1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 #include <math.h>
34
35 #include <ruby/encoding.h>
36
37 // -----------------------------------------------------------------------------
38 // Ruby <-> native slot management.
39 // -----------------------------------------------------------------------------
40
41 #define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
42 #define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
43 #define DEREF(memory, type) *(type*)(memory)
44
native_slot_size(upb_fieldtype_t type)45 size_t native_slot_size(upb_fieldtype_t type) {
46 switch (type) {
47 case UPB_TYPE_FLOAT: return 4;
48 case UPB_TYPE_DOUBLE: return 8;
49 case UPB_TYPE_BOOL: return 1;
50 case UPB_TYPE_STRING: return sizeof(VALUE);
51 case UPB_TYPE_BYTES: return sizeof(VALUE);
52 case UPB_TYPE_MESSAGE: return sizeof(VALUE);
53 case UPB_TYPE_ENUM: return 4;
54 case UPB_TYPE_INT32: return 4;
55 case UPB_TYPE_INT64: return 8;
56 case UPB_TYPE_UINT32: return 4;
57 case UPB_TYPE_UINT64: return 8;
58 default: return 0;
59 }
60 }
61
is_ruby_num(VALUE value)62 static bool is_ruby_num(VALUE value) {
63 return (TYPE(value) == T_FLOAT ||
64 TYPE(value) == T_FIXNUM ||
65 TYPE(value) == T_BIGNUM);
66 }
67
native_slot_check_int_range_precision(const char * name,upb_fieldtype_t type,VALUE val)68 void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
69 if (!is_ruby_num(val)) {
70 rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
71 name, rb_class2name(CLASS_OF(val)));
72 }
73
74 // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
75 // bound; we just need to do precision checks (i.e., disallow rounding) and
76 // check for < 0 on unsigned types.
77 if (TYPE(val) == T_FLOAT) {
78 double dbl_val = NUM2DBL(val);
79 if (floor(dbl_val) != dbl_val) {
80 rb_raise(rb_eRangeError,
81 "Non-integral floating point value assigned to integer field '%s' (given %s).",
82 name, rb_class2name(CLASS_OF(val)));
83 }
84 }
85 if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
86 if (NUM2DBL(val) < 0) {
87 rb_raise(rb_eRangeError,
88 "Assigning negative value to unsigned integer field '%s' (given %s).",
89 name, rb_class2name(CLASS_OF(val)));
90 }
91 }
92 }
93
native_slot_encode_and_freeze_string(upb_fieldtype_t type,VALUE value)94 VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
95 rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
96 kRubyStringUtf8Encoding : kRubyString8bitEncoding;
97 VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
98
99 if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
100 // Note: this will not duplicate underlying string data unless necessary.
101 value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
102
103 if (type == UPB_TYPE_STRING &&
104 rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
105 rb_raise(rb_eEncodingError, "String is invalid UTF-8");
106 }
107
108 // Ensure the data remains valid. Since we called #encode a moment ago,
109 // this does not freeze the string the user assigned.
110 rb_obj_freeze(value);
111 }
112
113 return value;
114 }
115
native_slot_set(const char * name,upb_fieldtype_t type,VALUE type_class,void * memory,VALUE value)116 void native_slot_set(const char* name,
117 upb_fieldtype_t type, VALUE type_class,
118 void* memory, VALUE value) {
119 native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
120 }
121
native_slot_set_value_and_case(const char * name,upb_fieldtype_t type,VALUE type_class,void * memory,VALUE value,uint32_t * case_memory,uint32_t case_number)122 void native_slot_set_value_and_case(const char* name,
123 upb_fieldtype_t type, VALUE type_class,
124 void* memory, VALUE value,
125 uint32_t* case_memory,
126 uint32_t case_number) {
127 // Note that in order to atomically change the value in memory and the case
128 // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
129 // all Ruby VM calls are complete. The case is then set at the bottom of this
130 // function.
