• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	lock_buffer(bh);
193 	if (!wait) {
194 		ext4_read_bh_nowait(bh, op_flags, NULL);
195 		return 0;
196 	}
197 	return ext4_read_bh(bh, op_flags, NULL);
198 }
199 
200 /*
201  * This works like __bread_gfp() except it uses ERR_PTR for error
202  * returns.  Currently with sb_bread it's impossible to distinguish
203  * between ENOMEM and EIO situations (since both result in a NULL
204  * return.
205  */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)206 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207 					       sector_t block, int op_flags,
208 					       gfp_t gfp)
209 {
210 	struct buffer_head *bh;
211 	int ret;
212 
213 	bh = sb_getblk_gfp(sb, block, gfp);
214 	if (bh == NULL)
215 		return ERR_PTR(-ENOMEM);
216 	if (ext4_buffer_uptodate(bh))
217 		return bh;
218 
219 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220 	if (ret) {
221 		put_bh(bh);
222 		return ERR_PTR(ret);
223 	}
224 	return bh;
225 }
226 
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)227 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228 				   int op_flags)
229 {
230 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231 }
232 
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)233 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234 					    sector_t block)
235 {
236 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
237 }
238 
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)239 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240 {
241 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242 
243 	if (likely(bh)) {
244 		if (trylock_buffer(bh))
245 			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246 		brelse(bh);
247 	}
248 }
249 
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)250 static int ext4_verify_csum_type(struct super_block *sb,
251 				 struct ext4_super_block *es)
252 {
253 	if (!ext4_has_feature_metadata_csum(sb))
254 		return 1;
255 
256 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257 }
258 
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)259 static __le32 ext4_superblock_csum(struct super_block *sb,
260 				   struct ext4_super_block *es)
261 {
262 	struct ext4_sb_info *sbi = EXT4_SB(sb);
263 	int offset = offsetof(struct ext4_super_block, s_checksum);
264 	__u32 csum;
265 
266 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267 
268 	return cpu_to_le32(csum);
269 }
270 
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)271 static int ext4_superblock_csum_verify(struct super_block *sb,
272 				       struct ext4_super_block *es)
273 {
274 	if (!ext4_has_metadata_csum(sb))
275 		return 1;
276 
277 	return es->s_checksum == ext4_superblock_csum(sb, es);
278 }
279 
ext4_superblock_csum_set(struct super_block * sb)280 void ext4_superblock_csum_set(struct super_block *sb)
281 {
282 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283 
284 	if (!ext4_has_metadata_csum(sb))
285 		return;
286 
287 	es->s_checksum = ext4_superblock_csum(sb, es);
288 }
289 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)290 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291 			       struct ext4_group_desc *bg)
292 {
293 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
294 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296 }
297 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)298 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299 			       struct ext4_group_desc *bg)
300 {
301 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304 }
305 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307 			      struct ext4_group_desc *bg)
308 {
309 	return le32_to_cpu(bg->bg_inode_table_lo) |
310 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312 }
313 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)314 __u32 ext4_free_group_clusters(struct super_block *sb,
315 			       struct ext4_group_desc *bg)
316 {
317 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320 }
321 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)322 __u32 ext4_free_inodes_count(struct super_block *sb,
323 			      struct ext4_group_desc *bg)
324 {
325 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328 }
329 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_used_dirs_count(struct super_block *sb,
331 			      struct ext4_group_desc *bg)
332 {
333 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336 }
337 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_itable_unused_count(struct super_block *sb,
339 			      struct ext4_group_desc *bg)
340 {
341 	return le16_to_cpu(bg->bg_itable_unused_lo) |
342 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344 }
345 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)346 void ext4_block_bitmap_set(struct super_block *sb,
347 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
348 {
349 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352 }
353 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)354 void ext4_inode_bitmap_set(struct super_block *sb,
355 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
356 {
357 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
358 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360 }
361 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_inode_table_set(struct super_block *sb,
363 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368 }
369 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)370 void ext4_free_group_clusters_set(struct super_block *sb,
371 				  struct ext4_group_desc *bg, __u32 count)
372 {
373 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376 }
377 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)378 void ext4_free_inodes_set(struct super_block *sb,
379 			  struct ext4_group_desc *bg, __u32 count)
380 {
381 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384 }
385 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_used_dirs_set(struct super_block *sb,
387 			  struct ext4_group_desc *bg, __u32 count)
388 {
389 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392 }
393 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_itable_unused_set(struct super_block *sb,
395 			  struct ext4_group_desc *bg, __u32 count)
396 {
397 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400 }
401 
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)402 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403 {
404 	now = clamp_val(now, 0, (1ull << 40) - 1);
405 
406 	*lo = cpu_to_le32(lower_32_bits(now));
407 	*hi = upper_32_bits(now);
408 }
409 
__ext4_get_tstamp(__le32 * lo,__u8 * hi)410 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411 {
412 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413 }
414 #define ext4_update_tstamp(es, tstamp) \
415 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416 			     ktime_get_real_seconds())
417 #define ext4_get_tstamp(es, tstamp) \
418 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419 
420 /*
421  * The del_gendisk() function uninitializes the disk-specific data
422  * structures, including the bdi structure, without telling anyone
423  * else.  Once this happens, any attempt to call mark_buffer_dirty()
424  * (for example, by ext4_commit_super), will cause a kernel OOPS.
425  * This is a kludge to prevent these oops until we can put in a proper
426  * hook in del_gendisk() to inform the VFS and file system layers.
427  */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 	struct inode *bd_inode = sb->s_bdev->bd_inode;
431 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432 
433 	return bdi->dev == NULL;
434 }
435 
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 	struct super_block		*sb = journal->j_private;
439 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
440 	int				error = is_journal_aborted(journal);
441 	struct ext4_journal_cb_entry	*jce;
442 
443 	BUG_ON(txn->t_state == T_FINISHED);
444 
445 	ext4_process_freed_data(sb, txn->t_tid);
446 
447 	spin_lock(&sbi->s_md_lock);
448 	while (!list_empty(&txn->t_private_list)) {
449 		jce = list_entry(txn->t_private_list.next,
450 				 struct ext4_journal_cb_entry, jce_list);
451 		list_del_init(&jce->jce_list);
452 		spin_unlock(&sbi->s_md_lock);
453 		jce->jce_func(sb, jce, error);
454 		spin_lock(&sbi->s_md_lock);
455 	}
456 	spin_unlock(&sbi->s_md_lock);
457 }
458 
459 /*
460  * This writepage callback for write_cache_pages()
461  * takes care of a few cases after page cleaning.
462  *
463  * write_cache_pages() already checks for dirty pages
464  * and calls clear_page_dirty_for_io(), which we want,
465  * to write protect the pages.
466  *
467  * However, we may have to redirty a page (see below.)
468  */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 					      struct writeback_control *wbc,
471 					      void *data)
472 {
473 	transaction_t *transaction = (transaction_t *) data;
474 	struct buffer_head *bh, *head;
475 	struct journal_head *jh;
476 
477 	bh = head = page_buffers(page);
478 	do {
479 		/*
480 		 * We have to redirty a page in these cases:
481 		 * 1) If buffer is dirty, it means the page was dirty because it
482 		 * contains a buffer that needs checkpointing. So the dirty bit
483 		 * needs to be preserved so that checkpointing writes the buffer
484 		 * properly.
485 		 * 2) If buffer is not part of the committing transaction
486 		 * (we may have just accidentally come across this buffer because
487 		 * inode range tracking is not exact) or if the currently running
488 		 * transaction already contains this buffer as well, dirty bit
489 		 * needs to be preserved so that the buffer gets writeprotected
490 		 * properly on running transaction's commit.
491 		 */
492 		jh = bh2jh(bh);
493 		if (buffer_dirty(bh) ||
494 		    (jh && (jh->b_transaction != transaction ||
495 			    jh->b_next_transaction))) {
496 			redirty_page_for_writepage(wbc, page);
497 			goto out;
498 		}
499 	} while ((bh = bh->b_this_page) != head);
500 
501 out:
502 	return AOP_WRITEPAGE_ACTIVATE;
503 }
504 
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 	struct writeback_control wbc = {
509 		.sync_mode =  WB_SYNC_ALL,
510 		.nr_to_write = LONG_MAX,
511 		.range_start = jinode->i_dirty_start,
512 		.range_end = jinode->i_dirty_end,
513         };
514 
515 	return write_cache_pages(mapping, &wbc,
516 				 ext4_journalled_writepage_callback,
517 				 jinode->i_transaction);
518 }
519 
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 	int ret;
523 
524 	if (ext4_should_journal_data(jinode->i_vfs_inode))
525 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 	else
527 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
528 
529 	return ret;
530 }
531 
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 	int ret = 0;
535 
536 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
538 
539 	return ret;
540 }
541 
system_going_down(void)542 static bool system_going_down(void)
543 {
544 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 		|| system_state == SYSTEM_RESTART;
546 }
547 
548 struct ext4_err_translation {
549 	int code;
550 	int errno;
551 };
552 
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554 
555 static struct ext4_err_translation err_translation[] = {
556 	EXT4_ERR_TRANSLATE(EIO),
557 	EXT4_ERR_TRANSLATE(ENOMEM),
558 	EXT4_ERR_TRANSLATE(EFSBADCRC),
559 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 	EXT4_ERR_TRANSLATE(ENOSPC),
561 	EXT4_ERR_TRANSLATE(ENOKEY),
562 	EXT4_ERR_TRANSLATE(EROFS),
563 	EXT4_ERR_TRANSLATE(EFBIG),
564 	EXT4_ERR_TRANSLATE(EEXIST),
565 	EXT4_ERR_TRANSLATE(ERANGE),
566 	EXT4_ERR_TRANSLATE(EOVERFLOW),
567 	EXT4_ERR_TRANSLATE(EBUSY),
568 	EXT4_ERR_TRANSLATE(ENOTDIR),
569 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 	EXT4_ERR_TRANSLATE(EFAULT),
572 };
573 
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 	int i;
577 
578 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 		if (err_translation[i].errno == errno)
580 			return err_translation[i].code;
581 	return EXT4_ERR_UNKNOWN;
582 }
583 
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void save_error_info(struct super_block *sb, int error,
585 			    __u32 ino, __u64 block,
586 			    const char *func, unsigned int line)
587 {
588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
589 
590 	/* We default to EFSCORRUPTED error... */
591 	if (error == 0)
592 		error = EFSCORRUPTED;
593 
594 	spin_lock(&sbi->s_error_lock);
595 	sbi->s_add_error_count++;
596 	sbi->s_last_error_code = error;
597 	sbi->s_last_error_line = line;
598 	sbi->s_last_error_ino = ino;
599 	sbi->s_last_error_block = block;
600 	sbi->s_last_error_func = func;
601 	sbi->s_last_error_time = ktime_get_real_seconds();
602 	if (!sbi->s_first_error_time) {
603 		sbi->s_first_error_code = error;
604 		sbi->s_first_error_line = line;
605 		sbi->s_first_error_ino = ino;
606 		sbi->s_first_error_block = block;
607 		sbi->s_first_error_func = func;
608 		sbi->s_first_error_time = sbi->s_last_error_time;
609 	}
610 	spin_unlock(&sbi->s_error_lock);
611 }
612 
613 /* Deal with the reporting of failure conditions on a filesystem such as
614  * inconsistencies detected or read IO failures.
615  *
616  * On ext2, we can store the error state of the filesystem in the
617  * superblock.  That is not possible on ext4, because we may have other
618  * write ordering constraints on the superblock which prevent us from
619  * writing it out straight away; and given that the journal is about to
620  * be aborted, we can't rely on the current, or future, transactions to
621  * write out the superblock safely.
622  *
623  * We'll just use the jbd2_journal_abort() error code to record an error in
624  * the journal instead.  On recovery, the journal will complain about
625  * that error until we've noted it down and cleared it.
626  *
627  * If force_ro is set, we unconditionally force the filesystem into an
628  * ABORT|READONLY state, unless the error response on the fs has been set to
629  * panic in which case we take the easy way out and panic immediately. This is
630  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631  * at a critical moment in log management.
632  */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)633 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634 			      __u32 ino, __u64 block,
635 			      const char *func, unsigned int line)
636 {
637 	journal_t *journal = EXT4_SB(sb)->s_journal;
638 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639 
640 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641 	if (test_opt(sb, WARN_ON_ERROR))
642 		WARN_ON_ONCE(1);
643 
644 	if (!continue_fs && !sb_rdonly(sb)) {
645 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646 		if (journal)
647 			jbd2_journal_abort(journal, -EIO);
648 	}
649 
650 	if (!bdev_read_only(sb->s_bdev)) {
651 		save_error_info(sb, error, ino, block, func, line);
652 		/*
653 		 * In case the fs should keep running, we need to writeout
654 		 * superblock through the journal. Due to lock ordering
655 		 * constraints, it may not be safe to do it right here so we
656 		 * defer superblock flushing to a workqueue.
657 		 */
658 		if (continue_fs && journal)
659 			schedule_work(&EXT4_SB(sb)->s_error_work);
660 		else
661 			ext4_commit_super(sb);
662 	}
663 
664 	if (sb_rdonly(sb) || continue_fs)
665 		return;
666 
667 	/*
668 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
669 	 * could panic during 'reboot -f' as the underlying device got already
670 	 * disabled.
671 	 */
672 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
673 		panic("EXT4-fs (device %s): panic forced after error\n",
674 			sb->s_id);
675 	}
676 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
677 	/*
678 	 * Make sure updated value of ->s_mount_flags will be visible before
679 	 * ->s_flags update
680 	 */
681 	smp_wmb();
682 	sb->s_flags |= SB_RDONLY;
683 }
684 
flush_stashed_error_work(struct work_struct * work)685 static void flush_stashed_error_work(struct work_struct *work)
686 {
687 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
688 						s_error_work);
689 	journal_t *journal = sbi->s_journal;
690 	handle_t *handle;
691 
692 	/*
693 	 * If the journal is still running, we have to write out superblock
694 	 * through the journal to avoid collisions of other journalled sb
695 	 * updates.
696 	 *
697 	 * We use directly jbd2 functions here to avoid recursing back into
698 	 * ext4 error handling code during handling of previous errors.
699 	 */
700 	if (!sb_rdonly(sbi->s_sb) && journal) {
701 		struct buffer_head *sbh = sbi->s_sbh;
702 		handle = jbd2_journal_start(journal, 1);
703 		if (IS_ERR(handle))
704 			goto write_directly;
705 		if (jbd2_journal_get_write_access(handle, sbh)) {
706 			jbd2_journal_stop(handle);
707 			goto write_directly;
708 		}
709 		ext4_update_super(sbi->s_sb);
710 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
711 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
712 				 "superblock detected");
713 			clear_buffer_write_io_error(sbh);
714 			set_buffer_uptodate(sbh);
715 		}
716 
717 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
718 			jbd2_journal_stop(handle);
719 			goto write_directly;
720 		}
721 		jbd2_journal_stop(handle);
722 		return;
723 	}
724 write_directly:
725 	/*
726 	 * Write through journal failed. Write sb directly to get error info
727 	 * out and hope for the best.
728 	 */
729 	ext4_commit_super(sbi->s_sb);
730 }
731 
732 #define ext4_error_ratelimit(sb)					\
733 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
734 			     "EXT4-fs error")
735 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)736 void __ext4_error(struct super_block *sb, const char *function,
737 		  unsigned int line, bool force_ro, int error, __u64 block,
738 		  const char *fmt, ...)
739 {
740 	struct va_format vaf;
741 	va_list args;
742 
743 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
744 		return;
745 
746 	trace_ext4_error(sb, function, line);
747 	if (ext4_error_ratelimit(sb)) {
748 		va_start(args, fmt);
749 		vaf.fmt = fmt;
750 		vaf.va = &args;
751 		printk(KERN_CRIT
752 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
753 		       sb->s_id, function, line, current->comm, &vaf);
754 		va_end(args);
755 	}
756 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
757 }
758 
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)759 void __ext4_error_inode(struct inode *inode, const char *function,
760 			unsigned int line, ext4_fsblk_t block, int error,
761 			const char *fmt, ...)
762 {
763 	va_list args;
764 	struct va_format vaf;
765 
766 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
767 		return;
768 
769 	trace_ext4_error(inode->i_sb, function, line);
770 	if (ext4_error_ratelimit(inode->i_sb)) {
771 		va_start(args, fmt);
772 		vaf.fmt = fmt;
773 		vaf.va = &args;
774 		if (block)
775 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
776 			       "inode #%lu: block %llu: comm %s: %pV\n",
777 			       inode->i_sb->s_id, function, line, inode->i_ino,
778 			       block, current->comm, &vaf);
779 		else
780 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
781 			       "inode #%lu: comm %s: %pV\n",
782 			       inode->i_sb->s_id, function, line, inode->i_ino,
783 			       current->comm, &vaf);
784 		va_end(args);
785 	}
786 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
787 			  function, line);
788 }
789 
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)790 void __ext4_error_file(struct file *file, const char *function,
791 		       unsigned int line, ext4_fsblk_t block,
792 		       const char *fmt, ...)
793 {
794 	va_list args;
795 	struct va_format vaf;
796 	struct inode *inode = file_inode(file);
797 	char pathname[80], *path;
798 
799 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
800 		return;
801 
802 	trace_ext4_error(inode->i_sb, function, line);
803 	if (ext4_error_ratelimit(inode->i_sb)) {
804 		path = file_path(file, pathname, sizeof(pathname));
805 		if (IS_ERR(path))
806 			path = "(unknown)";
807 		va_start(args, fmt);
808 		vaf.fmt = fmt;
809 		vaf.va = &args;
810 		if (block)
811 			printk(KERN_CRIT
812 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
813 			       "block %llu: comm %s: path %s: %pV\n",
814 			       inode->i_sb->s_id, function, line, inode->i_ino,
815 			       block, current->comm, path, &vaf);
816 		else
817 			printk(KERN_CRIT
818 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 			       "comm %s: path %s: %pV\n",
820 			       inode->i_sb->s_id, function, line, inode->i_ino,
821 			       current->comm, path, &vaf);
822 		va_end(args);
823 	}
824 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
825 			  function, line);
826 }
827 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])828 const char *ext4_decode_error(struct super_block *sb, int errno,
829 			      char nbuf[16])
830 {
831 	char *errstr = NULL;
832 
833 	switch (errno) {
834 	case -EFSCORRUPTED:
835 		errstr = "Corrupt filesystem";
836 		break;
837 	case -EFSBADCRC:
838 		errstr = "Filesystem failed CRC";
839 		break;
840 	case -EIO:
841 		errstr = "IO failure";
842 		break;
843 	case -ENOMEM:
844 		errstr = "Out of memory";
845 		break;
846 	case -EROFS:
847 		if (!sb || (EXT4_SB(sb)->s_journal &&
848 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
849 			errstr = "Journal has aborted";
850 		else
851 			errstr = "Readonly filesystem";
852 		break;
853 	default:
854 		/* If the caller passed in an extra buffer for unknown
855 		 * errors, textualise them now.  Else we just return
856 		 * NULL. */
857 		if (nbuf) {
858 			/* Check for truncated error codes... */
859 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
860 				errstr = nbuf;
861 		}
862 		break;
863 	}
864 
865 	return errstr;
866 }
867 
868 /* __ext4_std_error decodes expected errors from journaling functions
869  * automatically and invokes the appropriate error response.  */
870 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)871 void __ext4_std_error(struct super_block *sb, const char *function,
872 		      unsigned int line, int errno)
873 {
874 	char nbuf[16];
875 	const char *errstr;
876 
877 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
878 		return;
879 
880 	/* Special case: if the error is EROFS, and we're not already
881 	 * inside a transaction, then there's really no point in logging
882 	 * an error. */
883 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
884 		return;
885 
886 	if (ext4_error_ratelimit(sb)) {
887 		errstr = ext4_decode_error(sb, errno, nbuf);
888 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
889 		       sb->s_id, function, line, errstr);
890 	}
891 
892 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
893 }
894 
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)895 void __ext4_msg(struct super_block *sb,
896 		const char *prefix, const char *fmt, ...)
897 {
898 	struct va_format vaf;
899 	va_list args;
900 
901 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
902 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
903 		return;
904 
905 	va_start(args, fmt);
906 	vaf.fmt = fmt;
907 	vaf.va = &args;
908 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
909 	va_end(args);
910 }
911 
ext4_warning_ratelimit(struct super_block * sb)912 static int ext4_warning_ratelimit(struct super_block *sb)
913 {
914 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
915 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
916 			    "EXT4-fs warning");
917 }
918 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)919 void __ext4_warning(struct super_block *sb, const char *function,
920 		    unsigned int line, const char *fmt, ...)
921 {
922 	struct va_format vaf;
923 	va_list args;
924 
925 	if (!ext4_warning_ratelimit(sb))
926 		return;
927 
928 	va_start(args, fmt);
929 	vaf.fmt = fmt;
930 	vaf.va = &args;
931 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
932 	       sb->s_id, function, line, &vaf);
933 	va_end(args);
934 }
935 
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)936 void __ext4_warning_inode(const struct inode *inode, const char *function,
937 			  unsigned int line, const char *fmt, ...)
938 {
939 	struct va_format vaf;
940 	va_list args;
941 
942 	if (!ext4_warning_ratelimit(inode->i_sb))
943 		return;
944 
945 	va_start(args, fmt);
946 	vaf.fmt = fmt;
947 	vaf.va = &args;
948 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
949 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
950 	       function, line, inode->i_ino, current->comm, &vaf);
951 	va_end(args);
952 }
953 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)954 void __ext4_grp_locked_error(const char *function, unsigned int line,
955 			     struct super_block *sb, ext4_group_t grp,
956 			     unsigned long ino, ext4_fsblk_t block,
957 			     const char *fmt, ...)
958 __releases(bitlock)
959 __acquires(bitlock)
960 {
961 	struct va_format vaf;
962 	va_list args;
963 
964 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
965 		return;
966 
967 	trace_ext4_error(sb, function, line);
968 	if (ext4_error_ratelimit(sb)) {
969 		va_start(args, fmt);
970 		vaf.fmt = fmt;
971 		vaf.va = &args;
972 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
973 		       sb->s_id, function, line, grp);
974 		if (ino)
975 			printk(KERN_CONT "inode %lu: ", ino);
976 		if (block)
977 			printk(KERN_CONT "block %llu:",
978 			       (unsigned long long) block);
979 		printk(KERN_CONT "%pV\n", &vaf);
980 		va_end(args);
981 	}
982 
983 	if (test_opt(sb, ERRORS_CONT)) {
984 		if (test_opt(sb, WARN_ON_ERROR))
985 			WARN_ON_ONCE(1);
986 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
987 		if (!bdev_read_only(sb->s_bdev)) {
988 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
989 					line);
990 			schedule_work(&EXT4_SB(sb)->s_error_work);
991 		}
992 		return;
993 	}
994 	ext4_unlock_group(sb, grp);
995 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
996 	/*
997 	 * We only get here in the ERRORS_RO case; relocking the group
998 	 * may be dangerous, but nothing bad will happen since the
999 	 * filesystem will have already been marked read/only and the
1000 	 * journal has been aborted.  We return 1 as a hint to callers
1001 	 * who might what to use the return value from
1002 	 * ext4_grp_locked_error() to distinguish between the
1003 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1004 	 * aggressively from the ext4 function in question, with a
1005 	 * more appropriate error code.
1006 	 */
1007 	ext4_lock_group(sb, grp);
1008 	return;
1009 }
1010 
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1011 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1012 				     ext4_group_t group,
1013 				     unsigned int flags)
1014 {
1015 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1016 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1017 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1018 	int ret;
1019 
1020 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1021 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1022 					    &grp->bb_state);
1023 		if (!ret)
1024 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1025 					   grp->bb_free);
1026 	}
1027 
1028 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1029 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1030 					    &grp->bb_state);
1031 		if (!ret && gdp) {
1032 			int count;
1033 
1034 			count = ext4_free_inodes_count(sb, gdp);
1035 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1036 					   count);
1037 		}
1038 	}
1039 }
1040 
ext4_update_dynamic_rev(struct super_block * sb)1041 void ext4_update_dynamic_rev(struct super_block *sb)
1042 {
1043 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1044 
1045 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1046 		return;
1047 
1048 	ext4_warning(sb,
1049 		     "updating to rev %d because of new feature flag, "
1050 		     "running e2fsck is recommended",
1051 		     EXT4_DYNAMIC_REV);
1052 
1053 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1054 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1055 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1056 	/* leave es->s_feature_*compat flags alone */
1057 	/* es->s_uuid will be set by e2fsck if empty */
1058 
1059 	/*
1060 	 * The rest of the superblock fields should be zero, and if not it
1061 	 * means they are likely already in use, so leave them alone.  We
1062 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1063 	 */
1064 }
1065 
1066 /*
1067  * Open the external journal device
1068  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1069 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1070 {
1071 	struct block_device *bdev;
1072 
1073 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1074 	if (IS_ERR(bdev))
1075 		goto fail;
1076 	return bdev;
1077 
1078 fail:
1079 	ext4_msg(sb, KERN_ERR,
1080 		 "failed to open journal device unknown-block(%u,%u) %ld",
1081 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * Release the journal device
1087  */
ext4_blkdev_put(struct block_device * bdev)1088 static void ext4_blkdev_put(struct block_device *bdev)
1089 {
1090 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1091 }
1092 
ext4_blkdev_remove(struct ext4_sb_info * sbi)1093 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1094 {
1095 	struct block_device *bdev;
1096 	bdev = sbi->s_journal_bdev;
1097 	if (bdev) {
1098 		ext4_blkdev_put(bdev);
1099 		sbi->s_journal_bdev = NULL;
1100 	}
1101 }
1102 
orphan_list_entry(struct list_head * l)1103 static inline struct inode *orphan_list_entry(struct list_head *l)
1104 {
1105 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1106 }
1107 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1108 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1109 {
1110 	struct list_head *l;
1111 
1112 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1113 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1114 
1115 	printk(KERN_ERR "sb_info orphan list:\n");
1116 	list_for_each(l, &sbi->s_orphan) {
1117 		struct inode *inode = orphan_list_entry(l);
1118 		printk(KERN_ERR "  "
1119 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1120 		       inode->i_sb->s_id, inode->i_ino, inode,
1121 		       inode->i_mode, inode->i_nlink,
1122 		       NEXT_ORPHAN(inode));
1123 	}
1124 }
1125 
1126 #ifdef CONFIG_QUOTA
1127 static int ext4_quota_off(struct super_block *sb, int type);
1128 
ext4_quota_off_umount(struct super_block * sb)1129 static inline void ext4_quota_off_umount(struct super_block *sb)
1130 {
1131 	int type;
1132 
1133 	/* Use our quota_off function to clear inode flags etc. */
1134 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1135 		ext4_quota_off(sb, type);
1136 }
1137 
1138 /*
1139  * This is a helper function which is used in the mount/remount
1140  * codepaths (which holds s_umount) to fetch the quota file name.
