1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/geometry/GrTriangulator.h"
9
10 #include "src/gpu/BufferWriter.h"
11 #include "src/gpu/GrEagerVertexAllocator.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPointPriv.h"
16
17 #include <algorithm>
18
19
20 #if TRIANGULATOR_LOGGING
21 #define TESS_LOG printf
22 #define DUMP_MESH(M) (M).dump()
23 #else
24 #define TESS_LOG(...)
25 #define DUMP_MESH(M)
26 #endif
27
28 using EdgeType = GrTriangulator::EdgeType;
29 using Vertex = GrTriangulator::Vertex;
30 using VertexList = GrTriangulator::VertexList;
31 using Line = GrTriangulator::Line;
32 using Edge = GrTriangulator::Edge;
33 using EdgeList = GrTriangulator::EdgeList;
34 using Poly = GrTriangulator::Poly;
35 using MonotonePoly = GrTriangulator::MonotonePoly;
36 using Comparator = GrTriangulator::Comparator;
37
38 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)39 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
40 t->*Prev = prev;
41 t->*Next = next;
42 if (prev) {
43 prev->*Next = t;
44 } else if (head) {
45 *head = t;
46 }
47 if (next) {
48 next->*Prev = t;
49 } else if (tail) {
50 *tail = t;
51 }
52 }
53
54 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)55 static void list_remove(T* t, T** head, T** tail) {
56 if (t->*Prev) {
57 t->*Prev->*Next = t->*Next;
58 } else if (head) {
59 *head = t->*Next;
60 }
61 if (t->*Next) {
62 t->*Next->*Prev = t->*Prev;
63 } else if (tail) {
64 *tail = t->*Prev;
65 }
66 t->*Prev = t->*Next = nullptr;
67 }
68
69 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
70
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)71 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
72 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
73 }
74
sweep_lt_vert(const SkPoint & a,const SkPoint & b)75 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
76 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
77 }
78
sweep_lt(const SkPoint & a,const SkPoint & b) const79 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
80 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
81 }
82
emit_vertex(Vertex * v,bool emitCoverage,void * data)83 static inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
84 skgpu::VertexWriter verts{data};
85 verts << v->fPoint;
86
87 if (emitCoverage) {
88 verts << GrNormalizeByteToFloat(v->fAlpha);
89 }
90
91 return verts.ptr();
92 }
93
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,void * data)94 static void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
95 TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
96 TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
97 TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
98 #if TESSELLATOR_WIREFRAME
99 data = emit_vertex(v0, emitCoverage, data);
100 data = emit_vertex(v1, emitCoverage, data);
101 data = emit_vertex(v1, emitCoverage, data);
102 data = emit_vertex(v2, emitCoverage, data);
103 data = emit_vertex(v2, emitCoverage, data);
104 data = emit_vertex(v0, emitCoverage, data);
105 #else
106 data = emit_vertex(v0, emitCoverage, data);
107 data = emit_vertex(v1, emitCoverage, data);
108 data = emit_vertex(v2, emitCoverage, data);
109 #endif
110 return data;
111 }
112
insert(Vertex * v,Vertex * prev,Vertex * next)113 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
114 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
115 }
116
remove(Vertex * v)117 void GrTriangulator::VertexList::remove(Vertex* v) {
118 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
119 }
120
121 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
122
round(SkPoint * p)123 static inline void round(SkPoint* p) {
124 p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
125 p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
126 }
127
double_to_clamped_scalar(double d)128 static inline SkScalar double_to_clamped_scalar(double d) {
129 // Clamps large values to what's finitely representable when cast back to a float.
130 static const double kMaxLimit = (double) SK_ScalarMax;
131 // It's not perfect, but a using a value larger than float_min helps protect from denormalized
132 // values and ill-conditions in intermediate calculations on coordinates.
133 static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
134 if (std::abs(d) < kNearZeroLimit) {
135 d = 0.f;
136 }
137 return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
138 }
139
intersect(const Line & other,SkPoint * point) const140 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
141 double denom = fA * other.fB - fB * other.fA;
142 if (denom == 0.0) {
143 return false;
144 }
145 double scale = 1.0 / denom;
146 point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
147 point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
148 round(point);
149 return point->isFinite();
150 }
151
152 // If the edge's vertices differ by many orders of magnitude, the computed line equation can have
153 // significant error in its distance and intersection tests. To avoid this, we recursively subdivide
154 // long edges and effectively perform a binary search to perform a more accurate intersection test.
edge_line_needs_recursion(const SkPoint & p0,const SkPoint & p1)155 static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
156 // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
157 // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
158 // very large coordinates.
159 int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
160 (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
161 int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
162 (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
163 // Differ by more than 2^20, or roughly a factor of one million.
164 return expDiffX > 20 || expDiffY > 20;
165 }
166
recursive_edge_intersect(const Line & u,SkPoint u0,SkPoint u1,const Line & v,SkPoint v0,SkPoint v1,SkPoint * p,double * s,double * t)167 static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
168 const Line& v, SkPoint v0, SkPoint v1,
169 SkPoint* p, double* s, double* t) {
170 // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
171 // two line segments cannot intersect in their domain (even if the lines themselves might).
172 // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
173 // appear as empty rects, which then never "intersect" according to SkRect.
174 if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
175 std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
176 std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
177 std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
178 return false;
179 }
180
181 // Compute intersection based on current segment vertices; if an intersection is found but the
182 // vertices differ too much in magnitude, we recurse using the midpoint of the segment to
183 // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
184 // line reports no intersection but there is one).
185 double denom = u.fA * v.fB - u.fB * v.fA;
186 if (denom == 0.0) {
187 return false;
188 }
189 double dx = static_cast<double>(v0.fX) - u0.fX;
190 double dy = static_cast<double>(v0.fY) - u0.fY;
191 double sNumer = dy * v.fB + dx * v.fA;
192 double tNumer = dy * u.fB + dx * u.fA;
193 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
194 // This saves us doing the divide below unless absolutely necessary.
