1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 #include <linux/xpm.h>
52
53 #include <linux/uaccess.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlb.h>
56 #include <asm/mmu_context.h>
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mmap.h>
60
61 #undef CREATE_TRACE_POINTS
62 #include <trace/hooks/mm.h>
63
64 #include "internal.h"
65
66 #ifndef arch_mmap_check
67 #define arch_mmap_check(addr, len, flags) (0)
68 #endif
69
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
71 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
72 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
73 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
74 #endif
75 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
76 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
77 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
78 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
79 #endif
80
81 static bool ignore_rlimit_data;
82 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
83
84 static void unmap_region(struct mm_struct *mm,
85 struct vm_area_struct *vma, struct vm_area_struct *prev,
86 unsigned long start, unsigned long end);
87
88 /* description of effects of mapping type and prot in current implementation.
89 * this is due to the limited x86 page protection hardware. The expected
90 * behavior is in parens:
91 *
92 * map_type prot
93 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
94 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
95 * w: (no) no w: (no) no w: (yes) yes w: (no) no
96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 *
98 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
99 * w: (no) no w: (no) no w: (copy) copy w: (no) no
100 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
101 */
102 pgprot_t protection_map[16] __ro_after_init = {
103 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
104 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
105 };
106
107 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)108 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
109 {
110 return prot;
111 }
112 #endif
113
vm_get_page_prot(unsigned long vm_flags)114 pgprot_t vm_get_page_prot(unsigned long vm_flags)
115 {
116 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
117 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
118 pgprot_val(arch_vm_get_page_prot(vm_flags)));
119
120 return arch_filter_pgprot(ret);
121 }
122 EXPORT_SYMBOL(vm_get_page_prot);
123
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)124 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
125 {
126 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
127 }
128
129 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)130 void vma_set_page_prot(struct vm_area_struct *vma)
131 {
132 unsigned long vm_flags = vma->vm_flags;
133 pgprot_t vm_page_prot;
134
135 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
136 if (vma_wants_writenotify(vma, vm_page_prot)) {
137 vm_flags &= ~VM_SHARED;
138 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
139 }
140 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
141 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
142 }
143
144 /*
145 * Requires inode->i_mapping->i_mmap_rwsem
146 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)147 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
148 struct file *file, struct address_space *mapping)
149 {
150 if (vma->vm_flags & VM_DENYWRITE)
151 allow_write_access(file);
152 if (vma->vm_flags & VM_SHARED)
153 mapping_unmap_writable(mapping);
154
155 flush_dcache_mmap_lock(mapping);
156 vma_interval_tree_remove(vma, &mapping->i_mmap);
157 flush_dcache_mmap_unlock(mapping);
158 }
159
160 /*
161 * Unlink a file-based vm structure from its interval tree, to hide
162 * vma from rmap and vmtruncate before freeing its page tables.
163 */
unlink_file_vma(struct vm_area_struct * vma)164 void unlink_file_vma(struct vm_area_struct *vma)
165 {
166 struct file *file = vma->vm_file;
167
168 if (file) {
169 struct address_space *mapping = file->f_mapping;
170 i_mmap_lock_write(mapping);
171 __remove_shared_vm_struct(vma, file, mapping);
172 i_mmap_unlock_write(mapping);
173 }
174 }
175
176 /*
177 * Close a vm structure and free it, returning the next.
178 */
remove_vma(struct vm_area_struct * vma)179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
180 {
181 struct vm_area_struct *next = vma->vm_next;
182
183 might_sleep();
184 if (vma->vm_ops && vma->vm_ops->close)
185 vma->vm_ops->close(vma);
186 if (vma->vm_file)
187 fput(vma->vm_file);
188 mpol_put(vma_policy(vma));
189 vm_area_free(vma);
190 return next;
191 }
192
193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
194 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)195 SYSCALL_DEFINE1(brk, unsigned long, brk)
196 {
197 unsigned long retval;
198 unsigned long newbrk, oldbrk, origbrk;
199 struct mm_struct *mm = current->mm;
200 struct vm_area_struct *next;
201 unsigned long min_brk;
202 bool populate;
203 bool downgraded = false;
204 LIST_HEAD(uf);
205
206 if (mmap_write_lock_killable(mm))
207 return -EINTR;
208
209 origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212 /*
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
216 */
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
219 else
220 min_brk = mm->end_data;
221 #else
222 min_brk = mm->start_brk;
223 #endif
224 if (brk < min_brk)
225 goto out;
226
227 /*
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
232 */
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
235 goto out;
236
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
240 mm->brk = brk;
241 goto success;
242 }
243
244 /*
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_lock to read.
247 */
248 if (brk <= mm->brk) {
249 int ret;
250
251 /*
252 * mm->brk must to be protected by write mmap_lock so update it
253 * before downgrading mmap_lock. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
255 */
256 mm->brk = brk;
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 if (ret < 0) {
259 mm->brk = origbrk;
260 goto out;
261 } else if (ret == 1) {
262 downgraded = true;
263 }
264 goto success;
265 }
266
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 goto out;
271
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 goto out;
275 mm->brk = brk;
276
277 success:
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 if (downgraded)
280 mmap_read_unlock(mm);
281 else
282 mmap_write_unlock(mm);
283 userfaultfd_unmap_complete(mm, &uf);
284 if (populate)
285 mm_populate(oldbrk, newbrk - oldbrk);
286 return brk;
287
288 out:
289 retval = origbrk;
290 mmap_write_unlock(mm);
291 return retval;
292 }
293
vma_compute_gap(struct vm_area_struct * vma)294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 {
296 unsigned long gap, prev_end;
297
298 /*
299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 * allow two stack_guard_gaps between them here, and when choosing
301 * an unmapped area; whereas when expanding we only require one.
302 * That's a little inconsistent, but keeps the code here simpler.
303 */
304 gap = vm_start_gap(vma);
305 if (vma->vm_prev) {
306 prev_end = vm_end_gap(vma->vm_prev);
307 if (gap > prev_end)
308 gap -= prev_end;
309 else
310 gap = 0;
311 }
312 return gap;
313 }
314
315 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318 unsigned long max = vma_compute_gap(vma), subtree_gap;
319 if (vma->vm_rb.rb_left) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
323 max = subtree_gap;
324 }
325 if (vma->vm_rb.rb_right) {
326 subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 if (subtree_gap > max)
329 max = subtree_gap;
330 }
331 return max;
332 }
333
browse_rb(struct mm_struct * mm)334 static int browse_rb(struct mm_struct *mm)
335 {
336 struct rb_root *root = &mm->mm_rb;
337 int i = 0, j, bug = 0;
338 struct rb_node *nd, *pn = NULL;
339 unsigned long prev = 0, pend = 0;
340
341 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 struct vm_area_struct *vma;
343 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 if (vma->vm_start < prev) {
345 pr_emerg("vm_start %lx < prev %lx\n",
346 vma->vm_start, prev);
347 bug = 1;
348 }
349 if (vma->vm_start < pend) {
350 pr_emerg("vm_start %lx < pend %lx\n",
351 vma->vm_start, pend);
352 bug = 1;
353 }
354 if (vma->vm_start > vma->vm_end) {
355 pr_emerg("vm_start %lx > vm_end %lx\n",
356 vma->vm_start, vma->vm_end);
357 bug = 1;
358 }
359 spin_lock(&mm->page_table_lock);
360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 pr_emerg("free gap %lx, correct %lx\n",
362 vma->rb_subtree_gap,
363 vma_compute_subtree_gap(vma));
364 bug = 1;
365 }
366 spin_unlock(&mm->page_table_lock);
367 i++;
368 pn = nd;
369 prev = vma->vm_start;
370 pend = vma->vm_end;
371 }
372 j = 0;
373 for (nd = pn; nd; nd = rb_prev(nd))
374 j++;
375 if (i != j) {
376 pr_emerg("backwards %d, forwards %d\n", j, i);
377 bug = 1;
378 }
379 return bug ? -1 : i;
380 }
381
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
383 {
384 struct rb_node *nd;
385
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 VM_BUG_ON_VMA(vma != ignore &&
390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
391 vma);
392 }
393 }
394
validate_mm(struct mm_struct * mm)395 static void validate_mm(struct mm_struct *mm)
396 {
397 int bug = 0;
398 int i = 0;
399 unsigned long highest_address = 0;
400 struct vm_area_struct *vma = mm->mmap;
401
402 while (vma) {
403 struct anon_vma *anon_vma = vma->anon_vma;
404 struct anon_vma_chain *avc;
405
406 if (anon_vma) {
407 anon_vma_lock_read(anon_vma);
408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 anon_vma_interval_tree_verify(avc);
410 anon_vma_unlock_read(anon_vma);
411 }
412
413 highest_address = vm_end_gap(vma);
414 vma = vma->vm_next;
415 i++;
416 }
417 if (i != mm->map_count) {
418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
419 bug = 1;
420 }
421 if (highest_address != mm->highest_vm_end) {
422 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 mm->highest_vm_end, highest_address);
424 bug = 1;
425 }
426 i = browse_rb(mm);
427 if (i != mm->map_count) {
428 if (i != -1)
429 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
430 bug = 1;
431 }
432 VM_BUG_ON_MM(bug, mm);
433 }
434 #else
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
437 #endif
438
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 struct vm_area_struct, vm_rb,
441 unsigned long, rb_subtree_gap, vma_compute_gap)
442
443 /*
444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
446 * in the rbtree.
447 */
448 static void vma_gap_update(struct vm_area_struct *vma)
449 {
450 /*
451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 * a callback function that does exactly what we want.
453 */
454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
455 }
456
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 struct rb_root *root)
459 {
460 /* All rb_subtree_gap values must be consistent prior to insertion */
461 validate_mm_rb(root, NULL);
462
463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
467 {
468 /*
469 * Note rb_erase_augmented is a fairly large inline function,
470 * so make sure we instantiate it only once with our desired
471 * augmented rbtree callbacks.
472 */
473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
474 }
475
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 struct rb_root *root,
478 struct vm_area_struct *ignore)
479 {
480 /*
481 * All rb_subtree_gap values must be consistent prior to erase,
482 * with the possible exception of
483 *
484 * a. the "next" vma being erased if next->vm_start was reduced in
485 * __vma_adjust() -> __vma_unlink()
486 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
487 * vma_rb_erase()
488 */
489 validate_mm_rb(root, ignore);
490
491 __vma_rb_erase(vma, root);
492 }
493
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)494 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
495 struct rb_root *root)
496 {
497 vma_rb_erase_ignore(vma, root, vma);
498 }
499
500 /*
501 * vma has some anon_vma assigned, and is already inserted on that
502 * anon_vma's interval trees.
503 *
504 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
505 * vma must be removed from the anon_vma's interval trees using
506 * anon_vma_interval_tree_pre_update_vma().
507 *
508 * After the update, the vma will be reinserted using
509 * anon_vma_interval_tree_post_update_vma().
510 *
511 * The entire update must be protected by exclusive mmap_lock and by
512 * the root anon_vma's mutex.
513 */
514 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)515 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 {
517 struct anon_vma_chain *avc;
518
519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 }
522
523 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)524 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 {
526 struct anon_vma_chain *avc;
527
528 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
529 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
530 }
531
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)532 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
533 unsigned long end, struct vm_area_struct **pprev,
534 struct rb_node ***rb_link, struct rb_node **rb_parent)
535 {
536 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537
538 __rb_link = &mm->mm_rb.rb_node;
539 rb_prev = __rb_parent = NULL;
540
541 while (*__rb_link) {
542 struct vm_area_struct *vma_tmp;
543
544 __rb_parent = *__rb_link;
545 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546
547 if (vma_tmp->vm_end > addr) {
548 /* Fail if an existing vma overlaps the area */
549 if (vma_tmp->vm_start < end)
550 return -ENOMEM;
551 __rb_link = &__rb_parent->rb_left;
552 } else {
553 rb_prev = __rb_parent;
554 __rb_link = &__rb_parent->rb_right;
555 }
556 }
557
558 *pprev = NULL;
559 if (rb_prev)
560 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 *rb_link = __rb_link;
562 *rb_parent = __rb_parent;
563 return 0;
564 }
565
566 /*
567 * vma_next() - Get the next VMA.
568 * @mm: The mm_struct.
569 * @vma: The current vma.
570 *
571 * If @vma is NULL, return the first vma in the mm.
572 *
573 * Returns: The next VMA after @vma.
574 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)575 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
576 struct vm_area_struct *vma)
577 {
578 if (!vma)
579 return mm->mmap;
580
581 return vma->vm_next;
582 }
583
584 /*
585 * munmap_vma_range() - munmap VMAs that overlap a range.
586 * @mm: The mm struct
587 * @start: The start of the range.
588 * @len: The length of the range.
589 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
590 * @rb_link: the rb_node
591 * @rb_parent: the parent rb_node
592 *
593 * Find all the vm_area_struct that overlap from @start to
594 * @end and munmap them. Set @pprev to the previous vm_area_struct.
595 *
596 * Returns: -ENOMEM on munmap failure or 0 on success.
597 */
598 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)599 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
600 struct vm_area_struct **pprev, struct rb_node ***link,
601 struct rb_node **parent, struct list_head *uf)
602 {
603
604 while (find_vma_links(mm, start, start + len, pprev, link, parent))
605 if (do_munmap(mm, start, len, uf))
606 return -ENOMEM;
607
608 return 0;
609 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)610 static unsigned long count_vma_pages_range(struct mm_struct *mm,
611 unsigned long addr, unsigned long end)
612 {
613 unsigned long nr_pages = 0;
614 struct vm_area_struct *vma;
615
616 /* Find first overlaping mapping */
617 vma = find_vma_intersection(mm, addr, end);
618 if (!vma)
619 return 0;
620
621 nr_pages = (min(end, vma->vm_end) -
622 max(addr, vma->vm_start)) >> PAGE_SHIFT;
623
624 /* Iterate over the rest of the overlaps */
625 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
626 unsigned long overlap_len;
627
628 if (vma->vm_start > end)
629 break;
630
631 overlap_len = min(end, vma->vm_end) - vma->vm_start;
632 nr_pages += overlap_len >> PAGE_SHIFT;
633 }
634
635 return nr_pages;
636 }
637
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)638 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
639 struct rb_node **rb_link, struct rb_node *rb_parent)
640 {
641 /* Update tracking information for the gap following the new vma. */
642 if (vma->vm_next)
643 vma_gap_update(vma->vm_next);
644 else
645 mm->highest_vm_end = vm_end_gap(vma);
646
647 /*
648 * vma->vm_prev wasn't known when we followed the rbtree to find the
649 * correct insertion point for that vma. As a result, we could not
650 * update the vma vm_rb parents rb_subtree_gap values on the way down.
