1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31
32 /*
33 * creates the kmem cache to allocate pids from.
34 * @level: pid namespace level
35 */
36
create_pid_cachep(unsigned int level)37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39 /* Level 0 is init_pid_ns.pid_cachep */
40 struct kmem_cache **pkc = &pid_cache[level - 1];
41 struct kmem_cache *kc;
42 char name[4 + 10 + 1];
43 unsigned int len;
44
45 kc = READ_ONCE(*pkc);
46 if (kc)
47 return kc;
48
49 snprintf(name, sizeof(name), "pid_%u", level + 1);
50 len = sizeof(struct pid) + level * sizeof(struct upid);
51 mutex_lock(&pid_caches_mutex);
52 /* Name collision forces to do allocation under mutex. */
53 if (!*pkc)
54 *pkc = kmem_cache_create(name, len, 0,
55 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
56 mutex_unlock(&pid_caches_mutex);
57 /* current can fail, but someone else can succeed. */
58 return READ_ONCE(*pkc);
59 }
60
inc_pid_namespaces(struct user_namespace * ns)61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
62 {
63 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
64 }
65
dec_pid_namespaces(struct ucounts * ucounts)66 static void dec_pid_namespaces(struct ucounts *ucounts)
67 {
68 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
69 }
70
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
72 struct pid_namespace *parent_pid_ns)
73 {
74 struct pid_namespace *ns;
75 unsigned int level = parent_pid_ns->level + 1;
76 struct ucounts *ucounts;
77 int err;
78
79 err = -EINVAL;
80 if (!in_userns(parent_pid_ns->user_ns, user_ns))
81 goto out;
82
83 err = -ENOSPC;
84 if (level > MAX_PID_NS_LEVEL)
85 goto out;
86 ucounts = inc_pid_namespaces(user_ns);
87 if (!ucounts)
88 goto out;
89
90 err = -ENOMEM;
91 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
92 if (ns == NULL)
93 goto out_dec;
94
95 idr_init(&ns->idr);
96
97 ns->pid_cachep = create_pid_cachep(level);
98 if (ns->pid_cachep == NULL)
99 goto out_free_idr;
100
101 err = ns_alloc_inum(&ns->ns);
102 if (err)
103 goto out_free_idr;
104 ns->ns.ops = &pidns_operations;
105
106 kref_init(&ns->kref);
107 ns->level = level;
108 ns->parent = get_pid_ns(parent_pid_ns);
109 ns->user_ns = get_user_ns(user_ns);
110 ns->ucounts = ucounts;
111 ns->pid_allocated = PIDNS_ADDING;
112
113 return ns;
114
115 out_free_idr:
116 idr_destroy(&ns->idr);
117 kmem_cache_free(pid_ns_cachep, ns);
118 out_dec:
119 dec_pid_namespaces(ucounts);
120 out:
121 return ERR_PTR(err);
122 }
123
delayed_free_pidns(struct rcu_head * p)124 static void delayed_free_pidns(struct rcu_head *p)
125 {
126 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127
128 dec_pid_namespaces(ns->ucounts);
129 put_user_ns(ns->user_ns);
130
131 kmem_cache_free(pid_ns_cachep, ns);
132 }
133
destroy_pid_namespace(struct pid_namespace * ns)134 static void destroy_pid_namespace(struct pid_namespace *ns)
135 {
136 ns_free_inum(&ns->ns);
137
138 idr_destroy(&ns->idr);
139 call_rcu(&ns->rcu, delayed_free_pidns);
140 }
141
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143 struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145 if (!(flags & CLONE_NEWPID))
146 return get_pid_ns(old_ns);
147 if (task_active_pid_ns(current) != old_ns)
148 return ERR_PTR(-EINVAL);
149 return create_pid_namespace(user_ns, old_ns);
150 }
151
free_pid_ns(struct kref * kref)152 static void free_pid_ns(struct kref *kref)
153 {
154 struct pid_namespace *ns;
155
156 ns = container_of(kref, struct pid_namespace, kref);
157 destroy_pid_namespace(ns);
158 }
159
put_pid_ns(struct pid_namespace * ns)160 void put_pid_ns(struct pid_namespace *ns)
161 {
162 struct pid_namespace *parent;
163
164 while (ns != &init_pid_ns) {
165 parent = ns->parent;
166 if (!kref_put(&ns->kref, free_pid_ns))
167 break;
168 ns = parent;
169 }
170 }
171 EXPORT_SYMBOL_GPL(put_pid_ns);
172
zap_pid_ns_processes(struct pid_namespace * pid_ns)173 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
174 {
175 int nr;
176 int rc;
177 struct task_struct *task, *me = current;
178 int init_pids = thread_group_leader(me) ? 1 : 2;
179 struct pid *pid;
180
181 /* Don't allow any more processes into the pid namespace */
182 disable_pid_allocation(pid_ns);
183
184 /*
185 * Ignore SIGCHLD causing any terminated children to autoreap.
