1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
74 #include "sljitConfigPre.h"
75 #endif /* SLJIT_HAVE_CONFIG_PRE */
76
77 #include "sljitConfig.h"
78
79 /* The following header file defines useful macros for fine tuning
80 sljit based code generators. They are listed in the beginning
81 of sljitConfigInternal.h */
82
83 #include "sljitConfigInternal.h"
84
85 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
86 #include "sljitConfigPost.h"
87 #endif /* SLJIT_HAVE_CONFIG_POST */
88
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
92
93 /* --------------------------------------------------------------------- */
94 /* Error codes */
95 /* --------------------------------------------------------------------- */
96
97 /* Indicates no error. */
98 #define SLJIT_SUCCESS 0
99 /* After the call of sljit_generate_code(), the error code of the compiler
100 is set to this value to avoid future sljit calls (in debug mode at least).
101 The complier should be freed after sljit_generate_code(). */
102 #define SLJIT_ERR_COMPILED 1
103 /* Cannot allocate non executable memory. */
104 #define SLJIT_ERR_ALLOC_FAILED 2
105 /* Cannot allocate executable memory.
106 Only for sljit_generate_code() */
107 #define SLJIT_ERR_EX_ALLOC_FAILED 3
108 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
109 #define SLJIT_ERR_UNSUPPORTED 4
110 /* An ivalid argument is passed to any SLJIT function. */
111 #define SLJIT_ERR_BAD_ARGUMENT 5
112 /* Dynamic code modification is not enabled. */
113 #define SLJIT_ERR_DYN_CODE_MOD 6
114
115 /* --------------------------------------------------------------------- */
116 /* Registers */
117 /* --------------------------------------------------------------------- */
118
119 /*
120 Scratch (R) registers: registers whose may not preserve their values
121 across function calls.
122
123 Saved (S) registers: registers whose preserve their values across
124 function calls.
125
126 The scratch and saved register sets are overlap. The last scratch register
127 is the first saved register, the one before the last is the second saved
128 register, and so on.
129
130 If an architecture provides two scratch and three saved registers,
131 its scratch and saved register sets are the following:
132
133 R0 | | R0 is always a scratch register
134 R1 | | R1 is always a scratch register
135 [R2] | S2 | R2 and S2 represent the same physical register
136 [R3] | S1 | R3 and S1 represent the same physical register
137 [R4] | S0 | R4 and S0 represent the same physical register
138
139 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
140 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
141
142 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
143 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
144 are virtual on x86-32. See below.
145
146 The purpose of this definition is convenience: saved registers can
147 be used as extra scratch registers. For example four registers can
148 be specified as scratch registers and the fifth one as saved register
149 on the CPU above and any user code which requires four scratch
150 registers can run unmodified. The SLJIT compiler automatically saves
151 the content of the two extra scratch register on the stack. Scratch
152 registers can also be preserved by saving their value on the stack
153 but this needs to be done manually.
154
155 Note: To emphasize that registers assigned to R2-R4 are saved
156 registers, they are enclosed by square brackets.
157
158 Note: sljit_emit_enter and sljit_set_context defines whether a register
159 is S or R register. E.g: when 3 scratches and 1 saved is mapped
160 by sljit_emit_enter, the allowed register set will be: R0-R2 and
161 S0. Although S2 is mapped to the same position as R2, it does not
162 available in the current configuration. Furthermore the S1 register
163 is not available at all.
164 */
165
166 /* Scratch registers. */
167 #define SLJIT_R0 1
168 #define SLJIT_R1 2
169 #define SLJIT_R2 3
170 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
171 are allocated on the stack). These registers are called virtual
172 and cannot be used for memory addressing (cannot be part of
173 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
174 limitation on other CPUs. See sljit_get_register_index(). */
175 #define SLJIT_R3 4
176 #define SLJIT_R4 5
177 #define SLJIT_R5 6
178 #define SLJIT_R6 7
179 #define SLJIT_R7 8
180 #define SLJIT_R8 9
181 #define SLJIT_R9 10
182 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
183 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
184 #define SLJIT_R(i) (1 + (i))
185
186 /* Saved registers. */
187 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
188 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
189 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
190 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
191 are allocated on the stack). These registers are called virtual
192 and cannot be used for memory addressing (cannot be part of
193 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
194 limitation on other CPUs. See sljit_get_register_index(). */
195 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
196 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
197 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
198 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
199 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
200 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
201 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
202 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
203 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
204 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
205
206 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
207 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
208
209 /* The SLJIT_SP provides direct access to the linear stack space allocated by
210 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
211 The immediate offset is extended by the relative stack offset automatically.
212 The sljit_get_local_base can be used to obtain the absolute offset. */
213 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
214
215 /* Return with machine word. */
216
217 #define SLJIT_RETURN_REG SLJIT_R0
218
219 /* --------------------------------------------------------------------- */
220 /* Floating point registers */
221 /* --------------------------------------------------------------------- */
222
223 /* Each floating point register can store a 32 or a 64 bit precision
224 value. The FR and FS register sets are overlap in the same way as R
225 and S register sets. See above. */
226
227 /* Floating point scratch registers. */
228 #define SLJIT_FR0 1
229 #define SLJIT_FR1 2
230 #define SLJIT_FR2 3
231 #define SLJIT_FR3 4
232 #define SLJIT_FR4 5
233 #define SLJIT_FR5 6
234 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
235 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
236 #define SLJIT_FR(i) (1 + (i))
237
238 /* Floating point saved registers. */
239 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
240 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
241 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
242 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
243 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
244 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
245 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
246 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
247 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
248
249 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
250 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
251
252 /* --------------------------------------------------------------------- */
253 /* Argument type definitions */
254 /* --------------------------------------------------------------------- */
255
256 /* The following argument type definitions are used by sljit_emit_enter,
257 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
258
259 As for sljit_emit_call and sljit_emit_icall, the first integer argument
260 must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
261 Similarly the first floating point argument must be placed into SLJIT_FR0,
262 the second one into SLJIT_FR1, and so on.
263
264 As for sljit_emit_enter, the integer arguments can be stored in scratch
265 or saved registers. The first integer argument without _R postfix is
266 stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer
267 arguments with _R postfix are placed into scratch registers. The index
268 of the scratch register is the count of the previous integer arguments
269 starting from SLJIT_R0. The floating point arguments are always placed
270 into SLJIT_FR0, SLJIT_FR1, and so on.