1141  */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1142 static inline char *get_qf_name(struct super_block *sb,
1143 				struct ext4_sb_info *sbi,
1144 				int type)
1145 {
1146 	return rcu_dereference_protected(sbi->s_qf_names[type],
1147 					 lockdep_is_held(&sb->s_umount));
1148 }
1149 #else
ext4_quota_off_umount(struct super_block * sb)1150 static inline void ext4_quota_off_umount(struct super_block *sb)
1151 {
1152 }
1153 #endif
1154 
ext4_put_super(struct super_block * sb)1155 static void ext4_put_super(struct super_block *sb)
1156 {
1157 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1158 	struct ext4_super_block *es = sbi->s_es;
1159 	struct buffer_head **group_desc;
1160 	struct flex_groups **flex_groups;
1161 	int aborted = 0;
1162 	int i, err;
1163 
1164 	/*
1165 	 * Unregister sysfs before destroying jbd2 journal.
1166 	 * Since we could still access attr_journal_task attribute via sysfs
1167 	 * path which could have sbi->s_journal->j_task as NULL
1168 	 * Unregister sysfs before flush sbi->s_error_work.
1169 	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1170 	 * read metadata verify failed then will queue error work.
1171 	 * flush_stashed_error_work will call start_this_handle may trigger
1172 	 * BUG_ON.
1173 	 */
1174 	ext4_unregister_sysfs(sb);
1175 
1176 	ext4_unregister_li_request(sb);
1177 	ext4_quota_off_umount(sb);
1178 	flush_work(&sbi->s_error_work);
1179 	destroy_workqueue(sbi->rsv_conversion_wq);
1180 
1181 	if (sbi->s_journal) {
1182 		aborted = is_journal_aborted(sbi->s_journal);
1183 		err = jbd2_journal_destroy(sbi->s_journal);
1184 		sbi->s_journal = NULL;
1185 		if ((err < 0) && !aborted) {
1186 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1187 		}
1188 	}
1189 
1190 	ext4_es_unregister_shrinker(sbi);
1191 	del_timer_sync(&sbi->s_err_report);
1192 	ext4_release_system_zone(sb);
1193 	ext4_mb_release(sb);
1194 	ext4_ext_release(sb);
1195 
1196 	if (!sb_rdonly(sb) && !aborted) {
1197 		ext4_clear_feature_journal_needs_recovery(sb);
1198 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1199 	}
1200 	if (!sb_rdonly(sb))
1201 		ext4_commit_super(sb);
1202 
1203 	rcu_read_lock();
1204 	group_desc = rcu_dereference(sbi->s_group_desc);
1205 	for (i = 0; i < sbi->s_gdb_count; i++)
1206 		brelse(group_desc[i]);
1207 	kvfree(group_desc);
1208 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1209 	if (flex_groups) {
1210 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1211 			kvfree(flex_groups[i]);
1212 		kvfree(flex_groups);
1213 	}
1214 	rcu_read_unlock();
1215 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1216 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1217 	percpu_counter_destroy(&sbi->s_dirs_counter);
1218 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1219 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1220 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1221 #ifdef CONFIG_QUOTA
1222 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1223 		kfree(get_qf_name(sb, sbi, i));
1224 #endif
1225 
1226 	/* Debugging code just in case the in-memory inode orphan list
1227 	 * isn't empty.  The on-disk one can be non-empty if we've
1228 	 * detected an error and taken the fs readonly, but the
1229 	 * in-memory list had better be clean by this point. */
1230 	if (!list_empty(&sbi->s_orphan))
1231 		dump_orphan_list(sb, sbi);
1232 	J_ASSERT(list_empty(&sbi->s_orphan));
1233 
1234 	sync_blockdev(sb->s_bdev);
1235 	invalidate_bdev(sb->s_bdev);
1236 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1237 		/*
1238 		 * Invalidate the journal device's buffers.  We don't want them
1239 		 * floating about in memory - the physical journal device may
1240 		 * hotswapped, and it breaks the `ro-after' testing code.
1241 		 */
1242 		sync_blockdev(sbi->s_journal_bdev);
1243 		invalidate_bdev(sbi->s_journal_bdev);
1244 		ext4_blkdev_remove(sbi);
1245 	}
1246 
1247 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1248 	sbi->s_ea_inode_cache = NULL;
1249 
1250 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1251 	sbi->s_ea_block_cache = NULL;
1252 
1253 	ext4_stop_mmpd(sbi);
1254 
1255 	brelse(sbi->s_sbh);
1256 	sb->s_fs_info = NULL;
1257 	/*
1258 	 * Now that we are completely done shutting down the
1259 	 * superblock, we need to actually destroy the kobject.
1260 	 */
1261 	kobject_put(&sbi->s_kobj);
1262 	wait_for_completion(&sbi->s_kobj_unregister);
1263 	if (sbi->s_chksum_driver)
1264 		crypto_free_shash(sbi->s_chksum_driver);
1265 	kfree(sbi->s_blockgroup_lock);
1266 	fs_put_dax(sbi->s_daxdev);
1267 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1268 #ifdef CONFIG_UNICODE
1269 	utf8_unload(sb->s_encoding);
1270 #endif
1271 	kfree(sbi);
1272 }
1273 
1274 static struct kmem_cache *ext4_inode_cachep;
1275 
1276 /*
1277  * Called inside transaction, so use GFP_NOFS
1278  */
ext4_alloc_inode(struct super_block * sb)1279 static struct inode *ext4_alloc_inode(struct super_block *sb)
1280 {
1281 	struct ext4_inode_info *ei;
1282 
1283 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1284 	if (!ei)
1285 		return NULL;
1286 
1287 	inode_set_iversion(&ei->vfs_inode, 1);
1288 	ei->i_flags = 0;
1289 	spin_lock_init(&ei->i_raw_lock);
1290 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1291 	atomic_set(&ei->i_prealloc_active, 0);
1292 	spin_lock_init(&ei->i_prealloc_lock);
1293 	ext4_es_init_tree(&ei->i_es_tree);
1294 	rwlock_init(&ei->i_es_lock);
1295 	INIT_LIST_HEAD(&ei->i_es_list);
1296 	ei->i_es_all_nr = 0;
1297 	ei->i_es_shk_nr = 0;
1298 	ei->i_es_shrink_lblk = 0;
1299 	ei->i_reserved_data_blocks = 0;
1300 	spin_lock_init(&(ei->i_block_reservation_lock));
1301 	ext4_init_pending_tree(&ei->i_pending_tree);
1302 #ifdef CONFIG_QUOTA
1303 	ei->i_reserved_quota = 0;
1304 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1305 #endif
1306 	ei->jinode = NULL;
1307 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1308 	spin_lock_init(&ei->i_completed_io_lock);
1309 	ei->i_sync_tid = 0;
1310 	ei->i_datasync_tid = 0;
1311 	atomic_set(&ei->i_unwritten, 0);
1312 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1313 	ext4_fc_init_inode(&ei->vfs_inode);
1314 	mutex_init(&ei->i_fc_lock);
1315 	return &ei->vfs_inode;
1316 }
1317 
ext4_drop_inode(struct inode * inode)1318 static int ext4_drop_inode(struct inode *inode)
1319 {
1320 	int drop = generic_drop_inode(inode);
1321 
1322 	if (!drop)
1323 		drop = fscrypt_drop_inode(inode);
1324 
1325 	trace_ext4_drop_inode(inode, drop);
1326 	return drop;
1327 }
1328 
ext4_free_in_core_inode(struct inode * inode)1329 static void ext4_free_in_core_inode(struct inode *inode)
1330 {
1331 	fscrypt_free_inode(inode);
1332 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1333 		pr_warn("%s: inode %ld still in fc list",
1334 			__func__, inode->i_ino);
1335 	}
1336 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1337 }
1338 
ext4_destroy_inode(struct inode * inode)1339 static void ext4_destroy_inode(struct inode *inode)
1340 {
1341 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1342 		ext4_msg(inode->i_sb, KERN_ERR,
1343 			 "Inode %lu (%p): orphan list check failed!",
1344 			 inode->i_ino, EXT4_I(inode));
1345 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1346 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1347 				true);
1348 		dump_stack();
1349 	}
1350 
1351 	if (EXT4_I(inode)->i_reserved_data_blocks)
1352 		ext4_msg(inode->i_sb, KERN_ERR,
1353 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1354 			 inode->i_ino, EXT4_I(inode),
1355 			 EXT4_I(inode)->i_reserved_data_blocks);
1356 }
1357 
init_once(void * foo)1358 static void init_once(void *foo)
1359 {
1360 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1361 
1362 	INIT_LIST_HEAD(&ei->i_orphan);
1363 	init_rwsem(&ei->xattr_sem);
1364 	init_rwsem(&ei->i_data_sem);
1365 	init_rwsem(&ei->i_mmap_sem);
1366 	inode_init_once(&ei->vfs_inode);
1367 	ext4_fc_init_inode(&ei->vfs_inode);
1368 }
1369 
init_inodecache(void)1370 static int __init init_inodecache(void)
1371 {
1372 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1373 				sizeof(struct ext4_inode_info), 0,
1374 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1375 					SLAB_ACCOUNT),
1376 				offsetof(struct ext4_inode_info, i_data),
1377 				sizeof_field(struct ext4_inode_info, i_data),
1378 				init_once);
1379 	if (ext4_inode_cachep == NULL)
1380 		return -ENOMEM;
1381 	return 0;
1382 }
1383 
destroy_inodecache(void)1384 static void destroy_inodecache(void)
1385 {
1386 	/*
1387 	 * Make sure all delayed rcu free inodes are flushed before we
1388 	 * destroy cache.
1389 	 */
1390 	rcu_barrier();
1391 	kmem_cache_destroy(ext4_inode_cachep);
1392 }
1393 
ext4_clear_inode(struct inode * inode)1394 void ext4_clear_inode(struct inode *inode)
1395 {
1396 	ext4_fc_del(inode);
1397 	invalidate_inode_buffers(inode);
1398 	clear_inode(inode);
1399 	ext4_discard_preallocations(inode, 0);
1400 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1401 	dquot_drop(inode);
1402 	if (EXT4_I(inode)->jinode) {
1403 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1404 					       EXT4_I(inode)->jinode);
1405 		jbd2_free_inode(EXT4_I(inode)->jinode);
1406 		EXT4_I(inode)->jinode = NULL;
1407 	}
1408 	fscrypt_put_encryption_info(inode);
1409 	fsverity_cleanup_inode(inode);
1410 }
1411 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1412 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1413 					u64 ino, u32 generation)
1414 {
1415 	struct inode *inode;
1416 
1417 	/*
1418 	 * Currently we don't know the generation for parent directory, so
1419 	 * a generation of 0 means "accept any"
1420 	 */
1421 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1422 	if (IS_ERR(inode))
1423 		return ERR_CAST(inode);
1424 	if (generation && inode->i_generation != generation) {
1425 		iput(inode);
1426 		return ERR_PTR(-ESTALE);
1427 	}
1428 
1429 	return inode;
1430 }
1431 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1432 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1433 					int fh_len, int fh_type)
1434 {
1435 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1436 				    ext4_nfs_get_inode);
1437 }
1438 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1439 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1440 					int fh_len, int fh_type)
1441 {
1442 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1443 				    ext4_nfs_get_inode);
1444 }
1445 
ext4_nfs_commit_metadata(struct inode * inode)1446 static int ext4_nfs_commit_metadata(struct inode *inode)
1447 {
1448 	struct writeback_control wbc = {
1449 		.sync_mode = WB_SYNC_ALL
1450 	};
1451 
1452 	trace_ext4_nfs_commit_metadata(inode);
1453 	return ext4_write_inode(inode, &wbc);
1454 }
1455 
1456 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1457 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1458 {
1459 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1460 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1461 }
1462 
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1463 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1464 							void *fs_data)
1465 {
1466 	handle_t *handle = fs_data;
1467 	int res, res2, credits, retries = 0;
1468 
1469 	/*
1470 	 * Encrypting the root directory is not allowed because e2fsck expects
1471 	 * lost+found to exist and be unencrypted, and encrypting the root
1472 	 * directory would imply encrypting the lost+found directory as well as
1473 	 * the filename "lost+found" itself.
1474 	 */
1475 	if (inode->i_ino == EXT4_ROOT_INO)
1476 		return -EPERM;
1477 
1478 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1479 		return -EINVAL;
1480 
1481 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1482 		return -EOPNOTSUPP;
1483 
1484 	res = ext4_convert_inline_data(inode);
1485 	if (res)
1486 		return res;
1487 
1488 	/*
1489 	 * If a journal handle was specified, then the encryption context is
1490 	 * being set on a new inode via inheritance and is part of a larger
1491 	 * transaction to create the inode.  Otherwise the encryption context is
1492 	 * being set on an existing inode in its own transaction.  Only in the
1493 	 * latter case should the "retry on ENOSPC" logic be used.
1494 	 */
1495 
1496 	if (handle) {
1497 		res = ext4_xattr_set_handle(handle, inode,
1498 					    EXT4_XATTR_INDEX_ENCRYPTION,
1499 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1500 					    ctx, len, 0);
1501 		if (!res) {
1502 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1503 			ext4_clear_inode_state(inode,
1504 					EXT4_STATE_MAY_INLINE_DATA);
1505 			/*
1506 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1507 			 * S_DAX may be disabled
1508 			 */
1509 			ext4_set_inode_flags(inode, false);
1510 		}
1511 		return res;
1512 	}
1513 
1514 	res = dquot_initialize(inode);
1515 	if (res)
1516 		return res;
1517 retry:
1518 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1519 				     &credits);
1520 	if (res)
1521 		return res;
1522 
1523 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1524 	if (IS_ERR(handle))
1525 		return PTR_ERR(handle);
1526 
1527 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1528 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1529 				    ctx, len, 0);
1530 	if (!res) {
1531 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1532 		/*
1533 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1534 		 * S_DAX may be disabled
1535 		 */
1536 		ext4_set_inode_flags(inode, false);
1537 		res = ext4_mark_inode_dirty(handle, inode);
1538 		if (res)
1539 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1540 	}
1541 	res2 = ext4_journal_stop(handle);
1542 
1543 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1544 		goto retry;
1545 	if (!res)
1546 		res = res2;
1547 	return res;
1548 }
1549 
ext4_get_dummy_policy(struct super_block * sb)1550 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1551 {
1552 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1553 }
1554 
ext4_has_stable_inodes(struct super_block * sb)1555 static bool ext4_has_stable_inodes(struct super_block *sb)
1556 {
1557 	return ext4_has_feature_stable_inodes(sb);
1558 }
1559 
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1560 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1561 				       int *ino_bits_ret, int *lblk_bits_ret)
1562 {
1563 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1564 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1565 }
1566 
1567 static const struct fscrypt_operations ext4_cryptops = {
1568 	.key_prefix		= "ext4:",
1569 	.get_context		= ext4_get_context,
1570 	.set_context		= ext4_set_context,
1571 	.get_dummy_policy	= ext4_get_dummy_policy,
1572 	.empty_dir		= ext4_empty_dir,
1573 	.max_namelen		= EXT4_NAME_LEN,
1574 	.has_stable_inodes	= ext4_has_stable_inodes,
1575 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1576 };
1577 #endif
1578 
1579 #ifdef CONFIG_QUOTA
1580 static const char * const quotatypes[] = INITQFNAMES;
1581 #define QTYPE2NAME(t) (quotatypes[t])
1582 
1583 static int ext4_write_dquot(struct dquot *dquot);
1584 static int ext4_acquire_dquot(struct dquot *dquot);
1585 static int ext4_release_dquot(struct dquot *dquot);
1586 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1587 static int ext4_write_info(struct super_block *sb, int type);
1588 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1589 			 const struct path *path);
1590 static int ext4_quota_on_mount(struct super_block *sb, int type);
1591 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1592 			       size_t len, loff_t off);
1593 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1594 				const char *data, size_t len, loff_t off);
1595 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1596 			     unsigned int flags);
1597 static int ext4_enable_quotas(struct super_block *sb);
1598 
ext4_get_dquots(struct inode * inode)1599 static struct dquot **ext4_get_dquots(struct inode *inode)
1600 {
1601 	return EXT4_I(inode)->i_dquot;
1602 }
1603 
1604 static const struct dquot_operations ext4_quota_operations = {
1605 	.get_reserved_space	= ext4_get_reserved_space,
1606 	.write_dquot		= ext4_write_dquot,
1607 	.acquire_dquot		= ext4_acquire_dquot,
1608 	.release_dquot		= ext4_release_dquot,
1609 	.mark_dirty		= ext4_mark_dquot_dirty,
1610 	.write_info		= ext4_write_info,
1611 	.alloc_dquot		= dquot_alloc,
1612 	.destroy_dquot		= dquot_destroy,
1613 	.get_projid		= ext4_get_projid,
1614 	.get_inode_usage	= ext4_get_inode_usage,
1615 	.get_next_id		= dquot_get_next_id,
1616 };
1617 
1618 static const struct quotactl_ops ext4_qctl_operations = {
1619 	.quota_on	= ext4_quota_on,
1620 	.quota_off	= ext4_quota_off,
1621 	.quota_sync	= dquot_quota_sync,
1622 	.get_state	= dquot_get_state,
1623 	.set_info	= dquot_set_dqinfo,
1624 	.get_dqblk	= dquot_get_dqblk,
1625 	.set_dqblk	= dquot_set_dqblk,
1626 	.get_nextdqblk	= dquot_get_next_dqblk,
1627 };
1628 #endif
1629 
1630 static const struct super_operations ext4_sops = {
1631 	.alloc_inode	= ext4_alloc_inode,
1632 	.free_inode	= ext4_free_in_core_inode,
1633 	.destroy_inode	= ext4_destroy_inode,
1634 	.write_inode	= ext4_write_inode,
1635 	.dirty_inode	= ext4_dirty_inode,
1636 	.drop_inode	= ext4_drop_inode,
1637 	.evict_inode	= ext4_evict_inode,
1638 	.put_super	= ext4_put_super,
1639 	.sync_fs	= ext4_sync_fs,
1640 	.freeze_fs	= ext4_freeze,
1641 	.unfreeze_fs	= ext4_unfreeze,
1642 	.statfs		= ext4_statfs,
1643 	.remount_fs	= ext4_remount,
1644 	.show_options	= ext4_show_options,
1645 #ifdef CONFIG_QUOTA
1646 	.quota_read	= ext4_quota_read,
1647 	.quota_write	= ext4_quota_write,
1648 	.get_dquots	= ext4_get_dquots,
1649 #endif
1650 };
1651 
1652 static const struct export_operations ext4_export_ops = {
1653 	.fh_to_dentry = ext4_fh_to_dentry,
1654 	.fh_to_parent = ext4_fh_to_parent,
1655 	.get_parent = ext4_get_parent,
1656 	.commit_metadata = ext4_nfs_commit_metadata,
1657 };
1658 
1659 enum {
1660 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1661 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1662 	Opt_nouid32, Opt_debug, Opt_removed,
1663 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1664 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1665 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1666 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1667 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1668 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1669 	Opt_inlinecrypt,
1670 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1671 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1672 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1673 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1674 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1675 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1676 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1677 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1678 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1679 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1680 	Opt_dioread_nolock, Opt_dioread_lock,
1681 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1682 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1683 	Opt_prefetch_block_bitmaps,
1684 #ifdef CONFIG_EXT4_DEBUG
1685 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1686 #endif
1687 };
1688 
1689 static const match_table_t tokens = {
1690 	{Opt_bsd_df, "bsddf"},
1691 	{Opt_minix_df, "minixdf"},
1692 	{Opt_grpid, "grpid"},
1693 	{Opt_grpid, "bsdgroups"},
1694 	{Opt_nogrpid, "nogrpid"},
1695 	{Opt_nogrpid, "sysvgroups"},
1696 	{Opt_resgid, "resgid=%u"},
1697 	{Opt_resuid, "resuid=%u"},
1698 	{Opt_sb, "sb=%u"},
1699 	{Opt_err_cont, "errors=continue"},
1700 	{Opt_err_panic, "errors=panic"},
1701 	{Opt_err_ro, "errors=remount-ro"},
1702 	{Opt_nouid32, "nouid32"},
1703 	{Opt_debug, "debug"},
1704 	{Opt_removed, "oldalloc"},
1705 	{Opt_removed, "orlov"},
1706 	{Opt_user_xattr, "user_xattr"},
1707 	{Opt_nouser_xattr, "nouser_xattr"},
1708 	{Opt_acl, "acl"},
1709 	{Opt_noacl, "noacl"},
1710 	{Opt_noload, "norecovery"},
1711 	{Opt_noload, "noload"},
1712 	{Opt_removed, "nobh"},
1713 	{Opt_removed, "bh"},
1714 	{Opt_commit, "commit=%u"},
1715 	{Opt_min_batch_time, "min_batch_time=%u"},
1716 	{Opt_max_batch_time, "max_batch_time=%u"},
1717 	{Opt_journal_dev, "journal_dev=%u"},
1718 	{Opt_journal_path, "journal_path=%s"},
1719 	{Opt_journal_checksum, "journal_checksum"},
1720 	{Opt_nojournal_checksum, "nojournal_checksum"},
1721 	{Opt_journal_async_commit, "journal_async_commit"},
1722 	{Opt_abort, "abort"},
1723 	{Opt_data_journal, "data=journal"},
1724 	{Opt_data_ordered, "data=ordered"},
1725 	{Opt_data_writeback, "data=writeback"},
1726 	{Opt_data_err_abort, "data_err=abort"},
1727 	{Opt_data_err_ignore, "data_err=ignore"},
1728 	{Opt_offusrjquota, "usrjquota="},
1729 	{Opt_usrjquota, "usrjquota=%s"},
1730 	{Opt_offgrpjquota, "grpjquota="},
1731 	{Opt_grpjquota, "grpjquota=%s"},
1732 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1733 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1734 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1735 	{Opt_grpquota, "grpquota"},
1736 	{Opt_noquota, "noquota"},
1737 	{Opt_quota, "quota"},
1738 	{Opt_usrquota, "usrquota"},
1739 	{Opt_prjquota, "prjquota"},
1740 	{Opt_barrier, "barrier=%u"},
1741 	{Opt_barrier, "barrier"},
1742 	{Opt_nobarrier, "nobarrier"},
1743 	{Opt_i_version, "i_version"},
1744 	{Opt_dax, "dax"},
1745 	{Opt_dax_always, "dax=always"},
1746 	{Opt_dax_inode, "dax=inode"},
1747 	{Opt_dax_never, "dax=never"},
1748 	{Opt_stripe, "stripe=%u"},
1749 	{Opt_delalloc, "delalloc"},
1750 	{Opt_warn_on_error, "warn_on_error"},
1751 	{Opt_nowarn_on_error, "nowarn_on_error"},
1752 	{Opt_lazytime, "lazytime"},
1753 	{Opt_nolazytime, "nolazytime"},
1754 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1755 	{Opt_nodelalloc, "nodelalloc"},
1756 	{Opt_removed, "mblk_io_submit"},
1757 	{Opt_removed, "nomblk_io_submit"},
1758 	{Opt_block_validity, "block_validity"},
1759 	{Opt_noblock_validity, "noblock_validity"},
1760 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1761 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1762 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1763 	{Opt_auto_da_alloc, "auto_da_alloc"},
1764 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1765 	{Opt_dioread_nolock, "dioread_nolock"},
1766 	{Opt_dioread_lock, "nodioread_nolock"},
1767 	{Opt_dioread_lock, "dioread_lock"},
1768 	{Opt_discard, "discard"},
1769 	{Opt_nodiscard, "nodiscard"},
1770 	{Opt_init_itable, "init_itable=%u"},
1771 	{Opt_init_itable, "init_itable"},
1772 	{Opt_noinit_itable, "noinit_itable"},
1773 #ifdef CONFIG_EXT4_DEBUG
1774 	{Opt_fc_debug_force, "fc_debug_force"},
1775 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1776 #endif
1777 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1778 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1779 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1780 	{Opt_inlinecrypt, "inlinecrypt"},
1781 	{Opt_nombcache, "nombcache"},
1782 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1783 	{Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1784 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1785 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1786 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1787 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1788 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1789 	{Opt_err, NULL},
1790 };
1791 
get_sb_block(void ** data)1792 static ext4_fsblk_t get_sb_block(void **data)
1793 {
1794 	ext4_fsblk_t	sb_block;
1795 	char		*options = (char *) *data;
1796 
1797 	if (!options || strncmp(options, "sb=", 3) != 0)
1798 		return 1;	/* Default location */
1799 
1800 	options += 3;
1801 	/* TODO: use simple_strtoll with >32bit ext4 */
1802 	sb_block = simple_strtoul(options, &options, 0);
1803 	if (*options && *options != ',') {
1804 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1805 		       (char *) *data);
1806 		return 1;
1807 	}
1808 	if (*options == ',')
1809 		options++;
1810 	*data = (void *) options;
1811 
1812 	return sb_block;
1813 }
1814 
1815 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1816 static const char deprecated_msg[] =
1817 	"Mount option \"%s\" will be removed by %s\n"
1818 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1819 
1820 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1821 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1822 {
1823 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1824 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1825 	int ret = -1;
1826 
1827 	if (sb_any_quota_loaded(sb) && !old_qname) {
1828 		ext4_msg(sb, KERN_ERR,
1829 			"Cannot change journaled "
1830 			"quota options when quota turned on");
1831 		return -1;
1832 	}
1833 	if (ext4_has_feature_quota(sb)) {
1834 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1835 			 "ignored when QUOTA feature is enabled");
1836 		return 1;
1837 	}
1838 	qname = match_strdup(args);
1839 	if (!qname) {
1840 		ext4_msg(sb, KERN_ERR,
1841 			"Not enough memory for storing quotafile name");
1842 		return -1;
1843 	}
1844 	if (old_qname) {
1845 		if (strcmp(old_qname, qname) == 0)
1846 			ret = 1;
1847 		else
1848 			ext4_msg(sb, KERN_ERR,
1849 				 "%s quota file already specified",
1850 				 QTYPE2NAME(qtype));
1851 		goto errout;
1852 	}
1853 	if (strchr(qname, '/')) {
1854 		ext4_msg(sb, KERN_ERR,
1855 			"quotafile must be on filesystem root");
1856 		goto errout;
1857 	}
1858 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1859 	set_opt(sb, QUOTA);
1860 	return 1;
1861 errout:
1862 	kfree(qname);
1863 	return ret;
1864 }
1865 
clear_qf_name(struct super_block * sb,int qtype)1866 static int clear_qf_name(struct super_block *sb, int qtype)
1867 {
1868 
1869 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1870 	char *old_qname = get_qf_name(sb, sbi, qtype);
1871 
1872 	if (sb_any_quota_loaded(sb) && old_qname) {
1873 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1874 			" when quota turned on");
1875 		return -1;
1876 	}
1877 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1878 	synchronize_rcu();
1879 	kfree(old_qname);
1880 	return 1;
1881 }
1882 #endif
1883 
1884 #define MOPT_SET	0x0001
1885 #define MOPT_CLEAR	0x0002
1886 #define MOPT_NOSUPPORT	0x0004
1887 #define MOPT_EXPLICIT	0x0008
1888 #define MOPT_CLEAR_ERR	0x0010
1889 #define MOPT_GTE0	0x0020
1890 #ifdef CONFIG_QUOTA
1891 #define MOPT_Q		0
1892 #define MOPT_QFMT	0x0040
1893 #else
1894 #define MOPT_Q		MOPT_NOSUPPORT
1895 #define MOPT_QFMT	MOPT_NOSUPPORT
1896 #endif
1897 #define MOPT_DATAJ	0x0080
1898 #define MOPT_NO_EXT2	0x0100
1899 #define MOPT_NO_EXT3	0x0200
1900 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1901 #define MOPT_STRING	0x0400
1902 #define MOPT_SKIP	0x0800
1903 #define	MOPT_2		0x1000
1904 
1905 static const struct mount_opts {
1906 	int	token;
1907 	int	mount_opt;
1908 	int	flags;
1909 } ext4_mount_opts[] = {
1910 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1911 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1912 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1913 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1914 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1915 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1916 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1917 	 MOPT_EXT4_ONLY | MOPT_SET},
1918 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1919 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1920 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1921 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1922 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1923 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1924 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1925 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1926 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1927 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1928 	{Opt_commit, 0, MOPT_NO_EXT2},
1929 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1930 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1931 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1932 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1933 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1934 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1935 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1937 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1938 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1939 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1940 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1941 	 MOPT_NO_EXT2},
1942 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1943 	 MOPT_NO_EXT2},
1944 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1945 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1946 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1947 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1948 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1949 	{Opt_commit, 0, MOPT_GTE0},
1950 	{Opt_max_batch_time, 0, MOPT_GTE0},
1951 	{Opt_min_batch_time, 0, MOPT_GTE0},
1952 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1953 	{Opt_init_itable, 0, MOPT_GTE0},
1954 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1955 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1956 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1957 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1958 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1959 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1960 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1961 	{Opt_stripe, 0, MOPT_GTE0},
1962 	{Opt_resuid, 0, MOPT_GTE0},
1963 	{Opt_resgid, 0, MOPT_GTE0},
1964 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1965 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1966 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1967 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1968 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1969 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1970 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1971 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1972 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1973 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1974 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1975 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1976 #else
1977 	{Opt_acl, 0, MOPT_NOSUPPORT},
1978 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1979 #endif
1980 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1981 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1982 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1983 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1984 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1985 							MOPT_SET | MOPT_Q},
1986 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1987 							MOPT_SET | MOPT_Q},
1988 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1989 							MOPT_SET | MOPT_Q},
1990 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1991 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1992 							MOPT_CLEAR | MOPT_Q},
1993 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1994 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1995 	{Opt_offusrjquota, 0, MOPT_Q},
1996 	{Opt_offgrpjquota, 0, MOPT_Q},
1997 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1998 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1999 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2000 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2001 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2002 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2003 	{Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2004 	 MOPT_SET},
2005 #ifdef CONFIG_EXT4_DEBUG
2006 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2007 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2008 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2009 #endif
2010 	{Opt_err, 0, 0}
2011 };
2012 
2013 #ifdef CONFIG_UNICODE
2014 static const struct ext4_sb_encodings {
2015 	__u16 magic;
2016 	char *name;
2017 	char *version;
2018 } ext4_sb_encoding_map[] = {
2019 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2020 };
2021 
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2022 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2023 				 const struct ext4_sb_encodings **encoding,
2024 				 __u16 *flags)
2025 {
2026 	__u16 magic = le16_to_cpu(es->s_encoding);
2027 	int i;
2028 
2029 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2030 		if (magic == ext4_sb_encoding_map[i].magic)
2031 			break;
2032 
2033 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2034 		return -EINVAL;
2035 
2036 	*encoding = &ext4_sb_encoding_map[i];
2037 	*flags = le16_to_cpu(es->s_encoding_flags);
2038 
2039 	return 0;
2040 }
2041 #endif
2042 
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2043 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2044 					  const char *opt,
2045 					  const substring_t *arg,
2046 					  bool is_remount)
2047 {
2048 #ifdef CONFIG_FS_ENCRYPTION
2049 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2050 	int err;
2051 
2052 	if (!ext4_has_feature_encrypt(sb)) {
2053 		ext4_msg(sb, KERN_WARNING,
2054 			 "test_dummy_encryption requires encrypt feature");
2055 		return -1;
2056 	}
2057 
2058 	/*
2059 	 * This mount option is just for testing, and it's not worthwhile to
2060 	 * implement the extra complexity (e.g. RCU protection) that would be
2061 	 * needed to allow it to be set or changed during remount.  We do allow
2062 	 * it to be specified during remount, but only if there is no change.
