• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***
2   This file is part of PulseAudio.
3 
4   Copyright 2007 Lennart Poettering
5 
6   PulseAudio is free software; you can redistribute it and/or modify
7   it under the terms of the GNU Lesser General Public License as
8   published by the Free Software Foundation; either version 2.1 of the
9   License, or (at your option) any later version.
10 
11   PulseAudio is distributed in the hope that it will be useful, but
12   WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14   Lesser General Public License for more details.
15 
16   You should have received a copy of the GNU Lesser General Public
17   License along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
18 ***/
19 
20 #ifdef HAVE_CONFIG_H
21 #include <config.h>
22 #endif
23 
24 #include <stdio.h>
25 #include <math.h>
26 
27 #include <pulse/sample.h>
28 #include <pulse/xmalloc.h>
29 
30 #include <pulsecore/macro.h>
31 
32 #include "time-smoother.h"
33 
34 #define HISTORY_MAX 64
35 
36 /*
37  * Implementation of a time smoothing algorithm to synchronize remote
38  * clocks to a local one. Evens out noise, adjusts to clock skew and
39  * allows cheap estimations of the remote time while clock updates may
40  * be seldom and received in non-equidistant intervals.
41  *
42  * Basically, we estimate the gradient of received clock samples in a
43  * certain history window (of size 'history_time') with linear
44  * regression. With that info we estimate the remote time in
45  * 'adjust_time' ahead and smoothen our current estimation function
46  * towards that point with a 3rd order polynomial interpolation with
47  * fitting derivatives. (more or less a b-spline)
48  *
49  * The larger 'history_time' is chosen the better we will suppress
50  * noise -- but we'll adjust to clock skew slower..
51  *
52  * The larger 'adjust_time' is chosen the smoother our estimation
53  * function will be -- but we'll adjust to clock skew slower, too.
54  *
55  * If 'monotonic' is true the resulting estimation function is
56  * guaranteed to be monotonic.
57  */
58 
59 struct pa_smoother {
60     pa_usec_t adjust_time, history_time;
61 
62     pa_usec_t time_offset;
63 
64     pa_usec_t px, py;     /* Point p, where we want to reach stability */
65     double dp;            /* Gradient we want at point p */
66 
67     pa_usec_t ex, ey;     /* Point e, which we estimated before and need to smooth to */
68     double de;            /* Gradient we estimated for point e */
69     pa_usec_t ry;         /* The original y value for ex */
70 
71                           /* History of last measurements */
72     pa_usec_t history_x[HISTORY_MAX], history_y[HISTORY_MAX];
73     unsigned history_idx, n_history;
74 
75     /* To even out for monotonicity */
76     pa_usec_t last_y, last_x;
77 
78     /* Cached parameters for our interpolation polynomial y=ax^3+b^2+cx */
79     double a, b, c;
80     bool abc_valid:1;
81 
82     bool monotonic:1;
83     bool paused:1;
84     bool smoothing:1; /* If false we skip the polynomial interpolation step */
85 
86     pa_usec_t pause_time;
87 
88     unsigned min_history;
89 };
90 
pa_smoother_new(pa_usec_t adjust_time,pa_usec_t history_time,bool monotonic,bool smoothing,unsigned min_history,pa_usec_t time_offset,bool paused)91 pa_smoother* pa_smoother_new(
92         pa_usec_t adjust_time,
93         pa_usec_t history_time,
94         bool monotonic,
95         bool smoothing,
96         unsigned min_history,
97         pa_usec_t time_offset,
98         bool paused) {
99 
100     pa_smoother *s;
101 
102     pa_assert(adjust_time > 0);
103     pa_assert(history_time > 0);
104     pa_assert(min_history >= 2);
105     pa_assert(min_history <= HISTORY_MAX);
106 
107     s = pa_xnew(pa_smoother, 1);
108     s->adjust_time = adjust_time;
109     s->history_time = history_time;
110     s->min_history = min_history;
111     s->monotonic = monotonic;
