1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
28
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
31
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
getPreviousDefRecursive(BasicBlock * BB,DenseMap<BasicBlock *,TrackingVH<MemoryAccess>> & CachedPreviousDef)41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end())
48 return Cached->second;
49
50 // If this method is called from an unreachable block, return LoE.
51 if (!MSSA->DT->isReachableFromEntry(BB))
52 return MSSA->getLiveOnEntryDef();
53
54 if (BasicBlock *Pred = BB->getUniquePredecessor()) {
55 VisitedBlocks.insert(BB);
56 // Single predecessor case, just recurse, we can only have one definition.
57 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
58 CachedPreviousDef.insert({BB, Result});
59 return Result;
60 }
61
62 if (VisitedBlocks.count(BB)) {
63 // We hit our node again, meaning we had a cycle, we must insert a phi
64 // node to break it so we have an operand. The only case this will
65 // insert useless phis is if we have irreducible control flow.
66 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
67 CachedPreviousDef.insert({BB, Result});
68 return Result;
69 }
70
71 if (VisitedBlocks.insert(BB).second) {
72 // Mark us visited so we can detect a cycle
73 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
74
75 // Recurse to get the values in our predecessors for placement of a
76 // potential phi node. This will insert phi nodes if we cycle in order to
77 // break the cycle and have an operand.
78 bool UniqueIncomingAccess = true;
79 MemoryAccess *SingleAccess = nullptr;
80 for (auto *Pred : predecessors(BB)) {
81 if (MSSA->DT->isReachableFromEntry(Pred)) {
82 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
83 if (!SingleAccess)
84 SingleAccess = IncomingAccess;
85 else if (IncomingAccess != SingleAccess)
86 UniqueIncomingAccess = false;
87 PhiOps.push_back(IncomingAccess);
88 } else
89 PhiOps.push_back(MSSA->getLiveOnEntryDef());
90 }
91
92 // Now try to simplify the ops to avoid placing a phi.
93 // This may return null if we never created a phi yet, that's okay
94 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
95
96 // See if we can avoid the phi by simplifying it.
97 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
98 // If we couldn't simplify, we may have to create a phi
99 if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
100 // A concrete Phi only exists if we created an empty one to break a cycle.
101 if (Phi) {
102 assert(Phi->operands().empty() && "Expected empty Phi");
103 Phi->replaceAllUsesWith(SingleAccess);
104 removeMemoryAccess(Phi);
105 }
106 Result = SingleAccess;
107 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
108 if (!Phi)
109 Phi = MSSA->createMemoryPhi(BB);
110
111 // See if the existing phi operands match what we need.
112 // Unlike normal SSA, we only allow one phi node per block, so we can't just
113 // create a new one.
114 if (Phi->getNumOperands() != 0) {
115 // FIXME: Figure out whether this is dead code and if so remove it.
116 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
117 // These will have been filled in by the recursive read we did above.
118 llvm::copy(PhiOps, Phi->op_begin());
119 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
120 }
121 } else {
122 unsigned i = 0;
123 for (auto *Pred : predecessors(BB))
124 Phi->addIncoming(&*PhiOps[i++], Pred);
125 InsertedPHIs.push_back(Phi);
126 }
127 Result = Phi;
128 }
129
130 // Set ourselves up for the next variable by resetting visited state.
131 VisitedBlocks.erase(BB);
132 CachedPreviousDef.insert({BB, Result});
133 return Result;
134 }
135 llvm_unreachable("Should have hit one of the three cases above");
136 }
137
138 // This starts at the memory access, and goes backwards in the block to find the
139 // previous definition. If a definition is not found the block of the access,
140 // it continues globally, creating phi nodes to ensure we have a single
141 // definition.
getPreviousDef(MemoryAccess * MA)142 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
143 if (auto *LocalResult = getPreviousDefInBlock(MA))
144 return LocalResult;
145 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
146 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
147 }
148
149 // This starts at the memory access, and goes backwards in the block to the find
150 // the previous definition. If the definition is not found in the block of the
151 // access, it returns nullptr.
getPreviousDefInBlock(MemoryAccess * MA)152 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
153 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
154
155 // It's possible there are no defs, or we got handed the first def to start.
156 if (Defs) {
157 // If this is a def, we can just use the def iterators.
158 if (!isa<MemoryUse>(MA)) {
159 auto Iter = MA->getReverseDefsIterator();
160 ++Iter;
161 if (Iter != Defs->rend())
162 return &*Iter;
163 } else {
164 // Otherwise, have to walk the all access iterator.
165 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
166 for (auto &U : make_range(++MA->getReverseIterator(), End))
167 if (!isa<MemoryUse>(U))
168 return cast<MemoryAccess>(&U);
169 // Note that if MA comes before Defs->begin(), we won't hit a def.
170 return nullptr;
171 }
172 }
173 return nullptr;
174 }
175
176 // This starts at the end of block
getPreviousDefFromEnd(BasicBlock * BB,DenseMap<BasicBlock *,TrackingVH<MemoryAccess>> & CachedPreviousDef)177 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
178 BasicBlock *BB,
179 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
180 auto *Defs = MSSA->getWritableBlockDefs(BB);
181
182 if (Defs) {
183 CachedPreviousDef.insert({BB, &*Defs->rbegin()});
184 return &*Defs->rbegin();
185 }
186
187 return getPreviousDefRecursive(BB, CachedPreviousDef);
188 }
189 // Recurse over a set of phi uses to eliminate the trivial ones
recursePhi(MemoryAccess * Phi)190 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
191 if (!Phi)
192 return nullptr;
193 TrackingVH<MemoryAccess> Res(Phi);
194 SmallVector<TrackingVH<Value>, 8> Uses;
195 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
196 for (auto &U : Uses)
197 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
198 tryRemoveTrivialPhi(UsePhi);
199 return Res;
200 }
201
202 // Eliminate trivial phis
203 // Phis are trivial if they are defined either by themselves, or all the same
204 // argument.
205 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
206 // We recursively try to remove them.
tryRemoveTrivialPhi(MemoryPhi * Phi)207 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
208 assert(Phi && "Can only remove concrete Phi.");
209 auto OperRange = Phi->operands();
210 return tryRemoveTrivialPhi(Phi, OperRange);
211 }
212 template <class RangeType>
tryRemoveTrivialPhi(MemoryPhi * Phi,RangeType & Operands)213 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
214 RangeType &Operands) {
215 // Bail out on non-opt Phis.