2063 	 */
2064 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2065 		ext4_msg(sb, KERN_WARNING,
2066 			 "Can't set test_dummy_encryption on remount");
2067 		return -1;
2068 	}
2069 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2070 						&sbi->s_dummy_enc_policy);
2071 	if (err) {
2072 		if (err == -EEXIST)
2073 			ext4_msg(sb, KERN_WARNING,
2074 				 "Can't change test_dummy_encryption on remount");
2075 		else if (err == -EINVAL)
2076 			ext4_msg(sb, KERN_WARNING,
2077 				 "Value of option \"%s\" is unrecognized", opt);
2078 		else
2079 			ext4_msg(sb, KERN_WARNING,
2080 				 "Error processing option \"%s\" [%d]",
2081 				 opt, err);
2082 		return -1;
2083 	}
2084 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2085 	return 1;
2086 #else
2087 	ext4_msg(sb, KERN_WARNING,
2088 		 "test_dummy_encryption option not supported");
2089 	return -1;
2090 
2091 #endif
2092 }
2093 
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2094 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2095 			    substring_t *args, unsigned long *journal_devnum,
2096 			    unsigned int *journal_ioprio, int is_remount)
2097 {
2098 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2099 	const struct mount_opts *m;
2100 	kuid_t uid;
2101 	kgid_t gid;
2102 	int arg = 0;
2103 
2104 #ifdef CONFIG_QUOTA
2105 	if (token == Opt_usrjquota)
2106 		return set_qf_name(sb, USRQUOTA, &args[0]);
2107 	else if (token == Opt_grpjquota)
2108 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2109 	else if (token == Opt_offusrjquota)
2110 		return clear_qf_name(sb, USRQUOTA);
2111 	else if (token == Opt_offgrpjquota)
2112 		return clear_qf_name(sb, GRPQUOTA);
2113 #endif
2114 	switch (token) {
2115 	case Opt_noacl:
2116 	case Opt_nouser_xattr:
2117 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2118 		break;
2119 	case Opt_sb:
2120 		return 1;	/* handled by get_sb_block() */
2121 	case Opt_removed:
2122 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2123 		return 1;
2124 	case Opt_abort:
2125 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2126 		return 1;
2127 	case Opt_i_version:
2128 		sb->s_flags |= SB_I_VERSION;
2129 		return 1;
2130 	case Opt_lazytime:
2131 		sb->s_flags |= SB_LAZYTIME;
2132 		return 1;
2133 	case Opt_nolazytime:
2134 		sb->s_flags &= ~SB_LAZYTIME;
2135 		return 1;
2136 	case Opt_inlinecrypt:
2137 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2138 		sb->s_flags |= SB_INLINECRYPT;
2139 #else
2140 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2141 #endif
2142 		return 1;
2143 	}
2144 
2145 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2146 		if (token == m->token)
2147 			break;
2148 
2149 	if (m->token == Opt_err) {
2150 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2151 			 "or missing value", opt);
2152 		return -1;
2153 	}
2154 
2155 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2156 		ext4_msg(sb, KERN_ERR,
2157 			 "Mount option \"%s\" incompatible with ext2", opt);
2158 		return -1;
2159 	}
2160 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2161 		ext4_msg(sb, KERN_ERR,
2162 			 "Mount option \"%s\" incompatible with ext3", opt);
2163 		return -1;
2164 	}
2165 
2166 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2167 		return -1;
2168 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2169 		return -1;
2170 	if (m->flags & MOPT_EXPLICIT) {
2171 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2172 			set_opt2(sb, EXPLICIT_DELALLOC);
2173 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2174 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2175 		} else
2176 			return -1;
2177 	}
2178 	if (m->flags & MOPT_CLEAR_ERR)
2179 		clear_opt(sb, ERRORS_MASK);
2180 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2181 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2182 			 "options when quota turned on");
2183 		return -1;
2184 	}
2185 
2186 	if (m->flags & MOPT_NOSUPPORT) {
2187 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2188 	} else if (token == Opt_commit) {
2189 		if (arg == 0)
2190 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2191 		else if (arg > INT_MAX / HZ) {
2192 			ext4_msg(sb, KERN_ERR,
2193 				 "Invalid commit interval %d, "
2194 				 "must be smaller than %d",
2195 				 arg, INT_MAX / HZ);
2196 			return -1;
2197 		}
2198 		sbi->s_commit_interval = HZ * arg;
2199 	} else if (token == Opt_debug_want_extra_isize) {
2200 		if ((arg & 1) ||
2201 		    (arg < 4) ||
2202 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2203 			ext4_msg(sb, KERN_ERR,
2204 				 "Invalid want_extra_isize %d", arg);
2205 			return -1;
2206 		}
2207 		sbi->s_want_extra_isize = arg;
2208 	} else if (token == Opt_max_batch_time) {
2209 		sbi->s_max_batch_time = arg;
2210 	} else if (token == Opt_min_batch_time) {
2211 		sbi->s_min_batch_time = arg;
2212 	} else if (token == Opt_inode_readahead_blks) {
2213 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2214 			ext4_msg(sb, KERN_ERR,
2215 				 "EXT4-fs: inode_readahead_blks must be "
2216 				 "0 or a power of 2 smaller than 2^31");
2217 			return -1;
2218 		}
2219 		sbi->s_inode_readahead_blks = arg;
2220 	} else if (token == Opt_init_itable) {
2221 		set_opt(sb, INIT_INODE_TABLE);
2222 		if (!args->from)
2223 			arg = EXT4_DEF_LI_WAIT_MULT;
2224 		sbi->s_li_wait_mult = arg;
2225 	} else if (token == Opt_max_dir_size_kb) {
2226 		sbi->s_max_dir_size_kb = arg;
2227 #ifdef CONFIG_EXT4_DEBUG
2228 	} else if (token == Opt_fc_debug_max_replay) {
2229 		sbi->s_fc_debug_max_replay = arg;
2230 #endif
2231 	} else if (token == Opt_stripe) {
2232 		sbi->s_stripe = arg;
2233 	} else if (token == Opt_resuid) {
2234 		uid = make_kuid(current_user_ns(), arg);
2235 		if (!uid_valid(uid)) {
2236 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2237 			return -1;
2238 		}
2239 		sbi->s_resuid = uid;
2240 	} else if (token == Opt_resgid) {
2241 		gid = make_kgid(current_user_ns(), arg);
2242 		if (!gid_valid(gid)) {
2243 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2244 			return -1;
2245 		}
2246 		sbi->s_resgid = gid;
2247 	} else if (token == Opt_journal_dev) {
2248 		if (is_remount) {
2249 			ext4_msg(sb, KERN_ERR,
2250 				 "Cannot specify journal on remount");
2251 			return -1;
2252 		}
2253 		*journal_devnum = arg;
2254 	} else if (token == Opt_journal_path) {
2255 		char *journal_path;
2256 		struct inode *journal_inode;
2257 		struct path path;
2258 		int error;
2259 
2260 		if (is_remount) {
2261 			ext4_msg(sb, KERN_ERR,
2262 				 "Cannot specify journal on remount");
2263 			return -1;
2264 		}
2265 		journal_path = match_strdup(&args[0]);
2266 		if (!journal_path) {
2267 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2268 				"journal device string");
2269 			return -1;
2270 		}
2271 
2272 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2273 		if (error) {
2274 			ext4_msg(sb, KERN_ERR, "error: could not find "
2275 				"journal device path: error %d", error);
2276 			kfree(journal_path);
2277 			return -1;
2278 		}
2279 
2280 		journal_inode = d_inode(path.dentry);
2281 		if (!S_ISBLK(journal_inode->i_mode)) {
2282 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2283 				"is not a block device", journal_path);
2284 			path_put(&path);
2285 			kfree(journal_path);
2286 			return -1;
2287 		}
2288 
2289 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
2290 		path_put(&path);
2291 		kfree(journal_path);
2292 	} else if (token == Opt_journal_ioprio) {
2293 		if (arg > 7) {
2294 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2295 				 " (must be 0-7)");
2296 			return -1;
2297 		}
2298 		*journal_ioprio =
2299 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2300 	} else if (token == Opt_test_dummy_encryption) {
2301 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2302 						      is_remount);
2303 	} else if (m->flags & MOPT_DATAJ) {
2304 		if (is_remount) {
2305 			if (!sbi->s_journal)
2306 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2307 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2308 				ext4_msg(sb, KERN_ERR,
2309 					 "Cannot change data mode on remount");
2310 				return -1;
2311 			}
2312 		} else {
2313 			clear_opt(sb, DATA_FLAGS);
2314 			sbi->s_mount_opt |= m->mount_opt;
2315 		}
2316 #ifdef CONFIG_QUOTA
2317 	} else if (m->flags & MOPT_QFMT) {
2318 		if (sb_any_quota_loaded(sb) &&
2319 		    sbi->s_jquota_fmt != m->mount_opt) {
2320 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2321 				 "quota options when quota turned on");
2322 			return -1;
2323 		}
2324 		if (ext4_has_feature_quota(sb)) {
2325 			ext4_msg(sb, KERN_INFO,
2326 				 "Quota format mount options ignored "
2327 				 "when QUOTA feature is enabled");
2328 			return 1;
2329 		}
2330 		sbi->s_jquota_fmt = m->mount_opt;
2331 #endif
2332 	} else if (token == Opt_dax || token == Opt_dax_always ||
2333 		   token == Opt_dax_inode || token == Opt_dax_never) {
2334 #ifdef CONFIG_FS_DAX
2335 		switch (token) {
2336 		case Opt_dax:
2337 		case Opt_dax_always:
2338 			if (is_remount &&
2339 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2340 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2341 			fail_dax_change_remount:
2342 				ext4_msg(sb, KERN_ERR, "can't change "
2343 					 "dax mount option while remounting");
2344 				return -1;
2345 			}
2346 			if (is_remount &&
2347 			    (test_opt(sb, DATA_FLAGS) ==
2348 			     EXT4_MOUNT_JOURNAL_DATA)) {
2349 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2350 					     "both data=journal and dax");
2351 				    return -1;
2352 			}
2353 			ext4_msg(sb, KERN_WARNING,
2354 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2355 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2356 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2357 			break;
2358 		case Opt_dax_never:
2359 			if (is_remount &&
2360 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2361 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2362 				goto fail_dax_change_remount;
2363 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2364 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2365 			break;
2366 		case Opt_dax_inode:
2367 			if (is_remount &&
2368 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2369 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2370 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2371 				goto fail_dax_change_remount;
2372 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2373 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2374 			/* Strictly for printing options */
2375 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2376 			break;
2377 		}
2378 #else
2379 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2380 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2381 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2382 		return -1;
2383 #endif
2384 	} else if (token == Opt_data_err_abort) {
2385 		sbi->s_mount_opt |= m->mount_opt;
2386 	} else if (token == Opt_data_err_ignore) {
2387 		sbi->s_mount_opt &= ~m->mount_opt;
2388 	} else {
2389 		if (!args->from)
2390 			arg = 1;
2391 		if (m->flags & MOPT_CLEAR)
2392 			arg = !arg;
2393 		else if (unlikely(!(m->flags & MOPT_SET))) {
2394 			ext4_msg(sb, KERN_WARNING,
2395 				 "buggy handling of option %s", opt);
2396 			WARN_ON(1);
2397 			return -1;
2398 		}
2399 		if (m->flags & MOPT_2) {
2400 			if (arg != 0)
2401 				sbi->s_mount_opt2 |= m->mount_opt;
2402 			else
2403 				sbi->s_mount_opt2 &= ~m->mount_opt;
2404 		} else {
2405 			if (arg != 0)
2406 				sbi->s_mount_opt |= m->mount_opt;
2407 			else
2408 				sbi->s_mount_opt &= ~m->mount_opt;
2409 		}
2410 	}
2411 	return 1;
2412 }
2413 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2414 static int parse_options(char *options, struct super_block *sb,
2415 			 unsigned long *journal_devnum,
2416 			 unsigned int *journal_ioprio,
2417 			 int is_remount)
2418 {
2419 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2420 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2421 	substring_t args[MAX_OPT_ARGS];
2422 	int token;
2423 
2424 	if (!options)
2425 		return 1;
2426 
2427 	while ((p = strsep(&options, ",")) != NULL) {
2428 		if (!*p)
2429 			continue;
2430 		/*
2431 		 * Initialize args struct so we know whether arg was
2432 		 * found; some options take optional arguments.
2433 		 */
2434 		args[0].to = args[0].from = NULL;
2435 		token = match_token(p, tokens, args);
2436 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
2437 				     journal_ioprio, is_remount) < 0)
2438 			return 0;
2439 	}
2440 #ifdef CONFIG_QUOTA
2441 	/*
2442 	 * We do the test below only for project quotas. 'usrquota' and
2443 	 * 'grpquota' mount options are allowed even without quota feature
2444 	 * to support legacy quotas in quota files.