112     s->smoothing = smoothing;
113 
114     pa_smoother_reset(s, time_offset, paused);
115 
116     return s;
117 }
118 
pa_smoother_free(pa_smoother * s)119 void pa_smoother_free(pa_smoother* s) {
120     pa_assert(s);
121 
122     pa_xfree(s);
123 }
124 
125 #define REDUCE(x)                               \
126     do {                                        \
127         x = (x) % HISTORY_MAX;                  \
128     } while(false)
129 
130 #define REDUCE_INC(x)                           \
131     do {                                        \
132         x = ((x)+1) % HISTORY_MAX;              \
133     } while(false)
134 
drop_old(pa_smoother * s,pa_usec_t x)135 static void drop_old(pa_smoother *s, pa_usec_t x) {
136 
137     /* Drop items from history which are too old, but make sure to
138      * always keep min_history in the history */
139 
140     while (s->n_history > s->min_history) {
141 
142         if (s->history_x[s->history_idx] + s->history_time >= x)
143             /* This item is still valid, and thus all following ones
144              * are too, so let's quit this loop */
145             break;
146 
147         /* Item is too old, let's drop it */
148         REDUCE_INC(s->history_idx);
149 
150         s->n_history --;
151     }
152 }
153 
add_to_history(pa_smoother * s,pa_usec_t x,pa_usec_t y)154 static void add_to_history(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
155     unsigned j, i;
156     pa_assert(s);
157 
158     /* First try to update an existing history entry */
159     i = s->history_idx;
160     for (j = s->n_history; j > 0; j--) {
161 
162         if (s->history_x[i] == x) {
163             s->history_y[i] = y;
164             return;
165         }
166 
167         REDUCE_INC(i);
168     }
169 
170     /* Drop old entries */
171     drop_old(s, x);
172 
173     /* Calculate position for new entry */
174     j = s->history_idx + s->n_history;
175     REDUCE(j);
176 
177     /* Fill in entry */
178     s->history_x[j] = x;
179     s->history_y[j] = y;
180 
181     /* Adjust counter */
182     s->n_history ++;
183 
184     /* And make sure we don't store more entries than fit in */
185     if (s->n_history > HISTORY_MAX) {
186         s->history_idx += s->n_history - HISTORY_MAX;
187         REDUCE(s->history_idx);
188         s->n_history = HISTORY_MAX;
189     }
190 }
191 
avg_gradient(pa_smoother * s,pa_usec_t x)192 static double avg_gradient(pa_smoother *s, pa_usec_t x) {
193     unsigned i, j, c = 0;
194     int64_t ax = 0, ay = 0, k, t;
195     double r;
196 
197     /* FIXME: Optimization: Jason Newton suggested that instead of
198      * going through the history on each iteration we could calculated
199      * avg_gradient() as we go.
200      *
201      * Second idea: it might make sense to weight history entries:
202      * more recent entries should matter more than old ones. */
203 
204     /* Too few measurements, assume gradient of 1 */
205     if (s->n_history < s->min_history)
206         return 1;
207 
208     /* First, calculate average of all measurements */
209     i = s->history_idx;
210     for (j = s->n_history; j > 0; j--) {
211 
212         ax += (int64_t) s->history_x[i];
213         ay += (int64_t) s->history_y[i];
214         c++;
215 
216         REDUCE_INC(i);
217     }
218 
219     pa_assert(c >= s->min_history);
220     ax /= c;
221     ay /= c;
222 
223     /* Now, do linear regression */
224     k = t = 0;
225 
226     i = s->history_idx;
227     for (j = s->n_history; j > 0; j--) {
228         int64_t dx, dy;
229 
230         dx = (int64_t) s->history_x[i] - ax;
231         dy = (int64_t) s->history_y[i] - ay;
232 
233         k += dx*dy;
234         t += dx*dx;
235 
236         REDUCE_INC(i);
237     }
238 
239     r = (double) k / (double) t;
240 
241     return (s->monotonic && r < 0) ? 0 : r;
242 }
243 
calc_abc(pa_smoother * s)244 static void calc_abc(pa_smoother *s) {
245     pa_usec_t ex, ey, px, py;