216 if (NonOptPhis.count(Phi))
217 return Phi;
218
219 // Detect equal or self arguments
220 MemoryAccess *Same = nullptr;
221 for (auto &Op : Operands) {
222 // If the same or self, good so far
223 if (Op == Phi || Op == Same)
224 continue;
225 // not the same, return the phi since it's not eliminatable by us
226 if (Same)
227 return Phi;
228 Same = cast<MemoryAccess>(&*Op);
229 }
230 // Never found a non-self reference, the phi is undef
231 if (Same == nullptr)
232 return MSSA->getLiveOnEntryDef();
233 if (Phi) {
234 Phi->replaceAllUsesWith(Same);
235 removeMemoryAccess(Phi);
236 }
237
238 // We should only end up recursing in case we replaced something, in which
239 // case, we may have made other Phis trivial.
240 return recursePhi(Same);
241 }
242
insertUse(MemoryUse * MU,bool RenameUses)243 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
244 InsertedPHIs.clear();
245 MU->setDefiningAccess(getPreviousDef(MU));
246
247 // In cases without unreachable blocks, because uses do not create new
248 // may-defs, there are only two cases:
249 // 1. There was a def already below us, and therefore, we should not have
250 // created a phi node because it was already needed for the def.
251 //
252 // 2. There is no def below us, and therefore, there is no extra renaming work
253 // to do.
254
255 // In cases with unreachable blocks, where the unnecessary Phis were
256 // optimized out, adding the Use may re-insert those Phis. Hence, when
257 // inserting Uses outside of the MSSA creation process, and new Phis were
258 // added, rename all uses if we are asked.
259
260 if (!RenameUses && !InsertedPHIs.empty()) {
261 auto *Defs = MSSA->getBlockDefs(MU->getBlock());
262 (void)Defs;
263 assert((!Defs || (++Defs->begin() == Defs->end())) &&
264 "Block may have only a Phi or no defs");
265 }
266
267 if (RenameUses && InsertedPHIs.size()) {
268 SmallPtrSet<BasicBlock *, 16> Visited;
269 BasicBlock *StartBlock = MU->getBlock();
270
271 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
272 MemoryAccess *FirstDef = &*Defs->begin();
273 // Convert to incoming value if it's a memorydef. A phi *is* already an
274 // incoming value.
275 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
276 FirstDef = MD->getDefiningAccess();
277
278 MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
279 }
280 // We just inserted a phi into this block, so the incoming value will
281 // become the phi anyway, so it does not matter what we pass.
282 for (auto &MP : InsertedPHIs)
283 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
284 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
285 }
286 }
287
288 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
setMemoryPhiValueForBlock(MemoryPhi * MP,const BasicBlock * BB,MemoryAccess * NewDef)289 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
290 MemoryAccess *NewDef) {
291 // Replace any operand with us an incoming block with the new defining
292 // access.
293 int i = MP->getBasicBlockIndex(BB);
294 assert(i != -1 && "Should have found the basic block in the phi");
295 // We can't just compare i against getNumOperands since one is signed and the
296 // other not. So use it to index into the block iterator.
297 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
298 ++BBIter) {
299 if (*BBIter != BB)
300 break;
301 MP->setIncomingValue(i, NewDef);
302 ++i;
303 }
304 }
305
306 // A brief description of the algorithm:
307 // First, we compute what should define the new def, using the SSA
308 // construction algorithm.
309 // Then, we update the defs below us (and any new phi nodes) in the graph to
310 // point to the correct new defs, to ensure we only have one variable, and no
311 // disconnected stores.
insertDef(MemoryDef * MD,bool RenameUses)312 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
313 InsertedPHIs.clear();
314
315 // See if we had a local def, and if not, go hunting.
316 MemoryAccess *DefBefore = getPreviousDef(MD);
317 bool DefBeforeSameBlock = false;
318 if (DefBefore->getBlock() == MD->getBlock() &&
319 !(isa<MemoryPhi>(DefBefore) &&
320 std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) !=
321 InsertedPHIs.end()))
322 DefBeforeSameBlock = true;
323
324 // There is a def before us, which means we can replace any store/phi uses
325 // of that thing with us, since we are in the way of whatever was there
326 // before.
327 // We now define that def's memorydefs and memoryphis
328 if (DefBeforeSameBlock) {
329 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
330 // Leave the MemoryUses alone.
331 // Also make sure we skip ourselves to avoid self references.
332 User *Usr = U.getUser();
333 return !isa<MemoryUse>(Usr) && Usr != MD;
334 // Defs are automatically unoptimized when the user is set to MD below,
335 // because the isOptimized() call will fail to find the same ID.
336 });
337 }
338
339 // and that def is now our defining access.
340 MD->setDefiningAccess(DefBefore);
341
342 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
343
344 // Remember the index where we may insert new phis.
345 unsigned NewPhiIndex = InsertedPHIs.size();
346 if (!DefBeforeSameBlock) {
347 // If there was a local def before us, we must have the same effect it
348 // did. Because every may-def is the same, any phis/etc we would create, it
349 // would also have created. If there was no local def before us, we
350 // performed a global update, and have to search all successors and make
351 // sure we update the first def in each of them (following all paths until
352 // we hit the first def along each path). This may also insert phi nodes.
353 // TODO: There are other cases we can skip this work, such as when we have a
354 // single successor, and only used a straight line of single pred blocks
355 // backwards to find the def. To make that work, we'd have to track whether
356 // getDefRecursive only ever used the single predecessor case. These types
357 // of paths also only exist in between CFG simplifications.
358
359 // If this is the first def in the block and this insert is in an arbitrary
360 // place, compute IDF and place phis.
361 SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
362
363 // If this is the last Def in the block, also compute IDF based on MD, since
364 // this may a new Def added, and we may need additional Phis.
365 auto Iter = MD->getDefsIterator();
366 ++Iter;
367 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
368 if (Iter == IterEnd)
369 DefiningBlocks.insert(MD->getBlock());
370
371 for (const auto &VH : InsertedPHIs)
372 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
373 DefiningBlocks.insert(RealPHI->getBlock());
374 ForwardIDFCalculator IDFs(*MSSA->DT);
375 SmallVector<BasicBlock *, 32> IDFBlocks;
376 IDFs.setDefiningBlocks(DefiningBlocks);
377 IDFs.calculate(IDFBlocks);
378 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
379 for (auto *BBIDF : IDFBlocks) {
380 auto *MPhi = MSSA->getMemoryAccess(BBIDF);
381 if (!MPhi) {
382 MPhi = MSSA->createMemoryPhi(BBIDF);
383 NewInsertedPHIs.push_back(MPhi);
384 }
385 // Add the phis created into the IDF blocks to NonOptPhis, so they are not
386 // optimized out as trivial by the call to getPreviousDefFromEnd below.
