• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  * References:
22  *
23  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26  * RFC 4492 for the related TLS structures and constants
27  * RFC 7748 for the Curve448 and Curve25519 curve definitions
28  *
29  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30  *
31  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
33  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35  *
36  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
38  *     ePrint Archive, 2004, vol. 2004, p. 342.
39  *     <http://eprint.iacr.org/2004/342.pdf>
40  */
41 
42 #include "common.h"
43 
44 /**
45  * \brief Function level alternative implementation.
46  *
47  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48  * replace certain functions in this module. The alternative implementations are
49  * typically hardware accelerators and need to activate the hardware before the
50  * computation starts and deactivate it after it finishes. The
51  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52  * this purpose.
53  *
54  * To preserve the correct functionality the following conditions must hold:
55  *
56  * - The alternative implementation must be activated by
57  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
58  *   called.
59  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60  *   implementation is activated.
61  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62  *   implementation is activated.
63  * - Public functions must not return while the alternative implementation is
64  *   activated.
65  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67  *   \endcode ensures that the alternative implementation supports the current
68  *   group.
69  */
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 #endif
72 
73 #if defined(MBEDTLS_ECP_C)
74 
75 #include "mbedtls/ecp.h"
76 #include "mbedtls/threading.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79 
80 #include "bn_mul.h"
81 #include "ecp_invasive.h"
82 
83 #include <string.h>
84 
85 #if !defined(MBEDTLS_ECP_ALT)
86 
87 /* Parameter validation macros based on platform_util.h */
88 #define ECP_VALIDATE_RET( cond )    \
89     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
90 #define ECP_VALIDATE( cond )        \
91     MBEDTLS_INTERNAL_VALIDATE( cond )
92 
93 #if defined(MBEDTLS_PLATFORM_C)
94 #include "mbedtls/platform.h"
95 #else
96 #include <stdlib.h>
97 #include <stdio.h>
98 #define mbedtls_printf     printf
99 #define mbedtls_calloc    calloc
100 #define mbedtls_free       free
101 #endif
102 
103 #include "ecp_internal_alt.h"
104 
105 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
106     !defined(inline) && !defined(__cplusplus)
107 #define inline __inline
108 #endif
109 
110 #if defined(MBEDTLS_SELF_TEST)
111 /*
112  * Counts of point addition and doubling, and field multiplications.
113  * Used to test resistance of point multiplication to simple timing attacks.
114  */
115 static unsigned long add_count, dbl_count, mul_count;
116 #endif
117 
118 #if defined(MBEDTLS_ECP_RESTARTABLE)
119 /*
120  * Maximum number of "basic operations" to be done in a row.
121  *
122  * Default value 0 means that ECC operations will not yield.
123  * Note that regardless of the value of ecp_max_ops, always at
124  * least one step is performed before yielding.
125  *
126  * Setting ecp_max_ops=1 can be suitable for testing purposes
127  * as it will interrupt computation at all possible points.
128  */
129 static unsigned ecp_max_ops = 0;
130 
131 /*
132  * Set ecp_max_ops
133  */
mbedtls_ecp_set_max_ops(unsigned max_ops)134 void mbedtls_ecp_set_max_ops( unsigned max_ops )
135 {
136     ecp_max_ops = max_ops;
137 }
138 
139 /*
140  * Check if restart is enabled
141  */
mbedtls_ecp_restart_is_enabled(void)142 int mbedtls_ecp_restart_is_enabled( void )
143 {
144     return( ecp_max_ops != 0 );
145 }
146 
147 /*
148  * Restart sub-context for ecp_mul_comb()
149  */
150 struct mbedtls_ecp_restart_mul
151 {
152     mbedtls_ecp_point R;    /* current intermediate result                  */
153     size_t i;               /* current index in various loops, 0 outside    */
154     mbedtls_ecp_point *T;   /* table for precomputed points                 */
155     unsigned char T_size;   /* number of points in table T                  */
156     enum {                  /* what were we doing last time we returned?    */
157         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
158         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
159         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
160         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
161         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
162         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
163         ecp_rsm_final_norm,     /* do the final normalization               */
164     } state;
165 };
166 
167 /*
168  * Init restart_mul sub-context
169  */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)170 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
171 {
172     mbedtls_ecp_point_init( &ctx->R );
173     ctx->i = 0;
174     ctx->T = NULL;
175     ctx->T_size = 0;
176     ctx->state = ecp_rsm_init;
177 }
178 
179 /*
180  * Free the components of a restart_mul sub-context
181  */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)182 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
183 {
184     unsigned char i;
185 
186     if( ctx == NULL )
187         return;
188 
189     mbedtls_ecp_point_free( &ctx->R );
190 
191     if( ctx->T != NULL )
192     {
193         for( i = 0; i < ctx->T_size; i++ )
194             mbedtls_ecp_point_free( ctx->T + i );
195         mbedtls_free( ctx->T );
196     }
197 
198     ecp_restart_rsm_init( ctx );
199 }
200 
201 /*
202  * Restart context for ecp_muladd()
203  */
204 struct mbedtls_ecp_restart_muladd
205 {
206     mbedtls_ecp_point mP;       /* mP value                             */
207     mbedtls_ecp_point R;        /* R intermediate result                */
208     enum {                      /* what should we do next?              */
209         ecp_rsma_mul1 = 0,      /* first multiplication                 */
210         ecp_rsma_mul2,          /* second multiplication                */
211         ecp_rsma_add,           /* addition                             */
212         ecp_rsma_norm,          /* normalization                        */
213     } state;
214 };
215 
216 /*
217  * Init restart_muladd sub-context
218  */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)219 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
220 {
221     mbedtls_ecp_point_init( &ctx->mP );
222     mbedtls_ecp_point_init( &ctx->R );
223     ctx->state = ecp_rsma_mul1;
224 }
225 
226 /*
227  * Free the components of a restart_muladd sub-context
228  */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)229 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
230 {
231     if( ctx == NULL )
232         return;
233 
234     mbedtls_ecp_point_free( &ctx->mP );
235     mbedtls_ecp_point_free( &ctx->R );
236 
237     ecp_restart_ma_init( ctx );
238 }
239 
240 /*
241  * Initialize a restart context
242  */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)243 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
244 {
245     ECP_VALIDATE( ctx != NULL );
246     ctx->ops_done = 0;
247     ctx->depth = 0;
248     ctx->rsm = NULL;
249     ctx->ma = NULL;
250 }
251 
252 /*
253  * Free the components of a restart context
254  */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)255 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
256 {
257     if( ctx == NULL )
258         return;
259 
260     ecp_restart_rsm_free( ctx->rsm );
261     mbedtls_free( ctx->rsm );
262 
263     ecp_restart_ma_free( ctx->ma );
264     mbedtls_free( ctx->ma );
265 
266     mbedtls_ecp_restart_init( ctx );
267 }
268 
269 /*
270  * Check if we can do the next step
271  */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)272 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
273                               mbedtls_ecp_restart_ctx *rs_ctx,
274                               unsigned ops )
275 {
276     ECP_VALIDATE_RET( grp != NULL );
277 
278     if( rs_ctx != NULL && ecp_max_ops != 0 )
279     {
280         /* scale depending on curve size: the chosen reference is 256-bit,
281          * and multiplication is quadratic. Round to the closest integer. */
282         if( grp->pbits >= 512 )
283             ops *= 4;
284         else if( grp->pbits >= 384 )
285             ops *= 2;
286 
287         /* Avoid infinite loops: always allow first step.
288          * Because of that, however, it's not generally true
289          * that ops_done <= ecp_max_ops, so the check
290          * ops_done > ecp_max_ops below is mandatory. */
291         if( ( rs_ctx->ops_done != 0 ) &&
292             ( rs_ctx->ops_done > ecp_max_ops ||
293               ops > ecp_max_ops - rs_ctx->ops_done ) )
294         {
295             return( MBEDTLS_ERR_ECP_IN_PROGRESS );
296         }
297 
298         /* update running count */
299         rs_ctx->ops_done += ops;
300     }
301 
302     return( 0 );
303 }
304 
305 /* Call this when entering a function that needs its own sub-context */
306 #define ECP_RS_ENTER( SUB )   do {                                      \
307     /* reset ops count for this call if top-level */                    \
308     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )                        \
309         rs_ctx->ops_done = 0;                                           \
310                                                                         \
311     /* set up our own sub-context if needed */                          \
312     if( mbedtls_ecp_restart_is_enabled() &&                             \
313         rs_ctx != NULL && rs_ctx->SUB == NULL )                         \
314     {                                                                   \
315         rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );      \
316         if( rs_ctx->SUB == NULL )                                       \
317             return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                     \
318                                                                         \
319         ecp_restart_## SUB ##_init( rs_ctx->SUB );                      \
320     }                                                                   \
321 } while( 0 )
322 
323 /* Call this when leaving a function that needs its own sub-context */
324 #define ECP_RS_LEAVE( SUB )   do {                                      \
325     /* clear our sub-context when not in progress (done or error) */    \
326     if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
327         ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                            \
328     {                                                                   \
329         ecp_restart_## SUB ##_free( rs_ctx->SUB );                      \
330         mbedtls_free( rs_ctx->SUB );                                    \
331         rs_ctx->SUB = NULL;                                             \
332     }                                                                   \
333                                                                         \
334     if( rs_ctx != NULL )                                                \
335         rs_ctx->depth--;                                                \
336 } while( 0 )
337 
338 #else /* MBEDTLS_ECP_RESTARTABLE */
339 
340 #define ECP_RS_ENTER( sub )     (void) rs_ctx;
341 #define ECP_RS_LEAVE( sub )     (void) rs_ctx;
342 
343 #endif /* MBEDTLS_ECP_RESTARTABLE */
344 
345 /*
346  * List of supported curves:
347  *  - internal ID
348  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
349  *  - size in bits
350  *  - readable name
351  *
352  * Curves are listed in order: largest curves first, and for a given size,
353  * fastest curves first.
