1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252
253 skb_set_kcov_handle(skb, kcov_common_handle());
254
255 out:
256 return skb;
257 nodata:
258 kmem_cache_free(cache, skb);
259 skb = NULL;
260 goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263
264 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 void *data, unsigned int frag_size)
267 {
268 struct skb_shared_info *shinfo;
269 unsigned int size = frag_size ? : ksize(data);
270
271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272
273 /* Assumes caller memset cleared SKB */
274 skb->truesize = SKB_TRUESIZE(size);
275 refcount_set(&skb->users, 1);
276 skb->head = data;
277 skb->data = data;
278 skb_reset_tail_pointer(skb);
279 skb->end = skb->tail + size;
280 skb->mac_header = (typeof(skb->mac_header))~0U;
281 skb->transport_header = (typeof(skb->transport_header))~0U;
282
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 atomic_set(&shinfo->dataref, 1);
287
288 skb_set_kcov_handle(skb, kcov_common_handle());
289
290 return skb;
291 }
292
293 /**
294 * __build_skb - build a network buffer
295 * @data: data buffer provided by caller
296 * @frag_size: size of data, or 0 if head was kmalloced
297 *
298 * Allocate a new &sk_buff. Caller provides space holding head and
299 * skb_shared_info. @data must have been allocated by kmalloc() only if
300 * @frag_size is 0, otherwise data should come from the page allocator
301 * or vmalloc()
302 * The return is the new skb buffer.
303 * On a failure the return is %NULL, and @data is not freed.
304 * Notes :
305 * Before IO, driver allocates only data buffer where NIC put incoming frame
306 * Driver should add room at head (NET_SKB_PAD) and
307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
309 * before giving packet to stack.
310 * RX rings only contains data buffers, not full skbs.
311 */
__build_skb(void * data,unsigned int frag_size)312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 struct sk_buff *skb;
315
316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 if (unlikely(!skb))
318 return NULL;
319
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321
322 return __build_skb_around(skb, data, frag_size);
323 }
324
325 /* build_skb() is wrapper over __build_skb(), that specifically
326 * takes care of skb->head and skb->pfmemalloc
327 * This means that if @frag_size is not zero, then @data must be backed
328 * by a page fragment, not kmalloc() or vmalloc()
329 */
build_skb(void * data,unsigned int frag_size)330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 struct sk_buff *skb = __build_skb(data, frag_size);
333
334 if (skb && frag_size) {
335 skb->head_frag = 1;
336 if (page_is_pfmemalloc(virt_to_head_page(data)))
337 skb->pfmemalloc = 1;
338 }
339 return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342
343 /**
344 * build_skb_around - build a network buffer around provided skb
345 * @skb: sk_buff provide by caller, must be memset cleared
346 * @data: data buffer provided by caller
347 * @frag_size: size of data, or 0 if head was kmalloced
348 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 void *data, unsigned int frag_size)
351 {
352 if (unlikely(!skb))
353 return NULL;
354
355 skb = __build_skb_around(skb, data, frag_size);
356
357 if (skb && frag_size) {
358 skb->head_frag = 1;
359 if (page_is_pfmemalloc(virt_to_head_page(data)))
360 skb->pfmemalloc = 1;
361 }
362 return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365
366 #define NAPI_SKB_CACHE_SIZE 64
367
368 struct napi_alloc_cache {
369 struct page_frag_cache page;
370 unsigned int skb_count;
371 void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380
381 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383
napi_alloc_frag(unsigned int fragsz)384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 fragsz = SKB_DATA_ALIGN(fragsz);
387
388 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391
392 /**
393 * netdev_alloc_frag - allocate a page fragment
394 * @fragsz: fragment size
395 *
396 * Allocates a frag from a page for receive buffer.
397 * Uses GFP_ATOMIC allocations.
398 */
netdev_alloc_frag(unsigned int fragsz)399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 struct page_frag_cache *nc;
402 void *data;
403
404 fragsz = SKB_DATA_ALIGN(fragsz);
405 if (in_irq() || irqs_disabled()) {
406 nc = this_cpu_ptr(&netdev_alloc_cache);
407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 } else {
409 local_bh_disable();
410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 local_bh_enable();
412 }
413 return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416
417 /**
418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
419 * @dev: network device to receive on
420 * @len: length to allocate
421 * @gfp_mask: get_free_pages mask, passed to alloc_skb
422 *
423 * Allocate a new &sk_buff and assign it a usage count of one. The
424 * buffer has NET_SKB_PAD headroom built in. Users should allocate
425 * the headroom they think they need without accounting for the
426 * built in space. The built in space is used for optimisations.
427 *
428 * %NULL is returned if there is no free memory.
429 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 gfp_t gfp_mask)
432 {
433 struct page_frag_cache *nc;
434 struct sk_buff *skb;
435 bool pfmemalloc;
436 void *data;
437
438 len += NET_SKB_PAD;
439
440 /* If requested length is either too small or too big,
441 * we use kmalloc() for skb->head allocation.
442 */
443 if (len <= SKB_WITH_OVERHEAD(1024) ||
444 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 if (!skb)
448 goto skb_fail;
449 goto skb_success;
450 }
451
452 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 len = SKB_DATA_ALIGN(len);
454
455 if (sk_memalloc_socks())
456 gfp_mask |= __GFP_MEMALLOC;
457
458 if (in_irq() || irqs_disabled()) {
459 nc = this_cpu_ptr(&netdev_alloc_cache);
460 data = page_frag_alloc(nc, len, gfp_mask);
461 pfmemalloc = nc->pfmemalloc;
462 } else {
463 local_bh_disable();
464 nc = this_cpu_ptr(&napi_alloc_cache.page);
465 data = page_frag_alloc(nc, len, gfp_mask);
466 pfmemalloc = nc->pfmemalloc;
467 local_bh_enable();
468 }
469
470 if (unlikely(!data))
471 return NULL;
472
473 skb = __build_skb(data, len);
474 if (unlikely(!skb)) {
475 skb_free_frag(data);
476 return NULL;
477 }
478
479 if (pfmemalloc)
480 skb->pfmemalloc = 1;
481 skb->head_frag = 1;
482
483 skb_success:
484 skb_reserve(skb, NET_SKB_PAD);
485 skb->dev = dev;
486
487 skb_fail:
488 return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491
492 /**
493 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494 * @napi: napi instance this buffer was allocated for
495 * @len: length to allocate
496 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497 *
498 * Allocate a new sk_buff for use in NAPI receive. This buffer will
499 * attempt to allocate the head from a special reserved region used
500 * only for NAPI Rx allocation. By doing this we can save several
501 * CPU cycles by avoiding having to disable and re-enable IRQs.
502 *
503 * %NULL is returned if there is no free memory.
504 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 gfp_t gfp_mask)
507 {
508 struct napi_alloc_cache *nc;
509 struct sk_buff *skb;
510 void *data;
511
512 len += NET_SKB_PAD + NET_IP_ALIGN;
513
514 /* If requested length is either too small or too big,
515 * we use kmalloc() for skb->head allocation.
516 */
517 if (len <= SKB_WITH_OVERHEAD(1024) ||
518 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 if (!skb)
522 goto skb_fail;
523 goto skb_success;
524 }
525
526 nc = this_cpu_ptr(&napi_alloc_cache);
527 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 len = SKB_DATA_ALIGN(len);
529
530 if (sk_memalloc_socks())
531 gfp_mask |= __GFP_MEMALLOC;
532
533 data = page_frag_alloc(&nc->page, len, gfp_mask);
534 if (unlikely(!data))
535 return NULL;
536
537 skb = __build_skb(data, len);
538 if (unlikely(!skb)) {
539 skb_free_frag(data);
540 return NULL;
541 }
542
543 if (nc->page.pfmemalloc)
544 skb->pfmemalloc = 1;
545 skb->head_frag = 1;
546
547 skb_success:
548 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 skb->dev = napi->dev;
550
551 skb_fail:
552 return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 int size, unsigned int truesize)
558 {
559 skb_fill_page_desc(skb, i, page, off, size);
560 skb->len += size;
561 skb->data_len += size;
562 skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 unsigned int truesize)
568 {
569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570
571 skb_frag_size_add(frag, size);
572 skb->len += size;
573 skb->data_len += size;
574 skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577
skb_drop_list(struct sk_buff ** listp)578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 kfree_skb_list(*listp);
581 *listp = NULL;
582 }
583
skb_drop_fraglist(struct sk_buff * skb)584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588
skb_clone_fraglist(struct sk_buff * skb)589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 struct sk_buff *list;
592
593 skb_walk_frags(skb, list)
594 skb_get(list);
595 }
596
skb_free_head(struct sk_buff * skb)597 static void skb_free_head(struct sk_buff *skb)
598 {
599 unsigned char *head = skb->head;
600
601 if (skb->head_frag)
602 skb_free_frag(head);
603 else
604 kfree(head);
605 }
606
skb_release_data(struct sk_buff * skb)607 static void skb_release_data(struct sk_buff *skb)
608 {
609 struct skb_shared_info *shinfo = skb_shinfo(skb);
610 int i;
611
612 if (skb->cloned &&
613 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 &shinfo->dataref))
615 return;
616
617 for (i = 0; i < shinfo->nr_frags; i++)
618 __skb_frag_unref(&shinfo->frags[i]);
619
620 if (shinfo->frag_list)
621 kfree_skb_list(shinfo->frag_list);
622
623 skb_zcopy_clear(skb, true);
624 skb_free_head(skb);
625 }
626
627 /*
628 * Free an skbuff by memory without cleaning the state.
629 */
kfree_skbmem(struct sk_buff * skb)630 static void kfree_skbmem(struct sk_buff *skb)
631 {
632 struct sk_buff_fclones *fclones;
633
634 switch (skb->fclone) {
635 case SKB_FCLONE_UNAVAILABLE:
636 kmem_cache_free(skbuff_head_cache, skb);
637 return;
638
639 case SKB_FCLONE_ORIG:
640 fclones = container_of(skb, struct sk_buff_fclones, skb1);
641
642 /* We usually free the clone (TX completion) before original skb
643 * This test would have no chance to be true for the clone,
644 * while here, branch prediction will be good.
645 */
646 if (refcount_read(&fclones->fclone_ref) == 1)
647 goto fastpath;
648 break;
649
650 default: /* SKB_FCLONE_CLONE */
651 fclones = container_of(skb, struct sk_buff_fclones, skb2);
652 break;
653 }
654 if (!refcount_dec_and_test(&fclones->fclone_ref))
655 return;
656 fastpath:
657 kmem_cache_free(skbuff_fclone_cache, fclones);
658 }
659
skb_release_head_state(struct sk_buff * skb)660 void skb_release_head_state(struct sk_buff *skb)
661 {
662 nf_reset_ct(skb);
663 skb_dst_drop(skb);
664 if (skb->destructor) {
665 WARN_ON(in_irq());
666 skb->destructor(skb);
667 }
668 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
669 nf_conntrack_put(skb_nfct(skb));
670 #endif
671 skb_ext_put(skb);
672 }
673
674 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)675 static void skb_release_all(struct sk_buff *skb)
676 {
677 skb_release_head_state(skb);
678 if (likely(skb->head))
679 skb_release_data(skb);
680 }
681
682 /**
683 * __kfree_skb - private function
684 * @skb: buffer
685 *
686 * Free an sk_buff. Release anything attached to the buffer.
687 * Clean the state. This is an internal helper function. Users should
688 * always call kfree_skb
689 */
690
__kfree_skb(struct sk_buff * skb)691 void __kfree_skb(struct sk_buff *skb)
692 {
693 skb_release_all(skb);
694 kfree_skbmem(skb);
695 }
696 EXPORT_SYMBOL(__kfree_skb);
697
698 /**
699 * kfree_skb - free an sk_buff
700 * @skb: buffer to free
701 *
702 * Drop a reference to the buffer and free it if the usage count has
703 * hit zero.
704 */
kfree_skb(struct sk_buff * skb)705 void kfree_skb(struct sk_buff *skb)
706 {
707 if (!skb_unref(skb))
708 return;
709
710 trace_kfree_skb(skb, __builtin_return_address(0));
711 __kfree_skb(skb);
712 }
713 EXPORT_SYMBOL(kfree_skb);
714
kfree_skb_list(struct sk_buff * segs)715 void kfree_skb_list(struct sk_buff *segs)
716 {
717 while (segs) {
718 struct sk_buff *next = segs->next;
719
720 kfree_skb(segs);
721 segs = next;
722 }
723 }
724 EXPORT_SYMBOL(kfree_skb_list);
725
726 /* Dump skb information and contents.
727 *
728 * Must only be called from net_ratelimit()-ed paths.
729 *
730 * Dumps whole packets if full_pkt, only headers otherwise.
731 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)732 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
733 {
734 struct skb_shared_info *sh = skb_shinfo(skb);
735 struct net_device *dev = skb->dev;
736 struct sock *sk = skb->sk;
737 struct sk_buff *list_skb;
738 bool has_mac, has_trans;
739 int headroom, tailroom;
740 int i, len, seg_len;
741
742 if (full_pkt)
743 len = skb->len;
744 else
745 len = min_t(int, skb->len, MAX_HEADER + 128);
746
747 headroom = skb_headroom(skb);
748 tailroom = skb_tailroom(skb);
749
750 has_mac = skb_mac_header_was_set(skb);
751 has_trans = skb_transport_header_was_set(skb);
752
753 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
754 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
755 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
756 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
757 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
758 level, skb->len, headroom, skb_headlen(skb), tailroom,
759 has_mac ? skb->mac_header : -1,
760 has_mac ? skb_mac_header_len(skb) : -1,
761 skb->network_header,
762 has_trans ? skb_network_header_len(skb) : -1,
763 has_trans ? skb->transport_header : -1,
764 sh->tx_flags, sh->nr_frags,
765 sh->gso_size, sh->gso_type, sh->gso_segs,
766 skb->csum, skb->ip_summed, skb->csum_complete_sw,
767 skb->csum_valid, skb->csum_level,
768 skb->hash, skb->sw_hash, skb->l4_hash,
769 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
770
771 if (dev)
772 printk("%sdev name=%s feat=%pNF\n",
773 level, dev->name, &dev->features);
774 if (sk)
775 printk("%ssk family=%hu type=%u proto=%u\n",
776 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
777
778 if (full_pkt && headroom)
779 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
780 16, 1, skb->head, headroom, false);
781
782 seg_len = min_t(int, skb_headlen(skb), len);
783 if (seg_len)
784 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
785 16, 1, skb->data, seg_len, false);
786 len -= seg_len;
787
788 if (full_pkt && tailroom)
789 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
790 16, 1, skb_tail_pointer(skb), tailroom, false);
791
792 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
793 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
794 u32 p_off, p_len, copied;
795 struct page *p;
796 u8 *vaddr;
797
798 skb_frag_foreach_page(frag, skb_frag_off(frag),
799 skb_frag_size(frag), p, p_off, p_len,
800 copied) {
801 seg_len = min_t(int, p_len, len);
802 vaddr = kmap_atomic(p);
803 print_hex_dump(level, "skb frag: ",
804 DUMP_PREFIX_OFFSET,
805 16, 1, vaddr + p_off, seg_len, false);
806 kunmap_atomic(vaddr);
807 len -= seg_len;
808 if (!len)
809 break;
810 }
811 }
812
813 if (full_pkt && skb_has_frag_list(skb)) {
814 printk("skb fraglist:\n");
815 skb_walk_frags(skb, list_skb)
816 skb_dump(level, list_skb, true);
817 }
818 }
819 EXPORT_SYMBOL(skb_dump);
820
821 /**
822 * skb_tx_error - report an sk_buff xmit error
823 * @skb: buffer that triggered an error
824 *
825 * Report xmit error if a device callback is tracking this skb.
826 * skb must be freed afterwards.
827 */
skb_tx_error(struct sk_buff * skb)828 void skb_tx_error(struct sk_buff *skb)
829 {
830 skb_zcopy_clear(skb, true);
831 }
832 EXPORT_SYMBOL(skb_tx_error);
833
834 #ifdef CONFIG_TRACEPOINTS
835 /**
836 * consume_skb - free an skbuff
837 * @skb: buffer to free
838 *
839 * Drop a ref to the buffer and free it if the usage count has hit zero
840 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
841 * is being dropped after a failure and notes that
842 */
consume_skb(struct sk_buff * skb)843 void consume_skb(struct sk_buff *skb)
844 {
845 if (!skb_unref(skb))
846 return;
847
848 trace_consume_skb(skb);
849 __kfree_skb(skb);
850 }
851 EXPORT_SYMBOL(consume_skb);
852 #endif
853
854 /**
855 * consume_stateless_skb - free an skbuff, assuming it is stateless
856 * @skb: buffer to free
857 *
858 * Alike consume_skb(), but this variant assumes that this is the last
859 * skb reference and all the head states have been already dropped
860 */
__consume_stateless_skb(struct sk_buff * skb)861 void __consume_stateless_skb(struct sk_buff *skb)
862 {
863 trace_consume_skb(skb);
864 skb_release_data(skb);
865 kfree_skbmem(skb);
866 }
867
__kfree_skb_flush(void)868 void __kfree_skb_flush(void)
869 {
870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871
872 /* flush skb_cache if containing objects */
873 if (nc->skb_count) {
874 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
875 nc->skb_cache);
876 nc->skb_count = 0;
877 }
878 }
879
_kfree_skb_defer(struct sk_buff * skb)880 static inline void _kfree_skb_defer(struct sk_buff *skb)
881 {
882 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
883
884 /* drop skb->head and call any destructors for packet */
885 skb_release_all(skb);
886
887 /* record skb to CPU local list */
888 nc->skb_cache[nc->skb_count++] = skb;
889
890 #ifdef CONFIG_SLUB
891 /* SLUB writes into objects when freeing */
892 prefetchw(skb);
893 #endif
894
895 /* flush skb_cache if it is filled */
896 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
897 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
898 nc->skb_cache);
899 nc->skb_count = 0;
900 }
901 }
__kfree_skb_defer(struct sk_buff * skb)902 void __kfree_skb_defer(struct sk_buff *skb)
903 {
904 _kfree_skb_defer(skb);
905 }
906
napi_consume_skb(struct sk_buff * skb,int budget)907 void napi_consume_skb(struct sk_buff *skb, int budget)
908 {
909 /* Zero budget indicate non-NAPI context called us, like netpoll */
910 if (unlikely(!budget)) {
911 dev_consume_skb_any(skb);
912 return;
913 }
914
915 if (!skb_unref(skb))
916 return;
917
918 /* if reaching here SKB is ready to free */
919 trace_consume_skb(skb);
920
921 /* if SKB is a clone, don't handle this case */
922 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
923 __kfree_skb(skb);
924 return;
925 }
926
927 _kfree_skb_defer(skb);
928 }
929 EXPORT_SYMBOL(napi_consume_skb);
930
931 /* Make sure a field is enclosed inside headers_start/headers_end section */
932 #define CHECK_SKB_FIELD(field) \
933 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
934 offsetof(struct sk_buff, headers_start)); \
935 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
936 offsetof(struct sk_buff, headers_end)); \
937
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)938 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
939 {
940 new->tstamp = old->tstamp;
941 /* We do not copy old->sk */
942 new->dev = old->dev;
943 memcpy(new->cb, old->cb, sizeof(old->cb));
944 skb_dst_copy(new, old);
945 __skb_ext_copy(new, old);
946 __nf_copy(new, old, false);
947
948 /* Note : this field could be in headers_start/headers_end section
949 * It is not yet because we do not want to have a 16 bit hole
950 */
951 new->queue_mapping = old->queue_mapping;
952
953 memcpy(&new->headers_start, &old->headers_start,
954 offsetof(struct sk_buff, headers_end) -
955 offsetof(struct sk_buff, headers_start));
956 CHECK_SKB_FIELD(protocol);
957 CHECK_SKB_FIELD(csum);
958 CHECK_SKB_FIELD(hash);
959 CHECK_SKB_FIELD(priority);
960 CHECK_SKB_FIELD(skb_iif);
961 CHECK_SKB_FIELD(vlan_proto);
962 CHECK_SKB_FIELD(vlan_tci);
963 CHECK_SKB_FIELD(transport_header);
964 CHECK_SKB_FIELD(network_header);
965 CHECK_SKB_FIELD(mac_header);
966 CHECK_SKB_FIELD(inner_protocol);
967 CHECK_SKB_FIELD(inner_transport_header);
968 CHECK_SKB_FIELD(inner_network_header);
969 CHECK_SKB_FIELD(inner_mac_header);
970 CHECK_SKB_FIELD(mark);
971 #ifdef CONFIG_NETWORK_SECMARK
972 CHECK_SKB_FIELD(secmark);
973 #endif
974 #ifdef CONFIG_NET_RX_BUSY_POLL
975 CHECK_SKB_FIELD(napi_id);
976 #endif
977 #ifdef CONFIG_XPS
978 CHECK_SKB_FIELD(sender_cpu);
979 #endif
980 #ifdef CONFIG_NET_SCHED
981 CHECK_SKB_FIELD(tc_index);
982 #endif
983
984 }
985
986 /*
987 * You should not add any new code to this function. Add it to
988 * __copy_skb_header above instead.
989 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)990 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
991 {
992 #define C(x) n->x = skb->x
993
994 n->next = n->prev = NULL;
995 n->sk = NULL;
996 __copy_skb_header(n, skb);
997
998 C(len);
999 C(data_len);
1000 C(mac_len);
1001 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1002 n->cloned = 1;
1003 n->nohdr = 0;
1004 n->peeked = 0;
1005 C(pfmemalloc);
1006 n->destructor = NULL;
1007 C(tail);
1008 C(end);
1009 C(head);
1010 C(head_frag);
1011 C(data);
1012 C(truesize);
1013 refcount_set(&n->users, 1);
1014
1015 atomic_inc(&(skb_shinfo(skb)->dataref));
1016 skb->cloned = 1;
1017
1018 return n;
1019 #undef C
1020 }
1021
1022 /**
1023 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1024 * @first: first sk_buff of the msg
1025 */
alloc_skb_for_msg(struct sk_buff * first)1026 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1027 {
1028 struct sk_buff *n;
1029
1030 n = alloc_skb(0, GFP_ATOMIC);
1031 if (!n)
1032 return NULL;
1033
1034 n->len = first->len;
1035 n->data_len = first->len;
1036 n->truesize = first->truesize;
1037
1038 skb_shinfo(n)->frag_list = first;
1039
1040 __copy_skb_header(n, first);
1041 n->destructor = NULL;
1042
1043 return n;
1044 }
1045 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1046
1047 /**
1048 * skb_morph - morph one skb into another
1049 * @dst: the skb to receive the contents
1050 * @src: the skb to supply the contents
1051 *
1052 * This is identical to skb_clone except that the target skb is
1053 * supplied by the user.
