• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11 
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26 
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31 
32 /*
33  * creates the kmem cache to allocate pids from.
34  * @level: pid namespace level
35  */
36 
create_pid_cachep(unsigned int level)37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39 	/* Level 0 is init_pid_ns.pid_cachep */
40 	struct kmem_cache **pkc = &pid_cache[level - 1];
41 	struct kmem_cache *kc;
42 	char name[4 + 10 + 1];
43 	unsigned int len;
44 
45 	kc = READ_ONCE(*pkc);
46 	if (kc)
47 		return kc;
48 
49 	snprintf(name, sizeof(name), "pid_%u", level + 1);
50 	len = sizeof(struct pid) + level * sizeof(struct upid);
51 	mutex_lock(&pid_caches_mutex);
52 	/* Name collision forces to do allocation under mutex. */
53 	if (!*pkc)
54 		*pkc = kmem_cache_create(name, len, 0,
55 					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
56 	mutex_unlock(&pid_caches_mutex);
57 	/* current can fail, but someone else can succeed. */
58 	return READ_ONCE(*pkc);
59 }
60 
inc_pid_namespaces(struct user_namespace * ns)61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
62 {
63 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
64 }
65 
dec_pid_namespaces(struct ucounts * ucounts)66 static void dec_pid_namespaces(struct ucounts *ucounts)
67 {
68 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
69 }
70 
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
72 	struct pid_namespace *parent_pid_ns)
73 {
74 	struct pid_namespace *ns;
75 	unsigned int level = parent_pid_ns->level + 1;
76 	struct ucounts *ucounts;
77 	int err;
78 
79 	err = -EINVAL;
80 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
81 		goto out;
82 
83 	err = -ENOSPC;
84 	if (level > MAX_PID_NS_LEVEL)
85 		goto out;
86 	ucounts = inc_pid_namespaces(user_ns);
87 	if (!ucounts)
88 		goto out;
89 
90 	err = -ENOMEM;
91 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
92 	if (ns == NULL)
93 		goto out_dec;
94 
95 	idr_init(&ns->idr);
96 
97 	ns->pid_cachep = create_pid_cachep(level);
98 	if (ns->pid_cachep == NULL)
99 		goto out_free_idr;
100 
101 	err = ns_alloc_inum(&ns->ns);
102 	if (err)
103 		goto out_free_idr;
104 	ns->ns.ops = &pidns_operations;
105 
106 	kref_init(&ns->kref);
107 	ns->level = level;
108 	ns->parent = get_pid_ns(parent_pid_ns);
109 	ns->user_ns = get_user_ns(user_ns);
110 	ns->ucounts = ucounts;
111 	ns->pid_allocated = PIDNS_ADDING;
112 
113 	return ns;
114 
115 out_free_idr:
116 	idr_destroy(&ns->idr);
117 	kmem_cache_free(pid_ns_cachep, ns);
118 out_dec:
119 	dec_pid_namespaces(ucounts);
120 out:
121 	return ERR_PTR(err);
122 }
123 
delayed_free_pidns(struct rcu_head * p)124 static void delayed_free_pidns(struct rcu_head *p)
125 {
126 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127 
128 	dec_pid_namespaces(ns->ucounts);
129 	put_user_ns(ns->user_ns);
130 
131 	kmem_cache_free(pid_ns_cachep, ns);
132 }
133 
destroy_pid_namespace(struct pid_namespace * ns)134 static void destroy_pid_namespace(struct pid_namespace *ns)
135 {
136 	ns_free_inum(&ns->ns);
137 
138 	idr_destroy(&ns->idr);
139 	call_rcu(&ns->rcu, delayed_free_pidns);
140 }
141 
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 	if (!(flags & CLONE_NEWPID))
146 		return get_pid_ns(old_ns);
147 	if (task_active_pid_ns(current) != old_ns)
148 		return ERR_PTR(-EINVAL);
149 	return create_pid_namespace(user_ns, old_ns);
150 }
151 
free_pid_ns(struct kref * kref)152 static void free_pid_ns(struct kref *kref)
153 {
154 	struct pid_namespace *ns;
155 
156 	ns = container_of(kref, struct pid_namespace, kref);
157 	destroy_pid_namespace(ns);
158 }
159 
put_pid_ns(struct pid_namespace * ns)160 void put_pid_ns(struct pid_namespace *ns)
161 {
162 	struct pid_namespace *parent;
163 
164 	while (ns != &init_pid_ns) {
165 		parent = ns->parent;
166 		if (!kref_put(&ns->kref, free_pid_ns))
167 			break;
168 		ns = parent;
169 	}
170 }
171 EXPORT_SYMBOL_GPL(put_pid_ns);
172 
zap_pid_ns_processes(struct pid_namespace * pid_ns)173 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
174 {
175 	int nr;
176 	int rc;
177 	struct task_struct *task, *me = current;
178 	int init_pids = thread_group_leader(me) ? 1 : 2;
179 	struct pid *pid;
180 
181 	/* Don't allow any more processes into the pid namespace */
182 	disable_pid_allocation(pid_ns);
183 
184 	/*
185 	 * Ignore SIGCHLD causing any terminated children to autoreap.