651 * So, we first insert the vma with a zero rb_subtree_gap value
652 * (to be consistent with what we did on the way down), and then
653 * immediately update the gap to the correct value. Finally we
654 * rebalance the rbtree after all augmented values have been set.
655 */
656 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
657 vma->rb_subtree_gap = 0;
658 vma_gap_update(vma);
659 vma_rb_insert(vma, &mm->mm_rb);
660 }
661
__vma_link_file(struct vm_area_struct * vma)662 static void __vma_link_file(struct vm_area_struct *vma)
663 {
664 struct file *file;
665
666 file = vma->vm_file;
667 if (file) {
668 struct address_space *mapping = file->f_mapping;
669
670 if (vma->vm_flags & VM_DENYWRITE)
671 put_write_access(file_inode(file));
672 if (vma->vm_flags & VM_SHARED)
673 mapping_allow_writable(mapping);
674
675 flush_dcache_mmap_lock(mapping);
676 vma_interval_tree_insert(vma, &mapping->i_mmap);
677 flush_dcache_mmap_unlock(mapping);
678 }
679 }
680
681 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)682 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
683 struct vm_area_struct *prev, struct rb_node **rb_link,
684 struct rb_node *rb_parent)
685 {
686 __vma_link_list(mm, vma, prev);
687 __vma_link_rb(mm, vma, rb_link, rb_parent);
688 }
689
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)690 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
691 struct vm_area_struct *prev, struct rb_node **rb_link,
692 struct rb_node *rb_parent)
693 {
694 struct address_space *mapping = NULL;
695
696 if (vma->vm_file) {
697 mapping = vma->vm_file->f_mapping;
698 i_mmap_lock_write(mapping);
699 }
700
701 __vma_link(mm, vma, prev, rb_link, rb_parent);
702 __vma_link_file(vma);
703
704 if (mapping)
705 i_mmap_unlock_write(mapping);
706
707 mm->map_count++;
708 validate_mm(mm);
709 }
710
711 /*
712 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
713 * mm's list and rbtree. It has already been inserted into the interval tree.
714 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)715 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
716 {
717 struct vm_area_struct *prev;
718 struct rb_node **rb_link, *rb_parent;
719
720 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
721 &prev, &rb_link, &rb_parent))
722 BUG();
723 __vma_link(mm, vma, prev, rb_link, rb_parent);
724 mm->map_count++;
725 }
726
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)727 static __always_inline void __vma_unlink(struct mm_struct *mm,
728 struct vm_area_struct *vma,
729 struct vm_area_struct *ignore)
730 {
731 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
732 __vma_unlink_list(mm, vma);
733 /* Kill the cache */
734 vmacache_invalidate(mm);
735 }
736
737 /*
738 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
739 * is already present in an i_mmap tree without adjusting the tree.
740 * The following helper function should be used when such adjustments
741 * are necessary. The "insert" vma (if any) is to be inserted
742 * before we drop the necessary locks.
743 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)744 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
745 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
746 struct vm_area_struct *expand)
747 {
748 struct mm_struct *mm = vma->vm_mm;
749 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
750 struct address_space *mapping = NULL;
751 struct rb_root_cached *root = NULL;
752 struct anon_vma *anon_vma = NULL;
753 struct file *file = vma->vm_file;
754 bool start_changed = false, end_changed = false;
755 long adjust_next = 0;
756 int remove_next = 0;
757
758 if (next && !insert) {
759 struct vm_area_struct *exporter = NULL, *importer = NULL;
760
761 if (end >= next->vm_end) {
762 /*
763 * vma expands, overlapping all the next, and
764 * perhaps the one after too (mprotect case 6).
765 * The only other cases that gets here are
766 * case 1, case 7 and case 8.
767 */
768 if (next == expand) {
769 /*
770 * The only case where we don't expand "vma"
771 * and we expand "next" instead is case 8.
772 */
773 VM_WARN_ON(end != next->vm_end);
774 /*
775 * remove_next == 3 means we're
776 * removing "vma" and that to do so we
777 * swapped "vma" and "next".
778 */
779 remove_next = 3;
780 VM_WARN_ON(file != next->vm_file);
781 swap(vma, next);
782 } else {
783 VM_WARN_ON(expand != vma);
784 /*
785 * case 1, 6, 7, remove_next == 2 is case 6,
786 * remove_next == 1 is case 1 or 7.
787 */
788 remove_next = 1 + (end > next->vm_end);
789 VM_WARN_ON(remove_next == 2 &&
790 end != next->vm_next->vm_end);
791 /* trim end to next, for case 6 first pass */
792 end = next->vm_end;
793 }
794
795 exporter = next;
796 importer = vma;
797
798 /*
799 * If next doesn't have anon_vma, import from vma after
800 * next, if the vma overlaps with it.
801 */
802 if (remove_next == 2 && !next->anon_vma)
803 exporter = next->vm_next;
804
805 } else if (end > next->vm_start) {
806 /*
807 * vma expands, overlapping part of the next:
808 * mprotect case 5 shifting the boundary up.
809 */
810 adjust_next = (end - next->vm_start);
811 exporter = next;
812 importer = vma;
813 VM_WARN_ON(expand != importer);
814 } else if (end < vma->vm_end) {
815 /*
816 * vma shrinks, and !insert tells it's not
817 * split_vma inserting another: so it must be
818 * mprotect case 4 shifting the boundary down.
819 */
820 adjust_next = -(vma->vm_end - end);
821 exporter = vma;
822 importer = next;
823 VM_WARN_ON(expand != importer);
824 }
825
826 /*
827 * Easily overlooked: when mprotect shifts the boundary,
828 * make sure the expanding vma has anon_vma set if the
829 * shrinking vma had, to cover any anon pages imported.
830 */
831 if (exporter && exporter->anon_vma && !importer->anon_vma) {
832 int error;
833
834 importer->anon_vma = exporter->anon_vma;
835 error = anon_vma_clone(importer, exporter);
836 if (error)
837 return error;
838 }
839 }
840 again:
841 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
842
843 if (file) {
844 mapping = file->f_mapping;
845 root = &mapping->i_mmap;
846 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
847
848 if (adjust_next)
849 uprobe_munmap(next, next->vm_start, next->vm_end);
850
851 i_mmap_lock_write(mapping);
852 if (insert) {
853 /*
854 * Put into interval tree now, so instantiated pages
855 * are visible to arm/parisc __flush_dcache_page
856 * throughout; but we cannot insert into address
857 * space until vma start or end is updated.
858 */
859 __vma_link_file(insert);
860 }
861 }
862
863 anon_vma = vma->anon_vma;
864 if (!anon_vma && adjust_next)
865 anon_vma = next->anon_vma;
866 if (anon_vma) {
867 VM_WARN_ON(adjust_next && next->anon_vma &&
868 anon_vma != next->anon_vma);
869 anon_vma_lock_write(anon_vma);
870 anon_vma_interval_tree_pre_update_vma(vma);
871 if (adjust_next)
872 anon_vma_interval_tree_pre_update_vma(next);
873 }
874
875 if (file) {
876 flush_dcache_mmap_lock(mapping);
877 vma_interval_tree_remove(vma, root);
878 if (adjust_next)
879 vma_interval_tree_remove(next, root);
880 }
881
882 if (start != vma->vm_start) {
883 vma->vm_start = start;
884 start_changed = true;
885 }
886 if (end != vma->vm_end) {
887 vma->vm_end = end;
888 end_changed = true;
889 }
890 vma->vm_pgoff = pgoff;
891 if (adjust_next) {
892 next->vm_start += adjust_next;
893 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
894 }
895
896 if (file) {
897 if (adjust_next)
898 vma_interval_tree_insert(next, root);
899 vma_interval_tree_insert(vma, root);
900 flush_dcache_mmap_unlock(mapping);
901 }
902
903 if (remove_next) {
904 /*
905 * vma_merge has merged next into vma, and needs
906 * us to remove next before dropping the locks.
907 */
908 if (remove_next != 3)
909 __vma_unlink(mm, next, next);
910 else
911 /*
912 * vma is not before next if they've been
913 * swapped.
914 *
915 * pre-swap() next->vm_start was reduced so
916 * tell validate_mm_rb to ignore pre-swap()
917 * "next" (which is stored in post-swap()
918 * "vma").
919 */
920 __vma_unlink(mm, next, vma);
921 if (file)
922 __remove_shared_vm_struct(next, file, mapping);
923 } else if (insert) {
924 /*
925 * split_vma has split insert from vma, and needs
926 * us to insert it before dropping the locks
927 * (it may either follow vma or precede it).
928 */
929 __insert_vm_struct(mm, insert);
930 } else {
931 if (start_changed)
932 vma_gap_update(vma);
933 if (end_changed) {
934 if (!next)
935 mm->highest_vm_end = vm_end_gap(vma);
936 else if (!adjust_next)
937 vma_gap_update(next);
938 }
939 }
940
941 if (anon_vma) {
942 anon_vma_interval_tree_post_update_vma(vma);
943 if (adjust_next)
944 anon_vma_interval_tree_post_update_vma(next);
945 anon_vma_unlock_write(anon_vma);
946 }
947
948 if (file) {
949 i_mmap_unlock_write(mapping);
950 uprobe_mmap(vma);
951
952 if (adjust_next)
953 uprobe_mmap(next);
954 }
955
956 if (remove_next) {
957 if (file) {
958 uprobe_munmap(next, next->vm_start, next->vm_end);
959 fput(file);
960 }
961 if (next->anon_vma)
962 anon_vma_merge(vma, next);
963 mm->map_count--;
964 mpol_put(vma_policy(next));
965 vm_area_free(next);
966 /*
967 * In mprotect's case 6 (see comments on vma_merge),
968 * we must remove another next too. It would clutter
969 * up the code too much to do both in one go.
970 */
971 if (remove_next != 3) {
972 /*
973 * If "next" was removed and vma->vm_end was
974 * expanded (up) over it, in turn
975 * "next->vm_prev->vm_end" changed and the
976 * "vma->vm_next" gap must be updated.
977 */
978 next = vma->vm_next;
979 } else {
980 /*
981 * For the scope of the comment "next" and
982 * "vma" considered pre-swap(): if "vma" was
983 * removed, next->vm_start was expanded (down)
984 * over it and the "next" gap must be updated.
985 * Because of the swap() the post-swap() "vma"
986 * actually points to pre-swap() "next"
987 * (post-swap() "next" as opposed is now a
988 * dangling pointer).
989 */
990 next = vma;
991 }
992 if (remove_next == 2) {
993 remove_next = 1;
994 end = next->vm_end;
995 goto again;
996 }
997 else if (next)
998 vma_gap_update(next);
999 else {
1000 /*
1001 * If remove_next == 2 we obviously can't
1002 * reach this path.
1003 *
1004 * If remove_next == 3 we can't reach this
1005 * path because pre-swap() next is always not
1006 * NULL. pre-swap() "next" is not being
1007 * removed and its next->vm_end is not altered
1008 * (and furthermore "end" already matches
1009 * next->vm_end in remove_next == 3).
1010 *
1011 * We reach this only in the remove_next == 1
1012 * case if the "next" vma that was removed was
1013 * the highest vma of the mm. However in such
1014 * case next->vm_end == "end" and the extended
1015 * "vma" has vma->vm_end == next->vm_end so
1016 * mm->highest_vm_end doesn't need any update
1017 * in remove_next == 1 case.
1018 */
1019 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1020 }
1021 }
1022 if (insert && file)
1023 uprobe_mmap(insert);
1024
1025 validate_mm(mm);
1026
1027 return 0;
1028 }
1029
1030 /*
1031 * If the vma has a ->close operation then the driver probably needs to release
1032 * per-vma resources, so we don't attempt to merge those.
1033 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1034 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1035 struct file *file, unsigned long vm_flags,
1036 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1037 struct anon_vma_name *anon_name)
1038 {
1039 /*
1040 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1041 * match the flags but dirty bit -- the caller should mark
1042 * merged VMA as dirty. If dirty bit won't be excluded from
1043 * comparison, we increase pressure on the memory system forcing
1044 * the kernel to generate new VMAs when old one could be
1045 * extended instead.
1046 */
1047 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1048 return 0;
1049 if (vma->vm_file != file)
1050 return 0;
1051 if (vma->vm_ops && vma->vm_ops->close)
1052 return 0;
1053 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1054 return 0;
1055 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1056 return 0;
1057 return 1;
1058 }
1059
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1060 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1061 struct anon_vma *anon_vma2,
1062 struct vm_area_struct *vma)
1063 {
1064 /*
1065 * The list_is_singular() test is to avoid merging VMA cloned from
1066 * parents. This can improve scalability caused by anon_vma lock.
1067 */
1068 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1069 list_is_singular(&vma->anon_vma_chain)))
1070 return 1;
1071 return anon_vma1 == anon_vma2;
1072 }
1073
1074 /*
1075 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1076 * in front of (at a lower virtual address and file offset than) the vma.
1077 *
1078 * We cannot merge two vmas if they have differently assigned (non-NULL)
1079 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1080 *
1081 * We don't check here for the merged mmap wrapping around the end of pagecache
1082 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1083 * wrap, nor mmaps which cover the final page at index -1UL.
1084 */
1085 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1086 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1087 struct anon_vma *anon_vma, struct file *file,
1088 pgoff_t vm_pgoff,
1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1090 struct anon_vma_name *anon_name)
1091 {
1092 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1093 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1094 if (vma->vm_pgoff == vm_pgoff)
1095 return 1;
1096 }
1097 return 0;
1098 }
1099
1100 /*
1101 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1102 * beyond (at a higher virtual address and file offset than) the vma.
1103 *
1104 * We cannot merge two vmas if they have differently assigned (non-NULL)
1105 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1106 */
1107 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1108 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1109 struct anon_vma *anon_vma, struct file *file,
1110 pgoff_t vm_pgoff,
1111 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1112 struct anon_vma_name *anon_name)
1113 {
1114 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1115 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1116 pgoff_t vm_pglen;
1117 vm_pglen = vma_pages(vma);
1118 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1119 return 1;
1120 }
1121 return 0;
1122 }
1123
1124 /*
1125 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1126 * figure out whether that can be merged with its predecessor or its
1127 * successor. Or both (it neatly fills a hole).
1128 *
1129 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1130 * certain not to be mapped by the time vma_merge is called; but when
1131 * called for mprotect, it is certain to be already mapped (either at
1132 * an offset within prev, or at the start of next), and the flags of
1133 * this area are about to be changed to vm_flags - and the no-change
1134 * case has already been eliminated.