131 switch (type) {
132 case UPB_TYPE_FLOAT:
133 if (!is_ruby_num(value)) {
134 rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
135 name, rb_class2name(CLASS_OF(value)));
136 }
137 DEREF(memory, float) = NUM2DBL(value);
138 break;
139 case UPB_TYPE_DOUBLE:
140 if (!is_ruby_num(value)) {
141 rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
142 name, rb_class2name(CLASS_OF(value)));
143 }
144 DEREF(memory, double) = NUM2DBL(value);
145 break;
146 case UPB_TYPE_BOOL: {
147 int8_t val = -1;
148 if (value == Qtrue) {
149 val = 1;
150 } else if (value == Qfalse) {
151 val = 0;
152 } else {
153 rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
154 name, rb_class2name(CLASS_OF(value)));
155 }
156 DEREF(memory, int8_t) = val;
157 break;
158 }
159 case UPB_TYPE_STRING:
160 if (CLASS_OF(value) == rb_cSymbol) {
161 value = rb_funcall(value, rb_intern("to_s"), 0);
162 } else if (CLASS_OF(value) != rb_cString) {
163 rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
164 name, rb_class2name(CLASS_OF(value)));
165 }
166
167 DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
168 break;
169
170 case UPB_TYPE_BYTES: {
171 if (CLASS_OF(value) != rb_cString) {
172 rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
173 name, rb_class2name(CLASS_OF(value)));
174 }
175
176 DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
177 break;
178 }
179 case UPB_TYPE_MESSAGE: {
180 if (CLASS_OF(value) == CLASS_OF(Qnil)) {
181 value = Qnil;
182 } else if (CLASS_OF(value) != type_class) {
183 // check for possible implicit conversions
184 VALUE converted_value = Qnil;
185 const char* field_type_name = rb_class2name(type_class);
186
187 if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
188 rb_obj_is_kind_of(value, rb_cTime)) {
189 // Time -> Google::Protobuf::Timestamp
190 VALUE hash = rb_hash_new();
191 rb_hash_aset(hash, rb_str_new2("seconds"),
192 rb_funcall(value, rb_intern("to_i"), 0));
193 rb_hash_aset(hash, rb_str_new2("nanos"),
194 rb_funcall(value, rb_intern("nsec"), 0));
195 {
196 VALUE args[1] = {hash};
197 converted_value = rb_class_new_instance(1, args, type_class);
198 }
199 } else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
200 rb_obj_is_kind_of(value, rb_cNumeric)) {
201 // Numeric -> Google::Protobuf::Duration
202 VALUE hash = rb_hash_new();
203 rb_hash_aset(hash, rb_str_new2("seconds"),
204 rb_funcall(value, rb_intern("to_i"), 0));
205 {
206 VALUE n_value =
207 rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
208 n_value =
209 rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
210 n_value = rb_funcall(n_value, rb_intern("round"), 0);
211 rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
212 }
213 {
214 VALUE args[1] = { hash };
215 converted_value = rb_class_new_instance(1, args, type_class);
216 }
217 }
218
219 // raise if no suitable conversaion could be found
220 if (converted_value == Qnil) {
221 rb_raise(cTypeError,
222 "Invalid type %s to assign to submessage field '%s'.",
223 rb_class2name(CLASS_OF(value)), name);
224 } else {
225 value = converted_value;
226 }
227 }
228 DEREF(memory, VALUE) = value;
229 break;
230 }
231 case UPB_TYPE_ENUM: {
232 int32_t int_val = 0;
233 if (TYPE(value) == T_STRING) {
234 value = rb_funcall(value, rb_intern("to_sym"), 0);
235 } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
236 rb_raise(cTypeError,
237 "Expected number or symbol type for enum field '%s'.", name);
238 }
239 if (TYPE(value) == T_SYMBOL) {
240 // Ensure that the given symbol exists in the enum module.
241 VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
242 if (lookup == Qnil) {
243 rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
244 } else {
245 int_val = NUM2INT(lookup);
246 }
247 } else {
248 native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
249 int_val = NUM2INT(value);
250 }
251 DEREF(memory, int32_t) = int_val;
252 break;
253 }
254 case UPB_TYPE_INT32:
255 case UPB_TYPE_INT64:
256 case UPB_TYPE_UINT32:
257 case UPB_TYPE_UINT64:
258 native_slot_check_int_range_precision(name, type, value);
259 switch (type) {
260 case UPB_TYPE_INT32:
261 DEREF(memory, int32_t) = NUM2INT(value);
262 break;
263 case UPB_TYPE_INT64:
264 DEREF(memory, int64_t) = NUM2LL(value);
265 break;
266 case UPB_TYPE_UINT32:
267 DEREF(memory, uint32_t) = NUM2UINT(value);
268 break;
269 case UPB_TYPE_UINT64:
270 DEREF(memory, uint64_t) = NUM2ULL(value);
271 break;
272 default:
273 break;
274 }
275 break;
276 default:
277 break;
278 }
279
280 if (case_memory != NULL) {
281 *case_memory = case_number;
282 }
283 }
284
native_slot_get(upb_fieldtype_t type,VALUE type_class,const void * memory)285 VALUE native_slot_get(upb_fieldtype_t type,
286 VALUE type_class,
287 const void* memory) {
288 switch (type) {
289 case UPB_TYPE_FLOAT:
290 return DBL2NUM(DEREF(memory, float));
291 case UPB_TYPE_DOUBLE:
292 return DBL2NUM(DEREF(memory, double));
293 case UPB_TYPE_BOOL:
294 return DEREF(memory, int8_t) ? Qtrue : Qfalse;
295 case UPB_TYPE_STRING:
296 case UPB_TYPE_BYTES:
297 return DEREF(memory, VALUE);
298 case UPB_TYPE_MESSAGE: {
299 VALUE val = DEREF(memory, VALUE);
300
301 // Lazily expand wrapper type if necessary.
302 int type = TYPE(val);
303 if (type != T_DATA && type != T_NIL) {
304 // This must be a wrapper type.