195 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
196 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
197 return false;
198 }
199
200 *s = sNumer / denom;
201 *t = tNumer / denom;
202 SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
203
204 const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
205 const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
206 if (!uNeedsSplit && !vNeedsSplit) {
207 p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
208 p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
209 return true;
210 } else {
211 double sScale = 1.0, sShift = 0.0;
212 double tScale = 1.0, tShift = 0.0;
213
214 if (uNeedsSplit) {
215 SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
216 (float) (0.5 * u0.fY + 0.5 * u1.fY)};
217 sScale = 0.5;
218 if (*s >= 0.5) {
219 u1 = uM;
220 sShift = 0.5;
221 } else {
222 u0 = uM;
223 }
224 }
225 if (vNeedsSplit) {
226 SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
227 (float) (0.5 * v0.fY + 0.5 * v1.fY)};
228 tScale = 0.5;
229 if (*t >= 0.5) {
230 v1 = vM;
231 tShift = 0.5;
232 } else {
233 v0 = vM;
234 }
235 }
236
237 // Just recompute both lines, even if only one was split; we're already in a slow path.
238 if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
239 // Adjust s and t back to full range
240 *s = sScale * (*s) + sShift;
241 *t = tScale * (*t) + tShift;
242 return true;
243 } else {
244 // False positive
245 return false;
246 }
247 }
248 }
249
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const250 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
251 TESS_LOG("intersecting %g -> %g with %g -> %g\n",
252 fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
253 if (fTop == other.fTop || fBottom == other.fBottom ||
254 fTop == other.fBottom || fBottom == other.fTop) {
255 // If the two edges share a vertex by construction, they have already been split and
256 // shouldn't be considered "intersecting" anymore.
257 return false;
258 }
259
260 double s, t; // needed to interpolate vertex alpha
261 const bool intersects = recursive_edge_intersect(
262 fLine, fTop->fPoint, fBottom->fPoint,
263 other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
264 p, &s, &t);
265 if (!intersects) {
266 return false;
267 }
268
269 if (alpha) {
270 if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
271 // If the intersection is on any interior edge, it needs to stay fully opaque or later
272 // triangulation could leech transparency into the inner fill region.
273 *alpha = 255;
274 } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
275 // Trivially, the intersection will be fully transparent since since it is by
276 // construction on the outer edge.
277 *alpha = 0;
278 } else {
279 // Could be two connectors crossing, or a connector crossing an outer edge.
280 // Take the max interpolated alpha
281 SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
282 *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
283 (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
284 }
285 }
286 return true;
287 }
288
insert(Edge * edge,Edge * prev,Edge * next)289 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
290 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
291 }
292
remove(Edge * edge)293 void GrTriangulator::EdgeList::remove(Edge* edge) {
294 TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
295 SkASSERT(this->contains(edge));
296 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
297 }
298
addEdge(Edge * edge)299 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
300 if (fSide == kRight_Side) {
301 SkASSERT(!edge->fUsedInRightPoly);
302 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
303 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
304 edge->fUsedInRightPoly = true;
305 } else {
306 SkASSERT(!edge->fUsedInLeftPoly);
307 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
308 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
309 edge->fUsedInLeftPoly = true;
310 }
311 }
312
emitMonotonePoly(const MonotonePoly * monotonePoly,void * data) const313 void* GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly, void* data) const {
314 SkASSERT(monotonePoly->fWinding != 0);
315 Edge* e = monotonePoly->fFirstEdge;
316 VertexList vertices;
317 vertices.append(e->fTop);
318 int count = 1;
319 while (e != nullptr) {
320 if (kRight_Side == monotonePoly->fSide) {
321 vertices.append(e->fBottom);
322 e = e->fRightPolyNext;
323 } else {
324 vertices.prepend(e->fBottom);
325 e = e->fLeftPolyNext;
326 }
327 count++;
328 }
329 Vertex* first = vertices.fHead;
330 Vertex* v = first->fNext;
331 while (v != vertices.fTail) {
332 SkASSERT(v && v->fPrev && v->fNext);
333 Vertex* prev = v->fPrev;
334 Vertex* curr = v;
335 Vertex* next = v->fNext;
336 if (count == 3) {
337 return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
338 }
339 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
340 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
341 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
342 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
343 if (ax * by - ay * bx >= 0.0) {
344 data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
345 v->fPrev->fNext = v->fNext;
346 v->fNext->fPrev = v->fPrev;
347 count--;
348 if (v->fPrev == first) {
349 v = v->fNext;
350 } else {
351 v = v->fPrev;
352 }
353 } else {
354 v = v->fNext;
355 }
356 }
357 return data;
358 }
359
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,void * data) const360 void* GrTriangulator::emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding,
361 void* data) const {
362 if (winding > 0) {
363 // Ensure our triangles always wind in the same direction as if the path had been
364 // triangulated as a simple fan (a la red book).
365 std::swap(prev, next);
366 }
367 if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
368 fPath.getFillType() == SkPathFillType::kWinding) {
369 // The first winding count will come from the actual triangle we emit. The remaining counts
370 // come from the breadcrumb triangle.