246     int64_t kx, ky;
247     double de, dp;
248 
249     pa_assert(s);
250 
251     if (s->abc_valid)
252         return;
253 
254     /* We have two points: (ex|ey) and (px|py) with two gradients at
255      * these points de and dp. We do a polynomial
256      * interpolation of degree 3 with these 6 values */
257 
258     ex = s->ex; ey = s->ey;
259     px = s->px; py = s->py;
260     de = s->de; dp = s->dp;
261 
262     pa_assert(ex < px);
263 
264     /* To increase the dynamic range and simplify calculation, we
265      * move these values to the origin */
266     kx = (int64_t) px - (int64_t) ex;
267     ky = (int64_t) py - (int64_t) ey;
268 
269     /* Calculate a, b, c for y=ax^3+bx^2+cx */
270     s->c = de;
271     s->b = (((double) (3*ky)/ (double) kx - dp - (double) (2*de))) / (double) kx;
272     s->a = (dp/(double) kx - 2*s->b - de/(double) kx) / (double) (3*kx);
273 
274     s->abc_valid = true;
275 }
276 
estimate(pa_smoother * s,pa_usec_t x,pa_usec_t * y,double * deriv)277 static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) {
278     pa_assert(s);
279     pa_assert(y);
280 
281     if (x >= s->px) {
282         /* Linear interpolation right from px */
283         int64_t t;
284 
285         /* The requested point is right of the point where we wanted
286          * to be on track again, thus just linearly estimate */
287 
288         t = (int64_t) s->py + (int64_t) llrint(s->dp * (double) (x - s->px));
289 
290         if (t < 0)
291             t = 0;
292 
293         *y = (pa_usec_t) t;
294 
295         if (deriv)
296             *deriv = s->dp;
297 
298     } else if (x <= s->ex) {
299         /* Linear interpolation left from ex */
300         int64_t t;
301 
302         t = (int64_t) s->ey - (int64_t) llrint(s->de * (double) (s->ex - x));
303 
304         if (t < 0)
305             t = 0;
306 
307         *y = (pa_usec_t) t;
308 
309         if (deriv)
310             *deriv = s->de;
311 
312     } else {
313         /* Spline interpolation between ex and px */
314         double tx, ty;
315 
316         /* Ok, we're not yet on track, thus let's interpolate, and
317          * make sure that the first derivative is smooth */
318 
319         calc_abc(s);
320 
321         /* Move to origin */
322         tx = (double) (x - s->ex);
323 
324         /* Horner scheme */
325         ty = (tx * (s->c + tx * (s->b + tx * s->a)));
326 
327         /* Move back from origin */
328         ty += (double) s->ey;
329 
330         *y = ty >= 0 ? (pa_usec_t) llrint(ty) : 0;
331 
332         /* Horner scheme */
333         if (deriv)
334             *deriv = s->c + (tx * (s->b*2 + tx * s->a*3));
335     }
336 
337     /* Guarantee monotonicity */
338     if (s->monotonic) {
339 
340         if (deriv && *deriv < 0)
341             *deriv = 0;
342     }
343 }
344 
pa_smoother_put(pa_smoother * s,pa_usec_t x,pa_usec_t y)345 void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
346     pa_usec_t ney;
347     double nde;
348     bool is_new;
349 
350     pa_assert(s);
351 
352     /* Fix up x value */
353     if (s->paused)
354         x = s->pause_time;
355 
356     x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
357 
358     is_new = x >= s->ex;
359 
360     if (is_new) {
361         /* First, we calculate the position we'd estimate for x, so that
362          * we can adjust our position smoothly from this one */
363         estimate(s, x, &ney, &nde);
364         s->ex = x; s->ey = ney; s->de = nde;
365         s->ry = y;
366     }
367 
368     /* Then, we add the new measurement to our history */
369     add_to_history(s, x, y);
370 
371     /* And determine the average gradient of the history */
372     s->dp = avg_gradient(s, x);
373 
374     /* And calculate when we want to be on track again */
375     if (s->smoothing) {
376         s->px = s->ex + s->adjust_time;
377         s->py = s->ry + (pa_usec_t) llrint(s->dp * (double) s->adjust_time);
