• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Red Hat Inc.
3  * Copyright © 2015 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #include <math.h>
26 
27 #include "nir.h"
28 #include "nir_builtin_builder.h"
29 
30 nir_ssa_def*
nir_cross3(nir_builder * b,nir_ssa_def * x,nir_ssa_def * y)31 nir_cross3(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
32 {
33    unsigned yzx[3] = { 1, 2, 0 };
34    unsigned zxy[3] = { 2, 0, 1 };
35 
36    return nir_ffma(b, nir_swizzle(b, x, yzx, 3),
37                       nir_swizzle(b, y, zxy, 3),
38                       nir_fneg(b, nir_fmul(b, nir_swizzle(b, x, zxy, 3),
39                                               nir_swizzle(b, y, yzx, 3))));
40 }
41 
42 nir_ssa_def*
nir_cross4(nir_builder * b,nir_ssa_def * x,nir_ssa_def * y)43 nir_cross4(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
44 {
45    nir_ssa_def *cross = nir_cross3(b, x, y);
46 
47    return nir_vec4(b,
48       nir_channel(b, cross, 0),
49       nir_channel(b, cross, 1),
50       nir_channel(b, cross, 2),
51       nir_imm_intN_t(b, 0, cross->bit_size));
52 }
53 
54 nir_ssa_def*
nir_fast_length(nir_builder * b,nir_ssa_def * vec)55 nir_fast_length(nir_builder *b, nir_ssa_def *vec)
56 {
57    return nir_fsqrt(b, nir_fdot(b, vec, vec));
58 }
59 
60 nir_ssa_def*
nir_nextafter(nir_builder * b,nir_ssa_def * x,nir_ssa_def * y)61 nir_nextafter(nir_builder *b, nir_ssa_def *x, nir_ssa_def *y)
62 {
63    nir_ssa_def *zero = nir_imm_intN_t(b, 0, x->bit_size);
64    nir_ssa_def *one = nir_imm_intN_t(b, 1, x->bit_size);
65 
66    nir_ssa_def *condeq = nir_feq(b, x, y);
67    nir_ssa_def *conddir = nir_flt(b, x, y);
68    nir_ssa_def *condzero = nir_feq(b, x, zero);
69 
70    uint64_t sign_mask = 1ull << (x->bit_size - 1);
71    uint64_t min_abs = 1;
72 
73    if (nir_is_denorm_flush_to_zero(b->shader->info.float_controls_execution_mode, x->bit_size)) {
74       switch (x->bit_size) {
75       case 16:
76          min_abs = 1 << 10;
77          break;
78       case 32:
79          min_abs = 1 << 23;
80          break;
81       case 64:
82          min_abs = 1ULL << 52;
83          break;
84       }
85 
86       /* Flush denorm to zero to avoid returning a denorm when condeq is true. */
87       x = nir_fmul(b, x, nir_imm_floatN_t(b, 1.0, x->bit_size));
88    }
89 
90    /* beware of: +/-0.0 - 1 == NaN */
91    nir_ssa_def *xn =
92       nir_bcsel(b,
93                 condzero,
94                 nir_imm_intN_t(b, sign_mask | min_abs, x->bit_size),
95                 nir_isub(b, x, one));
96 
97    /* beware of -0.0 + 1 == -0x1p-149 */
98    nir_ssa_def *xp = nir_bcsel(b, condzero,
99                                nir_imm_intN_t(b, min_abs, x->bit_size),
100                                nir_iadd(b, x, one));
101 
102    /* nextafter can be implemented by just +/- 1 on the int value */
103    nir_ssa_def *res =
104       nir_bcsel(b, nir_ixor(b, conddir, nir_flt(b, x, zero)), xp, xn);
105 
106    return nir_nan_check2(b, x, y, nir_bcsel(b, condeq, x, res));
107 }
108 
109 nir_ssa_def*
nir_normalize(nir_builder * b,nir_ssa_def * vec)110 nir_normalize(nir_builder *b, nir_ssa_def *vec)
111 {
112    if (vec->num_components == 1)
113       return nir_fsign(b, vec);
114 
115    nir_ssa_def *f0 = nir_imm_floatN_t(b, 0.0, vec->bit_size);
116    nir_ssa_def *f1 = nir_imm_floatN_t(b, 1.0, vec->bit_size);
117    nir_ssa_def *finf = nir_imm_floatN_t(b, INFINITY, vec->bit_size);
118 
119    /* scale the input to increase precision */
120    nir_ssa_def *maxc = nir_fmax_abs_vec_comp(b, vec);
121    nir_ssa_def *svec = nir_fdiv(b, vec, maxc);
122    /* for inf */
123    nir_ssa_def *finfvec = nir_copysign(b, nir_bcsel(b, nir_feq(b, vec, finf), f1, f0), f1);
124 
125    nir_ssa_def *temp = nir_bcsel(b, nir_feq(b, maxc, finf), finfvec, svec);
126    nir_ssa_def *res = nir_fmul(b, temp, nir_frsq(b, nir_fdot(b, temp, temp)));
127 
128    return nir_bcsel(b, nir_feq(b, maxc, f0), vec, res);
129 }
130 
131 nir_ssa_def*
nir_smoothstep(nir_builder * b,nir_ssa_def * edge0,nir_ssa_def * edge1,nir_ssa_def * x)132 nir_smoothstep(nir_builder *b, nir_ssa_def *edge0, nir_ssa_def *edge1, nir_ssa_def *x)