1135 *
1136 * The following mprotect cases have to be considered, where AAAA is
1137 * the area passed down from mprotect_fixup, never extending beyond one
1138 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1139 *
1140 * AAAA AAAA AAAA
1141 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1142 * cannot merge might become might become
1143 * PPNNNNNNNNNN PPPPPPPPPPNN
1144 * mmap, brk or case 4 below case 5 below
1145 * mremap move:
1146 * AAAA AAAA
1147 * PPPP NNNN PPPPNNNNXXXX
1148 * might become might become
1149 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1150 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1151 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1152 *
1153 * It is important for case 8 that the vma NNNN overlapping the
1154 * region AAAA is never going to extended over XXXX. Instead XXXX must
1155 * be extended in region AAAA and NNNN must be removed. This way in
1156 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1157 * rmap_locks, the properties of the merged vma will be already
1158 * correct for the whole merged range. Some of those properties like
1159 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1160 * be correct for the whole merged range immediately after the
1161 * rmap_locks are released. Otherwise if XXXX would be removed and
1162 * NNNN would be extended over the XXXX range, remove_migration_ptes
1163 * or other rmap walkers (if working on addresses beyond the "end"
1164 * parameter) may establish ptes with the wrong permissions of NNNN
1165 * instead of the right permissions of XXXX.
1166 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1167 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1168 struct vm_area_struct *prev, unsigned long addr,
1169 unsigned long end, unsigned long vm_flags,
1170 struct anon_vma *anon_vma, struct file *file,
1171 pgoff_t pgoff, struct mempolicy *policy,
1172 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1173 struct anon_vma_name *anon_name)
1174 {
1175 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1176 struct vm_area_struct *area, *next;
1177 int err;
1178
1179 /*
1180 * We later require that vma->vm_flags == vm_flags,
1181 * so this tests vma->vm_flags & VM_SPECIAL, too.
1182 */
1183 if (vm_flags & VM_SPECIAL)
1184 return NULL;
1185
1186 next = vma_next(mm, prev);
1187 area = next;
1188 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1189 next = next->vm_next;
1190
1191 /* verify some invariant that must be enforced by the caller */
1192 VM_WARN_ON(prev && addr <= prev->vm_start);
1193 VM_WARN_ON(area && end > area->vm_end);
1194 VM_WARN_ON(addr >= end);
1195
1196 /*
1197 * Can it merge with the predecessor?
1198 */
1199 if (prev && prev->vm_end == addr &&
1200 mpol_equal(vma_policy(prev), policy) &&
1201 can_vma_merge_after(prev, vm_flags,
1202 anon_vma, file, pgoff,
1203 vm_userfaultfd_ctx, anon_name)) {
1204 /*
1205 * OK, it can. Can we now merge in the successor as well?
1206 */
1207 if (next && end == next->vm_start &&
1208 mpol_equal(policy, vma_policy(next)) &&
1209 can_vma_merge_before(next, vm_flags,
1210 anon_vma, file,
1211 pgoff+pglen,
1212 vm_userfaultfd_ctx, anon_name) &&
1213 is_mergeable_anon_vma(prev->anon_vma,
1214 next->anon_vma, NULL)) {
1215 /* cases 1, 6 */
1216 err = __vma_adjust(prev, prev->vm_start,
1217 next->vm_end, prev->vm_pgoff, NULL,
1218 prev);
1219 } else /* cases 2, 5, 7 */
1220 err = __vma_adjust(prev, prev->vm_start,
1221 end, prev->vm_pgoff, NULL, prev);
1222 if (err)
1223 return NULL;
1224 khugepaged_enter_vma_merge(prev, vm_flags);
1225 return prev;
1226 }
1227
1228 /*
1229 * Can this new request be merged in front of next?
1230 */
1231 if (next && end == next->vm_start &&
1232 mpol_equal(policy, vma_policy(next)) &&
1233 can_vma_merge_before(next, vm_flags,
1234 anon_vma, file, pgoff+pglen,
1235 vm_userfaultfd_ctx, anon_name)) {
1236 if (prev && addr < prev->vm_end) /* case 4 */
1237 err = __vma_adjust(prev, prev->vm_start,
1238 addr, prev->vm_pgoff, NULL, next);
1239 else { /* cases 3, 8 */
1240 err = __vma_adjust(area, addr, next->vm_end,
1241 next->vm_pgoff - pglen, NULL, next);
1242 /*
1243 * In case 3 area is already equal to next and
1244 * this is a noop, but in case 8 "area" has
1245 * been removed and next was expanded over it.
1246 */
1247 area = next;
1248 }
1249 if (err)
1250 return NULL;
1251 khugepaged_enter_vma_merge(area, vm_flags);
1252 return area;
1253 }
1254
1255 return NULL;
1256 }
1257
1258 /*
1259 * Rough compatibility check to quickly see if it's even worth looking
1260 * at sharing an anon_vma.
1261 *
1262 * They need to have the same vm_file, and the flags can only differ
1263 * in things that mprotect may change.
1264 *
1265 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1266 * we can merge the two vma's. For example, we refuse to merge a vma if
1267 * there is a vm_ops->close() function, because that indicates that the
1268 * driver is doing some kind of reference counting. But that doesn't
1269 * really matter for the anon_vma sharing case.
1270 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1271 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1272 {
1273 return a->vm_end == b->vm_start &&
1274 mpol_equal(vma_policy(a), vma_policy(b)) &&
1275 a->vm_file == b->vm_file &&
1276 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1277 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1278 }
1279
1280 /*
1281 * Do some basic sanity checking to see if we can re-use the anon_vma
1282 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1283 * the same as 'old', the other will be the new one that is trying
1284 * to share the anon_vma.
1285 *
1286 * NOTE! This runs with mm_sem held for reading, so it is possible that
1287 * the anon_vma of 'old' is concurrently in the process of being set up
1288 * by another page fault trying to merge _that_. But that's ok: if it
1289 * is being set up, that automatically means that it will be a singleton
1290 * acceptable for merging, so we can do all of this optimistically. But
1291 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1292 *
1293 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1294 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1295 * is to return an anon_vma that is "complex" due to having gone through
1296 * a fork).
1297 *
1298 * We also make sure that the two vma's are compatible (adjacent,
1299 * and with the same memory policies). That's all stable, even with just
1300 * a read lock on the mm_sem.
1301 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1302 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1303 {
1304 if (anon_vma_compatible(a, b)) {
1305 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1306
1307 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1308 return anon_vma;
1309 }
1310 return NULL;
1311 }
1312
1313 /*
1314 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1315 * neighbouring vmas for a suitable anon_vma, before it goes off
1316 * to allocate a new anon_vma. It checks because a repetitive
1317 * sequence of mprotects and faults may otherwise lead to distinct
1318 * anon_vmas being allocated, preventing vma merge in subsequent
1319 * mprotect.
1320 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1321 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1322 {
1323 struct anon_vma *anon_vma = NULL;
1324
1325 /* Try next first. */
1326 if (vma->vm_next) {
1327 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1328 if (anon_vma)
1329 return anon_vma;
1330 }
1331
1332 /* Try prev next. */
1333 if (vma->vm_prev)
1334 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1335
1336 /*
1337 * We might reach here with anon_vma == NULL if we can't find
1338 * any reusable anon_vma.
1339 * There's no absolute need to look only at touching neighbours:
1340 * we could search further afield for "compatible" anon_vmas.
1341 * But it would probably just be a waste of time searching,
1342 * or lead to too many vmas hanging off the same anon_vma.
1343 * We're trying to allow mprotect remerging later on,
1344 * not trying to minimize memory used for anon_vmas.
1345 */
1346 return anon_vma;
1347 }
1348
1349 /*
1350 * If a hint addr is less than mmap_min_addr change hint to be as
1351 * low as possible but still greater than mmap_min_addr
1352 */
round_hint_to_min(unsigned long hint)1353 static inline unsigned long round_hint_to_min(unsigned long hint)
1354 {
1355 hint &= PAGE_MASK;
1356 if (((void *)hint != NULL) &&
1357 (hint < mmap_min_addr))
1358 return PAGE_ALIGN(mmap_min_addr);
1359 return hint;
1360 }
1361
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1362 static inline int mlock_future_check(struct mm_struct *mm,
1363 unsigned long flags,
1364 unsigned long len)
1365 {
1366 unsigned long locked, lock_limit;
1367
1368 /* mlock MCL_FUTURE? */
1369 if (flags & VM_LOCKED) {
1370 locked = len >> PAGE_SHIFT;
1371 locked += mm->locked_vm;
1372 lock_limit = rlimit(RLIMIT_MEMLOCK);
1373 lock_limit >>= PAGE_SHIFT;
1374 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1375 return -EAGAIN;
1376 }
1377 return 0;
1378 }
1379
file_mmap_size_max(struct file * file,struct inode * inode)1380 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1381 {
1382 if (S_ISREG(inode->i_mode))
1383 return MAX_LFS_FILESIZE;
1384
1385 if (S_ISBLK(inode->i_mode))
1386 return MAX_LFS_FILESIZE;
1387
1388 if (S_ISSOCK(inode->i_mode))
1389 return MAX_LFS_FILESIZE;
1390
1391 /* Special "we do even unsigned file positions" case */
1392 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1393 return 0;
1394
1395 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1396 return ULONG_MAX;
1397 }
1398
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1399 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1400 unsigned long pgoff, unsigned long len)
1401 {
1402 u64 maxsize = file_mmap_size_max(file, inode);
1403
1404 if (maxsize && len > maxsize)
1405 return false;
1406 maxsize -= len;
1407 if (pgoff > maxsize >> PAGE_SHIFT)
1408 return false;
1409 return true;
1410 }
1411
1412 /*
1413 * The caller must write-lock current->mm->mmap_lock.
1414 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1415 unsigned long do_mmap(struct file *file, unsigned long addr,
1416 unsigned long len, unsigned long prot,
1417 unsigned long flags, unsigned long pgoff,
1418 unsigned long *populate, struct list_head *uf)
1419 {
1420 struct mm_struct *mm = current->mm;
1421 vm_flags_t vm_flags;
1422 int pkey = 0;
1423 int err = 0;
1424
1425 *populate = 0;
1426
1427 if (!len)
1428 return -EINVAL;
1429
1430 /*
1431 * Does the application expect PROT_READ to imply PROT_EXEC?
1432 *
1433 * (the exception is when the underlying filesystem is noexec
1434 * mounted, in which case we dont add PROT_EXEC.)
1435 */
1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437 if (!(file && path_noexec(&file->f_path)))
1438 prot |= PROT_EXEC;
1439
1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441 if (flags & MAP_FIXED_NOREPLACE)
1442 flags |= MAP_FIXED;
1443
1444 if (!(flags & MAP_FIXED))
1445 addr = round_hint_to_min(addr);
1446
1447 /* Careful about overflows.. */
1448 len = PAGE_ALIGN(len);
1449 if (!len)
1450 return -ENOMEM;
1451
1452 /* offset overflow? */
1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454 return -EOVERFLOW;
1455
1456 /* Too many mappings? */
1457 if (mm->map_count > sysctl_max_map_count)
1458 return -ENOMEM;
1459
1460 /* Obtain the address to map to. we verify (or select) it and ensure
1461 * that it represents a valid section of the address space.
1462 */
1463 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464 if (IS_ERR_VALUE(addr))
1465 return addr;
1466
1467 if (flags & MAP_FIXED_NOREPLACE) {
1468 struct vm_area_struct *vma = find_vma(mm, addr);
1469
1470 if (vma && vma->vm_start < addr + len)
1471 return -EEXIST;
1472 }
1473
1474 if (prot == PROT_EXEC) {
1475 pkey = execute_only_pkey(mm);
1476 if (pkey < 0)
1477 pkey = 0;
1478 }
1479
1480 /* Do simple checking here so the lower-level routines won't have
1481 * to. we assume access permissions have been handled by the open
1482 * of the memory object, so we don't do any here.
1483 */
1484 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1485 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1486
1487 trace_vendor_do_mmap(&vm_flags, &err);
1488 if (err)
1489 return err;
1490
1491 if (flags & MAP_LOCKED)
1492 if (!can_do_mlock())
1493 return -EPERM;
1494
1495 if (mlock_future_check(mm, vm_flags, len))
1496 return -EAGAIN;
1497
1498 if (file) {
1499 struct inode *inode = file_inode(file);
1500 unsigned long flags_mask;
1501
1502 if (!file_mmap_ok(file, inode, pgoff, len))
1503 return -EOVERFLOW;
1504
1505 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1506
1507 switch (flags & MAP_TYPE) {
1508 case MAP_SHARED:
1509 /*
1510 * Force use of MAP_SHARED_VALIDATE with non-legacy
1511 * flags. E.g. MAP_SYNC is dangerous to use with
1512 * MAP_SHARED as you don't know which consistency model
1513 * you will get. We silently ignore unsupported flags
1514 * with MAP_SHARED to preserve backward compatibility.
1515 */
1516 flags &= LEGACY_MAP_MASK;
1517 fallthrough;
1518 case MAP_SHARED_VALIDATE:
1519 if (flags & ~flags_mask)
1520 return -EOPNOTSUPP;
1521 if (prot & PROT_WRITE) {
1522 if (!(file->f_mode & FMODE_WRITE))
1523 return -EACCES;
1524 if (IS_SWAPFILE(file->f_mapping->host))
1525 return -ETXTBSY;
1526 }
1527
1528 /*
1529 * Make sure we don't allow writing to an append-only
1530 * file..
1531 */
1532 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1533 return -EACCES;
1534
1535 /*
1536 * Make sure there are no mandatory locks on the file.
1537 */
1538 if (locks_verify_locked(file))
1539 return -EAGAIN;
1540
1541 vm_flags |= VM_SHARED | VM_MAYSHARE;
1542 if (!(file->f_mode & FMODE_WRITE))
1543 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1544 fallthrough;
1545 case MAP_PRIVATE:
1546 if (!(file->f_mode & FMODE_READ))
1547 return -EACCES;
1548 if (path_noexec(&file->f_path)) {
1549 if (vm_flags & VM_EXEC)
1550 return -EPERM;
1551 vm_flags &= ~VM_MAYEXEC;
1552 }
1553
1554 if (!file->f_op->mmap)
1555 return -ENODEV;
1556 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1557 return -EINVAL;
1558 break;
1559
1560 default:
1561 return -EINVAL;
1562 }
1563 } else {
1564 switch (flags & MAP_TYPE) {
1565 case MAP_SHARED:
1566 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1567 return -EINVAL;
1568 /*
1569 * Ignore pgoff.