1054 *
1055 * The target skb is returned upon exit.
1056 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1057 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1058 {
1059 skb_release_all(dst);
1060 return __skb_clone(dst, src);
1061 }
1062 EXPORT_SYMBOL_GPL(skb_morph);
1063
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1064 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1065 {
1066 unsigned long max_pg, num_pg, new_pg, old_pg;
1067 struct user_struct *user;
1068
1069 if (capable(CAP_IPC_LOCK) || !size)
1070 return 0;
1071
1072 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1073 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1074 user = mmp->user ? : current_user();
1075
1076 do {
1077 old_pg = atomic_long_read(&user->locked_vm);
1078 new_pg = old_pg + num_pg;
1079 if (new_pg > max_pg)
1080 return -ENOBUFS;
1081 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1082 old_pg);
1083
1084 if (!mmp->user) {
1085 mmp->user = get_uid(user);
1086 mmp->num_pg = num_pg;
1087 } else {
1088 mmp->num_pg += num_pg;
1089 }
1090
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1094
mm_unaccount_pinned_pages(struct mmpin * mmp)1095 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1096 {
1097 if (mmp->user) {
1098 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1099 free_uid(mmp->user);
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1103
sock_zerocopy_alloc(struct sock * sk,size_t size)1104 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1105 {
1106 struct ubuf_info *uarg;
1107 struct sk_buff *skb;
1108
1109 WARN_ON_ONCE(!in_task());
1110
1111 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1112 if (!skb)
1113 return NULL;
1114
1115 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1116 uarg = (void *)skb->cb;
1117 uarg->mmp.user = NULL;
1118
1119 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1120 kfree_skb(skb);
1121 return NULL;
1122 }
1123
1124 uarg->callback = sock_zerocopy_callback;
1125 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1126 uarg->len = 1;
1127 uarg->bytelen = size;
1128 uarg->zerocopy = 1;
1129 refcount_set(&uarg->refcnt, 1);
1130 sock_hold(sk);
1131
1132 return uarg;
1133 }
1134 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1135
skb_from_uarg(struct ubuf_info * uarg)1136 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1137 {
1138 return container_of((void *)uarg, struct sk_buff, cb);
1139 }
1140
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1141 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1142 struct ubuf_info *uarg)
1143 {
1144 if (uarg) {
1145 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1146 u32 bytelen, next;
1147
1148 /* realloc only when socket is locked (TCP, UDP cork),
1149 * so uarg->len and sk_zckey access is serialized
1150 */
1151 if (!sock_owned_by_user(sk)) {
1152 WARN_ON_ONCE(1);
1153 return NULL;
1154 }
1155
1156 bytelen = uarg->bytelen + size;
1157 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1158 /* TCP can create new skb to attach new uarg */
1159 if (sk->sk_type == SOCK_STREAM)
1160 goto new_alloc;
1161 return NULL;
1162 }
1163
1164 next = (u32)atomic_read(&sk->sk_zckey);
1165 if ((u32)(uarg->id + uarg->len) == next) {
1166 if (mm_account_pinned_pages(&uarg->mmp, size))
1167 return NULL;
1168 uarg->len++;
1169 uarg->bytelen = bytelen;
1170 atomic_set(&sk->sk_zckey, ++next);
1171
1172 /* no extra ref when appending to datagram (MSG_MORE) */
1173 if (sk->sk_type == SOCK_STREAM)
1174 sock_zerocopy_get(uarg);
1175
1176 return uarg;
1177 }
1178 }
1179
1180 new_alloc:
1181 return sock_zerocopy_alloc(sk, size);
1182 }
1183 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1184
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1185 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1186 {
1187 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1188 u32 old_lo, old_hi;
1189 u64 sum_len;
1190
1191 old_lo = serr->ee.ee_info;
1192 old_hi = serr->ee.ee_data;
1193 sum_len = old_hi - old_lo + 1ULL + len;
1194
1195 if (sum_len >= (1ULL << 32))
1196 return false;
1197
1198 if (lo != old_hi + 1)
1199 return false;
1200
1201 serr->ee.ee_data += len;
1202 return true;
1203 }
1204
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1205 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1206 {
1207 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1208 struct sock_exterr_skb *serr;
1209 struct sock *sk = skb->sk;
1210 struct sk_buff_head *q;
1211 unsigned long flags;
1212 u32 lo, hi;
1213 u16 len;
1214
1215 mm_unaccount_pinned_pages(&uarg->mmp);
1216
1217 /* if !len, there was only 1 call, and it was aborted
1218 * so do not queue a completion notification
1219 */
1220 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1221 goto release;
1222
1223 len = uarg->len;
1224 lo = uarg->id;
1225 hi = uarg->id + len - 1;
1226
1227 serr = SKB_EXT_ERR(skb);
1228 memset(serr, 0, sizeof(*serr));
1229 serr->ee.ee_errno = 0;
1230 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1231 serr->ee.ee_data = hi;
1232 serr->ee.ee_info = lo;
1233 if (!success)
1234 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1235
1236 q = &sk->sk_error_queue;
1237 spin_lock_irqsave(&q->lock, flags);
1238 tail = skb_peek_tail(q);
1239 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1240 !skb_zerocopy_notify_extend(tail, lo, len)) {
1241 __skb_queue_tail(q, skb);
1242 skb = NULL;
1243 }
1244 spin_unlock_irqrestore(&q->lock, flags);
1245
1246 sk->sk_error_report(sk);
1247
1248 release:
1249 consume_skb(skb);
1250 sock_put(sk);
1251 }
1252 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1253
sock_zerocopy_put(struct ubuf_info * uarg)1254 void sock_zerocopy_put(struct ubuf_info *uarg)
1255 {
1256 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1257 if (uarg->callback)
1258 uarg->callback(uarg, uarg->zerocopy);
1259 else
1260 consume_skb(skb_from_uarg(uarg));
1261 }
1262 }
1263 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1264
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1265 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1266 {
1267 if (uarg) {
1268 struct sock *sk = skb_from_uarg(uarg)->sk;
1269
1270 atomic_dec(&sk->sk_zckey);
1271 uarg->len--;
1272
1273 if (have_uref)
1274 sock_zerocopy_put(uarg);
1275 }
1276 }
1277 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1278
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1279 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1280 {
1281 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1282 }
1283 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1284
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1285 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1286 struct msghdr *msg, int len,
1287 struct ubuf_info *uarg)
1288 {
1289 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1290 struct iov_iter orig_iter = msg->msg_iter;
1291 int err, orig_len = skb->len;
1292
1293 /* An skb can only point to one uarg. This edge case happens when
1294 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1295 */
1296 if (orig_uarg && uarg != orig_uarg)
1297 return -EEXIST;
1298
1299 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1300 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1301 struct sock *save_sk = skb->sk;
1302
1303 /* Streams do not free skb on error. Reset to prev state. */
1304 msg->msg_iter = orig_iter;
1305 skb->sk = sk;
1306 ___pskb_trim(skb, orig_len);
1307 skb->sk = save_sk;
1308 return err;
1309 }
1310
1311 skb_zcopy_set(skb, uarg, NULL);
1312 return skb->len - orig_len;
1313 }
1314 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1315
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1316 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1317 gfp_t gfp_mask)
1318 {
1319 if (skb_zcopy(orig)) {
1320 if (skb_zcopy(nskb)) {
1321 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1322 if (!gfp_mask) {
1323 WARN_ON_ONCE(1);
1324 return -ENOMEM;
1325 }
1326 if (skb_uarg(nskb) == skb_uarg(orig))
1327 return 0;
1328 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1329 return -EIO;
1330 }
1331 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1332 }
1333 return 0;
1334 }
1335
1336 /**
1337 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1338 * @skb: the skb to modify
1339 * @gfp_mask: allocation priority
1340 *
1341 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1342 * It will copy all frags into kernel and drop the reference
1343 * to userspace pages.
1344 *
1345 * If this function is called from an interrupt gfp_mask() must be
1346 * %GFP_ATOMIC.
1347 *
1348 * Returns 0 on success or a negative error code on failure
1349 * to allocate kernel memory to copy to.
1350 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1351 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1352 {
1353 int num_frags = skb_shinfo(skb)->nr_frags;
1354 struct page *page, *head = NULL;
1355 int i, new_frags;
1356 u32 d_off;
1357
1358 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1359 return -EINVAL;
1360
1361 if (!num_frags)
1362 goto release;
1363
1364 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1365 for (i = 0; i < new_frags; i++) {
1366 page = alloc_page(gfp_mask);
1367 if (!page) {
1368 while (head) {
1369 struct page *next = (struct page *)page_private(head);
1370 put_page(head);
1371 head = next;
1372 }
1373 return -ENOMEM;
1374 }
1375 set_page_private(page, (unsigned long)head);
1376 head = page;
1377 }
1378
1379 page = head;
1380 d_off = 0;
1381 for (i = 0; i < num_frags; i++) {
1382 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1383 u32 p_off, p_len, copied;
1384 struct page *p;
1385 u8 *vaddr;
1386
1387 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1388 p, p_off, p_len, copied) {
1389 u32 copy, done = 0;
1390 vaddr = kmap_atomic(p);
1391
1392 while (done < p_len) {
1393 if (d_off == PAGE_SIZE) {
1394 d_off = 0;
1395 page = (struct page *)page_private(page);
1396 }
1397 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1398 memcpy(page_address(page) + d_off,
1399 vaddr + p_off + done, copy);
1400 done += copy;
1401 d_off += copy;
1402 }
1403 kunmap_atomic(vaddr);
1404 }
1405 }
1406
1407 /* skb frags release userspace buffers */
1408 for (i = 0; i < num_frags; i++)
1409 skb_frag_unref(skb, i);
1410
1411 /* skb frags point to kernel buffers */
1412 for (i = 0; i < new_frags - 1; i++) {
1413 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1414 head = (struct page *)page_private(head);
1415 }
1416 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1417 skb_shinfo(skb)->nr_frags = new_frags;
1418
1419 release:
1420 skb_zcopy_clear(skb, false);
1421 return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1424
1425 /**
1426 * skb_clone - duplicate an sk_buff
1427 * @skb: buffer to clone
1428 * @gfp_mask: allocation priority
1429 *
1430 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1431 * copies share the same packet data but not structure. The new
1432 * buffer has a reference count of 1. If the allocation fails the
1433 * function returns %NULL otherwise the new buffer is returned.
1434 *
1435 * If this function is called from an interrupt gfp_mask() must be
1436 * %GFP_ATOMIC.
1437 */
1438
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1439 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1440 {
1441 struct sk_buff_fclones *fclones = container_of(skb,
1442 struct sk_buff_fclones,
1443 skb1);
1444 struct sk_buff *n;
1445
1446 if (skb_orphan_frags(skb, gfp_mask))
1447 return NULL;
1448
1449 if (skb->fclone == SKB_FCLONE_ORIG &&
1450 refcount_read(&fclones->fclone_ref) == 1) {
1451 n = &fclones->skb2;
1452 refcount_set(&fclones->fclone_ref, 2);
1453 } else {
1454 if (skb_pfmemalloc(skb))
1455 gfp_mask |= __GFP_MEMALLOC;
1456
1457 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1458 if (!n)
1459 return NULL;
1460
1461 n->fclone = SKB_FCLONE_UNAVAILABLE;
1462 }
1463
1464 return __skb_clone(n, skb);
1465 }
1466 EXPORT_SYMBOL(skb_clone);
1467
skb_headers_offset_update(struct sk_buff * skb,int off)1468 void skb_headers_offset_update(struct sk_buff *skb, int off)
1469 {
1470 /* Only adjust this if it actually is csum_start rather than csum */
1471 if (skb->ip_summed == CHECKSUM_PARTIAL)
1472 skb->csum_start += off;
1473 /* {transport,network,mac}_header and tail are relative to skb->head */
1474 skb->transport_header += off;
1475 skb->network_header += off;
1476 if (skb_mac_header_was_set(skb))
1477 skb->mac_header += off;
1478 skb->inner_transport_header += off;
1479 skb->inner_network_header += off;
1480 skb->inner_mac_header += off;
1481 }
1482 EXPORT_SYMBOL(skb_headers_offset_update);
1483
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1484 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1485 {
1486 __copy_skb_header(new, old);
1487
1488 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1489 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1490 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1491 }
1492 EXPORT_SYMBOL(skb_copy_header);
1493
skb_alloc_rx_flag(const struct sk_buff * skb)1494 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1495 {
1496 if (skb_pfmemalloc(skb))
1497 return SKB_ALLOC_RX;
1498 return 0;
1499 }
1500
1501 /**
1502 * skb_copy - create private copy of an sk_buff
1503 * @skb: buffer to copy
1504 * @gfp_mask: allocation priority
1505 *
1506 * Make a copy of both an &sk_buff and its data. This is used when the
1507 * caller wishes to modify the data and needs a private copy of the
1508 * data to alter. Returns %NULL on failure or the pointer to the buffer
1509 * on success. The returned buffer has a reference count of 1.
1510 *
1511 * As by-product this function converts non-linear &sk_buff to linear
1512 * one, so that &sk_buff becomes completely private and caller is allowed
1513 * to modify all the data of returned buffer. This means that this
1514 * function is not recommended for use in circumstances when only
1515 * header is going to be modified. Use pskb_copy() instead.
1516 */
1517
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1518 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1519 {
1520 int headerlen = skb_headroom(skb);
1521 unsigned int size = skb_end_offset(skb) + skb->data_len;
1522 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1523 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1524
1525 if (!n)
1526 return NULL;
1527
1528 /* Set the data pointer */
1529 skb_reserve(n, headerlen);
1530 /* Set the tail pointer and length */
1531 skb_put(n, skb->len);
1532
1533 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1534
1535 skb_copy_header(n, skb);
1536 return n;
1537 }
1538 EXPORT_SYMBOL(skb_copy);
1539
1540 /**
1541 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1542 * @skb: buffer to copy
1543 * @headroom: headroom of new skb
1544 * @gfp_mask: allocation priority
1545 * @fclone: if true allocate the copy of the skb from the fclone
1546 * cache instead of the head cache; it is recommended to set this
1547 * to true for the cases where the copy will likely be cloned
1548 *
1549 * Make a copy of both an &sk_buff and part of its data, located
1550 * in header. Fragmented data remain shared. This is used when
1551 * the caller wishes to modify only header of &sk_buff and needs
1552 * private copy of the header to alter. Returns %NULL on failure
1553 * or the pointer to the buffer on success.
1554 * The returned buffer has a reference count of 1.
1555 */
1556
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1557 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1558 gfp_t gfp_mask, bool fclone)
1559 {
1560 unsigned int size = skb_headlen(skb) + headroom;
1561 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1562 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1563
1564 if (!n)
1565 goto out;
1566
1567 /* Set the data pointer */
1568 skb_reserve(n, headroom);
1569 /* Set the tail pointer and length */
1570 skb_put(n, skb_headlen(skb));
1571 /* Copy the bytes */
1572 skb_copy_from_linear_data(skb, n->data, n->len);
1573
1574 n->truesize += skb->data_len;
1575 n->data_len = skb->data_len;
1576 n->len = skb->len;
1577
1578 if (skb_shinfo(skb)->nr_frags) {
1579 int i;
1580
1581 if (skb_orphan_frags(skb, gfp_mask) ||
1582 skb_zerocopy_clone(n, skb, gfp_mask)) {
1583 kfree_skb(n);
1584 n = NULL;
1585 goto out;
1586 }
1587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1588 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1589 skb_frag_ref(skb, i);
1590 }
1591 skb_shinfo(n)->nr_frags = i;
1592 }
1593
1594 if (skb_has_frag_list(skb)) {
1595 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1596 skb_clone_fraglist(n);
1597 }
1598
1599 skb_copy_header(n, skb);
1600 out:
1601 return n;
1602 }
1603 EXPORT_SYMBOL(__pskb_copy_fclone);
1604
1605 /**
1606 * pskb_expand_head - reallocate header of &sk_buff
1607 * @skb: buffer to reallocate
1608 * @nhead: room to add at head
1609 * @ntail: room to add at tail
1610 * @gfp_mask: allocation priority
1611 *
1612 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1613 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1614 * reference count of 1. Returns zero in the case of success or error,
1615 * if expansion failed. In the last case, &sk_buff is not changed.
1616 *
1617 * All the pointers pointing into skb header may change and must be
1618 * reloaded after call to this function.
1619 */
1620
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1621 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1622 gfp_t gfp_mask)
1623 {
1624 int i, osize = skb_end_offset(skb);
1625 int size = osize + nhead + ntail;
1626 long off;
1627 u8 *data;
1628
1629 BUG_ON(nhead < 0);
1630
1631 BUG_ON(skb_shared(skb));
1632
1633 size = SKB_DATA_ALIGN(size);
1634
1635 if (skb_pfmemalloc(skb))
1636 gfp_mask |= __GFP_MEMALLOC;
1637 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1638 gfp_mask, NUMA_NO_NODE, NULL);
1639 if (!data)
1640 goto nodata;
1641 size = SKB_WITH_OVERHEAD(ksize(data));
1642
1643 /* Copy only real data... and, alas, header. This should be
1644 * optimized for the cases when header is void.
1645 */
1646 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1647
1648 memcpy((struct skb_shared_info *)(data + size),
1649 skb_shinfo(skb),
1650 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1651
1652 /*
1653 * if shinfo is shared we must drop the old head gracefully, but if it
1654 * is not we can just drop the old head and let the existing refcount
1655 * be since all we did is relocate the values
1656 */
1657 if (skb_cloned(skb)) {
1658 if (skb_orphan_frags(skb, gfp_mask))
1659 goto nofrags;
1660 if (skb_zcopy(skb))
1661 refcount_inc(&skb_uarg(skb)->refcnt);
1662 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1663 skb_frag_ref(skb, i);
1664
1665 if (skb_has_frag_list(skb))
1666 skb_clone_fraglist(skb);
1667
1668 skb_release_data(skb);
1669 } else {
1670 skb_free_head(skb);
1671 }
1672 off = (data + nhead) - skb->head;
1673
1674 skb->head = data;
1675 skb->head_frag = 0;
1676 skb->data += off;
1677 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1678 skb->end = size;
1679 off = nhead;
1680 #else
1681 skb->end = skb->head + size;
1682 #endif
1683 skb->tail += off;
1684 skb_headers_offset_update(skb, nhead);
1685 skb->cloned = 0;
1686 skb->hdr_len = 0;
1687 skb->nohdr = 0;
1688 atomic_set(&skb_shinfo(skb)->dataref, 1);
1689
1690 skb_metadata_clear(skb);
1691
1692 /* It is not generally safe to change skb->truesize.
1693 * For the moment, we really care of rx path, or
1694 * when skb is orphaned (not attached to a socket).
1695 */
1696 if (!skb->sk || skb->destructor == sock_edemux)
1697 skb->truesize += size - osize;
1698
1699 return 0;
1700
1701 nofrags:
1702 kfree(data);
1703 nodata:
1704 return -ENOMEM;
1705 }
1706 EXPORT_SYMBOL(pskb_expand_head);
1707
1708 /* Make private copy of skb with writable head and some headroom */
1709
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1710 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1711 {
1712 struct sk_buff *skb2;
1713 int delta = headroom - skb_headroom(skb);
1714
1715 if (delta <= 0)
1716 skb2 = pskb_copy(skb, GFP_ATOMIC);
1717 else {
1718 skb2 = skb_clone(skb, GFP_ATOMIC);
1719 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1720 GFP_ATOMIC)) {
1721 kfree_skb(skb2);
1722 skb2 = NULL;
1723 }
1724 }
1725 return skb2;
1726 }
1727 EXPORT_SYMBOL(skb_realloc_headroom);
1728
1729 /**
1730 * skb_copy_expand - copy and expand sk_buff
1731 * @skb: buffer to copy
1732 * @newheadroom: new free bytes at head
1733 * @newtailroom: new free bytes at tail
1734 * @gfp_mask: allocation priority
1735 *
1736 * Make a copy of both an &sk_buff and its data and while doing so
1737 * allocate additional space.
1738 *
1739 * This is used when the caller wishes to modify the data and needs a
1740 * private copy of the data to alter as well as more space for new fields.
1741 * Returns %NULL on failure or the pointer to the buffer
1742 * on success. The returned buffer has a reference count of 1.
1743 *
1744 * You must pass %GFP_ATOMIC as the allocation priority if this function
1745 * is called from an interrupt.
1746 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1747 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1748 int newheadroom, int newtailroom,
1749 gfp_t gfp_mask)
1750 {
1751 /*
1752 * Allocate the copy buffer
1753 */
1754 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1755 gfp_mask, skb_alloc_rx_flag(skb),
1756 NUMA_NO_NODE);
1757 int oldheadroom = skb_headroom(skb);
1758 int head_copy_len, head_copy_off;
1759
1760 if (!n)
1761 return NULL;
1762
1763 skb_reserve(n, newheadroom);
1764
1765 /* Set the tail pointer and length */
1766 skb_put(n, skb->len);
1767
1768 head_copy_len = oldheadroom;
1769 head_copy_off = 0;
1770 if (newheadroom <= head_copy_len)
1771 head_copy_len = newheadroom;
1772 else
1773 head_copy_off = newheadroom - head_copy_len;
1774
1775 /* Copy the linear header and data. */
1776 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1777 skb->len + head_copy_len));
1778
1779 skb_copy_header(n, skb);
1780
1781 skb_headers_offset_update(n, newheadroom - oldheadroom);
1782
1783 return n;
1784 }
1785 EXPORT_SYMBOL(skb_copy_expand);
1786
1787 /**
1788 * __skb_pad - zero pad the tail of an skb
1789 * @skb: buffer to pad
1790 * @pad: space to pad
1791 * @free_on_error: free buffer on error
1792 *
1793 * Ensure that a buffer is followed by a padding area that is zero
1794 * filled. Used by network drivers which may DMA or transfer data
1795 * beyond the buffer end onto the wire.