186 * This speeds up the namespace shutdown, plus see the comment
187 * below.
188 */
189 spin_lock_irq(&me->sighand->siglock);
190 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
191 spin_unlock_irq(&me->sighand->siglock);
192
193 /*
194 * The last thread in the cgroup-init thread group is terminating.
195 * Find remaining pid_ts in the namespace, signal and wait for them
196 * to exit.
197 *
198 * Note: This signals each threads in the namespace - even those that
199 * belong to the same thread group, To avoid this, we would have
200 * to walk the entire tasklist looking a processes in this
201 * namespace, but that could be unnecessarily expensive if the
202 * pid namespace has just a few processes. Or we need to
203 * maintain a tasklist for each pid namespace.
204 *
205 */
206 rcu_read_lock();
207 read_lock(&tasklist_lock);
208 nr = 2;
209 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
210 task = pid_task(pid, PIDTYPE_PID);
211 if (task && !__fatal_signal_pending(task))
212 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
213 }
214 read_unlock(&tasklist_lock);
215 rcu_read_unlock();
216
217 /*
218 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
219 * kernel_wait4() will also block until our children traced from the
220 * parent namespace are detached and become EXIT_DEAD.
221 */
222 do {
223 clear_thread_flag(TIF_SIGPENDING);
224 rc = kernel_wait4(-1, NULL, __WALL, NULL);
225 } while (rc != -ECHILD);
226
227 /*
228 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
229 * process whose parents processes are outside of the pid
230 * namespace. Such processes are created with setns()+fork().
231 *
232 * If those EXIT_ZOMBIE processes are not reaped by their
233 * parents before their parents exit, they will be reparented
234 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
235 * stay valid until they all go away.
236 *
237 * The code relies on the pid_ns->child_reaper ignoring
238 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
239 * autoreaped if reparented.
240 *
241 * Semantically it is also desirable to wait for EXIT_ZOMBIE
242 * processes before allowing the child_reaper to be reaped, as
243 * that gives the invariant that when the init process of a
244 * pid namespace is reaped all of the processes in the pid
245 * namespace are gone.
246 *
247 * Once all of the other tasks are gone from the pid_namespace
248 * free_pid() will awaken this task.
249 */
250 for (;;) {
251 set_current_state(TASK_INTERRUPTIBLE);
252 if (pid_ns->pid_allocated == init_pids)
253 break;
254 schedule();
255 }
256 __set_current_state(TASK_RUNNING);
257
258 if (pid_ns->reboot)
259 current->signal->group_exit_code = pid_ns->reboot;
260
261 acct_exit_ns(pid_ns);
262 return;
263 }
264
265 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)266 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
267 void *buffer, size_t *lenp, loff_t *ppos)
268 {
269 struct pid_namespace *pid_ns = task_active_pid_ns(current);
270 struct ctl_table tmp = *table;
271 int ret, next;
272
273 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
274 return -EPERM;
275
276 /*
277 * Writing directly to ns' last_pid field is OK, since this field
278 * is volatile in a living namespace anyway and a code writing to
279 * it should synchronize its usage with external means.