1570 */
1571 pgoff = 0;
1572 vm_flags |= VM_SHARED | VM_MAYSHARE;
1573 break;
1574 case MAP_PRIVATE:
1575 /*
1576 * Set pgoff according to addr for anon_vma.
1577 */
1578 pgoff = addr >> PAGE_SHIFT;
1579 break;
1580 #ifdef CONFIG_MEM_PURGEABLE
1581 case MAP_PURGEABLE:
1582 vm_flags |= VM_PURGEABLE;
1583 pr_info("vm_flags purgeable = %lx.\n", VM_PURGEABLE);
1584 break;
1585 case MAP_USEREXPTE:
1586 vm_flags |= VM_USEREXPTE;
1587 pr_info("vm_flags useredpte = %lx.\n", VM_USEREXPTE);
1588 break;
1589 #endif
1590 default:
1591 return -EINVAL;
1592 }
1593 }
1594
1595 /*
1596 * Set 'VM_NORESERVE' if we should not account for the
1597 * memory use of this mapping.
1598 */
1599 if (flags & MAP_NORESERVE) {
1600 /* We honor MAP_NORESERVE if allowed to overcommit */
1601 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1602 vm_flags |= VM_NORESERVE;
1603
1604 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1605 if (file && is_file_hugepages(file))
1606 vm_flags |= VM_NORESERVE;
1607 }
1608
1609 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1610 if (!IS_ERR_VALUE(addr) &&
1611 ((vm_flags & VM_LOCKED) ||
1612 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1613 *populate = len;
1614 return addr;
1615 }
1616
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1617 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1618 unsigned long prot, unsigned long flags,
1619 unsigned long fd, unsigned long pgoff)
1620 {
1621 struct file *file = NULL;
1622 unsigned long retval;
1623
1624 if (!(flags & MAP_ANONYMOUS)) {
1625 audit_mmap_fd(fd, flags);
1626 file = fget(fd);
1627 if (!file)
1628 return -EBADF;
1629 if (is_file_hugepages(file)) {
1630 len = ALIGN(len, huge_page_size(hstate_file(file)));
1631 } else if (unlikely(flags & MAP_HUGETLB)) {
1632 retval = -EINVAL;
1633 goto out_fput;
1634 }
1635 } else if (flags & MAP_HUGETLB) {
1636 struct user_struct *user = NULL;
1637 struct hstate *hs;
1638
1639 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1640 if (!hs)
1641 return -EINVAL;
1642
1643 len = ALIGN(len, huge_page_size(hs));
1644 /*
1645 * VM_NORESERVE is used because the reservations will be
1646 * taken when vm_ops->mmap() is called
1647 * A dummy user value is used because we are not locking
1648 * memory so no accounting is necessary
1649 */
1650 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1651 VM_NORESERVE,
1652 &user, HUGETLB_ANONHUGE_INODE,
1653 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1654 if (IS_ERR(file))
1655 return PTR_ERR(file);
1656 }
1657
1658 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1659
1660 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1661 out_fput:
1662 if (file)
1663 fput(file);
1664 return retval;
1665 }
1666
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1667 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1668 unsigned long, prot, unsigned long, flags,
1669 unsigned long, fd, unsigned long, pgoff)
1670 {
1671 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1672 }
1673
1674 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1675 struct mmap_arg_struct {
1676 unsigned long addr;
1677 unsigned long len;
1678 unsigned long prot;
1679 unsigned long flags;
1680 unsigned long fd;
1681 unsigned long offset;
1682 };
1683
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1684 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1685 {
1686 struct mmap_arg_struct a;
1687
1688 if (copy_from_user(&a, arg, sizeof(a)))
1689 return -EFAULT;
1690 if (offset_in_page(a.offset))
1691 return -EINVAL;
1692
1693 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1694 a.offset >> PAGE_SHIFT);
1695 }
1696 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1697
1698 /*
1699 * Some shared mappings will want the pages marked read-only
1700 * to track write events. If so, we'll downgrade vm_page_prot
1701 * to the private version (using protection_map[] without the
1702 * VM_SHARED bit).
1703 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1704 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1705 {
1706 vm_flags_t vm_flags = vma->vm_flags;
1707 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1708
1709 /* If it was private or non-writable, the write bit is already clear */
1710 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1711 return 0;
1712
1713 /* The backer wishes to know when pages are first written to? */
1714 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1715 return 1;
1716
1717 /* The open routine did something to the protections that pgprot_modify
1718 * won't preserve? */
1719 if (pgprot_val(vm_page_prot) !=
1720 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1721 return 0;
1722
1723 /*
1724 * Do we need to track softdirty? hugetlb does not support softdirty
1725 * tracking yet.
1726 */
1727 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1728 !is_vm_hugetlb_page(vma))
1729 return 1;
1730
1731 /* Specialty mapping? */
1732 if (vm_flags & VM_PFNMAP)
1733 return 0;
1734
1735 /* Can the mapping track the dirty pages? */
1736 return vma->vm_file && vma->vm_file->f_mapping &&
1737 mapping_can_writeback(vma->vm_file->f_mapping);
1738 }
1739
1740 /*
1741 * We account for memory if it's a private writeable mapping,
1742 * not hugepages and VM_NORESERVE wasn't set.
1743 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1744 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1745 {
1746 /*
1747 * hugetlb has its own accounting separate from the core VM
1748 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1749 */
1750 if (file && is_file_hugepages(file))
1751 return 0;
1752
1753 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1754 }
1755
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1756 unsigned long mmap_region(struct file *file, unsigned long addr,
1757 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1758 struct list_head *uf)
1759 {
1760 struct mm_struct *mm = current->mm;
1761 struct vm_area_struct *vma, *prev, *merge;
1762 int error;
1763 struct rb_node **rb_link, *rb_parent;
1764 unsigned long charged = 0;
1765
1766 /* Check against address space limit. */
1767 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1768 unsigned long nr_pages;
1769
1770 /*
1771 * MAP_FIXED may remove pages of mappings that intersects with
1772 * requested mapping. Account for the pages it would unmap.
1773 */
1774 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1775
1776 if (!may_expand_vm(mm, vm_flags,
1777 (len >> PAGE_SHIFT) - nr_pages))
1778 return -ENOMEM;
1779 }
1780
1781 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1782 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1783 return -ENOMEM;
1784 /*
1785 * Private writable mapping: check memory availability
1786 */
1787 if (accountable_mapping(file, vm_flags)) {
1788 charged = len >> PAGE_SHIFT;
1789 if (security_vm_enough_memory_mm(mm, charged))
1790 return -ENOMEM;
1791 vm_flags |= VM_ACCOUNT;
1792 }
1793
1794 /*
1795 * Can we just expand an old mapping?
1796 */
1797 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1798 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1799 if (vma)
1800 goto out;
1801
1802 /*
1803 * Determine the object being mapped and call the appropriate
1804 * specific mapper. the address has already been validated, but
1805 * not unmapped, but the maps are removed from the list.
1806 */
1807 vma = vm_area_alloc(mm);
1808 if (!vma) {
1809 error = -ENOMEM;
1810 goto unacct_error;
1811 }
1812
1813 vma->vm_start = addr;
1814 vma->vm_end = addr + len;
1815 vma->vm_flags = vm_flags;
1816 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1817 vma->vm_pgoff = pgoff;
1818
1819 if (file) {
1820 if (vm_flags & VM_DENYWRITE) {
1821 error = deny_write_access(file);
1822 if (error)
1823 goto free_vma;
1824 }
1825 if (vm_flags & VM_SHARED) {
1826 error = mapping_map_writable(file->f_mapping);
1827 if (error)
1828 goto allow_write_and_free_vma;
1829 }
1830
1831 /* ->mmap() can change vma->vm_file, but must guarantee that
1832 * vma_link() below can deny write-access if VM_DENYWRITE is set
1833 * and map writably if VM_SHARED is set. This usually means the
1834 * new file must not have been exposed to user-space, yet.
1835 */
1836 vma->vm_file = get_file(file);
1837 error = call_mmap(file, vma);
1838 if (error)
1839 goto unmap_and_free_vma;
1840
1841 /* Can addr have changed??
1842 *
1843 * Answer: Yes, several device drivers can do it in their
1844 * f_op->mmap method. -DaveM
1845 * Bug: If addr is changed, prev, rb_link, rb_parent should
1846 * be updated for vma_link()
1847 */
1848 WARN_ON_ONCE(addr != vma->vm_start);
1849
1850 addr = vma->vm_start;
1851
1852 /* If vm_flags changed after call_mmap(), we should try merge vma again
1853 * as we may succeed this time.
1854 */
1855 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1856 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1857 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1858 if (merge) {
1859 /* ->mmap() can change vma->vm_file and fput the original file. So
1860 * fput the vma->vm_file here or we would add an extra fput for file
1861 * and cause general protection fault ultimately.
1862 */
1863 fput(vma->vm_file);
1864 vm_area_free(vma);
1865 vma = merge;
1866 /* Update vm_flags to pick up the change. */
1867 vm_flags = vma->vm_flags;
1868 goto unmap_writable;
1869 }
1870 }
1871
1872 vm_flags = vma->vm_flags;
1873 } else if (vm_flags & VM_SHARED) {
1874 error = shmem_zero_setup(vma);
1875 if (error)
1876 goto free_vma;
1877 } else {
1878 vma_set_anonymous(vma);
1879 }
1880
1881 /* Allow architectures to sanity-check the vma */
1882 if (security_mmap_region(vma) ||
1883 !arch_validate_flags(vma->vm_flags)) {
1884 error = -EINVAL;
1885 if (file)
1886 goto close_and_free_vma;
1887 else
1888 goto free_vma;
1889 }
1890
1891 vma_link(mm, vma, prev, rb_link, rb_parent);
1892 /* Once vma denies write, undo our temporary denial count */
1893 if (file) {
1894 unmap_writable:
1895 if (vm_flags & VM_SHARED)
1896 mapping_unmap_writable(file->f_mapping);
1897 if (vm_flags & VM_DENYWRITE)
1898 allow_write_access(file);
1899 }
1900 file = vma->vm_file;
1901 out:
1902 perf_event_mmap(vma);
1903
1904 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1905 if (vm_flags & VM_LOCKED) {
1906 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1907 is_vm_hugetlb_page(vma) ||
1908 vma == get_gate_vma(current->mm))
1909 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1910 else
1911 mm->locked_vm += (len >> PAGE_SHIFT);
1912 }
1913
1914 if (file)
1915 uprobe_mmap(vma);
1916
1917 /*
1918 * New (or expanded) vma always get soft dirty status.
1919 * Otherwise user-space soft-dirty page tracker won't
1920 * be able to distinguish situation when vma area unmapped,
1921 * then new mapped in-place (which must be aimed as
1922 * a completely new data area).
1923 */
1924 vma->vm_flags |= VM_SOFTDIRTY;
1925
1926 vma_set_page_prot(vma);
1927
1928 return addr;
1929
1930 close_and_free_vma:
1931 if (vma->vm_ops && vma->vm_ops->close)
1932 vma->vm_ops->close(vma);
1933 unmap_and_free_vma:
1934 vma->vm_file = NULL;
1935 fput(file);
1936
1937 /* Undo any partial mapping done by a device driver. */
1938 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1939 if (vm_flags & VM_SHARED)
1940 mapping_unmap_writable(file->f_mapping);
1941 allow_write_and_free_vma:
1942 if (vm_flags & VM_DENYWRITE)
1943 allow_write_access(file);
1944 free_vma:
1945 vm_area_free(vma);
1946 unacct_error:
1947 if (charged)
1948 vm_unacct_memory(charged);
1949 return error;
1950 }
1951
unmapped_area(struct vm_unmapped_area_info * info)1952 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1953 {
1954 /*
1955 * We implement the search by looking for an rbtree node that
1956 * immediately follows a suitable gap. That is,
1957 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1958 * - gap_end = vma->vm_start >= info->low_limit + length;
1959 * - gap_end - gap_start >= length
1960 */
1961
1962 struct mm_struct *mm = current->mm;
1963 struct vm_area_struct *vma;
1964 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1965
1966 /* Adjust search length to account for worst case alignment overhead */
1967 length = info->length + info->align_mask;
1968 if (length < info->length)
1969 return -ENOMEM;
1970
1971 /* Adjust search limits by the desired length */
1972 if (info->high_limit < length)
1973 return -ENOMEM;
1974 high_limit = info->high_limit - length;
1975
1976 if (info->low_limit > high_limit)
1977 return -ENOMEM;
1978 low_limit = info->low_limit + length;
1979
1980 /* Check if rbtree root looks promising */
1981 if (RB_EMPTY_ROOT(&mm->mm_rb))
1982 goto check_highest;
1983 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1984 if (vma->rb_subtree_gap < length)
1985 goto check_highest;
1986
1987 while (true) {
1988 /* Visit left subtree if it looks promising */
1989 gap_end = vm_start_gap(vma);
1990 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1991 struct vm_area_struct *left =
1992 rb_entry(vma->vm_rb.rb_left,
1993 struct vm_area_struct, vm_rb);
1994 if (left->rb_subtree_gap >= length) {
1995 vma = left;
1996 continue;
1997 }
1998 }
1999
2000 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2001 check_current:
2002 /* Check if current node has a suitable gap */
2003 if (gap_start > high_limit)
2004 return -ENOMEM;
2005 if ((gap_end >= low_limit &&
2006 gap_end > gap_start && gap_end - gap_start >= length) &&
2007 (xpm_region_outer_hook(gap_start, gap_end, info->flags)))
2008 goto found;
2009
2010 /* Visit right subtree if it looks promising */
2011 if (vma->vm_rb.rb_right) {
2012 struct vm_area_struct *right =
2013 rb_entry(vma->vm_rb.rb_right,
2014 struct vm_area_struct, vm_rb);
2015 if (right->rb_subtree_gap >= length) {
2016 vma = right;
2017 continue;
2018 }
2019 }
2020
2021 /* Go back up the rbtree to find next candidate node */
2022 while (true) {
2023 struct rb_node *prev = &vma->vm_rb;
2024 if (!rb_parent(prev))
2025 goto check_highest;
2026 vma = rb_entry(rb_parent(prev),
2027 struct vm_area_struct, vm_rb);
2028 if (prev == vma->vm_rb.rb_left) {
2029 gap_start = vm_end_gap(vma->vm_prev);
2030 gap_end = vm_start_gap(vma);
2031 goto check_current;
2032 }
2033 }
2034 }
2035
2036 check_highest:
2037 /* Check highest gap, which does not precede any rbtree node */
2038 gap_start = mm->highest_vm_end;
2039 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2040 if (gap_start > high_limit)
2041 return -ENOMEM;
2042
2043 found:
2044 /* We found a suitable gap. Clip it with the original low_limit. */
2045 if (gap_start < info->low_limit)
2046 gap_start = info->low_limit;
2047
2048 /* Adjust gap address to the desired alignment */
2049 gap_start += (info->align_offset - gap_start) & info->align_mask;
2050
2051 VM_BUG_ON(gap_start + info->length > info->high_limit);
2052 VM_BUG_ON(gap_start + info->length > gap_end);
2053 return gap_start;
2054 }
2055
unmapped_area_topdown(struct vm_unmapped_area_info * info)2056 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2057 {
2058 struct mm_struct *mm = current->mm;
2059 struct vm_area_struct *vma;
2060 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2061
2062 /* Adjust search length to account for worst case alignment overhead */
2063 length = info->length + info->align_mask;
2064 if (length < info->length)
2065 return -ENOMEM;
2066
2067 /*
2068 * Adjust search limits by the desired length.