354  *
355  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
356  */
357 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
358 {
359 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
360     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
361 #endif
362 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
363     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
364 #endif
365 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
366     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
367 #endif
368 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
369     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
370 #endif
371 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
372     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
373 #endif
374 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
375     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
376 #endif
377 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
378     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
379 #endif
380 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
381     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
382 #endif
383 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
384     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
385 #endif
386 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
387     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
388 #endif
389 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
390     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
391 #endif
392 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
393     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
394 #endif
395 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
396     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
397 #endif
398     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
399 };
400 
401 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
402                         sizeof( ecp_supported_curves[0] )
403 
404 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
405 
406 /*
407  * List of supported curves and associated info
408  */
mbedtls_ecp_curve_list(void)409 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
410 {
411     return( ecp_supported_curves );
412 }
413 
414 /*
415  * List of supported curves, group ID only
416  */
mbedtls_ecp_grp_id_list(void)417 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
418 {
419     static int init_done = 0;
420 
421     if( ! init_done )
422     {
423         size_t i = 0;
424         const mbedtls_ecp_curve_info *curve_info;
425 
426         for( curve_info = mbedtls_ecp_curve_list();
427              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
428              curve_info++ )
429         {
430             ecp_supported_grp_id[i++] = curve_info->grp_id;
431         }
432         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
433 
434         init_done = 1;
435     }
436 
437     return( ecp_supported_grp_id );
438 }
439 
440 /*
441  * Get the curve info for the internal identifier
442  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)443 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
444 {
445     const mbedtls_ecp_curve_info *curve_info;
446 
447     for( curve_info = mbedtls_ecp_curve_list();
448          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
449          curve_info++ )
450     {
451         if( curve_info->grp_id == grp_id )
452             return( curve_info );
453     }
454 
455     return( NULL );
456 }
457 
458 /*
459  * Get the curve info from the TLS identifier
460  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)461 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
462 {
463     const mbedtls_ecp_curve_info *curve_info;
464 
465     for( curve_info = mbedtls_ecp_curve_list();
466          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
467          curve_info++ )
468     {
469         if( curve_info->tls_id == tls_id )
470             return( curve_info );
471     }
472 
473     return( NULL );
474 }
475 
476 /*
477  * Get the curve info from the name
478  */
mbedtls_ecp_curve_info_from_name(const char * name)479 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
480 {
481     const mbedtls_ecp_curve_info *curve_info;
482 
483     if( name == NULL )
484         return( NULL );
485 
486     for( curve_info = mbedtls_ecp_curve_list();
487          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
488          curve_info++ )
489     {
490         if( strcmp( curve_info->name, name ) == 0 )
491             return( curve_info );
492     }
493 
494     return( NULL );
495 }
496 
497 /*
498  * Get the type of a curve
499  */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)500 mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp )
501 {
502     if( grp->G.X.p == NULL )
503         return( MBEDTLS_ECP_TYPE_NONE );
504 
505     if( grp->G.Y.p == NULL )
506         return( MBEDTLS_ECP_TYPE_MONTGOMERY );
507     else
508         return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS );
509 }
510 
511 /*
512  * Initialize (the components of) a point
513  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)514 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
515 {
516     ECP_VALIDATE( pt != NULL );
517 
518     mbedtls_mpi_init( &pt->X );
519     mbedtls_mpi_init( &pt->Y );
520     mbedtls_mpi_init( &pt->Z );
521 }
522 
523 /*
524  * Initialize (the components of) a group
525  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)526 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
527 {
528     ECP_VALIDATE( grp != NULL );
529 
530     grp->id = MBEDTLS_ECP_DP_NONE;
531     mbedtls_mpi_init( &grp->P );
532     mbedtls_mpi_init( &grp->A );
533     mbedtls_mpi_init( &grp->B );
534     mbedtls_ecp_point_init( &grp->G );
535     mbedtls_mpi_init( &grp->N );
536     grp->pbits = 0;
537     grp->nbits = 0;
538     grp->h = 0;
539     grp->modp = NULL;
540     grp->t_pre = NULL;
541     grp->t_post = NULL;
542     grp->t_data = NULL;
543     grp->T = NULL;
544     grp->T_size = 0;
545 }
546 
547 /*
548  * Initialize (the components of) a key pair
549  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)550 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
551 {
552     ECP_VALIDATE( key != NULL );
553 
554     mbedtls_ecp_group_init( &key->grp );
555     mbedtls_mpi_init( &key->d );
556     mbedtls_ecp_point_init( &key->Q );
557 }
558 
559 /*
560  * Unallocate (the components of) a point
561  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)562 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
563 {
564     if( pt == NULL )
565         return;
566 
567     mbedtls_mpi_free( &( pt->X ) );
568     mbedtls_mpi_free( &( pt->Y ) );
569     mbedtls_mpi_free( &( pt->Z ) );
570 }
571 
572 /*
573  * Check that the comb table (grp->T) is static initialized.
574  */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)575 static int ecp_group_is_static_comb_table( const mbedtls_ecp_group *grp ) {
576 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
577     return grp->T != NULL && grp->T_size == 0;
578 #else
579     (void) grp;
580     return 0;
581 #endif
582 }
583 
584 /*
585  * Unallocate (the components of) a group
586  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)587 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
588 {
589     size_t i;
590 
591     if( grp == NULL )
592         return;
593 
594     if( grp->h != 1 )
595     {
596         mbedtls_mpi_free( &grp->P );
597         mbedtls_mpi_free( &grp->A );
598         mbedtls_mpi_free( &grp->B );
599         mbedtls_ecp_point_free( &grp->G );
600         mbedtls_mpi_free( &grp->N );
601     }
602 
603     if( !ecp_group_is_static_comb_table(grp) && grp->T != NULL )
604     {
605         for( i = 0; i < grp->T_size; i++ )
606             mbedtls_ecp_point_free( &grp->T[i] );
607         mbedtls_free( grp->T );
608     }
609 
610     mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
611 }
612 
613 /*
614  * Unallocate (the components of) a key pair
615  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)616 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
617 {
618     if( key == NULL )
619         return;
620 
621     mbedtls_ecp_group_free( &key->grp );
622     mbedtls_mpi_free( &key->d );
623     mbedtls_ecp_point_free( &key->Q );
624 }
625 
626 /*
627  * Copy the contents of a point
628  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)629 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
630 {
631     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
632     ECP_VALIDATE_RET( P != NULL );
633     ECP_VALIDATE_RET( Q != NULL );
634 
635     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
636     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
637     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
638 
639 cleanup:
640     return( ret );
641 }
642 
643 /*
644  * Copy the contents of a group object
645  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)646 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
647 {
648     ECP_VALIDATE_RET( dst != NULL );
649     ECP_VALIDATE_RET( src != NULL );
650 
651     return( mbedtls_ecp_group_load( dst, src->id ) );
652 }
653 
654 /*
655  * Set point to zero
656  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)657 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
658 {
659     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
660     ECP_VALIDATE_RET( pt != NULL );
661 
662     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
663     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
664     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
665 
666 cleanup:
667     return( ret );
668 }
669 
670 /*
671  * Tell if a point is zero
672  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)673 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
674 {
675     ECP_VALIDATE_RET( pt != NULL );
676 
677     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
678 }
679 
680 /*
681  * Compare two points lazily
682  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)683 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
684                            const mbedtls_ecp_point *Q )
685 {
686     ECP_VALIDATE_RET( P != NULL );
687     ECP_VALIDATE_RET( Q != NULL );
688 
689     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
690         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
691         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
692     {
693         return( 0 );
694     }
695 
696     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
697 }
698 
699 /*
700  * Import a non-zero point from ASCII strings
701  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)702 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
703                            const char *x, const char *y )
704 {
705     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
706     ECP_VALIDATE_RET( P != NULL );
707     ECP_VALIDATE_RET( x != NULL );
708     ECP_VALIDATE_RET( y != NULL );
709 
710     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
711     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
712     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
713 
714 cleanup:
715     return( ret );
716 }
717 
718 /*
719  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
720  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)721 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
722                                     const mbedtls_ecp_point *P,
723                                     int format, size_t *olen,
724                                     unsigned char *buf, size_t buflen )
725 {
726     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
727     size_t plen;
728     ECP_VALIDATE_RET( grp  != NULL );
729     ECP_VALIDATE_RET( P    != NULL );
730     ECP_VALIDATE_RET( olen != NULL );
731     ECP_VALIDATE_RET( buf  != NULL );
732     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
733                       format == MBEDTLS_ECP_PF_COMPRESSED );
734 
735     plen = mbedtls_mpi_size( &grp->P );
736 
737 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
738     (void) format; /* Montgomery curves always use the same point format */
739     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
740     {
741         *olen = plen;
742         if( buflen < *olen )
743             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
744 
745         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->X, buf, plen ) );
746     }
747 #endif
748 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
749     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
750     {
751         /*
752          * Common case: P == 0
753          */
754         if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
755         {
756             if( buflen < 1 )
757                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
758 
759             buf[0] = 0x00;
760             *olen = 1;
761 
762             return( 0 );
763         }
764 
765         if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
766         {
767             *olen = 2 * plen + 1;
768 
769             if( buflen < *olen )
770                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
771 
772             buf[0] = 0x04;
773             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
774             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
775         }
776         else if( format == MBEDTLS_ECP_PF_COMPRESSED )
777         {
778             *olen = plen + 1;
779 
780             if( buflen < *olen )
781                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
782 
783             buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
784             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
785         }
786     }
787 #endif
788 
789 cleanup:
790     return( ret );
791 }
792 
793 /*
794  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
795  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)796 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
797                                    mbedtls_ecp_point *pt,
798                                    const unsigned char *buf, size_t ilen )
799 {
800     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
801     size_t plen;
802     ECP_VALIDATE_RET( grp != NULL );
803     ECP_VALIDATE_RET( pt  != NULL );
804     ECP_VALIDATE_RET( buf != NULL );
805 
806     if( ilen < 1 )
807         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
808 
809     plen = mbedtls_mpi_size( &grp->P );
810 
811 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
812     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
813     {
814         if( plen != ilen )
815             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
816 
817         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->X, buf, plen ) );
818         mbedtls_mpi_free( &pt->Y );
819 
820         if( grp->id == MBEDTLS_ECP_DP_CURVE25519 )
821             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
822             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->X, plen * 8 - 1, 0 ) );
823 
824         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
825     }
826 #endif
827 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
828     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
829     {
830         if( buf[0] == 0x00 )
831         {
832             if( ilen == 1 )
833                 return( mbedtls_ecp_set_zero( pt ) );
834             else
835                 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
836         }
837 
838         if( buf[0] != 0x04 )
839             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
840 
841         if( ilen != 2 * plen + 1 )
842             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
843 
844         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
845         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y,
846                                                   buf + 1 + plen, plen ) );
847         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
848     }
849 #endif
850 
851 cleanup:
852     return( ret );
853 }
854 
855 /*
856  * Import a point from a TLS ECPoint record (RFC 4492)
857  *      struct {
858  *          opaque point <1..2^8-1>;
859  *      } ECPoint;
860  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)861 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
862                                 mbedtls_ecp_point *pt,
863                                 const unsigned char **buf, size_t buf_len )
864 {
865     unsigned char data_len;
866     const unsigned char *buf_start;
867     ECP_VALIDATE_RET( grp != NULL );
868     ECP_VALIDATE_RET( pt  != NULL );
869     ECP_VALIDATE_RET( buf != NULL );
870     ECP_VALIDATE_RET( *buf != NULL );
871 
872     /*
873      * We must have at least two bytes (1 for length, at least one for data)
874      */
875     if( buf_len < 2 )
876         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
877 
878     data_len = *(*buf)++;
879     if( data_len < 1 || data_len > buf_len - 1 )
880         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
881 
882     /*
883      * Save buffer start for read_binary and update buf
884      */
885     buf_start = *buf;
886     *buf += data_len;
887 
888     return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
889 }
890 
891 /*
892  * Export a point as a TLS ECPoint record (RFC 4492)
893  *      struct {
894  *          opaque point <1..2^8-1>;
895  *      } ECPoint;
896  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)897 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
898                          int format, size_t *olen,
899                          unsigned char *buf, size_t blen )
900 {
901     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
902     ECP_VALIDATE_RET( grp  != NULL );
903     ECP_VALIDATE_RET( pt   != NULL );
904     ECP_VALIDATE_RET( olen != NULL );
905     ECP_VALIDATE_RET( buf  != NULL );
906     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
907                       format == MBEDTLS_ECP_PF_COMPRESSED );
908 
909     /*
910      * buffer length must be at least one, for our length byte
911      */
912     if( blen < 1 )
913         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
914 
915     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
916                     olen, buf + 1, blen - 1) ) != 0 )
917         return( ret );
918 
919     /*
920      * write length to the first byte and update total length
921      */
922     buf[0] = (unsigned char) *olen;
923     ++*olen;
924 
925     return( 0 );
926 }
927 
928 /*
929  * Set a group from an ECParameters record (RFC 4492)
930  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)931 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
932                                 const unsigned char **buf, size_t len )
933 {
934     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
935     mbedtls_ecp_group_id grp_id;
936     ECP_VALIDATE_RET( grp  != NULL );
937     ECP_VALIDATE_RET( buf  != NULL );
938     ECP_VALIDATE_RET( *buf != NULL );
939 
940     if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
941         return( ret );
942 
943     return( mbedtls_ecp_group_load( grp, grp_id ) );
944 }
945 
946 /*
947  * Read a group id from an ECParameters record (RFC 4492) and convert it to
948  * mbedtls_ecp_group_id.