133 {
134    nir_ssa_def *f2 = nir_imm_floatN_t(b, 2.0, x->bit_size);
135    nir_ssa_def *f3 = nir_imm_floatN_t(b, 3.0, x->bit_size);
136 
137    /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
138    nir_ssa_def *t =
139       nir_fsat(b, nir_fdiv(b, nir_fsub(b, x, edge0),
140                               nir_fsub(b, edge1, edge0)));
141 
142    /* result = t * t * (3 - 2 * t) */
143    return nir_fmul(b, t, nir_fmul(b, t, nir_a_minus_bc(b, f3, f2, t)));
144 }
145 
146 nir_ssa_def*
nir_upsample(nir_builder * b,nir_ssa_def * hi,nir_ssa_def * lo)147 nir_upsample(nir_builder *b, nir_ssa_def *hi, nir_ssa_def *lo)
148 {
149    assert(lo->num_components == hi->num_components);
150    assert(lo->bit_size == hi->bit_size);
151 
152    nir_ssa_def *res[NIR_MAX_VEC_COMPONENTS];
153    for (unsigned i = 0; i < lo->num_components; ++i) {
154       nir_ssa_def *vec = nir_vec2(b, nir_channel(b, lo, i), nir_channel(b, hi, i));
155       res[i] = nir_pack_bits(b, vec, vec->bit_size * 2);
156    }
157 
158    return nir_vec(b, res, lo->num_components);
159 }
160 
161 /**
162  * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
163  */
164 static nir_ssa_def *
build_fsum(nir_builder * b,nir_ssa_def ** xs,int terms)165 build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
166 {
167    nir_ssa_def *accum = xs[0];
168 
169    for (int i = 1; i < terms; i++)
170       accum = nir_fadd(b, accum, xs[i]);
171 
172    return accum;
173 }
174 
175 nir_ssa_def *
nir_atan(nir_builder * b,nir_ssa_def * y_over_x)176 nir_atan(nir_builder *b, nir_ssa_def *y_over_x)
177 {
178    const uint32_t bit_size = y_over_x->bit_size;
179 
180    nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
181    nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
182 
183    /*
184     * range-reduction, first step:
185     *
186     *      / y_over_x         if |y_over_x| <= 1.0;
187     * x = <
188     *      \ 1.0 / y_over_x   otherwise
189     */
190    nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
191                                 nir_fmax(b, abs_y_over_x, one));
192 
193    /*
194     * approximate atan by evaluating polynomial:
195     *
196     * x   * 0.9999793128310355 - x^3  * 0.3326756418091246 +
197     * x^5 * 0.1938924977115610 - x^7  * 0.1173503194786851 +
198     * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
199     */
200    nir_ssa_def *x_2  = nir_fmul(b, x,   x);
201    nir_ssa_def *x_3  = nir_fmul(b, x_2, x);
202    nir_ssa_def *x_5  = nir_fmul(b, x_3, x_2);
203    nir_ssa_def *x_7  = nir_fmul(b, x_5, x_2);
204    nir_ssa_def *x_9  = nir_fmul(b, x_7, x_2);
205    nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
206 
207    nir_ssa_def *polynomial_terms[] = {
208       nir_fmul_imm(b, x,     0.9999793128310355f),
209       nir_fmul_imm(b, x_3,  -0.3326756418091246f),
210       nir_fmul_imm(b, x_5,   0.1938924977115610f),
211       nir_fmul_imm(b, x_7,  -0.1173503194786851f),
212       nir_fmul_imm(b, x_9,   0.0536813784310406f),
213       nir_fmul_imm(b, x_11, -0.0121323213173444f),
214    };
215 
216    nir_ssa_def *tmp =
217       build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
218 
219    /* range-reduction fixup */
220    tmp = nir_ffma(b,
221                   nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
222                   nir_ffma_imm12(b, tmp, -2.0f, M_PI_2),
223                   tmp);
224 
225    /* sign fixup */
226    nir_ssa_def *result = nir_fmul(b, tmp, nir_fsign(b, y_over_x));
227 
228    /* The fmin and fmax above will filter out NaN values.  This leads to
229     * non-NaN results for NaN inputs.  Work around this by doing
230     *
231     *    !isnan(y_over_x) ? ... : y_over_x;
232     */
233    if (b->exact ||
234        nir_is_float_control_signed_zero_inf_nan_preserve(b->shader->info.float_controls_execution_mode, bit_size)) {
235       const bool exact = b->exact;
236 
237       b->exact = true;
238       nir_ssa_def *is_not_nan = nir_feq(b, y_over_x, y_over_x);
239       b->exact = exact;
240 
241       /* The extra 1.0*y_over_x ensures that subnormal results are flushed to
242        * zero.