1796 *
1797 * May return error in out of memory cases. The skb is freed on error
1798 * if @free_on_error is true.
1799 */
1800
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1801 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1802 {
1803 int err;
1804 int ntail;
1805
1806 /* If the skbuff is non linear tailroom is always zero.. */
1807 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1808 memset(skb->data+skb->len, 0, pad);
1809 return 0;
1810 }
1811
1812 ntail = skb->data_len + pad - (skb->end - skb->tail);
1813 if (likely(skb_cloned(skb) || ntail > 0)) {
1814 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1815 if (unlikely(err))
1816 goto free_skb;
1817 }
1818
1819 /* FIXME: The use of this function with non-linear skb's really needs
1820 * to be audited.
1821 */
1822 err = skb_linearize(skb);
1823 if (unlikely(err))
1824 goto free_skb;
1825
1826 memset(skb->data + skb->len, 0, pad);
1827 return 0;
1828
1829 free_skb:
1830 if (free_on_error)
1831 kfree_skb(skb);
1832 return err;
1833 }
1834 EXPORT_SYMBOL(__skb_pad);
1835
1836 /**
1837 * pskb_put - add data to the tail of a potentially fragmented buffer
1838 * @skb: start of the buffer to use
1839 * @tail: tail fragment of the buffer to use
1840 * @len: amount of data to add
1841 *
1842 * This function extends the used data area of the potentially
1843 * fragmented buffer. @tail must be the last fragment of @skb -- or
1844 * @skb itself. If this would exceed the total buffer size the kernel
1845 * will panic. A pointer to the first byte of the extra data is
1846 * returned.
1847 */
1848
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1849 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1850 {
1851 if (tail != skb) {
1852 skb->data_len += len;
1853 skb->len += len;
1854 }
1855 return skb_put(tail, len);
1856 }
1857 EXPORT_SYMBOL_GPL(pskb_put);
1858
1859 /**
1860 * skb_put - add data to a buffer
1861 * @skb: buffer to use
1862 * @len: amount of data to add
1863 *
1864 * This function extends the used data area of the buffer. If this would
1865 * exceed the total buffer size the kernel will panic. A pointer to the
1866 * first byte of the extra data is returned.
1867 */
skb_put(struct sk_buff * skb,unsigned int len)1868 void *skb_put(struct sk_buff *skb, unsigned int len)
1869 {
1870 void *tmp = skb_tail_pointer(skb);
1871 SKB_LINEAR_ASSERT(skb);
1872 skb->tail += len;
1873 skb->len += len;
1874 if (unlikely(skb->tail > skb->end))
1875 skb_over_panic(skb, len, __builtin_return_address(0));
1876 return tmp;
1877 }
1878 EXPORT_SYMBOL(skb_put);
1879
1880 /**
1881 * skb_push - add data to the start of a buffer
1882 * @skb: buffer to use
1883 * @len: amount of data to add
1884 *
1885 * This function extends the used data area of the buffer at the buffer
1886 * start. If this would exceed the total buffer headroom the kernel will
1887 * panic. A pointer to the first byte of the extra data is returned.
1888 */
skb_push(struct sk_buff * skb,unsigned int len)1889 void *skb_push(struct sk_buff *skb, unsigned int len)
1890 {
1891 skb->data -= len;
1892 skb->len += len;
1893 if (unlikely(skb->data < skb->head))
1894 skb_under_panic(skb, len, __builtin_return_address(0));
1895 return skb->data;
1896 }
1897 EXPORT_SYMBOL(skb_push);
1898
1899 /**
1900 * skb_pull - remove data from the start of a buffer
1901 * @skb: buffer to use
1902 * @len: amount of data to remove
1903 *
1904 * This function removes data from the start of a buffer, returning
1905 * the memory to the headroom. A pointer to the next data in the buffer
1906 * is returned. Once the data has been pulled future pushes will overwrite
1907 * the old data.
1908 */
skb_pull(struct sk_buff * skb,unsigned int len)1909 void *skb_pull(struct sk_buff *skb, unsigned int len)
1910 {
1911 return skb_pull_inline(skb, len);
1912 }
1913 EXPORT_SYMBOL(skb_pull);
1914
1915 /**
1916 * skb_trim - remove end from a buffer
1917 * @skb: buffer to alter
1918 * @len: new length
1919 *
1920 * Cut the length of a buffer down by removing data from the tail. If
1921 * the buffer is already under the length specified it is not modified.
1922 * The skb must be linear.
1923 */
skb_trim(struct sk_buff * skb,unsigned int len)1924 void skb_trim(struct sk_buff *skb, unsigned int len)
1925 {
1926 if (skb->len > len)
1927 __skb_trim(skb, len);
1928 }
1929 EXPORT_SYMBOL(skb_trim);
1930
1931 /* Trims skb to length len. It can change skb pointers.
1932 */
1933
___pskb_trim(struct sk_buff * skb,unsigned int len)1934 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1935 {
1936 struct sk_buff **fragp;
1937 struct sk_buff *frag;
1938 int offset = skb_headlen(skb);
1939 int nfrags = skb_shinfo(skb)->nr_frags;
1940 int i;
1941 int err;
1942
1943 if (skb_cloned(skb) &&
1944 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1945 return err;
1946
1947 i = 0;
1948 if (offset >= len)
1949 goto drop_pages;
1950
1951 for (; i < nfrags; i++) {
1952 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1953
1954 if (end < len) {
1955 offset = end;
1956 continue;
1957 }
1958
1959 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1960
1961 drop_pages:
1962 skb_shinfo(skb)->nr_frags = i;
1963
1964 for (; i < nfrags; i++)
1965 skb_frag_unref(skb, i);
1966
1967 if (skb_has_frag_list(skb))
1968 skb_drop_fraglist(skb);
1969 goto done;
1970 }
1971
1972 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1973 fragp = &frag->next) {
1974 int end = offset + frag->len;
1975
1976 if (skb_shared(frag)) {
1977 struct sk_buff *nfrag;
1978
1979 nfrag = skb_clone(frag, GFP_ATOMIC);
1980 if (unlikely(!nfrag))
1981 return -ENOMEM;
1982
1983 nfrag->next = frag->next;
1984 consume_skb(frag);
1985 frag = nfrag;
1986 *fragp = frag;
1987 }
1988
1989 if (end < len) {
1990 offset = end;
1991 continue;
1992 }
1993
1994 if (end > len &&
1995 unlikely((err = pskb_trim(frag, len - offset))))
1996 return err;
1997
1998 if (frag->next)
1999 skb_drop_list(&frag->next);
2000 break;
2001 }
2002
2003 done:
2004 if (len > skb_headlen(skb)) {
2005 skb->data_len -= skb->len - len;
2006 skb->len = len;
2007 } else {
2008 skb->len = len;
2009 skb->data_len = 0;
2010 skb_set_tail_pointer(skb, len);
2011 }
2012
2013 if (!skb->sk || skb->destructor == sock_edemux)
2014 skb_condense(skb);
2015 return 0;
2016 }
2017 EXPORT_SYMBOL(___pskb_trim);
2018
2019 /* Note : use pskb_trim_rcsum() instead of calling this directly
2020 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2021 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2022 {
2023 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2024 int delta = skb->len - len;
2025
2026 skb->csum = csum_block_sub(skb->csum,
2027 skb_checksum(skb, len, delta, 0),
2028 len);
2029 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2030 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2031 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2032
2033 if (offset + sizeof(__sum16) > hdlen)
2034 return -EINVAL;
2035 }
2036 return __pskb_trim(skb, len);
2037 }
2038 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2039
2040 /**
2041 * __pskb_pull_tail - advance tail of skb header
2042 * @skb: buffer to reallocate
2043 * @delta: number of bytes to advance tail
2044 *
2045 * The function makes a sense only on a fragmented &sk_buff,
2046 * it expands header moving its tail forward and copying necessary
2047 * data from fragmented part.
2048 *
2049 * &sk_buff MUST have reference count of 1.
2050 *
2051 * Returns %NULL (and &sk_buff does not change) if pull failed
2052 * or value of new tail of skb in the case of success.
2053 *
2054 * All the pointers pointing into skb header may change and must be
2055 * reloaded after call to this function.
2056 */
2057
2058 /* Moves tail of skb head forward, copying data from fragmented part,
2059 * when it is necessary.
2060 * 1. It may fail due to malloc failure.
2061 * 2. It may change skb pointers.
2062 *
2063 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2064 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2065 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2066 {
2067 /* If skb has not enough free space at tail, get new one
2068 * plus 128 bytes for future expansions. If we have enough
2069 * room at tail, reallocate without expansion only if skb is cloned.
2070 */
2071 int i, k, eat = (skb->tail + delta) - skb->end;
2072
2073 if (eat > 0 || skb_cloned(skb)) {
2074 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2075 GFP_ATOMIC))
2076 return NULL;
2077 }
2078
2079 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2080 skb_tail_pointer(skb), delta));
2081
2082 /* Optimization: no fragments, no reasons to preestimate
2083 * size of pulled pages. Superb.
2084 */
2085 if (!skb_has_frag_list(skb))
2086 goto pull_pages;
2087
2088 /* Estimate size of pulled pages. */
2089 eat = delta;
2090 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2091 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2092
2093 if (size >= eat)
2094 goto pull_pages;
2095 eat -= size;
2096 }
2097
2098 /* If we need update frag list, we are in troubles.
2099 * Certainly, it is possible to add an offset to skb data,
2100 * but taking into account that pulling is expected to
2101 * be very rare operation, it is worth to fight against
2102 * further bloating skb head and crucify ourselves here instead.
2103 * Pure masohism, indeed. 8)8)
2104 */
2105 if (eat) {
2106 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2107 struct sk_buff *clone = NULL;
2108 struct sk_buff *insp = NULL;
2109
2110 do {
2111 if (list->len <= eat) {
2112 /* Eaten as whole. */
2113 eat -= list->len;
2114 list = list->next;
2115 insp = list;
2116 } else {
2117 /* Eaten partially. */
2118 if (skb_is_gso(skb) && !list->head_frag &&
2119 skb_headlen(list))
2120 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2121
2122 if (skb_shared(list)) {
2123 /* Sucks! We need to fork list. :-( */
2124 clone = skb_clone(list, GFP_ATOMIC);
2125 if (!clone)
2126 return NULL;
2127 insp = list->next;
2128 list = clone;
2129 } else {
2130 /* This may be pulled without
2131 * problems. */
2132 insp = list;
2133 }
2134 if (!pskb_pull(list, eat)) {
2135 kfree_skb(clone);
2136 return NULL;
2137 }
2138 break;
2139 }
2140 } while (eat);
2141
2142 /* Free pulled out fragments. */
2143 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2144 skb_shinfo(skb)->frag_list = list->next;
2145 consume_skb(list);
2146 }
2147 /* And insert new clone at head. */
2148 if (clone) {
2149 clone->next = list;
2150 skb_shinfo(skb)->frag_list = clone;
2151 }
2152 }
2153 /* Success! Now we may commit changes to skb data. */
2154
2155 pull_pages:
2156 eat = delta;
2157 k = 0;
2158 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2159 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2160
2161 if (size <= eat) {
2162 skb_frag_unref(skb, i);
2163 eat -= size;
2164 } else {
2165 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2166
2167 *frag = skb_shinfo(skb)->frags[i];
2168 if (eat) {
2169 skb_frag_off_add(frag, eat);
2170 skb_frag_size_sub(frag, eat);
2171 if (!i)
2172 goto end;
2173 eat = 0;
2174 }
2175 k++;
2176 }
2177 }
2178 skb_shinfo(skb)->nr_frags = k;
2179
2180 end:
2181 skb->tail += delta;
2182 skb->data_len -= delta;
2183
2184 if (!skb->data_len)
2185 skb_zcopy_clear(skb, false);
2186
2187 return skb_tail_pointer(skb);
2188 }
2189 EXPORT_SYMBOL(__pskb_pull_tail);
2190
2191 /**
2192 * skb_copy_bits - copy bits from skb to kernel buffer
2193 * @skb: source skb
2194 * @offset: offset in source
2195 * @to: destination buffer
2196 * @len: number of bytes to copy
2197 *
2198 * Copy the specified number of bytes from the source skb to the
2199 * destination buffer.
2200 *
2201 * CAUTION ! :
2202 * If its prototype is ever changed,
2203 * check arch/{*}/net/{*}.S files,
2204 * since it is called from BPF assembly code.
2205 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2206 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2207 {
2208 int start = skb_headlen(skb);
2209 struct sk_buff *frag_iter;
2210 int i, copy;
2211
2212 if (offset > (int)skb->len - len)
2213 goto fault;
2214
2215 /* Copy header. */
2216 if ((copy = start - offset) > 0) {
2217 if (copy > len)
2218 copy = len;
2219 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2220 if ((len -= copy) == 0)
2221 return 0;
2222 offset += copy;
2223 to += copy;
2224 }
2225
2226 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2227 int end;
2228 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2229
2230 WARN_ON(start > offset + len);
2231
2232 end = start + skb_frag_size(f);
2233 if ((copy = end - offset) > 0) {
2234 u32 p_off, p_len, copied;
2235 struct page *p;
2236 u8 *vaddr;
2237
2238 if (copy > len)
2239 copy = len;
2240
2241 skb_frag_foreach_page(f,
2242 skb_frag_off(f) + offset - start,
2243 copy, p, p_off, p_len, copied) {
2244 vaddr = kmap_atomic(p);
2245 memcpy(to + copied, vaddr + p_off, p_len);
2246 kunmap_atomic(vaddr);
2247 }
2248
2249 if ((len -= copy) == 0)
2250 return 0;
2251 offset += copy;
2252 to += copy;
2253 }
2254 start = end;
2255 }
2256
2257 skb_walk_frags(skb, frag_iter) {
2258 int end;
2259
2260 WARN_ON(start > offset + len);
2261
2262 end = start + frag_iter->len;
2263 if ((copy = end - offset) > 0) {
2264 if (copy > len)
2265 copy = len;
2266 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2267 goto fault;
2268 if ((len -= copy) == 0)
2269 return 0;
2270 offset += copy;
2271 to += copy;
2272 }
2273 start = end;
2274 }
2275
2276 if (!len)
2277 return 0;
2278
2279 fault:
2280 return -EFAULT;
2281 }
2282 EXPORT_SYMBOL(skb_copy_bits);
2283
2284 /*
2285 * Callback from splice_to_pipe(), if we need to release some pages
2286 * at the end of the spd in case we error'ed out in filling the pipe.
2287 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2288 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2289 {
2290 put_page(spd->pages[i]);
2291 }
2292
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2293 static struct page *linear_to_page(struct page *page, unsigned int *len,
2294 unsigned int *offset,
2295 struct sock *sk)
2296 {
2297 struct page_frag *pfrag = sk_page_frag(sk);
2298
2299 if (!sk_page_frag_refill(sk, pfrag))
2300 return NULL;
2301
2302 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2303
2304 memcpy(page_address(pfrag->page) + pfrag->offset,
2305 page_address(page) + *offset, *len);
2306 *offset = pfrag->offset;
2307 pfrag->offset += *len;
2308
2309 return pfrag->page;
2310 }
2311
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2312 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2313 struct page *page,
2314 unsigned int offset)
2315 {
2316 return spd->nr_pages &&
2317 spd->pages[spd->nr_pages - 1] == page &&
2318 (spd->partial[spd->nr_pages - 1].offset +
2319 spd->partial[spd->nr_pages - 1].len == offset);
2320 }
2321
2322 /*
2323 * Fill page/offset/length into spd, if it can hold more pages.
2324 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2325 static bool spd_fill_page(struct splice_pipe_desc *spd,
2326 struct pipe_inode_info *pipe, struct page *page,
2327 unsigned int *len, unsigned int offset,
2328 bool linear,
2329 struct sock *sk)
2330 {
2331 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2332 return true;
2333
2334 if (linear) {
2335 page = linear_to_page(page, len, &offset, sk);
2336 if (!page)
2337 return true;
2338 }
2339 if (spd_can_coalesce(spd, page, offset)) {
2340 spd->partial[spd->nr_pages - 1].len += *len;
2341 return false;
2342 }
2343 get_page(page);
2344 spd->pages[spd->nr_pages] = page;
2345 spd->partial[spd->nr_pages].len = *len;
2346 spd->partial[spd->nr_pages].offset = offset;
2347 spd->nr_pages++;
2348
2349 return false;
2350 }
2351
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2352 static bool __splice_segment(struct page *page, unsigned int poff,
2353 unsigned int plen, unsigned int *off,
2354 unsigned int *len,
2355 struct splice_pipe_desc *spd, bool linear,
2356 struct sock *sk,
2357 struct pipe_inode_info *pipe)
2358 {
2359 if (!*len)
2360 return true;
2361
2362 /* skip this segment if already processed */
2363 if (*off >= plen) {
2364 *off -= plen;
2365 return false;
2366 }
2367
2368 /* ignore any bits we already processed */
2369 poff += *off;
2370 plen -= *off;
2371 *off = 0;
2372
2373 do {
2374 unsigned int flen = min(*len, plen);
2375
2376 if (spd_fill_page(spd, pipe, page, &flen, poff,
2377 linear, sk))
2378 return true;
2379 poff += flen;
2380 plen -= flen;
2381 *len -= flen;
2382 } while (*len && plen);
2383
2384 return false;
2385 }
2386
2387 /*
2388 * Map linear and fragment data from the skb to spd. It reports true if the
2389 * pipe is full or if we already spliced the requested length.
2390 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2391 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2392 unsigned int *offset, unsigned int *len,
2393 struct splice_pipe_desc *spd, struct sock *sk)
2394 {
2395 int seg;
2396 struct sk_buff *iter;
2397
2398 /* map the linear part :
2399 * If skb->head_frag is set, this 'linear' part is backed by a
2400 * fragment, and if the head is not shared with any clones then
2401 * we can avoid a copy since we own the head portion of this page.
2402 */
2403 if (__splice_segment(virt_to_page(skb->data),
2404 (unsigned long) skb->data & (PAGE_SIZE - 1),
2405 skb_headlen(skb),
2406 offset, len, spd,
2407 skb_head_is_locked(skb),
2408 sk, pipe))
2409 return true;
2410
2411 /*
2412 * then map the fragments
2413 */
2414 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2415 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2416
2417 if (__splice_segment(skb_frag_page(f),
2418 skb_frag_off(f), skb_frag_size(f),
2419 offset, len, spd, false, sk, pipe))
2420 return true;
2421 }
2422
2423 skb_walk_frags(skb, iter) {
2424 if (*offset >= iter->len) {
2425 *offset -= iter->len;
2426 continue;
2427 }
2428 /* __skb_splice_bits() only fails if the output has no room
2429 * left, so no point in going over the frag_list for the error
2430 * case.
2431 */
2432 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2433 return true;
2434 }
2435
2436 return false;
2437 }
2438
2439 /*
2440 * Map data from the skb to a pipe. Should handle both the linear part,
2441 * the fragments, and the frag list.
2442 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2443 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2444 struct pipe_inode_info *pipe, unsigned int tlen,
2445 unsigned int flags)
2446 {
2447 struct partial_page partial[MAX_SKB_FRAGS];
2448 struct page *pages[MAX_SKB_FRAGS];
2449 struct splice_pipe_desc spd = {
2450 .pages = pages,
2451 .partial = partial,
2452 .nr_pages_max = MAX_SKB_FRAGS,
2453 .ops = &nosteal_pipe_buf_ops,
2454 .spd_release = sock_spd_release,
2455 };
2456 int ret = 0;
2457
2458 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2459
2460 if (spd.nr_pages)
2461 ret = splice_to_pipe(pipe, &spd);
2462
2463 return ret;
2464 }
2465 EXPORT_SYMBOL_GPL(skb_splice_bits);
2466
2467 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2468 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2469 int len)
2470 {
2471 unsigned int orig_len = len;
2472 struct sk_buff *head = skb;
2473 unsigned short fragidx;
2474 int slen, ret;
2475
2476 do_frag_list:
2477
2478 /* Deal with head data */
2479 while (offset < skb_headlen(skb) && len) {
2480 struct kvec kv;
2481 struct msghdr msg;
2482
2483 slen = min_t(int, len, skb_headlen(skb) - offset);
2484 kv.iov_base = skb->data + offset;
2485 kv.iov_len = slen;
2486 memset(&msg, 0, sizeof(msg));
2487 msg.msg_flags = MSG_DONTWAIT;
2488
2489 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2490 if (ret <= 0)
2491 goto error;
2492
2493 offset += ret;
2494 len -= ret;
2495 }
2496
2497 /* All the data was skb head? */
2498 if (!len)
2499 goto out;
2500
2501 /* Make offset relative to start of frags */
2502 offset -= skb_headlen(skb);
2503
2504 /* Find where we are in frag list */
2505 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2506 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2507
2508 if (offset < skb_frag_size(frag))
2509 break;
2510
2511 offset -= skb_frag_size(frag);
2512 }
2513
2514 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2516
2517 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2518
2519 while (slen) {
2520 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2521 skb_frag_off(frag) + offset,
2522 slen, MSG_DONTWAIT);
2523 if (ret <= 0)
2524 goto error;
2525
2526 len -= ret;
2527 offset += ret;
2528 slen -= ret;
2529 }
2530
2531 offset = 0;
2532 }
2533
2534 if (len) {
2535 /* Process any frag lists */
2536
2537 if (skb == head) {
2538 if (skb_has_frag_list(skb)) {
2539 skb = skb_shinfo(skb)->frag_list;
2540 goto do_frag_list;
2541 }
2542 } else if (skb->next) {
2543 skb = skb->next;
2544 goto do_frag_list;
2545 }
2546 }
2547
2548 out:
2549 return orig_len - len;
2550
2551 error:
2552 return orig_len == len ? ret : orig_len - len;
2553 }
2554 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2555
2556 /**
2557 * skb_store_bits - store bits from kernel buffer to skb
2558 * @skb: destination buffer
2559 * @offset: offset in destination
2560 * @from: source buffer
2561 * @len: number of bytes to copy
2562 *
2563 * Copy the specified number of bytes from the source buffer to the
2564 * destination skb. This function handles all the messy bits of
2565 * traversing fragment lists and such.