949  */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)950 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
951                                    const unsigned char **buf, size_t len )
952 {
953     uint16_t tls_id;
954     const mbedtls_ecp_curve_info *curve_info;
955     ECP_VALIDATE_RET( grp  != NULL );
956     ECP_VALIDATE_RET( buf  != NULL );
957     ECP_VALIDATE_RET( *buf != NULL );
958 
959     /*
960      * We expect at least three bytes (see below)
961      */
962     if( len < 3 )
963         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
964 
965     /*
966      * First byte is curve_type; only named_curve is handled
967      */
968     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
969         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
970 
971     /*
972      * Next two bytes are the namedcurve value
973      */
974     tls_id = *(*buf)++;
975     tls_id <<= 8;
976     tls_id |= *(*buf)++;
977 
978     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
979         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
980 
981     *grp = curve_info->grp_id;
982 
983     return( 0 );
984 }
985 
986 /*
987  * Write the ECParameters record corresponding to a group (RFC 4492)
988  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)989 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
990                          unsigned char *buf, size_t blen )
991 {
992     const mbedtls_ecp_curve_info *curve_info;
993     ECP_VALIDATE_RET( grp  != NULL );
994     ECP_VALIDATE_RET( buf  != NULL );
995     ECP_VALIDATE_RET( olen != NULL );
996 
997     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
998         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
999 
1000     /*
1001      * We are going to write 3 bytes (see below)
1002      */
1003     *olen = 3;
1004     if( blen < *olen )
1005         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
1006 
1007     /*
1008      * First byte is curve_type, always named_curve
1009      */
1010     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
1011 
1012     /*
1013      * Next two bytes are the namedcurve value
1014      */
1015     MBEDTLS_PUT_UINT16_BE( curve_info->tls_id, buf, 0 );
1016 
1017     return( 0 );
1018 }
1019 
1020 /*
1021  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
1022  * See the documentation of struct mbedtls_ecp_group.
1023  *
1024  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1025  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1026 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1027 {
1028     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1029 
1030     if( grp->modp == NULL )
1031         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1032 
1033     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1034     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1035         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1036     {
1037         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1038     }
1039 
1040     MBEDTLS_MPI_CHK( grp->modp( N ) );
1041 
1042     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1043     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1044         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1045 
1046     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1047         /* we known P, N and the result are positive */
1048         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1049 
1050 cleanup:
1051     return( ret );
1052 }
1053 
1054 /*
1055  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1056  *
1057  * In order to guarantee that, we need to ensure that operands of
1058  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1059  * bring the result back to this range.
1060  *
1061  * The following macros are shortcuts for doing that.
1062  */
1063 
1064 /*
1065  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1066  */
1067 #if defined(MBEDTLS_SELF_TEST)
1068 #define INC_MUL_COUNT   mul_count++;
1069 #else
1070 #define INC_MUL_COUNT
1071 #endif
1072 
1073 #define MOD_MUL( N )                                                    \
1074     do                                                                  \
1075     {                                                                   \
1076         MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) );                       \
1077         INC_MUL_COUNT                                                   \
1078     } while( 0 )
1079 
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1080 static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp,
1081                                        mbedtls_mpi *X,
1082                                        const mbedtls_mpi *A,
1083                                        const mbedtls_mpi *B )
1084 {
1085     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1086     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) );
1087     MOD_MUL( *X );
1088 cleanup:
1089     return( ret );
1090 }
1091 
1092 /*
1093  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1094  * N->s < 0 is a very fast test, which fails only if N is 0
1095  */
1096 #define MOD_SUB( N )                                                    \
1097     while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 )           \
1098         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
1099 
1100 #if ( defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1101       !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1102          defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1103          defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) ) || \
1104     ( defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1105       !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1106          defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) ) )
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1107 static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp,
1108                                        mbedtls_mpi *X,
1109                                        const mbedtls_mpi *A,
1110                                        const mbedtls_mpi *B )
1111 {
1112     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1113     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) );
1114     MOD_SUB( *X );
1115 cleanup:
1116     return( ret );
1117 }
1118 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1119 
1120 /*
1121  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1122  * We known P, N and the result are positive, so sub_abs is correct, and
1123  * a bit faster.
1124  */
1125 #define MOD_ADD( N )                                                    \
1126     while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 )                  \
1127         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
1128 
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1129 static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp,
1130                                        mbedtls_mpi *X,
1131                                        const mbedtls_mpi *A,
1132                                        const mbedtls_mpi *B )
1133 {
1134     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1135     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) );
1136     MOD_ADD( *X );
1137 cleanup:
1138     return( ret );
1139 }
1140 
1141 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1142     !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1143        defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1144        defined(MBEDTLS_ECP_ADD_MIXED_ALT) )
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1145 static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp,
1146                                            mbedtls_mpi *X,
1147                                            size_t count )
1148 {
1149     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1150     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) );
1151     MOD_ADD( *X );
1152 cleanup:
1153     return( ret );
1154 }
1155 #endif /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1156 
1157 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1158 /*
1159  * For curves in short Weierstrass form, we do all the internal operations in
1160  * Jacobian coordinates.
1161  *
1162  * For multiplication, we'll use a comb method with coutermeasueres against
1163  * SPA, hence timing attacks.
1164  */
1165 
1166 /*
1167  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1168  * Cost: 1N := 1I + 3M + 1S
1169  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1170 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1171 {
1172     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1173         return( 0 );
1174 
1175 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1176     if( mbedtls_internal_ecp_grp_capable( grp ) )
1177         return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1178 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1179 
1180 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1181     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1182 #else
1183     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1184     mbedtls_mpi Zi, ZZi;
1185     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1186 
1187     /*
1188      * X = X / Z^2  mod p
1189      */
1190     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
1191     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi,     &Zi,        &Zi     ) );
1192     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X,   &pt->X,     &ZZi    ) );
1193 
1194     /*
1195      * Y = Y / Z^3  mod p
1196      */
1197     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &ZZi    ) );
1198     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &Zi     ) );
1199 
1200     /*
1201      * Z = 1
1202      */
1203     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1204 
1205 cleanup:
1206 
1207     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1208 
1209     return( ret );
1210 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1211 }
1212 
1213 /*
1214  * Normalize jacobian coordinates of an array of (pointers to) points,
1215  * using Montgomery's trick to perform only one inversion mod P.
1216  * (See for example Cohen's "A Course in Computational Algebraic Number
1217  * Theory", Algorithm 10.3.4.)
1218  *
1219  * Warning: fails (returning an error) if one of the points is zero!
1220  * This should never happen, see choice of w in ecp_mul_comb().
1221  *
1222  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1223  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1224 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1225                                    mbedtls_ecp_point *T[], size_t T_size )
1226 {
1227     if( T_size < 2 )
1228         return( ecp_normalize_jac( grp, *T ) );
1229 
1230 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1231     if( mbedtls_internal_ecp_grp_capable( grp ) )
1232         return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1233 #endif
1234 
1235 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1236     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1237 #else
1238     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1239     size_t i;
1240     mbedtls_mpi *c, u, Zi, ZZi;
1241 
1242     if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1243         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1244 
1245     for( i = 0; i < T_size; i++ )
1246         mbedtls_mpi_init( &c[i] );
1247 
1248     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1249 
1250     /*
1251      * c[i] = Z_0 * ... * Z_i
1252      */
1253     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
1254     for( i = 1; i < T_size; i++ )
1255     {
1256         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &c[i], &c[i-1], &T[i]->Z ) );
1257     }
1258 
1259     /*
1260      * u = 1 / (Z_0 * ... * Z_n) mod P
1261      */
1262     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
1263 
1264     for( i = T_size - 1; ; i-- )
1265     {
1266         /*
1267          * Zi = 1 / Z_i mod p
1268          * u = 1 / (Z_0 * ... * Z_i) mod P
1269          */
1270         if( i == 0 ) {
1271             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1272         }
1273         else
1274         {
1275             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Zi, &u, &c[i-1]  ) );
1276             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &u,  &u, &T[i]->Z ) );
1277         }
1278 
1279         /*
1280          * proceed as in normalize()
1281          */
1282         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi,     &Zi,      &Zi  ) );
1283         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->X, &T[i]->X, &ZZi ) );
1284         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &ZZi ) );
1285         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &Zi  ) );
1286 
1287         /*
1288          * Post-precessing: reclaim some memory by shrinking coordinates
1289          * - not storing Z (always 1)
1290          * - shrinking other coordinates, but still keeping the same number of
1291          *   limbs as P, as otherwise it will too likely be regrown too fast.
1292          */
1293         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1294         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1295         mbedtls_mpi_free( &T[i]->Z );
1296 
1297         if( i == 0 )
1298             break;
1299     }
1300 
1301 cleanup:
1302 
1303     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1304     for( i = 0; i < T_size; i++ )
1305         mbedtls_mpi_free( &c[i] );
1306     mbedtls_free( c );
1307 
1308     return( ret );
1309 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1310 }
1311 
1312 /*
1313  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1314  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1315  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1316 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1317                             mbedtls_ecp_point *Q,
1318                             unsigned char inv )
1319 {
1320     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1321     unsigned char nonzero;
1322     mbedtls_mpi mQY;
1323 
1324     mbedtls_mpi_init( &mQY );
1325 
1326     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1327     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1328     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1329     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1330 
1331 cleanup:
1332     mbedtls_mpi_free( &mQY );
1333 
1334     return( ret );
1335 }
1336 
1337 /*
1338  * Point doubling R = 2 P, Jacobian coordinates
1339  *
1340  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1341  *
1342  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1343  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1344  *
1345  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1346  *
1347  * Cost: 1D := 3M + 4S          (A ==  0)
1348  *             4M + 4S          (A == -3)
1349  *             3M + 6S + 1a     otherwise
1350  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)1351 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1352                            const mbedtls_ecp_point *P )
1353 {
1354 #if defined(MBEDTLS_SELF_TEST)
1355     dbl_count++;
1356 #endif
1357 
1358 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1359     if( mbedtls_internal_ecp_grp_capable( grp ) )
1360         return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1361 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1362 
1363 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1364     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1365 #else
1366     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1367     mbedtls_mpi M, S, T, U;
1368 
1369     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1370 
1371     /* Special case for A = -3 */
1372     if( grp->A.p == NULL )
1373     {
1374         /* M = 3(X + Z^2)(X - Z^2) */
1375         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->Z,  &P->Z   ) );
1376         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &T,  &P->X,  &S      ) );
1377         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &U,  &P->X,  &S      ) );
1378         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &T,     &U      ) );
1379         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1380     }
1381     else
1382     {
1383         /* M = 3.X^2 */
1384         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->X,  &P->X   ) );
1385         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1386 
1387         /* Optimize away for "koblitz" curves with A = 0 */
1388         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1389         {
1390             /* M += A.Z^4 */
1391             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->Z,  &P->Z   ) );
1392             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &S,     &S      ) );
1393             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &T,     &grp->A ) );
1394             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &M,  &M,     &S      ) );
1395         }
1396     }
1397 
1398     /* S = 4.X.Y^2 */
1399     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &P->Y,  &P->Y   ) );
1400     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T,  1               ) );
1401     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->X,  &T      ) );
1402     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &S,  1               ) );
1403 
1404     /* U = 8.Y^4 */
1405     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U,  &T,     &T      ) );
1406     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U,  1               ) );
1407 
1408     /* T = M^2 - 2.S */
1409     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &M,     &M      ) );
1410     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T,  &T,     &S      ) );
1411     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T,  &T,     &S      ) );
1412 
1413     /* S = M(S - T) - U */
1414     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S,  &S,     &T      ) );
1415     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &S,     &M      ) );
1416     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S,  &S,     &U      ) );
1417 
1418     /* U = 2.Y.Z */
1419     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U,  &P->Y,  &P->Z   ) );
1420     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U,  1               ) );
1421 
1422     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1423     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1424     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1425 
1426 cleanup:
1427     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1428 
1429     return( ret );
1430 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1431 }
1432 
1433 /*
1434  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1435  *
1436  * The coordinates of Q must be normalized (= affine),
1437  * but those of P don't need to. R is not normalized.