271
272 Note: if a function is called by sljit_emit_call/sljit_emit_icall and
273 an argument is stored in a scratch register by sljit_emit_enter,
274 that argument uses the same scratch register index for both
275 integer and floating point arguments.
276
277 Example function definition:
278 sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
279 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
280
281 Argument type definition:
282 SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
283 | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
284 | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
285
286 Short form of argument type definition:
287 SLJIT_ARGS4(32, P, F64, 32, F32)
288
289 Argument passing:
290 arg_a must be placed in SLJIT_R0
291 arg_c must be placed in SLJIT_R1
292 arg_b must be placed in SLJIT_FR0
293 arg_d must be placed in SLJIT_FR1
294
295 Examples for argument processing by sljit_emit_enter:
296 SLJIT_ARGS4(VOID, P, 32_R, F32, W)
297 Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
298
299 SLJIT_ARGS4(VOID, W, W_R, W, W_R)
300 Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
301
302 SLJIT_ARGS4(VOID, F64, W, F32, W_R)
303 Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
304
305 Note: it is recommended to pass the scratch arguments first
306 followed by the saved arguments:
307
308 SLJIT_ARGS4(VOID, W_R, W_R, W, W)
309 Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
310 */
311
312 /* The following flag is only allowed for the integer arguments of
313 sljit_emit_enter. When the flag is set, the integer argument is
314 stored in a scratch register instead of a saved register. */
315 #define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
316
317 /* Void result, can only be used by SLJIT_ARG_RETURN. */
318 #define SLJIT_ARG_TYPE_VOID 0
319 /* Machine word sized integer argument or result. */
320 #define SLJIT_ARG_TYPE_W 1
321 #define SLJIT_ARG_TYPE_W_R (SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
322 /* 32 bit integer argument or result. */
323 #define SLJIT_ARG_TYPE_32 2
324 #define SLJIT_ARG_TYPE_32_R (SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
325 /* Pointer sized integer argument or result. */
326 #define SLJIT_ARG_TYPE_P 3
327 #define SLJIT_ARG_TYPE_P_R (SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
328 /* 64 bit floating point argument or result. */
329 #define SLJIT_ARG_TYPE_F64 4
330 /* 32 bit floating point argument or result. */
331 #define SLJIT_ARG_TYPE_F32 5
332
333 #define SLJIT_ARG_SHIFT 4
334 #define SLJIT_ARG_RETURN(type) (type)
335 #define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
336
337 /* Simplified argument list definitions.
338
339 The following definition:
340 SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
341
342 can be shortened to:
343 SLJIT_ARGS1(W, F32)
344 */
345
346 #define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
347
348 #define SLJIT_ARGS0(ret) \
349 SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
350
351 #define SLJIT_ARGS1(ret, arg1) \
352 (SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
353
354 #define SLJIT_ARGS2(ret, arg1, arg2) \
355 (SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
356
357 #define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
358 (SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
359
360 #define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
361 (SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
362
363 /* --------------------------------------------------------------------- */
364 /* Main structures and functions */
365 /* --------------------------------------------------------------------- */
366
367 /*
368 The following structures are private, and can be changed in the
369 future. Keeping them here allows code inlining.
370 */
371
372 struct sljit_memory_fragment {
373 struct sljit_memory_fragment *next;
374 sljit_uw used_size;
375 /* Must be aligned to sljit_sw. */
376 sljit_u8 memory[1];
377 };
378
379 struct sljit_label {
380 struct sljit_label *next;
381 sljit_uw addr;
382 /* The maximum size difference. */
383 sljit_uw size;
384 };
385
386 struct sljit_jump {
387 struct sljit_jump *next;
388 sljit_uw addr;
389 sljit_uw flags;
390 union {
391 sljit_uw target;
392 struct sljit_label *label;
393 } u;
394 };
395
396 struct sljit_put_label {
397 struct sljit_put_label *next;
398 struct sljit_label *label;
399 sljit_uw addr;
400 sljit_uw flags;
401 };
402
403 struct sljit_const {
404 struct sljit_const *next;
405 sljit_uw addr;
406 };
407
408 struct sljit_compiler {
409 sljit_s32 error;
410 sljit_s32 options;
411
412 struct sljit_label *labels;
413 struct sljit_jump *jumps;
414 struct sljit_put_label *put_labels;
415 struct sljit_const *consts;
416 struct sljit_label *last_label;
417 struct sljit_jump *last_jump;
418 struct sljit_const *last_const;
419 struct sljit_put_label *last_put_label;
420
421 void *allocator_data;
422 void *exec_allocator_data;
423 struct sljit_memory_fragment *buf;
424 struct sljit_memory_fragment *abuf;
425
426 /* Used scratch registers. */
427 sljit_s32 scratches;
428 /* Used saved registers. */
429 sljit_s32 saveds;
430 /* Used float scratch registers. */
431 sljit_s32 fscratches;
432 /* Used float saved registers. */
433 sljit_s32 fsaveds;
434 /* Local stack size. */
435 sljit_s32 local_size;
436 /* Code size. */
437 sljit_uw size;
438 /* Relative offset of the executable mapping from the writable mapping. */
439 sljit_sw executable_offset;
440 /* Executable size for statistical purposes. */
441 sljit_uw executable_size;
442
443 #if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
444 sljit_s32 status_flags_state;
445 #endif
446
447 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
448 sljit_s32 args_size;
449 sljit_s32 locals_offset;
450 sljit_s32 scratches_offset;
451 #endif
452
453 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
454 sljit_s32 mode32;
455 #endif
456
457 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
458 /* Constant pool handling. */
459 sljit_uw *cpool;
460 sljit_u8 *cpool_unique;
461 sljit_uw cpool_diff;
462 sljit_uw cpool_fill;
463 /* Other members. */
464 /* Contains pointer, "ldr pc, [...]" pairs. */
465 sljit_uw patches;
466 #endif
467
468 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
469 /* Temporary fields. */
470 sljit_uw shift_imm;
471 #endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */
472
473 #if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
474 sljit_uw args_size;
475 #endif
476
477 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
478 sljit_u32 imm;
479 #endif
480
481 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
482 sljit_s32 delay_slot;
483 sljit_s32 cache_arg;
484 sljit_sw cache_argw;
485 #endif
486
487 #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
488 sljit_uw args_size;
489 #endif
490
491 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
492 sljit_s32 delay_slot;
493 sljit_s32 cache_arg;
494 sljit_sw cache_argw;
495 #endif
496
497 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
498 /* Need to allocate register save area to make calls. */
499 sljit_s32 mode;
500 #endif
501
502 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
503 FILE* verbose;
504 #endif
505
506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
507 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
508 /* Flags specified by the last arithmetic instruction.