2566 */
2567
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2568 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2569 {
2570 int start = skb_headlen(skb);
2571 struct sk_buff *frag_iter;
2572 int i, copy;
2573
2574 if (offset > (int)skb->len - len)
2575 goto fault;
2576
2577 if ((copy = start - offset) > 0) {
2578 if (copy > len)
2579 copy = len;
2580 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2581 if ((len -= copy) == 0)
2582 return 0;
2583 offset += copy;
2584 from += copy;
2585 }
2586
2587 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2588 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2589 int end;
2590
2591 WARN_ON(start > offset + len);
2592
2593 end = start + skb_frag_size(frag);
2594 if ((copy = end - offset) > 0) {
2595 u32 p_off, p_len, copied;
2596 struct page *p;
2597 u8 *vaddr;
2598
2599 if (copy > len)
2600 copy = len;
2601
2602 skb_frag_foreach_page(frag,
2603 skb_frag_off(frag) + offset - start,
2604 copy, p, p_off, p_len, copied) {
2605 vaddr = kmap_atomic(p);
2606 memcpy(vaddr + p_off, from + copied, p_len);
2607 kunmap_atomic(vaddr);
2608 }
2609
2610 if ((len -= copy) == 0)
2611 return 0;
2612 offset += copy;
2613 from += copy;
2614 }
2615 start = end;
2616 }
2617
2618 skb_walk_frags(skb, frag_iter) {
2619 int end;
2620
2621 WARN_ON(start > offset + len);
2622
2623 end = start + frag_iter->len;
2624 if ((copy = end - offset) > 0) {
2625 if (copy > len)
2626 copy = len;
2627 if (skb_store_bits(frag_iter, offset - start,
2628 from, copy))
2629 goto fault;
2630 if ((len -= copy) == 0)
2631 return 0;
2632 offset += copy;
2633 from += copy;
2634 }
2635 start = end;
2636 }
2637 if (!len)
2638 return 0;
2639
2640 fault:
2641 return -EFAULT;
2642 }
2643 EXPORT_SYMBOL(skb_store_bits);
2644
2645 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2646 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2647 __wsum csum, const struct skb_checksum_ops *ops)
2648 {
2649 int start = skb_headlen(skb);
2650 int i, copy = start - offset;
2651 struct sk_buff *frag_iter;
2652 int pos = 0;
2653
2654 /* Checksum header. */
2655 if (copy > 0) {
2656 if (copy > len)
2657 copy = len;
2658 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2659 skb->data + offset, copy, csum);
2660 if ((len -= copy) == 0)
2661 return csum;
2662 offset += copy;
2663 pos = copy;
2664 }
2665
2666 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2667 int end;
2668 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2669
2670 WARN_ON(start > offset + len);
2671
2672 end = start + skb_frag_size(frag);
2673 if ((copy = end - offset) > 0) {
2674 u32 p_off, p_len, copied;
2675 struct page *p;
2676 __wsum csum2;
2677 u8 *vaddr;
2678
2679 if (copy > len)
2680 copy = len;
2681
2682 skb_frag_foreach_page(frag,
2683 skb_frag_off(frag) + offset - start,
2684 copy, p, p_off, p_len, copied) {
2685 vaddr = kmap_atomic(p);
2686 csum2 = INDIRECT_CALL_1(ops->update,
2687 csum_partial_ext,
2688 vaddr + p_off, p_len, 0);
2689 kunmap_atomic(vaddr);
2690 csum = INDIRECT_CALL_1(ops->combine,
2691 csum_block_add_ext, csum,
2692 csum2, pos, p_len);
2693 pos += p_len;
2694 }
2695
2696 if (!(len -= copy))
2697 return csum;
2698 offset += copy;
2699 }
2700 start = end;
2701 }
2702
2703 skb_walk_frags(skb, frag_iter) {
2704 int end;
2705
2706 WARN_ON(start > offset + len);
2707
2708 end = start + frag_iter->len;
2709 if ((copy = end - offset) > 0) {
2710 __wsum csum2;
2711 if (copy > len)
2712 copy = len;
2713 csum2 = __skb_checksum(frag_iter, offset - start,
2714 copy, 0, ops);
2715 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2716 csum, csum2, pos, copy);
2717 if ((len -= copy) == 0)
2718 return csum;
2719 offset += copy;
2720 pos += copy;
2721 }
2722 start = end;
2723 }
2724 BUG_ON(len);
2725
2726 return csum;
2727 }
2728 EXPORT_SYMBOL(__skb_checksum);
2729
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2730 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2731 int len, __wsum csum)
2732 {
2733 const struct skb_checksum_ops ops = {
2734 .update = csum_partial_ext,
2735 .combine = csum_block_add_ext,
2736 };
2737
2738 return __skb_checksum(skb, offset, len, csum, &ops);
2739 }
2740 EXPORT_SYMBOL(skb_checksum);
2741
2742 /* Both of above in one bottle. */
2743
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2744 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2745 u8 *to, int len)
2746 {
2747 int start = skb_headlen(skb);
2748 int i, copy = start - offset;
2749 struct sk_buff *frag_iter;
2750 int pos = 0;
2751 __wsum csum = 0;
2752
2753 /* Copy header. */
2754 if (copy > 0) {
2755 if (copy > len)
2756 copy = len;
2757 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2758 copy);
2759 if ((len -= copy) == 0)
2760 return csum;
2761 offset += copy;
2762 to += copy;
2763 pos = copy;
2764 }
2765
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 int end;
2768
2769 WARN_ON(start > offset + len);
2770
2771 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2772 if ((copy = end - offset) > 0) {
2773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774 u32 p_off, p_len, copied;
2775 struct page *p;
2776 __wsum csum2;
2777 u8 *vaddr;
2778
2779 if (copy > len)
2780 copy = len;
2781
2782 skb_frag_foreach_page(frag,
2783 skb_frag_off(frag) + offset - start,
2784 copy, p, p_off, p_len, copied) {
2785 vaddr = kmap_atomic(p);
2786 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2787 to + copied,
2788 p_len);
2789 kunmap_atomic(vaddr);
2790 csum = csum_block_add(csum, csum2, pos);
2791 pos += p_len;
2792 }
2793
2794 if (!(len -= copy))
2795 return csum;
2796 offset += copy;
2797 to += copy;
2798 }
2799 start = end;
2800 }
2801
2802 skb_walk_frags(skb, frag_iter) {
2803 __wsum csum2;
2804 int end;
2805
2806 WARN_ON(start > offset + len);
2807
2808 end = start + frag_iter->len;
2809 if ((copy = end - offset) > 0) {
2810 if (copy > len)
2811 copy = len;
2812 csum2 = skb_copy_and_csum_bits(frag_iter,
2813 offset - start,
2814 to, copy);
2815 csum = csum_block_add(csum, csum2, pos);
2816 if ((len -= copy) == 0)
2817 return csum;
2818 offset += copy;
2819 to += copy;
2820 pos += copy;
2821 }
2822 start = end;
2823 }
2824 BUG_ON(len);
2825 return csum;
2826 }
2827 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2828
__skb_checksum_complete_head(struct sk_buff * skb,int len)2829 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2830 {
2831 __sum16 sum;
2832
2833 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2834 /* See comments in __skb_checksum_complete(). */
2835 if (likely(!sum)) {
2836 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2837 !skb->csum_complete_sw)
2838 netdev_rx_csum_fault(skb->dev, skb);
2839 }
2840 if (!skb_shared(skb))
2841 skb->csum_valid = !sum;
2842 return sum;
2843 }
2844 EXPORT_SYMBOL(__skb_checksum_complete_head);
2845
2846 /* This function assumes skb->csum already holds pseudo header's checksum,
2847 * which has been changed from the hardware checksum, for example, by
2848 * __skb_checksum_validate_complete(). And, the original skb->csum must
2849 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2850 *
2851 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2852 * zero. The new checksum is stored back into skb->csum unless the skb is
2853 * shared.
2854 */
__skb_checksum_complete(struct sk_buff * skb)2855 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2856 {
2857 __wsum csum;
2858 __sum16 sum;
2859
2860 csum = skb_checksum(skb, 0, skb->len, 0);
2861
2862 sum = csum_fold(csum_add(skb->csum, csum));
2863 /* This check is inverted, because we already knew the hardware
2864 * checksum is invalid before calling this function. So, if the
2865 * re-computed checksum is valid instead, then we have a mismatch
2866 * between the original skb->csum and skb_checksum(). This means either
2867 * the original hardware checksum is incorrect or we screw up skb->csum
2868 * when moving skb->data around.
2869 */
2870 if (likely(!sum)) {
2871 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2872 !skb->csum_complete_sw)
2873 netdev_rx_csum_fault(skb->dev, skb);
2874 }
2875
2876 if (!skb_shared(skb)) {
2877 /* Save full packet checksum */
2878 skb->csum = csum;
2879 skb->ip_summed = CHECKSUM_COMPLETE;
2880 skb->csum_complete_sw = 1;
2881 skb->csum_valid = !sum;
2882 }
2883
2884 return sum;
2885 }
2886 EXPORT_SYMBOL(__skb_checksum_complete);
2887
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2888 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2889 {
2890 net_warn_ratelimited(
2891 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2892 __func__);
2893 return 0;
2894 }
2895
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2896 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2897 int offset, int len)
2898 {
2899 net_warn_ratelimited(
2900 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2901 __func__);
2902 return 0;
2903 }
2904
2905 static const struct skb_checksum_ops default_crc32c_ops = {
2906 .update = warn_crc32c_csum_update,
2907 .combine = warn_crc32c_csum_combine,
2908 };
2909
2910 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2911 &default_crc32c_ops;
2912 EXPORT_SYMBOL(crc32c_csum_stub);
2913
2914 /**
2915 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2916 * @from: source buffer
2917 *
2918 * Calculates the amount of linear headroom needed in the 'to' skb passed
2919 * into skb_zerocopy().
2920 */
2921 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2922 skb_zerocopy_headlen(const struct sk_buff *from)
2923 {
2924 unsigned int hlen = 0;
2925
2926 if (!from->head_frag ||
2927 skb_headlen(from) < L1_CACHE_BYTES ||
2928 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2929 hlen = skb_headlen(from);
2930 if (!hlen)
2931 hlen = from->len;
2932 }
2933
2934 if (skb_has_frag_list(from))
2935 hlen = from->len;
2936
2937 return hlen;
2938 }
2939 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2940
2941 /**
2942 * skb_zerocopy - Zero copy skb to skb
2943 * @to: destination buffer
2944 * @from: source buffer
2945 * @len: number of bytes to copy from source buffer
2946 * @hlen: size of linear headroom in destination buffer
2947 *
2948 * Copies up to `len` bytes from `from` to `to` by creating references
2949 * to the frags in the source buffer.
2950 *
2951 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2952 * headroom in the `to` buffer.
2953 *
2954 * Return value:
2955 * 0: everything is OK
2956 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2957 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2958 */
2959 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2960 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2961 {
2962 int i, j = 0;
2963 int plen = 0; /* length of skb->head fragment */
2964 int ret;
2965 struct page *page;
2966 unsigned int offset;
2967
2968 BUG_ON(!from->head_frag && !hlen);
2969
2970 /* dont bother with small payloads */
2971 if (len <= skb_tailroom(to))
2972 return skb_copy_bits(from, 0, skb_put(to, len), len);
2973
2974 if (hlen) {
2975 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2976 if (unlikely(ret))
2977 return ret;
2978 len -= hlen;
2979 } else {
2980 plen = min_t(int, skb_headlen(from), len);
2981 if (plen) {
2982 page = virt_to_head_page(from->head);
2983 offset = from->data - (unsigned char *)page_address(page);
2984 __skb_fill_page_desc(to, 0, page, offset, plen);
2985 get_page(page);
2986 j = 1;
2987 len -= plen;
2988 }
2989 }
2990
2991 to->truesize += len + plen;
2992 to->len += len + plen;
2993 to->data_len += len + plen;
2994
2995 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2996 skb_tx_error(from);
2997 return -ENOMEM;
2998 }
2999 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3000
3001 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3002 int size;
3003
3004 if (!len)
3005 break;
3006 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3007 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3008 len);
3009 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3010 len -= size;
3011 skb_frag_ref(to, j);
3012 j++;
3013 }
3014 skb_shinfo(to)->nr_frags = j;
3015
3016 return 0;
3017 }
3018 EXPORT_SYMBOL_GPL(skb_zerocopy);
3019
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3020 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3021 {
3022 __wsum csum;
3023 long csstart;
3024
3025 if (skb->ip_summed == CHECKSUM_PARTIAL)
3026 csstart = skb_checksum_start_offset(skb);
3027 else
3028 csstart = skb_headlen(skb);
3029
3030 BUG_ON(csstart > skb_headlen(skb));
3031
3032 skb_copy_from_linear_data(skb, to, csstart);
3033
3034 csum = 0;
3035 if (csstart != skb->len)
3036 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3037 skb->len - csstart);
3038
3039 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3040 long csstuff = csstart + skb->csum_offset;
3041
3042 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3043 }
3044 }
3045 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3046
3047 /**
3048 * skb_dequeue - remove from the head of the queue
3049 * @list: list to dequeue from
3050 *
3051 * Remove the head of the list. The list lock is taken so the function
3052 * may be used safely with other locking list functions. The head item is
3053 * returned or %NULL if the list is empty.
3054 */
3055
skb_dequeue(struct sk_buff_head * list)3056 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3057 {
3058 unsigned long flags;
3059 struct sk_buff *result;
3060
3061 spin_lock_irqsave(&list->lock, flags);
3062 result = __skb_dequeue(list);
3063 spin_unlock_irqrestore(&list->lock, flags);
3064 return result;
3065 }
3066 EXPORT_SYMBOL(skb_dequeue);
3067
3068 /**
3069 * skb_dequeue_tail - remove from the tail of the queue
3070 * @list: list to dequeue from
3071 *
3072 * Remove the tail of the list. The list lock is taken so the function
3073 * may be used safely with other locking list functions. The tail item is
3074 * returned or %NULL if the list is empty.
3075 */
skb_dequeue_tail(struct sk_buff_head * list)3076 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3077 {
3078 unsigned long flags;
3079 struct sk_buff *result;
3080
3081 spin_lock_irqsave(&list->lock, flags);
3082 result = __skb_dequeue_tail(list);
3083 spin_unlock_irqrestore(&list->lock, flags);
3084 return result;
3085 }
3086 EXPORT_SYMBOL(skb_dequeue_tail);
3087
3088 /**
3089 * skb_queue_purge - empty a list
3090 * @list: list to empty
3091 *
3092 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3093 * the list and one reference dropped. This function takes the list
3094 * lock and is atomic with respect to other list locking functions.
3095 */
skb_queue_purge(struct sk_buff_head * list)3096 void skb_queue_purge(struct sk_buff_head *list)
3097 {
3098 struct sk_buff *skb;
3099 while ((skb = skb_dequeue(list)) != NULL)
3100 kfree_skb(skb);
3101 }
3102 EXPORT_SYMBOL(skb_queue_purge);
3103
3104 /**
3105 * skb_rbtree_purge - empty a skb rbtree
3106 * @root: root of the rbtree to empty
3107 * Return value: the sum of truesizes of all purged skbs.
3108 *
3109 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3110 * the list and one reference dropped. This function does not take
3111 * any lock. Synchronization should be handled by the caller (e.g., TCP
3112 * out-of-order queue is protected by the socket lock).
3113 */
skb_rbtree_purge(struct rb_root * root)3114 unsigned int skb_rbtree_purge(struct rb_root *root)
3115 {
3116 struct rb_node *p = rb_first(root);
3117 unsigned int sum = 0;
3118
3119 while (p) {
3120 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3121
3122 p = rb_next(p);
3123 rb_erase(&skb->rbnode, root);
3124 sum += skb->truesize;
3125 kfree_skb(skb);
3126 }
3127 return sum;
3128 }
3129
3130 /**
3131 * skb_queue_head - queue a buffer at the list head
3132 * @list: list to use
3133 * @newsk: buffer to queue
3134 *
3135 * Queue a buffer at the start of the list. This function takes the
3136 * list lock and can be used safely with other locking &sk_buff functions
3137 * safely.
3138 *
3139 * A buffer cannot be placed on two lists at the same time.
3140 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3141 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3142 {
3143 unsigned long flags;
3144
3145 spin_lock_irqsave(&list->lock, flags);
3146 __skb_queue_head(list, newsk);
3147 spin_unlock_irqrestore(&list->lock, flags);
3148 }
3149 EXPORT_SYMBOL(skb_queue_head);
3150
3151 /**
3152 * skb_queue_tail - queue a buffer at the list tail
3153 * @list: list to use
3154 * @newsk: buffer to queue
3155 *
3156 * Queue a buffer at the tail of the list. This function takes the
3157 * list lock and can be used safely with other locking &sk_buff functions
3158 * safely.
3159 *
3160 * A buffer cannot be placed on two lists at the same time.
3161 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3162 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3163 {
3164 unsigned long flags;
3165
3166 spin_lock_irqsave(&list->lock, flags);
3167 __skb_queue_tail(list, newsk);
3168 spin_unlock_irqrestore(&list->lock, flags);
3169 }
3170 EXPORT_SYMBOL(skb_queue_tail);
3171
3172 /**
3173 * skb_unlink - remove a buffer from a list
3174 * @skb: buffer to remove
3175 * @list: list to use
3176 *
3177 * Remove a packet from a list. The list locks are taken and this
3178 * function is atomic with respect to other list locked calls
3179 *
3180 * You must know what list the SKB is on.
3181 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3182 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3183 {
3184 unsigned long flags;
3185
3186 spin_lock_irqsave(&list->lock, flags);
3187 __skb_unlink(skb, list);
3188 spin_unlock_irqrestore(&list->lock, flags);
3189 }
3190 EXPORT_SYMBOL(skb_unlink);
3191
3192 /**
3193 * skb_append - append a buffer
3194 * @old: buffer to insert after
3195 * @newsk: buffer to insert
3196 * @list: list to use
3197 *
3198 * Place a packet after a given packet in a list. The list locks are taken
3199 * and this function is atomic with respect to other list locked calls.
3200 * A buffer cannot be placed on two lists at the same time.
3201 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3202 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3203 {
3204 unsigned long flags;
3205
3206 spin_lock_irqsave(&list->lock, flags);
3207 __skb_queue_after(list, old, newsk);
3208 spin_unlock_irqrestore(&list->lock, flags);
3209 }
3210 EXPORT_SYMBOL(skb_append);
3211
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3212 static inline void skb_split_inside_header(struct sk_buff *skb,
3213 struct sk_buff* skb1,
3214 const u32 len, const int pos)
3215 {
3216 int i;
3217
3218 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3219 pos - len);
3220 /* And move data appendix as is. */
3221 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3222 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3223
3224 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3225 skb_shinfo(skb)->nr_frags = 0;
3226 skb1->data_len = skb->data_len;
3227 skb1->len += skb1->data_len;
3228 skb->data_len = 0;
3229 skb->len = len;
3230 skb_set_tail_pointer(skb, len);
3231 }
3232
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3233 static inline void skb_split_no_header(struct sk_buff *skb,
3234 struct sk_buff* skb1,
3235 const u32 len, int pos)
3236 {
3237 int i, k = 0;
3238 const int nfrags = skb_shinfo(skb)->nr_frags;
3239
3240 skb_shinfo(skb)->nr_frags = 0;
3241 skb1->len = skb1->data_len = skb->len - len;
3242 skb->len = len;
3243 skb->data_len = len - pos;
3244
3245 for (i = 0; i < nfrags; i++) {
3246 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3247
3248 if (pos + size > len) {
3249 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3250
3251 if (pos < len) {
3252 /* Split frag.
3253 * We have two variants in this case:
3254 * 1. Move all the frag to the second
3255 * part, if it is possible. F.e.
3256 * this approach is mandatory for TUX,
3257 * where splitting is expensive.
3258 * 2. Split is accurately. We make this.
3259 */
3260 skb_frag_ref(skb, i);
3261 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3262 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3263 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3264 skb_shinfo(skb)->nr_frags++;
3265 }
3266 k++;
3267 } else
3268 skb_shinfo(skb)->nr_frags++;
3269 pos += size;
3270 }
3271 skb_shinfo(skb1)->nr_frags = k;
3272 }
3273
3274 /**
3275 * skb_split - Split fragmented skb to two parts at length len.
3276 * @skb: the buffer to split
3277 * @skb1: the buffer to receive the second part
3278 * @len: new length for skb
3279 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3280 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3281 {
3282 int pos = skb_headlen(skb);
3283
3284 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3285 SKBTX_SHARED_FRAG;
3286 skb_zerocopy_clone(skb1, skb, 0);
3287 if (len < pos) /* Split line is inside header. */
3288 skb_split_inside_header(skb, skb1, len, pos);
3289 else /* Second chunk has no header, nothing to copy. */
3290 skb_split_no_header(skb, skb1, len, pos);
3291 }
3292 EXPORT_SYMBOL(skb_split);
3293
3294 /* Shifting from/to a cloned skb is a no-go.
3295 *
3296 * Caller cannot keep skb_shinfo related pointers past calling here!
3297 */
skb_prepare_for_shift(struct sk_buff * skb)3298 static int skb_prepare_for_shift(struct sk_buff *skb)
3299 {
3300 int ret = 0;
3301
3302 if (skb_cloned(skb)) {
3303 /* Save and restore truesize: pskb_expand_head() may reallocate
3304 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3305 * cannot change truesize at this point.
3306 */
3307 unsigned int save_truesize = skb->truesize;
3308
3309 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3310 skb->truesize = save_truesize;
3311 }
3312 return ret;
3313 }
3314
3315 /**
3316 * skb_shift - Shifts paged data partially from skb to another
3317 * @tgt: buffer into which tail data gets added
3318 * @skb: buffer from which the paged data comes from
3319 * @shiftlen: shift up to this many bytes
3320 *
3321 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3322 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3323 * It's up to caller to free skb if everything was shifted.
3324 *
3325 * If @tgt runs out of frags, the whole operation is aborted.
3326 *
3327 * Skb cannot include anything else but paged data while tgt is allowed
3328 * to have non-paged data as well.