186 	 * This speeds up the namespace shutdown, plus see the comment
187 	 * below.
188 	 */
189 	spin_lock_irq(&me->sighand->siglock);
190 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
191 	spin_unlock_irq(&me->sighand->siglock);
192 
193 	/*
194 	 * The last thread in the cgroup-init thread group is terminating.
195 	 * Find remaining pid_ts in the namespace, signal and wait for them
196 	 * to exit.
197 	 *
198 	 * Note:  This signals each threads in the namespace - even those that
199 	 * 	  belong to the same thread group, To avoid this, we would have
200 	 * 	  to walk the entire tasklist looking a processes in this
201 	 * 	  namespace, but that could be unnecessarily expensive if the
202 	 * 	  pid namespace has just a few processes. Or we need to
203 	 * 	  maintain a tasklist for each pid namespace.
204 	 *
205 	 */
206 	rcu_read_lock();
207 	read_lock(&tasklist_lock);
208 	nr = 2;
209 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
210 		task = pid_task(pid, PIDTYPE_PID);
211 		if (task && !__fatal_signal_pending(task))
212 			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
213 	}
214 	read_unlock(&tasklist_lock);
215 	rcu_read_unlock();
216 
217 	/*
218 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
219 	 * kernel_wait4() will also block until our children traced from the
220 	 * parent namespace are detached and become EXIT_DEAD.
221 	 */
222 	do {
223 		clear_thread_flag(TIF_SIGPENDING);
224 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
225 	} while (rc != -ECHILD);
226 
227 	/*
228 	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
229 	 * process whose parents processes are outside of the pid
230 	 * namespace.  Such processes are created with setns()+fork().
231 	 *
232 	 * If those EXIT_ZOMBIE processes are not reaped by their
233 	 * parents before their parents exit, they will be reparented
234 	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
235 	 * stay valid until they all go away.
236 	 *
237 	 * The code relies on the pid_ns->child_reaper ignoring
238 	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
239 	 * autoreaped if reparented.
240 	 *
241 	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
242 	 * processes before allowing the child_reaper to be reaped, as
243 	 * that gives the invariant that when the init process of a
244 	 * pid namespace is reaped all of the processes in the pid
245 	 * namespace are gone.
246 	 *
247 	 * Once all of the other tasks are gone from the pid_namespace
248 	 * free_pid() will awaken this task.
249 	 */
250 	for (;;) {
251 		set_current_state(TASK_INTERRUPTIBLE);
252 		if (pid_ns->pid_allocated == init_pids)
253 			break;
254 		schedule();
255 	}
256 	__set_current_state(TASK_RUNNING);
257 
258 	if (pid_ns->reboot)
259 		current->signal->group_exit_code = pid_ns->reboot;
260 
261 	acct_exit_ns(pid_ns);
262 	return;
263 }
264 
265 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)266 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
267 		void *buffer, size_t *lenp, loff_t *ppos)
268 {
269 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
270 	struct ctl_table tmp = *table;
271 	int ret, next;
272 
273 	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
274 		return -EPERM;
275 
276 	/*
277 	 * Writing directly to ns' last_pid field is OK, since this field
278 	 * is volatile in a living namespace anyway and a code writing to
279 	 * it should synchronize its usage with external means.