280 */
281
282 next = idr_get_cursor(&pid_ns->idr) - 1;
283
284 tmp.data = &next;
285 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
286 if (!ret && write)
287 idr_set_cursor(&pid_ns->idr, next + 1);
288
289 return ret;
290 }
291
292 extern int pid_max;
293 static struct ctl_table pid_ns_ctl_table[] = {
294 {
295 .procname = "ns_last_pid",
296 .maxlen = sizeof(int),
297 .mode = 0666, /* permissions are checked in the handler */
298 .proc_handler = pid_ns_ctl_handler,
299 .extra1 = SYSCTL_ZERO,
300 .extra2 = &pid_max,
301 },
302 { }
303 };
304 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
305 #endif /* CONFIG_CHECKPOINT_RESTORE */
306
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)307 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
308 {
309 if (pid_ns == &init_pid_ns)
310 return 0;
311
312 switch (cmd) {
313 case LINUX_REBOOT_CMD_RESTART2:
314 case LINUX_REBOOT_CMD_RESTART:
315 pid_ns->reboot = SIGHUP;
316 break;
317
318 case LINUX_REBOOT_CMD_POWER_OFF:
319 case LINUX_REBOOT_CMD_HALT:
320 pid_ns->reboot = SIGINT;
321 break;
322 default:
323 return -EINVAL;
324 }
325
326 read_lock(&tasklist_lock);
327 send_sig(SIGKILL, pid_ns->child_reaper, 1);
328 read_unlock(&tasklist_lock);
329
330 do_exit(0);
331
332 /* Not reached */
333 return 0;
334 }
335
to_pid_ns(struct ns_common * ns)336 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
337 {
338 return container_of(ns, struct pid_namespace, ns);
339 }
340
pidns_get(struct task_struct * task)341 static struct ns_common *pidns_get(struct task_struct *task)
342 {
343 struct pid_namespace *ns;
344
345 rcu_read_lock();
346 ns = task_active_pid_ns(task);
347 if (ns)
348 get_pid_ns(ns);
349 rcu_read_unlock();
350
351 return ns ? &ns->ns : NULL;
352 }
353
pidns_for_children_get(struct task_struct * task)354 static struct ns_common *pidns_for_children_get(struct task_struct *task)
355 {
356 struct pid_namespace *ns = NULL;
357
358 task_lock(task);
359 if (task->nsproxy) {
360 ns = task->nsproxy->pid_ns_for_children;
361 get_pid_ns(ns);
362 }
363 task_unlock(task);
364
365 if (ns) {
366 read_lock(&tasklist_lock);
367 if (!ns->child_reaper) {
368 put_pid_ns(ns);
369 ns = NULL;
370 }
371 read_unlock(&tasklist_lock);
372 }
373
374 return ns ? &ns->ns : NULL;
375 }
376
pidns_put(struct ns_common * ns)377 static void pidns_put(struct ns_common *ns)
378 {
379 put_pid_ns(to_pid_ns(ns));
380 }
381
pidns_install(struct nsset * nsset,struct ns_common * ns)382 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
383 {
384 struct nsproxy *nsproxy = nsset->nsproxy;
385 struct pid_namespace *active = task_active_pid_ns(current);
386 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
387
388 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
389 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
390 return -EPERM;
391
392 /*
393 * Only allow entering the current active pid namespace
394 * or a child of the current active pid namespace.
395 *
396 * This is required for fork to return a usable pid value and
397 * this maintains the property that processes and their
398 * children can not escape their current pid namespace.
399 */
400 if (new->level < active->level)
401 return -EINVAL;
402
403 ancestor = new;
404 while (ancestor->level > active->level)
405 ancestor = ancestor->parent;
406 if (ancestor != active)
407 return -EINVAL;
408
409 put_pid_ns(nsproxy->pid_ns_for_children);
410 nsproxy->pid_ns_for_children = get_pid_ns(new);
411 return 0;
412 }
413
pidns_get_parent(struct ns_common * ns)414 static struct ns_common *pidns_get_parent(struct ns_common *ns)
415 {
416 struct pid_namespace *active = task_active_pid_ns(current);
417 struct pid_namespace *pid_ns, *p;
418
419 /* See if the parent is in the current namespace */
420 pid_ns = p = to_pid_ns(ns)->parent;
421 for (;;) {
422 if (!p)
423 return ERR_PTR(-EPERM);
424 if (p == active)
425 break;
426 p = p->parent;
427 }
428
429 return &get_pid_ns(pid_ns)->ns;
430 }
431
pidns_owner(struct ns_common * ns)432 static struct user_namespace *pidns_owner(struct ns_common *ns)
433 {
434 return to_pid_ns(ns)->user_ns;
435 }
436
437 const struct proc_ns_operations pidns_operations = {
438 .name = "pid",
439 .type = CLONE_NEWPID,
440 .get = pidns_get,
441 .put = pidns_put,
442 .install = pidns_install,
443 .owner = pidns_owner,
444 .get_parent = pidns_get_parent,
445 };
446
447 const struct proc_ns_operations pidns_for_children_operations = {
448 .name = "pid_for_children",
449 .real_ns_name = "pid",
450 .type = CLONE_NEWPID,
451 .get = pidns_for_children_get,
452 .put = pidns_put,
453 .install = pidns_install,
454 .owner = pidns_owner,
455 .get_parent = pidns_get_parent,
456 };
457
pid_namespaces_init(void)458 static __init int pid_namespaces_init(void)
459 {
460 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
461
462 #ifdef CONFIG_CHECKPOINT_RESTORE
463 register_sysctl_paths(kern_path, pid_ns_ctl_table);
464 #endif
465 return 0;
466 }
467
468 __initcall(pid_namespaces_init);
469