3329 *
3330 * TODO: full sized shift could be optimized but that would need
3331 * specialized skb free'er to handle frags without up-to-date nr_frags.
3332 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3333 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3334 {
3335 int from, to, merge, todo;
3336 skb_frag_t *fragfrom, *fragto;
3337
3338 BUG_ON(shiftlen > skb->len);
3339
3340 if (skb_headlen(skb))
3341 return 0;
3342 if (skb_zcopy(tgt) || skb_zcopy(skb))
3343 return 0;
3344
3345 todo = shiftlen;
3346 from = 0;
3347 to = skb_shinfo(tgt)->nr_frags;
3348 fragfrom = &skb_shinfo(skb)->frags[from];
3349
3350 /* Actual merge is delayed until the point when we know we can
3351 * commit all, so that we don't have to undo partial changes
3352 */
3353 if (!to ||
3354 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3355 skb_frag_off(fragfrom))) {
3356 merge = -1;
3357 } else {
3358 merge = to - 1;
3359
3360 todo -= skb_frag_size(fragfrom);
3361 if (todo < 0) {
3362 if (skb_prepare_for_shift(skb) ||
3363 skb_prepare_for_shift(tgt))
3364 return 0;
3365
3366 /* All previous frag pointers might be stale! */
3367 fragfrom = &skb_shinfo(skb)->frags[from];
3368 fragto = &skb_shinfo(tgt)->frags[merge];
3369
3370 skb_frag_size_add(fragto, shiftlen);
3371 skb_frag_size_sub(fragfrom, shiftlen);
3372 skb_frag_off_add(fragfrom, shiftlen);
3373
3374 goto onlymerged;
3375 }
3376
3377 from++;
3378 }
3379
3380 /* Skip full, not-fitting skb to avoid expensive operations */
3381 if ((shiftlen == skb->len) &&
3382 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3383 return 0;
3384
3385 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3386 return 0;
3387
3388 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3389 if (to == MAX_SKB_FRAGS)
3390 return 0;
3391
3392 fragfrom = &skb_shinfo(skb)->frags[from];
3393 fragto = &skb_shinfo(tgt)->frags[to];
3394
3395 if (todo >= skb_frag_size(fragfrom)) {
3396 *fragto = *fragfrom;
3397 todo -= skb_frag_size(fragfrom);
3398 from++;
3399 to++;
3400
3401 } else {
3402 __skb_frag_ref(fragfrom);
3403 skb_frag_page_copy(fragto, fragfrom);
3404 skb_frag_off_copy(fragto, fragfrom);
3405 skb_frag_size_set(fragto, todo);
3406
3407 skb_frag_off_add(fragfrom, todo);
3408 skb_frag_size_sub(fragfrom, todo);
3409 todo = 0;
3410
3411 to++;
3412 break;
3413 }
3414 }
3415
3416 /* Ready to "commit" this state change to tgt */
3417 skb_shinfo(tgt)->nr_frags = to;
3418
3419 if (merge >= 0) {
3420 fragfrom = &skb_shinfo(skb)->frags[0];
3421 fragto = &skb_shinfo(tgt)->frags[merge];
3422
3423 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3424 __skb_frag_unref(fragfrom);
3425 }
3426
3427 /* Reposition in the original skb */
3428 to = 0;
3429 while (from < skb_shinfo(skb)->nr_frags)
3430 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3431 skb_shinfo(skb)->nr_frags = to;
3432
3433 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3434
3435 onlymerged:
3436 /* Most likely the tgt won't ever need its checksum anymore, skb on
3437 * the other hand might need it if it needs to be resent
3438 */
3439 tgt->ip_summed = CHECKSUM_PARTIAL;
3440 skb->ip_summed = CHECKSUM_PARTIAL;
3441
3442 /* Yak, is it really working this way? Some helper please? */
3443 skb->len -= shiftlen;
3444 skb->data_len -= shiftlen;
3445 skb->truesize -= shiftlen;
3446 tgt->len += shiftlen;
3447 tgt->data_len += shiftlen;
3448 tgt->truesize += shiftlen;
3449
3450 return shiftlen;
3451 }
3452
3453 /**
3454 * skb_prepare_seq_read - Prepare a sequential read of skb data
3455 * @skb: the buffer to read
3456 * @from: lower offset of data to be read
3457 * @to: upper offset of data to be read
3458 * @st: state variable
3459 *
3460 * Initializes the specified state variable. Must be called before
3461 * invoking skb_seq_read() for the first time.
3462 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3463 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3464 unsigned int to, struct skb_seq_state *st)
3465 {
3466 st->lower_offset = from;
3467 st->upper_offset = to;
3468 st->root_skb = st->cur_skb = skb;
3469 st->frag_idx = st->stepped_offset = 0;
3470 st->frag_data = NULL;
3471 }
3472 EXPORT_SYMBOL(skb_prepare_seq_read);
3473
3474 /**
3475 * skb_seq_read - Sequentially read skb data
3476 * @consumed: number of bytes consumed by the caller so far
3477 * @data: destination pointer for data to be returned
3478 * @st: state variable
3479 *
3480 * Reads a block of skb data at @consumed relative to the
3481 * lower offset specified to skb_prepare_seq_read(). Assigns
3482 * the head of the data block to @data and returns the length
3483 * of the block or 0 if the end of the skb data or the upper
3484 * offset has been reached.
3485 *
3486 * The caller is not required to consume all of the data
3487 * returned, i.e. @consumed is typically set to the number
3488 * of bytes already consumed and the next call to
3489 * skb_seq_read() will return the remaining part of the block.
3490 *
3491 * Note 1: The size of each block of data returned can be arbitrary,
3492 * this limitation is the cost for zerocopy sequential
3493 * reads of potentially non linear data.
3494 *
3495 * Note 2: Fragment lists within fragments are not implemented
3496 * at the moment, state->root_skb could be replaced with
3497 * a stack for this purpose.
3498 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3499 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3500 struct skb_seq_state *st)
3501 {
3502 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3503 skb_frag_t *frag;
3504
3505 if (unlikely(abs_offset >= st->upper_offset)) {
3506 if (st->frag_data) {
3507 kunmap_atomic(st->frag_data);
3508 st->frag_data = NULL;
3509 }
3510 return 0;
3511 }
3512
3513 next_skb:
3514 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3515
3516 if (abs_offset < block_limit && !st->frag_data) {
3517 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3518 return block_limit - abs_offset;
3519 }
3520
3521 if (st->frag_idx == 0 && !st->frag_data)
3522 st->stepped_offset += skb_headlen(st->cur_skb);
3523
3524 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3525 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3526 block_limit = skb_frag_size(frag) + st->stepped_offset;
3527
3528 if (abs_offset < block_limit) {
3529 if (!st->frag_data)
3530 st->frag_data = kmap_atomic(skb_frag_page(frag));
3531
3532 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3533 (abs_offset - st->stepped_offset);
3534
3535 return block_limit - abs_offset;
3536 }
3537
3538 if (st->frag_data) {
3539 kunmap_atomic(st->frag_data);
3540 st->frag_data = NULL;
3541 }
3542
3543 st->frag_idx++;
3544 st->stepped_offset += skb_frag_size(frag);
3545 }
3546
3547 if (st->frag_data) {
3548 kunmap_atomic(st->frag_data);
3549 st->frag_data = NULL;
3550 }
3551
3552 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3553 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3554 st->frag_idx = 0;
3555 goto next_skb;
3556 } else if (st->cur_skb->next) {
3557 st->cur_skb = st->cur_skb->next;
3558 st->frag_idx = 0;
3559 goto next_skb;
3560 }
3561
3562 return 0;
3563 }
3564 EXPORT_SYMBOL(skb_seq_read);
3565
3566 /**
3567 * skb_abort_seq_read - Abort a sequential read of skb data
3568 * @st: state variable
3569 *
3570 * Must be called if skb_seq_read() was not called until it
3571 * returned 0.
3572 */
skb_abort_seq_read(struct skb_seq_state * st)3573 void skb_abort_seq_read(struct skb_seq_state *st)
3574 {
3575 if (st->frag_data)
3576 kunmap_atomic(st->frag_data);
3577 }
3578 EXPORT_SYMBOL(skb_abort_seq_read);
3579
3580 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3581
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3582 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3583 struct ts_config *conf,
3584 struct ts_state *state)
3585 {
3586 return skb_seq_read(offset, text, TS_SKB_CB(state));
3587 }
3588
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3589 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3590 {
3591 skb_abort_seq_read(TS_SKB_CB(state));
3592 }
3593
3594 /**
3595 * skb_find_text - Find a text pattern in skb data
3596 * @skb: the buffer to look in
3597 * @from: search offset
3598 * @to: search limit
3599 * @config: textsearch configuration
3600 *
3601 * Finds a pattern in the skb data according to the specified
3602 * textsearch configuration. Use textsearch_next() to retrieve
3603 * subsequent occurrences of the pattern. Returns the offset
3604 * to the first occurrence or UINT_MAX if no match was found.
3605 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3606 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3607 unsigned int to, struct ts_config *config)
3608 {
3609 struct ts_state state;
3610 unsigned int ret;
3611
3612 config->get_next_block = skb_ts_get_next_block;
3613 config->finish = skb_ts_finish;
3614
3615 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3616
3617 ret = textsearch_find(config, &state);
3618 return (ret <= to - from ? ret : UINT_MAX);
3619 }
3620 EXPORT_SYMBOL(skb_find_text);
3621
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3622 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3623 int offset, size_t size)
3624 {
3625 int i = skb_shinfo(skb)->nr_frags;
3626
3627 if (skb_can_coalesce(skb, i, page, offset)) {
3628 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3629 } else if (i < MAX_SKB_FRAGS) {
3630 get_page(page);
3631 skb_fill_page_desc(skb, i, page, offset, size);
3632 } else {
3633 return -EMSGSIZE;
3634 }
3635
3636 return 0;
3637 }
3638 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3639
3640 /**
3641 * skb_pull_rcsum - pull skb and update receive checksum
3642 * @skb: buffer to update
3643 * @len: length of data pulled
3644 *
3645 * This function performs an skb_pull on the packet and updates
3646 * the CHECKSUM_COMPLETE checksum. It should be used on
3647 * receive path processing instead of skb_pull unless you know
3648 * that the checksum difference is zero (e.g., a valid IP header)
3649 * or you are setting ip_summed to CHECKSUM_NONE.
3650 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3651 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3652 {
3653 unsigned char *data = skb->data;
3654
3655 BUG_ON(len > skb->len);
3656 __skb_pull(skb, len);
3657 skb_postpull_rcsum(skb, data, len);
3658 return skb->data;
3659 }
3660 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3661
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3662 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3663 {
3664 skb_frag_t head_frag;
3665 struct page *page;
3666
3667 page = virt_to_head_page(frag_skb->head);
3668 __skb_frag_set_page(&head_frag, page);
3669 skb_frag_off_set(&head_frag, frag_skb->data -
3670 (unsigned char *)page_address(page));
3671 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3672 return head_frag;
3673 }
3674
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3675 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3676 netdev_features_t features,
3677 unsigned int offset)
3678 {
3679 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3680 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3681 unsigned int delta_truesize = 0;
3682 unsigned int delta_len = 0;
3683 struct sk_buff *tail = NULL;
3684 struct sk_buff *nskb, *tmp;
3685 int err;
3686
3687 skb_push(skb, -skb_network_offset(skb) + offset);
3688
3689 skb_shinfo(skb)->frag_list = NULL;
3690
3691 do {
3692 nskb = list_skb;
3693 list_skb = list_skb->next;
3694
3695 err = 0;
3696 delta_truesize += nskb->truesize;
3697 if (skb_shared(nskb)) {
3698 tmp = skb_clone(nskb, GFP_ATOMIC);
3699 if (tmp) {
3700 consume_skb(nskb);
3701 nskb = tmp;
3702 err = skb_unclone(nskb, GFP_ATOMIC);
3703 } else {
3704 err = -ENOMEM;
3705 }
3706 }
3707
3708 if (!tail)
3709 skb->next = nskb;
3710 else
3711 tail->next = nskb;
3712
3713 if (unlikely(err)) {
3714 nskb->next = list_skb;
3715 goto err_linearize;
3716 }
3717
3718 tail = nskb;
3719
3720 delta_len += nskb->len;
3721
3722 skb_push(nskb, -skb_network_offset(nskb) + offset);
3723
3724 skb_release_head_state(nskb);
3725 __copy_skb_header(nskb, skb);
3726
3727 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3728 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3729 nskb->data - tnl_hlen,
3730 offset + tnl_hlen);
3731
3732 if (skb_needs_linearize(nskb, features) &&
3733 __skb_linearize(nskb))
3734 goto err_linearize;
3735
3736 } while (list_skb);
3737
3738 skb->truesize = skb->truesize - delta_truesize;
3739 skb->data_len = skb->data_len - delta_len;
3740 skb->len = skb->len - delta_len;
3741
3742 skb_gso_reset(skb);
3743
3744 skb->prev = tail;
3745
3746 if (skb_needs_linearize(skb, features) &&
3747 __skb_linearize(skb))
3748 goto err_linearize;
3749
3750 skb_get(skb);
3751
3752 return skb;
3753
3754 err_linearize:
3755 kfree_skb_list(skb->next);
3756 skb->next = NULL;
3757 return ERR_PTR(-ENOMEM);
3758 }
3759 EXPORT_SYMBOL_GPL(skb_segment_list);
3760
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3761 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3762 {
3763 if (unlikely(p->len + skb->len >= 65536))
3764 return -E2BIG;
3765
3766 if (NAPI_GRO_CB(p)->last == p)
3767 skb_shinfo(p)->frag_list = skb;
3768 else
3769 NAPI_GRO_CB(p)->last->next = skb;
3770
3771 skb_pull(skb, skb_gro_offset(skb));
3772
3773 NAPI_GRO_CB(p)->last = skb;
3774 NAPI_GRO_CB(p)->count++;
3775 p->data_len += skb->len;
3776 p->truesize += skb->truesize;
3777 p->len += skb->len;
3778
3779 NAPI_GRO_CB(skb)->same_flow = 1;
3780
3781 return 0;
3782 }
3783
3784 /**
3785 * skb_segment - Perform protocol segmentation on skb.
3786 * @head_skb: buffer to segment
3787 * @features: features for the output path (see dev->features)
3788 *
3789 * This function performs segmentation on the given skb. It returns
3790 * a pointer to the first in a list of new skbs for the segments.
3791 * In case of error it returns ERR_PTR(err).
3792 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3793 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3794 netdev_features_t features)
3795 {
3796 struct sk_buff *segs = NULL;
3797 struct sk_buff *tail = NULL;
3798 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3799 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3800 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3801 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3802 struct sk_buff *frag_skb = head_skb;
3803 unsigned int offset = doffset;
3804 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3805 unsigned int partial_segs = 0;
3806 unsigned int headroom;
3807 unsigned int len = head_skb->len;
3808 __be16 proto;
3809 bool csum, sg;
3810 int nfrags = skb_shinfo(head_skb)->nr_frags;
3811 int err = -ENOMEM;
3812 int i = 0;
3813 int pos;
3814
3815 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3816 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3817 struct sk_buff *check_skb;
3818
3819 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3820 if (skb_headlen(check_skb) && !check_skb->head_frag) {
3821 /* gso_size is untrusted, and we have a frag_list with
3822 * a linear non head_frag item.
3823 *
3824 * If head_skb's headlen does not fit requested gso_size,
3825 * it means that the frag_list members do NOT terminate
3826 * on exact gso_size boundaries. Hence we cannot perform
3827 * skb_frag_t page sharing. Therefore we must fallback to
3828 * copying the frag_list skbs; we do so by disabling SG.
3829 */
3830 features &= ~NETIF_F_SG;
3831 break;
3832 }
3833 }
3834 }
3835
3836 __skb_push(head_skb, doffset);
3837 proto = skb_network_protocol(head_skb, NULL);
3838 if (unlikely(!proto))
3839 return ERR_PTR(-EINVAL);
3840
3841 sg = !!(features & NETIF_F_SG);
3842 csum = !!can_checksum_protocol(features, proto);
3843
3844 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3845 if (!(features & NETIF_F_GSO_PARTIAL)) {
3846 struct sk_buff *iter;
3847 unsigned int frag_len;
3848
3849 if (!list_skb ||
3850 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3851 goto normal;
3852
3853 /* If we get here then all the required
3854 * GSO features except frag_list are supported.
3855 * Try to split the SKB to multiple GSO SKBs
3856 * with no frag_list.
3857 * Currently we can do that only when the buffers don't
3858 * have a linear part and all the buffers except
3859 * the last are of the same length.
3860 */
3861 frag_len = list_skb->len;
3862 skb_walk_frags(head_skb, iter) {
3863 if (frag_len != iter->len && iter->next)
3864 goto normal;
3865 if (skb_headlen(iter) && !iter->head_frag)
3866 goto normal;
3867
3868 len -= iter->len;
3869 }
3870
3871 if (len != frag_len)
3872 goto normal;
3873 }
3874
3875 /* GSO partial only requires that we trim off any excess that
3876 * doesn't fit into an MSS sized block, so take care of that
3877 * now.
3878 */
3879 partial_segs = len / mss;
3880 if (partial_segs > 1)
3881 mss *= partial_segs;
3882 else
3883 partial_segs = 0;
3884 }
3885
3886 normal:
3887 headroom = skb_headroom(head_skb);
3888 pos = skb_headlen(head_skb);
3889
3890 do {
3891 struct sk_buff *nskb;
3892 skb_frag_t *nskb_frag;
3893 int hsize;
3894 int size;
3895
3896 if (unlikely(mss == GSO_BY_FRAGS)) {
3897 len = list_skb->len;
3898 } else {
3899 len = head_skb->len - offset;
3900 if (len > mss)
3901 len = mss;
3902 }
3903
3904 hsize = skb_headlen(head_skb) - offset;
3905 if (hsize < 0)
3906 hsize = 0;
3907 if (hsize > len || !sg)
3908 hsize = len;
3909
3910 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3911 (skb_headlen(list_skb) == len || sg)) {
3912 BUG_ON(skb_headlen(list_skb) > len);
3913
3914 i = 0;
3915 nfrags = skb_shinfo(list_skb)->nr_frags;
3916 frag = skb_shinfo(list_skb)->frags;
3917 frag_skb = list_skb;
3918 pos += skb_headlen(list_skb);
3919
3920 while (pos < offset + len) {
3921 BUG_ON(i >= nfrags);
3922
3923 size = skb_frag_size(frag);
3924 if (pos + size > offset + len)
3925 break;
3926
3927 i++;
3928 pos += size;
3929 frag++;
3930 }
3931
3932 nskb = skb_clone(list_skb, GFP_ATOMIC);
3933 list_skb = list_skb->next;
3934
3935 if (unlikely(!nskb))
3936 goto err;
3937
3938 if (unlikely(pskb_trim(nskb, len))) {
3939 kfree_skb(nskb);
3940 goto err;
3941 }
3942
3943 hsize = skb_end_offset(nskb);
3944 if (skb_cow_head(nskb, doffset + headroom)) {
3945 kfree_skb(nskb);
3946 goto err;
3947 }
3948
3949 nskb->truesize += skb_end_offset(nskb) - hsize;
3950 skb_release_head_state(nskb);
3951 __skb_push(nskb, doffset);
3952 } else {
3953 nskb = __alloc_skb(hsize + doffset + headroom,
3954 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3955 NUMA_NO_NODE);
3956
3957 if (unlikely(!nskb))
3958 goto err;
3959
3960 skb_reserve(nskb, headroom);
3961 __skb_put(nskb, doffset);
3962 }
3963
3964 if (segs)
3965 tail->next = nskb;
3966 else
3967 segs = nskb;
3968 tail = nskb;
3969
3970 __copy_skb_header(nskb, head_skb);
3971
3972 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3973 skb_reset_mac_len(nskb);
3974
3975 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3976 nskb->data - tnl_hlen,
3977 doffset + tnl_hlen);
3978
3979 if (nskb->len == len + doffset)
3980 goto perform_csum_check;
3981
3982 if (!sg) {
3983 if (!csum) {
3984 if (!nskb->remcsum_offload)
3985 nskb->ip_summed = CHECKSUM_NONE;
3986 SKB_GSO_CB(nskb)->csum =
3987 skb_copy_and_csum_bits(head_skb, offset,
3988 skb_put(nskb,
3989 len),
3990 len);
3991 SKB_GSO_CB(nskb)->csum_start =
3992 skb_headroom(nskb) + doffset;
3993 } else {
3994 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
3995 goto err;
3996 }
3997 continue;
3998 }
3999
4000 nskb_frag = skb_shinfo(nskb)->frags;
4001
4002 skb_copy_from_linear_data_offset(head_skb, offset,
4003 skb_put(nskb, hsize), hsize);
4004
4005 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4006 SKBTX_SHARED_FRAG;
4007
4008 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4009 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4010 goto err;
4011
4012 while (pos < offset + len) {
4013 if (i >= nfrags) {
4014 i = 0;
4015 nfrags = skb_shinfo(list_skb)->nr_frags;
4016 frag = skb_shinfo(list_skb)->frags;
4017 frag_skb = list_skb;
4018 if (!skb_headlen(list_skb)) {
4019 BUG_ON(!nfrags);
4020 } else {
4021 BUG_ON(!list_skb->head_frag);
4022
4023 /* to make room for head_frag. */
4024 i--;
4025 frag--;
4026 }
4027 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4028 skb_zerocopy_clone(nskb, frag_skb,
4029 GFP_ATOMIC))
4030 goto err;
4031
4032 list_skb = list_skb->next;
4033 }
4034
4035 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4036 MAX_SKB_FRAGS)) {
4037 net_warn_ratelimited(
4038 "skb_segment: too many frags: %u %u\n",
4039 pos, mss);
4040 err = -EINVAL;
4041 goto err;
4042 }
4043
4044 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4045 __skb_frag_ref(nskb_frag);
4046 size = skb_frag_size(nskb_frag);
4047
4048 if (pos < offset) {
4049 skb_frag_off_add(nskb_frag, offset - pos);
4050 skb_frag_size_sub(nskb_frag, offset - pos);
4051 }
4052
4053 skb_shinfo(nskb)->nr_frags++;
4054
4055 if (pos + size <= offset + len) {
4056 i++;
4057 frag++;
4058 pos += size;
4059 } else {
4060 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4061 goto skip_fraglist;
4062 }
4063
4064 nskb_frag++;
4065 }
4066
4067 skip_fraglist:
4068 nskb->data_len = len - hsize;
4069 nskb->len += nskb->data_len;
4070 nskb->truesize += nskb->data_len;
4071
4072 perform_csum_check:
4073 if (!csum) {
4074 if (skb_has_shared_frag(nskb) &&
4075 __skb_linearize(nskb))
4076 goto err;
4077
4078 if (!nskb->remcsum_offload)
4079 nskb->ip_summed = CHECKSUM_NONE;
4080 SKB_GSO_CB(nskb)->csum =
4081 skb_checksum(nskb, doffset,
4082 nskb->len - doffset, 0);
4083 SKB_GSO_CB(nskb)->csum_start =
4084 skb_headroom(nskb) + doffset;
4085 }
4086 } while ((offset += len) < head_skb->len);
4087
4088 /* Some callers want to get the end of the list.