2445 	 */
2446 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2447 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2448 			 "Cannot enable project quota enforcement.");
2449 		return 0;
2450 	}
2451 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2452 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2453 	if (usr_qf_name || grp_qf_name) {
2454 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2455 			clear_opt(sb, USRQUOTA);
2456 
2457 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2458 			clear_opt(sb, GRPQUOTA);
2459 
2460 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2461 			ext4_msg(sb, KERN_ERR, "old and new quota "
2462 					"format mixing");
2463 			return 0;
2464 		}
2465 
2466 		if (!sbi->s_jquota_fmt) {
2467 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2468 					"not specified");
2469 			return 0;
2470 		}
2471 	}
2472 #endif
2473 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2474 		int blocksize =
2475 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2476 		if (blocksize < PAGE_SIZE)
2477 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2478 				 "experimental mount option 'dioread_nolock' "
2479 				 "for blocksize < PAGE_SIZE");
2480 	}
2481 	return 1;
2482 }
2483 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2484 static inline void ext4_show_quota_options(struct seq_file *seq,
2485 					   struct super_block *sb)
2486 {
2487 #if defined(CONFIG_QUOTA)
2488 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2489 	char *usr_qf_name, *grp_qf_name;
2490 
2491 	if (sbi->s_jquota_fmt) {
2492 		char *fmtname = "";
2493 
2494 		switch (sbi->s_jquota_fmt) {
2495 		case QFMT_VFS_OLD:
2496 			fmtname = "vfsold";
2497 			break;
2498 		case QFMT_VFS_V0:
2499 			fmtname = "vfsv0";
2500 			break;
2501 		case QFMT_VFS_V1:
2502 			fmtname = "vfsv1";
2503 			break;
2504 		}
2505 		seq_printf(seq, ",jqfmt=%s", fmtname);
2506 	}
2507 
2508 	rcu_read_lock();
2509 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2510 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2511 	if (usr_qf_name)
2512 		seq_show_option(seq, "usrjquota", usr_qf_name);
2513 	if (grp_qf_name)
2514 		seq_show_option(seq, "grpjquota", grp_qf_name);
2515 	rcu_read_unlock();
2516 #endif
2517 }
2518 
token2str(int token)2519 static const char *token2str(int token)
2520 {
2521 	const struct match_token *t;
2522 
2523 	for (t = tokens; t->token != Opt_err; t++)
2524 		if (t->token == token && !strchr(t->pattern, '='))
2525 			break;
2526 	return t->pattern;
2527 }
2528 
2529 /*
2530  * Show an option if
2531  *  - it's set to a non-default value OR
2532  *  - if the per-sb default is different from the global default
2533  */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2534 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2535 			      int nodefs)
2536 {
2537 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2538 	struct ext4_super_block *es = sbi->s_es;
2539 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2540 	const struct mount_opts *m;
2541 	char sep = nodefs ? '\n' : ',';
2542 
2543 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2544 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2545 
2546 	if (sbi->s_sb_block != 1)
2547 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2548 
2549 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2550 		int want_set = m->flags & MOPT_SET;
2551 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2552 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2553 			continue;
2554 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2555 			continue; /* skip if same as the default */
2556 		if ((want_set &&
2557 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2558 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2559 			continue; /* select Opt_noFoo vs Opt_Foo */
2560 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2561 	}
2562 
2563 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2564 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2565 		SEQ_OPTS_PRINT("resuid=%u",
2566 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2567 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2568 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2569 		SEQ_OPTS_PRINT("resgid=%u",
2570 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2571 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2572 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2573 		SEQ_OPTS_PUTS("errors=remount-ro");
2574 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2575 		SEQ_OPTS_PUTS("errors=continue");
2576 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2577 		SEQ_OPTS_PUTS("errors=panic");
2578 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2579 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2580 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2581 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2582 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2583 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2584 	if (sb->s_flags & SB_I_VERSION)
2585 		SEQ_OPTS_PUTS("i_version");
2586 	if (nodefs || sbi->s_stripe)
2587 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2588 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2589 			(sbi->s_mount_opt ^ def_mount_opt)) {
2590 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2591 			SEQ_OPTS_PUTS("data=journal");
2592 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2593 			SEQ_OPTS_PUTS("data=ordered");
2594 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2595 			SEQ_OPTS_PUTS("data=writeback");
2596 	}
2597 	if (nodefs ||
2598 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2599 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2600 			       sbi->s_inode_readahead_blks);
2601 
2602 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2603 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2604 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2605 	if (nodefs || sbi->s_max_dir_size_kb)
2606 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2607 	if (test_opt(sb, DATA_ERR_ABORT))
2608 		SEQ_OPTS_PUTS("data_err=abort");
2609 
2610 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2611 
2612 	if (sb->s_flags & SB_INLINECRYPT)
2613 		SEQ_OPTS_PUTS("inlinecrypt");
2614 
2615 	if (test_opt(sb, DAX_ALWAYS)) {
2616 		if (IS_EXT2_SB(sb))
2617 			SEQ_OPTS_PUTS("dax");
2618 		else
2619 			SEQ_OPTS_PUTS("dax=always");
2620 	} else if (test_opt2(sb, DAX_NEVER)) {
2621 		SEQ_OPTS_PUTS("dax=never");
2622 	} else if (test_opt2(sb, DAX_INODE)) {
2623 		SEQ_OPTS_PUTS("dax=inode");
2624 	}
2625 	ext4_show_quota_options(seq, sb);
2626 	return 0;
2627 }
2628 
ext4_show_options(struct seq_file * seq,struct dentry * root)2629 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2630 {
2631 	return _ext4_show_options(seq, root->d_sb, 0);
2632 }
2633 
ext4_seq_options_show(struct seq_file * seq,void * offset)2634 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2635 {
2636 	struct super_block *sb = seq->private;
2637 	int rc;
2638 
2639 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2640 	rc = _ext4_show_options(seq, sb, 1);
2641 	seq_puts(seq, "\n");
2642 	return rc;
2643 }
2644 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2645 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2646 			    int read_only)
2647 {
2648 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2649 	int err = 0;
2650 
2651 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2652 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2653 			 "forcing read-only mode");
2654 		err = -EROFS;
2655 		goto done;
2656 	}
2657 	if (read_only)
2658 		goto done;
2659 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2660 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2661 			 "running e2fsck is recommended");
2662 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2663 		ext4_msg(sb, KERN_WARNING,
2664 			 "warning: mounting fs with errors, "
2665 			 "running e2fsck is recommended");
2666 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2667 		 le16_to_cpu(es->s_mnt_count) >=
2668 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2669 		ext4_msg(sb, KERN_WARNING,
2670 			 "warning: maximal mount count reached, "
2671 			 "running e2fsck is recommended");
2672 	else if (le32_to_cpu(es->s_checkinterval) &&
2673 		 (ext4_get_tstamp(es, s_lastcheck) +
2674 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2675 		ext4_msg(sb, KERN_WARNING,
2676 			 "warning: checktime reached, "
2677 			 "running e2fsck is recommended");
2678 	if (!sbi->s_journal)
2679 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2680 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2681 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2682 	le16_add_cpu(&es->s_mnt_count, 1);
2683 	ext4_update_tstamp(es, s_mtime);
2684 	if (sbi->s_journal)
2685 		ext4_set_feature_journal_needs_recovery(sb);
2686 
2687 	err = ext4_commit_super(sb);
2688 done:
2689 	if (test_opt(sb, DEBUG))
2690 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2691 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2692 			sb->s_blocksize,
2693 			sbi->s_groups_count,
2694 			EXT4_BLOCKS_PER_GROUP(sb),
2695 			EXT4_INODES_PER_GROUP(sb),
2696 			sbi->s_mount_opt, sbi->s_mount_opt2);
2697 
2698 	cleancache_init_fs(sb);
2699 	return err;
2700 }
2701 
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2702 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2703 {
2704 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2705 	struct flex_groups **old_groups, **new_groups;
2706 	int size, i, j;
2707 
2708 	if (!sbi->s_log_groups_per_flex)
2709 		return 0;
2710 
2711 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2712 	if (size <= sbi->s_flex_groups_allocated)
2713 		return 0;
2714 
2715 	new_groups = kvzalloc(roundup_pow_of_two(size *
2716 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2717 	if (!new_groups) {
2718 		ext4_msg(sb, KERN_ERR,
2719 			 "not enough memory for %d flex group pointers", size);
2720 		return -ENOMEM;
2721 	}
2722 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2723 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2724 					 sizeof(struct flex_groups)),
2725 					 GFP_KERNEL);
2726 		if (!new_groups[i]) {
2727 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2728 				kvfree(new_groups[j]);
2729 			kvfree(new_groups);
2730 			ext4_msg(sb, KERN_ERR,
2731 				 "not enough memory for %d flex groups", size);
2732 			return -ENOMEM;
2733 		}
2734 	}
2735 	rcu_read_lock();
2736 	old_groups = rcu_dereference(sbi->s_flex_groups);
2737 	if (old_groups)
2738 		memcpy(new_groups, old_groups,
2739 		       (sbi->s_flex_groups_allocated *
2740 			sizeof(struct flex_groups *)));
2741 	rcu_read_unlock();
2742 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2743 	sbi->s_flex_groups_allocated = size;
2744 	if (old_groups)
2745 		ext4_kvfree_array_rcu(old_groups);
2746 	return 0;
2747 }
2748 
ext4_fill_flex_info(struct super_block * sb)2749 static int ext4_fill_flex_info(struct super_block *sb)
2750 {
2751 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2752 	struct ext4_group_desc *gdp = NULL;
2753 	struct flex_groups *fg;
2754 	ext4_group_t flex_group;
2755 	int i, err;
2756 
2757 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2758 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2759 		sbi->s_log_groups_per_flex = 0;
2760 		return 1;
2761 	}
2762 
2763 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2764 	if (err)
2765 		goto failed;
2766 
2767 	for (i = 0; i < sbi->s_groups_count; i++) {
2768 		gdp = ext4_get_group_desc(sb, i, NULL);
2769 
2770 		flex_group = ext4_flex_group(sbi, i);
2771 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2772 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2773 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2774 			     &fg->free_clusters);
2775 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2776 	}
2777 
2778 	return 1;
2779 failed:
2780 	return 0;
2781 }
2782 
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2783 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2784 				   struct ext4_group_desc *gdp)
2785 {
2786 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2787 	__u16 crc = 0;
2788 	__le32 le_group = cpu_to_le32(block_group);
2789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2790 
2791 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2792 		/* Use new metadata_csum algorithm */
2793 		__u32 csum32;
2794 		__u16 dummy_csum = 0;
2795 
2796 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2797 				     sizeof(le_group));
2798 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2799 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2800 				     sizeof(dummy_csum));
2801 		offset += sizeof(dummy_csum);
2802 		if (offset < sbi->s_desc_size)
2803 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2804 					     sbi->s_desc_size - offset);
2805 
2806 		crc = csum32 & 0xFFFF;
2807 		goto out;
2808 	}
2809 
2810 	/* old crc16 code */
2811 	if (!ext4_has_feature_gdt_csum(sb))
2812 		return 0;
2813 
2814 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2815 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2816 	crc = crc16(crc, (__u8 *)gdp, offset);
2817 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2818 	/* for checksum of struct ext4_group_desc do the rest...*/
2819 	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2820 		crc = crc16(crc, (__u8 *)gdp + offset,
2821 			    sbi->s_desc_size - offset);
2822 
2823 out:
2824 	return cpu_to_le16(crc);
2825 }
2826 
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2827 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2828 				struct ext4_group_desc *gdp)
2829 {
2830 	if (ext4_has_group_desc_csum(sb) &&
2831 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2832 		return 0;
2833 
2834 	return 1;
2835 }
2836 
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2837 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2838 			      struct ext4_group_desc *gdp)
2839 {
2840 	if (!ext4_has_group_desc_csum(sb))
2841 		return;
2842 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2843 }
2844 
2845 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2846 static int ext4_check_descriptors(struct super_block *sb,
2847 				  ext4_fsblk_t sb_block,
2848 				  ext4_group_t *first_not_zeroed)
2849 {
2850 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2851 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2852 	ext4_fsblk_t last_block;
2853 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2854 	ext4_fsblk_t block_bitmap;
2855 	ext4_fsblk_t inode_bitmap;
2856 	ext4_fsblk_t inode_table;
2857 	int flexbg_flag = 0;
2858 	ext4_group_t i, grp = sbi->s_groups_count;
2859 
2860 	if (ext4_has_feature_flex_bg(sb))
2861 		flexbg_flag = 1;
2862 
2863 	ext4_debug("Checking group descriptors");
2864 
2865 	for (i = 0; i < sbi->s_groups_count; i++) {
2866 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2867 
2868 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2869 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2870 		else
2871 			last_block = first_block +
2872 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2873 
2874 		if ((grp == sbi->s_groups_count) &&
2875 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2876 			grp = i;
2877 
2878 		block_bitmap = ext4_block_bitmap(sb, gdp);
2879 		if (block_bitmap == sb_block) {
2880 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2881 				 "Block bitmap for group %u overlaps "
2882 				 "superblock", i);
2883 			if (!sb_rdonly(sb))
2884 				return 0;
2885 		}
2886 		if (block_bitmap >= sb_block + 1 &&
2887 		    block_bitmap <= last_bg_block) {
2888 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2889 				 "Block bitmap for group %u overlaps "
2890 				 "block group descriptors", i);
2891 			if (!sb_rdonly(sb))
2892 				return 0;
2893 		}
2894 		if (block_bitmap < first_block || block_bitmap > last_block) {
2895 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2896 			       "Block bitmap for group %u not in group "
2897 			       "(block %llu)!", i, block_bitmap);
2898 			return 0;
2899 		}
2900 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2901 		if (inode_bitmap == sb_block) {
2902 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 				 "Inode bitmap for group %u overlaps "
2904 				 "superblock", i);
2905 			if (!sb_rdonly(sb))
2906 				return 0;
2907 		}
2908 		if (inode_bitmap >= sb_block + 1 &&
2909 		    inode_bitmap <= last_bg_block) {
2910 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 				 "Inode bitmap for group %u overlaps "
2912 				 "block group descriptors", i);
2913 			if (!sb_rdonly(sb))
2914 				return 0;
2915 		}
2916 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2917 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 			       "Inode bitmap for group %u not in group "
2919 			       "(block %llu)!", i, inode_bitmap);
2920 			return 0;
2921 		}
2922 		inode_table = ext4_inode_table(sb, gdp);
2923 		if (inode_table == sb_block) {
2924 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 				 "Inode table for group %u overlaps "
2926 				 "superblock", i);
2927 			if (!sb_rdonly(sb))
2928 				return 0;
2929 		}
2930 		if (inode_table >= sb_block + 1 &&
2931 		    inode_table <= last_bg_block) {
2932 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 				 "Inode table for group %u overlaps "
2934 				 "block group descriptors", i);
2935 			if (!sb_rdonly(sb))
2936 				return 0;
2937 		}
2938 		if (inode_table < first_block ||
2939 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2940 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 			       "Inode table for group %u not in group "
2942 			       "(block %llu)!", i, inode_table);
2943 			return 0;
2944 		}
2945 		ext4_lock_group(sb, i);
2946 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2947 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948 				 "Checksum for group %u failed (%u!=%u)",
2949 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2950 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2951 			if (!sb_rdonly(sb)) {
2952 				ext4_unlock_group(sb, i);
2953 				return 0;
2954 			}
2955 		}
2956 		ext4_unlock_group(sb, i);
2957 		if (!flexbg_flag)
2958 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2959 	}
2960 	if (NULL != first_not_zeroed)
2961 		*first_not_zeroed = grp;
2962 	return 1;
2963 }
2964 
2965 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2966  * the superblock) which were deleted from all directories, but held open by
2967  * a process at the time of a crash.  We walk the list and try to delete these
2968  * inodes at recovery time (only with a read-write filesystem).
2969  *
2970  * In order to keep the orphan inode chain consistent during traversal (in
2971  * case of crash during recovery), we link each inode into the superblock
2972  * orphan list_head and handle it the same way as an inode deletion during
2973  * normal operation (which journals the operations for us).
2974  *
2975  * We only do an iget() and an iput() on each inode, which is very safe if we
2976  * accidentally point at an in-use or already deleted inode.  The worst that
2977  * can happen in this case is that we get a "bit already cleared" message from
2978  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2979  * e2fsck was run on this filesystem, and it must have already done the orphan
2980  * inode cleanup for us, so we can safely abort without any further action.
2981  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2982 static void ext4_orphan_cleanup(struct super_block *sb,
2983 				struct ext4_super_block *es)
2984 {
2985 	unsigned int s_flags = sb->s_flags;
2986 	int ret, nr_orphans = 0, nr_truncates = 0;
2987 #ifdef CONFIG_QUOTA
2988 	int quota_update = 0;
2989 	int i;
2990 #endif
2991 	if (!es->s_last_orphan) {
2992 		jbd_debug(4, "no orphan inodes to clean up\n");
2993 		return;
2994 	}
2995 
2996 	if (bdev_read_only(sb->s_bdev)) {
2997 		ext4_msg(sb, KERN_ERR, "write access "
2998 			"unavailable, skipping orphan cleanup");
2999 		return;
3000 	}
3001 
3002 	/* Check if feature set would not allow a r/w mount */
3003 	if (!ext4_feature_set_ok(sb, 0)) {
3004 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3005 			 "unknown ROCOMPAT features");
3006 		return;
3007 	}
3008 
3009 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3010 		/* don't clear list on RO mount w/ errors */
3011 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3012 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3013 				  "clearing orphan list.\n");
3014 			es->s_last_orphan = 0;
3015 		}
3016 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3017 		return;
3018 	}
3019 
3020 	if (s_flags & SB_RDONLY) {
3021 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3022 		sb->s_flags &= ~SB_RDONLY;
3023 	}
3024 #ifdef CONFIG_QUOTA
3025 	/*
3026 	 * Turn on quotas which were not enabled for read-only mounts if
3027 	 * filesystem has quota feature, so that they are updated correctly.
3028 	 */
3029 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3030 		int ret = ext4_enable_quotas(sb);
3031 
3032 		if (!ret)
3033 			quota_update = 1;
3034 		else
3035 			ext4_msg(sb, KERN_ERR,
3036 				"Cannot turn on quotas: error %d", ret);
3037 	}
3038 
3039 	/* Turn on journaled quotas used for old sytle */
3040 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3041 		if (EXT4_SB(sb)->s_qf_names[i]) {
3042 			int ret = ext4_quota_on_mount(sb, i);
3043 
3044 			if (!ret)
3045 				quota_update = 1;
3046 			else
3047 				ext4_msg(sb, KERN_ERR,
3048 					"Cannot turn on journaled "
3049 					"quota: type %d: error %d", i, ret);
3050 		}
3051 	}
3052 #endif
3053 
3054 	while (es->s_last_orphan) {
3055 		struct inode *inode;
3056 
3057 		/*
3058 		 * We may have encountered an error during cleanup; if
3059 		 * so, skip the rest.
3060 		 */
3061 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3062 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3063 			es->s_last_orphan = 0;
3064 			break;
3065 		}
3066 
3067 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3068 		if (IS_ERR(inode)) {
3069 			es->s_last_orphan = 0;
3070 			break;
3071 		}
3072 
3073 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3074 		dquot_initialize(inode);
3075 		if (inode->i_nlink) {
3076 			if (test_opt(sb, DEBUG))
3077 				ext4_msg(sb, KERN_DEBUG,
3078 					"%s: truncating inode %lu to %lld bytes",
3079 					__func__, inode->i_ino, inode->i_size);
3080 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3081 				  inode->i_ino, inode->i_size);
3082 			inode_lock(inode);
3083 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3084 			ret = ext4_truncate(inode);
3085 			if (ret) {
3086 				/*
3087 				 * We need to clean up the in-core orphan list
3088 				 * manually if ext4_truncate() failed to get a
3089 				 * transaction handle.
3090 				 */
3091 				ext4_orphan_del(NULL, inode);
3092 				ext4_std_error(inode->i_sb, ret);
3093 			}
3094 			inode_unlock(inode);
3095 			nr_truncates++;
3096 		} else {
3097 			if (test_opt(sb, DEBUG))
3098 				ext4_msg(sb, KERN_DEBUG,
3099 					"%s: deleting unreferenced inode %lu",
3100 					__func__, inode->i_ino);
3101 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3102 				  inode->i_ino);
3103 			nr_orphans++;
3104 		}
3105 		iput(inode);  /* The delete magic happens here! */
3106 	}
3107 
3108 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3109 
3110 	if (nr_orphans)
3111 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3112 		       PLURAL(nr_orphans));
3113 	if (nr_truncates)
3114 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3115 		       PLURAL(nr_truncates));
3116 #ifdef CONFIG_QUOTA
3117 	/* Turn off quotas if they were enabled for orphan cleanup */
3118 	if (quota_update) {
3119 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3120 			if (sb_dqopt(sb)->files[i])
3121 				dquot_quota_off(sb, i);
3122 		}
3123 	}
3124 #endif
3125 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3126 }
3127 
3128 /*
3129  * Maximal extent format file size.
3130  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3131  * extent format containers, within a sector_t, and within i_blocks
3132  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3133  * so that won't be a limiting factor.
3134  *
3135  * However there is other limiting factor. We do store extents in the form
3136  * of starting block and length, hence the resulting length of the extent
3137  * covering maximum file size must fit into on-disk format containers as
3138  * well. Given that length is always by 1 unit bigger than max unit (because
3139  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3140  *
3141  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3142  */
ext4_max_size(int blkbits,int has_huge_files)3143 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3144 {
3145 	loff_t res;
3146 	loff_t upper_limit = MAX_LFS_FILESIZE;
3147 
3148 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3149 
3150 	if (!has_huge_files) {
3151 		upper_limit = (1LL << 32) - 1;
3152 
3153 		/* total blocks in file system block size */
3154 		upper_limit >>= (blkbits - 9);
3155 		upper_limit <<= blkbits;
3156 	}
3157 
3158 	/*
3159 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3160 	 * by one fs block, so ee_len can cover the extent of maximum file
3161 	 * size
3162 	 */
3163 	res = (1LL << 32) - 1;
3164 	res <<= blkbits;
3165 
3166 	/* Sanity check against vm- & vfs- imposed limits */
3167 	if (res > upper_limit)
3168 		res = upper_limit;
3169 
3170 	return res;
3171 }
3172 
3173 /*
3174  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3175  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3176  * We need to be 1 filesystem block less than the 2^48 sector limit.
3177  */
ext4_max_bitmap_size(int bits,int has_huge_files)3178 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3179 {
3180 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3181 	int meta_blocks;
3182 
3183 	/*
3184 	 * This is calculated to be the largest file size for a dense, block
3185 	 * mapped file such that the file's total number of 512-byte sectors,
3186 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3187 	 *
3188 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3189 	 * number of 512-byte sectors of the file.
3190 	 */
3191 	if (!has_huge_files) {
3192 		/*
3193 		 * !has_huge_files or implies that the inode i_block field
3194 		 * represents total file blocks in 2^32 512-byte sectors ==
3195 		 * size of vfs inode i_blocks * 8
3196 		 */
3197 		upper_limit = (1LL << 32) - 1;
3198 
3199 		/* total blocks in file system block size */
3200 		upper_limit >>= (bits - 9);
3201 
3202 	} else {
3203 		/*
3204 		 * We use 48 bit ext4_inode i_blocks
3205 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3206 		 * represent total number of blocks in
3207 		 * file system block size
3208 		 */
3209 		upper_limit = (1LL << 48) - 1;
3210 
3211 	}
3212 
3213 	/* indirect blocks */
3214 	meta_blocks = 1;
3215 	/* double indirect blocks */
3216 	meta_blocks += 1 + (1LL << (bits-2));
3217 	/* tripple indirect blocks */
3218 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3219 
3220 	upper_limit -= meta_blocks;
3221 	upper_limit <<= bits;
3222 
3223 	res += 1LL << (bits-2);
3224 	res += 1LL << (2*(bits-2));
3225 	res += 1LL << (3*(bits-2));
3226 	res <<= bits;
3227 	if (res > upper_limit)
3228 		res = upper_limit;
3229 
3230 	if (res > MAX_LFS_FILESIZE)
3231 		res = MAX_LFS_FILESIZE;
3232 
3233 	return (loff_t)res;
3234 }
3235 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3236 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3237 				   ext4_fsblk_t logical_sb_block, int nr)
3238 {
3239 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3240 	ext4_group_t bg, first_meta_bg;
3241 	int has_super = 0;
3242 
3243 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3244 
3245 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3246 		return logical_sb_block + nr + 1;
3247 	bg = sbi->s_desc_per_block * nr;
3248 	if (ext4_bg_has_super(sb, bg))
3249 		has_super = 1;
3250 
3251 	/*
3252 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3253 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3254 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3255 	 * compensate.
3256 	 */
3257 	if (sb->s_blocksize == 1024 && nr == 0 &&
3258 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3259 		has_super++;
3260 
3261 	return (has_super + ext4_group_first_block_no(sb, bg));
3262 }
3263 
3264 /**
3265  * ext4_get_stripe_size: Get the stripe size.
3266  * @sbi: In memory super block info
3267  *
3268  * If we have specified it via mount option, then
3269  * use the mount option value. If the value specified at mount time is
3270  * greater than the blocks per group use the super block value.
3271  * If the super block value is greater than blocks per group return 0.
3272  * Allocator needs it be less than blocks per group.
3273  *
3274  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3275 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3276 {
3277 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3278 	unsigned long stripe_width =
3279 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3280 	int ret;
3281 
3282 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3283 		ret = sbi->s_stripe;
3284 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3285 		ret = stripe_width;
3286 	else if (stride && stride <= sbi->s_blocks_per_group)
3287 		ret = stride;
3288 	else
3289 		ret = 0;
3290 
3291 	/*
3292 	 * If the stripe width is 1, this makes no sense and
3293 	 * we set it to 0 to turn off stripe handling code.
3294 	 */
3295 	if (ret <= 1)
3296 		ret = 0;
3297 
3298 	return ret;
3299 }
3300 
3301 /*
3302  * Check whether this filesystem can be mounted based on
3303  * the features present and the RDONLY/RDWR mount requested.
3304  * Returns 1 if this filesystem can be mounted as requested,
3305  * 0 if it cannot be.
3306  */
ext4_feature_set_ok(struct super_block * sb,int readonly)3307 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3308 {
3309 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3310 		ext4_msg(sb, KERN_ERR,
3311 			"Couldn't mount because of "
3312 			"unsupported optional features (%x)",
3313 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3314 			~EXT4_FEATURE_INCOMPAT_SUPP));
3315 		return 0;
3316 	}
3317 
3318 #ifndef CONFIG_UNICODE
3319 	if (ext4_has_feature_casefold(sb)) {
3320 		ext4_msg(sb, KERN_ERR,
3321 			 "Filesystem with casefold feature cannot be "
3322 			 "mounted without CONFIG_UNICODE");
3323 		return 0;
3324 	}
3325 #endif
3326 
3327 	if (readonly)
3328 		return 1;
3329 
3330 	if (ext4_has_feature_readonly(sb)) {
3331 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3332 		sb->s_flags |= SB_RDONLY;
3333 		return 1;
3334 	}
3335 
3336 	/* Check that feature set is OK for a read-write mount */
3337 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3338 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3339 			 "unsupported optional features (%x)",
3340 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3341 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3342 		return 0;
3343 	}
3344 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3345 		ext4_msg(sb, KERN_ERR,
3346 			 "Can't support bigalloc feature without "
3347 			 "extents feature\n");
3348 		return 0;
3349 	}
3350 
3351 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3352 	if (!readonly && (ext4_has_feature_quota(sb) ||
3353 			  ext4_has_feature_project(sb))) {
3354 		ext4_msg(sb, KERN_ERR,
3355 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3356 		return 0;
3357 	}
3358 #endif  /* CONFIG_QUOTA */
3359 	return 1;
3360 }
3361 
3362 /*
3363  * This function is called once a day if we have errors logged
3364  * on the file system
3365  */
print_daily_error_info(struct timer_list * t)3366 static void print_daily_error_info(struct timer_list *t)
3367 {
3368 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3369 	struct super_block *sb = sbi->s_sb;
3370 	struct ext4_super_block *es = sbi->s_es;
3371 
3372 	if (es->s_error_count)
3373 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3374 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3375 			 le32_to_cpu(es->s_error_count));
3376 	if (es->s_first_error_time) {
3377 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3378 		       sb->s_id,
3379 		       ext4_get_tstamp(es, s_first_error_time),
3380 		       (int) sizeof(es->s_first_error_func),
3381 		       es->s_first_error_func,
3382 		       le32_to_cpu(es->s_first_error_line));
3383 		if (es->s_first_error_ino)
3384 			printk(KERN_CONT ": inode %u",
3385 			       le32_to_cpu(es->s_first_error_ino));
3386 		if (es->s_first_error_block)
3387 			printk(KERN_CONT ": block %llu", (unsigned long long)
3388 			       le64_to_cpu(es->s_first_error_block));
3389 		printk(KERN_CONT "\n");
3390 	}
3391 	if (es->s_last_error_time) {
3392 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3393 		       sb->s_id,
3394 		       ext4_get_tstamp(es, s_last_error_time),
3395 		       (int) sizeof(es->s_last_error_func),
3396 		       es->s_last_error_func,
3397 		       le32_to_cpu(es->s_last_error_line));
3398 		if (es->s_last_error_ino)
3399 			printk(KERN_CONT ": inode %u",
3400 			       le32_to_cpu(es->s_last_error_ino));
3401 		if (es->s_last_error_block)
3402 			printk(KERN_CONT ": block %llu", (unsigned long long)
3403 			       le64_to_cpu(es->s_last_error_block));
3404 		printk(KERN_CONT "\n");
3405 	}
3406 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3407 }
3408 
3409 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3410 static int ext4_run_li_request(struct ext4_li_request *elr)
3411 {
3412 	struct ext4_group_desc *gdp = NULL;
3413 	struct super_block *sb = elr->lr_super;
3414 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3415 	ext4_group_t group = elr->lr_next_group;
3416 	unsigned int prefetch_ios = 0;
3417 	int ret = 0;
3418 	u64 start_time;
3419 
3420 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3421 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3422 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3423 		if (prefetch_ios)
3424 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3425 					      prefetch_ios);
3426 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3427 					    prefetch_ios);
3428 		if (group >= elr->lr_next_group) {
3429 			ret = 1;
3430 			if (elr->lr_first_not_zeroed != ngroups &&
3431 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3432 				elr->lr_next_group = elr->lr_first_not_zeroed;
3433 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3434 				ret = 0;
3435 			}
3436 		}
3437 		return ret;
3438 	}
3439 
3440 	for (; group < ngroups; group++) {
3441 		gdp = ext4_get_group_desc(sb, group, NULL);
3442 		if (!gdp) {
3443 			ret = 1;
3444 			break;
3445 		}
3446 
3447 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3448 			break;
3449 	}
3450 
3451 	if (group >= ngroups)
3452 		ret = 1;
3453 
3454 	if (!ret) {
3455 		start_time = ktime_get_real_ns();
3456 		ret = ext4_init_inode_table(sb, group,
3457 					    elr->lr_timeout ? 0 : 1);
3458 		trace_ext4_lazy_itable_init(sb, group);
3459 		if (elr->lr_timeout == 0) {
3460 			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3461 				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3462 		}
3463 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3464 		elr->lr_next_group = group + 1;
3465 	}
3466 	return ret;
3467 }
3468 
3469 /*
3470  * Remove lr_request from the list_request and free the
3471  * request structure. Should be called with li_list_mtx held
3472  */
ext4_remove_li_request(struct ext4_li_request * elr)3473 static void ext4_remove_li_request(struct ext4_li_request *elr)
3474 {
3475 	if (!elr)
3476 		return;
3477 
3478 	list_del(&elr->lr_request);
3479 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3480 	kfree(elr);
3481 }
3482 
ext4_unregister_li_request(struct super_block * sb)3483 static void ext4_unregister_li_request(struct super_block *sb)
3484 {
3485 	mutex_lock(&ext4_li_mtx);
3486 	if (!ext4_li_info) {
3487 		mutex_unlock(&ext4_li_mtx);
3488 		return;
3489 	}
3490 
3491 	mutex_lock(&ext4_li_info->li_list_mtx);
3492 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3493 	mutex_unlock(&ext4_li_info->li_list_mtx);
3494 	mutex_unlock(&ext4_li_mtx);
3495 }
3496 
3497 static struct task_struct *ext4_lazyinit_task;
3498 
3499 /*
3500  * This is the function where ext4lazyinit thread lives. It walks
3501  * through the request list searching for next scheduled filesystem.
3502  * When such a fs is found, run the lazy initialization request
3503  * (ext4_rn_li_request) and keep track of the time spend in this
3504  * function. Based on that time we compute next schedule time of
3505  * the request. When walking through the list is complete, compute
3506  * next waking time and put itself into sleep.