509 It contains the type of the variable flag. */
510 sljit_s32 last_flags;
511 /* Return value type set by entry functions. */
512 sljit_s32 last_return;
513 /* Local size passed to entry functions. */
514 sljit_s32 logical_local_size;
515 #endif
516
517 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
518 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
519 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
520 /* Trust arguments when the API function is called. */
521 sljit_s32 skip_checks;
522 #endif
523 };
524
525 /* --------------------------------------------------------------------- */
526 /* Main functions */
527 /* --------------------------------------------------------------------- */
528
529 /* Creates an sljit compiler. The allocator_data is required by some
530 custom memory managers. This pointer is passed to SLJIT_MALLOC
531 and SLJIT_FREE macros. Most allocators (including the default
532 one) ignores this value, and it is recommended to pass NULL
533 as a dummy value for allocator_data. The exec_allocator_data
534 has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
535 SLJIT_MALLOC_FREE functions.
536
537 Returns NULL if failed. */
538 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
539
540 /* Frees everything except the compiled machine code. */
541 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
542
543 /* Returns the current error code. If an error is occurred, future sljit
544 calls which uses the same compiler argument returns early with the same
545 error code. Thus there is no need for checking the error after every
546 call, it is enough to do it before the code is compiled. Removing
547 these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)548 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
549
550 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
551 if an error was detected before. After the error code is set
552 the compiler behaves as if the allocation failure happened
553 during an sljit function call. This can greatly simplify error
554 checking, since only the compiler status needs to be checked
555 after the compilation. */
556 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
557
558 /*
559 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
560 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
561 compiler, and freed by sljit_free_compiler. The returned pointer is
562 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
563 the compiling, and no need to worry about freeing them. The size is
564 enough to contain at most 16 pointers. If the size is outside of the range,
565 the function will return with NULL. However, this return value does not
566 indicate that there is no more memory (does not set the current error code
567 of the compiler to out-of-memory status).
568 */
569 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
570
571 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
572 /* Passing NULL disables verbose. */
573 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
574 #endif
575
576 /*
577 Create executable code from the sljit instruction stream. This is the final step
578 of the code generation so no more instructions can be added after this call.
579 */
580
581 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
582
583 /* Free executable code. */
584
585 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
586
587 /*
588 When the protected executable allocator is used the JIT code is mapped
589 twice. The first mapping has read/write and the second mapping has read/exec
590 permissions. This function returns with the relative offset of the executable
591 mapping using the writable mapping as the base after the machine code is
592 successfully generated. The returned value is always 0 for the normal executable
593 allocator, since it uses only one mapping with read/write/exec permissions.
594 Dynamic code modifications requires this value.
595
596 Before a successful code generation, this function returns with 0.
597 */
sljit_get_executable_offset(struct sljit_compiler * compiler)598 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
599
600 /*
601 The executable memory consumption of the generated code can be retrieved by
602 this function. The returned value can be used for statistical purposes.
603
604 Before a successful code generation, this function returns with 0.
605 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)606 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
607
608 /* Returns with non-zero if the feature or limitation type passed as its
609 argument is present on the current CPU.
610
611 Some features (e.g. floating point operations) require hardware (CPU)
612 support while others (e.g. move with update) are emulated if not available.
613 However even if a feature is emulated, specialized code paths can be faster
614 than the emulation. Some limitations are emulated as well so their general
615 case is supported but it has extra performance costs. */
616
617 /* [Not emulated] Floating-point support is available. */
618 #define SLJIT_HAS_FPU 0
619 /* [Limitation] Some registers are virtual registers. */
620 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
621 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
622 #define SLJIT_HAS_ZERO_REGISTER 2
623 /* [Emulated] Count leading zero is supported. */
624 #define SLJIT_HAS_CLZ 3
625 /* [Emulated] Conditional move is supported. */
626 #define SLJIT_HAS_CMOV 4
627 /* [Emulated] Conditional move is supported. */
628 #define SLJIT_HAS_PREFETCH 5
629
630 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
631 /* [Not emulated] SSE2 support is available on x86. */
632 #define SLJIT_HAS_SSE2 100
633 #endif
634
635 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
636
637 /* Instruction generation. Returns with any error code. If there is no
638 error, they return with SLJIT_SUCCESS. */
639
640 /*
641 The executable code is a function from the viewpoint of the C
642 language. The function calls must obey to the ABI (Application
643 Binary Interface) of the platform, which specify the purpose of
644 machine registers and stack handling among other things. The
645 sljit_emit_enter function emits the necessary instructions for
646 setting up a new context for the executable code and moves function
647 arguments to the saved registers. Furthermore the options argument
648 can be used to pass configuration options to the compiler. The
649 available options are listed before sljit_emit_enter.
650
651 The function argument list is the combination of SLJIT_ARGx
652 (SLJIT_DEF_ARG1) macros. Currently maximum 4 arguments are
653 supported. The first integer argument is loaded into SLJIT_S0,
654 the second one is loaded into SLJIT_S1, and so on. Similarly,
655 the first floating point argument is loaded into SLJIT_FR0,
656 the second one is loaded into SLJIT_FR1, and so on. Furthermore
657 the register set used by the function must be declared as well.
658 The number of scratch and saved registers used by the function
659 must be passed to sljit_emit_enter. Only R registers between R0
660 and "scratches" argument can be used later. E.g. if "scratches"
661 is set to 2, the scratch register set will be limited to SLJIT_R0
662 and SLJIT_R1. The S registers and the floating point registers
663 ("fscratches" and "fsaveds") are specified in a similar manner.
664 The sljit_emit_enter is also capable of allocating a stack space
665 for local variables. The "local_size" argument contains the size
666 in bytes of this local area and its staring address is stored
667 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
668 SLJIT_SP + local_size (exclusive) can be modified freely until
669 the function returns. The stack space is not initialized.