280 	 */
281 
282 	next = idr_get_cursor(&pid_ns->idr) - 1;
283 
284 	tmp.data = &next;
285 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
286 	if (!ret && write)
287 		idr_set_cursor(&pid_ns->idr, next + 1);
288 
289 	return ret;
290 }
291 
292 extern int pid_max;
293 static struct ctl_table pid_ns_ctl_table[] = {
294 	{
295 		.procname = "ns_last_pid",
296 		.maxlen = sizeof(int),
297 		.mode = 0666, /* permissions are checked in the handler */
298 		.proc_handler = pid_ns_ctl_handler,
299 		.extra1 = SYSCTL_ZERO,
300 		.extra2 = &pid_max,
301 	},
302 	{ }
303 };
304 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
305 #endif	/* CONFIG_CHECKPOINT_RESTORE */
306 
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)307 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
308 {
309 	if (pid_ns == &init_pid_ns)
310 		return 0;
311 
312 	switch (cmd) {
313 	case LINUX_REBOOT_CMD_RESTART2:
314 	case LINUX_REBOOT_CMD_RESTART:
315 		pid_ns->reboot = SIGHUP;
316 		break;
317 
318 	case LINUX_REBOOT_CMD_POWER_OFF:
319 	case LINUX_REBOOT_CMD_HALT:
320 		pid_ns->reboot = SIGINT;
321 		break;
322 	default:
323 		return -EINVAL;
324 	}
325 
326 	read_lock(&tasklist_lock);
327 	send_sig(SIGKILL, pid_ns->child_reaper, 1);
328 	read_unlock(&tasklist_lock);
329 
330 	do_exit(0);
331 
332 	/* Not reached */
333 	return 0;
334 }
335 
to_pid_ns(struct ns_common * ns)336 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
337 {
338 	return container_of(ns, struct pid_namespace, ns);
339 }
340 
pidns_get(struct task_struct * task)341 static struct ns_common *pidns_get(struct task_struct *task)
342 {
343 	struct pid_namespace *ns;
344 
345 	rcu_read_lock();
346 	ns = task_active_pid_ns(task);
347 	if (ns)
348 		get_pid_ns(ns);
349 	rcu_read_unlock();
350 
351 	return ns ? &ns->ns : NULL;
352 }
353 
pidns_for_children_get(struct task_struct * task)354 static struct ns_common *pidns_for_children_get(struct task_struct *task)
355 {
356 	struct pid_namespace *ns = NULL;
357 
358 	task_lock(task);
359 	if (task->nsproxy) {
360 		ns = task->nsproxy->pid_ns_for_children;
361 		get_pid_ns(ns);
362 	}
363 	task_unlock(task);
364 
365 	if (ns) {
366 		read_lock(&tasklist_lock);
367 		if (!ns->child_reaper) {
368 			put_pid_ns(ns);
369 			ns = NULL;
370 		}
371 		read_unlock(&tasklist_lock);
372 	}
373 
374 	return ns ? &ns->ns : NULL;
375 }
376 
pidns_put(struct ns_common * ns)377 static void pidns_put(struct ns_common *ns)
378 {
379 	put_pid_ns(to_pid_ns(ns));
380 }
381 
pidns_install(struct nsset * nsset,struct ns_common * ns)382 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
383 {
384 	struct nsproxy *nsproxy = nsset->nsproxy;
385 	struct pid_namespace *active = task_active_pid_ns(current);
386 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
387 
388 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
389 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
390 		return -EPERM;
391 
392 	/*
393 	 * Only allow entering the current active pid namespace
394 	 * or a child of the current active pid namespace.
395 	 *
396 	 * This is required for fork to return a usable pid value and
397 	 * this maintains the property that processes and their
398 	 * children can not escape their current pid namespace.
399 	 */
400 	if (new->level < active->level)
401 		return -EINVAL;
402 
403 	ancestor = new;
404 	while (ancestor->level > active->level)
405 		ancestor = ancestor->parent;
406 	if (ancestor != active)
407 		return -EINVAL;
408 
409 	put_pid_ns(nsproxy->pid_ns_for_children);
410 	nsproxy->pid_ns_for_children = get_pid_ns(new);
411 	return 0;
412 }
413 
pidns_get_parent(struct ns_common * ns)414 static struct ns_common *pidns_get_parent(struct ns_common *ns)
415 {
416 	struct pid_namespace *active = task_active_pid_ns(current);
417 	struct pid_namespace *pid_ns, *p;
418 
419 	/* See if the parent is in the current namespace */
420 	pid_ns = p = to_pid_ns(ns)->parent;
421 	for (;;) {
422 		if (!p)
423 			return ERR_PTR(-EPERM);
424 		if (p == active)
425 			break;
426 		p = p->parent;
427 	}
428 
429 	return &get_pid_ns(pid_ns)->ns;
430 }
431 
pidns_owner(struct ns_common * ns)432 static struct user_namespace *pidns_owner(struct ns_common *ns)
433 {
434 	return to_pid_ns(ns)->user_ns;
435 }
436 
437 const struct proc_ns_operations pidns_operations = {
438 	.name		= "pid",
439 	.type		= CLONE_NEWPID,
440 	.get		= pidns_get,
441 	.put		= pidns_put,
442 	.install	= pidns_install,
443 	.owner		= pidns_owner,
444 	.get_parent	= pidns_get_parent,
445 };
446 
447 const struct proc_ns_operations pidns_for_children_operations = {
448 	.name		= "pid_for_children",
449 	.real_ns_name	= "pid",
450 	.type		= CLONE_NEWPID,
451 	.get		= pidns_for_children_get,
452 	.put		= pidns_put,
453 	.install	= pidns_install,
454 	.owner		= pidns_owner,
455 	.get_parent	= pidns_get_parent,
456 };
457 
pid_namespaces_init(void)458 static __init int pid_namespaces_init(void)
459 {
460 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
461 
462 #ifdef CONFIG_CHECKPOINT_RESTORE
463 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
464 #endif
465 	return 0;
466 }
467 
468 __initcall(pid_namespaces_init);
469