305 val = ruby_wrapper_type(type_class, val);
306 DEREF(memory, VALUE) = val;
307 }
308
309 return val;
310 }
311 case UPB_TYPE_ENUM: {
312 int32_t val = DEREF(memory, int32_t);
313 VALUE symbol = enum_lookup(type_class, INT2NUM(val));
314 if (symbol == Qnil) {
315 return INT2NUM(val);
316 } else {
317 return symbol;
318 }
319 }
320 case UPB_TYPE_INT32:
321 return INT2NUM(DEREF(memory, int32_t));
322 case UPB_TYPE_INT64:
323 return LL2NUM(DEREF(memory, int64_t));
324 case UPB_TYPE_UINT32:
325 return UINT2NUM(DEREF(memory, uint32_t));
326 case UPB_TYPE_UINT64:
327 return ULL2NUM(DEREF(memory, uint64_t));
328 default:
329 return Qnil;
330 }
331 }
332
native_slot_init(upb_fieldtype_t type,void * memory)333 void native_slot_init(upb_fieldtype_t type, void* memory) {
334 switch (type) {
335 case UPB_TYPE_FLOAT:
336 DEREF(memory, float) = 0.0;
337 break;
338 case UPB_TYPE_DOUBLE:
339 DEREF(memory, double) = 0.0;
340 break;
341 case UPB_TYPE_BOOL:
342 DEREF(memory, int8_t) = 0;
343 break;
344 case UPB_TYPE_STRING:
345 case UPB_TYPE_BYTES:
346 DEREF(memory, VALUE) = rb_str_new2("");
347 rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
348 kRubyString8bitEncoding : kRubyStringUtf8Encoding);
349 break;
350 case UPB_TYPE_MESSAGE:
351 DEREF(memory, VALUE) = Qnil;
352 break;
353 case UPB_TYPE_ENUM:
354 case UPB_TYPE_INT32:
355 DEREF(memory, int32_t) = 0;
356 break;
357 case UPB_TYPE_INT64:
358 DEREF(memory, int64_t) = 0;
359 break;
360 case UPB_TYPE_UINT32:
361 DEREF(memory, uint32_t) = 0;
362 break;
363 case UPB_TYPE_UINT64:
364 DEREF(memory, uint64_t) = 0;
365 break;
366 default:
367 break;
368 }
369 }
370
native_slot_mark(upb_fieldtype_t type,void * memory)371 void native_slot_mark(upb_fieldtype_t type, void* memory) {
372 switch (type) {
373 case UPB_TYPE_STRING:
374 case UPB_TYPE_BYTES:
375 case UPB_TYPE_MESSAGE:
376 rb_gc_mark(DEREF(memory, VALUE));
377 break;
378 default:
379 break;
380 }
381 }
382
native_slot_dup(upb_fieldtype_t type,void * to,void * from)383 void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
384 memcpy(to, from, native_slot_size(type));
385 }
386
native_slot_deep_copy(upb_fieldtype_t type,VALUE type_class,void * to,void * from)387 void native_slot_deep_copy(upb_fieldtype_t type, VALUE type_class, void* to,
388 void* from) {
389 switch (type) {
390 case UPB_TYPE_STRING:
391 case UPB_TYPE_BYTES: {
392 VALUE from_val = DEREF(from, VALUE);
393 DEREF(to, VALUE) = (from_val != Qnil) ?
394 rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
395 break;
396 }
397 case UPB_TYPE_MESSAGE: {
398 VALUE from_val = native_slot_get(type, type_class, from);
399 DEREF(to, VALUE) = (from_val != Qnil) ?
400 Message_deep_copy(from_val) : Qnil;
401 break;
402 }
403 default:
404 memcpy(to, from, native_slot_size(type));
405 }
406 }
407
native_slot_eq(upb_fieldtype_t type,VALUE type_class,void * mem1,void * mem2)408 bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1,
409 void* mem2) {
410 switch (type) {
411 case UPB_TYPE_STRING:
412 case UPB_TYPE_BYTES:
413 case UPB_TYPE_MESSAGE: {
414 VALUE val1 = native_slot_get(type, type_class, mem1);
415 VALUE val2 = native_slot_get(type, type_class, mem2);
416 VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
417 return ret == Qtrue;
418 }
419 default:
420 return !memcmp(mem1, mem2, native_slot_size(type));
421 }
422 }
423
424 // -----------------------------------------------------------------------------
425 // Map field utilities.
426 // -----------------------------------------------------------------------------
427
tryget_map_entry_msgdef(const upb_fielddef * field)428 const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
429 const upb_msgdef* subdef;
430 if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
431 upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
432 return NULL;
433 }
434 subdef = upb_fielddef_msgsubdef(field);
435 return upb_msgdef_mapentry(subdef) ? subdef : NULL;
436 }
437
map_entry_msgdef(const upb_fielddef * field)438 const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
439 const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
440 assert(subdef);
441 return subdef;
442 }
443
is_map_field(const upb_fielddef * field)444 bool is_map_field(const upb_fielddef *field) {
445 const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
446 if (subdef == NULL) return false;
447
448 // Map fields are a proto3 feature.
449 // If we're using proto2 syntax we need to fallback to the repeated field.
450 return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
451 }
452
map_field_key(const upb_fielddef * field)453 const upb_fielddef* map_field_key(const upb_fielddef* field) {
454 const upb_msgdef* subdef = map_entry_msgdef(field);
455 return map_entry_key(subdef);
456 }
457
map_field_value(const upb_fielddef * field)458 const upb_fielddef* map_field_value(const upb_fielddef* field) {
459 const upb_msgdef* subdef = map_entry_msgdef(field);
460 return map_entry_value(subdef);
461 }
462
map_entry_key(const upb_msgdef * msgdef)463 const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
464 const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
465 assert(key_field != NULL);
466 return key_field;
467 }
468
map_entry_value(const upb_msgdef * msgdef)469 const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
470 const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
471 assert(value_field != NULL);
472 return value_field;
473 }
474
475 // -----------------------------------------------------------------------------
476 // Memory layout management.
