = OP_SUB;
3130    i->setSrc(1, value);
3131    return true;
3132 }
3133 
3134 bool
handleSQRT(Instruction * i)3135 NVC0LoweringPass::handleSQRT(Instruction *i)
3136 {
3137    if (targ->isOpSupported(OP_SQRT, i->dType))
3138       return true;
3139 
3140    if (i->dType == TYPE_F64) {
3141       Value *pred = bld.getSSA(1, FILE_PREDICATE);
3142       Value *zero = bld.loadImm(NULL, 0.0);
3143       Value *dst = bld.getSSA(8);
3144       bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
3145       bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
3146       bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
3147       i->op = OP_MUL;
3148       i->setSrc(1, dst);
3149       // TODO: Handle this properly with a library function
3150    } else {
3151       bld.setPosition(i, true);
3152       i->op = OP_RSQ;
3153       bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
3154    }
3155 
3156    return true;
3157 }
3158 
3159 bool
handlePOW(Instruction * i)3160 NVC0LoweringPass::handlePOW(Instruction *i)
3161 {
3162    LValue *val = bld.getScratch();
3163 
3164    bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
3165    bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
3166    bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
3167 
3168    i->op = OP_EX2;
3169    i->setSrc(0, val);
3170    i->setSrc(1, NULL);
3171 
3172    return true;
3173 }
3174 
3175 bool
handleEXPORT(Instruction * i)3176 NVC0LoweringPass::handleEXPORT(Instruction *i)
3177 {
3178    if (prog->getType() == Program::TYPE_FRAGMENT) {
3179       int id = i->getSrc(0)->reg.data.offset / 4;
3180 
3181       if (i->src(0).isIndirect(0)) // TODO, ugly
3182          return false;
3183       i->op = OP_MOV;
3184       i->subOp = NV50_IR_SUBOP_MOV_FINAL;
3185       i->src(0).set(i->src(1));
3186       i->setSrc(1, NULL);
3187       i->setDef(0, new_LValue(func, FILE_GPR));
3188       i->getDef(0)->reg.data.id = id;
3189 
3190       prog->maxGPR = MAX2(prog->maxGPR, id);
3191    } else
3192    if (prog->getType() == Program::TYPE_GEOMETRY) {
3193       i->setIndirect(0, 1, gpEmitAddress);
3194    }
3195    return true;
3196 }
3197 
3198 bool
handleOUT(Instruction * i)3199 NVC0LoweringPass::handleOUT(Instruction *i)
3200 {
3201    Instruction *prev = i->prev;
3202    ImmediateValue stream, prevStream;
3203 
3204    // Only merge if the stream ids match. Also, note that the previous
3205    // instruction would have already been lowered, so we take arg1 from it.
3206    if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
3207        i->src(0).getImmediate(stream) &&
3208        prev->src(1).getImmediate(prevStream) &&
3209        stream.reg.data.u32 == prevStream.reg.data.u32) {
3210       i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
3211       delete_Instruction(prog, i);
3212    } else {
3213       assert(gpEmitAddress);
3214       i->setDef(0, gpEmitAddress);
3215       i->setSrc(1, i->getSrc(0));
3216       i->setSrc(0, gpEmitAddress);
3217    }
3218    return true;
3219 }
3220 
3221 Value *
calculateSampleOffset(Value * sampleID)3222 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
3223 {
3224    Value *offset = bld.getScratch();
3225    if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3226       // Sample location offsets (in bytes) are calculated like so:
3227       // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
3228       // offset = offset * 32 + sampleID % 8 * 4;
3229       // which is equivalent to:
3230       // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
3231       // offset += sampleID << 2
3232 
3233       // The second operand (src1) of the INSBF instructions are like so:
3234       // 0xssll where ss is the size and ll is the offset.
3235       // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
3236 
3237       // Add sample ID (offset = (sampleID & 0x7) << 2)
3238       bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
3239 
3240       Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
3241       Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
3242       Value *coord = bld.getScratch();
3243 
3244       // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
3245       bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3246                    targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
3247       bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3248          ->rnd = ROUND_ZI;
3249       bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
3250 
3251       // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
3252       bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3253                    targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
3254       bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3255          ->rnd = ROUND_ZI;
3256       bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
3257    } else {
3258       bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
3259    }
3260    return offset;
3261 }
3262 
3263 // Handle programmable sample locations for GM20x+
3264 void
handlePIXLD(Instruction * i)3265 NVC0LoweringPass::handlePIXLD(Instruction *i)
3266 {
3267    if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
3268       return;
3269    if (targ->getChipset() < NVISA_GM200_CHIPSET)
3270       return;
3271 
3272    assert(prog->driver_out->prop.fp.readsSampleLocations);
3273 
3274    bld.mkLoad(TYPE_F32,
3275               i->getDef(0),
3276               bld.mkSymbol(
3277                     FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3278                     TYPE_U32, prog->driver->io.sampleInfoBase),
3279               calculateSampleOffset(i->getSrc(0)));
3280 
3281    bld.getBB()->remove(i);
3282 }
3283 
3284 // Generate a binary predicate if an instruction is predicated by
3285 // e.g. an f32 value.