387 // Once they are complete, all these Phis are added to the FixupList, and
388 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
389 // need fixing as well, and potentially be trivial before this insertion,
390 // hence add all IDF Phis. See PR43044.
391 NonOptPhis.insert(MPhi);
392 }
393 for (auto &MPhi : NewInsertedPHIs) {
394 auto *BBIDF = MPhi->getBlock();
395 for (auto *Pred : predecessors(BBIDF)) {
396 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
397 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
398 }
399 }
400
401 // Re-take the index where we're adding the new phis, because the above call
402 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
403 NewPhiIndex = InsertedPHIs.size();
404 for (auto &MPhi : NewInsertedPHIs) {
405 InsertedPHIs.push_back(&*MPhi);
406 FixupList.push_back(&*MPhi);
407 }
408
409 FixupList.push_back(MD);
410 }
411
412 // Remember the index where we stopped inserting new phis above, since the
413 // fixupDefs call in the loop below may insert more, that are already minimal.
414 unsigned NewPhiIndexEnd = InsertedPHIs.size();
415
416 while (!FixupList.empty()) {
417 unsigned StartingPHISize = InsertedPHIs.size();
418 fixupDefs(FixupList);
419 FixupList.clear();
420 // Put any new phis on the fixup list, and process them
421 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
422 }
423
424 // Optimize potentially non-minimal phis added in this method.
425 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
426 if (NewPhiSize)
427 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
428
429 // Now that all fixups are done, rename all uses if we are asked.
430 if (RenameUses) {
431 SmallPtrSet<BasicBlock *, 16> Visited;
432 BasicBlock *StartBlock = MD->getBlock();
433 // We are guaranteed there is a def in the block, because we just got it
434 // handed to us in this function.
435 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
436 // Convert to incoming value if it's a memorydef. A phi *is* already an
437 // incoming value.
438 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
439 FirstDef = MD->getDefiningAccess();
440
441 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
442 // We just inserted a phi into this block, so the incoming value will become
443 // the phi anyway, so it does not matter what we pass.
444 for (auto &MP : InsertedPHIs) {
445 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
446 if (Phi)
447 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
448 }
449 }
450 }
451
fixupDefs(const SmallVectorImpl<WeakVH> & Vars)452 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
453 SmallPtrSet<const BasicBlock *, 8> Seen;
454 SmallVector<const BasicBlock *, 16> Worklist;
455 for (auto &Var : Vars) {
456 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
457 if (!NewDef)
458 continue;
459 // First, see if there is a local def after the operand.
460 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
461 auto DefIter = NewDef->getDefsIterator();
462
463 // The temporary Phi is being fixed, unmark it for not to optimize.
464 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
465 NonOptPhis.erase(Phi);
466
467 // If there is a local def after us, we only have to rename that.
468 if (++DefIter != Defs->end()) {
469 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
470 continue;
471 }
472
473 // Otherwise, we need to search down through the CFG.
474 // For each of our successors, handle it directly if their is a phi, or
475 // place on the fixup worklist.
476 for (const auto *S : successors(NewDef->getBlock())) {
477 if (auto *MP = MSSA->getMemoryAccess(S))
478 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
479 else
480 Worklist.push_back(S);
481 }
482
483 while (!Worklist.empty()) {
484 const BasicBlock *FixupBlock = Worklist.back();
485 Worklist.pop_back();
486
487 // Get the first def in the block that isn't a phi node.
488 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
489 auto *FirstDef = &*Defs->begin();
490 // The loop above and below should have taken care of phi nodes
491 assert(!isa<MemoryPhi>(FirstDef) &&
492 "Should have already handled phi nodes!");
493 // We are now this def's defining access, make sure we actually dominate
494 // it
495 assert(MSSA->dominates(NewDef, FirstDef) &&
496 "Should have dominated the new access");
497
498 // This may insert new phi nodes, because we are not guaranteed the
499 // block we are processing has a single pred, and depending where the
500 // store was inserted, it may require phi nodes below it.
501 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
502 return;
503 }
504 // We didn't find a def, so we must continue.
505 for (const auto *S : successors(FixupBlock)) {
506 // If there is a phi node, handle it.
507 // Otherwise, put the block on the worklist
508 if (auto *MP = MSSA->getMemoryAccess(S))
509 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
510 else {
511 // If we cycle, we should have ended up at a phi node that we already
512 // processed. FIXME: Double check this
513 if (!Seen.insert(S).second)
514 continue;
515 Worklist.push_back(S);
516 }
517 }
518 }
519 }
520 }
521
removeEdge(BasicBlock * From,BasicBlock * To)522 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
523 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
524 MPhi->unorderedDeleteIncomingBlock(From);
525 tryRemoveTrivialPhi(MPhi);
526 }
527 }
528
removeDuplicatePhiEdgesBetween(const BasicBlock * From,const BasicBlock * To)529 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
530 const BasicBlock *To) {
531 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
532 bool Found = false;
533 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
534 if (From != B)
535 return false;
536 if (Found)
537 return true;
538 Found = true;
539 return false;
540 });
541 tryRemoveTrivialPhi(MPhi);
542 }
543 }
544
getNewDefiningAccessForClone(MemoryAccess * MA,const ValueToValueMapTy & VMap,PhiToDefMap & MPhiMap,bool CloneWasSimplified,MemorySSA * MSSA)545 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
546 const ValueToValueMapTy &VMap,
547 PhiToDefMap &MPhiMap,
548 bool CloneWasSimplified,
549 MemorySSA *MSSA) {
550 MemoryAccess *InsnDefining = MA;
551 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
552 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
553 Instruction *DefMUDI = DefMUD->getMemoryInst();
554 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
555 if (Instruction *NewDefMUDI =
556 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
557 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
558 if (!CloneWasSimplified)
559 assert(InsnDefining && "Defining instruction cannot be nullptr.");
560 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
561 // The clone was simplified, it's no longer a MemoryDef, look up.
562 auto DefIt = DefMUD->getDefsIterator();
563 // Since simplified clones only occur in single block cloning, a
564 // previous definition must exist, otherwise NewDefMUDI would not
565 // have been found in VMap.