670
671 Note: the following conditions must met:
672 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
673 0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
674 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
675 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
676 0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
677 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
678
679 Note: the compiler can use saved registers as scratch registers,
680 but the opposite is not supported
681
682 Note: every call of sljit_emit_enter and sljit_set_context
683 overwrites the previous context.
684 */
685
686 /* The compiled function uses cdecl calling
687 * convention instead of SLJIT_FUNC. */
688 #define SLJIT_ENTER_CDECL 0x00000001
689
690 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
691 #define SLJIT_MAX_LOCAL_SIZE 65536
692
693 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
694 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
695 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
696
697 /* The machine code has a context (which contains the local stack space size,
698 number of used registers, etc.) which initialized by sljit_emit_enter. Several
699 functions (such as sljit_emit_return) requres this context to be able to generate
700 the appropriate code. However, some code fragments (like inline cache) may have
701 no normal entry point so their context is unknown for the compiler. Their context
702 can be provided to the compiler by the sljit_set_context function.
703
704 Note: every call of sljit_emit_enter and sljit_set_context overwrites
705 the previous context. */
706
707 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
708 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
709 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
710
711 /* Return from machine code. The sljit_emit_return_void function does not return with
712 any value. The sljit_emit_return function returns with a single value which stores
713 the result of a data move instruction. The instruction is specified by the op
714 argument, and must be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1). */
715
716 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
717
718 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
719 sljit_s32 src, sljit_sw srcw);
720
721 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
722 Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
723 values of all registers and stack frame. The return address is stored in the
724 dst argument of sljit_emit_fast_enter, and this return address can be passed
725 to SLJIT_FAST_RETURN to continue the execution after the fast call.
726
727 Fast calls are cheap operations (usually only a single call instruction is
728 emitted) but they do not preserve any registers. However the callee function
729 can freely use / update any registers and stack values which can be
730 efficiently exploited by various optimizations. Registers can be saved
731 manually by the callee function if needed.
732
733 Although returning to different address by SLJIT_FAST_RETURN is possible,
734 this address usually cannot be predicted by the return address predictor of
735 modern CPUs which may reduce performance. Furthermore certain security
736 enhancement technologies such as Intel Control-flow Enforcement Technology
737 (CET) may disallow returning to a different address.
738
739 Flags: - (does not modify flags). */
740
741 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
742
743 /*
744 Source and destination operands for arithmetical instructions
745 imm - a simple immediate value (cannot be used as a destination)
746 reg - any of the registers (immediate argument must be 0)
747 [imm] - absolute immediate memory address
748 [reg+imm] - indirect memory address
749 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
750 useful for (byte, half, int, sljit_sw) array access
751 (fully supported by both x86 and ARM architectures, and cheap operation on others)
752 */
753
754 /*
755 IMPORTANT NOTE: memory access MUST be naturally aligned unless
756 SLJIT_UNALIGNED macro is defined and its value is 1.
757
758 length | alignment
759 ---------+-----------
760 byte | 1 byte (any physical_address is accepted)
761 half | 2 byte (physical_address & 0x1 == 0)
762 int | 4 byte (physical_address & 0x3 == 0)
763 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
764 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
765 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
766 | on 64 bit machines)
767
768 Note: Different architectures have different addressing limitations.
769 A single instruction is enough for the following addressing
770 modes. Other adrressing modes are emulated by instruction
771 sequences. This information could help to improve those code
772 generators which focuses only a few architectures.
773
774 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
775 [reg+(reg<<imm)] is supported
776 [imm], -2^32+1 <= imm <= 2^32-1 is supported
777 Write-back is not supported
778 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
779 bytes, any halfs or floating point values)
780 [reg+(reg<<imm)] is supported
781 Write-back is supported
782 arm-t2: [reg+imm], -255 <= imm <= 4095
783 [reg+(reg<<imm)] is supported
784 Write back is supported only for [reg+imm], where -255 <= imm <= 255
785 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
786 [reg+(reg<<imm)] is supported
787 Write back is supported only for [reg+imm], where -256 <= imm <= 255
788 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
789 signed load on 64 bit requires immediates divisible by 4.
790 [reg+imm] is not supported for signed 8 bit values.
791 [reg+reg] is supported
792 Write-back is supported except for one instruction: 32 bit signed
793 load with [reg+imm] addressing mode on 64 bit.
794 mips: [reg+imm], -65536 <= imm <= 65535
795 sparc: [reg+imm], -4096 <= imm <= 4095
796 [reg+reg] is supported
797 s390x: [reg+imm], -2^19 <= imm < 2^19
798 [reg+reg] is supported
799 Write-back is not supported
800 */
801
802 /* Macros for specifying operand types. */
803 #define SLJIT_MEM 0x80
804 #define SLJIT_MEM0() (SLJIT_MEM)
805 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
806 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
807 #define SLJIT_IMM 0x40
808
809 /* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
810 32 bit CPUs. When this option is set for an arithmetic operation, only
811 the lower 32 bit of the input registers are used, and the CPU status
812 flags are set according to the 32 bit result. Although the higher 32 bit
813 of the input and the result registers are not defined by SLJIT, it might
814 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
815 requirements all source registers must be the result of those operations
816 where this option was also set. Memory loads read 32 bit values rather
817 than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
818 mixed. The only exception is SLJIT_MOV32 whose source register can hold
819 any 32 or 64 bit value, and it is converted to a 32 bit compatible format
820 first. This conversion is free (no instructions are emitted) on most CPUs.
821 A 32 bit value can also be converted to a 64 bit value by SLJIT_MOV_S32
822 (sign extension) or SLJIT_MOV_U32 (zero extension).
823
824 As for floating-point operations, this option sets 32 bit single
825 precision mode. Similar to the integer operations, all register arguments
826 must be the result of those operations where this option was also set.
827
828 Note: memory addressing always uses 64 bit values on 64 bit systems so
829 the result of a 32 bit operation must not be used with SLJIT_MEMx
830 macros.