4089 * Put it in segs->prev to avoid walking the list.
4090 * (see validate_xmit_skb_list() for example)
4091 */
4092 segs->prev = tail;
4093
4094 if (partial_segs) {
4095 struct sk_buff *iter;
4096 int type = skb_shinfo(head_skb)->gso_type;
4097 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4098
4099 /* Update type to add partial and then remove dodgy if set */
4100 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4101 type &= ~SKB_GSO_DODGY;
4102
4103 /* Update GSO info and prepare to start updating headers on
4104 * our way back down the stack of protocols.
4105 */
4106 for (iter = segs; iter; iter = iter->next) {
4107 skb_shinfo(iter)->gso_size = gso_size;
4108 skb_shinfo(iter)->gso_segs = partial_segs;
4109 skb_shinfo(iter)->gso_type = type;
4110 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4111 }
4112
4113 if (tail->len - doffset <= gso_size)
4114 skb_shinfo(tail)->gso_size = 0;
4115 else if (tail != segs)
4116 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4117 }
4118
4119 /* Following permits correct backpressure, for protocols
4120 * using skb_set_owner_w().
4121 * Idea is to tranfert ownership from head_skb to last segment.
4122 */
4123 if (head_skb->destructor == sock_wfree) {
4124 swap(tail->truesize, head_skb->truesize);
4125 swap(tail->destructor, head_skb->destructor);
4126 swap(tail->sk, head_skb->sk);
4127 }
4128 return segs;
4129
4130 err:
4131 kfree_skb_list(segs);
4132 return ERR_PTR(err);
4133 }
4134 EXPORT_SYMBOL_GPL(skb_segment);
4135
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4136 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4137 {
4138 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4139 unsigned int offset = skb_gro_offset(skb);
4140 unsigned int headlen = skb_headlen(skb);
4141 unsigned int len = skb_gro_len(skb);
4142 unsigned int delta_truesize;
4143 struct sk_buff *lp;
4144
4145 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4146 return -E2BIG;
4147
4148 lp = NAPI_GRO_CB(p)->last;
4149 pinfo = skb_shinfo(lp);
4150
4151 if (headlen <= offset) {
4152 skb_frag_t *frag;
4153 skb_frag_t *frag2;
4154 int i = skbinfo->nr_frags;
4155 int nr_frags = pinfo->nr_frags + i;
4156
4157 if (nr_frags > MAX_SKB_FRAGS)
4158 goto merge;
4159
4160 offset -= headlen;
4161 pinfo->nr_frags = nr_frags;
4162 skbinfo->nr_frags = 0;
4163
4164 frag = pinfo->frags + nr_frags;
4165 frag2 = skbinfo->frags + i;
4166 do {
4167 *--frag = *--frag2;
4168 } while (--i);
4169
4170 skb_frag_off_add(frag, offset);
4171 skb_frag_size_sub(frag, offset);
4172
4173 /* all fragments truesize : remove (head size + sk_buff) */
4174 delta_truesize = skb->truesize -
4175 SKB_TRUESIZE(skb_end_offset(skb));
4176
4177 skb->truesize -= skb->data_len;
4178 skb->len -= skb->data_len;
4179 skb->data_len = 0;
4180
4181 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4182 goto done;
4183 } else if (skb->head_frag) {
4184 int nr_frags = pinfo->nr_frags;
4185 skb_frag_t *frag = pinfo->frags + nr_frags;
4186 struct page *page = virt_to_head_page(skb->head);
4187 unsigned int first_size = headlen - offset;
4188 unsigned int first_offset;
4189
4190 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4191 goto merge;
4192
4193 first_offset = skb->data -
4194 (unsigned char *)page_address(page) +
4195 offset;
4196
4197 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4198
4199 __skb_frag_set_page(frag, page);
4200 skb_frag_off_set(frag, first_offset);
4201 skb_frag_size_set(frag, first_size);
4202
4203 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4204 /* We dont need to clear skbinfo->nr_frags here */
4205
4206 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4207 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4208 goto done;
4209 }
4210
4211 merge:
4212 delta_truesize = skb->truesize;
4213 if (offset > headlen) {
4214 unsigned int eat = offset - headlen;
4215
4216 skb_frag_off_add(&skbinfo->frags[0], eat);
4217 skb_frag_size_sub(&skbinfo->frags[0], eat);
4218 skb->data_len -= eat;
4219 skb->len -= eat;
4220 offset = headlen;
4221 }
4222
4223 __skb_pull(skb, offset);
4224
4225 if (NAPI_GRO_CB(p)->last == p)
4226 skb_shinfo(p)->frag_list = skb;
4227 else
4228 NAPI_GRO_CB(p)->last->next = skb;
4229 NAPI_GRO_CB(p)->last = skb;
4230 __skb_header_release(skb);
4231 lp = p;
4232
4233 done:
4234 NAPI_GRO_CB(p)->count++;
4235 p->data_len += len;
4236 p->truesize += delta_truesize;
4237 p->len += len;
4238 if (lp != p) {
4239 lp->data_len += len;
4240 lp->truesize += delta_truesize;
4241 lp->len += len;
4242 }
4243 NAPI_GRO_CB(skb)->same_flow = 1;
4244 return 0;
4245 }
4246
4247 #ifdef CONFIG_SKB_EXTENSIONS
4248 #define SKB_EXT_ALIGN_VALUE 8
4249 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4250
4251 static const u8 skb_ext_type_len[] = {
4252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4253 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4254 #endif
4255 #ifdef CONFIG_XFRM
4256 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4257 #endif
4258 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4259 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4260 #endif
4261 #if IS_ENABLED(CONFIG_MPTCP)
4262 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4263 #endif
4264 };
4265
skb_ext_total_length(void)4266 static __always_inline unsigned int skb_ext_total_length(void)
4267 {
4268 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4269 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4270 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4271 #endif
4272 #ifdef CONFIG_XFRM
4273 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4274 #endif
4275 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4276 skb_ext_type_len[TC_SKB_EXT] +
4277 #endif
4278 #if IS_ENABLED(CONFIG_MPTCP)
4279 skb_ext_type_len[SKB_EXT_MPTCP] +
4280 #endif
4281 0;
4282 }
4283
skb_extensions_init(void)4284 static void skb_extensions_init(void)
4285 {
4286 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4287 BUILD_BUG_ON(skb_ext_total_length() > 255);
4288
4289 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4290 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4291 0,
4292 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4293 NULL);
4294 }
4295 #else
skb_extensions_init(void)4296 static void skb_extensions_init(void) {}
4297 #endif
4298
skb_init(void)4299 void __init skb_init(void)
4300 {
4301 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4302 sizeof(struct sk_buff),
4303 0,
4304 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4305 offsetof(struct sk_buff, cb),
4306 sizeof_field(struct sk_buff, cb),
4307 NULL);
4308 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4309 sizeof(struct sk_buff_fclones),
4310 0,
4311 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4312 NULL);
4313 skb_extensions_init();
4314 }
4315
4316 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4317 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4318 unsigned int recursion_level)
4319 {
4320 int start = skb_headlen(skb);
4321 int i, copy = start - offset;
4322 struct sk_buff *frag_iter;
4323 int elt = 0;
4324
4325 if (unlikely(recursion_level >= 24))
4326 return -EMSGSIZE;
4327
4328 if (copy > 0) {
4329 if (copy > len)
4330 copy = len;
4331 sg_set_buf(sg, skb->data + offset, copy);
4332 elt++;
4333 if ((len -= copy) == 0)
4334 return elt;
4335 offset += copy;
4336 }
4337
4338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4339 int end;
4340
4341 WARN_ON(start > offset + len);
4342
4343 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4344 if ((copy = end - offset) > 0) {
4345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4346 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4347 return -EMSGSIZE;
4348
4349 if (copy > len)
4350 copy = len;
4351 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4352 skb_frag_off(frag) + offset - start);
4353 elt++;
4354 if (!(len -= copy))
4355 return elt;
4356 offset += copy;
4357 }
4358 start = end;
4359 }
4360
4361 skb_walk_frags(skb, frag_iter) {
4362 int end, ret;
4363
4364 WARN_ON(start > offset + len);
4365
4366 end = start + frag_iter->len;
4367 if ((copy = end - offset) > 0) {
4368 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4369 return -EMSGSIZE;
4370
4371 if (copy > len)
4372 copy = len;
4373 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4374 copy, recursion_level + 1);
4375 if (unlikely(ret < 0))
4376 return ret;
4377 elt += ret;
4378 if ((len -= copy) == 0)
4379 return elt;
4380 offset += copy;
4381 }
4382 start = end;
4383 }
4384 BUG_ON(len);
4385 return elt;
4386 }
4387
4388 /**
4389 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4390 * @skb: Socket buffer containing the buffers to be mapped
4391 * @sg: The scatter-gather list to map into
4392 * @offset: The offset into the buffer's contents to start mapping
4393 * @len: Length of buffer space to be mapped
4394 *
4395 * Fill the specified scatter-gather list with mappings/pointers into a
4396 * region of the buffer space attached to a socket buffer. Returns either
4397 * the number of scatterlist items used, or -EMSGSIZE if the contents
4398 * could not fit.
4399 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4400 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4401 {
4402 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4403
4404 if (nsg <= 0)
4405 return nsg;
4406
4407 sg_mark_end(&sg[nsg - 1]);
4408
4409 return nsg;
4410 }
4411 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4412
4413 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4414 * sglist without mark the sg which contain last skb data as the end.
4415 * So the caller can mannipulate sg list as will when padding new data after
4416 * the first call without calling sg_unmark_end to expend sg list.
4417 *
4418 * Scenario to use skb_to_sgvec_nomark:
4419 * 1. sg_init_table
4420 * 2. skb_to_sgvec_nomark(payload1)
4421 * 3. skb_to_sgvec_nomark(payload2)
4422 *
4423 * This is equivalent to:
4424 * 1. sg_init_table
4425 * 2. skb_to_sgvec(payload1)
4426 * 3. sg_unmark_end
4427 * 4. skb_to_sgvec(payload2)
4428 *
4429 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4430 * is more preferable.
4431 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4432 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4433 int offset, int len)
4434 {
4435 return __skb_to_sgvec(skb, sg, offset, len, 0);
4436 }
4437 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4438
4439
4440
4441 /**
4442 * skb_cow_data - Check that a socket buffer's data buffers are writable
4443 * @skb: The socket buffer to check.
4444 * @tailbits: Amount of trailing space to be added
4445 * @trailer: Returned pointer to the skb where the @tailbits space begins
4446 *
4447 * Make sure that the data buffers attached to a socket buffer are
4448 * writable. If they are not, private copies are made of the data buffers
4449 * and the socket buffer is set to use these instead.
4450 *
4451 * If @tailbits is given, make sure that there is space to write @tailbits
4452 * bytes of data beyond current end of socket buffer. @trailer will be
4453 * set to point to the skb in which this space begins.
4454 *
4455 * The number of scatterlist elements required to completely map the
4456 * COW'd and extended socket buffer will be returned.
4457 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4458 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4459 {
4460 int copyflag;
4461 int elt;
4462 struct sk_buff *skb1, **skb_p;
4463
4464 /* If skb is cloned or its head is paged, reallocate
4465 * head pulling out all the pages (pages are considered not writable
4466 * at the moment even if they are anonymous).
4467 */
4468 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4469 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4470 return -ENOMEM;
4471
4472 /* Easy case. Most of packets will go this way. */
4473 if (!skb_has_frag_list(skb)) {
4474 /* A little of trouble, not enough of space for trailer.
4475 * This should not happen, when stack is tuned to generate
4476 * good frames. OK, on miss we reallocate and reserve even more
4477 * space, 128 bytes is fair. */
4478
4479 if (skb_tailroom(skb) < tailbits &&
4480 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4481 return -ENOMEM;
4482
4483 /* Voila! */
4484 *trailer = skb;
4485 return 1;
4486 }
4487
4488 /* Misery. We are in troubles, going to mincer fragments... */
4489
4490 elt = 1;
4491 skb_p = &skb_shinfo(skb)->frag_list;
4492 copyflag = 0;
4493
4494 while ((skb1 = *skb_p) != NULL) {
4495 int ntail = 0;
4496
4497 /* The fragment is partially pulled by someone,
4498 * this can happen on input. Copy it and everything
4499 * after it. */
4500
4501 if (skb_shared(skb1))
4502 copyflag = 1;
4503
4504 /* If the skb is the last, worry about trailer. */
4505
4506 if (skb1->next == NULL && tailbits) {
4507 if (skb_shinfo(skb1)->nr_frags ||
4508 skb_has_frag_list(skb1) ||
4509 skb_tailroom(skb1) < tailbits)
4510 ntail = tailbits + 128;
4511 }
4512
4513 if (copyflag ||
4514 skb_cloned(skb1) ||
4515 ntail ||
4516 skb_shinfo(skb1)->nr_frags ||
4517 skb_has_frag_list(skb1)) {
4518 struct sk_buff *skb2;
4519
4520 /* Fuck, we are miserable poor guys... */
4521 if (ntail == 0)
4522 skb2 = skb_copy(skb1, GFP_ATOMIC);
4523 else
4524 skb2 = skb_copy_expand(skb1,
4525 skb_headroom(skb1),
4526 ntail,
4527 GFP_ATOMIC);
4528 if (unlikely(skb2 == NULL))
4529 return -ENOMEM;
4530
4531 if (skb1->sk)
4532 skb_set_owner_w(skb2, skb1->sk);
4533
4534 /* Looking around. Are we still alive?
4535 * OK, link new skb, drop old one */
4536
4537 skb2->next = skb1->next;
4538 *skb_p = skb2;
4539 kfree_skb(skb1);
4540 skb1 = skb2;
4541 }
4542 elt++;
4543 *trailer = skb1;
4544 skb_p = &skb1->next;
4545 }
4546
4547 return elt;
4548 }
4549 EXPORT_SYMBOL_GPL(skb_cow_data);
4550
sock_rmem_free(struct sk_buff * skb)4551 static void sock_rmem_free(struct sk_buff *skb)
4552 {
4553 struct sock *sk = skb->sk;
4554
4555 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4556 }
4557
skb_set_err_queue(struct sk_buff * skb)4558 static void skb_set_err_queue(struct sk_buff *skb)
4559 {
4560 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4561 * So, it is safe to (mis)use it to mark skbs on the error queue.
4562 */
4563 skb->pkt_type = PACKET_OUTGOING;
4564 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4565 }
4566
4567 /*
4568 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4569 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4570 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4571 {
4572 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4573 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4574 return -ENOMEM;
4575
4576 skb_orphan(skb);
4577 skb->sk = sk;
4578 skb->destructor = sock_rmem_free;
4579 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4580 skb_set_err_queue(skb);
4581
4582 /* before exiting rcu section, make sure dst is refcounted */
4583 skb_dst_force(skb);
4584
4585 skb_queue_tail(&sk->sk_error_queue, skb);
4586 if (!sock_flag(sk, SOCK_DEAD))
4587 sk->sk_error_report(sk);
4588 return 0;
4589 }
4590 EXPORT_SYMBOL(sock_queue_err_skb);
4591
is_icmp_err_skb(const struct sk_buff * skb)4592 static bool is_icmp_err_skb(const struct sk_buff *skb)
4593 {
4594 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4595 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4596 }
4597
sock_dequeue_err_skb(struct sock * sk)4598 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4599 {
4600 struct sk_buff_head *q = &sk->sk_error_queue;
4601 struct sk_buff *skb, *skb_next = NULL;
4602 bool icmp_next = false;
4603 unsigned long flags;
4604
4605 spin_lock_irqsave(&q->lock, flags);
4606 skb = __skb_dequeue(q);
4607 if (skb && (skb_next = skb_peek(q))) {
4608 icmp_next = is_icmp_err_skb(skb_next);
4609 if (icmp_next)
4610 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4611 }
4612 spin_unlock_irqrestore(&q->lock, flags);
4613
4614 if (is_icmp_err_skb(skb) && !icmp_next)
4615 sk->sk_err = 0;
4616
4617 if (skb_next)
4618 sk->sk_error_report(sk);
4619
4620 return skb;
4621 }
4622 EXPORT_SYMBOL(sock_dequeue_err_skb);
4623
4624 /**
4625 * skb_clone_sk - create clone of skb, and take reference to socket
4626 * @skb: the skb to clone
4627 *
4628 * This function creates a clone of a buffer that holds a reference on
4629 * sk_refcnt. Buffers created via this function are meant to be
4630 * returned using sock_queue_err_skb, or free via kfree_skb.
4631 *
4632 * When passing buffers allocated with this function to sock_queue_err_skb
4633 * it is necessary to wrap the call with sock_hold/sock_put in order to
4634 * prevent the socket from being released prior to being enqueued on
4635 * the sk_error_queue.
4636 */
skb_clone_sk(struct sk_buff * skb)4637 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4638 {
4639 struct sock *sk = skb->sk;
4640 struct sk_buff *clone;
4641
4642 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4643 return NULL;
4644
4645 clone = skb_clone(skb, GFP_ATOMIC);
4646 if (!clone) {
4647 sock_put(sk);
4648 return NULL;
4649 }
4650
4651 clone->sk = sk;
4652 clone->destructor = sock_efree;
4653
4654 return clone;
4655 }
4656 EXPORT_SYMBOL(skb_clone_sk);
4657
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4658 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4659 struct sock *sk,
4660 int tstype,
4661 bool opt_stats)
4662 {
4663 struct sock_exterr_skb *serr;
4664 int err;
4665
4666 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4667
4668 serr = SKB_EXT_ERR(skb);
4669 memset(serr, 0, sizeof(*serr));
4670 serr->ee.ee_errno = ENOMSG;
4671 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4672 serr->ee.ee_info = tstype;
4673 serr->opt_stats = opt_stats;
4674 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4675 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4676 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4677 if (sk->sk_protocol == IPPROTO_TCP &&
4678 sk->sk_type == SOCK_STREAM)
4679 serr->ee.ee_data -= sk->sk_tskey;
4680 }
4681
4682 err = sock_queue_err_skb(sk, skb);
4683
4684 if (err)
4685 kfree_skb(skb);
4686 }
4687
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4688 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4689 {
4690 bool ret;
4691
4692 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4693 return true;
4694
4695 read_lock_bh(&sk->sk_callback_lock);
4696 ret = sk->sk_socket && sk->sk_socket->file &&
4697 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4698 read_unlock_bh(&sk->sk_callback_lock);
4699 return ret;
4700 }
4701
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4702 void skb_complete_tx_timestamp(struct sk_buff *skb,
4703 struct skb_shared_hwtstamps *hwtstamps)
4704 {
4705 struct sock *sk = skb->sk;
4706
4707 if (!skb_may_tx_timestamp(sk, false))
4708 goto err;
4709
4710 /* Take a reference to prevent skb_orphan() from freeing the socket,
4711 * but only if the socket refcount is not zero.
4712 */
4713 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4714 *skb_hwtstamps(skb) = *hwtstamps;
4715 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4716 sock_put(sk);
4717 return;
4718 }
4719
4720 err:
4721 kfree_skb(skb);
4722 }
4723 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4724
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4725 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4726 struct skb_shared_hwtstamps *hwtstamps,
4727 struct sock *sk, int tstype)
4728 {
4729 struct sk_buff *skb;
4730 bool tsonly, opt_stats = false;
4731
4732 if (!sk)
4733 return;
4734
4735 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4736 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4737 return;
4738
4739 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4740 if (!skb_may_tx_timestamp(sk, tsonly))
4741 return;
4742
4743 if (tsonly) {
4744 #ifdef CONFIG_INET
4745 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4746 sk->sk_protocol == IPPROTO_TCP &&
4747 sk->sk_type == SOCK_STREAM) {
4748 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4749 opt_stats = true;
4750 } else
4751 #endif
4752 skb = alloc_skb(0, GFP_ATOMIC);
4753 } else {
4754 skb = skb_clone(orig_skb, GFP_ATOMIC);
4755 }
4756 if (!skb)
4757 return;
4758
4759 if (tsonly) {
4760 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4761 SKBTX_ANY_TSTAMP;
4762 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4763 }
4764
4765 if (hwtstamps)
4766 *skb_hwtstamps(skb) = *hwtstamps;
4767 else
4768 skb->tstamp = ktime_get_real();
4769
4770 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4771 }
4772 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4773
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4774 void skb_tstamp_tx(struct sk_buff *orig_skb,
4775 struct skb_shared_hwtstamps *hwtstamps)
4776 {
4777 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4778 SCM_TSTAMP_SND);
4779 }
4780 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4781
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4782 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4783 {
4784 struct sock *sk = skb->sk;
4785 struct sock_exterr_skb *serr;
4786 int err = 1;
4787
4788 skb->wifi_acked_valid = 1;
4789 skb->wifi_acked = acked;
4790
4791 serr = SKB_EXT_ERR(skb);
4792 memset(serr, 0, sizeof(*serr));
4793 serr->ee.ee_errno = ENOMSG;
4794 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4795
4796 /* Take a reference to prevent skb_orphan() from freeing the socket,
4797 * but only if the socket refcount is not zero.
4798 */
4799 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4800 err = sock_queue_err_skb(sk, skb);
4801 sock_put(sk);
4802 }
4803 if (err)
4804 kfree_skb(skb);
4805 }
4806 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4807
4808 /**
4809 * skb_partial_csum_set - set up and verify partial csum values for packet
4810 * @skb: the skb to set
4811 * @start: the number of bytes after skb->data to start checksumming.