1438  *
1439  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1440  * None of these cases can happen as intermediate step in ecp_mul_comb():
1441  * - at each step, P, Q and R are multiples of the base point, the factor
1442  *   being less than its order, so none of them is zero;
1443  * - Q is an odd multiple of the base point, P an even multiple,
1444  *   due to the choice of precomputed points in the modified comb method.
1445  * So branches for these cases do not leak secret information.
1446  *
1447  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1448  *
1449  * Cost: 1A := 8M + 3S
1450  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)1451 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1452                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1453 {
1454 #if defined(MBEDTLS_SELF_TEST)
1455     add_count++;
1456 #endif
1457 
1458 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1459     if( mbedtls_internal_ecp_grp_capable( grp ) )
1460         return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1461 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1462 
1463 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1464     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1465 #else
1466     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1467     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1468 
1469     /*
1470      * Trivial cases: P == 0 or Q == 0 (case 1)
1471      */
1472     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1473         return( mbedtls_ecp_copy( R, Q ) );
1474 
1475     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1476         return( mbedtls_ecp_copy( R, P ) );
1477 
1478     /*
1479      * Make sure Q coordinates are normalized
1480      */
1481     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1482         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1483 
1484     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1485     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1486 
1487     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1,  &P->Z,  &P->Z ) );
1488     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2,  &T1,    &P->Z ) );
1489     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1,  &T1,    &Q->X ) );
1490     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2,  &T2,    &Q->Y ) );
1491     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T1,  &T1,    &P->X ) );
1492     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T2,  &T2,    &P->Y ) );
1493 
1494     /* Special cases (2) and (3) */
1495     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1496     {
1497         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1498         {
1499             ret = ecp_double_jac( grp, R, P );
1500             goto cleanup;
1501         }
1502         else
1503         {
1504             ret = mbedtls_ecp_set_zero( R );
1505             goto cleanup;
1506         }
1507     }
1508 
1509     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Z,   &P->Z,  &T1   ) );
1510     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T1,    &T1   ) );
1511     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4,  &T3,    &T1   ) );
1512     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T3,    &P->X ) );
1513     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &T3 ) );
1514     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T1,  1     ) );
1515     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &X,   &T2,    &T2   ) );
1516     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X,   &X,     &T1   ) );
1517     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X,   &X,     &T4   ) );
1518     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T3,  &T3,    &X    ) );
1519     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T3,    &T2   ) );
1520     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4,  &T4,    &P->Y ) );
1521     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &Y,   &T3,    &T4   ) );
1522 
1523     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1524     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1525     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1526 
1527 cleanup:
1528 
1529     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1530     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1531 
1532     return( ret );
1533 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1534 }
1535 
1536 /*
1537  * Randomize jacobian coordinates:
1538  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1539  * This is sort of the reverse operation of ecp_normalize_jac().
1540  *
1541  * This countermeasure was first suggested in [2].
1542  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1543 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1544                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1545 {
1546 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1547     if( mbedtls_internal_ecp_grp_capable( grp ) )
1548         return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1549 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1550 
1551 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1552     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1553 #else
1554     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1555     mbedtls_mpi l, ll;
1556 
1557     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1558 
1559     /* Generate l such that 1 < l < p */
1560     MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
1561 
1562     /* Z = l * Z */
1563     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Z,   &pt->Z,     &l  ) );
1564 
1565     /* X = l^2 * X */
1566     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll,      &l,         &l  ) );
1567     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X,   &pt->X,     &ll ) );
1568 
1569     /* Y = l^3 * Y */
1570     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll,      &ll,        &l  ) );
1571     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &ll ) );
1572 
1573 cleanup:
1574     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1575 
1576     if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
1577         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1578     return( ret );
1579 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1580 }
1581 
1582 /*
1583  * Check and define parameters used by the comb method (see below for details)
1584  */
1585 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1586 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1587 #endif
1588 
1589 /* d = ceil( n / w ) */
1590 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1591 
1592 /* number of precomputed points */
1593 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1594 
1595 /*
1596  * Compute the representation of m that will be used with our comb method.
1597  *
1598  * The basic comb method is described in GECC 3.44 for example. We use a
1599  * modified version that provides resistance to SPA by avoiding zero
1600  * digits in the representation as in [3]. We modify the method further by
1601  * requiring that all K_i be odd, which has the small cost that our
1602  * representation uses one more K_i, due to carries, but saves on the size of
1603  * the precomputed table.
1604  *
1605  * Summary of the comb method and its modifications:
1606  *
1607  * - The goal is to compute m*P for some w*d-bit integer m.
1608  *
1609  * - The basic comb method splits m into the w-bit integers
1610  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1611  *   index has residue i modulo d, and computes m * P as
1612  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1613  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1614  *
1615  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1616  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1617  *   thereby successively converting it into a form where all summands
1618  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1619  *
1620  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1621  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1622  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1623  *   Performing and iterating this procedure for those x[i] that are even
1624  *   (keeping track of carry), we can transform the original sum into one of the form
1625  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1626  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1627  *   which is why we are only computing half of it in the first place in
1628  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1629  *
1630  * - For the sake of compactness, only the seven low-order bits of x[i]
1631  *   are used to represent its absolute value (K_i in the paper), and the msb
1632  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1633  *   if s_i == -1;
1634  *
1635  * Calling conventions:
1636  * - x is an array of size d + 1
1637  * - w is the size, ie number of teeth, of the comb, and must be between
1638  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1639  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1640  *   (the result will be incorrect if these assumptions are not satisfied)
1641  */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1642 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1643                                   unsigned char w, const mbedtls_mpi *m )
1644 {
1645     size_t i, j;
1646     unsigned char c, cc, adjust;
1647 
1648     memset( x, 0, d+1 );
1649 
1650     /* First get the classical comb values (except for x_d = 0) */
1651     for( i = 0; i < d; i++ )
1652         for( j = 0; j < w; j++ )
1653             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1654 
1655     /* Now make sure x_1 .. x_d are odd */
1656     c = 0;
1657     for( i = 1; i <= d; i++ )
1658     {
1659         /* Add carry and update it */
1660         cc   = x[i] & c;
1661         x[i] = x[i] ^ c;
1662         c = cc;
1663 
1664         /* Adjust if needed, avoiding branches */
1665         adjust = 1 - ( x[i] & 0x01 );
1666         c   |= x[i] & ( x[i-1] * adjust );
1667         x[i] = x[i] ^ ( x[i-1] * adjust );
1668         x[i-1] |= adjust << 7;
1669     }
1670 }
1671 
1672 /*
1673  * Precompute points for the adapted comb method
1674  *
1675  * Assumption: T must be able to hold 2^{w - 1} elements.
1676  *
1677  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1678  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1679  *
1680  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1681  *
1682  * Note: Even comb values (those where P would be omitted from the
1683  *       sum defining T[i] above) are not needed in our adaption
1684  *       the comb method. See ecp_comb_recode_core().
1685  *
1686  * This function currently works in four steps:
1687  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1688  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1689  * (3) [add]      Computation of all T[i]
1690  * (4) [norm_add] Normalization of all T[i]
1691  *
1692  * Step 1 can be interrupted but not the others; together with the final
1693  * coordinate normalization they are the largest steps done at once, depending
1694  * on the window size. Here are operation counts for P-256:
1695  *
1696  * step     (2)     (3)     (4)
1697  * w = 5    142     165     208
1698  * w = 4    136      77     160
1699  * w = 3    130      33     136
1700  * w = 2    124      11     124
1701  *
1702  * So if ECC operations are blocking for too long even with a low max_ops
1703  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1704  * to minimize maximum blocking time.
1705  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1706 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1707                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1708                                 unsigned char w, size_t d,
1709                                 mbedtls_ecp_restart_ctx *rs_ctx )
1710 {
1711     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1712     unsigned char i;
1713     size_t j = 0;
1714     const unsigned char T_size = 1U << ( w - 1 );
1715     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1716 
1717 #if defined(MBEDTLS_ECP_RESTARTABLE)
1718     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1719     {
1720         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1721             goto dbl;
1722         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1723             goto norm_dbl;
1724         if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1725             goto add;
1726         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1727             goto norm_add;
1728     }
1729 #else
1730     (void) rs_ctx;
1731 #endif
1732 
1733 #if defined(MBEDTLS_ECP_RESTARTABLE)
1734     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1735     {
1736         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1737 
1738         /* initial state for the loop */
1739         rs_ctx->rsm->i = 0;
1740     }
1741 
1742 dbl:
1743 #endif
1744     /*
1745      * Set T[0] = P and
1746      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1747      */
1748     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1749 
1750 #if defined(MBEDTLS_ECP_RESTARTABLE)
1751     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1752         j = rs_ctx->rsm->i;
1753     else
1754 #endif
1755         j = 0;
1756 
1757     for( ; j < d * ( w - 1 ); j++ )
1758     {
1759         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1760 
1761         i = 1U << ( j / d );
1762         cur = T + i;
1763 
1764         if( j % d == 0 )
1765             MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1766 
1767         MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1768     }
1769 
1770 #if defined(MBEDTLS_ECP_RESTARTABLE)
1771     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1772         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1773 
1774 norm_dbl:
1775 #endif
1776     /*
1777      * Normalize current elements in T. As T has holes,
1778      * use an auxiliary array of pointers to elements in T.
1779      */
1780     j = 0;
1781     for( i = 1; i < T_size; i <<= 1 )
1782         TT[j++] = T + i;
1783 
1784     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1785 
1786     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1787 
1788 #if defined(MBEDTLS_ECP_RESTARTABLE)
1789     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1790         rs_ctx->rsm->state = ecp_rsm_pre_add;
1791 
1792 add:
1793 #endif
1794     /*
1795      * Compute the remaining ones using the minimal number of additions
1796      * Be careful to update T[2^l] only after using it!
1797      */
1798     MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1799 
1800     for( i = 1; i < T_size; i <<= 1 )
1801     {
1802         j = i;
1803         while( j-- )
1804             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1805     }
1806 
1807 #if defined(MBEDTLS_ECP_RESTARTABLE)
1808     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1809         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1810 
1811 norm_add:
1812 #endif
1813     /*
1814      * Normalize final elements in T. Even though there are no holes now, we
1815      * still need the auxiliary array for homogeneity with the previous
1816      * call. Also, skip T[0] which is already normalised, being a copy of P.