477 // -----------------------------------------------------------------------------
478
field_contains_hasbit(MessageLayout * layout,const upb_fielddef * field)479 bool field_contains_hasbit(MessageLayout* layout,
480 const upb_fielddef* field) {
481 return layout->fields[upb_fielddef_index(field)].hasbit !=
482 MESSAGE_FIELD_NO_HASBIT;
483 }
484
align_up_to(size_t offset,size_t granularity)485 static size_t align_up_to(size_t offset, size_t granularity) {
486 // Granularity must be a power of two.
487 return (offset + granularity - 1) & ~(granularity - 1);
488 }
489
is_value_field(const upb_fielddef * f)490 bool is_value_field(const upb_fielddef* f) {
491 return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) ||
492 upb_fielddef_isstring(f);
493 }
494
create_layout(Descriptor * desc)495 void create_layout(Descriptor* desc) {
496 const upb_msgdef *msgdef = desc->msgdef;
497 MessageLayout* layout = ALLOC(MessageLayout);
498 int nfields = upb_msgdef_numfields(msgdef);
499 int noneofs = upb_msgdef_numrealoneofs(msgdef);
500 upb_msg_field_iter it;
501 upb_msg_oneof_iter oit;
502 size_t off = 0;
503 size_t hasbit = 0;
504 int i;
505
506 (void)i;
507
508 layout->empty_template = NULL;
509 layout->desc = desc;
510 desc->layout = layout;
511
512 layout->fields = ALLOC_N(MessageField, nfields);
513 layout->oneofs = NULL;
514
515 if (noneofs > 0) {
516 layout->oneofs = ALLOC_N(MessageOneof, noneofs);
517 }
518
519 #ifndef NDEBUG
520 for (i = 0; i < nfields; i++) {
521 layout->fields[i].offset = -1;
522 }
523
524 for (i = 0; i < noneofs; i++) {
525 layout->oneofs[i].offset = -1;
526 }
527 #endif
528
529 for (upb_msg_field_begin(&it, msgdef);
530 !upb_msg_field_done(&it);
531 upb_msg_field_next(&it)) {
532 const upb_fielddef* field = upb_msg_iter_field(&it);
533 if (upb_fielddef_haspresence(field) &&
534 !upb_fielddef_realcontainingoneof(field)) {
535 layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
536 } else {
537 layout->fields[upb_fielddef_index(field)].hasbit =
538 MESSAGE_FIELD_NO_HASBIT;
539 }
540 }
541
542 if (hasbit != 0) {
543 off += (hasbit + 8 - 1) / 8;
544 }
545
546 off = align_up_to(off, sizeof(VALUE));
547 layout->value_offset = off;
548 layout->repeated_count = 0;
549 layout->map_count = 0;
550 layout->value_count = 0;
551
552 // Place all VALUE fields for repeated fields.
553 for (upb_msg_field_begin(&it, msgdef);
554 !upb_msg_field_done(&it);
555 upb_msg_field_next(&it)) {
556 const upb_fielddef* field = upb_msg_iter_field(&it);
557 if (upb_fielddef_realcontainingoneof(field) || !upb_fielddef_isseq(field) ||
558 upb_fielddef_ismap(field)) {
559 continue;
560 }
561
562 layout->fields[upb_fielddef_index(field)].offset = off;
563 off += sizeof(VALUE);
564 layout->repeated_count++;
565 }
566
567 // Place all VALUE fields for map fields.
568 for (upb_msg_field_begin(&it, msgdef);
569 !upb_msg_field_done(&it);
570 upb_msg_field_next(&it)) {
571 const upb_fielddef* field = upb_msg_iter_field(&it);
572 if (upb_fielddef_realcontainingoneof(field) || !upb_fielddef_isseq(field) ||
573 !upb_fielddef_ismap(field)) {
574 continue;
575 }
576
577 layout->fields[upb_fielddef_index(field)].offset = off;
578 off += sizeof(VALUE);
579 layout->map_count++;
580 }
581
582 layout->value_count = layout->repeated_count + layout->map_count;
583
584 // Next place all other (non-oneof) VALUE fields.
585 for (upb_msg_field_begin(&it, msgdef);
586 !upb_msg_field_done(&it);
587 upb_msg_field_next(&it)) {
588 const upb_fielddef* field = upb_msg_iter_field(&it);
589 if (upb_fielddef_realcontainingoneof(field) || !is_value_field(field) ||
590 upb_fielddef_isseq(field)) {
591 continue;
592 }
593
594 layout->fields[upb_fielddef_index(field)].offset = off;
595 off += sizeof(VALUE);
596 layout->value_count++;
597 }
598
599 // Now place all other (non-oneof) fields.
600 for (upb_msg_field_begin(&it, msgdef);
601 !upb_msg_field_done(&it);
602 upb_msg_field_next(&it)) {
603 const upb_fielddef* field = upb_msg_iter_field(&it);
604 size_t field_size;
605
606 if (upb_fielddef_realcontainingoneof(field) || is_value_field(field)) {
607 continue;
608 }
609
610 // Allocate |field_size| bytes for this field in the layout.
611 field_size = native_slot_size(upb_fielddef_type(field));
612
613 // Align current offset up to |size| granularity.
614 off = align_up_to(off, field_size);
615 layout->fields[upb_fielddef_index(field)].offset = off;
616 off += field_size;
617 }
618
619 // Handle oneofs now -- we iterate over oneofs specifically and allocate only
620 // one slot per oneof.
621 //
622 // We assign all value slots first, then pack the 'case' fields at the end,
623 // since in the common case (modern 64-bit platform) these are 8 bytes and 4
624 // bytes respectively and we want to avoid alignment overhead.