3507  */
ext4_lazyinit_thread(void * arg)3508 static int ext4_lazyinit_thread(void *arg)
3509 {
3510 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3511 	struct list_head *pos, *n;
3512 	struct ext4_li_request *elr;
3513 	unsigned long next_wakeup, cur;
3514 
3515 	BUG_ON(NULL == eli);
3516 	set_freezable();
3517 
3518 cont_thread:
3519 	while (true) {
3520 		next_wakeup = MAX_JIFFY_OFFSET;
3521 
3522 		mutex_lock(&eli->li_list_mtx);
3523 		if (list_empty(&eli->li_request_list)) {
3524 			mutex_unlock(&eli->li_list_mtx);
3525 			goto exit_thread;
3526 		}
3527 		list_for_each_safe(pos, n, &eli->li_request_list) {
3528 			int err = 0;
3529 			int progress = 0;
3530 			elr = list_entry(pos, struct ext4_li_request,
3531 					 lr_request);
3532 
3533 			if (time_before(jiffies, elr->lr_next_sched)) {
3534 				if (time_before(elr->lr_next_sched, next_wakeup))
3535 					next_wakeup = elr->lr_next_sched;
3536 				continue;
3537 			}
3538 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3539 				if (sb_start_write_trylock(elr->lr_super)) {
3540 					progress = 1;
3541 					/*
3542 					 * We hold sb->s_umount, sb can not
3543 					 * be removed from the list, it is
3544 					 * now safe to drop li_list_mtx
3545 					 */
3546 					mutex_unlock(&eli->li_list_mtx);
3547 					err = ext4_run_li_request(elr);
3548 					sb_end_write(elr->lr_super);
3549 					mutex_lock(&eli->li_list_mtx);
3550 					n = pos->next;
3551 				}
3552 				up_read((&elr->lr_super->s_umount));
3553 			}
3554 			/* error, remove the lazy_init job */
3555 			if (err) {
3556 				ext4_remove_li_request(elr);
3557 				continue;
3558 			}
3559 			if (!progress) {
3560 				elr->lr_next_sched = jiffies +
3561 					(prandom_u32()
3562 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3563 			}
3564 			if (time_before(elr->lr_next_sched, next_wakeup))
3565 				next_wakeup = elr->lr_next_sched;
3566 		}
3567 		mutex_unlock(&eli->li_list_mtx);
3568 
3569 		try_to_freeze();
3570 
3571 		cur = jiffies;
3572 		if ((time_after_eq(cur, next_wakeup)) ||
3573 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3574 			cond_resched();
3575 			continue;
3576 		}
3577 
3578 		schedule_timeout_interruptible(next_wakeup - cur);
3579 
3580 		if (kthread_should_stop()) {
3581 			ext4_clear_request_list();
3582 			goto exit_thread;
3583 		}
3584 	}
3585 
3586 exit_thread:
3587 	/*
3588 	 * It looks like the request list is empty, but we need
3589 	 * to check it under the li_list_mtx lock, to prevent any
3590 	 * additions into it, and of course we should lock ext4_li_mtx
3591 	 * to atomically free the list and ext4_li_info, because at
3592 	 * this point another ext4 filesystem could be registering
3593 	 * new one.
3594 	 */
3595 	mutex_lock(&ext4_li_mtx);
3596 	mutex_lock(&eli->li_list_mtx);
3597 	if (!list_empty(&eli->li_request_list)) {
3598 		mutex_unlock(&eli->li_list_mtx);
3599 		mutex_unlock(&ext4_li_mtx);
3600 		goto cont_thread;
3601 	}
3602 	mutex_unlock(&eli->li_list_mtx);
3603 	kfree(ext4_li_info);
3604 	ext4_li_info = NULL;
3605 	mutex_unlock(&ext4_li_mtx);
3606 
3607 	return 0;
3608 }
3609 
ext4_clear_request_list(void)3610 static void ext4_clear_request_list(void)
3611 {
3612 	struct list_head *pos, *n;
3613 	struct ext4_li_request *elr;
3614 
3615 	mutex_lock(&ext4_li_info->li_list_mtx);
3616 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3617 		elr = list_entry(pos, struct ext4_li_request,
3618 				 lr_request);
3619 		ext4_remove_li_request(elr);
3620 	}
3621 	mutex_unlock(&ext4_li_info->li_list_mtx);
3622 }
3623 
ext4_run_lazyinit_thread(void)3624 static int ext4_run_lazyinit_thread(void)
3625 {
3626 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3627 					 ext4_li_info, "ext4lazyinit");
3628 	if (IS_ERR(ext4_lazyinit_task)) {
3629 		int err = PTR_ERR(ext4_lazyinit_task);
3630 		ext4_clear_request_list();
3631 		kfree(ext4_li_info);
3632 		ext4_li_info = NULL;
3633 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3634 				 "initialization thread\n",
3635 				 err);
3636 		return err;
3637 	}
3638 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3639 	return 0;
3640 }
3641 
3642 /*
3643  * Check whether it make sense to run itable init. thread or not.
3644  * If there is at least one uninitialized inode table, return
3645  * corresponding group number, else the loop goes through all
3646  * groups and return total number of groups.
3647  */
ext4_has_uninit_itable(struct super_block * sb)3648 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3649 {
3650 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3651 	struct ext4_group_desc *gdp = NULL;
3652 
3653 	if (!ext4_has_group_desc_csum(sb))
3654 		return ngroups;
3655 
3656 	for (group = 0; group < ngroups; group++) {
3657 		gdp = ext4_get_group_desc(sb, group, NULL);
3658 		if (!gdp)
3659 			continue;
3660 
3661 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3662 			break;
3663 	}
3664 
3665 	return group;
3666 }
3667 
ext4_li_info_new(void)3668 static int ext4_li_info_new(void)
3669 {
3670 	struct ext4_lazy_init *eli = NULL;
3671 
3672 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3673 	if (!eli)
3674 		return -ENOMEM;
3675 
3676 	INIT_LIST_HEAD(&eli->li_request_list);
3677 	mutex_init(&eli->li_list_mtx);
3678 
3679 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3680 
3681 	ext4_li_info = eli;
3682 
3683 	return 0;
3684 }
3685 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3686 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3687 					    ext4_group_t start)
3688 {
3689 	struct ext4_li_request *elr;
3690 
3691 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3692 	if (!elr)
3693 		return NULL;
3694 
3695 	elr->lr_super = sb;
3696 	elr->lr_first_not_zeroed = start;
3697 	if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3698 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3699 	else {
3700 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3701 		elr->lr_next_group = start;
3702 	}
3703 
3704 	/*
3705 	 * Randomize first schedule time of the request to
3706 	 * spread the inode table initialization requests
3707 	 * better.
3708 	 */
3709 	elr->lr_next_sched = jiffies + (prandom_u32() %
3710 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3711 	return elr;
3712 }
3713 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3714 int ext4_register_li_request(struct super_block *sb,
3715 			     ext4_group_t first_not_zeroed)
3716 {
3717 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3718 	struct ext4_li_request *elr = NULL;
3719 	ext4_group_t ngroups = sbi->s_groups_count;
3720 	int ret = 0;
3721 
3722 	mutex_lock(&ext4_li_mtx);
3723 	if (sbi->s_li_request != NULL) {
3724 		/*
3725 		 * Reset timeout so it can be computed again, because
3726 		 * s_li_wait_mult might have changed.
3727 		 */
3728 		sbi->s_li_request->lr_timeout = 0;
3729 		goto out;
3730 	}
3731 
3732 	if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3733 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3734 	     !test_opt(sb, INIT_INODE_TABLE)))
3735 		goto out;
3736 
3737 	elr = ext4_li_request_new(sb, first_not_zeroed);
3738 	if (!elr) {
3739 		ret = -ENOMEM;
3740 		goto out;
3741 	}
3742 
3743 	if (NULL == ext4_li_info) {
3744 		ret = ext4_li_info_new();
3745 		if (ret)
3746 			goto out;
3747 	}
3748 
3749 	mutex_lock(&ext4_li_info->li_list_mtx);
3750 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3751 	mutex_unlock(&ext4_li_info->li_list_mtx);
3752 
3753 	sbi->s_li_request = elr;
3754 	/*
3755 	 * set elr to NULL here since it has been inserted to
3756 	 * the request_list and the removal and free of it is
3757 	 * handled by ext4_clear_request_list from now on.
3758 	 */
3759 	elr = NULL;
3760 
3761 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3762 		ret = ext4_run_lazyinit_thread();
3763 		if (ret)
3764 			goto out;
3765 	}
3766 out:
3767 	mutex_unlock(&ext4_li_mtx);
3768 	if (ret)
3769 		kfree(elr);
3770 	return ret;
3771 }
3772 
3773 /*
3774  * We do not need to lock anything since this is called on
3775  * module unload.
3776  */
ext4_destroy_lazyinit_thread(void)3777 static void ext4_destroy_lazyinit_thread(void)
3778 {
3779 	/*
3780 	 * If thread exited earlier
3781 	 * there's nothing to be done.
3782 	 */
3783 	if (!ext4_li_info || !ext4_lazyinit_task)
3784 		return;
3785 
3786 	kthread_stop(ext4_lazyinit_task);
3787 }
3788 
set_journal_csum_feature_set(struct super_block * sb)3789 static int set_journal_csum_feature_set(struct super_block *sb)
3790 {
3791 	int ret = 1;
3792 	int compat, incompat;
3793 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3794 
3795 	if (ext4_has_metadata_csum(sb)) {
3796 		/* journal checksum v3 */
3797 		compat = 0;
3798 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3799 	} else {
3800 		/* journal checksum v1 */
3801 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3802 		incompat = 0;
3803 	}
3804 
3805 	jbd2_journal_clear_features(sbi->s_journal,
3806 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3807 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3808 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3809 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3810 		ret = jbd2_journal_set_features(sbi->s_journal,
3811 				compat, 0,
3812 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3813 				incompat);
3814 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3815 		ret = jbd2_journal_set_features(sbi->s_journal,
3816 				compat, 0,
3817 				incompat);
3818 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3819 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3820 	} else {
3821 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3822 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3823 	}
3824 
3825 	return ret;
3826 }
3827 
3828 /*
3829  * Note: calculating the overhead so we can be compatible with
3830  * historical BSD practice is quite difficult in the face of
3831  * clusters/bigalloc.  This is because multiple metadata blocks from
3832  * different block group can end up in the same allocation cluster.
3833  * Calculating the exact overhead in the face of clustered allocation
3834  * requires either O(all block bitmaps) in memory or O(number of block
3835  * groups**2) in time.  We will still calculate the superblock for
3836  * older file systems --- and if we come across with a bigalloc file
3837  * system with zero in s_overhead_clusters the estimate will be close to
3838  * correct especially for very large cluster sizes --- but for newer
3839  * file systems, it's better to calculate this figure once at mkfs
3840  * time, and store it in the superblock.  If the superblock value is
3841  * present (even for non-bigalloc file systems), we will use it.
3842  */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3843 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3844 			  char *buf)
3845 {
3846 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3847 	struct ext4_group_desc	*gdp;
3848 	ext4_fsblk_t		first_block, last_block, b;
3849 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3850 	int			s, j, count = 0;
3851 	int			has_super = ext4_bg_has_super(sb, grp);
3852 
3853 	if (!ext4_has_feature_bigalloc(sb))
3854 		return (has_super + ext4_bg_num_gdb(sb, grp) +
3855 			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3856 			sbi->s_itb_per_group + 2);
3857 
3858 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3859 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3860 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3861 	for (i = 0; i < ngroups; i++) {
3862 		gdp = ext4_get_group_desc(sb, i, NULL);
3863 		b = ext4_block_bitmap(sb, gdp);
3864 		if (b >= first_block && b <= last_block) {
3865 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3866 			count++;
3867 		}
3868 		b = ext4_inode_bitmap(sb, gdp);
3869 		if (b >= first_block && b <= last_block) {
3870 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3871 			count++;
3872 		}
3873 		b = ext4_inode_table(sb, gdp);
3874 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3875 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3876 				int c = EXT4_B2C(sbi, b - first_block);
3877 				ext4_set_bit(c, buf);
3878 				count++;
3879 			}
3880 		if (i != grp)
3881 			continue;
3882 		s = 0;
3883 		if (ext4_bg_has_super(sb, grp)) {
3884 			ext4_set_bit(s++, buf);
3885 			count++;
3886 		}
3887 		j = ext4_bg_num_gdb(sb, grp);
3888 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3889 			ext4_error(sb, "Invalid number of block group "
3890 				   "descriptor blocks: %d", j);
3891 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3892 		}
3893 		count += j;
3894 		for (; j > 0; j--)
3895 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3896 	}
3897 	if (!count)
3898 		return 0;
3899 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3900 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3901 }
3902 
3903 /*
3904  * Compute the overhead and stash it in sbi->s_overhead
3905  */
ext4_calculate_overhead(struct super_block * sb)3906 int ext4_calculate_overhead(struct super_block *sb)
3907 {
3908 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3909 	struct ext4_super_block *es = sbi->s_es;
3910 	struct inode *j_inode;
3911 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3912 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3913 	ext4_fsblk_t overhead = 0;
3914 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3915 
3916 	if (!buf)
3917 		return -ENOMEM;
3918 
3919 	/*
3920 	 * Compute the overhead (FS structures).  This is constant
3921 	 * for a given filesystem unless the number of block groups
3922 	 * changes so we cache the previous value until it does.
3923 	 */
3924 
3925 	/*
3926 	 * All of the blocks before first_data_block are overhead
3927 	 */
3928 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3929 
3930 	/*
3931 	 * Add the overhead found in each block group
3932 	 */
3933 	for (i = 0; i < ngroups; i++) {
3934 		int blks;
3935 
3936 		blks = count_overhead(sb, i, buf);
3937 		overhead += blks;
3938 		if (blks)
3939 			memset(buf, 0, PAGE_SIZE);
3940 		cond_resched();
3941 	}
3942 
3943 	/*
3944 	 * Add the internal journal blocks whether the journal has been
3945 	 * loaded or not
3946 	 */
3947 	if (sbi->s_journal && !sbi->s_journal_bdev)
3948 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3949 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3950 		/* j_inum for internal journal is non-zero */
3951 		j_inode = ext4_get_journal_inode(sb, j_inum);
3952 		if (j_inode) {
3953 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3954 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3955 			iput(j_inode);
3956 		} else {
3957 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3958 		}
3959 	}
3960 	sbi->s_overhead = overhead;
3961 	smp_wmb();
3962 	free_page((unsigned long) buf);
3963 	return 0;
3964 }
3965 
ext4_set_resv_clusters(struct super_block * sb)3966 static void ext4_set_resv_clusters(struct super_block *sb)
3967 {
3968 	ext4_fsblk_t resv_clusters;
3969 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3970 
3971 	/*
3972 	 * There's no need to reserve anything when we aren't using extents.
3973 	 * The space estimates are exact, there are no unwritten extents,
3974 	 * hole punching doesn't need new metadata... This is needed especially
3975 	 * to keep ext2/3 backward compatibility.
3976 	 */
3977 	if (!ext4_has_feature_extents(sb))
3978 		return;
3979 	/*
3980 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3981 	 * This should cover the situations where we can not afford to run
3982 	 * out of space like for example punch hole, or converting
3983 	 * unwritten extents in delalloc path. In most cases such
3984 	 * allocation would require 1, or 2 blocks, higher numbers are
3985 	 * very rare.
3986 	 */
3987 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3988 			 sbi->s_cluster_bits);
3989 
3990 	do_div(resv_clusters, 50);
3991 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3992 
3993 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3994 }
3995 
ext4_fill_super(struct super_block * sb,void * data,int silent)3996 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3997 {
3998 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3999 	char *orig_data = kstrdup(data, GFP_KERNEL);
4000 	struct buffer_head *bh, **group_desc;
4001 	struct ext4_super_block *es = NULL;
4002 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4003 	struct flex_groups **flex_groups;
4004 	ext4_fsblk_t block;
4005 	ext4_fsblk_t sb_block = get_sb_block(&data);
4006 	ext4_fsblk_t logical_sb_block;
4007 	unsigned long offset = 0;
4008 	unsigned long journal_devnum = 0;
4009 	unsigned long def_mount_opts;
4010 	struct inode *root;
4011 	const char *descr;
4012 	int ret = -ENOMEM;
4013 	int blocksize, clustersize;
4014 	unsigned int db_count;
4015 	unsigned int i;
4016 	int needs_recovery, has_huge_files;
4017 	__u64 blocks_count;
4018 	int err = 0;
4019 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4020 	ext4_group_t first_not_zeroed;
4021 
4022 	if ((data && !orig_data) || !sbi)
4023 		goto out_free_base;
4024 
4025 	sbi->s_daxdev = dax_dev;
4026 	sbi->s_blockgroup_lock =
4027 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4028 	if (!sbi->s_blockgroup_lock)
4029 		goto out_free_base;
4030 
4031 	sb->s_fs_info = sbi;
4032 	sbi->s_sb = sb;
4033 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4034 	sbi->s_sb_block = sb_block;
4035 	if (sb->s_bdev->bd_part)
4036 		sbi->s_sectors_written_start =
4037 			part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4038 
4039 	/* Cleanup superblock name */
4040 	strreplace(sb->s_id, '/', '!');
4041 
4042 	/* -EINVAL is default */
4043 	ret = -EINVAL;
4044 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4045 	if (!blocksize) {
4046 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4047 		goto out_fail;
4048 	}
4049 
4050 	/*
4051 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4052 	 * block sizes.  We need to calculate the offset from buffer start.
4053 	 */
4054 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4055 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4056 		offset = do_div(logical_sb_block, blocksize);
4057 	} else {
4058 		logical_sb_block = sb_block;
4059 	}
4060 
4061 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4062 	if (IS_ERR(bh)) {
4063 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4064 		ret = PTR_ERR(bh);
4065 		bh = NULL;
4066 		goto out_fail;
4067 	}
4068 	/*
4069 	 * Note: s_es must be initialized as soon as possible because
4070 	 *       some ext4 macro-instructions depend on its value
4071 	 */
4072 	es = (struct ext4_super_block *) (bh->b_data + offset);
4073 	sbi->s_es = es;
4074 	sb->s_magic = le16_to_cpu(es->s_magic);
4075 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4076 		goto cantfind_ext4;
4077 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4078 
4079 	/* Warn if metadata_csum and gdt_csum are both set. */
4080 	if (ext4_has_feature_metadata_csum(sb) &&
4081 	    ext4_has_feature_gdt_csum(sb))
4082 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4083 			     "redundant flags; please run fsck.");
4084 
4085 	/* Check for a known checksum algorithm */
4086 	if (!ext4_verify_csum_type(sb, es)) {
4087 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4088 			 "unknown checksum algorithm.");
4089 		silent = 1;
4090 		goto cantfind_ext4;
4091 	}
4092 
4093 	/* Load the checksum driver */
4094 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4095 	if (IS_ERR(sbi->s_chksum_driver)) {
4096 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4097 		ret = PTR_ERR(sbi->s_chksum_driver);
4098 		sbi->s_chksum_driver = NULL;
4099 		goto failed_mount;
4100 	}
4101 
4102 	/* Check superblock checksum */
4103 	if (!ext4_superblock_csum_verify(sb, es)) {
4104 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4105 			 "invalid superblock checksum.  Run e2fsck?");
4106 		silent = 1;
4107 		ret = -EFSBADCRC;
4108 		goto cantfind_ext4;
4109 	}
4110 
4111 	/* Precompute checksum seed for all metadata */
4112 	if (ext4_has_feature_csum_seed(sb))
4113 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4114 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4115 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4116 					       sizeof(es->s_uuid));
4117 
4118 	/* Set defaults before we parse the mount options */
4119 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4120 	set_opt(sb, INIT_INODE_TABLE);
4121 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4122 		set_opt(sb, DEBUG);
4123 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4124 		set_opt(sb, GRPID);
4125 	if (def_mount_opts & EXT4_DEFM_UID16)
4126 		set_opt(sb, NO_UID32);
4127 	/* xattr user namespace & acls are now defaulted on */
4128 	set_opt(sb, XATTR_USER);
4129 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4130 	set_opt(sb, POSIX_ACL);
4131 #endif
4132 	if (ext4_has_feature_fast_commit(sb))
4133 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4134 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4135 	if (ext4_has_metadata_csum(sb))
4136 		set_opt(sb, JOURNAL_CHECKSUM);
4137 
4138 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4139 		set_opt(sb, JOURNAL_DATA);
4140 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4141 		set_opt(sb, ORDERED_DATA);
4142 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4143 		set_opt(sb, WRITEBACK_DATA);
4144 
4145 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4146 		set_opt(sb, ERRORS_PANIC);
4147 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4148 		set_opt(sb, ERRORS_CONT);
4149 	else
4150 		set_opt(sb, ERRORS_RO);
4151 	/* block_validity enabled by default; disable with noblock_validity */
4152 	set_opt(sb, BLOCK_VALIDITY);
4153 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4154 		set_opt(sb, DISCARD);
4155 
4156 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4157 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4158 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4159 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4160 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4161 
4162 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4163 		set_opt(sb, BARRIER);
4164 
4165 	/*
4166 	 * enable delayed allocation by default
4167 	 * Use -o nodelalloc to turn it off
4168 	 */
4169 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4170 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4171 		set_opt(sb, DELALLOC);
4172 
4173 	/*
4174 	 * set default s_li_wait_mult for lazyinit, for the case there is
4175 	 * no mount option specified.
4176 	 */
4177 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4178 
4179 	if (le32_to_cpu(es->s_log_block_size) >
4180 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4181 		ext4_msg(sb, KERN_ERR,
4182 			 "Invalid log block size: %u",
4183 			 le32_to_cpu(es->s_log_block_size));
4184 		goto failed_mount;
4185 	}
4186 	if (le32_to_cpu(es->s_log_cluster_size) >
4187 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4188 		ext4_msg(sb, KERN_ERR,
4189 			 "Invalid log cluster size: %u",
4190 			 le32_to_cpu(es->s_log_cluster_size));
4191 		goto failed_mount;
4192 	}
4193 
4194 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4195 
4196 	if (blocksize == PAGE_SIZE)
4197 		set_opt(sb, DIOREAD_NOLOCK);
4198 
4199 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4200 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4201 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4202 	} else {
4203 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4204 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4205 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4206 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4207 				 sbi->s_first_ino);
4208 			goto failed_mount;
4209 		}
4210 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4211 		    (!is_power_of_2(sbi->s_inode_size)) ||
4212 		    (sbi->s_inode_size > blocksize)) {
4213 			ext4_msg(sb, KERN_ERR,
4214 			       "unsupported inode size: %d",
4215 			       sbi->s_inode_size);
4216 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4217 			goto failed_mount;
4218 		}
4219 		/*
4220 		 * i_atime_extra is the last extra field available for
4221 		 * [acm]times in struct ext4_inode. Checking for that
4222 		 * field should suffice to ensure we have extra space
4223 		 * for all three.
4224 		 */
4225 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4226 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4227 			sb->s_time_gran = 1;
4228 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4229 		} else {
4230 			sb->s_time_gran = NSEC_PER_SEC;
4231 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4232 		}
4233 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4234 	}
4235 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4236 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4237 			EXT4_GOOD_OLD_INODE_SIZE;
4238 		if (ext4_has_feature_extra_isize(sb)) {
4239 			unsigned v, max = (sbi->s_inode_size -
4240 					   EXT4_GOOD_OLD_INODE_SIZE);
4241 
4242 			v = le16_to_cpu(es->s_want_extra_isize);
4243 			if (v > max) {
4244 				ext4_msg(sb, KERN_ERR,
4245 					 "bad s_want_extra_isize: %d", v);
4246 				goto failed_mount;
4247 			}
4248 			if (sbi->s_want_extra_isize < v)
4249 				sbi->s_want_extra_isize = v;
4250 
4251 			v = le16_to_cpu(es->s_min_extra_isize);
4252 			if (v > max) {
4253 				ext4_msg(sb, KERN_ERR,
4254 					 "bad s_min_extra_isize: %d", v);
4255 				goto failed_mount;
4256 			}
4257 			if (sbi->s_want_extra_isize < v)
4258 				sbi->s_want_extra_isize = v;
4259 		}
4260 	}
4261 
4262 	if (sbi->s_es->s_mount_opts[0]) {
4263 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4264 					      sizeof(sbi->s_es->s_mount_opts),
4265 					      GFP_KERNEL);
4266 		if (!s_mount_opts)
4267 			goto failed_mount;
4268 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
4269 				   &journal_ioprio, 0)) {
4270 			ext4_msg(sb, KERN_WARNING,
4271 				 "failed to parse options in superblock: %s",
4272 				 s_mount_opts);
4273 		}
4274 		kfree(s_mount_opts);
4275 	}
4276 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4277 	if (!parse_options((char *) data, sb, &journal_devnum,
4278 			   &journal_ioprio, 0))
4279 		goto failed_mount;
4280 
4281 #ifdef CONFIG_UNICODE
4282 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4283 		const struct ext4_sb_encodings *encoding_info;
4284 		struct unicode_map *encoding;
4285 		__u16 encoding_flags;
4286 
4287 		if (ext4_has_feature_encrypt(sb)) {
4288 			ext4_msg(sb, KERN_ERR,
4289 				 "Can't mount with encoding and encryption");
4290 			goto failed_mount;
4291 		}
4292 
4293 		if (ext4_sb_read_encoding(es, &encoding_info,
4294 					  &encoding_flags)) {
4295 			ext4_msg(sb, KERN_ERR,
4296 				 "Encoding requested by superblock is unknown");
4297 			goto failed_mount;
4298 		}
4299 
4300 		encoding = utf8_load(encoding_info->version);
4301 		if (IS_ERR(encoding)) {
4302 			ext4_msg(sb, KERN_ERR,
4303 				 "can't mount with superblock charset: %s-%s "
4304 				 "not supported by the kernel. flags: 0x%x.",
4305 				 encoding_info->name, encoding_info->version,
4306 				 encoding_flags);
4307 			goto failed_mount;
4308 		}
4309 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4310 			 "%s-%s with flags 0x%hx", encoding_info->name,
4311 			 encoding_info->version?:"\b", encoding_flags);
4312 
4313 		sb->s_encoding = encoding;
4314 		sb->s_encoding_flags = encoding_flags;
4315 	}
4316 #endif
4317 
4318 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4319 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4320 		/* can't mount with both data=journal and dioread_nolock. */
4321 		clear_opt(sb, DIOREAD_NOLOCK);
4322 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4323 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4324 			ext4_msg(sb, KERN_ERR, "can't mount with "
4325 				 "both data=journal and delalloc");
4326 			goto failed_mount;
4327 		}
4328 		if (test_opt(sb, DAX_ALWAYS)) {
4329 			ext4_msg(sb, KERN_ERR, "can't mount with "
4330 				 "both data=journal and dax");
4331 			goto failed_mount;
4332 		}
4333 		if (ext4_has_feature_encrypt(sb)) {
4334 			ext4_msg(sb, KERN_WARNING,
4335 				 "encrypted files will use data=ordered "
4336 				 "instead of data journaling mode");
4337 		}
4338 		if (test_opt(sb, DELALLOC))
4339 			clear_opt(sb, DELALLOC);
4340 	} else {
4341 		sb->s_iflags |= SB_I_CGROUPWB;
4342 	}
4343 
4344 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4345 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4346 
4347 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4348 	    (ext4_has_compat_features(sb) ||
4349 	     ext4_has_ro_compat_features(sb) ||
4350 	     ext4_has_incompat_features(sb)))
4351 		ext4_msg(sb, KERN_WARNING,
4352 		       "feature flags set on rev 0 fs, "
4353 		       "running e2fsck is recommended");
4354 
4355 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4356 		set_opt2(sb, HURD_COMPAT);
4357 		if (ext4_has_feature_64bit(sb)) {
4358 			ext4_msg(sb, KERN_ERR,
4359 				 "The Hurd can't support 64-bit file systems");
4360 			goto failed_mount;
4361 		}
4362 
4363 		/*
4364 		 * ea_inode feature uses l_i_version field which is not
4365 		 * available in HURD_COMPAT mode.