2069 * See implementation comment at top of unmapped_area().
2070 */
2071 gap_end = info->high_limit;
2072 if (gap_end < length)
2073 return -ENOMEM;
2074 high_limit = gap_end - length;
2075
2076 if (info->low_limit > high_limit)
2077 return -ENOMEM;
2078 low_limit = info->low_limit + length;
2079
2080 /* Check highest gap, which does not precede any rbtree node */
2081 gap_start = mm->highest_vm_end;
2082 if (gap_start <= high_limit)
2083 goto found_highest;
2084
2085 /* Check if rbtree root looks promising */
2086 if (RB_EMPTY_ROOT(&mm->mm_rb))
2087 return -ENOMEM;
2088 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2089 if (vma->rb_subtree_gap < length)
2090 return -ENOMEM;
2091
2092 while (true) {
2093 /* Visit right subtree if it looks promising */
2094 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2095 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2096 struct vm_area_struct *right =
2097 rb_entry(vma->vm_rb.rb_right,
2098 struct vm_area_struct, vm_rb);
2099 if (right->rb_subtree_gap >= length) {
2100 vma = right;
2101 continue;
2102 }
2103 }
2104
2105 check_current:
2106 /* Check if current node has a suitable gap */
2107 gap_end = vm_start_gap(vma);
2108 if (gap_end < low_limit)
2109 return -ENOMEM;
2110 if ((gap_start <= high_limit &&
2111 gap_end > gap_start && gap_end - gap_start >= length) &&
2112 (xpm_region_outer_hook(gap_start, gap_end, info->flags)))
2113 goto found;
2114
2115 /* Visit left subtree if it looks promising */
2116 if (vma->vm_rb.rb_left) {
2117 struct vm_area_struct *left =
2118 rb_entry(vma->vm_rb.rb_left,
2119 struct vm_area_struct, vm_rb);
2120 if (left->rb_subtree_gap >= length) {
2121 vma = left;
2122 continue;
2123 }
2124 }
2125
2126 /* Go back up the rbtree to find next candidate node */
2127 while (true) {
2128 struct rb_node *prev = &vma->vm_rb;
2129 if (!rb_parent(prev))
2130 return -ENOMEM;
2131 vma = rb_entry(rb_parent(prev),
2132 struct vm_area_struct, vm_rb);
2133 if (prev == vma->vm_rb.rb_right) {
2134 gap_start = vma->vm_prev ?
2135 vm_end_gap(vma->vm_prev) : 0;
2136 goto check_current;
2137 }
2138 }
2139 }
2140
2141 found:
2142 /* We found a suitable gap. Clip it with the original high_limit. */
2143 if (gap_end > info->high_limit)
2144 gap_end = info->high_limit;
2145
2146 found_highest:
2147 /* Compute highest gap address at the desired alignment */
2148 gap_end -= info->length;
2149 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2150
2151 VM_BUG_ON(gap_end < info->low_limit);
2152 VM_BUG_ON(gap_end < gap_start);
2153 return gap_end;
2154 }
2155
2156 /*
2157 * Search for an unmapped address range.
2158 *
2159 * We are looking for a range that:
2160 * - does not intersect with any VMA;
2161 * - is contained within the [low_limit, high_limit) interval;
2162 * - is at least the desired size.
2163 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2164 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2165 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2166 {
2167 unsigned long addr;
2168
2169 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2170 addr = unmapped_area_topdown(info);
2171 else
2172 addr = unmapped_area(info);
2173
2174 trace_vm_unmapped_area(addr, info);
2175 return addr;
2176 }
2177
2178 /* Get an address range which is currently unmapped.
2179 * For shmat() with addr=0.
2180 *
2181 * Ugly calling convention alert:
2182 * Return value with the low bits set means error value,
2183 * ie
2184 * if (ret & ~PAGE_MASK)
2185 * error = ret;
2186 *
2187 * This function "knows" that -ENOMEM has the bits set.
2188 */
2189 #ifndef HAVE_ARCH_UNMAPPED_AREA
2190 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2191 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2192 unsigned long len, unsigned long pgoff, unsigned long flags)
2193 {
2194 unsigned long xpm_addr;
2195 struct mm_struct *mm = current->mm;
2196 struct vm_area_struct *vma, *prev;
2197 struct vm_unmapped_area_info info;
2198 const unsigned long mmap_end = arch_get_mmap_end(addr);
2199
2200 if (len > mmap_end - mmap_min_addr)
2201 return -ENOMEM;
2202
2203 xpm_addr = xpm_get_unmapped_area_hook(addr, len, flags, 0);
2204 if (xpm_addr)
2205 return xpm_addr;
2206
2207 if (flags & MAP_FIXED)
2208 return addr;
2209
2210 if (addr) {
2211 addr = PAGE_ALIGN(addr);
2212 vma = find_vma_prev(mm, addr, &prev);
2213 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2214 (!vma || addr + len <= vm_start_gap(vma)) &&
2215 (!prev || addr >= vm_end_gap(prev)) &&
2216 (xpm_region_outer_hook(addr, addr + len, 0)))
2217 return addr;
2218 }
2219
2220 info.flags = 0;
2221 info.length = len;
2222 info.low_limit = mm->mmap_base;
2223 info.high_limit = mmap_end;
2224 info.align_mask = 0;
2225 info.align_offset = 0;
2226 return vm_unmapped_area(&info);
2227 }
2228 #endif
2229
2230 /*
2231 * This mmap-allocator allocates new areas top-down from below the
2232 * stack's low limit (the base):
2233 */
2234 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2235 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2236 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2237 unsigned long len, unsigned long pgoff,
2238 unsigned long flags)
2239 {
2240 unsigned long xpm_addr;
2241 struct vm_area_struct *vma, *prev;
2242 struct mm_struct *mm = current->mm;
2243 struct vm_unmapped_area_info info;
2244 const unsigned long mmap_end = arch_get_mmap_end(addr);
2245
2246 /* requested length too big for entire address space */
2247 if (len > mmap_end - mmap_min_addr)
2248 return -ENOMEM;
2249
2250 xpm_addr = xpm_get_unmapped_area_hook(addr, len, flags,
2251 VM_UNMAPPED_AREA_TOPDOWN);
2252 if (xpm_addr)
2253 return xpm_addr;
2254
2255 if (flags & MAP_FIXED)
2256 return addr;
2257
2258 /* requesting a specific address */
2259 if (addr) {
2260 addr = PAGE_ALIGN(addr);
2261 vma = find_vma_prev(mm, addr, &prev);
2262 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2263 (!vma || addr + len <= vm_start_gap(vma)) &&
2264 (!prev || addr >= vm_end_gap(prev)) &&
2265 (xpm_region_outer_hook(addr, addr + len, 0)))
2266 return addr;
2267 }
2268
2269 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2270 info.length = len;
2271 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2272 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2273 info.align_mask = 0;
2274 info.align_offset = 0;
2275 addr = vm_unmapped_area(&info);
2276
2277 /*
2278 * A failed mmap() very likely causes application failure,
2279 * so fall back to the bottom-up function here. This scenario
2280 * can happen with large stack limits and large mmap()
2281 * allocations.
2282 */
2283 if (offset_in_page(addr)) {
2284 VM_BUG_ON(addr != -ENOMEM);
2285 info.flags = 0;
2286 info.low_limit = TASK_UNMAPPED_BASE;
2287 info.high_limit = mmap_end;
2288 addr = vm_unmapped_area(&info);
2289 }
2290
2291 return addr;
2292 }
2293 #endif
2294
2295 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2296 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2297 unsigned long pgoff, unsigned long flags)
2298 {
2299 unsigned long (*get_area)(struct file *, unsigned long,
2300 unsigned long, unsigned long, unsigned long);
2301
2302 unsigned long error = arch_mmap_check(addr, len, flags);
2303 if (error)
2304 return error;
2305
2306 /* Careful about overflows.. */
2307 if (len > TASK_SIZE)
2308 return -ENOMEM;
2309
2310 get_area = current->mm->get_unmapped_area;
2311 if (file) {
2312 if (file->f_op->get_unmapped_area)
2313 get_area = file->f_op->get_unmapped_area;
2314 } else if (flags & MAP_SHARED) {
2315 /*
2316 * mmap_region() will call shmem_zero_setup() to create a file,
2317 * so use shmem's get_unmapped_area in case it can be huge.
2318 * do_mmap() will clear pgoff, so match alignment.
2319 */
2320 pgoff = 0;
2321 get_area = shmem_get_unmapped_area;
2322 }
2323
2324 addr = get_area(file, addr, len, pgoff, flags);
2325 if (IS_ERR_VALUE(addr))
2326 return addr;
2327
2328 if (addr > TASK_SIZE - len)
2329 return -ENOMEM;
2330 if (offset_in_page(addr))
2331 return -EINVAL;
2332
2333 error = security_mmap_addr(addr);
2334 return error ? error : addr;
2335 }
2336
2337 EXPORT_SYMBOL(get_unmapped_area);
2338
2339 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2340 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2341 {
2342 struct rb_node *rb_node;
2343 struct vm_area_struct *vma;
2344
2345 /* Check the cache first. */
2346 vma = vmacache_find(mm, addr);
2347 if (likely(vma))
2348 return vma;
2349
2350 rb_node = mm->mm_rb.rb_node;
2351
2352 while (rb_node) {
2353 struct vm_area_struct *tmp;
2354
2355 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2356
2357 if (tmp->vm_end > addr) {
2358 vma = tmp;
2359 if (tmp->vm_start <= addr)
2360 break;
2361 rb_node = rb_node->rb_left;
2362 } else
2363 rb_node = rb_node->rb_right;
2364 }
2365
2366 if (vma)
2367 vmacache_update(addr, vma);
2368 return vma;
2369 }
2370
2371 EXPORT_SYMBOL(find_vma);
2372
2373 /*
2374 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2375 */
2376 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2377 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2378 struct vm_area_struct **pprev)
2379 {
2380 struct vm_area_struct *vma;
2381
2382 vma = find_vma(mm, addr);
2383 if (vma) {
2384 *pprev = vma->vm_prev;
2385 } else {
2386 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2387
2388 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2389 }
2390 return vma;
2391 }
2392
2393 /*
2394 * Verify that the stack growth is acceptable and
2395 * update accounting. This is shared with both the
2396 * grow-up and grow-down cases.
2397 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2398 static int acct_stack_growth(struct vm_area_struct *vma,
2399 unsigned long size, unsigned long grow)
2400 {
2401 struct mm_struct *mm = vma->vm_mm;
2402 unsigned long new_start;
2403
2404 /* address space limit tests */
2405 if (!may_expand_vm(mm, vma->vm_flags, grow))
2406 return -ENOMEM;
2407
2408 /* Stack limit test */
2409 if (size > rlimit(RLIMIT_STACK))
2410 return -ENOMEM;
2411
2412 /* mlock limit tests */
2413 if (vma->vm_flags & VM_LOCKED) {
2414 unsigned long locked;
2415 unsigned long limit;
2416 locked = mm->locked_vm + grow;
2417 limit = rlimit(RLIMIT_MEMLOCK);
2418 limit >>= PAGE_SHIFT;
2419 if (locked > limit && !capable(CAP_IPC_LOCK))
2420 return -ENOMEM;
2421 }
2422
2423 /* Check to ensure the stack will not grow into a hugetlb-only region */
2424 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2425 vma->vm_end - size;
2426 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2427 return -EFAULT;
2428
2429 /*
2430 * Overcommit.. This must be the final test, as it will
2431 * update security statistics.
2432 */
2433 if (security_vm_enough_memory_mm(mm, grow))
2434 return -ENOMEM;
2435
2436 return 0;
2437 }
2438
2439 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2440 /*
2441 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2442 * vma is the last one with address > vma->vm_end. Have to extend vma.
2443 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2444 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2445 {
2446 struct mm_struct *mm = vma->vm_mm;
2447 struct vm_area_struct *next;
2448 unsigned long gap_addr;
2449 int error = 0;
2450
2451 if (!(vma->vm_flags & VM_GROWSUP))
2452 return -EFAULT;
2453
2454 /* Guard against exceeding limits of the address space. */
2455 address &= PAGE_MASK;
2456 if (address >= (TASK_SIZE & PAGE_MASK))
2457 return -ENOMEM;
2458 address += PAGE_SIZE;
2459
2460 /* Enforce stack_guard_gap */
2461 gap_addr = address + stack_guard_gap;
2462
2463 /* Guard against overflow */
2464 if (gap_addr < address || gap_addr > TASK_SIZE)
2465 gap_addr = TASK_SIZE;
2466
2467 next = vma->vm_next;
2468 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2469 if (!(next->vm_flags & VM_GROWSUP))
2470 return -ENOMEM;
2471 /* Check that both stack segments have the same anon_vma? */
2472 }
2473
2474 /* We must make sure the anon_vma is allocated. */
2475 if (unlikely(anon_vma_prepare(vma)))
2476 return -ENOMEM;
2477
2478 /*
2479 * vma->vm_start/vm_end cannot change under us because the caller
2480 * is required to hold the mmap_lock in read mode. We need the
2481 * anon_vma lock to serialize against concurrent expand_stacks.
2482 */
2483 anon_vma_lock_write(vma->anon_vma);
2484
2485 /* Somebody else might have raced and expanded it already */
2486 if (address > vma->vm_end) {
2487 unsigned long size, grow;
2488
2489 size = address - vma->vm_start;
2490 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2491
2492 error = -ENOMEM;
2493 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2494 error = acct_stack_growth(vma, size, grow);
2495 if (!error) {
2496 /*
2497 * vma_gap_update() doesn't support concurrent
2498 * updates, but we only hold a shared mmap_lock
2499 * lock here, so we need to protect against
2500 * concurrent vma expansions.