371 fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
372 }
373 return emit_triangle(prev, curr, next, fEmitCoverage, data);
374 }
375
Poly(Vertex * v,int winding)376 GrTriangulator::Poly::Poly(Vertex* v, int winding)
377 : fFirstVertex(v)
378 , fWinding(winding)
379 , fHead(nullptr)
380 , fTail(nullptr)
381 , fNext(nullptr)
382 , fPartner(nullptr)
383 , fCount(0)
384 {
385 #if TRIANGULATOR_LOGGING
386 static int gID = 0;
387 fID = gID++;
388 TESS_LOG("*** created Poly %d\n", fID);
389 #endif
390 }
391
addEdge(Edge * e,Side side,SkArenaAlloc * alloc)392 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, SkArenaAlloc* alloc) {
393 TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
394 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
395 Poly* partner = fPartner;
396 Poly* poly = this;
397 if (side == kRight_Side) {
398 if (e->fUsedInRightPoly) {
399 return this;
400 }
401 } else {
402 if (e->fUsedInLeftPoly) {
403 return this;
404 }
405 }
406 if (partner) {
407 fPartner = partner->fPartner = nullptr;
408 }
409 if (!fTail) {
410 fHead = fTail = alloc->make<MonotonePoly>(e, side, fWinding);
411 fCount += 2;
412 } else if (e->fBottom == fTail->fLastEdge->fBottom) {
413 return poly;
414 } else if (side == fTail->fSide) {
415 fTail->addEdge(e);
416 fCount++;
417 } else {
418 e = alloc->make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
419 fTail->addEdge(e);
420 fCount++;
421 if (partner) {
422 partner->addEdge(e, side, alloc);
423 poly = partner;
424 } else {
425 MonotonePoly* m = alloc->make<MonotonePoly>(e, side, fWinding);
426 m->fPrev = fTail;
427 fTail->fNext = m;
428 fTail = m;
429 }
430 }
431 return poly;
432 }
emitPoly(const Poly * poly,void * data) const433 void* GrTriangulator::emitPoly(const Poly* poly, void *data) const {
434 if (poly->fCount < 3) {
435 return data;
436 }
437 TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
438 for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
439 data = this->emitMonotonePoly(m, data);
440 }
441 return data;
442 }
443
coincident(const SkPoint & a,const SkPoint & b)444 static bool coincident(const SkPoint& a, const SkPoint& b) {
445 return a == b;
446 }
447
makePoly(Poly ** head,Vertex * v,int winding) const448 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
449 Poly* poly = fAlloc->make<Poly>(v, winding);
450 poly->fNext = *head;
451 *head = poly;
452 return poly;
453 }
454
appendPointToContour(const SkPoint & p,VertexList * contour) const455 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
456 Vertex* v = fAlloc->make<Vertex>(p, 255);
457 #if TRIANGULATOR_LOGGING
458 static float gID = 0.0f;
459 v->fID = gID++;
460 #endif
461 contour->append(v);
462 }
463
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)464 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
465 SkQuadCoeff quad(pts);
466 SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
467 SkPoint mid = to_point(quad.eval(t));
468 SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
469 if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
470 return 0;
471 }
472 return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
473 }
474
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const475 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
476 VertexList* contour) const {
477 SkQuadCoeff quad(pts);
478 Sk2s aa = quad.fA * quad.fA;
479 SkScalar denom = 2.0f * (aa[0] + aa[1]);
480 Sk2s ab = quad.fA * quad.fB;
481 SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
482 int nPoints = 1;
483 SkScalar u = 1.0f;
484 // Test possible subdivision values only at the point of maximum curvature.
485 // If it passes the flatness metric there, it'll pass everywhere.
486 while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
487 u = 1.0f / nPoints;
488 if (quad_error_at(pts, t, u) < toleranceSqd) {
489 break;
490 }
491 nPoints++;
492 }
493 for (int j = 1; j <= nPoints; j++) {
494 this->appendPointToContour(to_point(quad.eval(j * u)), contour);
495 }
496 }
497
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const498 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
499 const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
500 int pointsLeft) const {
501 SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
502 SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
503 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
504 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
505 this->appendPointToContour(p3, contour);
506 return;
507 }
508 const SkPoint q[] = {
509 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
510 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
511 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
512 };
513 const SkPoint r[] = {
514 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
515 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
516 };
517 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
518 pointsLeft >>= 1;
519 this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
520 this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
521 }
522
523 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
524
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const525 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
526 VertexList* contours, bool* isLinear) const {
527 SkScalar toleranceSqd = tolerance * tolerance;
528 SkPoint pts[4];
529 *isLinear = true;
530 VertexList* contour = contours;
531 SkPath::Iter iter(fPath, false);
532 if (fPath.isInverseFillType()) {
533 SkPoint quad[4];
534 clipBounds.toQuad(quad);
535 for (int i = 3; i >= 0; i--) {
536 this->appendPointToContour(quad[i], contours);
537 }
538 contour++;
539 }
540 SkAutoConicToQuads converter;
541 SkPath::Verb verb;
542 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
543 switch (verb) {
544 case SkPath::kConic_Verb: {
545 *isLinear = false;
546 if (toleranceSqd == 0) {
547 this->appendPointToContour(pts[2], contour);
548 break;
549 }
550 SkScalar weight = iter.conicWeight();
551 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
552 for (int i = 0; i < converter.countQuads(); ++i) {
553 this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
554 quadPts += 2;
555 }
556 break;
557 }
558 case SkPath::kMove_Verb:
559 if (contour->fHead) {
560 contour++;
561 }
562 this->appendPointToContour(pts[0], contour);
563 break;
564 case SkPath::kLine_Verb: {
565 this->appendPointToContour(pts[1], contour);
566 break;
567 }
568 case SkPath::kQuad_Verb: {
569 *isLinear = false;
570 if (toleranceSqd == 0) {
571 this->appendPointToContour(pts[2], contour);
572 break;
573 }
574 this->appendQuadraticToContour(pts, toleranceSqd, contour);
575 break;
576 }
577 case SkPath::kCubic_Verb: {
578 *isLinear = false;
579 if (toleranceSqd == 0) {
580 this->appendPointToContour(pts[3], contour);
581 break;
582 }
583 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
584 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
585 pointsLeft);
586 break;
587 }
588 case SkPath::kClose_Verb:
589 case SkPath::kDone_Verb:
590 break;
591 }
592 }
593 }
594
apply_fill_type(SkPathFillType fillType,int winding)595 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
596 switch (fillType) {
597 case SkPathFillType::kWinding:
598 return winding != 0;
599 case SkPathFillType::kEvenOdd:
600 return (winding & 1) != 0;
601 case SkPathFillType::kInverseWinding:
602 return winding == 1;
603 case SkPathFillType::kInverseEvenOdd:
604 return (winding & 1) == 1;
605 default:
606 SkASSERT(false);
607 return false;
608 }
609 }
610
applyFillType(int winding) const611 bool GrTriangulator::applyFillType(int winding) const {
612 return apply_fill_type(fPath.getFillType(), winding);
613 }
614
apply_fill_type(SkPathFillType fillType,Poly * poly)615 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
616 return poly && apply_fill_type(fillType, poly->fWinding);
617 }
618
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c) const619 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
620 const Comparator& c) const {
621 SkASSERT(prev->fPoint != next->fPoint);
622 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
623 Vertex* top = winding < 0 ? next : prev;
624 Vertex* bottom = winding < 0 ? prev : next;
625 return fAlloc->make<Edge>(top, bottom, winding, type);
626 }
627
insert(Edge * edge,Edge * prev)628 void EdgeList::insert(Edge* edge, Edge* prev) {
629 TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
630 SkASSERT(!this->contains(edge));
631 Edge* next = prev ? prev->fRight : fHead;
632 this->insert(edge, prev, next);
633 }
634
FindEnclosingEdges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)635 void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
636 if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
637 *left = v->fFirstEdgeAbove->fLeft;
638 *right = v->fLastEdgeAbove->fRight;
639 return;
640 }
641 Edge* next = nullptr;
642 Edge* prev;
643 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
644 if (prev->isLeftOf(v)) {
645 break;
646 }
647 next = prev;
648 }
649 *left = prev;
650 *right = next;
651 }
652
insertAbove(Vertex * v,const Comparator & c)653 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
654 if (fTop->fPoint == fBottom->fPoint ||
