1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file builds on the ADT/GraphTraits.h file to build a generic graph
10 // post order iterator. This should work over any graph type that has a
11 // GraphTraits specialization.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ADT_POSTORDERITERATOR_H
16 #define LLVM_ADT_POSTORDERITERATOR_H
17
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include <iterator>
23 #include <set>
24 #include <utility>
25 #include <vector>
26
27 namespace llvm {
28
29 // The po_iterator_storage template provides access to the set of already
30 // visited nodes during the po_iterator's depth-first traversal.
31 //
32 // The default implementation simply contains a set of visited nodes, while
33 // the External=true version uses a reference to an external set.
34 //
35 // It is possible to prune the depth-first traversal in several ways:
36 //
37 // - When providing an external set that already contains some graph nodes,
38 // those nodes won't be visited again. This is useful for restarting a
39 // post-order traversal on a graph with nodes that aren't dominated by a
40 // single node.
41 //
42 // - By providing a custom SetType class, unwanted graph nodes can be excluded
43 // by having the insert() function return false. This could for example
44 // confine a CFG traversal to blocks in a specific loop.
45 //
46 // - Finally, by specializing the po_iterator_storage template itself, graph
47 // edges can be pruned by returning false in the insertEdge() function. This
48 // could be used to remove loop back-edges from the CFG seen by po_iterator.
49 //
50 // A specialized po_iterator_storage class can observe both the pre-order and
51 // the post-order. The insertEdge() function is called in a pre-order, while
52 // the finishPostorder() function is called just before the po_iterator moves
53 // on to the next node.
54
55 /// Default po_iterator_storage implementation with an internal set object.
56 template<class SetType, bool External>
57 class po_iterator_storage {
58 SetType Visited;
59
60 public:
61 // Return true if edge destination should be visited.
62 template <typename NodeRef>
insertEdge(Optional<NodeRef> From,NodeRef To)63 bool insertEdge(Optional<NodeRef> From, NodeRef To) {
64 return Visited.insert(To).second;
65 }
66
67 // Called after all children of BB have been visited.
finishPostorder(NodeRef BB)68 template <typename NodeRef> void finishPostorder(NodeRef BB) {}
69 };
70
71 /// Specialization of po_iterator_storage that references an external set.
72 template<class SetType>
73 class po_iterator_storage<SetType, true> {
74 SetType &Visited;
75
76 public:
po_iterator_storage(SetType & VSet)77 po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage & S)78 po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
79
80 // Return true if edge destination should be visited, called with From = 0 for
81 // the root node.
82 // Graph edges can be pruned by specializing this function.
insertEdge(Optional<NodeRef> From,NodeRef To)83 template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) {
84 return Visited.insert(To).second;
85 }
86
87 // Called after all children of BB have been visited.
finishPostorder(NodeRef BB)88 template <class NodeRef> void finishPostorder(NodeRef BB) {}
89 };
90
91 template <class GraphT,
92 class SetType =
93 SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
94 bool ExtStorage = false, class GT = GraphTraits<GraphT>>
95 class po_iterator
96 : public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
97 public po_iterator_storage<SetType, ExtStorage> {
98 using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
99 using NodeRef = typename GT::NodeRef;
100 using ChildItTy = typename GT::ChildIteratorType;
101
102 // VisitStack - Used to maintain the ordering. Top = current block
103 // First element is basic block pointer, second is the 'next child' to visit
104 std::vector<std::pair<NodeRef, ChildItTy>> VisitStack;
105
po_iterator(NodeRef BB)106 po_iterator(NodeRef BB) {
107 this->insertEdge(Optional<NodeRef>(), BB);
108 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
109 traverseChild();
110 }
111
112 po_iterator() = default; // End is when stack is empty.
113
po_iterator(NodeRef BB,SetType & S)114 po_iterator(NodeRef BB, SetType &S)
115 : po_iterator_storage<SetType, ExtStorage>(S) {
116 if (this->insertEdge(Optional<NodeRef>(), BB)) {
117 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
118 traverseChild();
119 }
120 }
121
po_iterator(SetType & S)122 po_iterator(SetType &S)
123 : po_iterator_storage<SetType, ExtStorage>(S) {
124 } // End is when stack is empty.
125
traverseChild()126 void traverseChild() {
127 while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
128 NodeRef BB = *VisitStack.back().second++;
129 if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) {
130 // If the block is not visited...