1817      */
1818     for( j = 0; j + 1 < T_size; j++ )
1819         TT[j] = T + j + 1;
1820 
1821     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1822 
1823     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1824 
1825 cleanup:
1826 #if defined(MBEDTLS_ECP_RESTARTABLE)
1827     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1828         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1829     {
1830         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1831             rs_ctx->rsm->i = j;
1832     }
1833 #endif
1834 
1835     return( ret );
1836 }
1837 
1838 /*
1839  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1840  *
1841  * See ecp_comb_recode_core() for background
1842  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)1843 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1844                             const mbedtls_ecp_point T[], unsigned char T_size,
1845                             unsigned char i )
1846 {
1847     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1848     unsigned char ii, j;
1849 
1850     /* Ignore the "sign" bit and scale down */
1851     ii =  ( i & 0x7Fu ) >> 1;
1852 
1853     /* Read the whole table to thwart cache-based timing attacks */
1854     for( j = 0; j < T_size; j++ )
1855     {
1856         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1857         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1858     }
1859 
1860     /* Safely invert result if i is "negative" */
1861     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1862 
1863 cleanup:
1864     return( ret );
1865 }
1866 
1867 /*
1868  * Core multiplication algorithm for the (modified) comb method.
1869  * This part is actually common with the basic comb method (GECC 3.44)
1870  *
1871  * Cost: d A + d D + 1 R
1872  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1873 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1874                               const mbedtls_ecp_point T[], unsigned char T_size,
1875                               const unsigned char x[], size_t d,
1876                               int (*f_rng)(void *, unsigned char *, size_t),
1877                               void *p_rng,
1878                               mbedtls_ecp_restart_ctx *rs_ctx )
1879 {
1880     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1881     mbedtls_ecp_point Txi;
1882     size_t i;
1883 
1884     mbedtls_ecp_point_init( &Txi );
1885 
1886 #if !defined(MBEDTLS_ECP_RESTARTABLE)
1887     (void) rs_ctx;
1888 #endif
1889 
1890 #if defined(MBEDTLS_ECP_RESTARTABLE)
1891     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1892         rs_ctx->rsm->state != ecp_rsm_comb_core )
1893     {
1894         rs_ctx->rsm->i = 0;
1895         rs_ctx->rsm->state = ecp_rsm_comb_core;
1896     }
1897 
1898     /* new 'if' instead of nested for the sake of the 'else' branch */
1899     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1900     {
1901         /* restore current index (R already pointing to rs_ctx->rsm->R) */
1902         i = rs_ctx->rsm->i;
1903     }
1904     else
1905 #endif
1906     {
1907         /* Start with a non-zero point and randomize its coordinates */
1908         i = d;
1909         MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1910         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1911         if( f_rng != 0 )
1912             MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1913     }
1914 
1915     while( i != 0 )
1916     {
1917         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1918         --i;
1919 
1920         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1921         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
1922         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1923     }
1924 
1925 cleanup:
1926 
1927     mbedtls_ecp_point_free( &Txi );
1928 
1929 #if defined(MBEDTLS_ECP_RESTARTABLE)
1930     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1931         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1932     {
1933         rs_ctx->rsm->i = i;
1934         /* no need to save R, already pointing to rs_ctx->rsm->R */
1935     }
1936 #endif
1937 
1938     return( ret );
1939 }
1940 
1941 /*
1942  * Recode the scalar to get constant-time comb multiplication
1943  *
1944  * As the actual scalar recoding needs an odd scalar as a starting point,
1945  * this wrapper ensures that by replacing m by N - m if necessary, and
1946  * informs the caller that the result of multiplication will be negated.
1947  *
1948  * This works because we only support large prime order for Short Weierstrass
1949  * curves, so N is always odd hence either m or N - m is.
1950  *
1951  * See ecp_comb_recode_core() for background.
1952  */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)1953 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
1954                                    const mbedtls_mpi *m,
1955                                    unsigned char k[COMB_MAX_D + 1],
1956                                    size_t d,
1957                                    unsigned char w,
1958                                    unsigned char *parity_trick )
1959 {
1960     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1961     mbedtls_mpi M, mm;
1962 
1963     mbedtls_mpi_init( &M );
1964     mbedtls_mpi_init( &mm );
1965 
1966     /* N is always odd (see above), just make extra sure */
1967     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1968         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1969 
1970     /* do we need the parity trick? */
1971     *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
1972 
1973     /* execute parity fix in constant time */
1974     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1975     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1976     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
1977 
1978     /* actual scalar recoding */
1979     ecp_comb_recode_core( k, d, w, &M );
1980 
1981 cleanup:
1982     mbedtls_mpi_free( &mm );
1983     mbedtls_mpi_free( &M );
1984 
1985     return( ret );
1986 }
1987 
1988 /*
1989  * Perform comb multiplication (for short Weierstrass curves)
1990  * once the auxiliary table has been pre-computed.
1991  *
1992  * Scalar recoding may use a parity trick that makes us compute -m * P,
1993  * if that is the case we'll need to recover m * P at the end.
1994  */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1995 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
1996                                 mbedtls_ecp_point *R,
1997                                 const mbedtls_mpi *m,
1998                                 const mbedtls_ecp_point *T,
1999                                 unsigned char T_size,
2000                                 unsigned char w,
2001                                 size_t d,
2002                                 int (*f_rng)(void *, unsigned char *, size_t),
2003                                 void *p_rng,
2004                                 mbedtls_ecp_restart_ctx *rs_ctx )
2005 {
2006     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2007     unsigned char parity_trick;
2008     unsigned char k[COMB_MAX_D + 1];
2009     mbedtls_ecp_point *RR = R;
2010 
2011 #if defined(MBEDTLS_ECP_RESTARTABLE)
2012     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2013     {
2014         RR = &rs_ctx->rsm->R;
2015 
2016         if( rs_ctx->rsm->state == ecp_rsm_final_norm )
2017             goto final_norm;
2018     }
2019 #endif
2020 
2021     MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
2022                                             &parity_trick ) );
2023     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
2024                                         f_rng, p_rng, rs_ctx ) );
2025     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
2026 
2027 #if defined(MBEDTLS_ECP_RESTARTABLE)
2028     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2029         rs_ctx->rsm->state = ecp_rsm_final_norm;
2030 
2031 final_norm:
2032     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2033 #endif
2034     /*
2035      * Knowledge of the jacobian coordinates may leak the last few bits of the
2036      * scalar [1], and since our MPI implementation isn't constant-flow,
2037      * inversion (used for coordinate normalization) may leak the full value
2038      * of its input via side-channels [2].
2039      *
2040      * [1] https://eprint.iacr.org/2003/191
2041      * [2] https://eprint.iacr.org/2020/055
2042      *
2043      * Avoid the leak by randomizing coordinates before we normalize them.
2044      */
2045     if( f_rng != 0 )
2046         MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) );
2047 
2048     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
2049 
2050 #if defined(MBEDTLS_ECP_RESTARTABLE)
2051     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2052         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
2053 #endif
2054 
2055 cleanup:
2056     return( ret );
2057 }
2058 
2059 /*
2060  * Pick window size based on curve size and whether we optimize for base point
2061  */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2062 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
2063                                            unsigned char p_eq_g )
2064 {
2065     unsigned char w;
2066 
2067     /*
2068      * Minimize the number of multiplications, that is minimize
2069      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2070      * (see costs of the various parts, with 1S = 1M)
2071      */
2072     w = grp->nbits >= 384 ? 5 : 4;
2073 
2074     /*
2075      * If P == G, pre-compute a bit more, since this may be re-used later.
2076      * Just adding one avoids upping the cost of the first mul too much,
2077      * and the memory cost too.
2078      */
2079     if( p_eq_g )
2080         w++;
2081 
2082     /*
2083      * If static comb table may not be used (!p_eq_g) or static comb table does
2084      * not exists, make sure w is within bounds.
2085      * (The last test is useful only for very small curves in the test suite.)
2086      *
2087      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2088      * static comb table, because the size of static comb table is fixed when
2089      * it is generated.
2090      */
2091 #if( MBEDTLS_ECP_WINDOW_SIZE < 6 )
2092     if( (!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE )
2093         w = MBEDTLS_ECP_WINDOW_SIZE;
2094 #endif
2095     if( w >= grp->nbits )
2096         w = 2;
2097 
2098     return( w );
2099 }
2100 
2101 /*
2102  * Multiplication using the comb method - for curves in short Weierstrass form
2103  *
2104  * This function is mainly responsible for administrative work:
2105  * - managing the restart context if enabled
2106  * - managing the table of precomputed points (passed between the below two
2107  *   functions): allocation, computation, ownership tranfer, freeing.
2108  *
2109  * It delegates the actual arithmetic work to:
2110  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2111  *
2112  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2113  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2114 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2115                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2116                          int (*f_rng)(void *, unsigned char *, size_t),
2117                          void *p_rng,
2118                          mbedtls_ecp_restart_ctx *rs_ctx )
2119 {
2120     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2121     unsigned char w, p_eq_g, i;
2122     size_t d;
2123     unsigned char T_size = 0, T_ok = 0;
2124     mbedtls_ecp_point *T = NULL;
2125 
2126     ECP_RS_ENTER( rsm );
2127 
2128     /* Is P the base point ? */
2129 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2130     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2131                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2132 #else
2133     p_eq_g = 0;
2134 #endif
2135 
2136     /* Pick window size and deduce related sizes */
2137     w = ecp_pick_window_size( grp, p_eq_g );
2138     T_size = 1U << ( w - 1 );
2139     d = ( grp->nbits + w - 1 ) / w;
2140 
2141     /* Pre-computed table: do we have it already for the base point? */
2142     if( p_eq_g && grp->T != NULL )
2143     {
2144         /* second pointer to the same table, will be deleted on exit */
2145         T = grp->T;
2146         T_ok = 1;
2147     }
2148     else
2149 #if defined(MBEDTLS_ECP_RESTARTABLE)
2150     /* Pre-computed table: do we have one in progress? complete? */
2151     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2152     {
2153         /* transfer ownership of T from rsm to local function */
2154         T = rs_ctx->rsm->T;
2155         rs_ctx->rsm->T = NULL;
2156         rs_ctx->rsm->T_size = 0;
2157 
2158         /* This effectively jumps to the call to mul_comb_after_precomp() */
2159         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2160     }
2161     else
2162 #endif
2163     /* Allocate table if we didn't have any */
2164     {
2165         T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2166         if( T == NULL )
2167         {
2168             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2169             goto cleanup;
2170         }
2171 
2172         for( i = 0; i < T_size; i++ )
2173             mbedtls_ecp_point_init( &T[i] );
2174 
2175         T_ok = 0;
2176     }
2177 
2178     /* Compute table (or finish computing it) if not done already */
2179     if( !T_ok )
2180     {
2181         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2182 
2183         if( p_eq_g )
2184         {
2185             /* almost transfer ownership of T to the group, but keep a copy of
2186              * the pointer to use for calling the next function more easily */
2187             grp->T = T;
2188             grp->T_size = T_size;
2189         }
2190     }
2191 
2192     /* Actual comb multiplication using precomputed points */
2193     MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2194                                                  T, T_size, w, d,
2195                                                  f_rng, p_rng, rs_ctx ) );
2196 
2197 cleanup:
2198 
2199     /* does T belong to the group? */
2200     if( T == grp->T )
2201         T = NULL;
2202 
2203     /* does T belong to the restart context? */
2204 #if defined(MBEDTLS_ECP_RESTARTABLE)
2205     if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2206     {
2207         /* transfer ownership of T from local function to rsm */
2208         rs_ctx->rsm->T_size = T_size;
2209         rs_ctx->rsm->T = T;
2210         T = NULL;
2211     }
2212 #endif
2213 
2214     /* did T belong to us? then let's destroy it! */
2215     if( T != NULL )
2216     {
2217         for( i = 0; i < T_size; i++ )
2218             mbedtls_ecp_point_free( &T[i] );
2219         mbedtls_free( T );
2220     }
2221 
2222     /* don't free R while in progress in case R == P */
2223 #if defined(MBEDTLS_ECP_RESTARTABLE)
2224     if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2225 #endif
2226     /* prevent caller from using invalid value */
2227     if( ret != 0 )
2228         mbedtls_ecp_point_free( R );
2229 
2230     ECP_RS_LEAVE( rsm );
2231 
2232     return( ret );
2233 }
2234 
2235 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2236 
2237 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2238 /*
2239  * For Montgomery curves, we do all the internal arithmetic in projective
2240  * coordinates. Import/export of points uses only the x coordinates, which is
2241  * internaly represented as X / Z.