655 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
656 return;
657 }
658 TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
659 Edge* prev = nullptr;
660 Edge* next;
661 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
662 if (next->isRightOf(fTop)) {
663 break;
664 }
665 prev = next;
666 }
667 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
668 this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
669 }
670
insertBelow(Vertex * v,const Comparator & c)671 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
672 if (fTop->fPoint == fBottom->fPoint ||
673 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
674 return;
675 }
676 TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
677 Edge* prev = nullptr;
678 Edge* next;
679 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
680 if (next->isRightOf(fBottom)) {
681 break;
682 }
683 prev = next;
684 }
685 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
686 this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
687 }
688
remove_edge_above(Edge * edge)689 static void remove_edge_above(Edge* edge) {
690 SkASSERT(edge->fTop && edge->fBottom);
691 TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
692 edge->fBottom->fID);
693 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
694 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
695 }
696
remove_edge_below(Edge * edge)697 static void remove_edge_below(Edge* edge) {
698 SkASSERT(edge->fTop && edge->fBottom);
699 TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
700 edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
701 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
702 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
703 }
704
disconnect()705 void GrTriangulator::Edge::disconnect() {
706 remove_edge_above(this);
707 remove_edge_below(this);
708 }
709
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)710 static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
711 if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
712 return;
713 }
714 Vertex* v = *current;
715 TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
716 while (v != dst) {
717 v = v->fPrev;
718 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
719 activeEdges->remove(e);
720 }
721 Edge* leftEdge = v->fLeftEnclosingEdge;
722 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
723 activeEdges->insert(e, leftEdge);
724 leftEdge = e;
725 Vertex* top = e->fTop;
726 if (c.sweep_lt(top->fPoint, dst->fPoint) &&
727 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) ||
728 (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) {
729 dst = top;
730 }
731 }
732 }
733 *current = v;
734 }
735
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)736 static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
737 const Comparator& c) {
738 if (!activeEdges || !current) {
739 return;
740 }
741 Vertex* top = edge->fTop;
742 Vertex* bottom = edge->fBottom;
743 if (edge->fLeft) {
744 Vertex* leftTop = edge->fLeft->fTop;
745 Vertex* leftBottom = edge->fLeft->fBottom;
746 if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
747 rewind(activeEdges, current, leftTop, c);
748 } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
749 rewind(activeEdges, current, top, c);
750 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
751 !edge->fLeft->isLeftOf(bottom)) {
752 rewind(activeEdges, current, leftTop, c);
753 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
754 rewind(activeEdges, current, top, c);
755 }
756 }
757 if (edge->fRight) {
758 Vertex* rightTop = edge->fRight->fTop;
759 Vertex* rightBottom = edge->fRight->fBottom;
760 if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
761 rewind(activeEdges, current, rightTop, c);
762 } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
763 rewind(activeEdges, current, top, c);
764 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
765 !edge->fRight->isRightOf(bottom)) {
766 rewind(activeEdges, current, rightTop, c);
767 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
768 !edge->isLeftOf(rightBottom)) {
769 rewind(activeEdges, current, top, c);
770 }
771 }
772 }
773
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const774 void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
775 const Comparator& c) const {
776 remove_edge_below(edge);
777 if (fCollectBreadcrumbTriangles) {
778 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
779 edge->fWinding);
780 }
781 edge->fTop = v;
782 edge->recompute();
783 edge->insertBelow(v, c);
784 rewind_if_necessary(edge, activeEdges, current, c);
785 this->mergeCollinearEdges(edge, activeEdges, current, c);
786 }
787
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const788 void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
789 const Comparator& c) const {
790 remove_edge_above(edge);
791 if (fCollectBreadcrumbTriangles) {
792 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
793 edge->fWinding);
794 }
795 edge->fBottom = v;
796 edge->recompute();
797 edge->insertAbove(v, c);
798 rewind_if_necessary(edge, activeEdges, current, c);
799 this->mergeCollinearEdges(edge, activeEdges, current, c);
800 }
801
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const802 void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
803 Vertex** current, const Comparator& c) const {
804 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
805 TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
806 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
807 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
808 rewind(activeEdges, current, edge->fTop, c);
809 other->fWinding += edge->fWinding;
810 edge->disconnect();
811 edge->fTop = edge->fBottom = nullptr;
812 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
813 rewind(activeEdges, current, edge->fTop, c);
814 other->fWinding += edge->fWinding;
815 this->setBottom(edge, other->fTop, activeEdges, current, c);
816 } else {
817 rewind(activeEdges, current, other->fTop, c);
818 edge->fWinding += other->fWinding;
819 this->setBottom(other, edge->fTop, activeEdges, current, c);
820 }
821 }
822
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const823 void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
824 Vertex** current, const Comparator& c) const {
825 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
826 TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
827 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
828 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
829 rewind(activeEdges, current, edge->fTop, c);
830 other->fWinding += edge->fWinding;
831 edge->disconnect();
832 edge->fTop = edge->fBottom = nullptr;
833 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
834 rewind(activeEdges, current, other->fTop, c);
835 edge->fWinding += other->fWinding;
836 this->setTop(other, edge->fBottom, activeEdges, current, c);
837 } else {
838 rewind(activeEdges, current, edge->fTop, c);
839 other->fWinding += edge->fWinding;
840 this->setTop(edge, other->fBottom, activeEdges, current, c);
841 }
842 }
843
top_collinear(Edge * left,Edge * right)844 static bool top_collinear(Edge* left, Edge* right) {
845 if (!left || !right) {
846 return false;
847 }
848 return left->fTop->fPoint == right->fTop->fPoint ||
849 !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
850 }
851
bottom_collinear(Edge * left,Edge * right)852 static bool bottom_collinear(Edge* left, Edge* right) {
853 if (!left || !right) {
854 return false;
855 }
856 return left->fBottom->fPoint == right->fBottom->fPoint ||
857 !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
858 }
859
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const860 void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
861 const Comparator& c) const {
862 for (;;) {
863 if (top_collinear(edge->fPrevEdgeAbove, edge)) {
864 this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
865 } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
866 this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c);
867 } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
868 this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
869 } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
870 this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c);
871 } else {
872 break;
873 }
874 }
875 SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
876 SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
877 SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
878 SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
879 }
880
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const881 bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
882 const Comparator& c) const {
883 if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
884 return false;
885 }
886 TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
887 edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
888 Vertex* top;
889 Vertex* bottom;
890 int winding = edge->fWinding;
891 // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
892 // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if
893 // v was clamped/rounded this relation doesn't always hold.