3286 void
checkPredicate(Instruction * insn)3287 NVC0LoweringPass::checkPredicate(Instruction *insn)
3288 {
3289    Value *pred = insn->getPredicate();
3290    Value *pdst;
3291 
3292    if (!pred || pred->reg.file == FILE_PREDICATE)
3293       return;
3294    pdst = new_LValue(func, FILE_PREDICATE);
3295 
3296    // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3297    //  delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3298 
3299    bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3300 
3301    insn->setPredicate(insn->cc, pdst);
3302 }
3303 
3304 //
3305 // - add quadop dance for texturing
3306 // - put FP outputs in GPRs
3307 // - convert instruction sequences
3308 //
3309 bool
visit(Instruction * i)3310 NVC0LoweringPass::visit(Instruction *i)
3311 {
3312    bool ret = true;
3313    bld.setPosition(i, false);
3314 
3315    if (i->cc != CC_ALWAYS)
3316       checkPredicate(i);
3317 
3318    switch (i->op) {
3319    case OP_TEX:
3320    case OP_TXB:
3321    case OP_TXL:
3322    case OP_TXF:
3323    case OP_TXG:
3324       return handleTEX(i->asTex());
3325    case OP_TXD:
3326       return handleTXD(i->asTex());
3327    case OP_TXLQ:
3328       return handleTXLQ(i->asTex());
3329    case OP_TXQ:
3330      return handleTXQ(i->asTex());
3331    case OP_EX2:
3332       bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3333       i->setSrc(0, i->getDef(0));
3334       break;
3335    case OP_POW:
3336       return handlePOW(i);
3337    case OP_DIV:
3338       return handleDIV(i);
3339    case OP_MOD:
3340       return handleMOD(i);
3341    case OP_SQRT:
3342       return handleSQRT(i);
3343    case OP_EXPORT:
3344       ret = handleEXPORT(i);
3345       break;
3346    case OP_EMIT:
3347    case OP_RESTART:
3348       return handleOUT(i);
3349    case OP_RDSV:
3350       return handleRDSV(i);
3351    case OP_WRSV:
3352       return handleWRSV(i);
3353    case OP_STORE:
3354    case OP_LOAD:
3355       handleLDST(i);
3356       break;
3357    case OP_ATOM:
3358    {
3359       const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3360       handleATOM(i);
3361       if (cctl)
3362          handleATOMCctl(i);
3363       handleCasExch(i);
3364    }
3365       break;
3366    case OP_SULDB:
3367    case OP_SULDP:
3368    case OP_SUSTB:
3369    case OP_SUSTP:
3370    case OP_SUREDB:
3371    case OP_SUREDP:
3372       if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3373          handleSurfaceOpGM107(i->asTex());
3374       else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3375          handleSurfaceOpNVE4(i->asTex());
3376       else
3377          handleSurfaceOpNVC0(i->asTex());
3378       break;
3379    case OP_SUQ:
3380       handleSUQ(i->asTex());
3381       break;
3382    case OP_BUFQ:
3383       handleBUFQ(i);
3384       break;
3385    case OP_PIXLD:
3386       handlePIXLD(i);
3387       break;
3388    default:
3389       break;
3390    }
3391 
3392    /* Kepler+ has a special opcode to compute a new base address to be used
3393     * for indirect loads.
3394     *
3395     * Maxwell+ has an additional similar requirement for indirect
3396     * interpolation ops in frag shaders.
3397     */
3398    bool doAfetch = false;
3399    if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3400        !i->perPatch &&
3401        (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3402        i->src(0).isIndirect(0)) {
3403       doAfetch = true;
3404    }
3405    if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3406        (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3407        i->src(0).isIndirect(0)) {
3408       doAfetch = true;
3409    }
3410 
3411    if (doAfetch) {
3412       Value *addr = cloneShallow(func, i->getSrc(0));
3413       Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3414                                       i->getSrc(0));
3415       afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3416       addr->reg.data.offset = 0;
3417       i->setSrc(0, addr);
3418       i->setIndirect(0, 0, afetch->getDef(0));
3419       i->subOp = NV50_IR_SUBOP_VFETCH_PHYS;
3420    }
3421 
3422    return ret;
3423 }
3424 
3425 bool
runLegalizePass(Program * prog,CGStage stage) const3426 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3427 {
3428    if (stage == CG_STAGE_PRE_SSA) {
3429       NVC0LoweringPass pass(prog);
3430       return pass.run(prog, false, true);
3431    } else
3432    if (stage == CG_STAGE_POST_RA) {
3433       NVC0LegalizePostRA pass(prog);
3434       return pass.run(prog, false, true);
3435    } else
3436    if (stage == CG_STAGE_SSA) {
3437       NVC0LegalizeSSA pass;
3438       return pass.run(prog, false, true);
3439    }
3440    return false;
3441 }
3442 
3443 } // namespace nv50_ir
3444