2242  *
2243  * For scalar multiplication, we'll use a Montgomery ladder.
2244  */
2245 
2246 /*
2247  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2248  * Cost: 1M + 1I
2249  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2250 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2251 {
2252 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2253     if( mbedtls_internal_ecp_grp_capable( grp ) )
2254         return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2255 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2256 
2257 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2258     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2259 #else
2260     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2261     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2262     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &P->Z ) );
2263     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2264 
2265 cleanup:
2266     return( ret );
2267 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2268 }
2269 
2270 /*
2271  * Randomize projective x/z coordinates:
2272  * (X, Z) -> (l X, l Z) for random l
2273  * This is sort of the reverse operation of ecp_normalize_mxz().
2274  *
2275  * This countermeasure was first suggested in [2].
2276  * Cost: 2M
2277  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2278 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2279                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2280 {
2281 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2282     if( mbedtls_internal_ecp_grp_capable( grp ) )
2283         return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ) );
2284 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2285 
2286 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2287     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2288 #else
2289     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2290     mbedtls_mpi l;
2291     mbedtls_mpi_init( &l );
2292 
2293     /* Generate l such that 1 < l < p */
2294     MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
2295 
2296     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &l ) );
2297     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->Z, &P->Z, &l ) );
2298 
2299 cleanup:
2300     mbedtls_mpi_free( &l );
2301 
2302     if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2303         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2304     return( ret );
2305 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2306 }
2307 
2308 /*
2309  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2310  * for Montgomery curves in x/z coordinates.
2311  *
2312  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2313  * with
2314  * d =  X1
2315  * P = (X2, Z2)
2316  * Q = (X3, Z3)
2317  * R = (X4, Z4)
2318  * S = (X5, Z5)
2319  * and eliminating temporary variables tO, ..., t4.
2320  *
2321  * Cost: 5M + 4S
2322  */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d)2323 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2324                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2325                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2326                                const mbedtls_mpi *d )
2327 {
2328 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2329     if( mbedtls_internal_ecp_grp_capable( grp ) )
2330         return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2331 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2332 
2333 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2334     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2335 #else
2336     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2337     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2338 
2339     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2340     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2341     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2342 
2343     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &A,    &P->X,   &P->Z ) );
2344     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &AA,   &A,      &A    ) );
2345     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &B,    &P->X,   &P->Z ) );
2346     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &BB,   &B,      &B    ) );
2347     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &E,    &AA,     &BB   ) );
2348     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &C,    &Q->X,   &Q->Z ) );
2349     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &D,    &Q->X,   &Q->Z ) );
2350     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &DA,   &D,      &A    ) );
2351     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &CB,   &C,      &B    ) );
2352     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &S->X, &DA,     &CB   ) );
2353     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->X, &S->X,   &S->X ) );
2354     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S->Z, &DA,     &CB   ) );
2355     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, &S->Z,   &S->Z ) );
2356     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, d,       &S->Z ) );
2357     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->X, &AA,     &BB   ) );
2358     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &grp->A, &E    ) );
2359     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &R->Z, &BB,     &R->Z ) );
2360     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &E,      &R->Z ) );
2361 
2362 cleanup:
2363     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2364     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2365     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2366 
2367     return( ret );
2368 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2369 }
2370 
2371 /*
2372  * Multiplication with Montgomery ladder in x/z coordinates,
2373  * for curves in Montgomery form
2374  */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2375 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2376                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2377                         int (*f_rng)(void *, unsigned char *, size_t),
2378                         void *p_rng )
2379 {
2380     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2381     size_t i;
2382     unsigned char b;
2383     mbedtls_ecp_point RP;
2384     mbedtls_mpi PX;
2385     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2386 
2387     if( f_rng == NULL )
2388         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2389 
2390     /* Save PX and read from P before writing to R, in case P == R */
2391     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2392     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2393 
2394     /* Set R to zero in modified x/z coordinates */
2395     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2396     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2397     mbedtls_mpi_free( &R->Y );
2398 
2399     /* RP.X might be sligtly larger than P, so reduce it */
2400     MOD_ADD( RP.X );
2401 
2402     /* Randomize coordinates of the starting point */
2403     MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2404 
2405     /* Loop invariant: R = result so far, RP = R + P */
2406     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2407     while( i-- > 0 )
2408     {
2409         b = mbedtls_mpi_get_bit( m, i );
2410         /*
2411          *  if (b) R = 2R + P else R = 2R,
2412          * which is:
2413          *  if (b) double_add( RP, R, RP, R )
2414          *  else   double_add( R, RP, R, RP )
2415          * but using safe conditional swaps to avoid leaks
2416          */
2417         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2418         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2419         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2420         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2421         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2422     }
2423 
2424     /*
2425      * Knowledge of the projective coordinates may leak the last few bits of the
2426      * scalar [1], and since our MPI implementation isn't constant-flow,
2427      * inversion (used for coordinate normalization) may leak the full value
2428      * of its input via side-channels [2].
2429      *
2430      * [1] https://eprint.iacr.org/2003/191
2431      * [2] https://eprint.iacr.org/2020/055
2432      *
2433      * Avoid the leak by randomizing coordinates before we normalize them.
2434      */
2435     MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );
2436     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2437 
2438 cleanup:
2439     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2440 
2441     return( ret );
2442 }
2443 
2444 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2445 
2446 /*
2447  * Restartable multiplication R = m * P
2448  *
2449  * This internal function can be called without an RNG in case where we know
2450  * the inputs are not sensitive.
2451  */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2452 static int ecp_mul_restartable_internal( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2453              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2454              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2455              mbedtls_ecp_restart_ctx *rs_ctx )
2456 {
2457     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2458 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2459     char is_grp_capable = 0;
2460 #endif
2461 
2462 #if defined(MBEDTLS_ECP_RESTARTABLE)
2463     /* reset ops count for this call if top-level */
2464     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2465         rs_ctx->ops_done = 0;
2466 #else
2467     (void) rs_ctx;
2468 #endif
2469 
2470 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2471     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2472         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2473 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2474 
2475 #if defined(MBEDTLS_ECP_RESTARTABLE)
2476     /* skip argument check when restarting */
2477     if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2478 #endif
2479     {
2480         /* check_privkey is free */
2481         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2482 
2483         /* Common sanity checks */
2484         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2485         MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2486     }
2487 
2488     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2489 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2490     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2491         MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2492 #endif
2493 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2494     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2495         MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2496 #endif
2497 
2498 cleanup:
2499 
2500 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2501     if( is_grp_capable )
2502         mbedtls_internal_ecp_free( grp );
2503 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2504 
2505 #if defined(MBEDTLS_ECP_RESTARTABLE)
2506     if( rs_ctx != NULL )
2507         rs_ctx->depth--;
2508 #endif
2509 
2510     return( ret );
2511 }
2512 
2513 /*
2514  * Restartable multiplication R = m * P
2515  */
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2516 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2517              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2518              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2519              mbedtls_ecp_restart_ctx *rs_ctx )
2520 {
2521     ECP_VALIDATE_RET( grp != NULL );
2522     ECP_VALIDATE_RET( R   != NULL );
2523     ECP_VALIDATE_RET( m   != NULL );
2524     ECP_VALIDATE_RET( P   != NULL );
2525 
2526     if( f_rng == NULL )
2527         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2528 
2529     return( ecp_mul_restartable_internal( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2530 }
2531 
2532 /*
2533  * Multiplication R = m * P
2534  */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2535 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2536              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2537              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2538 {
2539     ECP_VALIDATE_RET( grp != NULL );
2540     ECP_VALIDATE_RET( R   != NULL );
2541     ECP_VALIDATE_RET( m   != NULL );
2542     ECP_VALIDATE_RET( P   != NULL );
2543     return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2544 }
2545 
2546 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2547 /*
2548  * Check that an affine point is valid as a public key,
2549  * short weierstrass curves (SEC1 3.2.3.1)
2550  */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2551 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2552 {
2553     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2554     mbedtls_mpi YY, RHS;
2555 
2556     /* pt coordinates must be normalized for our checks */
2557     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2558         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2559         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2560         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2561         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2562 
2563     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2564 
2565     /*
2566      * YY = Y^2
2567      * RHS = X (X^2 + A) + B = X^3 + A X + B
2568      */
2569     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &YY,  &pt->Y,   &pt->Y  ) );
2570     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &pt->X,   &pt->X  ) );
2571 
2572     /* Special case for A = -3 */
2573     if( grp->A.p == NULL )
2574     {
2575         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
2576     }
2577     else
2578     {
2579         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->A ) );
2580     }
2581 
2582     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &RHS,     &pt->X  ) );
2583     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS,     &grp->B ) );
2584 
2585     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2586         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2587 
2588 cleanup:
2589 
2590     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2591 
2592     return( ret );
2593 }
2594 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2595 
2596 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2597 /*
2598  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2599  * NOT constant-time - ONLY for short Weierstrass!