625 //
626 // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
627 // space for oneof cases is conceptually as wide as field tag numbers. In
628 // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
629 // members (8 or 16 bits respectively), so conceivably we could assign
630 // consecutive case numbers and then pick a smaller oneof case slot size, but
631 // the complexity to implement this indirection is probably not worthwhile.
632 for (upb_msg_oneof_begin(&oit, msgdef);
633 !upb_msg_oneof_done(&oit);
634 upb_msg_oneof_next(&oit)) {
635 const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
636 upb_oneof_iter fit;
637
638 // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
639 // all fields.
640 size_t field_size = NATIVE_SLOT_MAX_SIZE;
641
642 if (upb_oneofdef_issynthetic(oneof)) continue;
643 assert(upb_oneofdef_index(oneof) < noneofs);
644
645 // Align the offset.
646 off = align_up_to(off, field_size);
647 // Assign all fields in the oneof this same offset.
648 for (upb_oneof_begin(&fit, oneof);
649 !upb_oneof_done(&fit);
650 upb_oneof_next(&fit)) {
651 const upb_fielddef* field = upb_oneof_iter_field(&fit);
652 layout->fields[upb_fielddef_index(field)].offset = off;
653 layout->oneofs[upb_oneofdef_index(oneof)].offset = off;
654 }
655 off += field_size;
656 }
657
658 // Now the case fields.
659 for (upb_msg_oneof_begin(&oit, msgdef);
660 !upb_msg_oneof_done(&oit);
661 upb_msg_oneof_next(&oit)) {
662 const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
663 size_t field_size = sizeof(uint32_t);
664 if (upb_oneofdef_issynthetic(oneof)) continue;
665 assert(upb_oneofdef_index(oneof) < noneofs);
666 // Align the offset.
667 off = (off + field_size - 1) & ~(field_size - 1);
668 layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off;
669 off += field_size;
670 }
671
672 layout->size = off;
673 layout->msgdef = msgdef;
674
675 #ifndef NDEBUG
676 for (i = 0; i < nfields; i++) {
677 assert(layout->fields[i].offset != -1);
678 }
679
680 for (i = 0; i < noneofs; i++) {
681 assert(layout->oneofs[i].offset != -1);
682 }
683 #endif
684
685 // Create the empty message template.
686 layout->empty_template = ALLOC_N(char, layout->size);
687 memset(layout->empty_template, 0, layout->size);
688
689 for (upb_msg_field_begin(&it, layout->msgdef);
690 !upb_msg_field_done(&it);
691 upb_msg_field_next(&it)) {
692 layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it));
693 }
694 }
695
free_layout(MessageLayout * layout)696 void free_layout(MessageLayout* layout) {
697 xfree(layout->empty_template);
698 xfree(layout->fields);
699 xfree(layout->oneofs);
700 xfree(layout);
701 }
702
field_type_class(const MessageLayout * layout,const upb_fielddef * field)703 VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) {
704 VALUE type_class = Qnil;
705 if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
706 VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool,
707 upb_fielddef_msgsubdef(field));
708 type_class = Descriptor_msgclass(submsgdesc);
709 } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
710 VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool,
711 upb_fielddef_enumsubdef(field));
712 type_class = EnumDescriptor_enummodule(subenumdesc);
713 }
714 return type_class;
715 }
716
slot_memory(MessageLayout * layout,const void * storage,const upb_fielddef * field)717 static void* slot_memory(MessageLayout* layout,
718 const void* storage,
719 const upb_fielddef* field) {
720 return ((uint8_t *)storage) +
721 layout->fields[upb_fielddef_index(field)].offset;
722 }
723
slot_oneof_case(MessageLayout * layout,const void * storage,const upb_oneofdef * oneof)724 static uint32_t* slot_oneof_case(MessageLayout* layout,
725 const void* storage,
726 const upb_oneofdef* oneof) {
727 return (uint32_t*)(((uint8_t*)storage) +
728 layout->oneofs[upb_oneofdef_index(oneof)].case_offset);
729 }
730
slot_read_oneof_case(MessageLayout * layout,const void * storage,const upb_oneofdef * oneof)731 uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage,
732 const upb_oneofdef* oneof) {
733 uint32_t* ptr = slot_oneof_case(layout, storage, oneof);
734 return *ptr & ~ONEOF_CASE_MASK;
735 }
736
slot_set_hasbit(MessageLayout * layout,const void * storage,const upb_fielddef * field)737 static void slot_set_hasbit(MessageLayout* layout,
738 const void* storage,
739 const upb_fielddef* field) {
740 size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
741 assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
742
743 ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
744 }
745
slot_clear_hasbit(MessageLayout * layout,const void * storage,const upb_fielddef * field)746 static void slot_clear_hasbit(MessageLayout* layout,
747 const void* storage,
748 const upb_fielddef* field) {
749 size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
750 assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
751 ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
752 }
753
slot_is_hasbit_set(MessageLayout * layout,const void * storage,const upb_fielddef * field)754 static bool slot_is_hasbit_set(MessageLayout* layout,
755 const void* storage,
756 const upb_fielddef* field) {
757 size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
758 assert(field_contains_hasbit(layout, field));
759 return DEREF_OFFSET(
760 (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
761 }
762
layout_has(MessageLayout * layout,const void * storage,const upb_fielddef * field)763 VALUE layout_has(MessageLayout* layout,
764 const void* storage,
765 const upb_fielddef* field) {
766 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
767 assert(upb_fielddef_haspresence(field));
768 if (oneof) {
769 uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof);
770 return oneof_case == upb_fielddef_number(field) ? Qtrue : Qfalse;
771 } else {
772 return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
773 }
774 }
775
layout_clear(MessageLayout * layout,const void * storage,const upb_fielddef * field)776 void layout_clear(MessageLayout* layout,
777 const void* storage,
778 const upb_fielddef* field) {
779 void* memory = slot_memory(layout, storage, field);
780 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