4812 * @off: the offset from start to place the checksum.
4813 *
4814 * For untrusted partially-checksummed packets, we need to make sure the values
4815 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4816 *
4817 * This function checks and sets those values and skb->ip_summed: if this
4818 * returns false you should drop the packet.
4819 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4820 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4821 {
4822 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4823 u32 csum_start = skb_headroom(skb) + (u32)start;
4824
4825 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4826 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4827 start, off, skb_headroom(skb), skb_headlen(skb));
4828 return false;
4829 }
4830 skb->ip_summed = CHECKSUM_PARTIAL;
4831 skb->csum_start = csum_start;
4832 skb->csum_offset = off;
4833 skb_set_transport_header(skb, start);
4834 return true;
4835 }
4836 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4837
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4838 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4839 unsigned int max)
4840 {
4841 if (skb_headlen(skb) >= len)
4842 return 0;
4843
4844 /* If we need to pullup then pullup to the max, so we
4845 * won't need to do it again.
4846 */
4847 if (max > skb->len)
4848 max = skb->len;
4849
4850 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4851 return -ENOMEM;
4852
4853 if (skb_headlen(skb) < len)
4854 return -EPROTO;
4855
4856 return 0;
4857 }
4858
4859 #define MAX_TCP_HDR_LEN (15 * 4)
4860
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4861 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4862 typeof(IPPROTO_IP) proto,
4863 unsigned int off)
4864 {
4865 int err;
4866
4867 switch (proto) {
4868 case IPPROTO_TCP:
4869 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4870 off + MAX_TCP_HDR_LEN);
4871 if (!err && !skb_partial_csum_set(skb, off,
4872 offsetof(struct tcphdr,
4873 check)))
4874 err = -EPROTO;
4875 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4876
4877 case IPPROTO_UDP:
4878 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4879 off + sizeof(struct udphdr));
4880 if (!err && !skb_partial_csum_set(skb, off,
4881 offsetof(struct udphdr,
4882 check)))
4883 err = -EPROTO;
4884 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4885 }
4886
4887 return ERR_PTR(-EPROTO);
4888 }
4889
4890 /* This value should be large enough to cover a tagged ethernet header plus
4891 * maximally sized IP and TCP or UDP headers.
4892 */
4893 #define MAX_IP_HDR_LEN 128
4894
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4895 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4896 {
4897 unsigned int off;
4898 bool fragment;
4899 __sum16 *csum;
4900 int err;
4901
4902 fragment = false;
4903
4904 err = skb_maybe_pull_tail(skb,
4905 sizeof(struct iphdr),
4906 MAX_IP_HDR_LEN);
4907 if (err < 0)
4908 goto out;
4909
4910 if (ip_is_fragment(ip_hdr(skb)))
4911 fragment = true;
4912
4913 off = ip_hdrlen(skb);
4914
4915 err = -EPROTO;
4916
4917 if (fragment)
4918 goto out;
4919
4920 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4921 if (IS_ERR(csum))
4922 return PTR_ERR(csum);
4923
4924 if (recalculate)
4925 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4926 ip_hdr(skb)->daddr,
4927 skb->len - off,
4928 ip_hdr(skb)->protocol, 0);
4929 err = 0;
4930
4931 out:
4932 return err;
4933 }
4934
4935 /* This value should be large enough to cover a tagged ethernet header plus
4936 * an IPv6 header, all options, and a maximal TCP or UDP header.
4937 */
4938 #define MAX_IPV6_HDR_LEN 256
4939
4940 #define OPT_HDR(type, skb, off) \
4941 (type *)(skb_network_header(skb) + (off))
4942
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4943 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4944 {
4945 int err;
4946 u8 nexthdr;
4947 unsigned int off;
4948 unsigned int len;
4949 bool fragment;
4950 bool done;
4951 __sum16 *csum;
4952
4953 fragment = false;
4954 done = false;
4955
4956 off = sizeof(struct ipv6hdr);
4957
4958 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4959 if (err < 0)
4960 goto out;
4961
4962 nexthdr = ipv6_hdr(skb)->nexthdr;
4963
4964 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4965 while (off <= len && !done) {
4966 switch (nexthdr) {
4967 case IPPROTO_DSTOPTS:
4968 case IPPROTO_HOPOPTS:
4969 case IPPROTO_ROUTING: {
4970 struct ipv6_opt_hdr *hp;
4971
4972 err = skb_maybe_pull_tail(skb,
4973 off +
4974 sizeof(struct ipv6_opt_hdr),
4975 MAX_IPV6_HDR_LEN);
4976 if (err < 0)
4977 goto out;
4978
4979 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4980 nexthdr = hp->nexthdr;
4981 off += ipv6_optlen(hp);
4982 break;
4983 }
4984 case IPPROTO_AH: {
4985 struct ip_auth_hdr *hp;
4986
4987 err = skb_maybe_pull_tail(skb,
4988 off +
4989 sizeof(struct ip_auth_hdr),
4990 MAX_IPV6_HDR_LEN);
4991 if (err < 0)
4992 goto out;
4993
4994 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4995 nexthdr = hp->nexthdr;
4996 off += ipv6_authlen(hp);
4997 break;
4998 }
4999 case IPPROTO_FRAGMENT: {
5000 struct frag_hdr *hp;
5001
5002 err = skb_maybe_pull_tail(skb,
5003 off +
5004 sizeof(struct frag_hdr),
5005 MAX_IPV6_HDR_LEN);
5006 if (err < 0)
5007 goto out;
5008
5009 hp = OPT_HDR(struct frag_hdr, skb, off);
5010
5011 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5012 fragment = true;
5013
5014 nexthdr = hp->nexthdr;
5015 off += sizeof(struct frag_hdr);
5016 break;
5017 }
5018 default:
5019 done = true;
5020 break;
5021 }
5022 }
5023
5024 err = -EPROTO;
5025
5026 if (!done || fragment)
5027 goto out;
5028
5029 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5030 if (IS_ERR(csum))
5031 return PTR_ERR(csum);
5032
5033 if (recalculate)
5034 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5035 &ipv6_hdr(skb)->daddr,
5036 skb->len - off, nexthdr, 0);
5037 err = 0;
5038
5039 out:
5040 return err;
5041 }
5042
5043 /**
5044 * skb_checksum_setup - set up partial checksum offset
5045 * @skb: the skb to set up
5046 * @recalculate: if true the pseudo-header checksum will be recalculated
5047 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5048 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5049 {
5050 int err;
5051
5052 switch (skb->protocol) {
5053 case htons(ETH_P_IP):
5054 err = skb_checksum_setup_ipv4(skb, recalculate);
5055 break;
5056
5057 case htons(ETH_P_IPV6):
5058 err = skb_checksum_setup_ipv6(skb, recalculate);
5059 break;
5060
5061 default:
5062 err = -EPROTO;
5063 break;
5064 }
5065
5066 return err;
5067 }
5068 EXPORT_SYMBOL(skb_checksum_setup);
5069
5070 /**
5071 * skb_checksum_maybe_trim - maybe trims the given skb
5072 * @skb: the skb to check
5073 * @transport_len: the data length beyond the network header
5074 *
5075 * Checks whether the given skb has data beyond the given transport length.
5076 * If so, returns a cloned skb trimmed to this transport length.
5077 * Otherwise returns the provided skb. Returns NULL in error cases
5078 * (e.g. transport_len exceeds skb length or out-of-memory).
5079 *
5080 * Caller needs to set the skb transport header and free any returned skb if it
5081 * differs from the provided skb.
5082 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5083 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5084 unsigned int transport_len)
5085 {
5086 struct sk_buff *skb_chk;
5087 unsigned int len = skb_transport_offset(skb) + transport_len;
5088 int ret;
5089
5090 if (skb->len < len)
5091 return NULL;
5092 else if (skb->len == len)
5093 return skb;
5094
5095 skb_chk = skb_clone(skb, GFP_ATOMIC);
5096 if (!skb_chk)
5097 return NULL;
5098
5099 ret = pskb_trim_rcsum(skb_chk, len);
5100 if (ret) {
5101 kfree_skb(skb_chk);
5102 return NULL;
5103 }
5104
5105 return skb_chk;
5106 }
5107
5108 /**
5109 * skb_checksum_trimmed - validate checksum of an skb
5110 * @skb: the skb to check
5111 * @transport_len: the data length beyond the network header
5112 * @skb_chkf: checksum function to use
5113 *
5114 * Applies the given checksum function skb_chkf to the provided skb.
5115 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5116 *
5117 * If the skb has data beyond the given transport length, then a
5118 * trimmed & cloned skb is checked and returned.
5119 *
5120 * Caller needs to set the skb transport header and free any returned skb if it
5121 * differs from the provided skb.
5122 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5123 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5124 unsigned int transport_len,
5125 __sum16(*skb_chkf)(struct sk_buff *skb))
5126 {
5127 struct sk_buff *skb_chk;
5128 unsigned int offset = skb_transport_offset(skb);
5129 __sum16 ret;
5130
5131 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5132 if (!skb_chk)
5133 goto err;
5134
5135 if (!pskb_may_pull(skb_chk, offset))
5136 goto err;
5137
5138 skb_pull_rcsum(skb_chk, offset);
5139 ret = skb_chkf(skb_chk);
5140 skb_push_rcsum(skb_chk, offset);
5141
5142 if (ret)
5143 goto err;
5144
5145 return skb_chk;
5146
5147 err:
5148 if (skb_chk && skb_chk != skb)
5149 kfree_skb(skb_chk);
5150
5151 return NULL;
5152
5153 }
5154 EXPORT_SYMBOL(skb_checksum_trimmed);
5155
__skb_warn_lro_forwarding(const struct sk_buff * skb)5156 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5157 {
5158 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5159 skb->dev->name);
5160 }
5161 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5162
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5163 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5164 {
5165 if (head_stolen) {
5166 skb_release_head_state(skb);
5167 kmem_cache_free(skbuff_head_cache, skb);
5168 } else {
5169 __kfree_skb(skb);
5170 }
5171 }
5172 EXPORT_SYMBOL(kfree_skb_partial);
5173
5174 /**
5175 * skb_try_coalesce - try to merge skb to prior one
5176 * @to: prior buffer
5177 * @from: buffer to add
5178 * @fragstolen: pointer to boolean
5179 * @delta_truesize: how much more was allocated than was requested
5180 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5181 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5182 bool *fragstolen, int *delta_truesize)
5183 {
5184 struct skb_shared_info *to_shinfo, *from_shinfo;
5185 int i, delta, len = from->len;
5186
5187 *fragstolen = false;
5188
5189 if (skb_cloned(to))
5190 return false;
5191
5192 if (len <= skb_tailroom(to)) {
5193 if (len)
5194 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5195 *delta_truesize = 0;
5196 return true;
5197 }
5198
5199 to_shinfo = skb_shinfo(to);
5200 from_shinfo = skb_shinfo(from);
5201 if (to_shinfo->frag_list || from_shinfo->frag_list)
5202 return false;
5203 if (skb_zcopy(to) || skb_zcopy(from))
5204 return false;
5205
5206 if (skb_headlen(from) != 0) {
5207 struct page *page;
5208 unsigned int offset;
5209
5210 if (to_shinfo->nr_frags +
5211 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5212 return false;
5213
5214 if (skb_head_is_locked(from))
5215 return false;
5216
5217 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5218
5219 page = virt_to_head_page(from->head);
5220 offset = from->data - (unsigned char *)page_address(page);
5221
5222 skb_fill_page_desc(to, to_shinfo->nr_frags,
5223 page, offset, skb_headlen(from));
5224 *fragstolen = true;
5225 } else {
5226 if (to_shinfo->nr_frags +
5227 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5228 return false;
5229
5230 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5231 }
5232
5233 WARN_ON_ONCE(delta < len);
5234
5235 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5236 from_shinfo->frags,
5237 from_shinfo->nr_frags * sizeof(skb_frag_t));
5238 to_shinfo->nr_frags += from_shinfo->nr_frags;
5239
5240 if (!skb_cloned(from))
5241 from_shinfo->nr_frags = 0;
5242
5243 /* if the skb is not cloned this does nothing
5244 * since we set nr_frags to 0.
5245 */
5246 for (i = 0; i < from_shinfo->nr_frags; i++)
5247 __skb_frag_ref(&from_shinfo->frags[i]);
5248
5249 to->truesize += delta;
5250 to->len += len;
5251 to->data_len += len;
5252
5253 *delta_truesize = delta;
5254 return true;
5255 }
5256 EXPORT_SYMBOL(skb_try_coalesce);
5257
5258 /**
5259 * skb_scrub_packet - scrub an skb
5260 *
5261 * @skb: buffer to clean
5262 * @xnet: packet is crossing netns
5263 *
5264 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5265 * into/from a tunnel. Some information have to be cleared during these
5266 * operations.
5267 * skb_scrub_packet can also be used to clean a skb before injecting it in
5268 * another namespace (@xnet == true). We have to clear all information in the
5269 * skb that could impact namespace isolation.
5270 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5271 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5272 {
5273 skb->pkt_type = PACKET_HOST;
5274 skb->skb_iif = 0;
5275 skb->ignore_df = 0;
5276 skb_dst_drop(skb);
5277 skb_ext_reset(skb);
5278 nf_reset_ct(skb);
5279 nf_reset_trace(skb);
5280
5281 #ifdef CONFIG_NET_SWITCHDEV
5282 skb->offload_fwd_mark = 0;
5283 skb->offload_l3_fwd_mark = 0;
5284 #endif
5285
5286 if (!xnet)
5287 return;
5288
5289 ipvs_reset(skb);
5290 skb->mark = 0;
5291 skb->tstamp = 0;
5292 }
5293 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5294
5295 /**
5296 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5297 *
5298 * @skb: GSO skb
5299 *
5300 * skb_gso_transport_seglen is used to determine the real size of the
5301 * individual segments, including Layer4 headers (TCP/UDP).
5302 *
5303 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5304 */
skb_gso_transport_seglen(const struct sk_buff * skb)5305 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5306 {
5307 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5308 unsigned int thlen = 0;
5309
5310 if (skb->encapsulation) {
5311 thlen = skb_inner_transport_header(skb) -
5312 skb_transport_header(skb);
5313
5314 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5315 thlen += inner_tcp_hdrlen(skb);
5316 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5317 thlen = tcp_hdrlen(skb);
5318 } else if (unlikely(skb_is_gso_sctp(skb))) {
5319 thlen = sizeof(struct sctphdr);
5320 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5321 thlen = sizeof(struct udphdr);
5322 }
5323 /* UFO sets gso_size to the size of the fragmentation
5324 * payload, i.e. the size of the L4 (UDP) header is already
5325 * accounted for.
5326 */
5327 return thlen + shinfo->gso_size;
5328 }
5329
5330 /**
5331 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5332 *
5333 * @skb: GSO skb
5334 *
5335 * skb_gso_network_seglen is used to determine the real size of the
5336 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5337 *
5338 * The MAC/L2 header is not accounted for.
5339 */
skb_gso_network_seglen(const struct sk_buff * skb)5340 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5341 {
5342 unsigned int hdr_len = skb_transport_header(skb) -
5343 skb_network_header(skb);
5344
5345 return hdr_len + skb_gso_transport_seglen(skb);
5346 }
5347
5348 /**
5349 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5350 *
5351 * @skb: GSO skb
5352 *
5353 * skb_gso_mac_seglen is used to determine the real size of the
5354 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5355 * headers (TCP/UDP).
5356 */
skb_gso_mac_seglen(const struct sk_buff * skb)5357 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5358 {
5359 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5360
5361 return hdr_len + skb_gso_transport_seglen(skb);
5362 }
5363
5364 /**
5365 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5366 *
5367 * There are a couple of instances where we have a GSO skb, and we
5368 * want to determine what size it would be after it is segmented.
5369 *
5370 * We might want to check:
5371 * - L3+L4+payload size (e.g. IP forwarding)
5372 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5373 *
5374 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5375 *
5376 * @skb: GSO skb
5377 *
5378 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5379 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5380 *
5381 * @max_len: The maximum permissible length.
5382 *
5383 * Returns true if the segmented length <= max length.
5384 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5385 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5386 unsigned int seg_len,
5387 unsigned int max_len) {
5388 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5389 const struct sk_buff *iter;
5390
5391 if (shinfo->gso_size != GSO_BY_FRAGS)
5392 return seg_len <= max_len;
5393
5394 /* Undo this so we can re-use header sizes */
5395 seg_len -= GSO_BY_FRAGS;
5396
5397 skb_walk_frags(skb, iter) {
5398 if (seg_len + skb_headlen(iter) > max_len)
5399 return false;
5400 }
5401
5402 return true;
5403 }
5404
5405 /**
5406 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5407 *
5408 * @skb: GSO skb
5409 * @mtu: MTU to validate against
5410 *
5411 * skb_gso_validate_network_len validates if a given skb will fit a
5412 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5413 * payload.
5414 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5415 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5416 {
5417 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5418 }
5419 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5420
5421 /**
5422 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5423 *
5424 * @skb: GSO skb
5425 * @len: length to validate against
5426 *
5427 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5428 * length once split, including L2, L3 and L4 headers and the payload.
5429 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5430 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5431 {
5432 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5433 }
5434 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5435
skb_reorder_vlan_header(struct sk_buff * skb)5436 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5437 {
5438 int mac_len, meta_len;
5439 void *meta;
5440
5441 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5442 kfree_skb(skb);
5443 return NULL;
5444 }
5445
5446 mac_len = skb->data - skb_mac_header(skb);
5447 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5448 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5449 mac_len - VLAN_HLEN - ETH_TLEN);
5450 }
5451
5452 meta_len = skb_metadata_len(skb);
5453 if (meta_len) {
5454 meta = skb_metadata_end(skb) - meta_len;
5455 memmove(meta + VLAN_HLEN, meta, meta_len);
5456 }
5457
5458 skb->mac_header += VLAN_HLEN;
5459 return skb;
5460 }
5461
skb_vlan_untag(struct sk_buff * skb)5462 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5463 {
5464 struct vlan_hdr *vhdr;
5465 u16 vlan_tci;
5466
5467 if (unlikely(skb_vlan_tag_present(skb))) {
5468 /* vlan_tci is already set-up so leave this for another time */
5469 return skb;
5470 }
5471
5472 skb = skb_share_check(skb, GFP_ATOMIC);
5473 if (unlikely(!skb))
5474 goto err_free;
5475 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5476 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5477 goto err_free;
5478
5479 vhdr = (struct vlan_hdr *)skb->data;
5480 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5481 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5482
5483 skb_pull_rcsum(skb, VLAN_HLEN);
5484 vlan_set_encap_proto(skb, vhdr);
5485
5486 skb = skb_reorder_vlan_header(skb);
5487 if (unlikely(!skb))
5488 goto err_free;
5489
5490 skb_reset_network_header(skb);
5491 skb_reset_transport_header(skb);
5492 skb_reset_mac_len(skb);
5493
5494 return skb;
5495
5496 err_free:
5497 kfree_skb(skb);
5498 return NULL;
5499 }
5500 EXPORT_SYMBOL(skb_vlan_untag);
5501
skb_ensure_writable(struct sk_buff * skb,int write_len)5502 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5503 {
5504 if (!pskb_may_pull(skb, write_len))
5505 return -ENOMEM;
5506
5507 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5508 return 0;
5509
5510 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5511 }
5512 EXPORT_SYMBOL(skb_ensure_writable);
5513
5514 /* remove VLAN header from packet and update csum accordingly.
5515 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5516 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5517 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5518 {
5519 struct vlan_hdr *vhdr;
5520 int offset = skb->data - skb_mac_header(skb);
5521 int err;
5522
5523 if (WARN_ONCE(offset,
5524 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5525 offset)) {
5526 return -EINVAL;
5527 }
5528
5529 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5530 if (unlikely(err))
5531 return err;
5532
5533 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5534
5535 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5536 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5537
5538 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5539 __skb_pull(skb, VLAN_HLEN);
5540
5541 vlan_set_encap_proto(skb, vhdr);
5542 skb->mac_header += VLAN_HLEN;
5543
5544 if (skb_network_offset(skb) < ETH_HLEN)
5545 skb_set_network_header(skb, ETH_HLEN);
5546
5547 skb_reset_mac_len(skb);
5548
5549 return err;
5550 }
5551 EXPORT_SYMBOL(__skb_vlan_pop);
5552
5553 /* Pop a vlan tag either from hwaccel or from payload.
5554 * Expects skb->data at mac header.
5555 */
skb_vlan_pop(struct sk_buff * skb)5556 int skb_vlan_pop(struct sk_buff *skb)
5557 {
5558 u16 vlan_tci;
5559 __be16 vlan_proto;
5560 int err;
5561
5562 if (likely(skb_vlan_tag_present(skb))) {
5563 __vlan_hwaccel_clear_tag(skb);
5564 } else {
5565 if (unlikely(!eth_type_vlan(skb->protocol)))
5566 return 0;
5567
5568 err = __skb_vlan_pop(skb, &vlan_tci);
5569 if (err)
5570 return err;
5571 }
5572 /* move next vlan tag to hw accel tag */
5573 if (likely(!eth_type_vlan(skb->protocol)))
5574 return 0;
5575
5576 vlan_proto = skb->protocol;
5577 err = __skb_vlan_pop(skb, &vlan_tci);
5578 if (unlikely(err))
5579 return err;
5580
5581 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5582 return 0;
5583 }
5584 EXPORT_SYMBOL(skb_vlan_pop);
5585
5586 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5587 * Expects skb->data at mac header.
5588 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5589 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5590 {
5591 if (skb_vlan_tag_present(skb)) {
5592 int offset = skb->data - skb_mac_header(skb);
5593 int err;
5594
5595 if (WARN_ONCE(offset,
5596 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5597 offset)) {
5598 return -EINVAL;
5599 }
5600
5601 err = __vlan_insert_tag(skb, skb->vlan_proto,
5602 skb_vlan_tag_get(skb));
5603 if (err)
5604 return err;
5605
5606 skb->protocol = skb->vlan_proto;
5607 skb->mac_len += VLAN_HLEN;
5608
5609 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5610 }
5611 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5612 return 0;
5613 }
5614 EXPORT_SYMBOL(skb_vlan_push);
5615
5616 /**
5617 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5618 *
5619 * @skb: Socket buffer to modify
5620 *
5621 * Drop the Ethernet header of @skb.