566 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
567 "Previous def must exist");
568 InsnDefining = getNewDefiningAccessForClone(
569 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
570 }
571 }
572 }
573 } else {
574 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
575 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
576 InsnDefining = NewDefPhi;
577 }
578 assert(InsnDefining && "Defining instruction cannot be nullptr.");
579 return InsnDefining;
580 }
581
cloneUsesAndDefs(BasicBlock * BB,BasicBlock * NewBB,const ValueToValueMapTy & VMap,PhiToDefMap & MPhiMap,bool CloneWasSimplified)582 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
583 const ValueToValueMapTy &VMap,
584 PhiToDefMap &MPhiMap,
585 bool CloneWasSimplified) {
586 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
587 if (!Acc)
588 return;
589 for (const MemoryAccess &MA : *Acc) {
590 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
591 Instruction *Insn = MUD->getMemoryInst();
592 // Entry does not exist if the clone of the block did not clone all
593 // instructions. This occurs in LoopRotate when cloning instructions
594 // from the old header to the old preheader. The cloned instruction may
595 // also be a simplified Value, not an Instruction (see LoopRotate).
596 // Also in LoopRotate, even when it's an instruction, due to it being
597 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
598 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
599 if (Instruction *NewInsn =
600 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
601 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
602 NewInsn,
603 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
604 MPhiMap, CloneWasSimplified, MSSA),
605 /*Template=*/CloneWasSimplified ? nullptr : MUD,
606 /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
607 if (NewUseOrDef)
608 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
609 }
610 }
611 }
612 }
613
updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock * Header,BasicBlock * Preheader,BasicBlock * BEBlock)614 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
615 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
616 auto *MPhi = MSSA->getMemoryAccess(Header);
617 if (!MPhi)
618 return;
619
620 // Create phi node in the backedge block and populate it with the same
621 // incoming values as MPhi. Skip incoming values coming from Preheader.
622 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
623 bool HasUniqueIncomingValue = true;
624 MemoryAccess *UniqueValue = nullptr;
625 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
626 BasicBlock *IBB = MPhi->getIncomingBlock(I);
627 MemoryAccess *IV = MPhi->getIncomingValue(I);
628 if (IBB != Preheader) {
629 NewMPhi->addIncoming(IV, IBB);
630 if (HasUniqueIncomingValue) {
631 if (!UniqueValue)
632 UniqueValue = IV;
633 else if (UniqueValue != IV)
634 HasUniqueIncomingValue = false;
635 }
636 }
637 }
638
639 // Update incoming edges into MPhi. Remove all but the incoming edge from
640 // Preheader. Add an edge from NewMPhi
641 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
642 MPhi->setIncomingValue(0, AccFromPreheader);
643 MPhi->setIncomingBlock(0, Preheader);
644 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
645 MPhi->unorderedDeleteIncoming(I);
646 MPhi->addIncoming(NewMPhi, BEBlock);
647
648 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
649 // replaced with the unique value.
650 tryRemoveTrivialPhi(NewMPhi);
651 }
652
updateForClonedLoop(const LoopBlocksRPO & LoopBlocks,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,bool IgnoreIncomingWithNoClones)653 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
654 ArrayRef<BasicBlock *> ExitBlocks,
655 const ValueToValueMapTy &VMap,
656 bool IgnoreIncomingWithNoClones) {
657 PhiToDefMap MPhiMap;
658
659 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
660 assert(Phi && NewPhi && "Invalid Phi nodes.");
661 BasicBlock *NewPhiBB = NewPhi->getBlock();
662 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
663 pred_end(NewPhiBB));
664 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
665 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
666 BasicBlock *IncBB = Phi->getIncomingBlock(It);
667
668 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
669 IncBB = NewIncBB;
670 else if (IgnoreIncomingWithNoClones)
671 continue;
672
673 // Now we have IncBB, and will need to add incoming from it to NewPhi.
674
675 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
676 // NewPhiBB was cloned without that edge.
677 if (!NewPhiBBPreds.count(IncBB))
678 continue;
679
680 // Determine incoming value and add it as incoming from IncBB.
681 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
682 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
683 Instruction *IncI = IncMUD->getMemoryInst();
684 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
685 if (Instruction *NewIncI =
686 cast_or_null<Instruction>(VMap.lookup(IncI))) {
687 IncMUD = MSSA->getMemoryAccess(NewIncI);
688 assert(IncMUD &&
689 "MemoryUseOrDef cannot be null, all preds processed.");
690 }
691 }
692 NewPhi->addIncoming(IncMUD, IncBB);
693 } else {
694 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
695 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
696 NewPhi->addIncoming(NewDefPhi, IncBB);
697 else
698 NewPhi->addIncoming(IncPhi, IncBB);
699 }
700 }
701 };
702
703 auto ProcessBlock = [&](BasicBlock *BB) {
704 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
705 if (!NewBlock)
706 return;
707
708 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
709 "Cloned block should have no accesses");
710
711 // Add MemoryPhi.
712 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
713 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
714 MPhiMap[MPhi] = NewPhi;
715 }
716 // Update Uses and Defs.
717 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
718 };
719
720 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
721 ProcessBlock(BB);
722
723 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
724 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
725 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
726 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
727 }
728
updateForClonedBlockIntoPred(BasicBlock * BB,BasicBlock * P1,const ValueToValueMapTy & VM)729 void MemorySSAUpdater::updateForClonedBlockIntoPred(
730 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
731 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
732 // Since those defs/phis must have dominated BB, and also dominate P1.
733 // Defs from BB being used in BB will be replaced with the cloned defs from
734 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
735 // incoming def into the Phi from P1.
736 // Instructions cloned into the predecessor are in practice sometimes
737 // simplified, so disable the use of the template, and create an access from
738 // scratch.
739 PhiToDefMap MPhiMap;
740 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
741 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
742 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
743 }
744
745 template <typename Iter>
privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock * > ExitBlocks,Iter ValuesBegin,Iter ValuesEnd,DominatorTree & DT)746 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
747 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
748 DominatorTree &DT) {
749 SmallVector<CFGUpdate, 4> Updates;
750 // Update/insert phis in all successors of exit blocks.