4366 		 */
4367 		if (ext4_has_feature_ea_inode(sb)) {
4368 			ext4_msg(sb, KERN_ERR,
4369 				 "ea_inode feature is not supported for Hurd");
4370 			goto failed_mount;
4371 		}
4372 	}
4373 
4374 	if (IS_EXT2_SB(sb)) {
4375 		if (ext2_feature_set_ok(sb))
4376 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4377 				 "using the ext4 subsystem");
4378 		else {
4379 			/*
4380 			 * If we're probing be silent, if this looks like
4381 			 * it's actually an ext[34] filesystem.
4382 			 */
4383 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4384 				goto failed_mount;
4385 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4386 				 "to feature incompatibilities");
4387 			goto failed_mount;
4388 		}
4389 	}
4390 
4391 	if (IS_EXT3_SB(sb)) {
4392 		if (ext3_feature_set_ok(sb))
4393 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4394 				 "using the ext4 subsystem");
4395 		else {
4396 			/*
4397 			 * If we're probing be silent, if this looks like
4398 			 * it's actually an ext4 filesystem.
4399 			 */
4400 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4401 				goto failed_mount;
4402 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4403 				 "to feature incompatibilities");
4404 			goto failed_mount;
4405 		}
4406 	}
4407 
4408 	/*
4409 	 * Check feature flags regardless of the revision level, since we
4410 	 * previously didn't change the revision level when setting the flags,
4411 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4412 	 */
4413 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4414 		goto failed_mount;
4415 
4416 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4417 		ext4_msg(sb, KERN_ERR,
4418 			 "Number of reserved GDT blocks insanely large: %d",
4419 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4420 		goto failed_mount;
4421 	}
4422 
4423 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4424 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4425 
4426 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4427 		if (ext4_has_feature_inline_data(sb)) {
4428 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4429 					" that may contain inline data");
4430 			goto failed_mount;
4431 		}
4432 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4433 			ext4_msg(sb, KERN_ERR,
4434 				"DAX unsupported by block device.");
4435 			goto failed_mount;
4436 		}
4437 	}
4438 
4439 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4440 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4441 			 es->s_encryption_level);
4442 		goto failed_mount;
4443 	}
4444 
4445 	if (sb->s_blocksize != blocksize) {
4446 		/*
4447 		 * bh must be released before kill_bdev(), otherwise
4448 		 * it won't be freed and its page also. kill_bdev()
4449 		 * is called by sb_set_blocksize().
4450 		 */
4451 		brelse(bh);
4452 		/* Validate the filesystem blocksize */
4453 		if (!sb_set_blocksize(sb, blocksize)) {
4454 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4455 					blocksize);
4456 			bh = NULL;
4457 			goto failed_mount;
4458 		}
4459 
4460 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4461 		offset = do_div(logical_sb_block, blocksize);
4462 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4463 		if (IS_ERR(bh)) {
4464 			ext4_msg(sb, KERN_ERR,
4465 			       "Can't read superblock on 2nd try");
4466 			ret = PTR_ERR(bh);
4467 			bh = NULL;
4468 			goto failed_mount;
4469 		}
4470 		es = (struct ext4_super_block *)(bh->b_data + offset);
4471 		sbi->s_es = es;
4472 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4473 			ext4_msg(sb, KERN_ERR,
4474 			       "Magic mismatch, very weird!");
4475 			goto failed_mount;
4476 		}
4477 	}
4478 
4479 	has_huge_files = ext4_has_feature_huge_file(sb);
4480 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4481 						      has_huge_files);
4482 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4483 
4484 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4485 	if (ext4_has_feature_64bit(sb)) {
4486 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4487 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4488 		    !is_power_of_2(sbi->s_desc_size)) {
4489 			ext4_msg(sb, KERN_ERR,
4490 			       "unsupported descriptor size %lu",
4491 			       sbi->s_desc_size);
4492 			goto failed_mount;
4493 		}
4494 	} else
4495 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4496 
4497 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4498 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4499 
4500 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4501 	if (sbi->s_inodes_per_block == 0)
4502 		goto cantfind_ext4;
4503 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4504 	    sbi->s_inodes_per_group > blocksize * 8) {
4505 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4506 			 sbi->s_inodes_per_group);
4507 		goto failed_mount;
4508 	}
4509 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4510 					sbi->s_inodes_per_block;
4511 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4512 	sbi->s_sbh = bh;
4513 	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4514 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4515 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4516 
4517 	for (i = 0; i < 4; i++)
4518 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4519 	sbi->s_def_hash_version = es->s_def_hash_version;
4520 	if (ext4_has_feature_dir_index(sb)) {
4521 		i = le32_to_cpu(es->s_flags);
4522 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4523 			sbi->s_hash_unsigned = 3;
4524 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4525 #ifdef __CHAR_UNSIGNED__
4526 			if (!sb_rdonly(sb))
4527 				es->s_flags |=
4528 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4529 			sbi->s_hash_unsigned = 3;
4530 #else
4531 			if (!sb_rdonly(sb))
4532 				es->s_flags |=
4533 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4534 #endif
4535 		}
4536 	}
4537 
4538 	/* Handle clustersize */
4539 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4540 	if (ext4_has_feature_bigalloc(sb)) {
4541 		if (clustersize < blocksize) {
4542 			ext4_msg(sb, KERN_ERR,
4543 				 "cluster size (%d) smaller than "
4544 				 "block size (%d)", clustersize, blocksize);
4545 			goto failed_mount;
4546 		}
4547 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4548 			le32_to_cpu(es->s_log_block_size);
4549 		sbi->s_clusters_per_group =
4550 			le32_to_cpu(es->s_clusters_per_group);
4551 		if (sbi->s_clusters_per_group > blocksize * 8) {
4552 			ext4_msg(sb, KERN_ERR,
4553 				 "#clusters per group too big: %lu",
4554 				 sbi->s_clusters_per_group);
4555 			goto failed_mount;
4556 		}
4557 		if (sbi->s_blocks_per_group !=
4558 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4559 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4560 				 "clusters per group (%lu) inconsistent",
4561 				 sbi->s_blocks_per_group,
4562 				 sbi->s_clusters_per_group);
4563 			goto failed_mount;
4564 		}
4565 	} else {
4566 		if (clustersize != blocksize) {
4567 			ext4_msg(sb, KERN_ERR,
4568 				 "fragment/cluster size (%d) != "
4569 				 "block size (%d)", clustersize, blocksize);
4570 			goto failed_mount;
4571 		}
4572 		if (sbi->s_blocks_per_group > blocksize * 8) {
4573 			ext4_msg(sb, KERN_ERR,
4574 				 "#blocks per group too big: %lu",
4575 				 sbi->s_blocks_per_group);
4576 			goto failed_mount;
4577 		}
4578 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4579 		sbi->s_cluster_bits = 0;
4580 	}
4581 	sbi->s_cluster_ratio = clustersize / blocksize;
4582 
4583 	/* Do we have standard group size of clustersize * 8 blocks ? */
4584 	if (sbi->s_blocks_per_group == clustersize << 3)
4585 		set_opt2(sb, STD_GROUP_SIZE);
4586 
4587 	/*
4588 	 * Test whether we have more sectors than will fit in sector_t,
4589 	 * and whether the max offset is addressable by the page cache.
4590 	 */
4591 	err = generic_check_addressable(sb->s_blocksize_bits,
4592 					ext4_blocks_count(es));
4593 	if (err) {
4594 		ext4_msg(sb, KERN_ERR, "filesystem"
4595 			 " too large to mount safely on this system");
4596 		goto failed_mount;
4597 	}
4598 
4599 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4600 		goto cantfind_ext4;
4601 
4602 	/* check blocks count against device size */
4603 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4604 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4605 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4606 		       "exceeds size of device (%llu blocks)",
4607 		       ext4_blocks_count(es), blocks_count);
4608 		goto failed_mount;
4609 	}
4610 
4611 	/*
4612 	 * It makes no sense for the first data block to be beyond the end
4613 	 * of the filesystem.
4614 	 */
4615 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4616 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4617 			 "block %u is beyond end of filesystem (%llu)",
4618 			 le32_to_cpu(es->s_first_data_block),
4619 			 ext4_blocks_count(es));
4620 		goto failed_mount;
4621 	}
4622 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4623 	    (sbi->s_cluster_ratio == 1)) {
4624 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4625 			 "block is 0 with a 1k block and cluster size");
4626 		goto failed_mount;
4627 	}
4628 
4629 	blocks_count = (ext4_blocks_count(es) -
4630 			le32_to_cpu(es->s_first_data_block) +
4631 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4632 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4633 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4634 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4635 		       "(block count %llu, first data block %u, "
4636 		       "blocks per group %lu)", blocks_count,
4637 		       ext4_blocks_count(es),
4638 		       le32_to_cpu(es->s_first_data_block),
4639 		       EXT4_BLOCKS_PER_GROUP(sb));
4640 		goto failed_mount;
4641 	}
4642 	sbi->s_groups_count = blocks_count;
4643 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4644 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4645 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4646 	    le32_to_cpu(es->s_inodes_count)) {
4647 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4648 			 le32_to_cpu(es->s_inodes_count),
4649 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4650 		ret = -EINVAL;
4651 		goto failed_mount;
4652 	}
4653 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4654 		   EXT4_DESC_PER_BLOCK(sb);
4655 	if (ext4_has_feature_meta_bg(sb)) {
4656 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4657 			ext4_msg(sb, KERN_WARNING,
4658 				 "first meta block group too large: %u "
4659 				 "(group descriptor block count %u)",
4660 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4661 			goto failed_mount;
4662 		}
4663 	}
4664 	rcu_assign_pointer(sbi->s_group_desc,
4665 			   kvmalloc_array(db_count,
4666 					  sizeof(struct buffer_head *),
4667 					  GFP_KERNEL));
4668 	if (sbi->s_group_desc == NULL) {
4669 		ext4_msg(sb, KERN_ERR, "not enough memory");
4670 		ret = -ENOMEM;
4671 		goto failed_mount;
4672 	}
4673 
4674 	bgl_lock_init(sbi->s_blockgroup_lock);
4675 
4676 	/* Pre-read the descriptors into the buffer cache */
4677 	for (i = 0; i < db_count; i++) {
4678 		block = descriptor_loc(sb, logical_sb_block, i);
4679 		ext4_sb_breadahead_unmovable(sb, block);
4680 	}
4681 
4682 	for (i = 0; i < db_count; i++) {
4683 		struct buffer_head *bh;
4684 
4685 		block = descriptor_loc(sb, logical_sb_block, i);
4686 		bh = ext4_sb_bread_unmovable(sb, block);
4687 		if (IS_ERR(bh)) {
4688 			ext4_msg(sb, KERN_ERR,
4689 			       "can't read group descriptor %d", i);
4690 			db_count = i;
4691 			ret = PTR_ERR(bh);
4692 			bh = NULL;
4693 			goto failed_mount2;
4694 		}
4695 		rcu_read_lock();
4696 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4697 		rcu_read_unlock();
4698 	}
4699 	sbi->s_gdb_count = db_count;
4700 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4701 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4702 		ret = -EFSCORRUPTED;
4703 		goto failed_mount2;
4704 	}
4705 
4706 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4707 	spin_lock_init(&sbi->s_error_lock);
4708 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4709 
4710 	/* Register extent status tree shrinker */
4711 	if (ext4_es_register_shrinker(sbi))
4712 		goto failed_mount3;
4713 
4714 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4715 	sbi->s_extent_max_zeroout_kb = 32;
4716 
4717 	/*
4718 	 * set up enough so that it can read an inode
4719 	 */
4720 	sb->s_op = &ext4_sops;
4721 	sb->s_export_op = &ext4_export_ops;
4722 	sb->s_xattr = ext4_xattr_handlers;
4723 #ifdef CONFIG_FS_ENCRYPTION
4724 	sb->s_cop = &ext4_cryptops;
4725 #endif
4726 #ifdef CONFIG_FS_VERITY
4727 	sb->s_vop = &ext4_verityops;
4728 #endif
4729 #ifdef CONFIG_QUOTA
4730 	sb->dq_op = &ext4_quota_operations;
4731 	if (ext4_has_feature_quota(sb))
4732 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4733 	else
4734 		sb->s_qcop = &ext4_qctl_operations;
4735 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4736 #endif
4737 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4738 
4739 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4740 	mutex_init(&sbi->s_orphan_lock);
4741 
4742 	/* Initialize fast commit stuff */
4743 	atomic_set(&sbi->s_fc_subtid, 0);
4744 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4745 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4746 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4747 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4748 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4749 	sbi->s_fc_bytes = 0;
4750 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4751 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4752 	spin_lock_init(&sbi->s_fc_lock);
4753 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4754 	sbi->s_fc_replay_state.fc_regions = NULL;
4755 	sbi->s_fc_replay_state.fc_regions_size = 0;
4756 	sbi->s_fc_replay_state.fc_regions_used = 0;
4757 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4758 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4759 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4760 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4761 
4762 	sb->s_root = NULL;
4763 
4764 	needs_recovery = (es->s_last_orphan != 0 ||
4765 			  ext4_has_feature_journal_needs_recovery(sb));
4766 
4767 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4768 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4769 			goto failed_mount3a;
4770 
4771 	/*
4772 	 * The first inode we look at is the journal inode.  Don't try
4773 	 * root first: it may be modified in the journal!
4774 	 */
4775 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4776 		err = ext4_load_journal(sb, es, journal_devnum);
4777 		if (err)
4778 			goto failed_mount3a;
4779 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4780 		   ext4_has_feature_journal_needs_recovery(sb)) {
4781 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4782 		       "suppressed and not mounted read-only");
4783 		goto failed_mount3a;
4784 	} else {
4785 		/* Nojournal mode, all journal mount options are illegal */
4786 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4787 			ext4_msg(sb, KERN_ERR, "can't mount with "
4788 				 "journal_async_commit, fs mounted w/o journal");
4789 			goto failed_mount3a;
4790 		}
4791 
4792 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4793 			ext4_msg(sb, KERN_ERR, "can't mount with "
4794 				 "journal_checksum, fs mounted w/o journal");
4795 			goto failed_mount3a;
4796 		}
4797 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4798 			ext4_msg(sb, KERN_ERR, "can't mount with "
4799 				 "commit=%lu, fs mounted w/o journal",
4800 				 sbi->s_commit_interval / HZ);
4801 			goto failed_mount3a;
4802 		}
4803 		if (EXT4_MOUNT_DATA_FLAGS &
4804 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4805 			ext4_msg(sb, KERN_ERR, "can't mount with "
4806 				 "data=, fs mounted w/o journal");
4807 			goto failed_mount3a;
4808 		}
4809 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4810 		clear_opt(sb, JOURNAL_CHECKSUM);
4811 		clear_opt(sb, DATA_FLAGS);
4812 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4813 		sbi->s_journal = NULL;
4814 		needs_recovery = 0;
4815 		goto no_journal;
4816 	}
4817 
4818 	if (ext4_has_feature_64bit(sb) &&
4819 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4820 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4821 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4822 		goto failed_mount_wq;
4823 	}
4824 
4825 	if (!set_journal_csum_feature_set(sb)) {
4826 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4827 			 "feature set");
4828 		goto failed_mount_wq;
4829 	}
4830 
4831 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4832 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4833 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4834 		ext4_msg(sb, KERN_ERR,
4835 			"Failed to set fast commit journal feature");
4836 		goto failed_mount_wq;
4837 	}
4838 
4839 	/* We have now updated the journal if required, so we can
4840 	 * validate the data journaling mode. */
4841 	switch (test_opt(sb, DATA_FLAGS)) {
4842 	case 0:
4843 		/* No mode set, assume a default based on the journal
4844 		 * capabilities: ORDERED_DATA if the journal can
4845 		 * cope, else JOURNAL_DATA
4846 		 */
4847 		if (jbd2_journal_check_available_features
4848 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4849 			set_opt(sb, ORDERED_DATA);
4850 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4851 		} else {
4852 			set_opt(sb, JOURNAL_DATA);
4853 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4854 		}
4855 		break;
4856 
4857 	case EXT4_MOUNT_ORDERED_DATA:
4858 	case EXT4_MOUNT_WRITEBACK_DATA:
4859 		if (!jbd2_journal_check_available_features
4860 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4861 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4862 			       "requested data journaling mode");
4863 			goto failed_mount_wq;
4864 		}
4865 	default:
4866 		break;
4867 	}
4868 
4869 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4870 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4871 		ext4_msg(sb, KERN_ERR, "can't mount with "
4872 			"journal_async_commit in data=ordered mode");
4873 		goto failed_mount_wq;
4874 	}
4875 
4876 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4877 
4878 	sbi->s_journal->j_submit_inode_data_buffers =
4879 		ext4_journal_submit_inode_data_buffers;
4880 	sbi->s_journal->j_finish_inode_data_buffers =
4881 		ext4_journal_finish_inode_data_buffers;
4882 
4883 no_journal:
4884 	if (!test_opt(sb, NO_MBCACHE)) {
4885 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4886 		if (!sbi->s_ea_block_cache) {
4887 			ext4_msg(sb, KERN_ERR,
4888 				 "Failed to create ea_block_cache");
4889 			goto failed_mount_wq;
4890 		}
4891 
4892 		if (ext4_has_feature_ea_inode(sb)) {
4893 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4894 			if (!sbi->s_ea_inode_cache) {
4895 				ext4_msg(sb, KERN_ERR,
4896 					 "Failed to create ea_inode_cache");
4897 				goto failed_mount_wq;
4898 			}
4899 		}
4900 	}
4901 
4902 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4903 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4904 		goto failed_mount_wq;
4905 	}
4906 
4907 	/*
4908 	 * Get the # of file system overhead blocks from the
4909 	 * superblock if present.
4910 	 */
4911 	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4912 	/* ignore the precalculated value if it is ridiculous */
4913 	if (sbi->s_overhead > ext4_blocks_count(es))
4914 		sbi->s_overhead = 0;
4915 	/*
4916 	 * If the bigalloc feature is not enabled recalculating the
4917 	 * overhead doesn't take long, so we might as well just redo
4918 	 * it to make sure we are using the correct value.
4919 	 */
4920 	if (!ext4_has_feature_bigalloc(sb))
4921 		sbi->s_overhead = 0;
4922 	if (sbi->s_overhead == 0) {
4923 		err = ext4_calculate_overhead(sb);
4924 		if (err)
4925 			goto failed_mount_wq;
4926 	}
4927 
4928 	/*
4929 	 * The maximum number of concurrent works can be high and
4930 	 * concurrency isn't really necessary.  Limit it to 1.
4931 	 */
4932 	EXT4_SB(sb)->rsv_conversion_wq =
4933 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4934 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4935 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4936 		ret = -ENOMEM;
4937 		goto failed_mount4;
4938 	}
4939 
4940 	/*
4941 	 * The jbd2_journal_load will have done any necessary log recovery,
4942 	 * so we can safely mount the rest of the filesystem now.
4943 	 */
4944 
4945 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4946 	if (IS_ERR(root)) {
4947 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4948 		ret = PTR_ERR(root);
4949 		root = NULL;
4950 		goto failed_mount4;
4951 	}
4952 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4953 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4954 		iput(root);
4955 		goto failed_mount4;
4956 	}
4957 
4958 #ifdef CONFIG_UNICODE
4959 	if (sb->s_encoding)
4960 		sb->s_d_op = &ext4_dentry_ops;
4961 #endif
4962 
4963 	sb->s_root = d_make_root(root);
4964 	if (!sb->s_root) {
4965 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4966 		ret = -ENOMEM;
4967 		goto failed_mount4;
4968 	}
4969 
4970 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4971 	if (ret == -EROFS) {
4972 		sb->s_flags |= SB_RDONLY;
4973 		ret = 0;
4974 	} else if (ret)
4975 		goto failed_mount4a;
4976 
4977 	ext4_set_resv_clusters(sb);
4978 
4979 	if (test_opt(sb, BLOCK_VALIDITY)) {
4980 		err = ext4_setup_system_zone(sb);
4981 		if (err) {
4982 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4983 				 "zone (%d)", err);
4984 			goto failed_mount4a;
4985 		}
4986 	}
4987 	ext4_fc_replay_cleanup(sb);
4988 
4989 	ext4_ext_init(sb);
4990 	err = ext4_mb_init(sb);
4991 	if (err) {
4992 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4993 			 err);
4994 		goto failed_mount5;
4995 	}
4996 
4997 	/*
4998 	 * We can only set up the journal commit callback once
4999 	 * mballoc is initialized
5000 	 */
5001 	if (sbi->s_journal)
5002 		sbi->s_journal->j_commit_callback =
5003 			ext4_journal_commit_callback;
5004 
5005 	block = ext4_count_free_clusters(sb);
5006 	ext4_free_blocks_count_set(sbi->s_es,
5007 				   EXT4_C2B(sbi, block));
5008 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5009 				  GFP_KERNEL);
5010 	if (!err) {
5011 		unsigned long freei = ext4_count_free_inodes(sb);
5012 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5013 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5014 					  GFP_KERNEL);
5015 	}
5016 	/*
5017 	 * Update the checksum after updating free space/inode
5018 	 * counters.  Otherwise the superblock can have an incorrect
5019 	 * checksum in the buffer cache until it is written out and
5020 	 * e2fsprogs programs trying to open a file system immediately
5021 	 * after it is mounted can fail.
5022 	 */
5023 	ext4_superblock_csum_set(sb);
5024 	if (!err)
5025 		err = percpu_counter_init(&sbi->s_dirs_counter,
5026 					  ext4_count_dirs(sb), GFP_KERNEL);
5027 	if (!err)
5028 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5029 					  GFP_KERNEL);
5030 	if (!err)
5031 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5032 					  GFP_KERNEL);
5033 	if (!err)
5034 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5035 
5036 	if (err) {
5037 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5038 		goto failed_mount6;
5039 	}
5040 
5041 	if (ext4_has_feature_flex_bg(sb))
5042 		if (!ext4_fill_flex_info(sb)) {
5043 			ext4_msg(sb, KERN_ERR,
5044 			       "unable to initialize "
5045 			       "flex_bg meta info!");
5046 			ret = -ENOMEM;
5047 			goto failed_mount6;
5048 		}
5049 
5050 	err = ext4_register_li_request(sb, first_not_zeroed);
5051 	if (err)
5052 		goto failed_mount6;
5053 
5054 	err = ext4_register_sysfs(sb);
5055 	if (err)
5056 		goto failed_mount7;
5057 
5058 #ifdef CONFIG_QUOTA
5059 	/* Enable quota usage during mount. */
5060 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5061 		err = ext4_enable_quotas(sb);
5062 		if (err)
5063 			goto failed_mount8;
5064 	}
5065 #endif  /* CONFIG_QUOTA */
5066 
5067 	/*
5068 	 * Save the original bdev mapping's wb_err value which could be
5069 	 * used to detect the metadata async write error.
5070 	 */
5071 	spin_lock_init(&sbi->s_bdev_wb_lock);
5072 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5073 				 &sbi->s_bdev_wb_err);
5074 	sb->s_bdev->bd_super = sb;
5075 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5076 	ext4_orphan_cleanup(sb, es);
5077 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5078 	if (needs_recovery) {
5079 		ext4_msg(sb, KERN_INFO, "recovery complete");
5080 		err = ext4_mark_recovery_complete(sb, es);
5081 		if (err)
5082 			goto failed_mount8;
5083 	}
5084 	if (EXT4_SB(sb)->s_journal) {
5085 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5086 			descr = " journalled data mode";
5087 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5088 			descr = " ordered data mode";
5089 		else
5090 			descr = " writeback data mode";
5091 	} else
5092 		descr = "out journal";
5093 
5094 	if (test_opt(sb, DISCARD)) {
5095 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5096 		if (!blk_queue_discard(q))
5097 			ext4_msg(sb, KERN_WARNING,
5098 				 "mounting with \"discard\" option, but "
5099 				 "the device does not support discard");
5100 	}
5101 
5102 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5103 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5104 			 "Opts: %.*s%s%s", descr,
5105 			 (int) sizeof(sbi->s_es->s_mount_opts),
5106 			 sbi->s_es->s_mount_opts,
5107 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5108 
5109 	if (es->s_error_count)
5110 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5111 
5112 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5113 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5114 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5115 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5116 	atomic_set(&sbi->s_warning_count, 0);
5117 	atomic_set(&sbi->s_msg_count, 0);
5118 
5119 	kfree(orig_data);
5120 	return 0;
5121 
5122 cantfind_ext4:
5123 	if (!silent)
5124 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5125 	goto failed_mount;
5126 
5127 failed_mount8:
5128 	ext4_unregister_sysfs(sb);
5129 	kobject_put(&sbi->s_kobj);
5130 failed_mount7:
5131 	ext4_unregister_li_request(sb);
5132 failed_mount6:
5133 	ext4_mb_release(sb);
5134 	rcu_read_lock();
5135 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5136 	if (flex_groups) {
5137 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5138 			kvfree(flex_groups[i]);
5139 		kvfree(flex_groups);
5140 	}
5141 	rcu_read_unlock();
5142 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5143 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5144 	percpu_counter_destroy(&sbi->s_dirs_counter);
5145 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5146 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5147 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5148 failed_mount5:
5149 	ext4_ext_release(sb);
5150 	ext4_release_system_zone(sb);
5151 failed_mount4a:
5152 	dput(sb->s_root);
5153 	sb->s_root = NULL;
5154 failed_mount4:
5155 	ext4_msg(sb, KERN_ERR, "mount failed");
5156 	if (EXT4_SB(sb)->rsv_conversion_wq)
5157 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5158 failed_mount_wq:
5159 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5160 	sbi->s_ea_inode_cache = NULL;
5161 
5162 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5163 	sbi->s_ea_block_cache = NULL;
5164 
5165 	if (sbi->s_journal) {
5166 		/* flush s_error_work before journal destroy. */
5167 		flush_work(&sbi->s_error_work);
5168 		jbd2_journal_destroy(sbi->s_journal);
5169 		sbi->s_journal = NULL;
5170 	}
5171 failed_mount3a:
5172 	ext4_es_unregister_shrinker(sbi);
5173 failed_mount3:
5174 	/* flush s_error_work before sbi destroy */
5175 	flush_work(&sbi->s_error_work);
5176 	del_timer_sync(&sbi->s_err_report);
5177 	ext4_stop_mmpd(sbi);
5178 failed_mount2:
5179 	rcu_read_lock();
5180 	group_desc = rcu_dereference(sbi->s_group_desc);
5181 	for (i = 0; i < db_count; i++)
5182 		brelse(group_desc[i]);
5183 	kvfree(group_desc);
5184 	rcu_read_unlock();
5185 failed_mount:
5186 	if (sbi->s_chksum_driver)
5187 		crypto_free_shash(sbi->s_chksum_driver);
5188 
5189 #ifdef CONFIG_UNICODE
5190 	utf8_unload(sb->s_encoding);
5191 #endif
5192 
5193 #ifdef CONFIG_QUOTA
5194 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5195 		kfree(get_qf_name(sb, sbi, i));
5196 #endif
5197 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5198 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5199 	brelse(bh);
5200 	ext4_blkdev_remove(sbi);
5201 out_fail:
5202 	sb->s_fs_info = NULL;
5203 	kfree(sbi->s_blockgroup_lock);
5204 out_free_base:
5205 	kfree(sbi);
5206 	kfree(orig_data);
5207 	fs_put_dax(dax_dev);
5208 	return err ? err : ret;
5209 }
5210 
5211 /*
5212  * Setup any per-fs journal parameters now.  We'll do this both on
5213  * initial mount, once the journal has been initialised but before we've
5214  * done any recovery; and again on any subsequent remount.