831
832 This option is part of the instruction name, so there is no need to
833 manually set it. E.g:
834
835 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
836 #define SLJIT_32 0x100
837
838 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
839 to the result of an operation. Other CPUs (MIPS) do not have status
840 flags, and results must be stored in registers. To cover both architecture
841 types efficiently only two flags are defined by SLJIT:
842
843 * Zero (equal) flag: it is set if the result is zero
844 * Variable flag: its value is defined by the last arithmetic operation
845
846 SLJIT instructions can set any or both of these flags. The value of
847 these flags is undefined if the instruction does not specify their value.
848 The description of each instruction contains the list of allowed flag
849 types.
850
851 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
852
853 sljit_op2(..., SLJIT_ADD, ...)
854 Both the zero and variable flags are undefined so they can
855 have any value after the operation is completed.
856
857 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
858 Sets the zero flag if the result is zero, clears it otherwise.
859 The variable flag is undefined.
860
861 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
862 Sets the variable flag if an integer overflow occurs, clears
863 it otherwise. The zero flag is undefined.
864
865 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
866 Sets the zero flag if the result is zero, clears it otherwise.
867 Sets the variable flag if unsigned overflow (carry) occurs,
868 clears it otherwise.
869
870 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
871 unchanged.
872
873 Using these flags can reduce the number of emitted instructions. E.g. a
874 fast loop can be implemented by decreasing a counter register and set the
875 zero flag to jump back if the counter register has not reached zero.
876
877 Motivation: although CPUs can set a large number of flags, usually their
878 values are ignored or only one of them is used. Emulating a large number
879 of flags on systems without flag register is complicated so SLJIT
880 instructions must specify the flag they want to use and only that flag
881 will be emulated. The last arithmetic instruction can be repeated if
882 multiple flags need to be checked.
883 */
884
885 /* Set Zero status flag. */
886 #define SLJIT_SET_Z 0x0200
887 /* Set the variable status flag if condition is true.
888 See comparison types. */
889 #define SLJIT_SET(condition) ((condition) << 10)
890
891 /* Notes:
892 - you cannot postpone conditional jump instructions except if noted that
893 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
894 - flag combinations: '|' means 'logical or'. */
895
896 /* Starting index of opcodes for sljit_emit_op0. */
897 #define SLJIT_OP0_BASE 0
898
899 /* Flags: - (does not modify flags)
900 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
901 It falls back to SLJIT_NOP in those cases. */
902 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
903 /* Flags: - (does not modify flags)
904 Note: may or may not cause an extra cycle wait
905 it can even decrease the runtime in a few cases. */
906 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
907 /* Flags: - (may destroy flags)
908 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
909 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
910 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
911 /* Flags: - (may destroy flags)
912 Signed multiplication of SLJIT_R0 and SLJIT_R1.
913 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
914 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
915 /* Flags: - (may destroy flags)
916 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
917 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
918 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
919 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
920 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_32)
921 /* Flags: - (may destroy flags)
922 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
923 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
924 Note: if SLJIT_R1 is 0, the behaviour is undefined.
925 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
926 the behaviour is undefined. */
927 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
928 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_32)
929 /* Flags: - (may destroy flags)
930 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
931 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
932 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
933 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
934 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_32)
935 /* Flags: - (may destroy flags)
936 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
937 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
938 Note: if SLJIT_R1 is 0, the behaviour is undefined.
939 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
940 the behaviour is undefined. */
941 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
942 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_32)
943 /* Flags: - (does not modify flags)
944 ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
945 when Intel Control-flow Enforcement Technology (CET) is enabled.
946 No instruction for other architectures. */
947 #define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
948 /* Flags: - (may destroy flags)
949 Skip stack frames before return. */
950 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
951
952 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
953
954 /* Starting index of opcodes for sljit_emit_op1. */
955 #define SLJIT_OP1_BASE 32
956
957 /* The MOV instruction transfers data from source to destination.
958
959 MOV instruction suffixes:
960
961 U8 - unsigned 8 bit data transfer
962 S8 - signed 8 bit data transfer
963 U16 - unsigned 16 bit data transfer
964 S16 - signed 16 bit data transfer
965 U32 - unsigned int (32 bit) data transfer
966 S32 - signed int (32 bit) data transfer
967 P - pointer (sljit_p) data transfer
968 */
969
970 /* Flags: - (does not modify flags) */
971 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
972 /* Flags: - (does not modify flags) */
973 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
974 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_32)
975 /* Flags: - (does not modify flags) */
976 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
977 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_32)
978 /* Flags: - (does not modify flags) */
979 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
980 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_32)
981 /* Flags: - (does not modify flags) */
982 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
983 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_32)
984 /* Flags: - (does not modify flags)
985 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
986 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
987 /* Flags: - (does not modify flags)
988 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
989 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
990 /* Flags: - (does not modify flags) */
991 #define SLJIT_MOV32 (SLJIT_OP1_BASE + 7)
992 /* Flags: - (does not modify flags)
993 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
994 where all x64 features are available, e.g. 16 register) or similar
995 compiling modes */
996 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 8)
997 /* Flags: Z
998 Note: immediate source argument is not supported */
999 #define SLJIT_NOT (SLJIT_OP1_BASE + 9)
1000 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_32)
1001 /* Count leading zeroes
1002 Flags: - (may destroy flags)
1003 Note: immediate source argument is not supported */
1004 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
1005 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_32)
1006
1007 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
1008 sljit_s32 dst, sljit_sw dstw,
1009 sljit_s32 src, sljit_sw srcw);
1010
1011 /* Starting index of opcodes for sljit_emit_op2. */
1012 #define SLJIT_OP2_BASE 96
1013
1014 /* Flags: Z | OVERFLOW | CARRY */
1015 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
1016 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_32)
1017 /* Flags: CARRY */
1018 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
1019 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_32)
1020 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
1021 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
1022 SIG_LESS_EQUAL | CARRY */
1023 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
1024 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_32)
1025 /* Flags: CARRY */
1026 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
1027 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_32)
1028 /* Note: integer mul
1029 Flags: OVERFLOW */
1030 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
1031 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_32)
1032 /* Flags: Z */
1033 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
1034 #define SLJIT_AND32 (SLJIT_AND | SLJIT_32)
1035 /* Flags: Z */
1036 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
1037 #define SLJIT_OR32 (SLJIT_OR | SLJIT_32)
1038 /* Flags: Z */
1039 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
1040 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_32)