751 for (auto *Exit : ExitBlocks)
752 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
753 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
754 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
755 Updates.push_back({DT.Insert, NewExit, ExitSucc});
756 }
757 applyInsertUpdates(Updates, DT);
758 }
759
updateExitBlocksForClonedLoop(ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,DominatorTree & DT)760 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
761 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
762 DominatorTree &DT) {
763 const ValueToValueMapTy *const Arr[] = {&VMap};
764 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
765 std::end(Arr), DT);
766 }
767
updateExitBlocksForClonedLoop(ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT)768 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
769 ArrayRef<BasicBlock *> ExitBlocks,
770 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
771 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
772 return I.get();
773 };
774 using MappedIteratorType =
775 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
776 decltype(GetPtr)>;
777 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
778 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
779 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
780 }
781
applyUpdates(ArrayRef<CFGUpdate> Updates,DominatorTree & DT)782 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
783 DominatorTree &DT) {
784 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
785 SmallVector<CFGUpdate, 4> InsertUpdates;
786 for (auto &Update : Updates) {
787 if (Update.getKind() == DT.Insert)
788 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
789 else
790 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
791 }
792
793 if (!RevDeleteUpdates.empty()) {
794 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
795 // not occurred.
796 // FIXME: This creates a new DT, so it's more expensive to do mix
797 // delete/inserts vs just inserts. We can do an incremental update on the DT
798 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
799 // part of a pending cleanup.
800 DominatorTree NewDT(DT, RevDeleteUpdates);
801 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
802 applyInsertUpdates(InsertUpdates, NewDT, &GD);
803 } else {
804 GraphDiff<BasicBlock *> GD;
805 applyInsertUpdates(InsertUpdates, DT, &GD);
806 }
807
808 // Update for deleted edges
809 for (auto &Update : RevDeleteUpdates)
810 removeEdge(Update.getFrom(), Update.getTo());
811 }
812
applyInsertUpdates(ArrayRef<CFGUpdate> Updates,DominatorTree & DT)813 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
814 DominatorTree &DT) {
815 GraphDiff<BasicBlock *> GD;
816 applyInsertUpdates(Updates, DT, &GD);
817 }
818
applyInsertUpdates(ArrayRef<CFGUpdate> Updates,DominatorTree & DT,const GraphDiff<BasicBlock * > * GD)819 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
820 DominatorTree &DT,
821 const GraphDiff<BasicBlock *> *GD) {
822 // Get recursive last Def, assuming well formed MSSA and updated DT.
823 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
824 while (true) {
825 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
826 // Return last Def or Phi in BB, if it exists.
827 if (Defs)
828 return &*(--Defs->end());
829
830 // Check number of predecessors, we only care if there's more than one.
831 unsigned Count = 0;
832 BasicBlock *Pred = nullptr;
833 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
834 Pred = Pair.second;
835 Count++;
836 if (Count == 2)
837 break;
838 }
839
840 // If BB has multiple predecessors, get last definition from IDom.
841 if (Count != 1) {
842 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
843 // DT is invalidated. Return LoE as its last def. This will be added to
844 // MemoryPhi node, and later deleted when the block is deleted.
845 if (!DT.getNode(BB))
846 return MSSA->getLiveOnEntryDef();
847 if (auto *IDom = DT.getNode(BB)->getIDom())
848 if (IDom->getBlock() != BB) {
849 BB = IDom->getBlock();
850 continue;
851 }
852 return MSSA->getLiveOnEntryDef();
853 } else {
854 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
855 assert(Count == 1 && Pred && "Single predecessor expected.");
856 // BB can be unreachable though, return LoE if that is the case.
857 if (!DT.getNode(BB))
858 return MSSA->getLiveOnEntryDef();
859 BB = Pred;
860 }
861 };
862 llvm_unreachable("Unable to get last definition.");
863 };
864
865 // Get nearest IDom given a set of blocks.
866 // TODO: this can be optimized by starting the search at the node with the
867 // lowest level (highest in the tree).
868 auto FindNearestCommonDominator =
869 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
870 BasicBlock *PrevIDom = *BBSet.begin();
871 for (auto *BB : BBSet)
872 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
873 return PrevIDom;
874 };
875
876 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
877 // include CurrIDom.
878 auto GetNoLongerDomBlocks =
879 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
880 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
881 if (PrevIDom == CurrIDom)
882 return;
883 BlocksPrevDom.push_back(PrevIDom);
884 BasicBlock *NextIDom = PrevIDom;
885 while (BasicBlock *UpIDom =
886 DT.getNode(NextIDom)->getIDom()->getBlock()) {
887 if (UpIDom == CurrIDom)
888 break;
889 BlocksPrevDom.push_back(UpIDom);
890 NextIDom = UpIDom;
891 }
892 };
893
894 // Map a BB to its predecessors: added + previously existing. To get a
895 // deterministic order, store predecessors as SetVectors. The order in each
896 // will be defined by the order in Updates (fixed) and the order given by
897 // children<> (also fixed). Since we further iterate over these ordered sets,
898 // we lose the information of multiple edges possibly existing between two
899 // blocks, so we'll keep and EdgeCount map for that.
900 // An alternate implementation could keep unordered set for the predecessors,
901 // traverse either Updates or children<> each time to get the deterministic
902 // order, and drop the usage of EdgeCount. This alternate approach would still
903 // require querying the maps for each predecessor, and children<> call has
904 // additional computation inside for creating the snapshot-graph predecessors.
905 // As such, we favor using a little additional storage and less compute time.
906 // This decision can be revisited if we find the alternative more favorable.
907
908 struct PredInfo {
909 SmallSetVector<BasicBlock *, 2> Added;
910 SmallSetVector<BasicBlock *, 2> Prev;
911 };
912 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
913
914 for (auto &Edge : Updates) {
915 BasicBlock *BB = Edge.getTo();
916 auto &AddedBlockSet = PredMap[BB].Added;
917 AddedBlockSet.insert(Edge.getFrom());
918 }
919
920 // Store all existing predecessor for each BB, at least one must exist.
921 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
922 SmallPtrSet<BasicBlock *, 2> NewBlocks;
923 for (auto &BBPredPair : PredMap) {
924 auto *BB = BBPredPair.first;
925 const auto &AddedBlockSet = BBPredPair.second.Added;
926 auto &PrevBlockSet = BBPredPair.second.Prev;
927 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
928 BasicBlock *Pi = Pair.second;
929 if (!AddedBlockSet.count(Pi))
930 PrevBlockSet.insert(Pi);
931 EdgeCountMap[{Pi, BB}]++;
932 }
933
934 if (PrevBlockSet.empty()) {
935 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
936 LLVM_DEBUG(
937 dbgs()
938 << "Adding a predecessor to a block with no predecessors. "
939 "This must be an edge added to a new, likely cloned, block. "
940 "Its memory accesses must be already correct, assuming completed "
941 "via the updateExitBlocksForClonedLoop API. "
942 "Assert a single such edge is added so no phi addition or "
943 "additional processing is required.\n");
944 assert(AddedBlockSet.size() == 1 &&
945 "Can only handle adding one predecessor to a new block.");
946 // Need to remove new blocks from PredMap. Remove below to not invalidate
947 // iterator here.