5622 *
5623 * Expects that skb->data points to the mac header and that no VLAN tags are
5624 * present.
5625 *
5626 * Returns 0 on success, -errno otherwise.
5627 */
skb_eth_pop(struct sk_buff * skb)5628 int skb_eth_pop(struct sk_buff *skb)
5629 {
5630 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5631 skb_network_offset(skb) < ETH_HLEN)
5632 return -EPROTO;
5633
5634 skb_pull_rcsum(skb, ETH_HLEN);
5635 skb_reset_mac_header(skb);
5636 skb_reset_mac_len(skb);
5637
5638 return 0;
5639 }
5640 EXPORT_SYMBOL(skb_eth_pop);
5641
5642 /**
5643 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5644 *
5645 * @skb: Socket buffer to modify
5646 * @dst: Destination MAC address of the new header
5647 * @src: Source MAC address of the new header
5648 *
5649 * Prepend @skb with a new Ethernet header.
5650 *
5651 * Expects that skb->data points to the mac header, which must be empty.
5652 *
5653 * Returns 0 on success, -errno otherwise.
5654 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5655 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5656 const unsigned char *src)
5657 {
5658 struct ethhdr *eth;
5659 int err;
5660
5661 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5662 return -EPROTO;
5663
5664 err = skb_cow_head(skb, sizeof(*eth));
5665 if (err < 0)
5666 return err;
5667
5668 skb_push(skb, sizeof(*eth));
5669 skb_reset_mac_header(skb);
5670 skb_reset_mac_len(skb);
5671
5672 eth = eth_hdr(skb);
5673 ether_addr_copy(eth->h_dest, dst);
5674 ether_addr_copy(eth->h_source, src);
5675 eth->h_proto = skb->protocol;
5676
5677 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5678
5679 return 0;
5680 }
5681 EXPORT_SYMBOL(skb_eth_push);
5682
5683 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5684 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5685 __be16 ethertype)
5686 {
5687 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5688 __be16 diff[] = { ~hdr->h_proto, ethertype };
5689
5690 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5691 }
5692
5693 hdr->h_proto = ethertype;
5694 }
5695
5696 /**
5697 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5698 * the packet
5699 *
5700 * @skb: buffer
5701 * @mpls_lse: MPLS label stack entry to push
5702 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5703 * @mac_len: length of the MAC header
5704 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5705 * ethernet
5706 *
5707 * Expects skb->data at mac header.
5708 *
5709 * Returns 0 on success, -errno otherwise.
5710 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5711 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5712 int mac_len, bool ethernet)
5713 {
5714 struct mpls_shim_hdr *lse;
5715 int err;
5716
5717 if (unlikely(!eth_p_mpls(mpls_proto)))
5718 return -EINVAL;
5719
5720 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5721 if (skb->encapsulation)
5722 return -EINVAL;
5723
5724 err = skb_cow_head(skb, MPLS_HLEN);
5725 if (unlikely(err))
5726 return err;
5727
5728 if (!skb->inner_protocol) {
5729 skb_set_inner_network_header(skb, skb_network_offset(skb));
5730 skb_set_inner_protocol(skb, skb->protocol);
5731 }
5732
5733 skb_push(skb, MPLS_HLEN);
5734 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5735 mac_len);
5736 skb_reset_mac_header(skb);
5737 skb_set_network_header(skb, mac_len);
5738 skb_reset_mac_len(skb);
5739
5740 lse = mpls_hdr(skb);
5741 lse->label_stack_entry = mpls_lse;
5742 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5743
5744 if (ethernet && mac_len >= ETH_HLEN)
5745 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5746 skb->protocol = mpls_proto;
5747
5748 return 0;
5749 }
5750 EXPORT_SYMBOL_GPL(skb_mpls_push);
5751
5752 /**
5753 * skb_mpls_pop() - pop the outermost MPLS header
5754 *
5755 * @skb: buffer
5756 * @next_proto: ethertype of header after popped MPLS header
5757 * @mac_len: length of the MAC header
5758 * @ethernet: flag to indicate if the packet is ethernet
5759 *
5760 * Expects skb->data at mac header.
5761 *
5762 * Returns 0 on success, -errno otherwise.
5763 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5764 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5765 bool ethernet)
5766 {
5767 int err;
5768
5769 if (unlikely(!eth_p_mpls(skb->protocol)))
5770 return 0;
5771
5772 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5773 if (unlikely(err))
5774 return err;
5775
5776 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5777 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5778 mac_len);
5779
5780 __skb_pull(skb, MPLS_HLEN);
5781 skb_reset_mac_header(skb);
5782 skb_set_network_header(skb, mac_len);
5783
5784 if (ethernet && mac_len >= ETH_HLEN) {
5785 struct ethhdr *hdr;
5786
5787 /* use mpls_hdr() to get ethertype to account for VLANs. */
5788 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5789 skb_mod_eth_type(skb, hdr, next_proto);
5790 }
5791 skb->protocol = next_proto;
5792
5793 return 0;
5794 }
5795 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5796
5797 /**
5798 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5799 *
5800 * @skb: buffer
5801 * @mpls_lse: new MPLS label stack entry to update to
5802 *
5803 * Expects skb->data at mac header.
5804 *
5805 * Returns 0 on success, -errno otherwise.
5806 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5807 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5808 {
5809 int err;
5810
5811 if (unlikely(!eth_p_mpls(skb->protocol)))
5812 return -EINVAL;
5813
5814 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5815 if (unlikely(err))
5816 return err;
5817
5818 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5819 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5820
5821 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5822 }
5823
5824 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5825
5826 return 0;
5827 }
5828 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5829
5830 /**
5831 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5832 *
5833 * @skb: buffer
5834 *
5835 * Expects skb->data at mac header.
5836 *
5837 * Returns 0 on success, -errno otherwise.
5838 */
skb_mpls_dec_ttl(struct sk_buff * skb)5839 int skb_mpls_dec_ttl(struct sk_buff *skb)
5840 {
5841 u32 lse;
5842 u8 ttl;
5843
5844 if (unlikely(!eth_p_mpls(skb->protocol)))
5845 return -EINVAL;
5846
5847 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5848 return -ENOMEM;
5849
5850 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5851 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5852 if (!--ttl)
5853 return -EINVAL;
5854
5855 lse &= ~MPLS_LS_TTL_MASK;
5856 lse |= ttl << MPLS_LS_TTL_SHIFT;
5857
5858 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5859 }
5860 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5861
5862 /**
5863 * alloc_skb_with_frags - allocate skb with page frags
5864 *
5865 * @header_len: size of linear part
5866 * @data_len: needed length in frags
5867 * @max_page_order: max page order desired.
5868 * @errcode: pointer to error code if any
5869 * @gfp_mask: allocation mask
5870 *
5871 * This can be used to allocate a paged skb, given a maximal order for frags.
5872 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5873 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5874 unsigned long data_len,
5875 int max_page_order,
5876 int *errcode,
5877 gfp_t gfp_mask)
5878 {
5879 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5880 unsigned long chunk;
5881 struct sk_buff *skb;
5882 struct page *page;
5883 int i;
5884
5885 *errcode = -EMSGSIZE;
5886 /* Note this test could be relaxed, if we succeed to allocate
5887 * high order pages...
5888 */
5889 if (npages > MAX_SKB_FRAGS)
5890 return NULL;
5891
5892 *errcode = -ENOBUFS;
5893 skb = alloc_skb(header_len, gfp_mask);
5894 if (!skb)
5895 return NULL;
5896
5897 skb->truesize += npages << PAGE_SHIFT;
5898
5899 for (i = 0; npages > 0; i++) {
5900 int order = max_page_order;
5901
5902 while (order) {
5903 if (npages >= 1 << order) {
5904 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5905 __GFP_COMP |
5906 __GFP_NOWARN,
5907 order);
5908 if (page)
5909 goto fill_page;
5910 /* Do not retry other high order allocations */
5911 order = 1;
5912 max_page_order = 0;
5913 }
5914 order--;
5915 }
5916 page = alloc_page(gfp_mask);
5917 if (!page)
5918 goto failure;
5919 fill_page:
5920 chunk = min_t(unsigned long, data_len,
5921 PAGE_SIZE << order);
5922 skb_fill_page_desc(skb, i, page, 0, chunk);
5923 data_len -= chunk;
5924 npages -= 1 << order;
5925 }
5926 return skb;
5927
5928 failure:
5929 kfree_skb(skb);
5930 return NULL;
5931 }
5932 EXPORT_SYMBOL(alloc_skb_with_frags);
5933
5934 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5935 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5936 const int headlen, gfp_t gfp_mask)
5937 {
5938 int i;
5939 int size = skb_end_offset(skb);
5940 int new_hlen = headlen - off;
5941 u8 *data;
5942
5943 size = SKB_DATA_ALIGN(size);
5944
5945 if (skb_pfmemalloc(skb))
5946 gfp_mask |= __GFP_MEMALLOC;
5947 data = kmalloc_reserve(size +
5948 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5949 gfp_mask, NUMA_NO_NODE, NULL);
5950 if (!data)
5951 return -ENOMEM;
5952
5953 size = SKB_WITH_OVERHEAD(ksize(data));
5954
5955 /* Copy real data, and all frags */
5956 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5957 skb->len -= off;
5958
5959 memcpy((struct skb_shared_info *)(data + size),
5960 skb_shinfo(skb),
5961 offsetof(struct skb_shared_info,
5962 frags[skb_shinfo(skb)->nr_frags]));
5963 if (skb_cloned(skb)) {
5964 /* drop the old head gracefully */
5965 if (skb_orphan_frags(skb, gfp_mask)) {
5966 kfree(data);
5967 return -ENOMEM;
5968 }
5969 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5970 skb_frag_ref(skb, i);
5971 if (skb_has_frag_list(skb))
5972 skb_clone_fraglist(skb);
5973 skb_release_data(skb);
5974 } else {
5975 /* we can reuse existing recount- all we did was
5976 * relocate values
5977 */
5978 skb_free_head(skb);
5979 }
5980
5981 skb->head = data;
5982 skb->data = data;
5983 skb->head_frag = 0;
5984 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5985 skb->end = size;
5986 #else
5987 skb->end = skb->head + size;
5988 #endif
5989 skb_set_tail_pointer(skb, skb_headlen(skb));
5990 skb_headers_offset_update(skb, 0);
5991 skb->cloned = 0;
5992 skb->hdr_len = 0;
5993 skb->nohdr = 0;
5994 atomic_set(&skb_shinfo(skb)->dataref, 1);
5995
5996 return 0;
5997 }
5998
5999 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6000
6001 /* carve out the first eat bytes from skb's frag_list. May recurse into
6002 * pskb_carve()
6003 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6004 static int pskb_carve_frag_list(struct sk_buff *skb,
6005 struct skb_shared_info *shinfo, int eat,
6006 gfp_t gfp_mask)
6007 {
6008 struct sk_buff *list = shinfo->frag_list;
6009 struct sk_buff *clone = NULL;
6010 struct sk_buff *insp = NULL;
6011
6012 do {
6013 if (!list) {
6014 pr_err("Not enough bytes to eat. Want %d\n", eat);
6015 return -EFAULT;
6016 }
6017 if (list->len <= eat) {
6018 /* Eaten as whole. */
6019 eat -= list->len;
6020 list = list->next;
6021 insp = list;
6022 } else {
6023 /* Eaten partially. */
6024 if (skb_shared(list)) {
6025 clone = skb_clone(list, gfp_mask);
6026 if (!clone)
6027 return -ENOMEM;
6028 insp = list->next;
6029 list = clone;
6030 } else {
6031 /* This may be pulled without problems. */
6032 insp = list;
6033 }
6034 if (pskb_carve(list, eat, gfp_mask) < 0) {
6035 kfree_skb(clone);
6036 return -ENOMEM;
6037 }
6038 break;
6039 }
6040 } while (eat);
6041
6042 /* Free pulled out fragments. */
6043 while ((list = shinfo->frag_list) != insp) {
6044 shinfo->frag_list = list->next;
6045 consume_skb(list);
6046 }
6047 /* And insert new clone at head. */
6048 if (clone) {
6049 clone->next = list;
6050 shinfo->frag_list = clone;
6051 }
6052 return 0;
6053 }
6054
6055 /* carve off first len bytes from skb. Split line (off) is in the
6056 * non-linear part of skb
6057 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6058 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6059 int pos, gfp_t gfp_mask)
6060 {
6061 int i, k = 0;
6062 int size = skb_end_offset(skb);
6063 u8 *data;
6064 const int nfrags = skb_shinfo(skb)->nr_frags;
6065 struct skb_shared_info *shinfo;
6066
6067 size = SKB_DATA_ALIGN(size);
6068
6069 if (skb_pfmemalloc(skb))
6070 gfp_mask |= __GFP_MEMALLOC;
6071 data = kmalloc_reserve(size +
6072 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6073 gfp_mask, NUMA_NO_NODE, NULL);
6074 if (!data)
6075 return -ENOMEM;
6076
6077 size = SKB_WITH_OVERHEAD(ksize(data));
6078
6079 memcpy((struct skb_shared_info *)(data + size),
6080 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6081 if (skb_orphan_frags(skb, gfp_mask)) {
6082 kfree(data);
6083 return -ENOMEM;
6084 }
6085 shinfo = (struct skb_shared_info *)(data + size);
6086 for (i = 0; i < nfrags; i++) {
6087 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6088
6089 if (pos + fsize > off) {
6090 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6091
6092 if (pos < off) {
6093 /* Split frag.
6094 * We have two variants in this case:
6095 * 1. Move all the frag to the second
6096 * part, if it is possible. F.e.
6097 * this approach is mandatory for TUX,
6098 * where splitting is expensive.
6099 * 2. Split is accurately. We make this.
6100 */
6101 skb_frag_off_add(&shinfo->frags[0], off - pos);
6102 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6103 }
6104 skb_frag_ref(skb, i);
6105 k++;
6106 }
6107 pos += fsize;
6108 }
6109 shinfo->nr_frags = k;
6110 if (skb_has_frag_list(skb))
6111 skb_clone_fraglist(skb);
6112
6113 /* split line is in frag list */
6114 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6115 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6116 if (skb_has_frag_list(skb))
6117 kfree_skb_list(skb_shinfo(skb)->frag_list);
6118 kfree(data);
6119 return -ENOMEM;
6120 }
6121 skb_release_data(skb);
6122
6123 skb->head = data;
6124 skb->head_frag = 0;
6125 skb->data = data;
6126 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6127 skb->end = size;
6128 #else
6129 skb->end = skb->head + size;
6130 #endif
6131 skb_reset_tail_pointer(skb);
6132 skb_headers_offset_update(skb, 0);
6133 skb->cloned = 0;
6134 skb->hdr_len = 0;
6135 skb->nohdr = 0;
6136 skb->len -= off;
6137 skb->data_len = skb->len;
6138 atomic_set(&skb_shinfo(skb)->dataref, 1);
6139 return 0;
6140 }
6141
6142 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6143 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6144 {
6145 int headlen = skb_headlen(skb);
6146
6147 if (len < headlen)
6148 return pskb_carve_inside_header(skb, len, headlen, gfp);
6149 else
6150 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6151 }
6152
6153 /* Extract to_copy bytes starting at off from skb, and return this in
6154 * a new skb
6155 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6156 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6157 int to_copy, gfp_t gfp)
6158 {
6159 struct sk_buff *clone = skb_clone(skb, gfp);
6160
6161 if (!clone)
6162 return NULL;
6163
6164 if (pskb_carve(clone, off, gfp) < 0 ||
6165 pskb_trim(clone, to_copy)) {
6166 kfree_skb(clone);
6167 return NULL;
6168 }
6169 return clone;
6170 }
6171 EXPORT_SYMBOL(pskb_extract);
6172
6173 /**
6174 * skb_condense - try to get rid of fragments/frag_list if possible
6175 * @skb: buffer
6176 *
6177 * Can be used to save memory before skb is added to a busy queue.
6178 * If packet has bytes in frags and enough tail room in skb->head,
6179 * pull all of them, so that we can free the frags right now and adjust
6180 * truesize.
6181 * Notes:
6182 * We do not reallocate skb->head thus can not fail.
6183 * Caller must re-evaluate skb->truesize if needed.
6184 */
skb_condense(struct sk_buff * skb)6185 void skb_condense(struct sk_buff *skb)
6186 {
6187 if (skb->data_len) {
6188 if (skb->data_len > skb->end - skb->tail ||
6189 skb_cloned(skb))
6190 return;
6191
6192 /* Nice, we can free page frag(s) right now */
6193 __pskb_pull_tail(skb, skb->data_len);
6194 }
6195 /* At this point, skb->truesize might be over estimated,
6196 * because skb had a fragment, and fragments do not tell
6197 * their truesize.
6198 * When we pulled its content into skb->head, fragment
6199 * was freed, but __pskb_pull_tail() could not possibly
6200 * adjust skb->truesize, not knowing the frag truesize.
6201 */
6202 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6203 }
6204
6205 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6206 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6207 {
6208 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6209 }
6210
6211 /**
6212 * __skb_ext_alloc - allocate a new skb extensions storage
6213 *
6214 * @flags: See kmalloc().
6215 *
6216 * Returns the newly allocated pointer. The pointer can later attached to a
6217 * skb via __skb_ext_set().
6218 * Note: caller must handle the skb_ext as an opaque data.
6219 */
__skb_ext_alloc(gfp_t flags)6220 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6221 {
6222 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6223
6224 if (new) {
6225 memset(new->offset, 0, sizeof(new->offset));
6226 refcount_set(&new->refcnt, 1);
6227 }
6228
6229 return new;
6230 }
6231
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6232 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6233 unsigned int old_active)
6234 {
6235 struct skb_ext *new;
6236
6237 if (refcount_read(&old->refcnt) == 1)
6238 return old;
6239
6240 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6241 if (!new)
6242 return NULL;
6243
6244 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6245 refcount_set(&new->refcnt, 1);
6246
6247 #ifdef CONFIG_XFRM
6248 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6249 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6250 unsigned int i;
6251
6252 for (i = 0; i < sp->len; i++)
6253 xfrm_state_hold(sp->xvec[i]);
6254 }
6255 #endif
6256 __skb_ext_put(old);
6257 return new;
6258 }
6259
6260 /**
6261 * __skb_ext_set - attach the specified extension storage to this skb
6262 * @skb: buffer
6263 * @id: extension id
6264 * @ext: extension storage previously allocated via __skb_ext_alloc()
6265 *
6266 * Existing extensions, if any, are cleared.
6267 *
6268 * Returns the pointer to the extension.
6269 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6270 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6271 struct skb_ext *ext)
6272 {
6273 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6274
6275 skb_ext_put(skb);
6276 newlen = newoff + skb_ext_type_len[id];
6277 ext->chunks = newlen;
6278 ext->offset[id] = newoff;
6279 skb->extensions = ext;
6280 skb->active_extensions = 1 << id;
6281 return skb_ext_get_ptr(ext, id);
6282 }
6283
6284 /**
6285 * skb_ext_add - allocate space for given extension, COW if needed
6286 * @skb: buffer
6287 * @id: extension to allocate space for
6288 *
6289 * Allocates enough space for the given extension.
6290 * If the extension is already present, a pointer to that extension
6291 * is returned.
6292 *
6293 * If the skb was cloned, COW applies and the returned memory can be
6294 * modified without changing the extension space of clones buffers.
6295 *
6296 * Returns pointer to the extension or NULL on allocation failure.
6297 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6298 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6299 {
6300 struct skb_ext *new, *old = NULL;
6301 unsigned int newlen, newoff;
6302
6303 if (skb->active_extensions) {
6304 old = skb->extensions;
6305
6306 new = skb_ext_maybe_cow(old, skb->active_extensions);
6307 if (!new)
6308 return NULL;
6309
6310 if (__skb_ext_exist(new, id))
6311 goto set_active;
6312
6313 newoff = new->chunks;
6314 } else {
6315 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6316
6317 new = __skb_ext_alloc(GFP_ATOMIC);
6318 if (!new)
6319 return NULL;
6320 }
6321
6322 newlen = newoff + skb_ext_type_len[id];
6323 new->chunks = newlen;
6324 new->offset[id] = newoff;
6325 set_active:
6326 skb->extensions = new;
6327 skb->active_extensions |= 1 << id;
6328 return skb_ext_get_ptr(new, id);
6329 }
6330 EXPORT_SYMBOL(skb_ext_add);
6331
6332 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6333 static void skb_ext_put_sp(struct sec_path *sp)
6334 {
6335 unsigned int i;
6336
6337 for (i = 0; i < sp->len; i++)
6338 xfrm_state_put(sp->xvec[i]);
6339 }
6340 #endif
6341
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6342 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6343 {
6344 struct skb_ext *ext = skb->extensions;
6345
6346 skb->active_extensions &= ~(1 << id);
6347 if (skb->active_extensions == 0) {
6348 skb->extensions = NULL;
6349 __skb_ext_put(ext);
6350 #ifdef CONFIG_XFRM
6351 } else if (id == SKB_EXT_SEC_PATH &&
6352 refcount_read(&ext->refcnt) == 1) {
6353 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6354
6355 skb_ext_put_sp(sp);
6356 sp->len = 0;
6357 #endif
6358 }
6359 }
6360 EXPORT_SYMBOL(__skb_ext_del);
6361
__skb_ext_put(struct skb_ext * ext)6362 void __skb_ext_put(struct skb_ext *ext)
6363 {
6364 /* If this is last clone, nothing can increment
6365 * it after check passes. Avoids one atomic op.
6366 */
6367 if (refcount_read(&ext->refcnt) == 1)
6368 goto free_now;
6369
6370 if (!refcount_dec_and_test(&ext->refcnt))
6371 return;
6372 free_now:
6373 #ifdef CONFIG_XFRM
6374 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6375 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6376 #endif
6377
6378 kmem_cache_free(skbuff_ext_cache, ext);
6379 }
6380 EXPORT_SYMBOL(__skb_ext_put);
6381 #endif /* CONFIG_SKB_EXTENSIONS */
6382