1041 /* Flags: Z
1042 Let bit_length be the length of the shift operation: 32 or 64.
1043 If src2 is immediate, src2w is masked by (bit_length - 1).
1044 Otherwise, if the content of src2 is outside the range from 0
1045 to bit_length - 1, the result is undefined. */
1046 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
1047 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_32)
1048 /* Flags: Z
1049 Let bit_length be the length of the shift operation: 32 or 64.
1050 If src2 is immediate, src2w is masked by (bit_length - 1).
1051 Otherwise, if the content of src2 is outside the range from 0
1052 to bit_length - 1, the result is undefined. */
1053 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1054 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_32)
1055 /* Flags: Z
1056 Let bit_length be the length of the shift operation: 32 or 64.
1057 If src2 is immediate, src2w is masked by (bit_length - 1).
1058 Otherwise, if the content of src2 is outside the range from 0
1059 to bit_length - 1, the result is undefined. */
1060 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1061 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_32)
1062
1063 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1064 sljit_s32 dst, sljit_sw dstw,
1065 sljit_s32 src1, sljit_sw src1w,
1066 sljit_s32 src2, sljit_sw src2w);
1067
1068 /* The sljit_emit_op2u function is the same as sljit_emit_op2 except the result is discarded. */
1069
1070 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
1071 sljit_s32 src1, sljit_sw src1w,
1072 sljit_s32 src2, sljit_sw src2w);
1073
1074 /* Starting index of opcodes for sljit_emit_op2. */
1075 #define SLJIT_OP_SRC_BASE 128
1076
1077 /* Note: src cannot be an immedate value
1078 Flags: - (does not modify flags) */
1079 #define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
1080 /* Skip stack frames before fast return.
1081 Note: src cannot be an immedate value
1082 Flags: may destroy flags. */
1083 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
1084 /* Prefetch value into the level 1 data cache
1085 Note: if the target CPU does not support data prefetch,
1086 no instructions are emitted.
1087 Note: this instruction never fails, even if the memory address is invalid.
1088 Flags: - (does not modify flags) */
1089 #define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2)
1090 /* Prefetch value into the level 2 data cache
1091 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1092 does not support this instruction form.
1093 Note: this instruction never fails, even if the memory address is invalid.
1094 Flags: - (does not modify flags) */
1095 #define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3)
1096 /* Prefetch value into the level 3 data cache
1097 Note: same as SLJIT_PREFETCH_L2 if the target CPU
1098 does not support this instruction form.
1099 Note: this instruction never fails, even if the memory address is invalid.
1100 Flags: - (does not modify flags) */
1101 #define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4)
1102 /* Prefetch a value which is only used once (and can be discarded afterwards)
1103 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1104 does not support this instruction form.
1105 Note: this instruction never fails, even if the memory address is invalid.
1106 Flags: - (does not modify flags) */
1107 #define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5)
1108
1109 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1110 sljit_s32 src, sljit_sw srcw);
1111
1112 /* Starting index of opcodes for sljit_emit_fop1. */
1113 #define SLJIT_FOP1_BASE 160
1114
1115 /* Flags: - (does not modify flags) */
1116 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1117 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_32)
1118 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1119 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1120 Rounding mode when the destination is W or I: round towards zero. */
1121 /* Flags: - (may destroy flags) */
1122 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1123 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
1124 /* Flags: - (may destroy flags) */
1125 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1126 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
1127 /* Flags: - (may destroy flags) */
1128 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1129 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
1130 /* Flags: - (may destroy flags) */
1131 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1132 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_32)
1133 /* Flags: - (may destroy flags) */
1134 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1135 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
1136 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1137 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1138 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1139 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_32)
1140 /* Flags: - (may destroy flags) */
1141 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1142 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_32)
1143 /* Flags: - (may destroy flags) */
1144 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1145 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_32)
1146
1147 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1148 sljit_s32 dst, sljit_sw dstw,
1149 sljit_s32 src, sljit_sw srcw);
1150
1151 /* Starting index of opcodes for sljit_emit_fop2. */
1152 #define SLJIT_FOP2_BASE 192
1153
1154 /* Flags: - (may destroy flags) */
1155 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1156 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_32)
1157 /* Flags: - (may destroy flags) */
1158 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1159 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_32)
1160 /* Flags: - (may destroy flags) */
1161 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1162 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_32)
1163 /* Flags: - (may destroy flags) */
1164 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1165 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_32)
1166
1167 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1168 sljit_s32 dst, sljit_sw dstw,
1169 sljit_s32 src1, sljit_sw src1w,
1170 sljit_s32 src2, sljit_sw src2w);
1171
1172 /* Label and jump instructions. */
1173
1174 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1175
1176 /* Invert (negate) conditional type: xor (^) with 0x1 */
1177
1178 /* Integer comparison types. */
1179 #define SLJIT_EQUAL 0
1180 #define SLJIT_ZERO SLJIT_EQUAL
1181 #define SLJIT_NOT_EQUAL 1
1182 #define SLJIT_NOT_ZERO SLJIT_NOT_EQUAL
1183
1184 #define SLJIT_LESS 2
1185 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1186 #define SLJIT_GREATER_EQUAL 3
1187 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1188 #define SLJIT_GREATER 4
1189 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1190 #define SLJIT_LESS_EQUAL 5
1191 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1192 #define SLJIT_SIG_LESS 6
1193 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1194 #define SLJIT_SIG_GREATER_EQUAL 7
1195 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1196 #define SLJIT_SIG_GREATER 8
1197 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1198 #define SLJIT_SIG_LESS_EQUAL 9
1199 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1200
1201 #define SLJIT_OVERFLOW 10
1202 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1203 #define SLJIT_NOT_OVERFLOW 11
1204
1205 /* Unlike other flags, sljit_emit_jump may destroy this flag. */
1206 #define SLJIT_CARRY 12
1207 #define SLJIT_SET_CARRY SLJIT_SET(SLJIT_CARRY)
1208 #define SLJIT_NOT_CARRY 13
1209
1210 /* Floating point comparison types. */
1211 #define SLJIT_EQUAL_F64 14
1212 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_32)
1213 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1214 #define SLJIT_NOT_EQUAL_F64 15
1215 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_32)
1216 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1217 #define SLJIT_LESS_F64 16
1218 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_32)
1219 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1220 #define SLJIT_GREATER_EQUAL_F64 17
1221 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_32)
1222 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1223 #define SLJIT_GREATER_F64 18
1224 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_32)
1225 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1226 #define SLJIT_LESS_EQUAL_F64 19
1227 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_32)
1228 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1229 #define SLJIT_UNORDERED_F64 20
1230 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_32)
1231 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1232 #define SLJIT_ORDERED_F64 21
1233 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_32)
1234 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1235
1236 /* Unconditional jump types. */
1237 #define SLJIT_JUMP 22
1238 /* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1239 #define SLJIT_FAST_CALL 23
1240 /* Called function must be declared with the SLJIT_FUNC attribute. */
1241 #define SLJIT_CALL 24
1242 /* Called function must be declared with cdecl attribute.