948 NewBlocks.insert(BB);
949 }
950 }
951 // Nothing to process for new/cloned blocks.
952 for (auto *BB : NewBlocks)
953 PredMap.erase(BB);
954
955 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
956 SmallVector<WeakVH, 8> InsertedPhis;
957
958 // First create MemoryPhis in all blocks that don't have one. Create in the
959 // order found in Updates, not in PredMap, to get deterministic numbering.
960 for (auto &Edge : Updates) {
961 BasicBlock *BB = Edge.getTo();
962 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
963 InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
964 }
965
966 // Now we'll fill in the MemoryPhis with the right incoming values.
967 for (auto &BBPredPair : PredMap) {
968 auto *BB = BBPredPair.first;
969 const auto &PrevBlockSet = BBPredPair.second.Prev;
970 const auto &AddedBlockSet = BBPredPair.second.Added;
971 assert(!PrevBlockSet.empty() &&
972 "At least one previous predecessor must exist.");
973
974 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
975 // keeping this map before the loop. We can reuse already populated entries
976 // if an edge is added from the same predecessor to two different blocks,
977 // and this does happen in rotate. Note that the map needs to be updated
978 // when deleting non-necessary phis below, if the phi is in the map by
979 // replacing the value with DefP1.
980 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
981 for (auto *AddedPred : AddedBlockSet) {
982 auto *DefPn = GetLastDef(AddedPred);
983 assert(DefPn != nullptr && "Unable to find last definition.");
984 LastDefAddedPred[AddedPred] = DefPn;
985 }
986
987 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
988 // If Phi is not empty, add an incoming edge from each added pred. Must
989 // still compute blocks with defs to replace for this block below.
990 if (NewPhi->getNumOperands()) {
991 for (auto *Pred : AddedBlockSet) {
992 auto *LastDefForPred = LastDefAddedPred[Pred];
993 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
994 NewPhi->addIncoming(LastDefForPred, Pred);
995 }
996 } else {
997 // Pick any existing predecessor and get its definition. All other
998 // existing predecessors should have the same one, since no phi existed.
999 auto *P1 = *PrevBlockSet.begin();
1000 MemoryAccess *DefP1 = GetLastDef(P1);
1001
1002 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1003 // nothing to add.
1004 bool InsertPhi = false;
1005 for (auto LastDefPredPair : LastDefAddedPred)
1006 if (DefP1 != LastDefPredPair.second) {
1007 InsertPhi = true;
1008 break;
1009 }
1010 if (!InsertPhi) {
1011 // Since NewPhi may be used in other newly added Phis, replace all uses
1012 // of NewPhi with the definition coming from all predecessors (DefP1),
1013 // before deleting it.
1014 NewPhi->replaceAllUsesWith(DefP1);
1015 removeMemoryAccess(NewPhi);
1016 continue;
1017 }
1018
1019 // Update Phi with new values for new predecessors and old value for all
1020 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1021 // sets, the order of entries in NewPhi is deterministic.
1022 for (auto *Pred : AddedBlockSet) {
1023 auto *LastDefForPred = LastDefAddedPred[Pred];
1024 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1025 NewPhi->addIncoming(LastDefForPred, Pred);
1026 }
1027 for (auto *Pred : PrevBlockSet)
1028 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1029 NewPhi->addIncoming(DefP1, Pred);
1030 }
1031
1032 // Get all blocks that used to dominate BB and no longer do after adding
1033 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1034 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1035 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1036 assert(PrevIDom && "Previous IDom should exists");
1037 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1038 assert(NewIDom && "BB should have a new valid idom");
1039 assert(DT.dominates(NewIDom, PrevIDom) &&
1040 "New idom should dominate old idom");
1041 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1042 }
1043
1044 tryRemoveTrivialPhis(InsertedPhis);
1045 // Create the set of blocks that now have a definition. We'll use this to
1046 // compute IDF and add Phis there next.
1047 SmallVector<BasicBlock *, 8> BlocksToProcess;
1048 for (auto &VH : InsertedPhis)
1049 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1050 BlocksToProcess.push_back(MPhi->getBlock());
1051
1052 // Compute IDF and add Phis in all IDF blocks that do not have one.
1053 SmallVector<BasicBlock *, 32> IDFBlocks;
1054 if (!BlocksToProcess.empty()) {
1055 ForwardIDFCalculator IDFs(DT, GD);
1056 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1057 BlocksToProcess.end());
1058 IDFs.setDefiningBlocks(DefiningBlocks);
1059 IDFs.calculate(IDFBlocks);
1060
1061 SmallSetVector<MemoryPhi *, 4> PhisToFill;
1062 // First create all needed Phis.
1063 for (auto *BBIDF : IDFBlocks)
1064 if (!MSSA->getMemoryAccess(BBIDF)) {
1065 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1066 InsertedPhis.push_back(IDFPhi);
1067 PhisToFill.insert(IDFPhi);
1068 }
1069 // Then update or insert their correct incoming values.
1070 for (auto *BBIDF : IDFBlocks) {
1071 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1072 assert(IDFPhi && "Phi must exist");
1073 if (!PhisToFill.count(IDFPhi)) {
1074 // Update existing Phi.
1075 // FIXME: some updates may be redundant, try to optimize and skip some.
1076 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1077 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1078 } else {
1079 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1080 BasicBlock *Pi = Pair.second;
1081 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1082 }
1083 }
1084 }
1085 }
1086
1087 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1088 // longer dominate, replace those with the closest dominating def.
1089 // This will also update optimized accesses, as they're also uses.