2600  */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2601 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2602                                       mbedtls_ecp_point *R,
2603                                       const mbedtls_mpi *m,
2604                                       const mbedtls_ecp_point *P,
2605                                       mbedtls_ecp_restart_ctx *rs_ctx )
2606 {
2607     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2608 
2609     if( mbedtls_mpi_cmp_int( m, 0 ) == 0 )
2610     {
2611         MBEDTLS_MPI_CHK( mbedtls_ecp_set_zero( R ) );
2612     }
2613     else if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2614     {
2615         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2616     }
2617     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2618     {
2619         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2620         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2621             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2622     }
2623     else
2624     {
2625         MBEDTLS_MPI_CHK( ecp_mul_restartable_internal( grp, R, m, P,
2626                                                        NULL, NULL, rs_ctx ) );
2627     }
2628 
2629 cleanup:
2630     return( ret );
2631 }
2632 
2633 /*
2634  * Restartable linear combination
2635  * NOT constant-time
2636  */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2637 int mbedtls_ecp_muladd_restartable(
2638              mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2639              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2640              const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2641              mbedtls_ecp_restart_ctx *rs_ctx )
2642 {
2643     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2644     mbedtls_ecp_point mP;
2645     mbedtls_ecp_point *pmP = &mP;
2646     mbedtls_ecp_point *pR = R;
2647 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2648     char is_grp_capable = 0;
2649 #endif
2650     ECP_VALIDATE_RET( grp != NULL );
2651     ECP_VALIDATE_RET( R   != NULL );
2652     ECP_VALIDATE_RET( m   != NULL );
2653     ECP_VALIDATE_RET( P   != NULL );
2654     ECP_VALIDATE_RET( n   != NULL );
2655     ECP_VALIDATE_RET( Q   != NULL );
2656 
2657     if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2658         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2659 
2660     mbedtls_ecp_point_init( &mP );
2661 
2662     ECP_RS_ENTER( ma );
2663 
2664 #if defined(MBEDTLS_ECP_RESTARTABLE)
2665     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2666     {
2667         /* redirect intermediate results to restart context */
2668         pmP = &rs_ctx->ma->mP;
2669         pR  = &rs_ctx->ma->R;
2670 
2671         /* jump to next operation */
2672         if( rs_ctx->ma->state == ecp_rsma_mul2 )
2673             goto mul2;
2674         if( rs_ctx->ma->state == ecp_rsma_add )
2675             goto add;
2676         if( rs_ctx->ma->state == ecp_rsma_norm )
2677             goto norm;
2678     }
2679 #endif /* MBEDTLS_ECP_RESTARTABLE */
2680 
2681     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2682 #if defined(MBEDTLS_ECP_RESTARTABLE)
2683     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2684         rs_ctx->ma->state = ecp_rsma_mul2;
2685 
2686 mul2:
2687 #endif
2688     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR,  n, Q, rs_ctx ) );
2689 
2690 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2691     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2692         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2693 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2694 
2695 #if defined(MBEDTLS_ECP_RESTARTABLE)
2696     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2697         rs_ctx->ma->state = ecp_rsma_add;
2698 
2699 add:
2700 #endif
2701     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2702     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2703 #if defined(MBEDTLS_ECP_RESTARTABLE)
2704     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2705         rs_ctx->ma->state = ecp_rsma_norm;
2706 
2707 norm:
2708 #endif
2709     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2710     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2711 
2712 #if defined(MBEDTLS_ECP_RESTARTABLE)
2713     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2714         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2715 #endif
2716 
2717 cleanup:
2718 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2719     if( is_grp_capable )
2720         mbedtls_internal_ecp_free( grp );
2721 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2722 
2723     mbedtls_ecp_point_free( &mP );
2724 
2725     ECP_RS_LEAVE( ma );
2726 
2727     return( ret );
2728 }
2729 
2730 /*
2731  * Linear combination
2732  * NOT constant-time
2733  */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2734 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2735              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2736              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2737 {
2738     ECP_VALIDATE_RET( grp != NULL );
2739     ECP_VALIDATE_RET( R   != NULL );
2740     ECP_VALIDATE_RET( m   != NULL );
2741     ECP_VALIDATE_RET( P   != NULL );
2742     ECP_VALIDATE_RET( n   != NULL );
2743     ECP_VALIDATE_RET( Q   != NULL );
2744     return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2745 }
2746 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2747 
2748 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2749 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2750 #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)}
2751 #define ECP_MPI_INIT_ARRAY(x)   \
2752     ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2753 /*
2754  * Constants for the two points other than 0, 1, -1 (mod p) in
2755  * https://cr.yp.to/ecdh.html#validate
2756  * See ecp_check_pubkey_x25519().
2757  */
2758 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2759     MBEDTLS_BYTES_TO_T_UINT_8( 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae ),
2760     MBEDTLS_BYTES_TO_T_UINT_8( 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a ),
2761     MBEDTLS_BYTES_TO_T_UINT_8( 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd ),
2762     MBEDTLS_BYTES_TO_T_UINT_8( 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 ),
2763 };
2764 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2765     MBEDTLS_BYTES_TO_T_UINT_8( 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24 ),
2766     MBEDTLS_BYTES_TO_T_UINT_8( 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b ),
2767     MBEDTLS_BYTES_TO_T_UINT_8( 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86 ),
2768     MBEDTLS_BYTES_TO_T_UINT_8( 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 ),
2769 };
2770 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2771         x25519_bad_point_1 );
2772 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2773         x25519_bad_point_2 );
2774 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2775 
2776 /*
2777  * Check that the input point is not one of the low-order points.
2778  * This is recommended by the "May the Fourth" paper:
2779  * https://eprint.iacr.org/2017/806.pdf
2780  * Those points are never sent by an honest peer.
2781  */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2782 static int ecp_check_bad_points_mx( const mbedtls_mpi *X, const mbedtls_mpi *P,
2783                                     const mbedtls_ecp_group_id grp_id )
2784 {
2785     int ret;
2786     mbedtls_mpi XmP;
2787 
2788     mbedtls_mpi_init( &XmP );
2789 
2790     /* Reduce X mod P so that we only need to check values less than P.
2791      * We know X < 2^256 so we can proceed by subtraction. */
2792     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &XmP, X ) );
2793     while( mbedtls_mpi_cmp_mpi( &XmP, P ) >= 0 )
2794         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &XmP, &XmP, P ) );
2795 
2796     /* Check against the known bad values that are less than P. For Curve448
2797      * these are 0, 1 and -1. For Curve25519 we check the values less than P
2798      * from the following list: https://cr.yp.to/ecdh.html#validate */
2799     if( mbedtls_mpi_cmp_int( &XmP, 1 ) <= 0 ) /* takes care of 0 and 1 */
2800     {
2801         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2802         goto cleanup;
2803     }
2804 
2805 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2806     if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
2807     {
2808         if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_1 ) == 0 )
2809         {
2810             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2811             goto cleanup;
2812         }
2813 
2814         if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_2 ) == 0 )
2815         {
2816             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2817             goto cleanup;
2818         }
2819     }
2820 #else
2821     (void) grp_id;
2822 #endif
2823 
2824     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2825     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &XmP, &XmP, 1 ) );
2826     if( mbedtls_mpi_cmp_mpi( &XmP, P ) == 0 )
2827     {
2828         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2829         goto cleanup;
2830     }
2831 
2832     ret = 0;
2833 
2834 cleanup:
2835     mbedtls_mpi_free( &XmP );
2836 
2837     return( ret );
2838 }
2839 
2840 /*
2841  * Check validity of a public key for Montgomery curves with x-only schemes
2842  */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2843 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2844 {
2845     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2846     /* Allow any public value, if it's too big then we'll just reduce it mod p
2847      * (RFC 7748 sec. 5 para. 3). */
2848     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2849         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2850 
2851     /* Implicit in all standards (as they don't consider negative numbers):
2852      * X must be non-negative. This is normally ensured by the way it's
2853      * encoded for transmission, but let's be extra sure. */
2854     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 )
2855         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2856 
2857     return( ecp_check_bad_points_mx( &pt->X, &grp->P, grp->id ) );
2858 }
2859 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2860 
2861 /*
2862  * Check that a point is valid as a public key
2863  */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2864 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2865                               const mbedtls_ecp_point *pt )
2866 {
2867     ECP_VALIDATE_RET( grp != NULL );
2868     ECP_VALIDATE_RET( pt  != NULL );
2869 
2870     /* Must use affine coordinates */
2871     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2872         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2873 
2874 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2875     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2876         return( ecp_check_pubkey_mx( grp, pt ) );
2877 #endif
2878 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2879     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2880         return( ecp_check_pubkey_sw( grp, pt ) );
2881 #endif
2882     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2883 }
2884 
2885 /*
2886  * Check that an mbedtls_mpi is valid as a private key
2887  */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)2888 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2889                                const mbedtls_mpi *d )
2890 {
2891     ECP_VALIDATE_RET( grp != NULL );
2892     ECP_VALIDATE_RET( d   != NULL );
2893 
2894 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2895     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2896     {
2897         /* see RFC 7748 sec. 5 para. 5 */
2898         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2899             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2900             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2901             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2902 
2903         /* see [Curve25519] page 5 */
2904         if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2905             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2906 
2907         return( 0 );
2908     }
2909 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2910 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2911     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2912     {
2913         /* see SEC1 3.2 */
2914         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2915             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2916             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2917         else
2918             return( 0 );
2919     }
2920 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2921 
2922     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2923 }
2924 
2925 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2926 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2927 int mbedtls_ecp_gen_privkey_mx( size_t high_bit,
2928                                 mbedtls_mpi *d,
2929                                 int (*f_rng)(void *, unsigned char *, size_t),
2930                                 void *p_rng )
2931 {
2932     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2933     size_t n_random_bytes = high_bit / 8 + 1;
2934 
2935     /* [Curve25519] page 5 */
2936     /* Generate a (high_bit+1)-bit random number by generating just enough
2937      * random bytes, then shifting out extra bits from the top (necessary
2938      * when (high_bit+1) is not a multiple of 8). */
2939     MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_random_bytes,
2940                                               f_rng, p_rng ) );
2941     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_random_bytes - high_bit - 1 ) );
2942 
2943     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, high_bit, 1 ) );
2944 
2945     /* Make sure the last two bits are unset for Curve448, three bits for
2946        Curve25519 */
2947     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2948     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2949     if( high_bit == 254 )
2950     {
2951         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2952     }
2953 
2954 cleanup:
2955     return( ret );
2956 }
2957 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2958 
2959 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2960 static int mbedtls_ecp_gen_privkey_sw(
2961     const mbedtls_mpi *N, mbedtls_mpi *d,
2962     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2963 {
2964     int ret = mbedtls_mpi_random( d, 1, N, f_rng, p_rng );
2965     switch( ret )
2966     {
2967         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
2968             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2969         default:
2970             return( ret );
2971     }
2972 }
2973 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2974 
2975 /*
2976  * Generate a private key
2977  */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2978 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2979                      mbedtls_mpi *d,
2980                      int (*f_rng)(void *, unsigned char *, size_t),
2981                      void *p_rng )
2982 {
2983     ECP_VALIDATE_RET( grp   != NULL );
2984     ECP_VALIDATE_RET( d     != NULL );
2985     ECP_VALIDATE_RET( f_rng != NULL );
2986 
2987 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2988     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2989         return( mbedtls_ecp_gen_privkey_mx( grp->nbits, d, f_rng, p_rng ) );
2990 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2991 
2992 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2993     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2994         return( mbedtls_ecp_gen_privkey_sw( &grp->N, d, f_rng, p_rng ) );
2995 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2996 
2997     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2998 }
2999 
3000 /*
3001  * Generate a keypair with configurable base point
3002  */
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3003 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
3004                      const mbedtls_ecp_point *G,
3005                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
3006                      int (*f_rng)(void *, unsigned char *, size_t),
3007                      void *p_rng )
3008 {
3009     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3010     ECP_VALIDATE_RET( grp   != NULL );
3011     ECP_VALIDATE_RET( d     != NULL );
3012     ECP_VALIDATE_RET( G     != NULL );
3013     ECP_VALIDATE_RET( Q     != NULL );
3014     ECP_VALIDATE_RET( f_rng != NULL );
3015 
3016     MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
3017     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
3018 
3019 cleanup:
3020     return( ret );
3021 }
3022 
3023 /*
3024  * Generate key pair, wrapper for conventional base point
3025  */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3026 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
3027                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
3028                              int (*f_rng)(void *, unsigned char *, size_t),
3029                              void *p_rng )
3030 {
3031     ECP_VALIDATE_RET( grp   != NULL );
3032     ECP_VALIDATE_RET( d     != NULL );
3033     ECP_VALIDATE_RET( Q     != NULL );
3034     ECP_VALIDATE_RET( f_rng != NULL );
3035 
3036     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
3037 }
3038 
3039 /*
3040  * Generate a keypair, prettier wrapper
3041  */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3042 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3043                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3044 {
3045     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3046     ECP_VALIDATE_RET( key   != NULL );
3047     ECP_VALIDATE_RET( f_rng != NULL );
3048 
3049     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3050         return( ret );
3051 
3052     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
3053 }
3054 
3055 #define ECP_CURVE25519_KEY_SIZE 32
3056 #define ECP_CURVE448_KEY_SIZE   56
3057 /*
3058  * Read a private key.