894 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
895 // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
896 // the new edge so that it winds as if it were p0->v.
897 top = v;
898 bottom = edge->fTop;
899 winding *= -1;
900 this->setTop(edge, v, activeEdges, current, c);
901 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
902 // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
903 // the new edge so that it winds as if it were v->p1.
904 top = edge->fBottom;
905 bottom = v;
906 winding *= -1;
907 this->setBottom(edge, v, activeEdges, current, c);
908 } else {
909 // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
910 // is valid for both edges.
911 top = v;
912 bottom = edge->fBottom;
913 this->setBottom(edge, v, activeEdges, current, c);
914 }
915 Edge* newEdge = fAlloc->make<Edge>(top, bottom, winding, edge->fType);
916 newEdge->insertBelow(top, c);
917 newEdge->insertAbove(bottom, c);
918 this->mergeCollinearEdges(newEdge, activeEdges, current, c);
919 return true;
920 }
921
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const922 bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges,
923 Vertex** current, const Comparator& c) const {
924 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
925 return false;
926 }
927 if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
928 return false;
929 }
930 if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
931 if (!left->isLeftOf(right->fTop)) {
932 rewind(activeEdges, current, right->fTop, c);
933 return this->splitEdge(left, right->fTop, activeEdges, current, c);
934 }
935 } else {
936 if (!right->isRightOf(left->fTop)) {
937 rewind(activeEdges, current, left->fTop, c);
938 return this->splitEdge(right, left->fTop, activeEdges, current, c);
939 }
940 }
941 if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
942 if (!left->isLeftOf(right->fBottom)) {
943 rewind(activeEdges, current, right->fBottom, c);
944 return this->splitEdge(left, right->fBottom, activeEdges, current, c);
945 }
946 } else {
947 if (!right->isRightOf(left->fBottom)) {
948 rewind(activeEdges, current, left->fBottom, c);
949 return this->splitEdge(right, left->fBottom, activeEdges, current, c);
950 }
951 }
952 return false;
953 }
954
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale) const955 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
956 const Comparator& c, int windingScale) const {
957 if (!prev || !next || prev->fPoint == next->fPoint) {
958 return nullptr;
959 }
960 Edge* edge = this->makeEdge(prev, next, type, c);
961 edge->insertBelow(edge->fTop, c);
962 edge->insertAbove(edge->fBottom, c);
963 edge->fWinding *= windingScale;
964 this->mergeCollinearEdges(edge, nullptr, nullptr, c);
965 return edge;
966 }
967
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const968 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
969 const Comparator& c) const {
970 TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
971 src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
972 dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
973 if (src->fPartner) {
974 src->fPartner->fPartner = dst;
975 }
976 while (Edge* edge = src->fFirstEdgeAbove) {
977 this->setBottom(edge, dst, nullptr, nullptr, c);
978 }
979 while (Edge* edge = src->fFirstEdgeBelow) {
980 this->setTop(edge, dst, nullptr, nullptr, c);
981 }
982 mesh->remove(src);
983 dst->fSynthetic = true;
984 }
985
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const986 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
987 Vertex* reference, const Comparator& c) const {
988 Vertex* prevV = reference;
989 while (prevV && c.sweep_lt(p, prevV->fPoint)) {
990 prevV = prevV->fPrev;
991 }
992 Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
993 while (nextV && c.sweep_lt(nextV->fPoint, p)) {
994 prevV = nextV;
995 nextV = nextV->fNext;
996 }
997 Vertex* v;
998 if (prevV && coincident(prevV->fPoint, p)) {
999 v = prevV;
1000 } else if (nextV && coincident(nextV->fPoint, p)) {
1001 v = nextV;
1002 } else {
1003 v = fAlloc->make<Vertex>(p, alpha);
1004 #if TRIANGULATOR_LOGGING
1005 if (!prevV) {
1006 v->fID = mesh->fHead->fID - 1.0f;
1007 } else if (!nextV) {
1008 v->fID = mesh->fTail->fID + 1.0f;
1009 } else {
1010 v->fID = (prevV->fID + nextV->fID) * 0.5f;
1011 }
1012 #endif
1013 mesh->insert(v, prevV, nextV);
1014 }
1015 return v;
1016 }
1017
1018 // Clamps x and y coordinates independently, so the returned point will lie within the bounding
1019 // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
1020 // imposed by 'c').
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)1021 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
1022 if (c.fDirection == Comparator::Direction::kHorizontal) {
1023 // With horizontal sorting, we know min.x <= max.x, but there's no relation between
1024 // Y components unless min.x == max.x.
1025 return {SkTPin(p.fX, min.fX, max.fX),
1026 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
1027 : SkTPin(p.fY, max.fY, min.fY)};
1028 } else {
1029 // And with vertical sorting, we know Y's relation but not necessarily X's.