1243 This is the default attribute for C functions. */
1244 #define SLJIT_CALL_CDECL 25
1245
1246 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1247 #define SLJIT_REWRITABLE_JUMP 0x1000
1248 /* When this flag is passed, the execution of the current function ends and
1249 the called function returns to the caller of the current function. The
1250 stack usage is reduced before the call, but it is not necessarily reduced
1251 to zero. In the latter case the compiler needs to allocate space for some
1252 arguments and the return register must be kept as well.
1253
1254 This feature is highly experimental and not supported on SPARC platform
1255 at the moment. */
1256 #define SLJIT_CALL_RETURN 0x2000
1257
1258 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1259 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1260 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1261
1262 Flags: does not modify flags. */
1263 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1264
1265 /* Emit a C compiler (ABI) compatible function call.
1266 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1267 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_CALL_RETURN
1268 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1269
1270 Flags: destroy all flags. */
1271 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1272
1273 /* Basic arithmetic comparison. In most architectures it is implemented as
1274 an compare operation followed by a sljit_emit_jump. However some
1275 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1276 It is suggested to use this comparison form when appropriate.
1277 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1278 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1279
1280 Flags: may destroy flags. */
1281 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1282 sljit_s32 src1, sljit_sw src1w,
1283 sljit_s32 src2, sljit_sw src2w);
1284
1285 /* Basic floating point comparison. In most architectures it is implemented as
1286 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1287 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1288 special optimizations here. It is suggested to use this comparison form
1289 when appropriate.
1290 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1291 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1292 Flags: destroy flags.
1293 Note: if either operand is NaN, the behaviour is undefined for
1294 types up to SLJIT_S_LESS_EQUAL. */
1295 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1296 sljit_s32 src1, sljit_sw src1w,
1297 sljit_s32 src2, sljit_sw src2w);
1298
1299 /* Set the destination of the jump to this label. */
1300 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1301 /* Set the destination address of the jump to this label. */
1302 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1303
1304 /* Emit an indirect jump or fast call.
1305 Direct form: set src to SLJIT_IMM() and srcw to the address
1306 Indirect form: any other valid addressing mode
1307 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1308
1309 Flags: does not modify flags. */
1310 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1311
1312 /* Emit a C compiler (ABI) compatible function call.
1313 Direct form: set src to SLJIT_IMM() and srcw to the address
1314 Indirect form: any other valid addressing mode
1315 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1316 type can be combined (or'ed) with SLJIT_CALL_RETURN
1317 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1318
1319 Flags: destroy all flags. */
1320 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1321
1322 /* Perform the operation using the conditional flags as the second argument.
1323 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1324 represented by the type is 1, if the condition represented by the type
1325 is fulfilled, and 0 otherwise.
1326
1327 If op == SLJIT_MOV, SLJIT_MOV32:
1328 Set dst to the value represented by the type (0 or 1).
1329 Flags: - (does not modify flags)
1330 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1331 Performs the binary operation using dst as the first, and the value
1332 represented by type as the second argument. Result is written into dst.
1333 Flags: Z (may destroy flags) */
1334 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1335 sljit_s32 dst, sljit_sw dstw,
1336 sljit_s32 type);
1337
1338 /* Emit a conditional mov instruction which moves source to destination,
1339 if the condition is satisfied. Unlike other arithmetic operations this
1340 instruction does not support memory access.
1341
1342 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1343 dst_reg must be a valid register and it can be combined
1344 with SLJIT_32 to perform a 32 bit arithmetic operation
1345 src must be register or immediate (SLJIT_IMM)
1346
1347 Flags: - (does not modify flags) */
1348 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1349 sljit_s32 dst_reg,
1350 sljit_s32 src, sljit_sw srcw);
1351
1352 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1353
1354 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1355 Instead the function returns with SLJIT_SUCCESS if the instruction
1356 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1357 allows runtime checking of available instruction forms. */
1358 #define SLJIT_MEM_SUPP 0x0200
1359 /* Memory load operation. This is the default. */
1360 #define SLJIT_MEM_LOAD 0x0000
1361 /* Memory store operation. */
1362 #define SLJIT_MEM_STORE 0x0400
1363 /* Base register is updated before the memory access. */
1364 #define SLJIT_MEM_PRE 0x0800
1365 /* Base register is updated after the memory access. */
1366 #define SLJIT_MEM_POST 0x1000
1367
1368 /* Emit a single memory load or store with update instruction. When the
1369 requested instruction form is not supported by the CPU, it returns
1370 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1371 allows specializing tight loops based on the supported instruction
1372 forms (see SLJIT_MEM_SUPP flag).
1373
1374 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1375 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1376 or SLJIT_MEM_POST must be specified.
1377 reg is the source or destination register, and must be
1378 different from the base register of the mem operand
1379 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1380
1381 Flags: - (does not modify flags) */
1382 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1383 sljit_s32 reg,
1384 sljit_s32 mem, sljit_sw memw);
1385
1386 /* Same as sljit_emit_mem except the followings:
1387
1388 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1389 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1390 or SLJIT_MEM_POST must be specified.