3059  */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3060 int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3061                           const unsigned char *buf, size_t buflen )
3062 {
3063     int ret = 0;
3064 
3065     ECP_VALIDATE_RET( key  != NULL );
3066     ECP_VALIDATE_RET( buf  != NULL );
3067 
3068     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3069         return( ret );
3070 
3071     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3072 
3073 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3074     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3075     {
3076         /*
3077          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3078          */
3079         if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
3080         {
3081             if( buflen != ECP_CURVE25519_KEY_SIZE )
3082                 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3083 
3084             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3085 
3086             /* Set the three least significant bits to 0 */
3087             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3088             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3089             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 2, 0 ) );
3090 
3091             /* Set the most significant bit to 0 */
3092             MBEDTLS_MPI_CHK(
3093                     mbedtls_mpi_set_bit( &key->d,
3094                                          ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 )
3095                     );
3096 
3097             /* Set the second most significant bit to 1 */
3098             MBEDTLS_MPI_CHK(
3099                     mbedtls_mpi_set_bit( &key->d,
3100                                          ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 )
3101                     );
3102         }
3103         else if( grp_id == MBEDTLS_ECP_DP_CURVE448 )
3104         {
3105             if( buflen != ECP_CURVE448_KEY_SIZE )
3106                 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3107 
3108             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3109 
3110             /* Set the two least significant bits to 0 */
3111             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3112             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3113 
3114             /* Set the most significant bit to 1 */
3115             MBEDTLS_MPI_CHK(
3116                     mbedtls_mpi_set_bit( &key->d,
3117                                          ECP_CURVE448_KEY_SIZE * 8 - 1, 1 )
3118                     );
3119         }
3120     }
3121 
3122 #endif
3123 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3124     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3125     {
3126         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->d, buf, buflen ) );
3127 
3128         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->grp, &key->d ) );
3129     }
3130 
3131 #endif
3132 cleanup:
3133 
3134     if( ret != 0 )
3135         mbedtls_mpi_free( &key->d );
3136 
3137     return( ret );
3138 }
3139 
3140 /*
3141  * Write a private key.
3142  */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3143 int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key,
3144                            unsigned char *buf, size_t buflen )
3145 {
3146     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3147 
3148     ECP_VALIDATE_RET( key != NULL );
3149     ECP_VALIDATE_RET( buf != NULL );
3150 
3151 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3152     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3153     {
3154         if( key->grp.id == MBEDTLS_ECP_DP_CURVE25519 )
3155         {
3156             if( buflen < ECP_CURVE25519_KEY_SIZE )
3157                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3158 
3159         }
3160         else if( key->grp.id == MBEDTLS_ECP_DP_CURVE448 )
3161         {
3162             if( buflen < ECP_CURVE448_KEY_SIZE )
3163                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3164         }
3165         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->d, buf, buflen ) );
3166     }
3167 #endif
3168 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3169     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3170     {
3171         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->d, buf, buflen ) );
3172     }
3173 
3174 #endif
3175 cleanup:
3176 
3177     return( ret );
3178 }
3179 
3180 
3181 /*
3182  * Check a public-private key pair
3183  */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3184 int mbedtls_ecp_check_pub_priv(
3185         const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3186         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3187 {
3188     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3189     mbedtls_ecp_point Q;
3190     mbedtls_ecp_group grp;
3191     ECP_VALIDATE_RET( pub != NULL );
3192     ECP_VALIDATE_RET( prv != NULL );
3193 
3194     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3195         pub->grp.id != prv->grp.id ||
3196         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
3197         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
3198         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
3199     {
3200         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3201     }
3202 
3203     mbedtls_ecp_point_init( &Q );
3204     mbedtls_ecp_group_init( &grp );
3205 
3206     /* mbedtls_ecp_mul() needs a non-const group... */
3207     mbedtls_ecp_group_copy( &grp, &prv->grp );
3208 
3209     /* Also checks d is valid */
3210     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng ) );
3211 
3212     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
3213         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
3214         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
3215     {
3216         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3217         goto cleanup;
3218     }
3219 
3220 cleanup:
3221     mbedtls_ecp_point_free( &Q );
3222     mbedtls_ecp_group_free( &grp );
3223 
3224     return( ret );
3225 }
3226 
3227 #if defined(MBEDTLS_SELF_TEST)
3228 
3229 /*
3230  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3231  *
3232  * This is the linear congruential generator from numerical recipes,
3233  * except we only use the low byte as the output. See
3234  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3235  */
self_test_rng(void * ctx,unsigned char * out,size_t len)3236 static int self_test_rng( void *ctx, unsigned char *out, size_t len )
3237 {
3238     static uint32_t state = 42;
3239 
3240     (void) ctx;
3241 
3242     for( size_t i = 0; i < len; i++ )
3243     {
3244         state = state * 1664525u + 1013904223u;
3245         out[i] = (unsigned char) state;
3246     }
3247 
3248     return( 0 );
3249 }
3250 
3251 /* Adjust the exponent to be a valid private point for the specified curve.
3252  * This is sometimes necessary because we use a single set of exponents
3253  * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3254 static int self_test_adjust_exponent( const mbedtls_ecp_group *grp,
3255                                       mbedtls_mpi *m )
3256 {
3257     int ret = 0;
3258     switch( grp->id )
3259     {
3260         /* If Curve25519 is available, then that's what we use for the
3261          * Montgomery test, so we don't need the adjustment code. */
3262 #if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3263 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3264         case MBEDTLS_ECP_DP_CURVE448:
3265             /* Move highest bit from 254 to N-1. Setting bit N-1 is
3266              * necessary to enforce the highest-bit-set constraint. */
3267             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, 254, 0 ) );
3268             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, grp->nbits, 1 ) );
3269             /* Copy second-highest bit from 253 to N-2. This is not
3270              * necessary but improves the test variety a bit. */
3271             MBEDTLS_MPI_CHK(
3272                 mbedtls_mpi_set_bit( m, grp->nbits - 1,
3273                                      mbedtls_mpi_get_bit( m, 253 ) ) );
3274             break;
3275 #endif
3276 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3277         default:
3278             /* Non-Montgomery curves and Curve25519 need no adjustment. */
3279             (void) grp;
3280             (void) m;
3281             goto cleanup;
3282     }
3283 cleanup:
3284     return( ret );
3285 }
3286 
3287 /* Calculate R = m.P for each m in exponents. Check that the number of
3288  * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3289 static int self_test_point( int verbose,
3290                             mbedtls_ecp_group *grp,
3291                             mbedtls_ecp_point *R,
3292                             mbedtls_mpi *m,
3293                             const mbedtls_ecp_point *P,
3294                             const char *const *exponents,
3295                             size_t n_exponents )
3296 {
3297     int ret = 0;
3298     size_t i = 0;
3299     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3300     add_count = 0;
3301     dbl_count = 0;
3302     mul_count = 0;
3303 
3304     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[0] ) );
3305     MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3306     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3307 
3308     for( i = 1; i < n_exponents; i++ )
3309     {
3310         add_c_prev = add_count;
3311         dbl_c_prev = dbl_count;
3312         mul_c_prev = mul_count;
3313         add_count = 0;
3314         dbl_count = 0;
3315         mul_count = 0;
3316 
3317         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[i] ) );
3318         MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3319         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3320 
3321         if( add_count != add_c_prev ||
3322             dbl_count != dbl_c_prev ||
3323             mul_count != mul_c_prev )
3324         {
3325             ret = 1;
3326             break;
3327         }
3328     }
3329 
3330 cleanup:
3331     if( verbose != 0 )
3332     {
3333         if( ret != 0 )
3334             mbedtls_printf( "failed (%u)\n", (unsigned int) i );
3335         else
3336             mbedtls_printf( "passed\n" );
3337     }
3338     return( ret );
3339 }
3340 
3341 /*
3342  * Checkup routine
3343  */
mbedtls_ecp_self_test(int verbose)3344 int mbedtls_ecp_self_test( int verbose )
3345 {
3346     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3347     mbedtls_ecp_group grp;
3348     mbedtls_ecp_point R, P;
3349     mbedtls_mpi m;
3350 
3351 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3352     /* Exponents especially adapted for secp192k1, which has the lowest
3353      * order n of all supported curves (secp192r1 is in a slightly larger
3354      * field but the order of its base point is slightly smaller). */
3355     const char *sw_exponents[] =
3356     {
3357         "000000000000000000000000000000000000000000000001", /* one */
3358         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3359         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3360         "400000000000000000000000000000000000000000000000", /* one and zeros */
3361         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3362         "555555555555555555555555555555555555555555555555", /* 101010... */
3363     };
3364 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3365 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3366     const char *m_exponents[] =
3367     {
3368         /* Valid private values for Curve25519. In a build with Curve448
3369          * but not Curve25519, they will be adjusted in
3370          * self_test_adjust_exponent(). */
3371         "4000000000000000000000000000000000000000000000000000000000000000",
3372         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3373         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3374         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3375         "5555555555555555555555555555555555555555555555555555555555555550",
3376         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3377     };
3378 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3379 
3380     mbedtls_ecp_group_init( &grp );
3381     mbedtls_ecp_point_init( &R );
3382     mbedtls_ecp_point_init( &P );
3383     mbedtls_mpi_init( &m );
3384 
3385 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3386     /* Use secp192r1 if available, or any available curve */
3387 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3388     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
3389 #else
3390     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
3391 #endif
3392 
3393     if( verbose != 0 )
3394         mbedtls_printf( "  ECP SW test #1 (constant op_count, base point G): " );
3395     /* Do a dummy multiplication first to trigger precomputation */
3396     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
3397     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, self_test_rng, NULL ) );
3398     ret = self_test_point( verbose,
3399                            &grp, &R, &m, &grp.G,
3400                            sw_exponents,
3401                            sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3402     if( ret != 0 )
3403         goto cleanup;
3404 
3405     if( verbose != 0 )
3406         mbedtls_printf( "  ECP SW test #2 (constant op_count, other point): " );
3407     /* We computed P = 2G last time, use it */
3408     ret = self_test_point( verbose,
3409                            &grp, &R, &m, &P,
3410                            sw_exponents,
3411                            sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3412     if( ret != 0 )
3413         goto cleanup;
3414 
3415     mbedtls_ecp_group_free( &grp );
3416     mbedtls_ecp_point_free( &R );
3417 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3418 
3419 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3420     if( verbose != 0 )
3421         mbedtls_printf( "  ECP Montgomery test (constant op_count): " );
3422 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3423     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE25519 ) );
3424 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3425     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE448 ) );
3426 #else
3427 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3428 #endif
3429     ret = self_test_point( verbose,
3430                            &grp, &R, &m, &grp.G,
3431                            m_exponents,
3432                            sizeof( m_exponents ) / sizeof( m_exponents[0] ));
3433     if( ret != 0 )
3434         goto cleanup;
3435 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3436 
3437 cleanup:
3438 
3439     if( ret < 0 && verbose != 0 )
3440         mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
3441 
3442     mbedtls_ecp_group_free( &grp );
3443     mbedtls_ecp_point_free( &R );
3444     mbedtls_ecp_point_free( &P );
3445     mbedtls_mpi_free( &m );
3446 
3447     if( verbose != 0 )
3448         mbedtls_printf( "\n" );
3449 
3450     return( ret );
3451 }
3452 
3453 #endif /* MBEDTLS_SELF_TEST */
3454 
3455 #endif /* !MBEDTLS_ECP_ALT */
3456 
3457 #endif /* MBEDTLS_ECP_C */
3458