2501 * anon_vma_lock_write() doesn't help here, as
2502 * we don't guarantee that all growable vmas
2503 * in a mm share the same root anon vma.
2504 * So, we reuse mm->page_table_lock to guard
2505 * against concurrent vma expansions.
2506 */
2507 spin_lock(&mm->page_table_lock);
2508 if (vma->vm_flags & VM_LOCKED)
2509 mm->locked_vm += grow;
2510 vm_stat_account(mm, vma->vm_flags, grow);
2511 anon_vma_interval_tree_pre_update_vma(vma);
2512 vma->vm_end = address;
2513 anon_vma_interval_tree_post_update_vma(vma);
2514 if (vma->vm_next)
2515 vma_gap_update(vma->vm_next);
2516 else
2517 mm->highest_vm_end = vm_end_gap(vma);
2518 spin_unlock(&mm->page_table_lock);
2519
2520 perf_event_mmap(vma);
2521 }
2522 }
2523 }
2524 anon_vma_unlock_write(vma->anon_vma);
2525 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2526 validate_mm(mm);
2527 return error;
2528 }
2529 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2530
2531 /*
2532 * vma is the first one with address < vma->vm_start. Have to extend vma.
2533 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2534 int expand_downwards(struct vm_area_struct *vma,
2535 unsigned long address)
2536 {
2537 struct mm_struct *mm = vma->vm_mm;
2538 struct vm_area_struct *prev;
2539 int error = 0;
2540
2541 address &= PAGE_MASK;
2542 if (address < mmap_min_addr)
2543 return -EPERM;
2544
2545 /* Enforce stack_guard_gap */
2546 prev = vma->vm_prev;
2547 /* Check that both stack segments have the same anon_vma? */
2548 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2549 vma_is_accessible(prev)) {
2550 if (address - prev->vm_end < stack_guard_gap)
2551 return -ENOMEM;
2552 }
2553
2554 /* We must make sure the anon_vma is allocated. */
2555 if (unlikely(anon_vma_prepare(vma)))
2556 return -ENOMEM;
2557
2558 /*
2559 * vma->vm_start/vm_end cannot change under us because the caller
2560 * is required to hold the mmap_lock in read mode. We need the
2561 * anon_vma lock to serialize against concurrent expand_stacks.
2562 */
2563 anon_vma_lock_write(vma->anon_vma);
2564
2565 /* Somebody else might have raced and expanded it already */
2566 if (address < vma->vm_start) {
2567 unsigned long size, grow;
2568
2569 size = vma->vm_end - address;
2570 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2571
2572 error = -ENOMEM;
2573 if (grow <= vma->vm_pgoff) {
2574 error = acct_stack_growth(vma, size, grow);
2575 if (!error) {
2576 /*
2577 * vma_gap_update() doesn't support concurrent
2578 * updates, but we only hold a shared mmap_lock
2579 * lock here, so we need to protect against
2580 * concurrent vma expansions.
2581 * anon_vma_lock_write() doesn't help here, as
2582 * we don't guarantee that all growable vmas
2583 * in a mm share the same root anon vma.
2584 * So, we reuse mm->page_table_lock to guard
2585 * against concurrent vma expansions.
2586 */
2587 spin_lock(&mm->page_table_lock);
2588 if (vma->vm_flags & VM_LOCKED)
2589 mm->locked_vm += grow;
2590 vm_stat_account(mm, vma->vm_flags, grow);
2591 anon_vma_interval_tree_pre_update_vma(vma);
2592 vma->vm_start = address;
2593 vma->vm_pgoff -= grow;
2594 anon_vma_interval_tree_post_update_vma(vma);
2595 vma_gap_update(vma);
2596 spin_unlock(&mm->page_table_lock);
2597
2598 perf_event_mmap(vma);
2599 }
2600 }
2601 }
2602 anon_vma_unlock_write(vma->anon_vma);
2603 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2604 validate_mm(mm);
2605 return error;
2606 }
2607
2608 /* enforced gap between the expanding stack and other mappings. */
2609 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2610
cmdline_parse_stack_guard_gap(char * p)2611 static int __init cmdline_parse_stack_guard_gap(char *p)
2612 {
2613 unsigned long val;
2614 char *endptr;
2615
2616 val = simple_strtoul(p, &endptr, 10);
2617 if (!*endptr)
2618 stack_guard_gap = val << PAGE_SHIFT;
2619
2620 return 1;
2621 }
2622 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2623
2624 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2625 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2626 {
2627 return expand_upwards(vma, address);
2628 }
2629
2630 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2631 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2632 {
2633 struct vm_area_struct *vma, *prev;
2634
2635 addr &= PAGE_MASK;
2636 vma = find_vma_prev(mm, addr, &prev);
2637 if (vma && (vma->vm_start <= addr))
2638 return vma;
2639 /* don't alter vm_end if the coredump is running */
2640 if (!prev || expand_stack(prev, addr))
2641 return NULL;
2642 if (prev->vm_flags & VM_LOCKED)
2643 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2644 return prev;
2645 }
2646 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2647 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2648 {
2649 return expand_downwards(vma, address);
2650 }
2651
2652 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2653 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2654 {
2655 struct vm_area_struct *vma;
2656 unsigned long start;
2657
2658 addr &= PAGE_MASK;
2659 vma = find_vma(mm, addr);
2660 if (!vma)
2661 return NULL;
2662 if (vma->vm_start <= addr)
2663 return vma;
2664 if (!(vma->vm_flags & VM_GROWSDOWN))
2665 return NULL;
2666 start = vma->vm_start;
2667 if (expand_stack(vma, addr))
2668 return NULL;
2669 if (vma->vm_flags & VM_LOCKED)
2670 populate_vma_page_range(vma, addr, start, NULL);
2671 return vma;
2672 }
2673 #endif
2674
2675 EXPORT_SYMBOL_GPL(find_extend_vma);
2676
2677 /*
2678 * Ok - we have the memory areas we should free on the vma list,
2679 * so release them, and do the vma updates.
2680 *
2681 * Called with the mm semaphore held.
2682 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2683 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2684 {
2685 unsigned long nr_accounted = 0;
2686
2687 /* Update high watermark before we lower total_vm */
2688 update_hiwater_vm(mm);
2689 do {
2690 long nrpages = vma_pages(vma);
2691
2692 if (vma->vm_flags & VM_ACCOUNT)
2693 nr_accounted += nrpages;
2694 vm_stat_account(mm, vma->vm_flags, -nrpages);
2695 vma = remove_vma(vma);
2696 } while (vma);
2697 vm_unacct_memory(nr_accounted);
2698 validate_mm(mm);
2699 }
2700
2701 /*
2702 * Get rid of page table information in the indicated region.
2703 *
2704 * Called with the mm semaphore held.
2705 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2706 static void unmap_region(struct mm_struct *mm,
2707 struct vm_area_struct *vma, struct vm_area_struct *prev,
2708 unsigned long start, unsigned long end)
2709 {
2710 struct vm_area_struct *next = vma_next(mm, prev);
2711 struct mmu_gather tlb;
2712 struct vm_area_struct *cur_vma;
2713
2714 lru_add_drain();
2715 tlb_gather_mmu(&tlb, mm, start, end);
2716 update_hiwater_rss(mm);
2717 unmap_vmas(&tlb, vma, start, end);
2718
2719 /*
2720 * Ensure we have no stale TLB entries by the time this mapping is
2721 * removed from the rmap.
2722 * Note that we don't have to worry about nested flushes here because
2723 * we're holding the mm semaphore for removing the mapping - so any
2724 * concurrent flush in this region has to be coming through the rmap,
2725 * and we synchronize against that using the rmap lock.
2726 */
2727 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2728 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2729 tlb_flush_mmu(&tlb);
2730 break;
2731 }
2732 }
2733
2734 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2735 next ? next->vm_start : USER_PGTABLES_CEILING);
2736 tlb_finish_mmu(&tlb, start, end);
2737 }
2738
2739 /*
2740 * Create a list of vma's touched by the unmap, removing them from the mm's
2741 * vma list as we go..
2742 */
2743 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2744 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2745 struct vm_area_struct *prev, unsigned long end)
2746 {
2747 struct vm_area_struct **insertion_point;
2748 struct vm_area_struct *tail_vma = NULL;
2749
2750 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2751 vma->vm_prev = NULL;
2752 do {
2753 vma_rb_erase(vma, &mm->mm_rb);
2754 mm->map_count--;
2755 tail_vma = vma;
2756 vma = vma->vm_next;
2757 } while (vma && vma->vm_start < end);
2758 *insertion_point = vma;
2759 if (vma) {
2760 vma->vm_prev = prev;
2761 vma_gap_update(vma);
2762 } else
2763 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2764 tail_vma->vm_next = NULL;
2765
2766 /* Kill the cache */
2767 vmacache_invalidate(mm);
2768
2769 /*
2770 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2771 * VM_GROWSUP VMA. Such VMAs can change their size under
2772 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2773 */
2774 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2775 return false;
2776 if (prev && (prev->vm_flags & VM_GROWSUP))
2777 return false;
2778 return true;
2779 }
2780
2781 /*
2782 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2783 * has already been checked or doesn't make sense to fail.
2784 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2785 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2786 unsigned long addr, int new_below)
2787 {
2788 struct vm_area_struct *new;
2789 int err;
2790
2791 if (vma->vm_ops && vma->vm_ops->split) {
2792 err = vma->vm_ops->split(vma, addr);
2793 if (err)
2794 return err;
2795 }
2796
2797 new = vm_area_dup(vma);
2798 if (!new)
2799 return -ENOMEM;
2800
2801 if (new_below)
2802 new->vm_end = addr;
2803 else {
2804 new->vm_start = addr;
2805 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2806 }
2807
2808 err = vma_dup_policy(vma, new);
2809 if (err)
2810 goto out_free_vma;
2811
2812 err = anon_vma_clone(new, vma);
2813 if (err)
2814 goto out_free_mpol;
2815
2816 if (new->vm_file)
2817 get_file(new->vm_file);
2818
2819 if (new->vm_ops && new->vm_ops->open)
2820 new->vm_ops->open(new);
2821
2822 if (new_below)
2823 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2824 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2825 else
2826 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2827
2828 /* Success. */
2829 if (!err)
2830 return 0;
2831
2832 /* Clean everything up if vma_adjust failed. */
2833 if (new->vm_ops && new->vm_ops->close)
2834 new->vm_ops->close(new);
2835 if (new->vm_file)
2836 fput(new->vm_file);
2837 unlink_anon_vmas(new);
2838 out_free_mpol:
2839 mpol_put(vma_policy(new));
2840 out_free_vma:
2841 vm_area_free(new);
2842 return err;
2843 }
2844
2845 /*
2846 * Split a vma into two pieces at address 'addr', a new vma is allocated
2847 * either for the first part or the tail.
2848 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2849 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2850 unsigned long addr, int new_below)
2851 {
2852 if (mm->map_count >= sysctl_max_map_count)
2853 return -ENOMEM;
2854
2855 return __split_vma(mm, vma, addr, new_below);
2856 }
2857
2858 /* Munmap is split into 2 main parts -- this part which finds
2859 * what needs doing, and the areas themselves, which do the
2860 * work. This now handles partial unmappings.
2861 * Jeremy Fitzhardinge <jeremy@goop.org>
2862 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2863 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2864 struct list_head *uf, bool downgrade)
2865 {
2866 unsigned long end;
2867 struct vm_area_struct *vma, *prev, *last;
2868
2869 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2870 return -EINVAL;
2871
2872 len = PAGE_ALIGN(len);
2873 end = start + len;
2874 if (len == 0)
2875 return -EINVAL;
2876
2877 /*
2878 * arch_unmap() might do unmaps itself. It must be called
2879 * and finish any rbtree manipulation before this code
2880 * runs and also starts to manipulate the rbtree.
2881 */
2882 arch_unmap(mm, start, end);
2883
2884 /* Find the first overlapping VMA */
2885 vma = find_vma(mm, start);
2886 if (!vma)
2887 return 0;
2888 prev = vma->vm_prev;
2889 /* we have start < vma->vm_end */
2890
2891 /* if it doesn't overlap, we have nothing.. */
2892 if (vma->vm_start >= end)
2893 return 0;
2894
2895 /*
2896 * If we need to split any vma, do it now to save pain later.
2897 *
2898 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2899 * unmapped vm_area_struct will remain in use: so lower split_vma
2900 * places tmp vma above, and higher split_vma places tmp vma below.
2901 */
2902 if (start > vma->vm_start) {
2903 int error;
2904
2905 /*
2906 * Make sure that map_count on return from munmap() will
2907 * not exceed its limit; but let map_count go just above
2908 * its limit temporarily, to help free resources as expected.
2909 */
2910 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2911 return -ENOMEM;
2912
2913 error = __split_vma(mm, vma, start, 0);
2914 if (error)
2915 return error;
2916 prev = vma;
2917 }
2918
2919 /* Does it split the last one? */
2920 last = find_vma(mm, end);
2921 if (last && end > last->vm_start) {
2922 int error = __split_vma(mm, last, end, 1);
2923 if (error)
2924 return error;
2925 }
2926 vma = vma_next(mm, prev);
2927
2928 if (unlikely(uf)) {
2929 /*
2930 * If userfaultfd_unmap_prep returns an error the vmas
2931 * will remain splitted, but userland will get a
2932 * highly unexpected error anyway. This is no
2933 * different than the case where the first of the two
2934 * __split_vma fails, but we don't undo the first
2935 * split, despite we could. This is unlikely enough
2936 * failure that it's not worth optimizing it for.