1090 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1091 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1092 for (auto &DefToReplaceUses : *DefsList) {
1093 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1094 Value::use_iterator UI = DefToReplaceUses.use_begin(),
1095 E = DefToReplaceUses.use_end();
1096 for (; UI != E;) {
1097 Use &U = *UI;
1098 ++UI;
1099 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1100 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1101 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1102 if (!DT.dominates(DominatingBlock, DominatedBlock))
1103 U.set(GetLastDef(DominatedBlock));
1104 } else {
1105 BasicBlock *DominatedBlock = Usr->getBlock();
1106 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1107 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1108 U.set(DomBlPhi);
1109 else {
1110 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1111 assert(IDom && "Block must have a valid IDom.");
1112 U.set(GetLastDef(IDom->getBlock()));
1113 }
1114 cast<MemoryUseOrDef>(Usr)->resetOptimized();
1115 }
1116 }
1117 }
1118 }
1119 }
1120 }
1121 tryRemoveTrivialPhis(InsertedPhis);
1122 }
1123
1124 // Move What before Where in the MemorySSA IR.
1125 template <class WhereType>
moveTo(MemoryUseOrDef * What,BasicBlock * BB,WhereType Where)1126 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1127 WhereType Where) {
1128 // Mark MemoryPhi users of What not to be optimized.
1129 for (auto *U : What->users())
1130 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1131 NonOptPhis.insert(PhiUser);
1132
1133 // Replace all our users with our defining access.
1134 What->replaceAllUsesWith(What->getDefiningAccess());
1135
1136 // Let MemorySSA take care of moving it around in the lists.
1137 MSSA->moveTo(What, BB, Where);
1138
1139 // Now reinsert it into the IR and do whatever fixups needed.
1140 if (auto *MD = dyn_cast<MemoryDef>(What))
1141 insertDef(MD, /*RenameUses=*/true);
1142 else
1143 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1144
1145 // Clear dangling pointers. We added all MemoryPhi users, but not all
1146 // of them are removed by fixupDefs().
1147 NonOptPhis.clear();
1148 }
1149
1150 // Move What before Where in the MemorySSA IR.
moveBefore(MemoryUseOrDef * What,MemoryUseOrDef * Where)1151 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1152 moveTo(What, Where->getBlock(), Where->getIterator());
1153 }
1154
1155 // Move What after Where in the MemorySSA IR.
moveAfter(MemoryUseOrDef * What,MemoryUseOrDef * Where)1156 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1157 moveTo(What, Where->getBlock(), ++Where->getIterator());
1158 }
1159
moveToPlace(MemoryUseOrDef * What,BasicBlock * BB,MemorySSA::InsertionPlace Where)1160 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1161 MemorySSA::InsertionPlace Where) {
1162 if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1163 return moveTo(What, BB, Where);
1164
1165 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1166 return moveBefore(What, Where);
1167 else
1168 return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1169 }
1170
1171 // All accesses in To used to be in From. Move to end and update access lists.
moveAllAccesses(BasicBlock * From,BasicBlock * To,Instruction * Start)1172 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1173 Instruction *Start) {
1174
1175 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1176 if (!Accs)
1177 return;
1178
1179 assert(Start->getParent() == To && "Incorrect Start instruction");
1180 MemoryAccess *FirstInNew = nullptr;
1181 for (Instruction &I : make_range(Start->getIterator(), To->end()))
1182 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1183 break;
1184 if (FirstInNew) {
1185 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1186 do {
1187 auto NextIt = ++MUD->getIterator();
1188 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1189 ? nullptr
1190 : cast<MemoryUseOrDef>(&*NextIt);
1191 MSSA->moveTo(MUD, To, MemorySSA::End);
1192 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1193 // to retrieve it again.
1194 Accs = MSSA->getWritableBlockAccesses(From);
1195 MUD = NextMUD;
1196 } while (MUD);
1197 }
1198
1199 // If all accesses were moved and only a trivial Phi remains, we try to remove
1200 // that Phi. This is needed when From is going to be deleted.
1201 auto *Defs = MSSA->getWritableBlockDefs(From);
1202 if (Defs && !Defs->empty())
1203 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1204 tryRemoveTrivialPhi(Phi);
1205 }
1206
moveAllAfterSpliceBlocks(BasicBlock * From,BasicBlock * To,Instruction * Start)1207 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1208 BasicBlock *To,
1209 Instruction *Start) {
1210 assert(MSSA->getBlockAccesses(To) == nullptr &&
1211 "To block is expected to be free of MemoryAccesses.");
1212 moveAllAccesses(From, To, Start);
1213 for (BasicBlock *Succ : successors(To))
1214 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1215 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1216 }
1217
moveAllAfterMergeBlocks(BasicBlock * From,BasicBlock * To,Instruction * Start)1218 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1219 Instruction *Start) {
1220 assert(From->getUniquePredecessor() == To &&
1221 "From block is expected to have a single predecessor (To).");
1222 moveAllAccesses(From, To, Start);
1223 for (BasicBlock *Succ : successors(From))
1224 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1225 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1226 }
1227
1228 /// If all arguments of a MemoryPHI are defined by the same incoming
1229 /// argument, return that argument.
onlySingleValue(MemoryPhi * MP)1230 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1231 MemoryAccess *MA = nullptr;
1232
1233 for (auto &Arg : MP->operands()) {
1234 if (!MA)
1235 MA = cast<MemoryAccess>(Arg);
1236 else if (MA != Arg)
1237 return nullptr;
1238 }
1239 return MA;
1240 }
1241
wireOldPredecessorsToNewImmediatePredecessor(BasicBlock * Old,BasicBlock * New,ArrayRef<BasicBlock * > Preds,bool IdenticalEdgesWereMerged)1242 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1243 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1244 bool IdenticalEdgesWereMerged) {
1245 assert(!MSSA->getWritableBlockAccesses(New) &&
1246 "Access list should be null for a new block.");
1247 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1248 if (!Phi)
1249 return;
1250 if (Old->hasNPredecessors(1)) {
1251 assert(pred_size(New) == Preds.size() &&
1252 "Should have moved all predecessors.");
1253 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1254 } else {
1255 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1256 "new immediate predecessor.");
1257 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1258 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1259 // Currently only support the case of removing a single incoming edge when
1260 // identical edges were not merged.
1261 if (!IdenticalEdgesWereMerged)
1262 assert(PredsSet.size() == Preds.size() &&
1263 "If identical edges were not merged, we cannot have duplicate "
1264 "blocks in the predecessors");
1265 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1266 if (PredsSet.count(B)) {
1267 NewPhi->addIncoming(MA, B);
1268 if (!IdenticalEdgesWereMerged)
1269 PredsSet.erase(B);
1270 return true;
1271 }
1272 return false;
1273 });
1274 Phi->addIncoming(NewPhi, New);
1275 tryRemoveTrivialPhi(NewPhi);
1276 }
1277 }
1278
removeMemoryAccess(MemoryAccess * MA,bool OptimizePhis)1279 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1280 assert(!MSSA->isLiveOnEntryDef(MA) &&
1281 "Trying to remove the live on entry def");
1282 // We can only delete phi nodes if they have no uses, or we can replace all
1283 // uses with a single definition.