781
782 if (field_contains_hasbit(layout, field)) {
783 slot_clear_hasbit(layout, storage, field);
784 }
785
786 if (oneof) {
787 uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
788 memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
789 *oneof_case = ONEOF_CASE_NONE;
790 } else if (is_map_field(field)) {
791 VALUE map = Qnil;
792
793 const upb_fielddef* key_field = map_field_key(field);
794 const upb_fielddef* value_field = map_field_value(field);
795 VALUE type_class = field_type_class(layout, value_field);
796
797 if (type_class != Qnil) {
798 VALUE args[3] = {
799 fieldtype_to_ruby(upb_fielddef_type(key_field)),
800 fieldtype_to_ruby(upb_fielddef_type(value_field)),
801 type_class,
802 };
803 map = rb_class_new_instance(3, args, cMap);
804 } else {
805 VALUE args[2] = {
806 fieldtype_to_ruby(upb_fielddef_type(key_field)),
807 fieldtype_to_ruby(upb_fielddef_type(value_field)),
808 };
809 map = rb_class_new_instance(2, args, cMap);
810 }
811
812 DEREF(memory, VALUE) = map;
813 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
814 VALUE ary = Qnil;
815
816 VALUE type_class = field_type_class(layout, field);
817
818 if (type_class != Qnil) {
819 VALUE args[2] = {
820 fieldtype_to_ruby(upb_fielddef_type(field)),
821 type_class,
822 };
823 ary = rb_class_new_instance(2, args, cRepeatedField);
824 } else {
825 VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
826 ary = rb_class_new_instance(1, args, cRepeatedField);
827 }
828
829 DEREF(memory, VALUE) = ary;
830 } else {
831 native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
832 field_type_class(layout, field), memory,
833 layout_get_default(field));
834 }
835 }
836
layout_get_default(const upb_fielddef * field)837 VALUE layout_get_default(const upb_fielddef *field) {
838 switch (upb_fielddef_type(field)) {
839 case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
840 case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
841 case UPB_TYPE_BOOL:
842 return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
843 case UPB_TYPE_MESSAGE: return Qnil;
844 case UPB_TYPE_ENUM: {
845 const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
846 int32_t num = upb_fielddef_defaultint32(field);
847 const char *label = upb_enumdef_iton(enumdef, num);
848 if (label) {
849 return ID2SYM(rb_intern(label));
850 } else {
851 return INT2NUM(num);
852 }
853 }
854 case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
855 case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
856 case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
857 case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
858 case UPB_TYPE_STRING:
859 case UPB_TYPE_BYTES: {
860 size_t size;
861 const char *str = upb_fielddef_defaultstr(field, &size);
862 return get_frozen_string(str, size,
863 upb_fielddef_type(field) == UPB_TYPE_BYTES);
864 }
865 default: return Qnil;
866 }
867 }
868
layout_get(MessageLayout * layout,const void * storage,const upb_fielddef * field)869 VALUE layout_get(MessageLayout* layout,
870 const void* storage,
871 const upb_fielddef* field) {
872 void* memory = slot_memory(layout, storage, field);
873 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
874 bool field_set;
875 if (field_contains_hasbit(layout, field)) {
876 field_set = slot_is_hasbit_set(layout, storage, field);
877 } else {
878 field_set = true;
879 }
880
881 if (oneof) {
882 uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof);
883 if (oneof_case != upb_fielddef_number(field)) {
884 return layout_get_default(field);
885 }
886 return native_slot_get(upb_fielddef_type(field),
887 field_type_class(layout, field), memory);
888 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
889 return *((VALUE *)memory);
890 } else if (!field_set) {
891 return layout_get_default(field);
892 } else {
893 return native_slot_get(upb_fielddef_type(field),
894 field_type_class(layout, field), memory);
895 }
896 }
897
check_repeated_field_type(const MessageLayout * layout,VALUE val,const upb_fielddef * field)898 static void check_repeated_field_type(const MessageLayout* layout, VALUE val,
899 const upb_fielddef* field) {
900 RepeatedField* self;
901 assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
902
903 if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
904 RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
905 rb_raise(cTypeError, "Expected repeated field array");
906 }
907
908 self = ruby_to_RepeatedField(val);
909 if (self->field_type != upb_fielddef_type(field)) {
910 rb_raise(cTypeError, "Repeated field array has wrong element type");
911 }
912
913 if (self->field_type_class != field_type_class(layout, field)) {
914 rb_raise(cTypeError, "Repeated field array has wrong message/enum class");
915 }
916 }
917
check_map_field_type(const MessageLayout * layout,VALUE val,const upb_fielddef * field)918 static void check_map_field_type(const MessageLayout* layout, VALUE val,
919 const upb_fielddef* field) {
920 const upb_fielddef* key_field = map_field_key(field);
921 const upb_fielddef* value_field = map_field_value(field);
922 Map* self;
923
924 if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
925 RTYPEDDATA_TYPE(val) != &Map_type) {
926 rb_raise(cTypeError, "Expected Map instance");
927 }
928
929 self = ruby_to_Map(val);
930 if (self->key_type != upb_fielddef_type(key_field)) {
931 rb_raise(cTypeError, "Map key type does not match field's key type");
932 }
933 if (self->value_type != upb_fielddef_type(value_field)) {
934 rb_raise(cTypeError, "Map value type does not match field's value type");
935 }
936 if (self->value_type_class != field_type_class(layout, value_field)) {
937 rb_raise(cTypeError, "Map value type has wrong message/enum class");
938 }
939 }
940
layout_set(MessageLayout * layout,void * storage,const upb_fielddef * field,VALUE val)941 void layout_set(MessageLayout* layout,
942 void* storage,
943 const upb_fielddef* field,
944 VALUE val) {
945 void* memory = slot_memory(layout, storage, field);
946 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
947
948 if (oneof) {
949 uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
950 if (val == Qnil) {
951 // Assigning nil to a oneof field clears the oneof completely.