2937 */
2938 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2939 if (error)
2940 return error;
2941 }
2942
2943 /*
2944 * unlock any mlock()ed ranges before detaching vmas
2945 */
2946 if (mm->locked_vm) {
2947 struct vm_area_struct *tmp = vma;
2948 while (tmp && tmp->vm_start < end) {
2949 if (tmp->vm_flags & VM_LOCKED) {
2950 mm->locked_vm -= vma_pages(tmp);
2951 munlock_vma_pages_all(tmp);
2952 }
2953
2954 tmp = tmp->vm_next;
2955 }
2956 }
2957
2958 /* Detach vmas from rbtree */
2959 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2960 downgrade = false;
2961
2962 if (downgrade)
2963 mmap_write_downgrade(mm);
2964
2965 unmap_region(mm, vma, prev, start, end);
2966
2967 /* Fix up all other VM information */
2968 remove_vma_list(mm, vma);
2969
2970 return downgrade ? 1 : 0;
2971 }
2972
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2973 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2974 struct list_head *uf)
2975 {
2976 return __do_munmap(mm, start, len, uf, false);
2977 }
2978
__vm_munmap(unsigned long start,size_t len,bool downgrade)2979 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2980 {
2981 int ret;
2982 struct mm_struct *mm = current->mm;
2983 LIST_HEAD(uf);
2984
2985 if (mmap_write_lock_killable(mm))
2986 return -EINTR;
2987
2988 ret = __do_munmap(mm, start, len, &uf, downgrade);
2989 /*
2990 * Returning 1 indicates mmap_lock is downgraded.
2991 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2992 * it to 0 before return.
2993 */
2994 if (ret == 1) {
2995 mmap_read_unlock(mm);
2996 ret = 0;
2997 } else
2998 mmap_write_unlock(mm);
2999
3000 userfaultfd_unmap_complete(mm, &uf);
3001 return ret;
3002 }
3003
vm_munmap(unsigned long start,size_t len)3004 int vm_munmap(unsigned long start, size_t len)
3005 {
3006 return __vm_munmap(start, len, false);
3007 }
3008 EXPORT_SYMBOL(vm_munmap);
3009
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)3010 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3011 {
3012 addr = untagged_addr(addr);
3013 profile_munmap(addr);
3014 return __vm_munmap(addr, len, true);
3015 }
3016
3017
3018 /*
3019 * Emulation of deprecated remap_file_pages() syscall.
3020 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3021 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3022 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3023 {
3024
3025 struct mm_struct *mm = current->mm;
3026 struct vm_area_struct *vma;
3027 unsigned long populate = 0;
3028 unsigned long ret = -EINVAL;
3029 struct file *file;
3030
3031 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3032 current->comm, current->pid);
3033
3034 if (prot)
3035 return ret;
3036 start = start & PAGE_MASK;
3037 size = size & PAGE_MASK;
3038
3039 if (start + size <= start)
3040 return ret;
3041
3042 /* Does pgoff wrap? */
3043 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3044 return ret;
3045
3046 if (mmap_write_lock_killable(mm))
3047 return -EINTR;
3048
3049 vma = find_vma(mm, start);
3050
3051 if (!vma || !(vma->vm_flags & VM_SHARED))
3052 goto out;
3053
3054 if (start < vma->vm_start)
3055 goto out;
3056
3057 if (start + size > vma->vm_end) {
3058 struct vm_area_struct *next;
3059
3060 for (next = vma->vm_next; next; next = next->vm_next) {
3061 /* hole between vmas ? */
3062 if (next->vm_start != next->vm_prev->vm_end)
3063 goto out;
3064
3065 if (next->vm_file != vma->vm_file)
3066 goto out;
3067
3068 if (next->vm_flags != vma->vm_flags)
3069 goto out;
3070
3071 if (start + size <= next->vm_end)
3072 break;
3073 }
3074
3075 if (!next)
3076 goto out;
3077 }
3078
3079 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3080 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3081 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3082
3083 flags &= MAP_NONBLOCK;
3084 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3085 if (vma->vm_flags & VM_LOCKED) {
3086 struct vm_area_struct *tmp;
3087 flags |= MAP_LOCKED;
3088
3089 /* drop PG_Mlocked flag for over-mapped range */
3090 for (tmp = vma; tmp->vm_start >= start + size;
3091 tmp = tmp->vm_next) {
3092 /*
3093 * Split pmd and munlock page on the border
3094 * of the range.
3095 */
3096 vma_adjust_trans_huge(tmp, start, start + size, 0);
3097
3098 munlock_vma_pages_range(tmp,
3099 max(tmp->vm_start, start),
3100 min(tmp->vm_end, start + size));
3101 }
3102 }
3103
3104 file = get_file(vma->vm_file);
3105 ret = do_mmap(vma->vm_file, start, size,
3106 prot, flags, pgoff, &populate, NULL);
3107 fput(file);
3108 out:
3109 mmap_write_unlock(mm);
3110 if (populate)
3111 mm_populate(ret, populate);
3112 if (!IS_ERR_VALUE(ret))
3113 ret = 0;
3114 return ret;
3115 }
3116
3117 /*
3118 * this is really a simplified "do_mmap". it only handles
3119 * anonymous maps. eventually we may be able to do some
3120 * brk-specific accounting here.
3121 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3122 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3123 {
3124 struct mm_struct *mm = current->mm;
3125 struct vm_area_struct *vma, *prev;
3126 struct rb_node **rb_link, *rb_parent;
3127 pgoff_t pgoff = addr >> PAGE_SHIFT;
3128 int error;
3129 unsigned long mapped_addr;
3130
3131 /* Until we need other flags, refuse anything except VM_EXEC. */
3132 if ((flags & (~VM_EXEC)) != 0)
3133 return -EINVAL;
3134 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3135
3136 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3137 if (IS_ERR_VALUE(mapped_addr))
3138 return mapped_addr;
3139
3140 error = mlock_future_check(mm, mm->def_flags, len);
3141 if (error)
3142 return error;
3143
3144 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3145 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3146 return -ENOMEM;
3147
3148 /* Check against address space limits *after* clearing old maps... */
3149 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3150 return -ENOMEM;
3151
3152 if (mm->map_count > sysctl_max_map_count)
3153 return -ENOMEM;
3154
3155 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3156 return -ENOMEM;
3157
3158 /* Can we just expand an old private anonymous mapping? */
3159 vma = vma_merge(mm, prev, addr, addr + len, flags,
3160 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3161 if (vma)
3162 goto out;
3163
3164 /*
3165 * create a vma struct for an anonymous mapping
3166 */
3167 vma = vm_area_alloc(mm);
3168 if (!vma) {
3169 vm_unacct_memory(len >> PAGE_SHIFT);
3170 return -ENOMEM;
3171 }
3172
3173 vma_set_anonymous(vma);
3174 vma->vm_start = addr;
3175 vma->vm_end = addr + len;
3176 vma->vm_pgoff = pgoff;
3177 vma->vm_flags = flags;
3178 vma->vm_page_prot = vm_get_page_prot(flags);
3179 vma_link(mm, vma, prev, rb_link, rb_parent);
3180 out:
3181 perf_event_mmap(vma);
3182 mm->total_vm += len >> PAGE_SHIFT;
3183 mm->data_vm += len >> PAGE_SHIFT;
3184 if (flags & VM_LOCKED)
3185 mm->locked_vm += (len >> PAGE_SHIFT);
3186 vma->vm_flags |= VM_SOFTDIRTY;
3187 return 0;
3188 }
3189
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3190 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3191 {
3192 struct mm_struct *mm = current->mm;
3193 unsigned long len;
3194 int ret;
3195 bool populate;
3196 LIST_HEAD(uf);
3197
3198 len = PAGE_ALIGN(request);
3199 if (len < request)
3200 return -ENOMEM;
3201 if (!len)
3202 return 0;
3203
3204 if (mmap_write_lock_killable(mm))
3205 return -EINTR;
3206
3207 ret = do_brk_flags(addr, len, flags, &uf);
3208 populate = ((mm->def_flags & VM_LOCKED) != 0);
3209 mmap_write_unlock(mm);
3210 userfaultfd_unmap_complete(mm, &uf);
3211 if (populate && !ret)
3212 mm_populate(addr, len);
3213 return ret;
3214 }
3215 EXPORT_SYMBOL(vm_brk_flags);
3216
vm_brk(unsigned long addr,unsigned long len)3217 int vm_brk(unsigned long addr, unsigned long len)
3218 {
3219 return vm_brk_flags(addr, len, 0);
3220 }
3221 EXPORT_SYMBOL(vm_brk);
3222
3223 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3224 void exit_mmap(struct mm_struct *mm)
3225 {
3226 struct mmu_gather tlb;
3227 struct vm_area_struct *vma;
3228 unsigned long nr_accounted = 0;
3229
3230 /* mm's last user has gone, and its about to be pulled down */
3231 mmu_notifier_release(mm);
3232
3233 if (unlikely(mm_is_oom_victim(mm))) {
3234 /*
3235 * Manually reap the mm to free as much memory as possible.
3236 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3237 * this mm from further consideration. Taking mm->mmap_lock for
3238 * write after setting MMF_OOM_SKIP will guarantee that the oom
3239 * reaper will not run on this mm again after mmap_lock is
3240 * dropped.
3241 *
3242 * Nothing can be holding mm->mmap_lock here and the above call
3243 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3244 * __oom_reap_task_mm() will not block.
3245 *
3246 * This needs to be done before calling munlock_vma_pages_all(),
3247 * which clears VM_LOCKED, otherwise the oom reaper cannot
3248 * reliably test it.
3249 */
3250 (void)__oom_reap_task_mm(mm);
3251
3252 set_bit(MMF_OOM_SKIP, &mm->flags);
3253 mmap_write_lock(mm);
3254 mmap_write_unlock(mm);
3255 }
3256
3257 if (mm->locked_vm) {
3258 vma = mm->mmap;
3259 while (vma) {
3260 if (vma->vm_flags & VM_LOCKED)
3261 munlock_vma_pages_all(vma);
3262 vma = vma->vm_next;
3263 }
3264 }
3265
3266 arch_exit_mmap(mm);
3267
3268 vma = mm->mmap;
3269 if (!vma) /* Can happen if dup_mmap() received an OOM */
3270 return;
3271
3272 lru_add_drain();
3273 flush_cache_mm(mm);
3274 tlb_gather_mmu(&tlb, mm, 0, -1);
3275 /* update_hiwater_rss(mm) here? but nobody should be looking */
3276 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3277 unmap_vmas(&tlb, vma, 0, -1);
3278 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3279 tlb_finish_mmu(&tlb, 0, -1);
3280
3281 /*
3282 * Walk the list again, actually closing and freeing it,
3283 * with preemption enabled, without holding any MM locks.
3284 */
3285 while (vma) {
3286 if (vma->vm_flags & VM_ACCOUNT)
3287 nr_accounted += vma_pages(vma);
3288 vma = remove_vma(vma);
3289 cond_resched();
3290 }
3291 vm_unacct_memory(nr_accounted);
3292 }
3293
3294 /* Insert vm structure into process list sorted by address
3295 * and into the inode's i_mmap tree. If vm_file is non-NULL
3296 * then i_mmap_rwsem is taken here.
3297 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3298 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3299 {
3300 struct vm_area_struct *prev;
3301 struct rb_node **rb_link, *rb_parent;
3302
3303 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3304 &prev, &rb_link, &rb_parent))
3305 return -ENOMEM;
3306 if ((vma->vm_flags & VM_ACCOUNT) &&
3307 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3308 return -ENOMEM;
3309
3310 /*
3311 * The vm_pgoff of a purely anonymous vma should be irrelevant
3312 * until its first write fault, when page's anon_vma and index
3313 * are set. But now set the vm_pgoff it will almost certainly
3314 * end up with (unless mremap moves it elsewhere before that
3315 * first wfault), so /proc/pid/maps tells a consistent story.
3316 *
3317 * By setting it to reflect the virtual start address of the
3318 * vma, merges and splits can happen in a seamless way, just
3319 * using the existing file pgoff checks and manipulations.
3320 * Similarly in do_mmap and in do_brk_flags.
3321 */
3322 if (vma_is_anonymous(vma)) {
3323 BUG_ON(vma->anon_vma);
3324 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3325 }
3326
3327 vma_link(mm, vma, prev, rb_link, rb_parent);
3328 return 0;
3329 }
3330
3331 /*
3332 * Copy the vma structure to a new location in the same mm,
3333 * prior to moving page table entries, to effect an mremap move.
3334 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3335 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3336 unsigned long addr, unsigned long len, pgoff_t pgoff,
3337 bool *need_rmap_locks)
3338 {
3339 struct vm_area_struct *vma = *vmap;
3340 unsigned long vma_start = vma->vm_start;
3341 struct mm_struct *mm = vma->vm_mm;
3342 struct vm_area_struct *new_vma, *prev;
3343 struct rb_node **rb_link, *rb_parent;
3344 bool faulted_in_anon_vma = true;
3345
3346 /*
3347 * If anonymous vma has not yet been faulted, update new pgoff
3348 * to match new location, to increase its chance of merging.
3349 */
3350 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3351 pgoff = addr >> PAGE_SHIFT;
3352 faulted_in_anon_vma = false;
3353 }
3354
3355 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3356 return NULL; /* should never get here */
3357 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3358 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3359 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3360 if (new_vma) {
3361 /*
3362 * Source vma may have been merged into new_vma
3363 */
3364 if (unlikely(vma_start >= new_vma->vm_start &&
3365 vma_start < new_vma->vm_end)) {
3366 /*
3367 * The only way we can get a vma_merge with
3368 * self during an mremap is if the vma hasn't
3369 * been faulted in yet and we were allowed to
3370 * reset the dst vma->vm_pgoff to the
3371 * destination address of the mremap to allow
3372 * the merge to happen. mremap must change the
3373 * vm_pgoff linearity between src and dst vmas
3374 * (in turn preventing a vma_merge) to be
3375 * safe. It is only safe to keep the vm_pgoff
3376 * linear if there are no pages mapped yet.
3377 */
3378 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3379 *vmap = vma = new_vma;
3380 }
3381 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3382 } else {
3383 new_vma = vm_area_dup(vma);
3384 if (!new_vma)
3385 goto out;
3386 new_vma->vm_start = addr;
3387 new_vma->vm_end = addr + len;
3388 new_vma->vm_pgoff = pgoff;
3389 if (vma_dup_policy(vma, new_vma))
3390 goto out_free_vma;
3391 if (anon_vma_clone(new_vma, vma))
3392 goto out_free_mempol;
3393 if (new_vma->vm_file)
3394 get_file(new_vma->vm_file);
3395 if (new_vma->vm_ops && new_vma->vm_ops->open)
3396 new_vma->vm_ops->open(new_vma);
3397 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3398 *need_rmap_locks = false;
3399 }
3400 return new_vma;
3401
3402 out_free_mempol:
3403 mpol_put(vma_policy(new_vma));
3404 out_free_vma:
3405 vm_area_free(new_vma);
3406 out:
3407 return NULL;
3408 }
3409
3410 /*
3411 * Return true if the calling process may expand its vm space by the passed
3412 * number of pages
3413 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3414 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3415 {
3416 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3417 return false;
3418
3419 if (is_data_mapping(flags) &&
3420 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3421 /* Workaround for Valgrind */
3422 if (rlimit(RLIMIT_DATA) == 0 &&
3423 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3424 return true;
3425
3426 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3427 current->comm, current->pid,
3428 (mm->data_vm + npages) << PAGE_SHIFT,
3429 rlimit(RLIMIT_DATA),
3430 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3431
3432 if (!ignore_rlimit_data)
3433 return false;
3434 }
3435
3436 return true;
3437 }
3438
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3439 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3440 {
3441 mm->total_vm += npages;
3442
3443 if (is_exec_mapping(flags))
3444 mm->exec_vm += npages;
3445 else if (is_stack_mapping(flags))
3446 mm->stack_vm += npages;
3447 else if (is_data_mapping(flags))
3448 mm->data_vm += npages;
3449 }
3450
3451 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3452
3453 /*
3454 * Having a close hook prevents vma merging regardless of flags.