1030 return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
1031 : SkTPin(p.fX, max.fX, min.fX),
1032 SkTPin(p.fY, min.fY, max.fY)};
1033 }
1034 }
1035
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const1036 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
1037 SkASSERT(fEmitCoverage); // Edge-AA only!
1038 Line line1 = edge1->fLine;
1039 Line line2 = edge2->fLine;
1040 line1.normalize();
1041 line2.normalize();
1042 double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1043 if (cosAngle > 0.999) {
1044 return;
1045 }
1046 line1.fC += edge1->fWinding > 0 ? -1 : 1;
1047 line2.fC += edge2->fWinding > 0 ? -1 : 1;
1048 SkPoint p;
1049 if (line1.intersect(line2, &p)) {
1050 uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
1051 v->fPartner = fAlloc->make<Vertex>(p, alpha);
1052 TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1053 }
1054 }
1055
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c) const1056 bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges,
1057 Vertex** current, VertexList* mesh,
1058 const Comparator& c) const {
1059 if (!left || !right) {
1060 return false;
1061 }
1062 SkPoint p;
1063 uint8_t alpha;
1064 if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1065 Vertex* v;
1066 TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1067 Vertex* top = *current;
1068 // If the intersection point is above the current vertex, rewind to the vertex above the
1069 // intersection.
1070 while (top && c.sweep_lt(p, top->fPoint)) {
1071 top = top->fPrev;
1072 }
1073
1074 // Always clamp the intersection to lie between the vertices of each segment, since
1075 // in theory that's where the intersection is, but in reality, floating point error may
1076 // have computed an intersection beyond a vertex's component(s).
1077 p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1078 p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1079
1080 if (coincident(p, left->fTop->fPoint)) {
1081 v = left->fTop;
1082 } else if (coincident(p, left->fBottom->fPoint)) {
1083 v = left->fBottom;
1084 } else if (coincident(p, right->fTop->fPoint)) {
1085 v = right->fTop;
1086 } else if (coincident(p, right->fBottom->fPoint)) {
1087 v = right->fBottom;
1088 } else {
1089 v = this->makeSortedVertex(p, alpha, mesh, top, c);
1090 if (left->fTop->fPartner) {
1091 SkASSERT(fEmitCoverage); // Edge-AA only!
1092 v->fSynthetic = true;
1093 this->computeBisector(left, right, v);
1094 }
1095 }
1096 rewind(activeEdges, current, top ? top : v, c);
1097 this->splitEdge(left, v, activeEdges, current, c);
1098 this->splitEdge(right, v, activeEdges, current, c);
1099 v->fAlpha = std::max(v->fAlpha, alpha);
1100 return true;
1101 }
1102 return this->intersectEdgePair(left, right, activeEdges, current, c);
1103 }
1104
sanitizeContours(VertexList * contours,int contourCnt) const1105 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1106 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1107 SkASSERT(contour->fHead);
1108 Vertex* prev = contour->fTail;
1109 prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1110 prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1111 if (fRoundVerticesToQuarterPixel) {
1112 round(&prev->fPoint);
1113 }
1114 for (Vertex* v = contour->fHead; v;) {
1115 v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1116 v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1117 if (fRoundVerticesToQuarterPixel) {
1118 round(&v->fPoint);
1119 }
1120 Vertex* next = v->fNext;
1121 Vertex* nextWrap = next ? next : contour->fHead;
1122 if (coincident(prev->fPoint, v->fPoint)) {
1123 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1124 contour->remove(v);
1125 } else if (!v->fPoint.isFinite()) {
1126 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1127 contour->remove(v);
1128 } else if (!fPreserveCollinearVertices &&
1129 Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1130 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1131 contour->remove(v);
1132 } else {
1133 prev = v;
1134 }
1135 v = next;
1136 }
1137 }
1138 }
1139
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1140 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1141 if (!mesh->fHead) {
1142 return false;
1143 }
1144 bool merged = false;
1145 for (Vertex* v = mesh->fHead->fNext; v;) {
1146 Vertex* next = v->fNext;
1147 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1148 v->fPoint = v->fPrev->fPoint;
1149 }
1150 if (coincident(v->fPrev->fPoint, v->fPoint)) {
1151 this->mergeVertices(v, v->fPrev, mesh, c);
1152 merged = true;
1153 }
1154 v = next;
1155 }
1156 return merged;
1157 }
1158
1159 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1160
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c) const1161 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1162 const Comparator& c) const {
1163 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1164 Vertex* prev = contour->fTail;
1165 for (Vertex* v = contour->fHead; v;) {
1166 Vertex* next = v->fNext;
1167 this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1168 mesh->append(v);
1169 prev = v;
1170 v = next;
1171 }
1172 }
1173 }
1174
1175 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1176 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1177 Vertex* a = front->fHead;
1178 Vertex* b = back->fHead;
1179 while (a && b) {
1180 if (sweep_lt(a->fPoint, b->fPoint)) {
1181 front->remove(a);
1182 result->append(a);
1183 a = front->fHead;
1184 } else {
1185 back->remove(b);
1186 result->append(b);
1187 b = back->fHead;
1188 }
1189 }
1190 result->append(*front);
1191 result->append(*back);
1192 }
1193
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1194 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1195 const Comparator& c) {
1196 if (c.fDirection == Comparator::Direction::kHorizontal) {
1197 sorted_merge<sweep_lt_horiz>(front, back, result);
1198 } else {
1199 sorted_merge<sweep_lt_vert>(front, back, result);
1200 }
1201 #if TRIANGULATOR_LOGGING
1202 float id = 0.0f;
1203 for (Vertex* v = result->fHead; v; v = v->fNext) {
1204 v->fID = id++;
1205 }
1206 #endif
1207 }
1208
1209 // Stage 3: sort the vertices by increasing sweep direction.