1284 MemoryAccess *NewDefTarget = nullptr;
1285 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1286 // Note that it is sufficient to know that all edges of the phi node have
1287 // the same argument. If they do, by the definition of dominance frontiers
1288 // (which we used to place this phi), that argument must dominate this phi,
1289 // and thus, must dominate the phi's uses, and so we will not hit the assert
1290 // below.
1291 NewDefTarget = onlySingleValue(MP);
1292 assert((NewDefTarget || MP->use_empty()) &&
1293 "We can't delete this memory phi");
1294 } else {
1295 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1296 }
1297
1298 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1299
1300 // Re-point the uses at our defining access
1301 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1302 // Reset optimized on users of this store, and reset the uses.
1303 // A few notes:
1304 // 1. This is a slightly modified version of RAUW to avoid walking the
1305 // uses twice here.
1306 // 2. If we wanted to be complete, we would have to reset the optimized
1307 // flags on users of phi nodes if doing the below makes a phi node have all
1308 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1309 // phi nodes, because doing it here would be N^3.
1310 if (MA->hasValueHandle())
1311 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1312 // Note: We assume MemorySSA is not used in metadata since it's not really
1313 // part of the IR.
1314
1315 while (!MA->use_empty()) {
1316 Use &U = *MA->use_begin();
1317 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1318 MUD->resetOptimized();
1319 if (OptimizePhis)
1320 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1321 PhisToCheck.insert(MP);
1322 U.set(NewDefTarget);
1323 }
1324 }
1325
1326 // The call below to erase will destroy MA, so we can't change the order we
1327 // are doing things here
1328 MSSA->removeFromLookups(MA);
1329 MSSA->removeFromLists(MA);
1330
1331 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1332 if (!PhisToCheck.empty()) {
1333 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1334 PhisToCheck.end()};
1335 PhisToCheck.clear();
1336
1337 unsigned PhisSize = PhisToOptimize.size();
1338 while (PhisSize-- > 0)
1339 if (MemoryPhi *MP =
1340 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1341 tryRemoveTrivialPhi(MP);
1342 }
1343 }
1344
removeBlocks(const SmallSetVector<BasicBlock *,8> & DeadBlocks)1345 void MemorySSAUpdater::removeBlocks(
1346 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1347 // First delete all uses of BB in MemoryPhis.
1348 for (BasicBlock *BB : DeadBlocks) {
1349 Instruction *TI = BB->getTerminator();
1350 assert(TI && "Basic block expected to have a terminator instruction");
1351 for (BasicBlock *Succ : successors(TI))
1352 if (!DeadBlocks.count(Succ))
1353 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1354 MP->unorderedDeleteIncomingBlock(BB);
1355 tryRemoveTrivialPhi(MP);
1356 }
1357 // Drop all references of all accesses in BB
1358 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1359 for (MemoryAccess &MA : *Acc)
1360 MA.dropAllReferences();
1361 }
1362
1363 // Next, delete all memory accesses in each block
1364 for (BasicBlock *BB : DeadBlocks) {
1365 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1366 if (!Acc)
1367 continue;
1368 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1369 MemoryAccess *MA = &*AB;
1370 ++AB;
1371 MSSA->removeFromLookups(MA);
1372 MSSA->removeFromLists(MA);
1373 }
1374 }
1375 }
1376
tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs)1377 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1378 for (auto &VH : UpdatedPHIs)
1379 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1380 tryRemoveTrivialPhi(MPhi);
1381 }
1382
changeToUnreachable(const Instruction * I)1383 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1384 const BasicBlock *BB = I->getParent();
1385 // Remove memory accesses in BB for I and all following instructions.
1386 auto BBI = I->getIterator(), BBE = BB->end();
1387 // FIXME: If this becomes too expensive, iterate until the first instruction
1388 // with a memory access, then iterate over MemoryAccesses.
1389 while (BBI != BBE)
1390 removeMemoryAccess(&*(BBI++));
1391 // Update phis in BB's successors to remove BB.
1392 SmallVector<WeakVH, 16> UpdatedPHIs;
1393 for (const BasicBlock *Successor : successors(BB)) {
1394 removeDuplicatePhiEdgesBetween(BB, Successor);
1395 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1396 MPhi->unorderedDeleteIncomingBlock(BB);
1397 UpdatedPHIs.push_back(MPhi);
1398 }
1399 }
1400 // Optimize trivial phis.
1401 tryRemoveTrivialPhis(UpdatedPHIs);
1402 }
1403
changeCondBranchToUnconditionalTo(const BranchInst * BI,const BasicBlock * To)1404 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1405 const BasicBlock *To) {
1406 const BasicBlock *BB = BI->getParent();
1407 SmallVector<WeakVH, 16> UpdatedPHIs;
1408 for (const BasicBlock *Succ : successors(BB)) {
1409 removeDuplicatePhiEdgesBetween(BB, Succ);
1410 if (Succ != To)
1411 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1412 MPhi->unorderedDeleteIncomingBlock(BB);
1413 UpdatedPHIs.push_back(MPhi);
1414 }
1415 }
1416 // Optimize trivial phis.
1417 tryRemoveTrivialPhis(UpdatedPHIs);
1418 }
1419
createMemoryAccessInBB(Instruction * I,MemoryAccess * Definition,const BasicBlock * BB,MemorySSA::InsertionPlace Point)1420 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1421 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1422 MemorySSA::InsertionPlace Point) {
1423 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1424 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1425 return NewAccess;
1426 }
1427
createMemoryAccessBefore(Instruction * I,MemoryAccess * Definition,MemoryUseOrDef * InsertPt)1428 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1429 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1430 assert(I->getParent() == InsertPt->getBlock() &&
1431 "New and old access must be in the same block");
1432 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1433 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1434 InsertPt->getIterator());
1435 return NewAccess;
1436 }
1437
createMemoryAccessAfter(Instruction * I,MemoryAccess * Definition,MemoryAccess * InsertPt)1438 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1439 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1440 assert(I->getParent() == InsertPt->getBlock() &&
1441 "New and old access must be in the same block");
1442 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1443 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1444 ++InsertPt->getIterator());
1445 return NewAccess;
1446 }
1447