1391 freg is the source or destination floating point register */
1392
1393 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1394 sljit_s32 freg,
1395 sljit_s32 mem, sljit_sw memw);
1396
1397 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1398 anything to negate the effect of relative addressing. For example if an
1399 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1400 contains the offset of an array item plus 0x120, this item can be
1401 overwritten by two SLJIT instructions:
1402
1403 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1404 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1405
1406 Flags: - (may destroy flags) */
1407 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1408
1409 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1410 Flags: - (does not modify flags) */
1411 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1412
1413 /* Store the value of a label (see: sljit_set_put_label)
1414 Flags: - (does not modify flags) */
1415 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1416
1417 /* Set the value stored by put_label to this label. */
1418 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1419
1420 /* After the code generation the address for label, jump and const instructions
1421 are computed. Since these structures are freed by sljit_free_compiler, the
1422 addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1423 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1424 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1425 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1426
1427 /* Only the address and executable offset are required to perform dynamic
1428 code modifications. See sljit_get_executable_offset function. */
1429 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1430 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1431
1432 /* --------------------------------------------------------------------- */
1433 /* Miscellaneous utility functions */
1434 /* --------------------------------------------------------------------- */
1435
1436 #define SLJIT_MAJOR_VERSION 0
1437 #define SLJIT_MINOR_VERSION 94
1438
1439 /* Get the human readable name of the platform. Can be useful on platforms
1440 like ARM, where ARM and Thumb2 functions can be mixed, and
1441 it is useful to know the type of the code generator. */
1442 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1443
1444 /* Portable helper function to get an offset of a member. */
1445 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1446
1447 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1448
1449 /* The sljit_stack structure and its manipulation functions provides
1450 an implementation for a top-down stack. The stack top is stored
1451 in the end field of the sljit_stack structure and the stack goes
1452 down to the min_start field, so the memory region reserved for
1453 this stack is between min_start (inclusive) and end (exclusive)
1454 fields. However the application can only use the region between
1455 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1456 function can be used to extend this region up to min_start.
1457
1458 This feature uses the "address space reserve" feature of modern
1459 operating systems. Instead of allocating a large memory block
1460 applications can allocate a small memory region and extend it
1461 later without moving the content of the memory area. Therefore
1462 after a successful resize by sljit_stack_resize all pointers into
1463 this region are still valid.
1464
1465 Note:
1466 this structure may not be supported by all operating systems.
1467 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1468 4 Kbyte or more).
1469 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1470
1471 struct sljit_stack {
1472 /* User data, anything can be stored here.
1473 Initialized to the same value as the end field. */
1474 sljit_u8 *top;
1475 /* These members are read only. */
1476 /* End address of the stack */
1477 sljit_u8 *end;
1478 /* Current start address of the stack. */
1479 sljit_u8 *start;
1480 /* Lowest start address of the stack. */
1481 sljit_u8 *min_start;
1482 };
1483
1484 /* Allocates a new stack. Returns NULL if unsuccessful.
1485 Note: see sljit_create_compiler for the explanation of allocator_data. */
1486 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1487 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1488
1489 /* Can be used to increase (extend) or decrease (shrink) the stack
1490 memory area. Returns with new_start if successful and NULL otherwise.
1491 It always fails if new_start is less than min_start or greater or equal
1492 than end fields. The fields of the stack are not changed if the returned
1493 value is NULL (the current memory content is never lost). */
1494 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1495
1496 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1497
1498 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1499
1500 /* Get the entry address of a given function (signed, unsigned result). */
1501 #define SLJIT_FUNC_ADDR(func_name) ((sljit_sw)func_name)
1502 #define SLJIT_FUNC_UADDR(func_name) ((sljit_uw)func_name)
1503
1504 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1505
1506 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1507
1508 /* Get the entry address of a given function (signed, unsigned result). */
1509 #define SLJIT_FUNC_ADDR(func_name) (*(sljit_sw*)(void*)func_name)
1510 #define SLJIT_FUNC_UADDR(func_name) (*(sljit_uw*)(void*)func_name)
1511
1512 /* For powerpc64, the function pointers point to a context descriptor. */
1513 struct sljit_function_context {
1514 sljit_uw addr;
1515 sljit_uw r2;
1516 sljit_uw r11;
1517 };
1518
1519 /* Fill the context arguments using the addr and the function.
1520 If func_ptr is NULL, it will not be set to the address of context
1521 If addr is NULL, the function address also comes from the func pointer. */
1522 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
1523
1524 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1525
1526 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1527 /* Free unused executable memory. The allocator keeps some free memory
1528 around to reduce the number of OS executable memory allocations.
1529 This improves performance since these calls are costly. However
1530 it is sometimes desired to free all unused memory regions, e.g.
1531 before the application terminates. */
1532 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1533 #endif
1534
1535 /* --------------------------------------------------------------------- */
1536 /* CPU specific functions */
1537 /* --------------------------------------------------------------------- */
1538
1539 /* The following function is a helper function for sljit_emit_op_custom.
1540 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1541 SLJIT_S and SLJIT_SP registers.
1542
1543 Note: it returns with -1 for virtual registers (only on x86-32). */
1544
1545 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1546
1547 /* The following function is a helper function for sljit_emit_op_custom.
1548 It returns with the real machine register index of any SLJIT_FLOAT register.
1549
1550 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1551
1552 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1553
1554 /* Any instruction can be inserted into the instruction stream by
1555 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1556 The size parameter must match to the instruction size of the target
1557 architecture:
1558
1559 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1560 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1561 if size == 4, the instruction argument must be 4 byte aligned.
1562 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1563
1564 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1565 void *instruction, sljit_u32 size);
1566
1567 /* Flags were set by a 32 bit operation. */
1568 #define SLJIT_CURRENT_FLAGS_32 SLJIT_32
1569
1570 /* Flags were set by an ADD or ADDC operations. */
1571 #define SLJIT_CURRENT_FLAGS_ADD 0x01
1572 /* Flags were set by a SUB, SUBC, or NEG operation. */
1573 #define SLJIT_CURRENT_FLAGS_SUB 0x02
1574
1575 /* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
1576 Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
1577 #define SLJIT_CURRENT_FLAGS_COMPARE 0x04
1578
1579 /* Define the currently available CPU status flags. It is usually used after
1580 an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
1581 status flags are available.
1582
1583 The current_flags must be a valid combination of SLJIT_SET_* and
1584 SLJIT_CURRENT_FLAGS_* constants. */
1585
1586 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1587 sljit_s32 current_flags);
1588
1589 #ifdef __cplusplus
1590 } /* extern "C" */
1591 #endif
1592
1593 #endif /* SLJIT_LIR_H_ */
1594