1210
1211 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1212 static void merge_sort(VertexList* vertices) {
1213 Vertex* slow = vertices->fHead;
1214 if (!slow) {
1215 return;
1216 }
1217 Vertex* fast = slow->fNext;
1218 if (!fast) {
1219 return;
1220 }
1221 do {
1222 fast = fast->fNext;
1223 if (fast) {
1224 fast = fast->fNext;
1225 slow = slow->fNext;
1226 }
1227 } while (fast);
1228 VertexList front(vertices->fHead, slow);
1229 VertexList back(slow->fNext, vertices->fTail);
1230 front.fTail->fNext = back.fHead->fPrev = nullptr;
1231
1232 merge_sort<sweep_lt>(&front);
1233 merge_sort<sweep_lt>(&back);
1234
1235 vertices->fHead = vertices->fTail = nullptr;
1236 sorted_merge<sweep_lt>(&front, &back, vertices);
1237 }
1238
1239 #if TRIANGULATOR_LOGGING
dump() const1240 void VertexList::dump() const {
1241 for (Vertex* v = fHead; v; v = v->fNext) {
1242 TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1243 if (Vertex* p = v->fPartner) {
1244 TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1245 p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1246 } else {
1247 TESS_LOG(", null partner\n");
1248 }
1249 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1250 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1251 }
1252 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1253 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1254 }
1255 }
1256 }
1257 #endif
1258
1259 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1260 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1261 if (!left || !right) {
1262 return;
1263 }
1264 if (left->fTop == right->fTop) {
1265 SkASSERT(left->isLeftOf(right->fBottom));
1266 SkASSERT(right->isRightOf(left->fBottom));
1267 } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1268 SkASSERT(left->isLeftOf(right->fTop));
1269 } else {
1270 SkASSERT(right->isRightOf(left->fTop));
1271 }
1272 if (left->fBottom == right->fBottom) {
1273 SkASSERT(left->isLeftOf(right->fTop));
1274 SkASSERT(right->isRightOf(left->fTop));
1275 } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1276 SkASSERT(left->isLeftOf(right->fBottom));
1277 } else {
1278 SkASSERT(right->isRightOf(left->fBottom));
1279 }
1280 }
1281
validate_edge_list(EdgeList * edges,const Comparator & c)1282 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1283 Edge* left = edges->fHead;
1284 if (!left) {
1285 return;
1286 }
1287 for (Edge* right = left->fRight; right; right = right->fRight) {
1288 validate_edge_pair(left, right, c);
1289 left = right;
1290 }
1291 }
1292 #endif
1293
1294 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1295
simplify(VertexList * mesh,const Comparator & c) const1296 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1297 const Comparator& c) const {
1298 TESS_LOG("simplifying complex polygons\n");
1299 EdgeList activeEdges;
1300 auto result = SimplifyResult::kAlreadySimple;
1301 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1302 if (!v->isConnected()) {
1303 continue;
1304 }
1305 Edge* leftEnclosingEdge;
1306 Edge* rightEnclosingEdge;
1307 bool restartChecks;
1308 do {
1309 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1310 v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1311 restartChecks = false;
1312 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1313 v->fLeftEnclosingEdge = leftEnclosingEdge;
1314 v->fRightEnclosingEdge = rightEnclosingEdge;
1315 if (v->fFirstEdgeBelow) {
1316 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1317 if (this->checkForIntersection(
1318 leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) ||
1319 this->checkForIntersection(
1320 edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) {
1321 result = SimplifyResult::kFoundSelfIntersection;
1322 restartChecks = true;
1323 break;
1324 }
1325 }
1326 } else {
1327 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges,
1328 &v, mesh, c)) {
1329 result = SimplifyResult::kFoundSelfIntersection;
1330 restartChecks = true;
1331 }
1332
1333 }
1334 } while (restartChecks);
1335 #ifdef SK_DEBUG
1336 validate_edge_list(&activeEdges, c);
1337 #endif
1338 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1339 activeEdges.remove(e);
1340 }
1341 Edge* leftEdge = leftEnclosingEdge;
1342 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1343 activeEdges.insert(e, leftEdge);
1344 leftEdge = e;
1345 }
1346 }
1347 SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1348 return result;
1349 }
1350
1351 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1352
tessellate(const VertexList & vertices,const Comparator &) const1353 Poly* GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) const {
1354 TESS_LOG("\ntessellating simple polygons\n");
1355 EdgeList activeEdges;
1356 Poly* polys = nullptr;
1357 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1358 if (!v->isConnected()) {
1359 continue;
1360 }
1361 #if TRIANGULATOR_LOGGING
1362 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1363 #endif
1364 Edge* leftEnclosingEdge;
1365 Edge* rightEnclosingEdge;
1366 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1367 Poly* leftPoly;
1368 Poly* rightPoly;
1369 if (v->fFirstEdgeAbove) {
1370 leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1371 rightPoly = v->fLastEdgeAbove->fRightPoly;
1372 } else {
1373 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1374 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1375 }
1376 #if TRIANGULATOR_LOGGING
1377 TESS_LOG("edges above:\n");
1378 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1379 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1380 e->fTop->fID, e->fBottom->fID,
1381 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1382 e->fRightPoly ? e->fRightPoly->fID : -1);
1383 }
1384 TESS_LOG("edges below:\n");
1385 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1386 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1387 e->fTop->fID, e->fBottom->fID,
1388 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1389 e->fRightPoly ? e->fRightPoly->fID : -1);
1390 }
1391 #endif
1392 if (v->fFirstEdgeAbove) {
1393 if (leftPoly) {
1394 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, fAlloc);
1395 }
1396 if (rightPoly) {
1397 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, fAlloc);
1398 }
1399 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1400 Edge* rightEdge = e->fNextEdgeAbove;
1401 activeEdges.remove(e);
1402 if (e->fRightPoly) {
1403 e->fRightPoly->addEdge(e, kLeft_Side, fAlloc);
1404 }
1405 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1406 rightEdge->fLeftPoly->addEdge(e, kRight_Side, fAlloc);
1407 }
1408 }
1409 activeEdges.remove(v->fLastEdgeAbove);
1410 if (!v->fFirstEdgeBelow) {
1411 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1412 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1413 rightPoly->fPartner = leftPoly;
1414 leftPoly->fPartner = rightPoly;
1415 }
1416 }
1417 }
1418 if (v->fFirstEdgeBelow) {
1419 if (!v->fFirstEdgeAbove) {
1420 if (leftPoly && rightPoly) {
1421 if (leftPoly == rightPoly) {
1422 if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1423 leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1424 leftPoly->fWinding);
1425 leftEnclosingEdge->fRightPoly = leftPoly;
1426 } else {
1427 rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1428 rightPoly->fWinding);
1429 rightEnclosingEdge->fLeftPoly = rightPoly;
1430 }
1431 }
1432 Edge* join = fAlloc->make<Edge>(leftPoly->lastVertex(), v, 1,
1433 EdgeType::kInner);
1434 leftPoly = leftPoly->addEdge(join, kRight_Side, fAlloc);
1435 rightPoly = rightPoly->addEdge(join, kLeft_Side, fAlloc);
1436 }
1437 }
1438 Edge* leftEdge = v->fFirstEdgeBelow;
1439 leftEdge->fLeftPoly = leftPoly;
1440 activeEdges.insert(leftEdge, leftEnclosingEdge);
1441 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1442 rightEdge = rightEdge->fNextEdgeBelow) {
1443 activeEdges.insert(rightEdge, leftEdge);
1444 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1445 winding += leftEdge->fWinding;
1446 if (winding != 0) {
1447 Poly* poly = this->makePoly(&polys, v, winding);
1448 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1449 }
1450 leftEdge = rightEdge;
1451 }
1452 v->fLastEdgeBelow->fRightPoly = rightPoly;
1453 }
1454 #if TRIANGULATOR_LOGGING
1455 TESS_LOG("\nactive edges:\n");
1456 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1457 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1458 e->fTop->fID, e->fBottom->fID,
1459 e->fLeftPoly ? e->fLeftPoly->fID : -1,
1460 e->fRightPoly ? e->fRightPoly->fID : -1);
1461 }
1462 #endif
1463 }
1464 return polys;
1465 }
1466
1467 // This is a driver function that calls stages 2-5 in turn.