243        */
244       result = nir_bcsel(b, is_not_nan, result, nir_fmul_imm(b, y_over_x, 1.0));
245    }
246 
247    return result;
248 }
249 
250 nir_ssa_def *
nir_atan2(nir_builder * b,nir_ssa_def * y,nir_ssa_def * x)251 nir_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
252 {
253    assert(y->bit_size == x->bit_size);
254    const uint32_t bit_size = x->bit_size;
255 
256    nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
257    nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
258 
259    /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
260     * for the y=0 discontinuity to end up aligned with the vertical
261     * discontinuity of atan(s/t) along t=0.  This also makes sure that we
262     * don't attempt to divide by zero along the vertical line, which may give
263     * unspecified results on non-GLSL 4.1-capable hardware.
264     */
265    nir_ssa_def *flip = nir_fge(b, zero, x);
266    nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
267    nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
268 
269    /* If the magnitude of the denominator exceeds some huge value, scale down
270     * the arguments in order to prevent the reciprocal operation from flushing
271     * its result to zero, which would cause precision problems, and for s
272     * infinite would cause us to return a NaN instead of the correct finite
273     * value.
274     *
275     * If fmin and fmax are respectively the smallest and largest positive
276     * normalized floating point values representable by the implementation,
277     * the constants below should be in agreement with:
278     *
279     *    huge <= 1 / fmin
280     *    scale <= 1 / fmin / fmax (for |t| >= huge)
281     *
282     * In addition scale should be a negative power of two in order to avoid
283     * loss of precision.  The values chosen below should work for most usual
284     * floating point representations with at least the dynamic range of ATI's
285     * 24-bit representation.
286     */
287    const double huge_val = bit_size >= 32 ? 1e18 : 16384;
288    nir_ssa_def *huge = nir_imm_floatN_t(b,  huge_val, bit_size);
289    nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
290                                   nir_imm_floatN_t(b, 0.25, bit_size), one);
291    nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
292    nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
293 
294    /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
295     * that ∞/∞ = 1) in order to comply with the rather artificial rules
296     * inherited from IEEE 754-2008, namely:
297     *
298     *  "atan2(±∞, −∞) is ±3π/4
299     *   atan2(±∞, +∞) is ±π/4"
300     *
301     * Note that this is inconsistent with the rules for the neighborhood of
302     * zero that are based on iterated limits:
303     *
304     *  "atan2(±0, −0) is ±π
305     *   atan2(±0, +0) is ±0"
306     *
307     * but GLSL specifically allows implementations to deviate from IEEE rules
308     * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
309     * well).
310     */
311    nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
312                                 one, nir_fabs(b, s_over_t));
313 
314    /* Calculate the arctangent and fix up the result if we had flipped the
315     * coordinate system.
316     */
317    nir_ssa_def *arc =
318       nir_ffma_imm1(b, nir_b2f(b, flip, bit_size), M_PI_2, nir_atan(b, tan));
319 
320    /* Rather convoluted calculation of the sign of the result.  When x < 0 we
321     * cannot use fsign because we need to be able to distinguish between
322     * negative and positive zero.  We don't use bitwise arithmetic tricks for
323     * consistency with the GLSL front-end.  When x >= 0 rcp_scaled_t will
324     * always be non-negative so this won't be able to distinguish between
325     * negative and positive zero, but we don't care because atan2 is
326     * continuous along the whole positive y = 0 half-line, so it won't affect
327     * the result significantly.