3455 */
special_mapping_close(struct vm_area_struct * vma)3456 static void special_mapping_close(struct vm_area_struct *vma)
3457 {
3458 }
3459
special_mapping_name(struct vm_area_struct * vma)3460 static const char *special_mapping_name(struct vm_area_struct *vma)
3461 {
3462 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3463 }
3464
special_mapping_mremap(struct vm_area_struct * new_vma)3465 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3466 {
3467 struct vm_special_mapping *sm = new_vma->vm_private_data;
3468
3469 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3470 return -EFAULT;
3471
3472 if (sm->mremap)
3473 return sm->mremap(sm, new_vma);
3474
3475 return 0;
3476 }
3477
3478 static const struct vm_operations_struct special_mapping_vmops = {
3479 .close = special_mapping_close,
3480 .fault = special_mapping_fault,
3481 .mremap = special_mapping_mremap,
3482 .name = special_mapping_name,
3483 /* vDSO code relies that VVAR can't be accessed remotely */
3484 .access = NULL,
3485 };
3486
3487 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3488 .close = special_mapping_close,
3489 .fault = special_mapping_fault,
3490 };
3491
special_mapping_fault(struct vm_fault * vmf)3492 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3493 {
3494 struct vm_area_struct *vma = vmf->vma;
3495 pgoff_t pgoff;
3496 struct page **pages;
3497
3498 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3499 pages = vma->vm_private_data;
3500 } else {
3501 struct vm_special_mapping *sm = vma->vm_private_data;
3502
3503 if (sm->fault)
3504 return sm->fault(sm, vmf->vma, vmf);
3505
3506 pages = sm->pages;
3507 }
3508
3509 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3510 pgoff--;
3511
3512 if (*pages) {
3513 struct page *page = *pages;
3514 get_page(page);
3515 vmf->page = page;
3516 return 0;
3517 }
3518
3519 return VM_FAULT_SIGBUS;
3520 }
3521
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3522 static struct vm_area_struct *__install_special_mapping(
3523 struct mm_struct *mm,
3524 unsigned long addr, unsigned long len,
3525 unsigned long vm_flags, void *priv,
3526 const struct vm_operations_struct *ops)
3527 {
3528 int ret;
3529 struct vm_area_struct *vma;
3530
3531 vma = vm_area_alloc(mm);
3532 if (unlikely(vma == NULL))
3533 return ERR_PTR(-ENOMEM);
3534
3535 vma->vm_start = addr;
3536 vma->vm_end = addr + len;
3537
3538 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3539 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3540
3541 vma->vm_ops = ops;
3542 vma->vm_private_data = priv;
3543
3544 ret = insert_vm_struct(mm, vma);
3545 if (ret)
3546 goto out;
3547
3548 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3549
3550 perf_event_mmap(vma);
3551
3552 return vma;
3553
3554 out:
3555 vm_area_free(vma);
3556 return ERR_PTR(ret);
3557 }
3558
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3559 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3560 const struct vm_special_mapping *sm)
3561 {
3562 return vma->vm_private_data == sm &&
3563 (vma->vm_ops == &special_mapping_vmops ||
3564 vma->vm_ops == &legacy_special_mapping_vmops);
3565 }
3566
3567 /*
3568 * Called with mm->mmap_lock held for writing.
3569 * Insert a new vma covering the given region, with the given flags.
3570 * Its pages are supplied by the given array of struct page *.
3571 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3572 * The region past the last page supplied will always produce SIGBUS.
3573 * The array pointer and the pages it points to are assumed to stay alive
3574 * for as long as this mapping might exist.
3575 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3576 struct vm_area_struct *_install_special_mapping(
3577 struct mm_struct *mm,
3578 unsigned long addr, unsigned long len,
3579 unsigned long vm_flags, const struct vm_special_mapping *spec)
3580 {
3581 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3582 &special_mapping_vmops);
3583 }
3584
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3585 int install_special_mapping(struct mm_struct *mm,
3586 unsigned long addr, unsigned long len,
3587 unsigned long vm_flags, struct page **pages)
3588 {
3589 struct vm_area_struct *vma = __install_special_mapping(
3590 mm, addr, len, vm_flags, (void *)pages,
3591 &legacy_special_mapping_vmops);
3592
3593 return PTR_ERR_OR_ZERO(vma);
3594 }
3595
3596 static DEFINE_MUTEX(mm_all_locks_mutex);
3597
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3598 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3599 {
3600 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3601 /*
3602 * The LSB of head.next can't change from under us
3603 * because we hold the mm_all_locks_mutex.
3604 */
3605 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3606 /*
3607 * We can safely modify head.next after taking the
3608 * anon_vma->root->rwsem. If some other vma in this mm shares
3609 * the same anon_vma we won't take it again.
3610 *
3611 * No need of atomic instructions here, head.next
3612 * can't change from under us thanks to the
3613 * anon_vma->root->rwsem.
3614 */
3615 if (__test_and_set_bit(0, (unsigned long *)
3616 &anon_vma->root->rb_root.rb_root.rb_node))
3617 BUG();
3618 }
3619 }
3620
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3621 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3622 {
3623 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3624 /*
3625 * AS_MM_ALL_LOCKS can't change from under us because
3626 * we hold the mm_all_locks_mutex.
3627 *
3628 * Operations on ->flags have to be atomic because
3629 * even if AS_MM_ALL_LOCKS is stable thanks to the
3630 * mm_all_locks_mutex, there may be other cpus
3631 * changing other bitflags in parallel to us.
3632 */
3633 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3634 BUG();
3635 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3636 }
3637 }
3638
3639 /*
3640 * This operation locks against the VM for all pte/vma/mm related
3641 * operations that could ever happen on a certain mm. This includes
3642 * vmtruncate, try_to_unmap, and all page faults.
3643 *
3644 * The caller must take the mmap_lock in write mode before calling
3645 * mm_take_all_locks(). The caller isn't allowed to release the
3646 * mmap_lock until mm_drop_all_locks() returns.
3647 *
3648 * mmap_lock in write mode is required in order to block all operations
3649 * that could modify pagetables and free pages without need of
3650 * altering the vma layout. It's also needed in write mode to avoid new
3651 * anon_vmas to be associated with existing vmas.
3652 *
3653 * A single task can't take more than one mm_take_all_locks() in a row
3654 * or it would deadlock.
3655 *
3656 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3657 * mapping->flags avoid to take the same lock twice, if more than one
3658 * vma in this mm is backed by the same anon_vma or address_space.
3659 *
3660 * We take locks in following order, accordingly to comment at beginning
3661 * of mm/rmap.c:
3662 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3663 * hugetlb mapping);
3664 * - all i_mmap_rwsem locks;
3665 * - all anon_vma->rwseml
3666 *
3667 * We can take all locks within these types randomly because the VM code
3668 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3669 * mm_all_locks_mutex.
3670 *
3671 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3672 * that may have to take thousand of locks.
3673 *
3674 * mm_take_all_locks() can fail if it's interrupted by signals.
3675 */
mm_take_all_locks(struct mm_struct * mm)3676 int mm_take_all_locks(struct mm_struct *mm)
3677 {
3678 struct vm_area_struct *vma;
3679 struct anon_vma_chain *avc;
3680
3681 BUG_ON(mmap_read_trylock(mm));
3682
3683 mutex_lock(&mm_all_locks_mutex);
3684
3685 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3686 if (signal_pending(current))
3687 goto out_unlock;
3688 if (vma->vm_file && vma->vm_file->f_mapping &&
3689 is_vm_hugetlb_page(vma))
3690 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3691 }
3692
3693 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3694 if (signal_pending(current))
3695 goto out_unlock;
3696 if (vma->vm_file && vma->vm_file->f_mapping &&
3697 !is_vm_hugetlb_page(vma))
3698 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3699 }
3700
3701 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3702 if (signal_pending(current))
3703 goto out_unlock;
3704 if (vma->anon_vma)
3705 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3706 vm_lock_anon_vma(mm, avc->anon_vma);
3707 }
3708
3709 return 0;
3710
3711 out_unlock:
3712 mm_drop_all_locks(mm);
3713 return -EINTR;
3714 }
3715
vm_unlock_anon_vma(struct anon_vma * anon_vma)3716 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3717 {
3718 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3719 /*
3720 * The LSB of head.next can't change to 0 from under
3721 * us because we hold the mm_all_locks_mutex.
3722 *
3723 * We must however clear the bitflag before unlocking
3724 * the vma so the users using the anon_vma->rb_root will
3725 * never see our bitflag.
3726 *
3727 * No need of atomic instructions here, head.next
3728 * can't change from under us until we release the
3729 * anon_vma->root->rwsem.
3730 */
3731 if (!__test_and_clear_bit(0, (unsigned long *)
3732 &anon_vma->root->rb_root.rb_root.rb_node))
3733 BUG();
3734 anon_vma_unlock_write(anon_vma);
3735 }
3736 }
3737
vm_unlock_mapping(struct address_space * mapping)3738 static void vm_unlock_mapping(struct address_space *mapping)
3739 {
3740 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3741 /*
3742 * AS_MM_ALL_LOCKS can't change to 0 from under us
3743 * because we hold the mm_all_locks_mutex.
3744 */
3745 i_mmap_unlock_write(mapping);
3746 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3747 &mapping->flags))
3748 BUG();
3749 }
3750 }
3751
3752 /*
3753 * The mmap_lock cannot be released by the caller until
3754 * mm_drop_all_locks() returns.
3755 */
mm_drop_all_locks(struct mm_struct * mm)3756 void mm_drop_all_locks(struct mm_struct *mm)
3757 {
3758 struct vm_area_struct *vma;
3759 struct anon_vma_chain *avc;
3760
3761 BUG_ON(mmap_read_trylock(mm));
3762 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3763
3764 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3765 if (vma->anon_vma)
3766 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3767 vm_unlock_anon_vma(avc->anon_vma);
3768 if (vma->vm_file && vma->vm_file->f_mapping)
3769 vm_unlock_mapping(vma->vm_file->f_mapping);
3770 }
3771
3772 mutex_unlock(&mm_all_locks_mutex);
3773 }
3774
3775 /*
3776 * initialise the percpu counter for VM
3777 */
mmap_init(void)3778 void __init mmap_init(void)
3779 {
3780 int ret;
3781
3782 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3783 VM_BUG_ON(ret);
3784 }
3785
3786 /*
3787 * Initialise sysctl_user_reserve_kbytes.
3788 *
3789 * This is intended to prevent a user from starting a single memory hogging
3790 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3791 * mode.
3792 *
3793 * The default value is min(3% of free memory, 128MB)
3794 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3795 */
init_user_reserve(void)3796 static int init_user_reserve(void)
3797 {
3798 unsigned long free_kbytes;
3799
3800 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3801
3802 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3803 return 0;
3804 }
3805 subsys_initcall(init_user_reserve);
3806
3807 /*
3808 * Initialise sysctl_admin_reserve_kbytes.
3809 *
3810 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3811 * to log in and kill a memory hogging process.
3812 *
3813 * Systems with more than 256MB will reserve 8MB, enough to recover
3814 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3815 * only reserve 3% of free pages by default.
3816 */
init_admin_reserve(void)3817 static int init_admin_reserve(void)
3818 {
3819 unsigned long free_kbytes;
3820
3821 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3822
3823 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3824 return 0;
3825 }
3826 subsys_initcall(init_admin_reserve);
3827
3828 /*
3829 * Reinititalise user and admin reserves if memory is added or removed.
3830 *
3831 * The default user reserve max is 128MB, and the default max for the
3832 * admin reserve is 8MB. These are usually, but not always, enough to
3833 * enable recovery from a memory hogging process using login/sshd, a shell,
3834 * and tools like top. It may make sense to increase or even disable the
3835 * reserve depending on the existence of swap or variations in the recovery
3836 * tools. So, the admin may have changed them.
3837 *
3838 * If memory is added and the reserves have been eliminated or increased above
3839 * the default max, then we'll trust the admin.
3840 *
3841 * If memory is removed and there isn't enough free memory, then we
3842 * need to reset the reserves.
3843 *
3844 * Otherwise keep the reserve set by the admin.
3845 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3846 static int reserve_mem_notifier(struct notifier_block *nb,
3847 unsigned long action, void *data)
3848 {
3849 unsigned long tmp, free_kbytes;
3850
3851 switch (action) {
3852 case MEM_ONLINE:
3853 /* Default max is 128MB. Leave alone if modified by operator. */
3854 tmp = sysctl_user_reserve_kbytes;
3855 if (0 < tmp && tmp < (1UL << 17))
3856 init_user_reserve();
3857
3858 /* Default max is 8MB. Leave alone if modified by operator. */
3859 tmp = sysctl_admin_reserve_kbytes;
3860 if (0 < tmp && tmp < (1UL << 13))
3861 init_admin_reserve();
3862
3863 break;
3864 case MEM_OFFLINE:
3865 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3866
3867 if (sysctl_user_reserve_kbytes > free_kbytes) {
3868 init_user_reserve();
3869 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3870 sysctl_user_reserve_kbytes);
3871 }
3872
3873 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3874 init_admin_reserve();
3875 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3876 sysctl_admin_reserve_kbytes);
3877 }
3878 break;
3879 default:
3880 break;
3881 }
3882 return NOTIFY_OK;
3883 }
3884
3885 static struct notifier_block reserve_mem_nb = {
3886 .notifier_call = reserve_mem_notifier,
3887 };
3888
init_reserve_notifier(void)3889 static int __meminit init_reserve_notifier(void)
3890 {
3891 if (register_hotmemory_notifier(&reserve_mem_nb))
3892 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3893
3894 return 0;
3895 }
3896 subsys_initcall(init_reserve_notifier);
3897