952 *oneof_case = ONEOF_CASE_NONE;
953 memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
954 } else {
955 // The transition between field types for a single oneof (union) slot is
956 // somewhat complex because we need to ensure that a GC triggered at any
957 // point by a call into the Ruby VM sees a valid state for this field and
958 // does not either go off into the weeds (following what it thinks is a
959 // VALUE but is actually a different field type) or miss an object (seeing
960 // what it thinks is a primitive field but is actually a VALUE for the new
961 // field type).
962 //
963 // In order for the transition to be safe, the oneof case slot must be in
964 // sync with the value slot whenever the Ruby VM has been called. Thus, we
965 // use native_slot_set_value_and_case(), which ensures that both the value
966 // and case number are altered atomically (w.r.t. the Ruby VM).
967 uint32_t case_value = upb_fielddef_number(field);
968 if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) {
969 case_value |= ONEOF_CASE_MASK;
970 }
971
972 native_slot_set_value_and_case(
973 upb_fielddef_name(field), upb_fielddef_type(field),
974 field_type_class(layout, field), memory, val, oneof_case, case_value);
975 }
976 } else if (is_map_field(field)) {
977 check_map_field_type(layout, val, field);
978 DEREF(memory, VALUE) = val;
979 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
980 check_repeated_field_type(layout, val, field);
981 DEREF(memory, VALUE) = val;
982 } else {
983 native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
984 field_type_class(layout, field), memory, val);
985 }
986
987 if (layout->fields[upb_fielddef_index(field)].hasbit !=
988 MESSAGE_FIELD_NO_HASBIT) {
989 if (val == Qnil) {
990 // No other field type has a hasbit and allows nil assignment.
991 if (upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
992 fprintf(stderr, "field: %s\n", upb_fielddef_fullname(field));
993 }
994 assert(upb_fielddef_type(field) == UPB_TYPE_MESSAGE);
995 slot_clear_hasbit(layout, storage, field);
996 } else {
997 slot_set_hasbit(layout, storage, field);
998 }
999 }
1000 }
1001
layout_init(MessageLayout * layout,void * storage)1002 void layout_init(MessageLayout* layout, void* storage) {
1003 VALUE* value = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
1004 int i;
1005
1006 for (i = 0; i < layout->repeated_count; i++, value++) {
1007 *value = RepeatedField_new_this_type(*value);
1008 }
1009
1010 for (i = 0; i < layout->map_count; i++, value++) {
1011 *value = Map_new_this_type(*value);
1012 }
1013 }
1014
layout_mark(MessageLayout * layout,void * storage)1015 void layout_mark(MessageLayout* layout, void* storage) {
1016 VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
1017 int noneofs = upb_msgdef_numrealoneofs(layout->msgdef);
1018 int i;
1019
1020 for (i = 0; i < layout->value_count; i++) {
1021 rb_gc_mark(values[i]);
1022 }
1023
1024 for (i = 0; i < noneofs; i++) {
1025 MessageOneof* oneof = &layout->oneofs[i];
1026 uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset);
1027 if (*case_ptr & ONEOF_CASE_MASK) {
1028 rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE));
1029 }
1030 }
1031 }
1032
layout_dup(MessageLayout * layout,void * to,void * from)1033 void layout_dup(MessageLayout* layout, void* to, void* from) {
1034 upb_msg_field_iter it;
1035 for (upb_msg_field_begin(&it, layout->msgdef);
1036 !upb_msg_field_done(&it);
1037 upb_msg_field_next(&it)) {
1038 const upb_fielddef* field = upb_msg_iter_field(&it);
1039 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
1040
1041 void* to_memory = slot_memory(layout, to, field);
1042 void* from_memory = slot_memory(layout, from, field);
1043
1044 if (oneof) {
1045 uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
1046 uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
1047 if (slot_read_oneof_case(layout, from, oneof) ==
1048 upb_fielddef_number(field)) {
1049 *to_oneof_case = *from_oneof_case;
1050 native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
1051 }
1052 } else if (is_map_field(field)) {
1053 DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
1054 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
1055 DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
1056 } else {
1057 if (field_contains_hasbit(layout, field)) {
1058 if (!slot_is_hasbit_set(layout, from, field)) continue;
1059 slot_set_hasbit(layout, to, field);
1060 }
1061
1062 native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
1063 }
1064 }
1065 }
1066
layout_deep_copy(MessageLayout * layout,void * to,void * from)1067 void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