131 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
132 }
133 }
134 }
135
136 public:
137 using pointer = typename super::pointer;
138
139 // Provide static "constructors"...
begin(GraphT G)140 static po_iterator begin(GraphT G) {
141 return po_iterator(GT::getEntryNode(G));
142 }
end(GraphT G)143 static po_iterator end(GraphT G) { return po_iterator(); }
144
begin(GraphT G,SetType & S)145 static po_iterator begin(GraphT G, SetType &S) {
146 return po_iterator(GT::getEntryNode(G), S);
147 }
end(GraphT G,SetType & S)148 static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
149
150 bool operator==(const po_iterator &x) const {
151 return VisitStack == x.VisitStack;
152 }
153 bool operator!=(const po_iterator &x) const { return !(*this == x); }
154
155 const NodeRef &operator*() const { return VisitStack.back().first; }
156
157 // This is a nonstandard operator-> that dereferences the pointer an extra
158 // time... so that you can actually call methods ON the BasicBlock, because
159 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
160 //
161 NodeRef operator->() const { return **this; }
162
163 po_iterator &operator++() { // Preincrement
164 this->finishPostorder(VisitStack.back().first);
165 VisitStack.pop_back();
166 if (!VisitStack.empty())
167 traverseChild();
168 return *this;
169 }
170
171 po_iterator operator++(int) { // Postincrement
172 po_iterator tmp = *this;
173 ++*this;
174 return tmp;
175 }
176 };
177
178 // Provide global constructors that automatically figure out correct types...
179 //
180 template <class T>
po_begin(const T & G)181 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
182 template <class T>
po_end(const T & G)183 po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
184
post_order(const T & G)185 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
186 return make_range(po_begin(G), po_end(G));
187 }
188
189 // Provide global definitions of external postorder iterators...
190 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
191 struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iteratorpo_ext_iterator192 po_ext_iterator(const po_iterator<T, SetType, true> &V) :
193 po_iterator<T, SetType, true>(V) {}
194 };
195
196 template<class T, class SetType>
po_ext_begin(T G,SetType & S)197 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
198 return po_ext_iterator<T, SetType>::begin(G, S);
199 }
200
201 template<class T, class SetType>
po_ext_end(T G,SetType & S)202 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
203 return po_ext_iterator<T, SetType>::end(G, S);
204 }
205
206 template <class T, class SetType>
post_order_ext(const T & G,SetType & S)207 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
208 return make_range(po_ext_begin(G, S), po_ext_end(G, S));
209 }
210
211 // Provide global definitions of inverse post order iterators...
212 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
213 bool External = false>
214 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
ipo_iteratoripo_iterator215 ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
216 po_iterator<Inverse<T>, SetType, External> (V) {}
217 };
218
219 template <class T>
ipo_begin(const T & G)220 ipo_iterator<T> ipo_begin(const T &G) {
221 return ipo_iterator<T>::begin(G);
222 }
223
224 template <class T>
ipo_end(const T & G)225 ipo_iterator<T> ipo_end(const T &G){
226 return ipo_iterator<T>::end(G);
227 }
228
229 template <class T>
inverse_post_order(const T & G)230 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
231 return make_range(ipo_begin(G), ipo_end(G));
232 }
233
234 // Provide global definitions of external inverse postorder iterators...
235 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
236 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iteratoripo_ext_iterator237 ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
238 ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iteratoripo_ext_iterator239 ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
240 ipo_iterator<T, SetType, true>(V) {}
241 };
242
243 template <class T, class SetType>
ipo_ext_begin(const T & G,SetType & S)244 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
245 return ipo_ext_iterator<T, SetType>::begin(G, S);
246 }
247
248 template <class T, class SetType>
ipo_ext_end(const T & G,SetType & S)249 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
250 return ipo_ext_iterator<T, SetType>::end(G, S);
251 }
252
253 template <class T, class SetType>
254 iterator_range<ipo_ext_iterator<T, SetType>>
inverse_post_order_ext(const T & G,SetType & S)255 inverse_post_order_ext(const T &G, SetType &S) {
256 return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
257 }
258
259 //===--------------------------------------------------------------------===//
260 // Reverse Post Order CFG iterator code
261 //===--------------------------------------------------------------------===//
262 //
263 // This is used to visit basic blocks in a method in reverse post order. This
264 // class is awkward to use because I don't know a good incremental algorithm to
265 // computer RPO from a graph. Because of this, the construction of the
266 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
267 // with a postorder iterator to build the data structures). The moral of this
268 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
269 //
270 // Because it does the traversal in its constructor, it won't invalidate when
271 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
272 // rely on this behavior (i.e. GVN).
273 //
274 // This class should be used like this:
275 // {
276 // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
277 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
278 // ...
279 // }
280 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
281 // ...
282 // }
283 // }
284 //
285
286 template<class GraphT, class GT = GraphTraits<GraphT>>
287 class ReversePostOrderTraversal {
288 using NodeRef = typename GT::NodeRef;
289
290 std::vector<NodeRef> Blocks; // Block list in normal PO order
291
Initialize(NodeRef BB)292 void Initialize(NodeRef BB) {
293 std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
294 }
295
296 public:
297 using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
298 using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
299
ReversePostOrderTraversal(GraphT G)300 ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
301
302 // Because we want a reverse post order, use reverse iterators from the vector
begin()303 rpo_iterator begin() { return Blocks.rbegin(); }
begin()304 const_rpo_iterator begin() const { return Blocks.crbegin(); }
end()305 rpo_iterator end() { return Blocks.rend(); }
end()306 const_rpo_iterator end() const { return Blocks.crend(); }
307 };
308
309 } // end namespace llvm
310
311 #endif // LLVM_ADT_POSTORDERITERATOR_H
312