378     } else {
379         s->px = s->ex;
380         s->py = s->ry;
381     }
382 
383     s->abc_valid = false;
384 
385 #ifdef DEBUG_DATA
386     pa_log_debug("%p, put(%llu | %llu) = %llu", s, (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y);
387 #endif
388 }
389 
pa_smoother_get(pa_smoother * s,pa_usec_t x)390 pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x) {
391     pa_usec_t y;
392 
393     pa_assert(s);
394 
395     /* Fix up x value */
396     if (s->paused)
397         x = s->pause_time;
398 
399     x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
400 
401     if (s->monotonic)
402         if (x <= s->last_x)
403             x = s->last_x;
404 
405     estimate(s, x, &y, NULL);
406 
407     if (s->monotonic) {
408 
409         /* Make sure the querier doesn't jump forth and back. */
410         s->last_x = x;
411 
412         if (y < s->last_y)
413             y = s->last_y;
414         else
415             s->last_y = y;
416     }
417 
418 #ifdef DEBUG_DATA
419     pa_log_debug("%p, get(%llu | %llu) = %llu", s, (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y);
420 #endif
421 
422     return y;
423 }
424 
pa_smoother_set_time_offset(pa_smoother * s,pa_usec_t offset)425 void pa_smoother_set_time_offset(pa_smoother *s, pa_usec_t offset) {
426     pa_assert(s);
427 
428     s->time_offset = offset;
429 
430 #ifdef DEBUG_DATA
431     pa_log_debug("offset(%llu)", (unsigned long long) offset);
432 #endif
433 }
434 
pa_smoother_pause(pa_smoother * s,pa_usec_t x)435 void pa_smoother_pause(pa_smoother *s, pa_usec_t x) {
436     pa_assert(s);
437 
438     if (s->paused)
439         return;
440 
441 #ifdef DEBUG_DATA
442     pa_log_debug("pause(%llu)", (unsigned long long) x);
443 #endif
444 
445     s->paused = true;
446     s->pause_time = x;
447 }
448 
pa_smoother_resume(pa_smoother * s,pa_usec_t x,bool fix_now)449 void pa_smoother_resume(pa_smoother *s, pa_usec_t x, bool fix_now) {
450     pa_assert(s);
451 
452     if (!s->paused)
453         return;
454 
455     if (x < s->pause_time)
456         x = s->pause_time;
457 
458 #ifdef DEBUG_DATA
459     pa_log_debug("resume(%llu)", (unsigned long long) x);
460 #endif
461 
462     s->paused = false;
463     s->time_offset += x - s->pause_time;
464 
465     if (fix_now)
466         pa_smoother_fix_now(s);
467 }
468 
pa_smoother_fix_now(pa_smoother * s)469 void pa_smoother_fix_now(pa_smoother *s) {
470     pa_assert(s);
471 
472     s->px = s->ex;
473     s->py = s->ry;
474 }
475 
pa_smoother_translate(pa_smoother * s,pa_usec_t x,pa_usec_t y_delay)476 pa_usec_t pa_smoother_translate(pa_smoother *s, pa_usec_t x, pa_usec_t y_delay) {
477     pa_usec_t ney;
478     double nde;
479 
480     pa_assert(s);
481 
482     /* Fix up x value */
483     if (s->paused)
484         x = s->pause_time;
485 
486     x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
487 
488     estimate(s, x, &ney, &nde);
489 
490     /* Play safe and take the larger gradient, so that we wakeup
491      * earlier when this is used for sleeping */
492     if (s->dp > nde)
493         nde = s->dp;
494 
495 #ifdef DEBUG_DATA
496     pa_log_debug("translate(%llu) = %llu (%0.2f)", (unsigned long long) y_delay, (unsigned long long) ((double) y_delay / nde), nde);
497 #endif
498 
499     return (pa_usec_t) llrint((double) y_delay / nde);
500 }
501 
pa_smoother_reset(pa_smoother * s,pa_usec_t time_offset,bool paused)502 void pa_smoother_reset(pa_smoother *s, pa_usec_t time_offset, bool paused) {
503     pa_assert(s);
504 
505     s->px = s->py = 0;
506     s->dp = 1;
507 
508     s->ex = s->ey = s->ry = 0;
509     s->de = 1;
510 
511     s->history_idx = 0;
512     s->n_history = 0;
513 
514     s->last_y = s->last_x = 0;
515 
516     s->abc_valid = false;
517 
518     s->paused = paused;
519     s->time_offset = s->pause_time = time_offset;
520 
521 #ifdef DEBUG_DATA
522     pa_log_debug("reset()");
523 #endif
524 }
525