1068 upb_msg_field_iter it;
1069 for (upb_msg_field_begin(&it, layout->msgdef);
1070 !upb_msg_field_done(&it);
1071 upb_msg_field_next(&it)) {
1072 const upb_fielddef* field = upb_msg_iter_field(&it);
1073 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
1074
1075 void* to_memory = slot_memory(layout, to, field);
1076 void* from_memory = slot_memory(layout, from, field);
1077
1078 if (oneof) {
1079 uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
1080 uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
1081 if (slot_read_oneof_case(layout, from, oneof) ==
1082 upb_fielddef_number(field)) {
1083 *to_oneof_case = *from_oneof_case;
1084 native_slot_deep_copy(upb_fielddef_type(field),
1085 field_type_class(layout, field), to_memory,
1086 from_memory);
1087 }
1088 } else if (is_map_field(field)) {
1089 DEREF(to_memory, VALUE) =
1090 Map_deep_copy(DEREF(from_memory, VALUE));
1091 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
1092 DEREF(to_memory, VALUE) =
1093 RepeatedField_deep_copy(DEREF(from_memory, VALUE));
1094 } else {
1095 if (field_contains_hasbit(layout, field)) {
1096 if (!slot_is_hasbit_set(layout, from, field)) continue;
1097 slot_set_hasbit(layout, to, field);
1098 }
1099
1100 native_slot_deep_copy(upb_fielddef_type(field),
1101 field_type_class(layout, field), to_memory,
1102 from_memory);
1103 }
1104 }
1105 }
1106
layout_eq(MessageLayout * layout,void * msg1,void * msg2)1107 VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
1108 upb_msg_field_iter it;
1109 for (upb_msg_field_begin(&it, layout->msgdef);
1110 !upb_msg_field_done(&it);
1111 upb_msg_field_next(&it)) {
1112 const upb_fielddef* field = upb_msg_iter_field(&it);
1113 const upb_oneofdef* oneof = upb_fielddef_realcontainingoneof(field);
1114
1115 void* msg1_memory = slot_memory(layout, msg1, field);
1116 void* msg2_memory = slot_memory(layout, msg2, field);
1117
1118 if (oneof) {
1119 uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof);
1120 uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof);
1121 if (*msg1_oneof_case != *msg2_oneof_case ||
1122 (slot_read_oneof_case(layout, msg1, oneof) ==
1123 upb_fielddef_number(field) &&
1124 !native_slot_eq(upb_fielddef_type(field),
1125 field_type_class(layout, field), msg1_memory,
1126 msg2_memory))) {
1127 return Qfalse;
1128 }
1129 } else if (is_map_field(field)) {
1130 if (!Map_eq(DEREF(msg1_memory, VALUE),
1131 DEREF(msg2_memory, VALUE))) {
1132 return Qfalse;
1133 }
1134 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
1135 if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
1136 DEREF(msg2_memory, VALUE))) {
1137 return Qfalse;
1138 }
1139 } else {
1140 if (field_contains_hasbit(layout, field) &&
1141 slot_is_hasbit_set(layout, msg1, field) !=
1142 slot_is_hasbit_set(layout, msg2, field)) {
1143 // TODO(haberman): I don't think we should actually care about hasbits
1144 // here: an unset default should be able to equal a set default. But we
1145 // can address this later (will also have to make sure defaults are
1146 // being properly set when hasbit is clear).
1147 return Qfalse;
1148 }
1149 if (!native_slot_eq(upb_fielddef_type(field),
1150 field_type_class(layout, field), msg1_memory,
1151 msg2_memory)) {
1152 return Qfalse;
1153 }
1154 }
1155 }
1156 return Qtrue;
1157 }
1158
layout_hash(MessageLayout * layout,void * storage)1159 VALUE layout_hash(MessageLayout* layout, void* storage) {
1160 upb_msg_field_iter it;
1161 st_index_t h = rb_hash_start(0);
1162 VALUE hash_sym = rb_intern("hash");
1163 for (upb_msg_field_begin(&it, layout->msgdef);
1164 !upb_msg_field_done(&it);
1165 upb_msg_field_next(&it)) {
1166 const upb_fielddef* field = upb_msg_iter_field(&it);
1167 VALUE field_val = layout_get(layout, storage, field);
1168 h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
1169 }
1170 h = rb_hash_end(h);
1171
1172 return INT2FIX(h);
1173 }
1174
layout_inspect(MessageLayout * layout,void * storage)1175 VALUE layout_inspect(MessageLayout* layout, void* storage) {
1176 VALUE str = rb_str_new2("");
1177
1178 upb_msg_field_iter it;
1179 bool first = true;
1180 for (upb_msg_field_begin(&it, layout->msgdef);
1181 !upb_msg_field_done(&it);
1182 upb_msg_field_next(&it)) {
1183 const upb_fielddef* field = upb_msg_iter_field(&it);
1184 VALUE field_val = layout_get(layout, storage, field);
1185
1186 if (!first) {
1187 str = rb_str_cat2(str, ", ");
1188 } else {
1189 first = false;
1190 }
1191 str = rb_str_cat2(str, upb_fielddef_name(field));
1192 str = rb_str_cat2(str, ": ");
1193
1194 str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
1195 }
1196
1197 return str;
1198 }
1199