328     */
329    return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
330                     nir_fneg(b, arc), arc);
331 }
332 
333 nir_ssa_def *
nir_get_texture_size(nir_builder * b,nir_tex_instr * tex)334 nir_get_texture_size(nir_builder *b, nir_tex_instr *tex)
335 {
336    b->cursor = nir_before_instr(&tex->instr);
337 
338    nir_tex_instr *txs;
339 
340    unsigned num_srcs = 1; /* One for the LOD */
341    for (unsigned i = 0; i < tex->num_srcs; i++) {
342       if (tex->src[i].src_type == nir_tex_src_texture_deref ||
343           tex->src[i].src_type == nir_tex_src_sampler_deref ||
344           tex->src[i].src_type == nir_tex_src_texture_offset ||
345           tex->src[i].src_type == nir_tex_src_sampler_offset ||
346           tex->src[i].src_type == nir_tex_src_texture_handle ||
347           tex->src[i].src_type == nir_tex_src_sampler_handle)
348          num_srcs++;
349    }
350 
351    txs = nir_tex_instr_create(b->shader, num_srcs);
352    txs->op = nir_texop_txs;
353    txs->sampler_dim = tex->sampler_dim;
354    txs->is_array = tex->is_array;
355    txs->is_shadow = tex->is_shadow;
356    txs->is_new_style_shadow = tex->is_new_style_shadow;
357    txs->texture_index = tex->texture_index;
358    txs->sampler_index = tex->sampler_index;
359    txs->dest_type = nir_type_int32;
360 
361    unsigned idx = 0;
362    for (unsigned i = 0; i < tex->num_srcs; i++) {
363       if (tex->src[i].src_type == nir_tex_src_texture_deref ||
364           tex->src[i].src_type == nir_tex_src_sampler_deref ||
365           tex->src[i].src_type == nir_tex_src_texture_offset ||
366           tex->src[i].src_type == nir_tex_src_sampler_offset ||
367           tex->src[i].src_type == nir_tex_src_texture_handle ||
368           tex->src[i].src_type == nir_tex_src_sampler_handle) {
369          nir_src_copy(&txs->src[idx].src, &tex->src[i].src);
370          txs->src[idx].src_type = tex->src[i].src_type;
371          idx++;
372       }
373    }
374    /* Add in an LOD because some back-ends require it */
375    txs->src[idx].src = nir_src_for_ssa(nir_imm_int(b, 0));
376    txs->src[idx].src_type = nir_tex_src_lod;
377 
378    nir_ssa_dest_init(&txs->instr, &txs->dest,
379                      nir_tex_instr_dest_size(txs), 32, NULL);
380    nir_builder_instr_insert(b, &txs->instr);
381 
382    return &txs->dest.ssa;
383 }
384 
385 nir_ssa_def *
nir_get_texture_lod(nir_builder * b,nir_tex_instr * tex)386 nir_get_texture_lod(nir_builder *b, nir_tex_instr *tex)
387 {
388    b->cursor = nir_before_instr(&tex->instr);
389 
390    nir_tex_instr *tql;
391 
392    unsigned num_srcs = 0;
393    for (unsigned i = 0; i < tex->num_srcs; i++) {
394       if (tex->src[i].src_type == nir_tex_src_coord ||
395           tex->src[i].src_type == nir_tex_src_texture_deref ||
396           tex->src[i].src_type == nir_tex_src_sampler_deref ||
397           tex->src[i].src_type == nir_tex_src_texture_offset ||
398           tex->src[i].src_type == nir_tex_src_sampler_offset ||
399           tex->src[i].src_type == nir_tex_src_texture_handle ||
400           tex->src[i].src_type == nir_tex_src_sampler_handle)
401          num_srcs++;
402    }
403 
404    tql = nir_tex_instr_create(b->shader, num_srcs);
405    tql->op = nir_texop_lod;
406    tql->coord_components = tex->coord_components;
407    tql->sampler_dim = tex->sampler_dim;
408    tql->is_array = tex->is_array;
409    tql->is_shadow = tex->is_shadow;
410    tql->is_new_style_shadow = tex->is_new_style_shadow;
411    tql->texture_index = tex->texture_index;
412    tql->sampler_index = tex->sampler_index;
413    tql->dest_type = nir_type_float32;
414 
415    unsigned idx = 0;
416    for (unsigned i = 0; i < tex->num_srcs; i++) {
417       if (tex->src[i].src_type == nir_tex_src_coord ||
418           tex->src[i].src_type == nir_tex_src_texture_deref ||
419           tex->src[i].src_type == nir_tex_src_sampler_deref ||
420           tex->src[i].src_type == nir_tex_src_texture_offset ||
421           tex->src[i].src_type == nir_tex_src_sampler_offset ||
422           tex->src[i].src_type == nir_tex_src_texture_handle ||
423           tex->src[i].src_type == nir_tex_src_sampler_handle) {
424          nir_src_copy(&tql->src[idx].src, &tex->src[i].src);
425          tql->src[idx].src_type = tex->src[i].src_type;
426          idx++;
427       }
428    }
429 
430    nir_ssa_dest_init(&tql->instr, &tql->dest, 2, 32, NULL);
431    nir_builder_instr_insert(b, &tql->instr);
432 
433    /* The LOD is the y component of the result */
434    return nir_channel(b, &tql->dest.ssa, 1);
435 }
436