5215  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5216 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5217 {
5218 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5219 
5220 	journal->j_commit_interval = sbi->s_commit_interval;
5221 	journal->j_min_batch_time = sbi->s_min_batch_time;
5222 	journal->j_max_batch_time = sbi->s_max_batch_time;
5223 	ext4_fc_init(sb, journal);
5224 
5225 	write_lock(&journal->j_state_lock);
5226 	if (test_opt(sb, BARRIER))
5227 		journal->j_flags |= JBD2_BARRIER;
5228 	else
5229 		journal->j_flags &= ~JBD2_BARRIER;
5230 	if (test_opt(sb, DATA_ERR_ABORT))
5231 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5232 	else
5233 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5234 	write_unlock(&journal->j_state_lock);
5235 }
5236 
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5237 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5238 					     unsigned int journal_inum)
5239 {
5240 	struct inode *journal_inode;
5241 
5242 	/*
5243 	 * Test for the existence of a valid inode on disk.  Bad things
5244 	 * happen if we iget() an unused inode, as the subsequent iput()
5245 	 * will try to delete it.
5246 	 */
5247 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5248 	if (IS_ERR(journal_inode)) {
5249 		ext4_msg(sb, KERN_ERR, "no journal found");
5250 		return NULL;
5251 	}
5252 	if (!journal_inode->i_nlink) {
5253 		make_bad_inode(journal_inode);
5254 		iput(journal_inode);
5255 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5256 		return NULL;
5257 	}
5258 
5259 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5260 		  journal_inode, journal_inode->i_size);
5261 	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5262 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5263 		iput(journal_inode);
5264 		return NULL;
5265 	}
5266 	return journal_inode;
5267 }
5268 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5269 static journal_t *ext4_get_journal(struct super_block *sb,
5270 				   unsigned int journal_inum)
5271 {
5272 	struct inode *journal_inode;
5273 	journal_t *journal;
5274 
5275 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5276 		return NULL;
5277 
5278 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5279 	if (!journal_inode)
5280 		return NULL;
5281 
5282 	journal = jbd2_journal_init_inode(journal_inode);
5283 	if (!journal) {
5284 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5285 		iput(journal_inode);
5286 		return NULL;
5287 	}
5288 	journal->j_private = sb;
5289 	ext4_init_journal_params(sb, journal);
5290 	return journal;
5291 }
5292 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5293 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5294 				       dev_t j_dev)
5295 {
5296 	struct buffer_head *bh;
5297 	journal_t *journal;
5298 	ext4_fsblk_t start;
5299 	ext4_fsblk_t len;
5300 	int hblock, blocksize;
5301 	ext4_fsblk_t sb_block;
5302 	unsigned long offset;
5303 	struct ext4_super_block *es;
5304 	struct block_device *bdev;
5305 
5306 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5307 		return NULL;
5308 
5309 	bdev = ext4_blkdev_get(j_dev, sb);
5310 	if (bdev == NULL)
5311 		return NULL;
5312 
5313 	blocksize = sb->s_blocksize;
5314 	hblock = bdev_logical_block_size(bdev);
5315 	if (blocksize < hblock) {
5316 		ext4_msg(sb, KERN_ERR,
5317 			"blocksize too small for journal device");
5318 		goto out_bdev;
5319 	}
5320 
5321 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5322 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5323 	set_blocksize(bdev, blocksize);
5324 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5325 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5326 		       "external journal");
5327 		goto out_bdev;
5328 	}
5329 
5330 	es = (struct ext4_super_block *) (bh->b_data + offset);
5331 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5332 	    !(le32_to_cpu(es->s_feature_incompat) &
5333 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5334 		ext4_msg(sb, KERN_ERR, "external journal has "
5335 					"bad superblock");
5336 		brelse(bh);
5337 		goto out_bdev;
5338 	}
5339 
5340 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5341 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5342 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5343 		ext4_msg(sb, KERN_ERR, "external journal has "
5344 				       "corrupt superblock");
5345 		brelse(bh);
5346 		goto out_bdev;
5347 	}
5348 
5349 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5350 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5351 		brelse(bh);
5352 		goto out_bdev;
5353 	}
5354 
5355 	len = ext4_blocks_count(es);
5356 	start = sb_block + 1;
5357 	brelse(bh);	/* we're done with the superblock */
5358 
5359 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5360 					start, len, blocksize);
5361 	if (!journal) {
5362 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5363 		goto out_bdev;
5364 	}
5365 	journal->j_private = sb;
5366 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5367 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5368 		goto out_journal;
5369 	}
5370 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5371 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5372 					"user (unsupported) - %d",
5373 			be32_to_cpu(journal->j_superblock->s_nr_users));
5374 		goto out_journal;
5375 	}
5376 	EXT4_SB(sb)->s_journal_bdev = bdev;
5377 	ext4_init_journal_params(sb, journal);
5378 	return journal;
5379 
5380 out_journal:
5381 	jbd2_journal_destroy(journal);
5382 out_bdev:
5383 	ext4_blkdev_put(bdev);
5384 	return NULL;
5385 }
5386 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5387 static int ext4_load_journal(struct super_block *sb,
5388 			     struct ext4_super_block *es,
5389 			     unsigned long journal_devnum)
5390 {
5391 	journal_t *journal;
5392 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5393 	dev_t journal_dev;
5394 	int err = 0;
5395 	int really_read_only;
5396 	int journal_dev_ro;
5397 
5398 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5399 		return -EFSCORRUPTED;
5400 
5401 	if (journal_devnum &&
5402 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5403 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5404 			"numbers have changed");
5405 		journal_dev = new_decode_dev(journal_devnum);
5406 	} else
5407 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5408 
5409 	if (journal_inum && journal_dev) {
5410 		ext4_msg(sb, KERN_ERR,
5411 			 "filesystem has both journal inode and journal device!");
5412 		return -EINVAL;
5413 	}
5414 
5415 	if (journal_inum) {
5416 		journal = ext4_get_journal(sb, journal_inum);
5417 		if (!journal)
5418 			return -EINVAL;
5419 	} else {
5420 		journal = ext4_get_dev_journal(sb, journal_dev);
5421 		if (!journal)
5422 			return -EINVAL;
5423 	}
5424 
5425 	journal_dev_ro = bdev_read_only(journal->j_dev);
5426 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5427 
5428 	if (journal_dev_ro && !sb_rdonly(sb)) {
5429 		ext4_msg(sb, KERN_ERR,
5430 			 "journal device read-only, try mounting with '-o ro'");
5431 		err = -EROFS;
5432 		goto err_out;
5433 	}
5434 
5435 	/*
5436 	 * Are we loading a blank journal or performing recovery after a
5437 	 * crash?  For recovery, we need to check in advance whether we
5438 	 * can get read-write access to the device.
5439 	 */
5440 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5441 		if (sb_rdonly(sb)) {
5442 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5443 					"required on readonly filesystem");
5444 			if (really_read_only) {
5445 				ext4_msg(sb, KERN_ERR, "write access "
5446 					"unavailable, cannot proceed "
5447 					"(try mounting with noload)");
5448 				err = -EROFS;
5449 				goto err_out;
5450 			}
5451 			ext4_msg(sb, KERN_INFO, "write access will "
5452 			       "be enabled during recovery");
5453 		}
5454 	}
5455 
5456 	if (!(journal->j_flags & JBD2_BARRIER))
5457 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5458 
5459 	if (!ext4_has_feature_journal_needs_recovery(sb))
5460 		err = jbd2_journal_wipe(journal, !really_read_only);
5461 	if (!err) {
5462 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5463 		if (save)
5464 			memcpy(save, ((char *) es) +
5465 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5466 		err = jbd2_journal_load(journal);
5467 		if (save)
5468 			memcpy(((char *) es) + EXT4_S_ERR_START,
5469 			       save, EXT4_S_ERR_LEN);
5470 		kfree(save);
5471 	}
5472 
5473 	if (err) {
5474 		ext4_msg(sb, KERN_ERR, "error loading journal");
5475 		goto err_out;
5476 	}
5477 
5478 	EXT4_SB(sb)->s_journal = journal;
5479 	err = ext4_clear_journal_err(sb, es);
5480 	if (err) {
5481 		EXT4_SB(sb)->s_journal = NULL;
5482 		jbd2_journal_destroy(journal);
5483 		return err;
5484 	}
5485 
5486 	if (!really_read_only && journal_devnum &&
5487 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5488 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5489 
5490 		/* Make sure we flush the recovery flag to disk. */
5491 		ext4_commit_super(sb);
5492 	}
5493 
5494 	return 0;
5495 
5496 err_out:
5497 	jbd2_journal_destroy(journal);
5498 	return err;
5499 }
5500 
5501 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5502 static void ext4_update_super(struct super_block *sb)
5503 {
5504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5505 	struct ext4_super_block *es = sbi->s_es;
5506 	struct buffer_head *sbh = sbi->s_sbh;
5507 
5508 	lock_buffer(sbh);
5509 	/*
5510 	 * If the file system is mounted read-only, don't update the
5511 	 * superblock write time.  This avoids updating the superblock
5512 	 * write time when we are mounting the root file system
5513 	 * read/only but we need to replay the journal; at that point,
5514 	 * for people who are east of GMT and who make their clock
5515 	 * tick in localtime for Windows bug-for-bug compatibility,
5516 	 * the clock is set in the future, and this will cause e2fsck
5517 	 * to complain and force a full file system check.
5518 	 */
5519 	if (!(sb->s_flags & SB_RDONLY))
5520 		ext4_update_tstamp(es, s_wtime);
5521 	if (sb->s_bdev->bd_part)
5522 		es->s_kbytes_written =
5523 			cpu_to_le64(sbi->s_kbytes_written +
5524 			    ((part_stat_read(sb->s_bdev->bd_part,
5525 					     sectors[STAT_WRITE]) -
5526 			      sbi->s_sectors_written_start) >> 1));
5527 	else
5528 		es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5529 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5530 		ext4_free_blocks_count_set(es,
5531 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5532 				&sbi->s_freeclusters_counter)));
5533 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5534 		es->s_free_inodes_count =
5535 			cpu_to_le32(percpu_counter_sum_positive(
5536 				&sbi->s_freeinodes_counter));
5537 	/* Copy error information to the on-disk superblock */
5538 	spin_lock(&sbi->s_error_lock);
5539 	if (sbi->s_add_error_count > 0) {
5540 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5541 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5542 			__ext4_update_tstamp(&es->s_first_error_time,
5543 					     &es->s_first_error_time_hi,
5544 					     sbi->s_first_error_time);
5545 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5546 				sizeof(es->s_first_error_func));
5547 			es->s_first_error_line =
5548 				cpu_to_le32(sbi->s_first_error_line);
5549 			es->s_first_error_ino =
5550 				cpu_to_le32(sbi->s_first_error_ino);
5551 			es->s_first_error_block =
5552 				cpu_to_le64(sbi->s_first_error_block);
5553 			es->s_first_error_errcode =
5554 				ext4_errno_to_code(sbi->s_first_error_code);
5555 		}
5556 		__ext4_update_tstamp(&es->s_last_error_time,
5557 				     &es->s_last_error_time_hi,
5558 				     sbi->s_last_error_time);
5559 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5560 			sizeof(es->s_last_error_func));
5561 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5562 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5563 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5564 		es->s_last_error_errcode =
5565 				ext4_errno_to_code(sbi->s_last_error_code);
5566 		/*
5567 		 * Start the daily error reporting function if it hasn't been
5568 		 * started already
5569 		 */
5570 		if (!es->s_error_count)
5571 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5572 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5573 		sbi->s_add_error_count = 0;
5574 	}
5575 	spin_unlock(&sbi->s_error_lock);
5576 
5577 	ext4_superblock_csum_set(sb);
5578 	unlock_buffer(sbh);
5579 }
5580 
ext4_commit_super(struct super_block * sb)5581 static int ext4_commit_super(struct super_block *sb)
5582 {
5583 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5584 	int error = 0;
5585 
5586 	if (!sbh)
5587 		return -EINVAL;
5588 	if (block_device_ejected(sb))
5589 		return -ENODEV;
5590 
5591 	ext4_update_super(sb);
5592 
5593 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5594 		/*
5595 		 * Oh, dear.  A previous attempt to write the
5596 		 * superblock failed.  This could happen because the
5597 		 * USB device was yanked out.  Or it could happen to
5598 		 * be a transient write error and maybe the block will
5599 		 * be remapped.  Nothing we can do but to retry the
5600 		 * write and hope for the best.
5601 		 */
5602 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5603 		       "superblock detected");
5604 		clear_buffer_write_io_error(sbh);
5605 		set_buffer_uptodate(sbh);
5606 	}
5607 	BUFFER_TRACE(sbh, "marking dirty");
5608 	mark_buffer_dirty(sbh);
5609 	error = __sync_dirty_buffer(sbh,
5610 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5611 	if (buffer_write_io_error(sbh)) {
5612 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5613 		       "superblock");
5614 		clear_buffer_write_io_error(sbh);
5615 		set_buffer_uptodate(sbh);
5616 	}
5617 	return error;
5618 }
5619 
5620 /*
5621  * Have we just finished recovery?  If so, and if we are mounting (or
5622  * remounting) the filesystem readonly, then we will end up with a
5623  * consistent fs on disk.  Record that fact.
5624  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5625 static int ext4_mark_recovery_complete(struct super_block *sb,
5626 				       struct ext4_super_block *es)
5627 {
5628 	int err;
5629 	journal_t *journal = EXT4_SB(sb)->s_journal;
5630 
5631 	if (!ext4_has_feature_journal(sb)) {
5632 		if (journal != NULL) {
5633 			ext4_error(sb, "Journal got removed while the fs was "
5634 				   "mounted!");
5635 			return -EFSCORRUPTED;
5636 		}
5637 		return 0;
5638 	}
5639 	jbd2_journal_lock_updates(journal);
5640 	err = jbd2_journal_flush(journal);
5641 	if (err < 0)
5642 		goto out;
5643 
5644 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5645 		ext4_clear_feature_journal_needs_recovery(sb);
5646 		ext4_commit_super(sb);
5647 	}
5648 out:
5649 	jbd2_journal_unlock_updates(journal);
5650 	return err;
5651 }
5652 
5653 /*
5654  * If we are mounting (or read-write remounting) a filesystem whose journal
5655  * has recorded an error from a previous lifetime, move that error to the
5656  * main filesystem now.
5657  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5658 static int ext4_clear_journal_err(struct super_block *sb,
5659 				   struct ext4_super_block *es)
5660 {
5661 	journal_t *journal;
5662 	int j_errno;
5663 	const char *errstr;
5664 
5665 	if (!ext4_has_feature_journal(sb)) {
5666 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5667 		return -EFSCORRUPTED;
5668 	}
5669 
5670 	journal = EXT4_SB(sb)->s_journal;
5671 
5672 	/*
5673 	 * Now check for any error status which may have been recorded in the
5674 	 * journal by a prior ext4_error() or ext4_abort()
5675 	 */
5676 
5677 	j_errno = jbd2_journal_errno(journal);
5678 	if (j_errno) {
5679 		char nbuf[16];
5680 
5681 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5682 		ext4_warning(sb, "Filesystem error recorded "
5683 			     "from previous mount: %s", errstr);
5684 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5685 
5686 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5687 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5688 		ext4_commit_super(sb);
5689 
5690 		jbd2_journal_clear_err(journal);
5691 		jbd2_journal_update_sb_errno(journal);
5692 	}
5693 	return 0;
5694 }
5695 
5696 /*
5697  * Force the running and committing transactions to commit,
5698  * and wait on the commit.
5699  */
ext4_force_commit(struct super_block * sb)5700 int ext4_force_commit(struct super_block *sb)
5701 {
5702 	journal_t *journal;
5703 
5704 	if (sb_rdonly(sb))
5705 		return 0;
5706 
5707 	journal = EXT4_SB(sb)->s_journal;
5708 	return ext4_journal_force_commit(journal);
5709 }
5710 
ext4_sync_fs(struct super_block * sb,int wait)5711 static int ext4_sync_fs(struct super_block *sb, int wait)
5712 {
5713 	int ret = 0;
5714 	tid_t target;
5715 	bool needs_barrier = false;
5716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5717 
5718 	if (unlikely(ext4_forced_shutdown(sbi)))
5719 		return 0;
5720 
5721 	trace_ext4_sync_fs(sb, wait);
5722 	flush_workqueue(sbi->rsv_conversion_wq);
5723 	/*
5724 	 * Writeback quota in non-journalled quota case - journalled quota has
5725 	 * no dirty dquots
5726 	 */
5727 	dquot_writeback_dquots(sb, -1);
5728 	/*
5729 	 * Data writeback is possible w/o journal transaction, so barrier must
5730 	 * being sent at the end of the function. But we can skip it if
5731 	 * transaction_commit will do it for us.
5732 	 */
5733 	if (sbi->s_journal) {
5734 		target = jbd2_get_latest_transaction(sbi->s_journal);
5735 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5736 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5737 			needs_barrier = true;
5738 
5739 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5740 			if (wait)
5741 				ret = jbd2_log_wait_commit(sbi->s_journal,
5742 							   target);
5743 		}
5744 	} else if (wait && test_opt(sb, BARRIER))
5745 		needs_barrier = true;
5746 	if (needs_barrier) {
5747 		int err;
5748 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5749 		if (!ret)
5750 			ret = err;
5751 	}
5752 
5753 	return ret;
5754 }
5755 
5756 /*
5757  * LVM calls this function before a (read-only) snapshot is created.  This
5758  * gives us a chance to flush the journal completely and mark the fs clean.
5759  *
5760  * Note that only this function cannot bring a filesystem to be in a clean
5761  * state independently. It relies on upper layer to stop all data & metadata
5762  * modifications.
5763  */
ext4_freeze(struct super_block * sb)5764 static int ext4_freeze(struct super_block *sb)
5765 {
5766 	int error = 0;
5767 	journal_t *journal;
5768 
5769 	if (sb_rdonly(sb))
5770 		return 0;
5771 
5772 	journal = EXT4_SB(sb)->s_journal;
5773 
5774 	if (journal) {
5775 		/* Now we set up the journal barrier. */
5776 		jbd2_journal_lock_updates(journal);
5777 
5778 		/*
5779 		 * Don't clear the needs_recovery flag if we failed to
5780 		 * flush the journal.
5781 		 */
5782 		error = jbd2_journal_flush(journal);
5783 		if (error < 0)
5784 			goto out;
5785 
5786 		/* Journal blocked and flushed, clear needs_recovery flag. */
5787 		ext4_clear_feature_journal_needs_recovery(sb);
5788 	}
5789 
5790 	error = ext4_commit_super(sb);
5791 out:
5792 	if (journal)
5793 		/* we rely on upper layer to stop further updates */
5794 		jbd2_journal_unlock_updates(journal);
5795 	return error;
5796 }
5797 
5798 /*
5799  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5800  * flag here, even though the filesystem is not technically dirty yet.
5801  */
ext4_unfreeze(struct super_block * sb)5802 static int ext4_unfreeze(struct super_block *sb)
5803 {
5804 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5805 		return 0;
5806 
5807 	if (EXT4_SB(sb)->s_journal) {
5808 		/* Reset the needs_recovery flag before the fs is unlocked. */
5809 		ext4_set_feature_journal_needs_recovery(sb);
5810 	}
5811 
5812 	ext4_commit_super(sb);
5813 	return 0;
5814 }
5815 
5816 /*
5817  * Structure to save mount options for ext4_remount's benefit
5818  */
5819 struct ext4_mount_options {
5820 	unsigned long s_mount_opt;
5821 	unsigned long s_mount_opt2;
5822 	kuid_t s_resuid;
5823 	kgid_t s_resgid;
5824 	unsigned long s_commit_interval;
5825 	u32 s_min_batch_time, s_max_batch_time;
5826 #ifdef CONFIG_QUOTA
5827 	int s_jquota_fmt;
5828 	char *s_qf_names[EXT4_MAXQUOTAS];
5829 #endif
5830 };
5831 
ext4_remount(struct super_block * sb,int * flags,char * data)5832 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5833 {
5834 	struct ext4_super_block *es;
5835 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5836 	unsigned long old_sb_flags, vfs_flags;
5837 	struct ext4_mount_options old_opts;
5838 	int enable_quota = 0;
5839 	ext4_group_t g;
5840 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5841 	int err = 0;
5842 #ifdef CONFIG_QUOTA
5843 	int i, j;
5844 	char *to_free[EXT4_MAXQUOTAS];
5845 #endif
5846 	char *orig_data = kstrdup(data, GFP_KERNEL);
5847 
5848 	if (data && !orig_data)
5849 		return -ENOMEM;
5850 
5851 	/* Store the original options */
5852 	old_sb_flags = sb->s_flags;
5853 	old_opts.s_mount_opt = sbi->s_mount_opt;
5854 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5855 	old_opts.s_resuid = sbi->s_resuid;
5856 	old_opts.s_resgid = sbi->s_resgid;
5857 	old_opts.s_commit_interval = sbi->s_commit_interval;
5858 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5859 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5860 #ifdef CONFIG_QUOTA
5861 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5862 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5863 		if (sbi->s_qf_names[i]) {
5864 			char *qf_name = get_qf_name(sb, sbi, i);
5865 
5866 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5867 			if (!old_opts.s_qf_names[i]) {
5868 				for (j = 0; j < i; j++)
5869 					kfree(old_opts.s_qf_names[j]);
5870 				kfree(orig_data);
5871 				return -ENOMEM;
5872 			}
5873 		} else
5874 			old_opts.s_qf_names[i] = NULL;
5875 #endif
5876 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5877 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5878 
5879 	/*
5880 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5881 	 * either way we need to make sure it matches in both *flags and
5882 	 * s_flags. Copy those selected flags from *flags to s_flags
5883 	 */
5884 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5885 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5886 
5887 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5888 		err = -EINVAL;
5889 		goto restore_opts;
5890 	}
5891 
5892 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5893 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5894 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5895 			 "during remount not supported; ignoring");
5896 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5897 	}
5898 
5899 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5900 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5901 			ext4_msg(sb, KERN_ERR, "can't mount with "
5902 				 "both data=journal and delalloc");
5903 			err = -EINVAL;
5904 			goto restore_opts;
5905 		}
5906 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5907 			ext4_msg(sb, KERN_ERR, "can't mount with "
5908 				 "both data=journal and dioread_nolock");
5909 			err = -EINVAL;
5910 			goto restore_opts;
5911 		}
5912 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5913 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5914 			ext4_msg(sb, KERN_ERR, "can't mount with "
5915 				"journal_async_commit in data=ordered mode");
5916 			err = -EINVAL;
5917 			goto restore_opts;
5918 		}
5919 	}
5920 
5921 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5922 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5923 		err = -EINVAL;
5924 		goto restore_opts;
5925 	}
5926 
5927 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5928 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5929 
5930 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5931 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5932 
5933 	es = sbi->s_es;
5934 
5935 	if (sbi->s_journal) {
5936 		ext4_init_journal_params(sb, sbi->s_journal);
5937 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5938 	}
5939 
5940 	/* Flush outstanding errors before changing fs state */
5941 	flush_work(&sbi->s_error_work);
5942 
5943 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5944 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5945 			err = -EROFS;
5946 			goto restore_opts;
5947 		}
5948 
5949 		if (*flags & SB_RDONLY) {
5950 			err = sync_filesystem(sb);
5951 			if (err < 0)
5952 				goto restore_opts;
5953 			err = dquot_suspend(sb, -1);
5954 			if (err < 0)
5955 				goto restore_opts;
5956 
5957 			/*
5958 			 * First of all, the unconditional stuff we have to do
5959 			 * to disable replay of the journal when we next remount
5960 			 */
5961 			sb->s_flags |= SB_RDONLY;
5962 
5963 			/*
5964 			 * OK, test if we are remounting a valid rw partition
5965 			 * readonly, and if so set the rdonly flag and then
5966 			 * mark the partition as valid again.
5967 			 */
5968 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5969 			    (sbi->s_mount_state & EXT4_VALID_FS))
5970 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5971 
5972 			if (sbi->s_journal) {
5973 				/*
5974 				 * We let remount-ro finish even if marking fs
5975 				 * as clean failed...
5976 				 */
5977 				ext4_mark_recovery_complete(sb, es);
5978 			}
5979 		} else {
5980 			/* Make sure we can mount this feature set readwrite */
5981 			if (ext4_has_feature_readonly(sb) ||
5982 			    !ext4_feature_set_ok(sb, 0)) {
5983 				err = -EROFS;
5984 				goto restore_opts;
5985 			}
5986 			/*
5987 			 * Make sure the group descriptor checksums
5988 			 * are sane.  If they aren't, refuse to remount r/w.