1468
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c) const1469 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1470 const Comparator& c) const {
1471 #if TRIANGULATOR_LOGGING
1472 for (int i = 0; i < contourCnt; ++i) {
1473 Vertex* v = contours[i].fHead;
1474 SkASSERT(v);
1475 TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1476 for (v = v->fNext; v; v = v->fNext) {
1477 TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1478 }
1479 }
1480 #endif
1481 this->sanitizeContours(contours, contourCnt);
1482 this->buildEdges(contours, contourCnt, mesh, c);
1483 }
1484
SortMesh(VertexList * vertices,const Comparator & c)1485 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1486 if (!vertices || !vertices->fHead) {
1487 return;
1488 }
1489
1490 // Sort vertices in Y (secondarily in X).
1491 if (c.fDirection == Comparator::Direction::kHorizontal) {
1492 merge_sort<sweep_lt_horiz>(vertices);
1493 } else {
1494 merge_sort<sweep_lt_vert>(vertices);
1495 }
1496 #if TRIANGULATOR_LOGGING
1497 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1498 static float gID = 0.0f;
1499 v->fID = gID++;
1500 }
1501 #endif
1502 }
1503
contoursToPolys(VertexList * contours,int contourCnt) const1504 Poly* GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) const {
1505 const SkRect& pathBounds = fPath.getBounds();
1506 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1507 : Comparator::Direction::kVertical);
1508 VertexList mesh;
1509 this->contoursToMesh(contours, contourCnt, &mesh, c);
1510 TESS_LOG("\ninitial mesh:\n");
1511 DUMP_MESH(mesh);
1512 SortMesh(&mesh, c);
1513 TESS_LOG("\nsorted mesh:\n");
1514 DUMP_MESH(mesh);
1515 this->mergeCoincidentVertices(&mesh, c);
1516 TESS_LOG("\nsorted+merged mesh:\n");
1517 DUMP_MESH(mesh);
1518 this->simplify(&mesh, c);
1519 TESS_LOG("\nsimplified mesh:\n");
1520 DUMP_MESH(mesh);
1521 return this->tessellate(mesh, c);
1522 }
1523
1524 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,void * data,SkPathFillType overrideFillType) const1525 void* GrTriangulator::polysToTriangles(Poly* polys, void* data,
1526 SkPathFillType overrideFillType) const {
1527 for (Poly* poly = polys; poly; poly = poly->fNext) {
1528 if (apply_fill_type(overrideFillType, poly)) {
1529 data = this->emitPoly(poly, data);
1530 }
1531 }
1532 return data;
1533 }
1534
get_contour_count(const SkPath & path,SkScalar tolerance)1535 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1536 // We could theoretically be more aggressive about not counting empty contours, but we need to
1537 // actually match the exact number of contour linked lists the tessellator will create later on.
1538 int contourCnt = 1;
1539 bool hasPoints = false;
1540
1541 SkPath::Iter iter(path, false);
1542 SkPath::Verb verb;
1543 SkPoint pts[4];
1544 bool first = true;
1545 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1546 switch (verb) {
1547 case SkPath::kMove_Verb:
1548 if (!first) {
1549 ++contourCnt;
1550 }
1551 [[fallthrough]];
1552 case SkPath::kLine_Verb:
1553 case SkPath::kConic_Verb:
1554 case SkPath::kQuad_Verb:
1555 case SkPath::kCubic_Verb:
1556 hasPoints = true;
1557 break;
1558 default:
1559 break;
1560 }
1561 first = false;
1562 }
1563 if (!hasPoints) {
1564 return 0;
1565 }
1566 return contourCnt;
1567 }
1568
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear) const1569 Poly* GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) const {
1570 int contourCnt = get_contour_count(fPath, tolerance);
1571 if (contourCnt <= 0) {
1572 *isLinear = true;
1573 return nullptr;
1574 }
1575
1576 if (SkPathFillType_IsInverse(fPath.getFillType())) {
1577 contourCnt++;
1578 }
1579 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1580
1581 this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1582 return this->contoursToPolys(contours.get(), contourCnt);
1583 }
1584
CountPoints(Poly * polys,SkPathFillType overrideFillType)1585 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1586 int64_t count = 0;
1587 for (Poly* poly = polys; poly; poly = poly->fNext) {
1588 if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1589 count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1590 }
1591 }
1592 return count;
1593 }
1594
1595 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1596
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1597 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1598 int64_t count64 = CountPoints(polys, fPath.getFillType());
1599 if (0 == count64 || count64 > SK_MaxS32) {
1600 return 0;
1601 }
1602 int count = count64;
1603
1604 size_t vertexStride = sizeof(SkPoint);
1605 if (fEmitCoverage) {
1606 vertexStride += sizeof(float);
1607 }
1608 void* verts = vertexAllocator->lock(vertexStride, count);
1609 if (!verts) {
1610 SkDebugf("Could not allocate vertices\n");
1611 return 0;
1612 }
1613
1614 TESS_LOG("emitting %d verts\n", count);
1615 void* end = this->polysToTriangles(polys, verts, fPath.getFillType());
1616
1617 int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1618 / vertexStride);
1619 SkASSERT(actualCount <= count);
1620 vertexAllocator->unlock(actualCount);
1621 return actualCount;
1622 }
1623