5989 			 */
5990 			for (g = 0; g < sbi->s_groups_count; g++) {
5991 				struct ext4_group_desc *gdp =
5992 					ext4_get_group_desc(sb, g, NULL);
5993 
5994 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5995 					ext4_msg(sb, KERN_ERR,
5996 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5997 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5998 					       le16_to_cpu(gdp->bg_checksum));
5999 					err = -EFSBADCRC;
6000 					goto restore_opts;
6001 				}
6002 			}
6003 
6004 			/*
6005 			 * If we have an unprocessed orphan list hanging
6006 			 * around from a previously readonly bdev mount,
6007 			 * require a full umount/remount for now.
6008 			 */
6009 			if (es->s_last_orphan) {
6010 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6011 				       "remount RDWR because of unprocessed "
6012 				       "orphan inode list.  Please "
6013 				       "umount/remount instead");
6014 				err = -EINVAL;
6015 				goto restore_opts;
6016 			}
6017 
6018 			/*
6019 			 * Mounting a RDONLY partition read-write, so reread
6020 			 * and store the current valid flag.  (It may have
6021 			 * been changed by e2fsck since we originally mounted
6022 			 * the partition.)
6023 			 */
6024 			if (sbi->s_journal) {
6025 				err = ext4_clear_journal_err(sb, es);
6026 				if (err)
6027 					goto restore_opts;
6028 			}
6029 			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6030 					      ~EXT4_FC_REPLAY);
6031 
6032 			err = ext4_setup_super(sb, es, 0);
6033 			if (err)
6034 				goto restore_opts;
6035 
6036 			sb->s_flags &= ~SB_RDONLY;
6037 			if (ext4_has_feature_mmp(sb))
6038 				if (ext4_multi_mount_protect(sb,
6039 						le64_to_cpu(es->s_mmp_block))) {
6040 					err = -EROFS;
6041 					goto restore_opts;
6042 				}
6043 			enable_quota = 1;
6044 		}
6045 	}
6046 
6047 	/*
6048 	 * Reinitialize lazy itable initialization thread based on
6049 	 * current settings
6050 	 */
6051 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6052 		ext4_unregister_li_request(sb);
6053 	else {
6054 		ext4_group_t first_not_zeroed;
6055 		first_not_zeroed = ext4_has_uninit_itable(sb);
6056 		ext4_register_li_request(sb, first_not_zeroed);
6057 	}
6058 
6059 	/*
6060 	 * Handle creation of system zone data early because it can fail.
6061 	 * Releasing of existing data is done when we are sure remount will
6062 	 * succeed.
6063 	 */
6064 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6065 		err = ext4_setup_system_zone(sb);
6066 		if (err)
6067 			goto restore_opts;
6068 	}
6069 
6070 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6071 		err = ext4_commit_super(sb);
6072 		if (err)
6073 			goto restore_opts;
6074 	}
6075 
6076 #ifdef CONFIG_QUOTA
6077 	/* Release old quota file names */
6078 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6079 		kfree(old_opts.s_qf_names[i]);
6080 	if (enable_quota) {
6081 		if (sb_any_quota_suspended(sb))
6082 			dquot_resume(sb, -1);
6083 		else if (ext4_has_feature_quota(sb)) {
6084 			err = ext4_enable_quotas(sb);
6085 			if (err)
6086 				goto restore_opts;
6087 		}
6088 	}
6089 #endif
6090 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6091 		ext4_release_system_zone(sb);
6092 
6093 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6094 		ext4_stop_mmpd(sbi);
6095 
6096 	/*
6097 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6098 	 * either way we need to make sure it matches in both *flags and
6099 	 * s_flags. Copy those selected flags from s_flags to *flags
6100 	 */
6101 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6102 
6103 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6104 	kfree(orig_data);
6105 	return 0;
6106 
6107 restore_opts:
6108 	sb->s_flags = old_sb_flags;
6109 	sbi->s_mount_opt = old_opts.s_mount_opt;
6110 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6111 	sbi->s_resuid = old_opts.s_resuid;
6112 	sbi->s_resgid = old_opts.s_resgid;
6113 	sbi->s_commit_interval = old_opts.s_commit_interval;
6114 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6115 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6116 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6117 		ext4_release_system_zone(sb);
6118 #ifdef CONFIG_QUOTA
6119 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6120 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6121 		to_free[i] = get_qf_name(sb, sbi, i);
6122 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6123 	}
6124 	synchronize_rcu();
6125 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6126 		kfree(to_free[i]);
6127 #endif
6128 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6129 		ext4_stop_mmpd(sbi);
6130 	kfree(orig_data);
6131 	return err;
6132 }
6133 
6134 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6135 static int ext4_statfs_project(struct super_block *sb,
6136 			       kprojid_t projid, struct kstatfs *buf)
6137 {
6138 	struct kqid qid;
6139 	struct dquot *dquot;
6140 	u64 limit;
6141 	u64 curblock;
6142 
6143 	qid = make_kqid_projid(projid);
6144 	dquot = dqget(sb, qid);
6145 	if (IS_ERR(dquot))
6146 		return PTR_ERR(dquot);
6147 	spin_lock(&dquot->dq_dqb_lock);
6148 
6149 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6150 			     dquot->dq_dqb.dqb_bhardlimit);
6151 	limit >>= sb->s_blocksize_bits;
6152 
6153 	if (limit && buf->f_blocks > limit) {
6154 		curblock = (dquot->dq_dqb.dqb_curspace +
6155 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6156 		buf->f_blocks = limit;
6157 		buf->f_bfree = buf->f_bavail =
6158 			(buf->f_blocks > curblock) ?
6159 			 (buf->f_blocks - curblock) : 0;
6160 	}
6161 
6162 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6163 			     dquot->dq_dqb.dqb_ihardlimit);
6164 	if (limit && buf->f_files > limit) {
6165 		buf->f_files = limit;
6166 		buf->f_ffree =
6167 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6168 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6169 	}
6170 
6171 	spin_unlock(&dquot->dq_dqb_lock);
6172 	dqput(dquot);
6173 	return 0;
6174 }
6175 #endif
6176 
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6177 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6178 {
6179 	struct super_block *sb = dentry->d_sb;
6180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6181 	struct ext4_super_block *es = sbi->s_es;
6182 	ext4_fsblk_t overhead = 0, resv_blocks;
6183 	u64 fsid;
6184 	s64 bfree;
6185 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6186 
6187 	if (!test_opt(sb, MINIX_DF))
6188 		overhead = sbi->s_overhead;
6189 
6190 	buf->f_type = EXT4_SUPER_MAGIC;
6191 	buf->f_bsize = sb->s_blocksize;
6192 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6193 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6194 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6195 	/* prevent underflow in case that few free space is available */
6196 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6197 	buf->f_bavail = buf->f_bfree -
6198 			(ext4_r_blocks_count(es) + resv_blocks);
6199 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6200 		buf->f_bavail = 0;
6201 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6202 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6203 	buf->f_namelen = EXT4_NAME_LEN;
6204 	fsid = le64_to_cpup((void *)es->s_uuid) ^
6205 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6206 	buf->f_fsid = u64_to_fsid(fsid);
6207 
6208 #ifdef CONFIG_QUOTA
6209 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6210 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6211 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6212 #endif
6213 	return 0;
6214 }
6215 
6216 
6217 #ifdef CONFIG_QUOTA
6218 
6219 /*
6220  * Helper functions so that transaction is started before we acquire dqio_sem
6221  * to keep correct lock ordering of transaction > dqio_sem
6222  */
dquot_to_inode(struct dquot * dquot)6223 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6224 {
6225 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6226 }
6227 
ext4_write_dquot(struct dquot * dquot)6228 static int ext4_write_dquot(struct dquot *dquot)
6229 {
6230 	int ret, err;
6231 	handle_t *handle;
6232 	struct inode *inode;
6233 
6234 	inode = dquot_to_inode(dquot);
6235 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6236 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6237 	if (IS_ERR(handle))
6238 		return PTR_ERR(handle);
6239 	ret = dquot_commit(dquot);
6240 	err = ext4_journal_stop(handle);
6241 	if (!ret)
6242 		ret = err;
6243 	return ret;
6244 }
6245 
ext4_acquire_dquot(struct dquot * dquot)6246 static int ext4_acquire_dquot(struct dquot *dquot)
6247 {
6248 	int ret, err;
6249 	handle_t *handle;
6250 
6251 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6252 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6253 	if (IS_ERR(handle))
6254 		return PTR_ERR(handle);
6255 	ret = dquot_acquire(dquot);
6256 	err = ext4_journal_stop(handle);
6257 	if (!ret)
6258 		ret = err;
6259 	return ret;
6260 }
6261 
ext4_release_dquot(struct dquot * dquot)6262 static int ext4_release_dquot(struct dquot *dquot)
6263 {
6264 	int ret, err;
6265 	handle_t *handle;
6266 
6267 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6268 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6269 	if (IS_ERR(handle)) {
6270 		/* Release dquot anyway to avoid endless cycle in dqput() */
6271 		dquot_release(dquot);
6272 		return PTR_ERR(handle);
6273 	}
6274 	ret = dquot_release(dquot);
6275 	err = ext4_journal_stop(handle);
6276 	if (!ret)
6277 		ret = err;
6278 	return ret;
6279 }
6280 
ext4_mark_dquot_dirty(struct dquot * dquot)6281 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6282 {
6283 	struct super_block *sb = dquot->dq_sb;
6284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6285 
6286 	/* Are we journaling quotas? */
6287 	if (ext4_has_feature_quota(sb) ||
6288 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6289 		dquot_mark_dquot_dirty(dquot);
6290 		return ext4_write_dquot(dquot);
6291 	} else {
6292 		return dquot_mark_dquot_dirty(dquot);
6293 	}
6294 }
6295 
ext4_write_info(struct super_block * sb,int type)6296 static int ext4_write_info(struct super_block *sb, int type)
6297 {
6298 	int ret, err;
6299 	handle_t *handle;
6300 
6301 	/* Data block + inode block */
6302 	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6303 	if (IS_ERR(handle))
6304 		return PTR_ERR(handle);
6305 	ret = dquot_commit_info(sb, type);
6306 	err = ext4_journal_stop(handle);
6307 	if (!ret)
6308 		ret = err;
6309 	return ret;
6310 }
6311 
6312 /*
6313  * Turn on quotas during mount time - we need to find
6314  * the quota file and such...
6315  */
ext4_quota_on_mount(struct super_block * sb,int type)6316 static int ext4_quota_on_mount(struct super_block *sb, int type)
6317 {
6318 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6319 					EXT4_SB(sb)->s_jquota_fmt, type);
6320 }
6321 
lockdep_set_quota_inode(struct inode * inode,int subclass)6322 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6323 {
6324 	struct ext4_inode_info *ei = EXT4_I(inode);
6325 
6326 	/* The first argument of lockdep_set_subclass has to be
6327 	 * *exactly* the same as the argument to init_rwsem() --- in
6328 	 * this case, in init_once() --- or lockdep gets unhappy
6329 	 * because the name of the lock is set using the
6330 	 * stringification of the argument to init_rwsem().
6331 	 */
6332 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6333 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6334 }
6335 
6336 /*
6337  * Standard function to be called on quota_on
6338  */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6339 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6340 			 const struct path *path)
6341 {
6342 	int err;
6343 
6344 	if (!test_opt(sb, QUOTA))
6345 		return -EINVAL;
6346 
6347 	/* Quotafile not on the same filesystem? */
6348 	if (path->dentry->d_sb != sb)
6349 		return -EXDEV;
6350 
6351 	/* Quota already enabled for this file? */
6352 	if (IS_NOQUOTA(d_inode(path->dentry)))
6353 		return -EBUSY;
6354 
6355 	/* Journaling quota? */
6356 	if (EXT4_SB(sb)->s_qf_names[type]) {
6357 		/* Quotafile not in fs root? */
6358 		if (path->dentry->d_parent != sb->s_root)
6359 			ext4_msg(sb, KERN_WARNING,
6360 				"Quota file not on filesystem root. "
6361 				"Journaled quota will not work");
6362 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6363 	} else {
6364 		/*
6365 		 * Clear the flag just in case mount options changed since
6366 		 * last time.
6367 		 */
6368 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6369 	}
6370 
6371 	/*
6372 	 * When we journal data on quota file, we have to flush journal to see
6373 	 * all updates to the file when we bypass pagecache...
6374 	 */
6375 	if (EXT4_SB(sb)->s_journal &&
6376 	    ext4_should_journal_data(d_inode(path->dentry))) {
6377 		/*
6378 		 * We don't need to lock updates but journal_flush() could
6379 		 * otherwise be livelocked...
6380 		 */
6381 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6382 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6383 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6384 		if (err)
6385 			return err;
6386 	}
6387 
6388 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6389 	err = dquot_quota_on(sb, type, format_id, path);
6390 	if (!err) {
6391 		struct inode *inode = d_inode(path->dentry);
6392 		handle_t *handle;
6393 
6394 		/*
6395 		 * Set inode flags to prevent userspace from messing with quota
6396 		 * files. If this fails, we return success anyway since quotas
6397 		 * are already enabled and this is not a hard failure.
6398 		 */
6399 		inode_lock(inode);
6400 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6401 		if (IS_ERR(handle))
6402 			goto unlock_inode;
6403 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6404 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6405 				S_NOATIME | S_IMMUTABLE);
6406 		err = ext4_mark_inode_dirty(handle, inode);
6407 		ext4_journal_stop(handle);
6408 	unlock_inode:
6409 		inode_unlock(inode);
6410 		if (err)
6411 			dquot_quota_off(sb, type);
6412 	}
6413 	if (err)
6414 		lockdep_set_quota_inode(path->dentry->d_inode,
6415 					     I_DATA_SEM_NORMAL);
6416 	return err;
6417 }
6418 
ext4_check_quota_inum(int type,unsigned long qf_inum)6419 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6420 {
6421 	switch (type) {
6422 	case USRQUOTA:
6423 		return qf_inum == EXT4_USR_QUOTA_INO;
6424 	case GRPQUOTA:
6425 		return qf_inum == EXT4_GRP_QUOTA_INO;
6426 	case PRJQUOTA:
6427 		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6428 	default:
6429 		BUG();
6430 	}
6431 }
6432 
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6433 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6434 			     unsigned int flags)
6435 {
6436 	int err;
6437 	struct inode *qf_inode;
6438 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6439 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6440 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6441 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6442 	};
6443 
6444 	BUG_ON(!ext4_has_feature_quota(sb));
6445 
6446 	if (!qf_inums[type])
6447 		return -EPERM;
6448 
6449 	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6450 		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6451 				qf_inums[type], type);
6452 		return -EUCLEAN;
6453 	}
6454 
6455 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6456 	if (IS_ERR(qf_inode)) {
6457 		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6458 				qf_inums[type], type);
6459 		return PTR_ERR(qf_inode);
6460 	}
6461 
6462 	/* Don't account quota for quota files to avoid recursion */
6463 	qf_inode->i_flags |= S_NOQUOTA;
6464 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6465 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6466 	if (err)
6467 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6468 	iput(qf_inode);
6469 
6470 	return err;
6471 }
6472 
6473 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6474 static int ext4_enable_quotas(struct super_block *sb)
6475 {
6476 	int type, err = 0;
6477 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6478 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6479 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6480 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6481 	};
6482 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6483 		test_opt(sb, USRQUOTA),
6484 		test_opt(sb, GRPQUOTA),
6485 		test_opt(sb, PRJQUOTA),
6486 	};
6487 
6488 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6489 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6490 		if (qf_inums[type]) {
6491 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6492 				DQUOT_USAGE_ENABLED |
6493 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6494 			if (err) {
6495 				ext4_warning(sb,
6496 					"Failed to enable quota tracking "
6497 					"(type=%d, err=%d, ino=%lu). "
6498 					"Please run e2fsck to fix.", type,
6499 					err, qf_inums[type]);
6500 				for (type--; type >= 0; type--) {
6501 					struct inode *inode;
6502 
6503 					inode = sb_dqopt(sb)->files[type];
6504 					if (inode)
6505 						inode = igrab(inode);
6506 					dquot_quota_off(sb, type);
6507 					if (inode) {
6508 						lockdep_set_quota_inode(inode,
6509 							I_DATA_SEM_NORMAL);
6510 						iput(inode);
6511 					}
6512 				}
6513 
6514 				return err;
6515 			}
6516 		}
6517 	}
6518 	return 0;
6519 }
6520 
ext4_quota_off(struct super_block * sb,int type)6521 static int ext4_quota_off(struct super_block *sb, int type)
6522 {
6523 	struct inode *inode = sb_dqopt(sb)->files[type];
6524 	handle_t *handle;
6525 	int err;
6526 
6527 	/* Force all delayed allocation blocks to be allocated.
6528 	 * Caller already holds s_umount sem */
6529 	if (test_opt(sb, DELALLOC))
6530 		sync_filesystem(sb);
6531 
6532 	if (!inode || !igrab(inode))
6533 		goto out;
6534 
6535 	err = dquot_quota_off(sb, type);
6536 	if (err || ext4_has_feature_quota(sb))
6537 		goto out_put;
6538 
6539 	inode_lock(inode);
6540 	/*
6541 	 * Update modification times of quota files when userspace can
6542 	 * start looking at them. If we fail, we return success anyway since
6543 	 * this is not a hard failure and quotas are already disabled.
6544 	 */
6545 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6546 	if (IS_ERR(handle)) {
6547 		err = PTR_ERR(handle);
6548 		goto out_unlock;
6549 	}
6550 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6551 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6552 	inode->i_mtime = inode->i_ctime = current_time(inode);
6553 	err = ext4_mark_inode_dirty(handle, inode);
6554 	ext4_journal_stop(handle);
6555 out_unlock:
6556 	inode_unlock(inode);
6557 out_put:
6558 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6559 	iput(inode);
6560 	return err;
6561 out:
6562 	return dquot_quota_off(sb, type);
6563 }
6564 
6565 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6566  * acquiring the locks... As quota files are never truncated and quota code
6567  * itself serializes the operations (and no one else should touch the files)
6568  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6569 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6570 			       size_t len, loff_t off)
6571 {
6572 	struct inode *inode = sb_dqopt(sb)->files[type];
6573 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6574 	int offset = off & (sb->s_blocksize - 1);
6575 	int tocopy;
6576 	size_t toread;
6577 	struct buffer_head *bh;
6578 	loff_t i_size = i_size_read(inode);
6579 
6580 	if (off > i_size)
6581 		return 0;
6582 	if (off+len > i_size)
6583 		len = i_size-off;
6584 	toread = len;
6585 	while (toread > 0) {
6586 		tocopy = sb->s_blocksize - offset < toread ?
6587 				sb->s_blocksize - offset : toread;
6588 		bh = ext4_bread(NULL, inode, blk, 0);
6589 		if (IS_ERR(bh))
6590 			return PTR_ERR(bh);
6591 		if (!bh)	/* A hole? */
6592 			memset(data, 0, tocopy);
6593 		else
6594 			memcpy(data, bh->b_data+offset, tocopy);
6595 		brelse(bh);
6596 		offset = 0;
6597 		toread -= tocopy;
6598 		data += tocopy;
6599 		blk++;
6600 	}
6601 	return len;
6602 }
6603 
6604 /* Write to quotafile (we know the transaction is already started and has
6605  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6606 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6607 				const char *data, size_t len, loff_t off)
6608 {
6609 	struct inode *inode = sb_dqopt(sb)->files[type];
6610 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6611 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6612 	int retries = 0;
6613 	struct buffer_head *bh;
6614 	handle_t *handle = journal_current_handle();
6615 
6616 	if (!handle) {
6617 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6618 			" cancelled because transaction is not started",
6619 			(unsigned long long)off, (unsigned long long)len);
6620 		return -EIO;
6621 	}
6622 	/*
6623 	 * Since we account only one data block in transaction credits,
6624 	 * then it is impossible to cross a block boundary.
6625 	 */
6626 	if (sb->s_blocksize - offset < len) {
6627 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6628 			" cancelled because not block aligned",
6629 			(unsigned long long)off, (unsigned long long)len);
6630 		return -EIO;
6631 	}
6632 
6633 	do {
6634 		bh = ext4_bread(handle, inode, blk,
6635 				EXT4_GET_BLOCKS_CREATE |
6636 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6637 	} while (PTR_ERR(bh) == -ENOSPC &&
6638 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6639 	if (IS_ERR(bh))
6640 		return PTR_ERR(bh);
6641 	if (!bh)
6642 		goto out;
6643 	BUFFER_TRACE(bh, "get write access");
6644 	err = ext4_journal_get_write_access(handle, bh);
6645 	if (err) {
6646 		brelse(bh);
6647 		return err;
6648 	}
6649 	lock_buffer(bh);
6650 	memcpy(bh->b_data+offset, data, len);
6651 	flush_dcache_page(bh->b_page);
6652 	unlock_buffer(bh);
6653 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6654 	brelse(bh);
6655 out:
6656 	if (inode->i_size < off + len) {
6657 		i_size_write(inode, off + len);
6658 		EXT4_I(inode)->i_disksize = inode->i_size;
6659 		err2 = ext4_mark_inode_dirty(handle, inode);
6660 		if (unlikely(err2 && !err))
6661 			err = err2;
6662 	}
6663 	return err ? err : len;
6664 }
6665 #endif
6666 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6667 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6668 		       const char *dev_name, void *data)
6669 {
6670 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6671 }
6672 
6673 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6674 static inline void register_as_ext2(void)
6675 {
6676 	int err = register_filesystem(&ext2_fs_type);
6677 	if (err)
6678 		printk(KERN_WARNING
6679 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6680 }
6681 
unregister_as_ext2(void)6682 static inline void unregister_as_ext2(void)
6683 {
6684 	unregister_filesystem(&ext2_fs_type);
6685 }
6686 
ext2_feature_set_ok(struct super_block * sb)6687 static inline int ext2_feature_set_ok(struct super_block *sb)
6688 {
6689 	if (ext4_has_unknown_ext2_incompat_features(sb))
6690 		return 0;
6691 	if (sb_rdonly(sb))
6692 		return 1;
6693 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6694 		return 0;
6695 	return 1;
6696 }
6697 #else
register_as_ext2(void)6698 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6699 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6700 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6701 #endif
6702 
register_as_ext3(void)6703 static inline void register_as_ext3(void)
6704 {
6705 	int err = register_filesystem(&ext3_fs_type);
6706 	if (err)
6707 		printk(KERN_WARNING
6708 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6709 }
6710 
unregister_as_ext3(void)6711 static inline void unregister_as_ext3(void)
6712 {
6713 	unregister_filesystem(&ext3_fs_type);
6714 }
6715 
ext3_feature_set_ok(struct super_block * sb)6716 static inline int ext3_feature_set_ok(struct super_block *sb)
6717 {
6718 	if (ext4_has_unknown_ext3_incompat_features(sb))
6719 		return 0;
6720 	if (!ext4_has_feature_journal(sb))
6721 		return 0;
6722 	if (sb_rdonly(sb))
6723 		return 1;
6724 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6725 		return 0;
6726 	return 1;
6727 }
6728 
6729 static struct file_system_type ext4_fs_type = {
6730 	.owner		= THIS_MODULE,
6731 	.name		= "ext4",
6732 	.mount		= ext4_mount,
6733 	.kill_sb	= kill_block_super,
6734 	.fs_flags	= FS_REQUIRES_DEV,
6735 };
6736 MODULE_ALIAS_FS("ext4");
6737 
6738 /* Shared across all ext4 file systems */
6739 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6740 
ext4_init_fs(void)6741 static int __init ext4_init_fs(void)
6742 {
6743 	int i, err;
6744 
6745 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6746 	ext4_li_info = NULL;
6747 	mutex_init(&ext4_li_mtx);
6748 
6749 	/* Build-time check for flags consistency */
6750 	ext4_check_flag_values();
6751 
6752 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6753 		init_waitqueue_head(&ext4__ioend_wq[i]);
6754 
6755 	err = ext4_init_es();
6756 	if (err)
6757 		return err;
6758 
6759 	err = ext4_init_pending();
6760 	if (err)
6761 		goto out7;
6762 
6763 	err = ext4_init_post_read_processing();
6764 	if (err)
6765 		goto out6;
6766 
6767 	err = ext4_init_pageio();
6768 	if (err)
6769 		goto out5;
6770 
6771 	err = ext4_init_system_zone();
6772 	if (err)
6773 		goto out4;
6774 
6775 	err = ext4_init_sysfs();
6776 	if (err)
6777 		goto out3;
6778 
6779 	err = ext4_init_mballoc();
6780 	if (err)
6781 		goto out2;
6782 	err = init_inodecache();
6783 	if (err)
6784 		goto out1;
6785 
6786 	err = ext4_fc_init_dentry_cache();
6787 	if (err)
6788 		goto out05;
6789 
6790 	register_as_ext3();
6791 	register_as_ext2();
6792 	err = register_filesystem(&ext4_fs_type);
6793 	if (err)
6794 		goto out;
6795 
6796 	return 0;
6797 out:
6798 	unregister_as_ext2();
6799 	unregister_as_ext3();
6800 	ext4_fc_destroy_dentry_cache();
6801 out05:
6802 	destroy_inodecache();
6803 out1:
6804 	ext4_exit_mballoc();
6805 out2:
6806 	ext4_exit_sysfs();
6807 out3:
6808 	ext4_exit_system_zone();
6809 out4:
6810 	ext4_exit_pageio();
6811 out5:
6812 	ext4_exit_post_read_processing();
6813 out6:
6814 	ext4_exit_pending();
6815 out7:
6816 	ext4_exit_es();
6817 
6818 	return err;
6819 }
6820 
ext4_exit_fs(void)6821 static void __exit ext4_exit_fs(void)
6822 {
6823 	ext4_destroy_lazyinit_thread();
6824 	unregister_as_ext2();
6825 	unregister_as_ext3();
6826 	unregister_filesystem(&ext4_fs_type);
6827 	ext4_fc_destroy_dentry_cache();
6828 	destroy_inodecache();
6829 	ext4_exit_mballoc();
6830 	ext4_exit_sysfs();
6831 	ext4_exit_system_zone();
6832 	ext4_exit_pageio();
6833 	ext4_exit_post_read_processing();
6834 	ext4_exit_es();
6835 	ext4_exit_pending();
6836 }
6837 
6838 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6839 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6840 MODULE_LICENSE("GPL");
6841 MODULE_SOFTDEP("pre: crc32c");
6842 module_init(ext4_init_fs)
6843 module_exit(ext4_exit_fs)
6844